当前位置: 仪器信息网 > 行业主题 > >

溴噻吩

仪器信息网溴噻吩专题为您提供2024年最新溴噻吩价格报价、厂家品牌的相关信息, 包括溴噻吩参数、型号等,不管是国产,还是进口品牌的溴噻吩您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溴噻吩相关的耗材配件、试剂标物,还有溴噻吩相关的最新资讯、资料,以及溴噻吩相关的解决方案。

溴噻吩相关的资讯

  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。  据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。  同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。  对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。  本法规自公布之日起生效。
  • 河南大学宋金生团队通过宏环封装策略实现四噻吩非全融合型有机太阳能电池15.1%高效率
    【重点摘要】提出了宏环封装策略,通过在四噻吩外围导入融合烷基侧链实现。将该策略应用于非全融合四噻吩类受体材料。实现了高达15.1%的转化效率。【宏环封装策略实现高效有机太阳能电池】有机光伏一直被视为下一代可再生能源的重要候选技术。但是其光电转换效率一直无法达到与无机光伏装置媲美的水平。非全融合四噻吩类受体材料被认为是实现高效有机太阳能电池的一个有前景的方法。【宏环结构限制分子构象,提升分子堆积效率】在美国伯明翰南方研究院的最新研究中,通过在四噻吩外围导入环烷基侧链,形成宏环封装结构。这种设计可以锁定中央分子部分的构象,生成平面分子骨架,有利于分子的高效堆积。【对照组件构象扭曲,分子堆积效率降低】相比之下,没有宏环封装限制的对照分子则出现了扭曲变形的构象。这种构象变化会降低分子堆积的有效性,进而影响相关器件的性能。【噻吩宏环受体器件效率达15.1%】基于四噻吩宏环受体R4T-1的有机太阳能电池成功实现了15.1%的高效率。【宏环封装策略指明下一步优化方向】这项研究为构建高性能有机太阳能电池提供了新的思路。随着在分子设计和器件工程方面的持续优化,有机太阳能电池20%效率的目标指日可待。研究使用光焱科技太阳光模拟器SS系列 与量子效率测试系统 QE-R来协助量测。通过在简单的四噻吩上进行宏环封装设计出非全融合受体R4T-1,该结构实现了构象的单一性,消除了分子中心的电子跨效应,并保证了高效电荷传输通道的形成。因此,实现了高达15.10%的转化效率,短路电流密度显著提高至25.48 mA/cm2。图S7. JD40:4T-5和JD40:R4T-1的J1/2-V曲线,(a)空穴型器件和(b)电子型器件。
  • 安捷伦在京举办2015能源化工行业前沿研究高峰论坛
    2015年5月28日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)日前在北京举办了&ldquo 2015能源化工行业前沿研究高峰论坛&rdquo (下称&ldquo 研讨会&rdquo )。此次研讨会不仅旨在为国内能源化工行业研究学术界提供深入交流和学习的平台,更在于探讨并推动高端质谱在行业前沿研究中的价值实现和应用普及。  本次研讨会,由安捷伦与休斯顿大学联合举办,从能源化工全产业链角度出发,涵盖能源化工上中下游每个产业环节,分享国际顶尖的石化分析技术,与来自全球地球化学界、石油化工界和实验室的权威专家学者一道,讨论关于能源化工及地球化学科研领域的最新研究成果。休斯顿大学教授Adry Bissada博士、休斯顿大学教授John Casey博士、休斯顿大学副教授高永军博士、休斯顿大学博士研究生梅梅女士  中石化石油化工科学研究院教授级高工刘泽龙先生、中石化北京化工研究院教授级高工张颖女士、中国石油大学(北京)重质油国家重点实验室副主任史权教授、中石化石油勘探开发研究院无锡石油地质研究所主任研究师张志荣博士  在能源化工行业的上游勘探开采环节,安捷伦的串接质谱无论是在有机分析(GC-MS/MS)还是无机分析领域(ICP-MS/MS),表现都十分出色。  业界公认的地球化学分析领域权威,来自休斯敦大学石油地球化学系的教授Dr. Adry Bissada先生和美国休斯敦大学地质专业博士研究生梅梅女士,回顾了地球化学反演过程中的艺术与科学,利用高分离度 GC、GCxGC、GC-MS、GC-MS-MS 与 GC-IRMS结合不断增强的数据处理能力,大大发展了地球化学方法。这些方法不仅可用于可靠的油油对比和地球化学指纹识别,同时也可用于原油和天然气中的复杂化学物质在分子和亚分子水平上的解卷积以提取烃源信息,进而可得出对烃源岩年代、身份和位置的特定推断。中国石化石油勘探开发研究院无锡石油地质研究所主任研究师张志荣博士,探讨了GC-MS对大量的生物标志物以及以大分子的状态结合于其中的干酪根进行分析,研究成果对油气来源和成藏过程具有重大的价值。  在无机分析领域,美国休斯敦大学地质系的教授Dr. John Casey先生和休斯敦大学地球和大气科学学系研究副教授高永军博士,借助于创新的串联质谱ICP-MS/MS的高灵敏度,极大扩展了更低浓度元素的测定范围,使用单一样品制备方法便可使多达 47 种的元素可像常规分析一样完成测定,同时对用于石油勘探和生产原油中钒同位素的组成进行了准确测定,有助于深入了解导致石油形成的生物地球化学循环和途径。  在中游炼化环节,安捷伦的GC/MS Q-TOF,已建有一套成熟完整的系统性数据和分析方法。中国石化石油化工科学研究院教授级高工/质谱实验室负责人刘泽龙先生分享了柴油中的超低硫分子直接进行分析表征课题的研究成果,借助安捷伦GC/MS Q-TOF高分辨的技术优势,成功研究了直柴、催柴和焦化柴油加氢过程中不同结构二苯并噻吩分子的变化趋势,可实现直接对深度脱硫柴油中不同烷基数量、不同烷基取代位置二苯并噻吩进行分子识别及定量测定。  安捷伦利用在技术和科技前沿应用方面的雄厚实力,在其下游石化领域也成绩斐然。GC-MS、GC-MS/MS和GC-ICP-MS在实际研究中的应用,为研究工作提供了更高灵敏度更准确的分析结果。催化剂是聚烯烃工业的核心,杂质含量直接决定了聚合反应的进行程度和方向,中国石化北京化工研究院教授级高工张颖女士,在分析研究工作中采用安捷伦的GC-MS/MS多反应监测(MRM)技术建立了催化剂中磷酸三丁酯的定量分析方法,所得结果更快速,灵敏度高、适用范围广,在提高效率的同时,也为解决企业生产过程中的实际问题铺平了道路。  中国石油大学(北京)重质油国家重点实验室副主任史权教授一直致力于从分子层次揭示重质油化学组成与转化规律,推动&ldquo 石油组学&rdquo 和&ldquo 分子炼油&rdquo 由概念走向实践。借助安捷伦IM Q-TOF LC/MS离子淌度液相色谱飞行时间质谱仪,史权老师获得了石油组分大量异构体间存在的结构信息,这些很难通过传统质谱进行鉴定。史权老师认为,离子淌度质谱技术(IM-MS)根据化合物分子的气相碰撞截面积差异,从空间尺度上实现不同分子的分离与质量分析,在传统质谱技术实现质量分辨的同时增加了一维分子尺度信息,从而可以大幅度提高质谱的化合物分辨率,是分析复杂样品的理想手段,在研究分子结构信息方面具有很好的前景。  环境保护和人体健康一直是人们密切关注的话题,这也是安捷伦科技在方法开发和仪器设计过程中秉承的原则。应对复杂的石油组成,石化行业传统分析策略之一是:将样品组分以其极化度和极性分组 这样方法被称之为族组成(SARA)分析方法。传统的分级过程费时费力,且使用大量溶剂,对操作人员和环境毒害较大。安捷伦科技的工程师开发了另外一种半定量,全自动的族组成分离的液相色谱方法。在本方法中,沥青质部分可以后续采用2D-LC配合高分辨质谱(TOF-MS)进一步分析,可进一步鉴别其中含有杂原子的化合物。采用使用空气运行的微波等离子体原子发射光谱仪,不仅使用运行成本低,且由于无可燃性气体,更加安全可靠,适用于石油化工行业的分析测量。安捷伦大中华区战略总监何峻先生、安捷伦全球能源和化工市场经理 Wayne Collins博士、安捷伦大中华区能源化工/材料市场经理陈艳凤女士  安捷伦液相色谱与液质联用技术应用技术支持经理安蓉女士、安捷伦原子光谱应用工程师欧阳昆先生  安捷伦科技全球能源化工行业市场经理Wayne Collins先生表示:&ldquo 安捷伦多年来致力于为中国研究人员构建国际交流平台,帮助中国能源化工研究领域共同面对科研挑战,推动科学技术的发展。今后,凭借安捷伦对能源化工分析领域的深刻了解,安捷伦将继续致力于能源化工科研的发展,以及满足科研人员不断变化的需求,我们将以更加深厚的技术积累深耕能源化工领域,从设备、应用、技术支持和定制化服务等各个方面为他们的科学研究创造良好条件,成为他们最可信赖的实验室合作伙伴。&rdquo   安捷伦作为能源化工分析检测领域的领导者,拥有贯通能源化工全产业链高端质谱应用,从勘探开采、炼制加工到精细化工和材料的各个环节,并始终致力于与分析研究人员紧密协作,攻克科研难题。此外,安捷伦还突出展示了其高端质谱解决方案在国际能源化工分析领域应用实例,这不仅标志着安捷伦拥有贯穿石油化工全产业链各个环节的先进解决方案和丰富经验,也表明安捷伦正成为引领石油化工行业分析研究技术方向的风向标。
  • 分析检测新标准拟定
    近来一段时间,看到各行业 分析检测新标准拟定 现已放出意见征集公告。为大家汇总整理下,看看有没有涉及到大家关注的领域吧!纳米技术石墨烯材料的化学性质表征电感耦合等离子体质谱法 标准意见征求标准中所使用的方法,需要用到的测试仪器有以下几种:可对无机元素进行痕量定量测试的电感耦合等离子体质谱仪、能对被测样品进行消解的微波消解仪、能去除消解后样品溶液中浓硝酸的赶酸仪。标准也详细叙述了样品前处理的各项步骤,并推荐同时处理4-6个平行样进行ICP-MS测试分析,其中1-2个样品中应加入含有特定元素的标准溶液用于后续计算加标回收率。小麦粉的测定高效液相色谱法 三项补充方法发布《小麦粉中三聚硫氰酸三钠盐的测定》(BJS 202001)规定了小麦粉中三聚硫氰酸三钠盐的高效液相色谱测定方法,适用于小麦粉中三聚硫氰酸三钠盐的测定。在检测中,除了需要用到高效液相色谱之外,还需要用到 电子天平、涡旋混合器、高速冷冻离心机等仪器,待试样中检出三聚硫氰酸三钠盐后还需要采用液相色谱-质谱/质谱法进行确证。《小麦粉及其面粉处理剂中苯甲羟肟酸的测定》(BJS 202002)规定了小麦粉及其面粉处理剂中苯甲羟肟酸的高效液相色谱测定方法,适用于小麦粉及其面粉处理剂中苯甲羟肟酸的测定。检验过程中需要用到高效液相色谱仪、电子天平、pH计、涡旋振荡器、超声波发生器、高速离心机等,结果确认使用液相色谱-质谱/质谱法。《小麦粉中曲酸的测定》(BJS 202003)规定了小麦粉中曲酸的高效液相色谱测定方法,适用于小麦粉中曲酸的测定。液相色谱仪:配有二极管阵列检测器或紫外检测器。检测中,用纯水提取试样中曲酸,用配有二极管阵列检测器或紫外检测器的高效液相色谱仪检测,外标法定量。此外还需要用到分析天平、pH计、超声波水浴、离心机等仪器。化妆品中壬二酸的检测气相色谱法 意见征集《化妆品中壬二酸的检测 气相色谱法》中所规定的检测方法原理是试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离,再使用氢火焰离子化检测器检测,之后根据保留时间定性,外标法定量即可。标准中也显示本方法的检出限为15mg/kg,定量限为50mg/kg。而实验需要用到的仪器设备包括有配备氢火焰离子化检测器的气相色谱仪、分析天平、离心机、涡旋振荡器、刻度管、氮吹仪等。化妆品中禁用物质三氯乙酸的测定气相色谱质谱法 意见征集《化妆品中禁用物质三氯乙酸的测定》引用了《分析实验室用水规格和试验方法》,规定了气相色谱质谱法测定化妆品中三氯乙酸含量的方法,而方法的原理是样品在酸性条件下用甲基叔丁基醚萃取,在萃取液经氮气吹干后,用硫酸乙醇溶液衍生,使样品中的三氯乙酸形成三氯乙酸乙酯,之后用正己烷萃取并注入气相色谱-质谱联用仪分析,用外标法定量即可。该标准所规定使用的方法需要用到的仪器设备有配备电子轰击电离源的气相色谱-质谱联用仪、分析天平、涡旋振荡器、氮吹仪、离心机、水浴锅。因仪器设备具有多样性,为确保实验顺利进行,标准征求意见稿中还规定了仪器的色谱柱固定相应当是含有5%苯基的甲基聚硅氧烷石英毛细管柱或性能相当者。天然气加臭剂四氢噻吩含量的测定气相色谱法 意见征集标准中规定了用气相色谱法在线测定天然气中加臭剂四氢噻吩的试验方法。而该方法的原理是具有代表性的天然气样品和已知含量的四氢噻吩气体标准物质在同样的操作条件下,经色谱柱分离后进入热导检测器后就能对四氢噻吩含量进行测定,而四氢噻吩含量与峰高或峰面积成正比,通过对比标物和天然气样品的四氢噻吩峰高或者峰面积,即可获得天然气样品中四氢噻吩的含量。标准中还明确表明了使用的便携式气相色谱仪的进样系统应当选用对四氢噻吩无吸附性或经惰性化处理的材料,而色谱柱的材料也应对四氢噻吩呈惰性和无吸附性,或者色谱柱内壁要经惰性化处理,柱内填充物也可以对被检测的四氢噻吩进行有效分离。
  • 【石化半月刊】2022年即将实施的石油产品标准
    2021年,仪器信息网共推出了6期石化半月刊(点击此处可查看该话题),涉及到石油化工领域的新技术与新应用,“双碳”目标下石化领域的未来发展等内容。2022年,我们继续出发!请大家锁定【石化半月刊】话题,仪器信息网将持续推出更多、更精彩的石油化工相关内容。2022年的第一期,小编盘点了那些在2021年已经发布,将于2022年实施的部分标准(与分析仪器较相关),具体见表1。本文主要对标准的测定范围及提到分析仪器的部分进行简单梳理,点击红色字体即可进入该仪器专场。表1 2022年即将实施的石油化工相关标准标准号标准名称发布日期实施日期GB/T 40496-2021喷气燃料中抗氧剂含量的测定 高效液相色谱法2021/8/202022/3/1GB/T 40500-2021喷气燃料中芳烃总量的测定 气相色谱法2021/8/202022/3/1GB/T 386-2021柴油十六烷值测定法2021/10/112022/5/1GB/T 4985-2021石油蜡针入度测定法2021/10/112022/5/1GB/T 17144-2021石油产品 残炭的测定 微量法2021/10/112022/5/1GB/T 23799-2021车用甲醇汽油(M85)2021/10/112022/5/1GB/T 40701-2021动车组驱动齿轮箱润滑油2021/10/112022/5/1GB/T 40704-2021天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法2021/10/112022/5/1GB/T 40496-2021 喷气燃料中抗氧剂含量的测定 高效液相色谱法在标准GB/T 40496-2021中,共有两种方法测定喷气燃料中抗氧剂含量的测定,分别是方法A:高效液相色谱紫外检测法,适用于加氢裂化喷气燃料中抗氧剂含量的测定;方法B:液相色谱质谱法,适用于加氢裂化及加氢精制喷气燃料中抗氧剂含量的测定。测定物质及测定范围如下表所示:表2 喷气燃料中抗氧剂含量的测定范围测定方法测定物质测定范围方法A高效液相色谱紫外检测法2,6-二叔丁基对甲酚(T501)4.0mg/L~40.0 mg/L2,4-二甲基-6-叔丁基苯酚5.0mg/L~40.0 mg/L方法B液相色谱质谱法2,6-二叔丁基对甲酚(T501)3.5mg/L~50.0 mg/L方法A中,对高效液相色谱仪(HPLC)的要求是配置二极管阵列检测器或紫外检测器,样品阀系统最大允许进样量200μL。其中,要求紫外检测器的灵敏度和稳定性足够高,确保在特定操作条件下0.1 mg/L的抗氧剂能被准确检测。方法B中,采用的是单四级杆质谱仪,离子化方式选择电喷雾电离负离子模式(ESI),质谱扫描方式选择离子监测(SIM=219.2)。GB/T 40500-2021 喷气燃料中芳烃总量的测定 气相色谱法该标准适用于终馏点300℃以下的喷气燃料中芳烃总量的测定,芳烃质量分数或体积分数测定范围为0.5%~35%,不适用于测定各烃族中的单体烃组分含量。对气相色谱仪的要求:应至少包括进样系统、汽化室、色谱柱箱、氢火焰离子化检测器(FID)、色谱工作站和气体流量控制系统。GB/T 386-2021 柴油十六烷值测定法该标准适用于压燃式发动机燃料十六烷值的定量测定,也适用于非常规燃料,如合成燃料、植物油及类似产品十六烷值的定量测定。其中,十六烷值的范围为0~100,但典型的测试范围为30~65。标准中描述了用十六烷值试验机测定柴油十六烷值的试验方法:样品在特定操作条件下,由一个标准的单缸、四冲程、可连续改变压缩比、间歇喷射柴油发动机进行测试。GB/T 4985-2021 石油蜡针入度测定法该标准适用于针入度值不大于250 1/10mm的石油蜡,也可用于测定费托蜡、合成蜡和生物蜡。其中,涉及到的仪器是针入度计。GB/T 17144-2021 石油产品 残炭的测定 微量法该标准采用微量法测定石油产品残炭,其测定残炭质量分数的范围为0.10%~30.0%。(残炭质量分数0.10%的石油产品也可测定,但精密度尚未确定)GB/T 23799-2021 车用甲醇汽油(M85)标准GB/T 23799-2021是对车用甲醇汽油(M85)的各类性质,如车用甲醇汽油(M85)的外观、蒸气压、铅/硫/钠/锰含量、有机氯/无机氯、水分等质量指标及试验方法的汇总,如图1所示。标准中大部分质量指标的试验方法均以标准号形式呈现(标准名称将在文末以文字形式展出),仅外观性质为目测;甲醇(体积分数)的测定是采用气相色谱仪,热导池检测器(TCD)或火焰离子检测器(FID)均可使用;无机氯含量的测定采用自动电位滴定法,还特别提到了型号为809 Titrando Metrohm;分辨率0.1mV;精度0.2%。图1 车用甲醇汽油(M85)的技术要求和试验方法GB/T 40701-2021 动车组驱动齿轮箱润滑油标准规定了以合成型油品为基础油,加入多种类型功能添加剂调制而成的动车组驱动齿轮箱润滑油的产品牌号和标记、要求和试验方法、检验规则、标识、包装、储运及交货验收。需检测动车组驱动齿轮箱润滑油的性质,如运动黏度(100℃)、运动黏度(40℃)、黏度指数、倾点、表观黏度(-40℃)、水分、泡沫性、铜片腐蚀、机械杂质、闪点(开口)等质量指标及试验方法如图2所示,质量指标的试验方法均以标准号形式呈现(标准名称将在文末以文字形式展出)。图2 动车组驱动齿轮箱润滑油的技术要求和试验方法GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法该标准可测定的天然气中加臭剂四氢噻吩含量范围为5mg/m3~200mg/m3,采用热导检测器(TCD)-便携式气相色谱仪在线测定的方法。附:GB/T 23799-2021中提到的标准名称如下:SH/T 0794 石油产品蒸气压的测定微量法GB/T 8020汽油中铅含量的测定 原子吸收光谱法GB/T 3410轻质烃及发动机燃料和其他油品中总硫含量的测定 紫外荧光法ASTM D1613 色漆, 清漆, 喷漆和有关产品用挥发性溶剂和化学介质中酸度的标准试验方法GB/T 8019 燃料胶质含量的测定喷射蒸发法GB/T 18612 原油有机氯含量的测定 GB/T 17476使用过的润滑油中添加剂元素、磨损金属和污染物以及基础油中某些元素测定法(电感耦合等离子体发射光谱法)ASTM E203 用卡尔费休试剂检验水的标准试验方法NB/SH/T 0711 汽油中锰含量的测定 原子吸收光谱法GB/T 5096石油产品铜片腐蚀试验法GB/T 40701-2021中提到的标准名称如下:GB/T 260石油产品水含量的测定 蒸馏法GB/T 265石油产品运动粘度测定法和动力粘度计算法GB/T 511石油和石油产品及添加剂机械杂质测定法GB/T 1995石油产品粘度指数计算法GB/T 2541石油产品粘度指数算表GB/T 3142润滑剂承载能力的测定 四球法GB/T 3535石油产品倾点测定法GB/T 3536石油产品闪点和燃点的测定 克利夫兰开口杯法GB/T 4756石油液体手工取样法GB/T 5096石油产品铜片腐蚀试验法GB/T 11145润滑剂低温黏度的测定勃罗克费尔特黏度计法GB/T 12579润滑油泡沫特性测定法GB/T 17477汽车齿轮润滑剂黏度分类GB/T 30515透明和不透明液体石油产品运动黏度测定法及动力黏度计算法NB/SH/T 0164石油及相关产品包装、储运及交货验收规则NB/SH/T 0306润滑油承载能力的评定FZG目测法NB/SH/T 0845传动润滑剂黏度剪切安定性的测定 圆锥滚子轴承试验机法NB/SH/T 0944.1 润滑剂抗磨损性能的测定FE8滚动轴承磨损试验机法 第1部分:润滑油NB/SH/T 0967润滑剂包装标识通则TB/T 3134 动车组用驱动齿轮箱
  • “氢”力保障,Nexis SCD-2030享你所想
    氢能是一种清洁、高效、可持续的二次能源,同时兼有来源广、燃烧热值高、能量密度大、可储存、可再生的特点,是实现“双碳”目标的重要一环。氢能应用场景广泛,其中质子交换膜燃料电池汽车是氢能的主要应用场景之一,氢气中杂质控制是确保燃料电池正常运行的关键因素,标准《GB/T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气》中对杂质控制有着严格的要求,其中硫化物是检测难点之一。硫化物特点● 浓度低 总硫含量不可超过0.004 μmol/mol● 危害大 对质子交换膜燃料电池阴极催化剂产生不可逆的毒化作用● 活性高 易与接触的材料表面发生物理吸附或者化学反应,分析误差大硫化学发光化检测器(SCD)是目前公认的高灵敏和高选择性硫元素检测器,且不受大多数样品基质的干扰,岛津硫化学发光检测系统Nexis SCD-2030,以创新的水平燃烧器设计为用户提供更高灵敏度和更高稳定性,以丰富的软自动化功能使实验室的分析效率攀上新台阶。岛津硫化学发光检测系统Nexis SCD-2030实验一 样品直接进样分析使用Nexis GC-2030(搭配SCD-2030检测器)管路系统惰性化,直接进样测定氢气中硫化氢、羰基硫、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩等组分。SCD分析痕量硫化物色谱图-1注:1.硫化氢;2.羰基硫;3.甲硫醇;4.乙硫醇SCD分析痕量硫化物色谱图-25.甲硫醚;6.二硫化碳;7. 叔丁硫醇;8. 甲基乙基硫醚;9. 乙硫醚;10.四氢噻吩表1. 1.0 mg/m3浓度点的检测结果如上表是以1.0 mg/m3浓度点标气来测试重复性和检测限,其重复性结果均优于1.0%,硫化物检测下限为10ppb(V/V)级,体现了Nexis SCD-2030良好的重复性和高灵敏度特点。实验二 样品经富集浓缩后进样分析中国测试技术研究院技术人员通过深入分析探讨,开展了基于半导体制冷的低温富集装置与GC-SCD联用试验,方法以氢气中硫化氢、硫氧碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、甲乙硫醚、噻吩、乙硫醚等9个组分的硫化物气体标准物质进行了方法开发研究,获得了良好的分析效果。在《天然气工业》期刊发表了题为“车用燃料氢气中杂质组分分析方法标准化现状与探讨-以质子交换膜燃料电池汽车为例”的文章, 岛津的Nexis SCD-2030硫化学发光检测器作为分析系统检测部分的核心大显身手。样品富集浓缩进样SCD分析痕量硫化物色谱图注:1.硫化氢;2.硫氧碳;3.甲硫醇;4.乙硫醇;5.甲硫醚;6.二硫化碳;7.甲乙硫醚;8.噻吩;9.乙硫醚研究结果表明低温富集装置-GC-SCD联用分析系统可以很好满足《GB/T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气》对总硫的分析要求,方法检出限最低可达到0.01 nmol/mol,0.1-40 nmol/mol范围内的线性相关系数R2大于0.995,0.1 nmol/mol的重复性小于5%。参考资料:1. 岛津应用No. GC-164. 岛津Nexis GC-2030 SCD测定氢气中微量形态硫.2. 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.本文内容非商业广告,仅供专业人士参考。
  • 穷源溯“硫”——三级冷阱大气预浓缩仪结合GC-MS深入解决大气恶臭污染分析难题
    背景硫化物是典型的恶臭污染物,在石油化工、制药、合成橡胶等工业生产中均会产生硫化氢、硫醇类、硫醚类等挥发性硫化物。这类物质不但嗅觉阈值极低,而且毒性大,危害人类健康。2018年12月,生态环境部发布了《恶臭污染物排放标准(征求意见稿)》,进一步严格了氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯等8种恶臭污染物的排放和厂界浓度限值。次年发布《固定污染源废气 甲硫醇等8种含硫有机化合物的测定 气袋采样-预浓缩/气相色谱-质谱法(HJ 1078-2019)》,标准规定废气经三级冷阱浓缩,热解吸后GC-MS分析。解决方案图1.谱育科技Pre 4000大气预浓缩仪本方案采用谱育科技Pre 4000大气预浓缩仪对大气中的痕量硫化物进行富集浓缩,Pre 4000采用经典的三级冷阱设计,硫化物经一级冷阱除水后,被二级冷阱填料捕集,将二级冷阱加热,硫化物全部转移至三级空管低温聚焦,三级冷阱快速升温,硫化物被热解吸至GC-MS进行分离检测。图2. Pre 4000的一、二、三级冷阱工作示意图Pre 4000采用创新的斯特林制冷技术,无需消耗液氮或液态二氧化碳等制冷剂,聚焦能力强,而且与样品接触的管路、接头和阀头等部件均采用硅烷化处理,不仅满足HJ 1078-2019硫化物离线分析的要求,还可在线实时监测大气中硫化物浓度变化,同时对硫化氢也有很好的分析效果。01方案特点斯特林制冷,最低温可达-160℃无需消耗制冷剂,降低使用成本全惰性化流路,防止强极性物质吸附,提高分析准确性适用范围广,可离线/在线检测多种VOCs02分析结果图3. 9种硫化物总离子流色谱图1-硫化氢、2-甲硫醇、3-乙硫醇、4-甲硫醚、5-二硫化碳、6-甲乙硫醚、7-噻吩、8-乙硫醚、9-二甲二硫醚;IS-1 氯溴甲烷、IS-2 1,4-二氟苯、IS-3 氯苯-d5、IS-4 4-溴氟苯图3展示了10 ppbv 9种硫化物标气的分析结果,可以看到9种硫化物分离度良好,峰型完美,虽然硫化氢和空气峰存在共流出,但硫化氢的特征碎片34干扰少,可实现准确定性和定量。表 1 9种硫化物的线性相关系数、精密度和方法检出限表1展示了9种硫化物的线性相关系数、精密度和方法检限数据,在2~20 ppbv的浓度范围内各目标物的相关系数R2均在0.993以上,9种硫化物的RSD均在2.0~6.6%之间,方法检出限在40.9~103.4 pptv之间,完全满足HJ 1078-2019的检出限要求。图4. 部分硫化物谱图叠加图5. 部分硫化物线性数据总结本方案采用Pre 4000三级冷阱大气预浓缩仪结合GC-MS一次进样同时分析9种硫化物,方法检出限、线性和精密度良好。满足HJ 1078-2019标准和《恶臭污染物排放标准(征求意见稿)》限值的要求,完美适用于环境空气和无组织废气。Pre 4000使用斯特林制冷技术和全惰性化流路,可轻松应对大气中痕量有机硫化物的检测,为恶臭异味治理提供有效的检测手段,为打赢蓝天保卫战和保卫人民健康具有重要的意义。
  • 天然气含硫新标5月1日正式实施,SCD硫化学发光检测器轻松应对!
    ☆ 导读 ☆现阶段,能源紧张已成为影响和制约全球发展的关键问题,当前的俄乌局势更加凸显了能源问题对全世界的影响。2021年10月11日国家市场监督管理局和国家标准化管理委员会发布了GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,2022年5月1日正式实施,并替代原来的2014年版本。其中一项重要的变化是0.1~600mg/m3(以硫计)总硫的测定,并规定:通过将不同硫化物的硫含量进行加和,得到总硫含量。天然气中的硫化物杂质对其运输、存储和使用安全及环境均会产生不利影响,不仅会腐蚀设备、污染环境,还会危害人体健康。含硫化合物的种类不同其危害也不尽相同,对于天然气中含硫化合物的测定,岛津硫化学发光检测器(SCD)不仅具有灵敏度高、重复性好、操作简单等优点,还具有硫等摩尔响应、无基质淬灭、自动化程度高等优势,助您轻松应对新标准! ☆ 天然气中含硫化合物的危害 ☆天然气的主要成分是甲烷,来源于常规油气田开发出来的天然气、页岩气、煤层气等。2019年天然气储量数据来源:煤层气行业深度研究报告:“双碳”政策下,如何打造盈利新模式? 我国天然气需求量对外依存度达40%,进口液化天然气(LNG)占中国天然气进口量的60%以上,以澳大利亚占比最高。 数据来源:左图2021年中国液化天然气产量、进出口及需求现状分析,全球最大的LNG进口国_我国_华经_液化,右图2021年我国油气进口来源国分布 - 知乎 天然气中可能的硫化物有硫化氢、氧硫化碳、二氧化硫、甲硫醇、乙硫醇、叔丁硫醇、甲硫醚、乙硫醚、甲基乙基硫醚、四氢噻吩等,这些硫化物对运输、储存和使用安全及环境均会产生不利影响。当其作为燃料不仅会腐蚀输送管道和燃具,而且燃烧后的尾气或者废气还会造成人员中毒,排放到大气中也会引起环境污染;当其作为化工行业的原材料不仅会腐蚀储存容器和反应装置,更会导致贵重的催化剂中毒而失去活性。因此准确检测出天然气中的硫化物含量是非常必要的。 ☆ 新标来袭,岛津方案助您从容应对 ☆天然气作为经济环保的绿色能源和化工原材料倍受关注,在我国的能源安全中越发重要。新标准GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》中介绍GC-FPD、GC-PFPD、GC-MSD、GC-SCD等不同检测器用于0.1~600mg/m3范围内硫化物检测的分析方法。其中,GC-SCD(硫化学发光检测器)方法对硫具有等摩尔响应的特性,在总硫分析方面具有独特的优势,所以得到了大家的广泛认可。 图1. Nexis GC-2030 SCD l 分析条件 标准气体:甲烷中微量硫化氢、氧硫化碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩10种硫化物混合标气。浓度1.0mg/m3天然气中硫化物混合标气进样1.0mL 分析,典型谱图如下:图2. 浓度1.0mg/m3天然气中硫化物标气谱图(1硫化氢、2氧硫化碳、3甲硫醇、4乙硫醇、5甲硫醚、6二硫化碳、7叔丁硫醇、8甲基乙基硫醚、9乙硫醚、10四氢噻吩) l 标准曲线和检出限5瓶混和标气浓度以硫计分别为:1.0mg/m3 、3.0mg/m3、5.0mg/m3、15.0mg/m3、20.0mg/m3。硫化物混合标气重复进样4次,各组分面积重复性均优于1.0%,相关系数R值除甲硫醇和乙硫醇为0.9998外其余8种硫化物都大于0.9999。选择了其中3种硫化物的标准曲线展示见图3。各硫化物的检出限见表1。 图3. 天然气中3种典型硫化物标准曲线表1. 天然气中10种硫化物检出限☆ 结语 ☆“十四五”期间将是我国天然气工业的大发展时期,天然气产量到2025预计达到2500亿方,天然气勘探开发将迎来新的发展。岛津Nexis GC-2030 SCD色谱仪助您轻松应对GB/T 11060.10-2021《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,确保天然气的生产安全、使用安全、运输安全。 本文内容非商业广告,仅供专业人士参考。
  • 欧盟修订七种农药最大残留限量
    据欧盟网站消息,6月11日欧盟发布委员会条例(EU)No 617/2014,修订法规(EC)No 396/2005附件II和III中有关7种农药最大残留限量的规定。  这7种农药包括:乙氧嘧磺隆、甲磺隆、烟嘧磺隆、氟磺隆、玉嘧磺隆、磺酰磺隆、甲基噻吩磺隆。  新规定将自发布后第20天起生效,2015年1月2日起实施。
  • Anal. Chem. 四川大学吴鹏课题组:单线态氧特征磷光发射测定D2O纯度 | 前沿用户报道
    供稿:郎云贺成果简介近日,四川大学吴鹏课题组利用单线态氧1270nm的NIR-II特征发射(聚噻吩光敏剂)测定D2O纯度,相关文章已发表在Analytical Chemistry上,该工作也表明了单线态氧的NIR-II发射在分析检测中具有潜在的应用价值。背景介绍重水(D2O)在核工业及生物有机分析等领域应用广泛。但由于D2O与H2O的物理性质极为相似,加之D2O具有强吸湿性,致使区分D2O和H2O极具挑战。单线态氧的特征磷光发射(1270 nm,NIR-II)具有半峰宽窄、信号干扰小的特点,能够有效区分D2O/H2O。图文导读单线态氧的特征磷光发射强度与溶剂相关。与O-D(ν = 2550 cm-1)相比,高振动频率的O-H(ν = 3250 cm-1)能够更快速有效的促使单线态氧非辐射失活,表现为更弱的信号强度(图1A)。目前,最直接、方便产生单线态氧的方式是通过光敏过程(图1B)。然而,常规情况下该特征磷光发射非常弱,难以满足定量分析的要求。图1 光敏氧化产生的1O2特征磷光发射区分H2O和D2O四川大学吴鹏教授团队筛选具有优良光敏稳定性、较高单线态氧量子产率的聚噻吩光敏剂,加入至不同比例的D2O/H2O溶液中,利用激光器作为激发光源,通过提高激光功率增强了光敏氧化产生的单线态氧1270 nm磷光发射信号。信号采集时间约30 s,最终实现D2O纯度的定量分析与检测。收集1O2的弱磷光发射信号的仪器设置在本研究中,主要是由四川大学分析测试中心分子光谱组瞬态荧光光谱仪(HORIBA Fluorolog-3)支撑,装备近红外检测器(H10330,Hamamatsu)。通过该仪器,完成了光敏剂分子荧光光谱、荧光寿命、单线态氧磷光光谱、单线态氧磷光寿命等的测量。HORIBA Fluorolog-3 荧光光谱仪作者借助外置激光器(提高激光功率),得到了平滑的单线态氧磷光发射曲线(如图2D),实现了通过NIR-II光谱完成D2O纯度的定量分析。该仪器具有功能多样、灵敏度高等优势,NIR-II光谱平均扫描时间仅30 s。值得注意的是,该仪器与脉冲激光器相连接,能够得到不同溶剂的单线态氧寿命衰减曲线(图2E)。该仪器对发光强度很弱的单线态氧NIR-II磷光及其他稳态/瞬态相关的研究提供了广阔的平台。图2 光敏剂PT10的光物理性质研究如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息Analysis of the Isotopic Purity of D2O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer署名作者:Yunhe Lang, Shihong Wu, Qin Yang, Yanju Luo*, Xia Jiang, and Peng Wu*文章链接:https://doi.org/10.1021/acs.analchem.1c01160扫码查看文献吴鹏教授课题组简介吴鹏,四川大学分析测试中心/化学学院教授,博导,国家优青,四川省学术与技术带头人。近年来的研究工作以室温磷光和单线态氧的光物理和光化学调控为基础,探究其在核酸检测、光动力治疗等领域的新应用。已在Nat. Commun.、Angew. Chem. Int. Ed.、Nano Lett.、Chem. Sci.、Anal. Chem.等国际知名期刊上发表论文90余篇,H-index 38。
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • Nexis视角 | “氦气短缺4.0”时代,一瓶氦气到底能用多久?(下篇)
    对于GC和GCMS来说,氦气因其化学惰性好和传质阻力小,是非常理想的载气,目前在GC高灵敏度分析、介质阻挡放电等离子体检测器(BID)、硫化学发光检测器(SCD)等技术中应用广泛。然而,氦气这种“黄金气体”,近年来经常出现短缺现象,价格压力和供应不确定性已成为全球GC/GCMS实验室面临的两个重要问题。由于全球供应链等多方面因素影响,当前时期也被业界戏称为“氦气短缺4.0”,很多分析人员开始关心——实验室的这瓶氦气到底能用多久? 我们总结了岛津GC应对氦气短缺问题的实操方案:氦气节省策略和气体替换策略,本篇将继续为您分享气体替换策略。(GCMS的应对策略请参考:气质百川之三丨优化氦气使用or替代氦气,哪种你最中意?) 根据气相色谱的分析目的,有些分析任务必须使用氦气作载气,而有些分析任务则替换为其他气体后依然可以得到满意的分析结果,因此可以灵活考虑气体替代策略(详细信息请参考:Nexis视角 | 使用气体智选阀比较不同载气的分析效果)。 表1. 常见3种气体的特点对比表可切换为N2的情况N2是气相色谱中应用非常普遍的载气,相对分子质量较大,扩散系数小,其优点是价格便宜,安全性高。 图1. LabSolutions GC工作站载气切换界面 气体智选阀选件可以实现气体类型的自动调整,可实现一个批处理中,当一个分析完成后,根据后续方法的设置,自动将载气切换为其他气体类型。以FID的载气切换为例,10-15min即可自动完成切换。 如下图所示,Nexis GC-2030通常使用He作载气,本例中,以N2作载气分析苯中噻吩的色谱图,低浓度下依然可以得到很好的分析结果。 图2. 以N2作载气分析苯中噻吩的色谱图 可切换为H2的情况H2是热导检测器的常用载气和氢火焰离子化检测器的常用燃烧气,相对分析质量小,其优点是价格便宜,适合高速分析,局限性是易燃易爆,使用时必须注意安全。岛津针对此问题专门推出了方案: (1)可实时监测柱温箱中H2浓度的氢气传感器附件(S221-78910-41),通过对潜在泄漏的及早发现来保证使用安全,可以在氢气泄漏时主动关闭主机电源避免发生事故,同时GC主机也具备载气自动检漏功能,双重保障,保证安心使用。 (2)进样口端AFC氢气安全组件(S221-83785-41)和检测器端APC氢气安全组件(S221-83780-41)。分别用于监控进样口端和检测器端的H2流量,将其限制在安全水平内。即使在特殊情况下(比如AFC或APC发生损坏等),也能确保氢气的安全使用。 如下图所示,使用H2作载气分析37种脂肪酸甲酯(FAMEs),35分钟即可完成分析,其具有高线速度和分析速度快的优点。 图3. 使用H2作载气分析37种脂肪酸甲酯(FAMEs)色谱图 结论在“节流增效”和“精益管理”已成为各行各业实验室重要考量方向的前提下,如何在氦气短缺的情况下,依然能够安心的大跨步向前发展是很多实验室管理者思考的问题。 “氦气短缺4.0”时代,一瓶氦气到底能用多久?一年?五年?十年?… … 不同的气相色谱实验室,分析目的、方法、操作习惯、样品数量和分析频率等因素皆不同,很难给出统一的和经过实际效果验证的答案,但是通过本文分享的这一系列岛津创新气相色谱技术,分析人员可以围绕这个主题进行气相色谱方法的积极应对和方法改善。我们相信通过一系列实操方案可以帮助您将氦气短缺应对的理念真正落到实处。 轻松应对氦气短缺,尽享GC分析乐趣! 本文内容非商业广告,仅供专业人士参考。
  • 前沿合作 | 岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司合作,采用岛津高效液相色谱串联四极杆飞行时间质谱(2D LCMS-QTOF)对注射用头孢西丁钠有关物质进行结构鉴定,揭示了一种由噻吩环引发的新颖聚合方式。该研究成果发表在国际知名学术期刊《Talanta》(IF= 6.1)。背景介绍Introductionβ-内酰胺类抗生素是临床应用较广的一类抗感染药物,其β-内酰胺四元环张力较大容易开环断裂,生成N-型或L-型聚合物。聚合物杂质引发的过敏反应严重威胁临床用药安全,是β-内酰胺类抗生素杂质谱研究的重点。由于聚合物杂质稳定性差、含量低、聚合方式多样、聚合程度各异,以及小分子杂质的干扰,聚合物杂质的控制存在很大挑战。本研究基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台和创新中心开发的《抗生素杂质数字化标准品数据库》,无需改变一维色谱流动相条件,即可实现头孢西丁聚合物杂质的专属性检测。图1 头孢西丁钠破坏样品检测色谱图(254 nm,一维HPSEC色谱图,上;二维反相色谱图,中;聚合物杂质HPLC检测色谱图,下)解决方案Solution图2 岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。基于LCMS-9030四极杆飞行时间质谱高分辨,高质量准确度和二级碎片定性的功能,通过比较头孢西丁钠与聚合物杂质母离子和特征碎片离子的相关性对头孢西丁钠四种未知聚合物杂质进行科学合理的定性分析。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。C1是实际样品中的优势聚合物(占比>50%),可作为注射用头孢西丁钠质量控制的指针性聚合物。最终,本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。表1 头孢西丁钠及四种聚合物杂质的质谱信息(ESI+)图3 C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)图4 C1聚合物可能的结构和裂解规律结论Conclusion本文采用创新中心搭建的专属性中心切割二维反相色质谱联用分析平台对注射用头孢西丁钠中的聚合物杂质进行研究,展示了二维色谱-串联质谱技术在不挥发盐类流动相系统中对未知杂质结构鉴定的巨大潜力。岛津飞行时间质谱LCMS-9030采集全谱信息,提供快速、高灵敏度的测试结果,确保实验数据的可靠性,支持追溯性分析有利于未知物的结构鉴定。创新中心开发的《抗生素杂质数字化标准品数据库》,收录了β-内酰胺类抗生素一般杂质和聚合物杂质的色谱和高分辨质谱数据,大大降低了企业的研发成本,同时也为药物工艺改进、剂型研发、品质提升等方面提供技术参考。参考文献:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378
  • 标准委对1537项拟立项国标征求意见 多项与分析测试相关
    2019年1月3日,国家标准委员会发布通知,对1537项拟立项国家标准项目公开征求意见,征求意见的时间从2019年1月3日开始,截止到2019年1月18日结束。本次公开征求意见的国家标准项目包含多项与分析仪器、分析测试相关标准。有关单位和相关人员可登陆国家标准委网站的计划公示页面,查询项目具体信息和反馈意见建议。仪器信息网摘录部分与分析仪器和分析测试相关的标准如下:项目名称制修订中间馏分油及液体石油产品中脂肪酸甲酯含量的测定红外光谱法修订真空计四极质谱仪的定义与规范制订月球与行星原位光谱探测仪器通用规范制订硬质合金钴粉中硅量的测定分光光度法制订婴幼儿湿巾中5种异噻唑啉酮防腐剂的测定高效液相色谱法制订页岩气组分快速分析激光拉曼光谱法制订微波等离子体原子发射光谱方法通则制订铁矿石碳和硫含量的测定高频燃烧红外吸收法修订铁矿石镍含量的测定火焰原子吸收光谱法修订铁矿石铋含量的测定二硫代二安替吡啉甲烷分光光度法修订天然气在一定不确定度下用气相色谱法测定组成第1部分:分析导则修订天然气气相色谱法测定组成和计算相关不确定度第2部分:不确定度计算修订天然气加臭剂四氢噻吩含量的现场快速测定气相色谱法制订天然气含硫化合物的测定第8部分:用紫外荧光光度法测定总硫含量修订天然气含硫化合物的测定第10部分:用气相色谱法测定硫化合物修订碳化硅单晶中硼、铝、氮杂质含量的测定二次离子质谱法制订松针中聚戊烯醇含量的测定高效液相色谱法制订山楂叶提取物中金丝桃苷的检测高效液相色谱法制订三聚甲醛中杂质含量的测定气相色谱法制订染发剂中5-氨基-6-氯-邻甲酚等11种限用染料的检测液相色谱质谱法制订铅精矿化学分析方法第16部分:铜、锌、铁、砷、镉、锑、铋、镁、铝含量的测定电感耦合等离子体原子发射光谱法制订铅精矿化学分析方法第15部分:氧化钙含量的测定原子吸收光谱法制订纳米技术水相中无机纳米颗粒的尺寸分布和浓度测量单颗粒电感耦合等离子体质谱法制订纳米技术石墨烯材料的化学性质表征电感耦合等离子体质谱法(ICP-MS)制订纳米技术硫族化镉胶体量子点的紫外-可见吸收光谱表征修订锰铁、锰硅合金、氮化锰铁和金属锰磷含量的测定钼蓝分光光度法和铋磷钼蓝分光光度法修订锰铁、锰硅合金、氮化锰铁和金属锰硅含量的测定钼蓝分光光度法、氟硅酸钾滴定法和高氯酸重量法修订锰矿石铜、铅和锌含量的测定火焰原子吸收光谱法修订锰矿石钛含量的测定二安替吡啉甲烷分光光度法修订近红外光谱仪的性能与检验制订化妆品中新铃兰醛的测定气相色谱-质谱法制订化妆品中烷基(C12~C22)三甲基铵盐含量的测定高效液相色谱串联质谱法制订化妆品中壬二酸的检测气相色谱法制订化妆品中人工合成麝香的测定气相色谱-质谱法制订化妆品中林可霉素和克林霉素的测定液相色谱-串联质谱法制订化妆品中二乙二醇单乙醚的测定气相色谱-质谱法制订化妆品中地索奈德等十一种糖皮质激素的测定液相色谱/串联质谱法制订化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定气相色谱法制订化妆品中2,4-二氯苯甲醇的测定高效液相色谱法制订锅炉用水和冷却水分析方法痕量铜、铁、钠、钙、镁含量的测定电感耦合等离子体质谱(ICP-MS)法制订硅铁钙含量的测定火焰原子吸收光谱法修订硅单晶中III、V族杂质含量的测定低温傅立叶变换红外光谱法修订工业用乙二醇试验方法第4部分:紫外透光率的测定紫外分光光度法修订工业用乙二醇试验方法第3部分:总醛含量的测定分光光度法修订锆化合物化学分析方法钙、铪、钛、钠、铁、铬、镉、锌、锰、铜、镍、铅含量的测定电感耦合等离子体原子发射光谱法制订高效液相色谱-原子荧光光谱仪联用分析方法通则制订高效液相色谱电感耦合等离子体质谱联用法通则制订纺织品某些动物毛纤维混合物的定性和定量蛋白质组分析液相色谱质谱(LC-ESI-MS)法制订钒铁钒、硅、磷、锰、铝、铁含量的测定波长色散X射线荧光光谱法制订二氧化铀粉末和芯块中碳的测定高频感应炉燃烧-红外检测法(修订GB/T13697-1992)修订杜仲叶提取物中京尼平苷酸的检测高效液相色谱法制订电子电气产品中某些物质的测定第8部分:使用气相色谱质谱联用仪(GC-MS),配有热裂解热脱附的气相色谱质谱联用仪(Py-TD-GC-MS)测定聚合物中的邻苯二甲酸酯制订电子电气产品中某些物质的测定第6部分:使用气相色谱质谱联用仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚制订电子电气产品中某些物质的测定第3-1部分:使用X射线荧光光谱仪筛选测试铅、汞、镉、总铬和总溴制订氮化硅粉体中氟离子和氯离子含量的测定离子色谱法制订畜禽肉品质检测水分、蛋白质、挥发性盐基氮含量的测定近红外法制订畜禽肉品质检测近红外法通则制订常见毒品的气相色谱、气相色谱-质谱检验方法第9部分:艾司唑仑制订常见毒品的气相色谱、气相色谱-质谱检验方法第8部分:三唑仑制订常见毒品的气相色谱、气相色谱-质谱检验方法第7部分:安眠酮制订常见毒品的气相色谱、气相色谱-质谱检验方法第6部分:美沙酮制订常见毒品的气相色谱、气相色谱-质谱检验方法第5部分:二亚甲基双氧安非他明制订常见毒品的气相色谱、气相色谱-质谱检验方法第4部分:可卡因制订常见毒品的气相色谱、气相色谱-质谱检验方法第3部分:大麻中三种成分制订常见毒品的气相色谱、气相色谱-质谱检验方法第2部分:吗啡制订常见毒品的气相色谱、气相色谱-质谱检验方法第1部分:鸦片中五种成分制订常见毒品的气相色谱、气相色谱-质谱检验方法第12部分:氯氮卓制订常见毒品的气相色谱、气相色谱-质谱检验方法第11部分:溴西泮制订常见毒品的气相色谱、气相色谱-质谱检验方法第10部分:地西泮制订餐具洗涤剂中三氯生和三氯卡班的测定液相色谱法制订餐具洗涤剂中氯乙酸的测定液相色谱法制订餐具洗涤剂中合成着色剂的测定液相色谱法制订材料表面积的测量 高光谱成像三维面积测量法制订变性淀粉中羟丙基含量的测定——分光光度法制订X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K20、Na20、CaO、MgO含量制订[60]和[70]富勒烯的纯度测定高效液相色谱法制订
  • 2012全国有机质谱学术交流会大会报告
    仪器信息网讯“2012全国有机质谱学术交流会”于10月11日-16日在云南西双版纳召开。本次大会报告邀请了中科院生态环境研究中心主任江桂斌院士、国家环境分析测试中心主任黄业茹研究员、清华大学分析中心主任林金明教授、中国医学科学院药物研究所张金兰研究员、浙江省疾病控制防疫中心任一平研究员、军事医学科学院毒物药物研究所李桦研究员、弗罗里达大学许强教授、东华理工大学陈焕文教授和中国科学院化学研究所聂宗秀研究员等活跃在质谱领域的资深专家应邀作了大会报告 报告内容集中在环境监测、食品安全以及药物相关研究。江桂斌:色谱-质谱联用技术在新型化学污染物分析中的应用  中国科学院生态环境研究中心江桂斌院士在报告中提到,质谱技术越来越重要,环境、食品和生命科学是质谱技术的主要应用领域,对于质谱各项指标,比如选择性、特异性、准确度、精确度和灵敏度等,要求也越来越高。对于环境分析来说,这些指标当中,可靠性是最重要的。在当前各种分析手段中,质谱的可靠性是最好的。环境的污染物除了光、声、电和磁等物理污染之外,主要有化学污染、微生物污染物、细菌污染物和病毒污染物。其中,化学污染物主要包括(1)难挥发污染物:常规污染物、重金属、表面活性剂和高聚物等 (2)易挥发污染物:室内空气污染物、大气污染物等 (3)半挥发:持久性有机污染物。近几年出现了一些新型的污染物(Emerging chemicals),这些化合物属于非常规监测污染物,可能存在潜在的危险。这些新型的污染物总体上有10类:PPCPs、BDEs、FPCs、SCCP、Pesticide degradation products、DBPs、Algal toxins、perchlorate、New Atmospheric components、Some Nano-materials 另外TBC(三-(2,3-二溴丙基)异氰酸脂)是在首次在中国发现的一种新型POPs污染物。江桂斌分别对这些新型污染物进行了介绍并分析了当前面临的挑战。  黄业茹:环境介质中二噁英类污染物监测技术进展  国家环境分析测试中心黄业茹研究员主要报告了二噁英类污染物监测技术进展,方法标准等。目前二噁英类污染物的标准检测方法是HRGC-HRMS,但是该方法存在的问题是样品前处理复杂、HRGC-HRMS价格昂贵、人员素质和技能要求高,并且检测成本高、分析测定周期长 为此许多国家针对土壤、沉积物和废气等环境介质中二噁英的简易测试方法进行了研究并实现标准化。二噁英类的快速分析方法有仪器分析方法和生物检测方法。仪器分析方法主要有:GC-QMS、GC-MS/MS(TQMS和ITMS)和GC-TOFMS 多维气相色谱与质谱联用在环境介质中二噁英的定量分析也取得了很大进展。生物检测方法有:酶联免疫法、ELISA法、报告基因法和DR-CALUX等。  林金明:微流控芯片质谱联用技术应用于细胞药物代谢的研究  清华大学分析中心林金明教授报告的主要内容是微流控芯片质谱联用技术应用于细胞药物代谢的研究。细胞是生命有机体的基本结构和功能单位,对于细胞的研究是生命科学研究的基础。但是,分析研究细胞涉及到几个重要的问题:如何进行细胞的分离?如何对细胞进行定位?如何保证细胞的生理活性?如何实现对于细胞的生化刺激?如何实现快速准确的信号检测?林金明课题组长期从事微流控芯片研究,开发了一种微流控芯片与质谱联用的新技术用于药物代谢的研究。集成化的微流控芯片可以同时进行高通量的细胞毒性筛选和ESI-Q-TOF质谱对应代谢物检测。利用搭建起的微流控芯片-质谱联用平台对细胞的分泌物和细胞间的信号传导进行了研究。  张金兰:快速液相色谱三重四极杆质谱联用仪测定淫羊藿全血浆中7种黄酮类成分及相对生物利用度研究  中国医学科学院药物研究所研究员张金兰研究员在报告中介绍了利用快速液相色谱三重四极杆质谱联用仪测定淫羊藿犬血浆中7种黄酮类成分及相对生物利用度研究。建立了基于质谱数据和Mass Frontier/Metworks软件快速发现和鉴定代谢产物技术 鉴定5种淫羊藿黄酮类成分的代谢产物77个,淫羊藿提取代谢产物115个 中药体内微量成分的分析检测不仅需要高分离能力色谱,高灵敏度、多功能的质谱,更需要对数据的深度分析和挖掘。  任一平:质谱在食品安全中的应用  浙江省疾病预防控制中心任一平教授在报告中提到,乳清蛋白含有人体需要的18种氨基酸,易于消化,利用率高。母乳中乳清蛋白与酪蛋白的比率是60:40,而牛奶中两者之比是18:32(或者20:80),因此以乳清蛋白为主的婴儿配方(产品标准规定:乳清蛋白/酪蛋白比率应60/40)更接近母乳氨基酸组合,是理想的婴儿营养剂。国家标准规定,乳基婴儿配方食品中乳清蛋白的含量应大于等于60%。至今为止尚未建立各种婴幼儿乳制品中α-乳白蛋白和β-乳球蛋白的准确定量和检测方法,导致我国无法对含乳的产品进行质量监测与控制,现有的标准方法只有薄层凝胶法。任一平报告中研究了采用液相色谱-电喷雾-质谱法测定牛a-乳白蛋白的方法,灵敏度、准确度高,重现性好,处理简便,可用于婴幼儿食品和乳制品的牛a-乳白蛋白的定量测定。  李桦:液质联用技术在药物代谢研究中的应用  军事医学科学院毒物药物研究所李桦研究员报告主要内容是液质联用技术在药物代谢研究中的应用。代谢产物是药物在机体酶的作用下,经生物转化而形成的化学物质。评价候选新药的代谢转归、理解动物和人体内的代谢途径和程度、以及评价代谢产物的生物学性质是新药研究的重要内容。液质联用具有高灵敏度和强选择性,可在干扰存在的情况下分离、检测和鉴定代谢产物,是代谢研究的首先技术。超高效液相色谱与高分辨最联用(如QTOFMS)、结合代谢产物鉴定辅助软件,已成为代谢产物结构鉴定的一线分析仪器。报告重点介绍了LC-QTOF-MSMS技术在新药先导物代谢产物及代谢软点快速筛查以及药物人体代谢产物定性定量分析中的应用。  许强:质谱技术与石油石化工业的过去、现在与未来  弗罗里达大学许强教授在报告中提到,在分子水平鉴定石油和其他化石资源,尤其是重馏分,由于组分及其复杂,对于科学工作者提出了巨大的挑战。由于化石燃料的逐渐减少和环境等问题,对于燃料以及从可再生资源中提取的化学物质的研究变成了近期的热点。另外,对于含极性分子和复杂结构的生物原油的分析也是另一个挑战。为了很好地利用质谱进行结构鉴定、组成鉴定以及定量分析,采取合适的分离和分流手段也是非常重要的。由弗罗里达大学、中国石油大学与其他的研究机构和仪器公司面对这些挑战,共同合作,开发更高级的方法处理这些石油和生物质油的表征和鉴定 目前工作集中于分离、色谱和质谱方面的研究。  陈焕文:粘性样品的电喷雾萃取电离质谱分析  东华理工大学陈焕文教授报告了粘性样品的电喷雾萃取电离质谱分析。粘性样品(食品、石油、血液等)不仅与人们的日常生活紧密相关,在工业及生命科学等科研领域占有十分重要的位置。目前的粘性样品分析先处理耗时、复杂,不利于高通量分析。电喷雾萃取电离(EESI)以电喷雾(ESI)制备能荷载体,在三维空间传递能荷,可直接分析粘稠样品、活体生物表面及蛋白质,其特点是转移能量较低,选择性好,样品适应性强。通过实际样品测试以及详细的数据表明,EESI-MS分析粘性样品有很多优势:可分析不同粘度的样品,无需样品预处理,抗复杂基质干扰,无化学污染,可电离挥发/非挥发性化合物等。  聂宗秀:MALDI-TOF活体小分子质谱分析  中科院化学研究所聂宗秀研究员在报告中提到,活体检测对于质谱来说是一个挑战性工作,因为活体取样时要保持动物在活的情况下进行,要求检测方法微扰无损,具有高耐盐性,高选择性,高灵敏度和动态实时检测。目前MALDI法在检测小分子方面存在缺陷,因为传统的有机质在低质量范围内会出现大量的背景干扰。聂宗秀课题组通过大量实验,发现了盐酸萘乙二胺作为MALDI基质具有很高的耐盐性,与葡萄糖等小分子形成氯离子加合物,从而可以在MALDI下检测。另外,发展了具有很高的灵敏度的硝酸萘乙二胺基质。发现了8羟基噻吩对于胺类物质、碳量子点对酸性物质具有很好的选择性。
  • 卫生部:53项食安标准征求意见
    12月21日,卫生部发布消息,征求《食品用香料通则》等53项食品安全国家标准及2项食品安全国家标准修改单意见的函,并要求于2013年2月20日前将相关意见反馈至卫生部。原文如下:卫生部办公厅关于征求《食品用香料通则》等53项食品安全国家标准(征求意见稿)及2项食品安全国家标准修改单意见的函卫办监督函〔2012〕1145号  各有关单位:  根据《食品安全法》及其实施条例的规定,我部组织制定了《食品用香料通则》等53项食品安全国家标准(征求意见稿)和《食品添加剂 二丁基羟基甲苯(BHT)》等2项食品安全国家标准修改单。现向社会公开征求意见,请于2013年2月20日前将意见反馈表(附件56)以传真或电子邮件形式反馈我部。  传 真:010-52165424  电子信箱:zqyj@cfsa.net.cn  附件:  《食品用香料通则》征求意见稿及编制说明.zip  《食品添加剂 琥珀酸二钠》征求意见稿及编制说明.zip  《食品添加剂 1-辛烯-3-醇》征求意见稿及编制说明.zip  《食品添加剂 2,5-二甲基吡嗪》征求意见稿及编制说明.zip  《食品添加剂 2-己烯醛(叶醛)》征求意见稿及编制说明.zip  《食品添加剂 2-巯基-3-丁醇》征求意见稿及编制说明.zip  《食品添加剂 2-乙酰基吡咯》征求意见稿及编制说明..zip  《食品添加剂 2-异丙基-4-甲基噻唑》征求意见稿及编制说明.zip  《食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)》征求意见稿及编制说明.zip  《食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)》征求意见稿及编制说明.zip  《食品添加剂 6-甲基-5-庚烯-2-酮》征求意见稿及编制说明.zip  《食品添加剂 d,l-薄荷酮甘油缩酮》征求意见稿及编制说明.zip  《食品添加剂 l-薄荷醇丙二醇碳酸酯》征求意见稿及编制说明.zip  《食品添加剂 N-[N-(3,3-二甲基丁基)]-L-α-天门冬氨-L-苯丙氨酸1-甲酯(纽甜)》征求意见稿及编.zip  《食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺》征求意见稿及编制说明.zip  《食品添加剂 γ-辛内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-己内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-壬内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-十四内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-十一内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-突厥酮》征求意见稿及编制说明.zip  《食品添加剂 δ-辛内酯》征求意见稿及编制说明.zip  《食品添加剂 阿拉伯胶》征求意见稿及编制说明.zip  《食品添加剂 苯甲醛丙二醇缩醛》征求意见稿及编制说明.zip  《食品添加剂 丁苯橡胶》征求意见稿及编制说明.zip  《食品添加剂 二丙基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 二甲基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 二丁基羟基甲苯(BHT)》修改单.doc  《食品添加剂 二糠基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 二氢-β-紫罗兰酮》征求意见稿及编制说明.zip  《食品添加剂 二烯丙基硫醚》征求意见稿及编制说明.zip  《食品添加剂 甘油》征求意见稿及编制说明..zip  《食品添加剂 海藻酸钾(褐藻酸钾)》征求意见稿及编制说明.zip  《食品添加剂 槐豆胶(刺槐豆胶)》征求意见稿及编制说明..zip  《食品添加剂 聚丙烯酸钠》征求意见稿及编制说明.zip  《食品添加剂 糠基硫醇(咖啡醛)》征求意见稿及编制说明.zip  《食品添加剂 离子交换树脂》征求意见稿及编制说明.zip   《食品添加剂 吗啉脂肪酸盐果蜡》修改单.doc  《食品添加剂 明胶》征求意见稿及编制说明.zip  《食品添加剂 柠檬酸三乙酯》征求意见稿及编制说明.zip  《食品添加剂 柠檬酸亚锡二钠》征求意见稿及编制说明.zip  《食品添加剂 柠檬酸脂肪酸甘油酯》征求意见稿及编制说明.zip  《食品添加剂 肉桂酸苄酯》征求意见稿及编制说明..zip  《食品添加剂 肉桂酸肉桂酯》征求意见稿及编制说明.zip  《食品添加剂 四氢芳樟醇》征求意见稿及编制说明.zip  《食品添加剂 萜烯树脂》征求意见稿及编制说明.zip  《食品添加剂 脱乙酰甲壳素(壳聚糖)》征求意见稿及编制说明.zip  《食品添加剂 维生素E(dl-α-生育酚)》征求意见稿及编制说明.zip  《食品添加剂 烯丙基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 纤维素》征求意见稿及编制说明..zip  《食品添加剂 氧化芳樟醇》征求意见稿及编制说明.zip  《食品添加剂 叶醇(顺式-3-己烯-1-醇)》征求意见稿及编制说明.zip  《食品添加剂 乙醛二乙缩醛》征求意见稿及编制说明.zip  《食品添加剂 异硫氰酸烯丙酯》征求意见稿及编制说明.zip  《食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)》征求意见稿及编制说明.zip  卫生部办公厅  2012年12月18日
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 3.17%。7针标气叠加谱图见图4,重复性测试结果见表4。图4 1 ppb甲醛、有机卤化物组分7针叠加色谱图(点击查看大图)表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 第二届清华大学分析中心岛津研究生奖学金评审会成功举办
    成立于1972年的清华大学分析测试中心是我国高校成立的最早的分析中心之一,是集教学、科研和对外测试服务于一体、以分析化学方法学和仪器研究为重点的研究与测试中心,除承担大型仪器测试服务外,还承担繁重的本科生和研究生的教学任务,并承担多项国家基础研究和应用研究项目。岛津公司与清华大学化学系和分析测试中心有着长期、广泛的合作关系,2008年,岛津国际贸易(上海)有限公司决定赞助清华大学分析中心设立“岛津优秀研究生奖学金”,以激励分析中心的研究生致力于分析测试方法和技术装置的创新研究与应用,不断提高分析测试水平,推动分析化学学科的发展。2010年,双方携手成功举办了清华大学分析中心《2009年度岛津研究生奖学金评审会》,本活动在清华学子之间引起了非常大的回响。 3月25日,《第二届清华大学分析中心岛津研究生奖学金评审会》如期在清华大学隆重举行,120多名师生出席评审会。会议由分析中心主任林金明教授主持。中科院大连化物所张玉奎院士,国家自然科学基金委分析化学学科主任庄乾坤教授、北京工业大学校长郭广生教授、北京市科学技术研究院副院长刘清珺研究员、中科院化学所陈义研究员、北京大学化学院邵元华教授、国家纳米中心蒋兴宇研究员、学校实验室与设备处副处长闻星火、化学系党委书记尉志武教授、岛津公司通用分析事业部副部长曹磊博士应邀担任评委。评审会首先由清华大学化学系党委书记尉志武在大会致开幕辞。他在致辞中鼓励研究生们充分利用分析中心的仪器条件开展分析测试技术和装置的创新性研究,为分析中心的建设多出技术成果,多出新点子,为取得更大科学进展打下更好的基础。 紧接着,张玉奎院士就蛋白质组学研究进展做了精彩报告。张玉奎院士在报告中讲述道:“中国的肝脏蛋白研究处于国际领先水平,发展了高丰度蛋白质去除、低丰度蛋白富集、LCMS的蛋白组学研究应用等分离鉴定的新方法。”他同时介绍了激光辅酶解方法、分类筛选的磷酸化肽段鉴定策略、规模化磷酸化蛋白质组分分离鉴定平台等五方面的研究新进展,他强调目前蛋白质定量是在蛋白组学研究中遇到的最大问题,希望清华分析中心的同学,作为未来中国分析化学的精英能够致力于问题的解决,推动蛋白组学研究研究工作的发展。张玉奎院士为师生们做了人类肝脏蛋白组学全谱分析方面的报告 随后,13名来自分析中心的研究生,就2010年的研究工作做了相关报告。报告结束后,经过各位评委公平公正的评选,魏惠斌同学的“微流控芯片质谱联用技术应用于细胞代谢及其相互间作用的研究”、谢思佳同学的“基于电致发光微阵列的氧化传感器”被评为一等奖,另外还评选出二等奖2名,3等奖9名。各位评委高度赞赏同学们高水平的论文,并高兴地为获奖同学颁发了证书和奖金。 评审会现评委和获奖同学的合影 最后,岛津公司分析仪器事业部副部长曹磊博士向各位获奖的同学表示祝贺,他说:“这次答辩会上各位研究生的学术报告所展现的分析化学研究水平给我留下了极深的印象,希望今后保持和扩大岛津公司与分析中心的全面合作。争取下一届评选能够面向全校从事分析化学研究的研究生。” 曹磊博士向各位获奖的同学表示祝贺 至此,此次第二届清华大学分析中心岛津研究生奖学金评审会取得圆满成功。本次评审会是岛津公司对于“以科学技术贡献于社会”这一公司经营方针的又一次成功实践,岛津在推进中国科学进步的过程中又留下了自己的一个足迹。附:论文评审结果奖励等级获奖人论文题目一等奖魏慧斌微流控芯片质谱联用技术应用于细胞代谢及其相互间作用的研究 谢思佳基于电致发光微阵列的氧气传感器二等奖陈晓彤 基于新型聚集荧光增强分子的荧光探针和光学材料研究 吴富根两亲性分子有序聚集体的相变及其协同性三等奖何天稀 刺激响应和单分散药物载体的制备及控释研究 刘传森以二维自组装微球为模板制作单细胞分析微井阵列方法研究 潘成思BiPO4含氧酸盐新型光催化剂的可控合成及其构效关系研究 石睿纳米结构对光催化活性的影响及其新型光催化剂的开发 唐龙华石墨烯电化学传感及分析应用 王雅君共轭分子表面杂化光催化剂研究 王颖 碳材料的功能化修饰及其在化学生物学中的应用研究 姚志轶基于水溶性聚噻吩光学探针的生物传感器 林珍 化学发光方法研究污染物降解过程 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 我国半导体/绝缘高分子材料取得重大突破
    我国半导体/绝缘高分子复合材料研究取得重大突破  日前,中科院长春应用化学研究所杨小牛研究员课题组在半导体/绝缘体高分子复合材料研究取得重大突破,其研究结果被国际著名期刊《先进功能材料》(Advanced Functional Materials)以“封面论文”的形式给予重点报道。  在传统观念中,绝缘体会阻碍电荷传输,因此一般来讲,在半导体/绝缘体复合材料中,绝缘相往往扮演着降低材料电学性能的角色。然而近年来研究人员发现,在特定外场条件下,复合材料二维表面处的载流子迁移率并不差。杨小牛课题组首次在体相半导体/绝缘高分子复合材料中发现并确认了绝缘基质增强的半导体电荷传输现象,随后将这一规律推广到无特定外场条件下的三维体系,并用更具普适性的物理量—电导率来论证了这一点。  通过控制聚噻吩/绝缘聚合物共混物制备过程中结晶和相分离的竞争关系,可抑制大尺度的两相分离,由此得到均匀的半导体/绝缘体复合材料。这种材料表现出绝缘基质增强的半导体电荷传输现象。研究人员认为,载流子以极化子形式在复合材料中进行传导。由于绝缘基质极化率较低,极化子在半导体/绝缘体界面处传输时受到周围极化环境的影响较小,有助于降低界面处的电荷传输活化能,由此提高了两相界面处的载流子迁移率。从此意义上讲,对于两相共混体系,增强的体相电荷传输性质需要满足下列3个条件:首先,鉴于电荷主要在共混两相界面传输,绝缘聚合物的介电常数必须足够低才可能降低电荷传输活化能,从而有效提高半导体相的载流子迁移率 其次,半导体/绝缘体两相相分离尺度需要足够小,才能大幅提高两相接触界面 第三,要求半导体相要有较好的连续性,有利于减小电荷传输的阻力。  在半导体聚合物中通过共混引入通用绝缘聚合物,不仅可以提高其电学性能,而且可降低基于塑料的柔性电子器件的成本,提高其柔韧性和环境稳定性。
  • 磐诺隆重举行福建永荣32台气相色谱仪验收启动仪式!
    2018年3月14日,福建永荣科技有限公司(以下简称:福建永荣)年产60万吨己内酰胺项目一期工程的32台气相色谱仪验收启动仪式在磐诺常州工厂顺利举办!磐诺总经理杨任、程总、福建永荣陈主任及其他相关部门负责人出席此次仪式。仪式于9时30分正式开始,首先程总给用户介绍了磐诺就该项目的完成情况:磐诺根据用户要求历时1月已全部完成32台气相色谱仪的生产及出厂检测工作。根据技术协议,每台仪器均按照用户要求配置,对氢气中微量硫化氢、高纯气体、苯中噻吩等多种物质进行检测;今天特邀请用户莅临磐诺进行出厂验收工作,在接下来10天,用户可对每台仪器分别测试直至满意。随后,磐诺工程师朱工对此次交接的32台气相色谱仪自检情况逐一进行了介绍。同时,福建永荣的陈主任及两位实验人员也就其关注的技术重点与磐诺工程师进行了深度的技术交流。最后,双方代表就磐诺GC的仪器配置方案、技术测试结果、生产制造工艺、出厂检验流程及质量管理体系等多方面签订了项目交接书,并对后续项目的验收、维护等多需求达成一致意见。陈主任在会上感叹道:“其它厂家包括国外公司的验收,只是简单的现场安装、签收。磐诺把所有的仪器方法、应用条件事先全部测试整理成册,逐条和我们讨论确认。这种专业、严谨的做法给我们留下了很深的印象,也加深了我们对磐诺仪器的信心……”从2010年成立初始,磐诺已经走入了茁壮成长的第九个年头,面对重重市场考验,磐诺始终相信唯有加快科研创新的脚步,不断提高产品的综合性能,严把质量大关,建立完善的质量管理体系,才能增强公司、产品的竞争力,才能更好地为客户服务,真正将“交钥匙”工程落实到用户身上。在未来的发展道路,磐诺还将继续发扬科技创新的精神,力争为中国制造强国梦添砖加瓦!
  • 科学家研制新型半导体柔性透明储能器件
    中国科学院上海硅酸盐研究所黄富强团队研制成功一种新型透明半导体柔性透明储能器件,综合性能优于目前报道的所有透明储能器件。随着电子产品向可穿戴、移动化、超轻薄、透明、微型化发展,轻便、柔性甚至全透明的储能器件在未来便携式设备中具有广阔的应用前景。然而,在柔性透明储能器件中,透光率和能量密度相互影响,提升单一性能往往导致另一性能的大幅下降,同时还需提高储能器件的容量,这些都带来了极大的挑战。为此,黄富强团队通过合理的晶体掺杂设计,成功制备了一系列间隙硼掺杂的介孔宽禁带半导体氧化物(氧化锡、氧化锌及氧化铟)。在这一类新型的透明半导体氧化物中,间隙硼原子不仅能够大幅度提升掺杂材料的载流子浓度,为羟基的嵌入提供丰富的结合位点,还在间隙掺杂位上引发与OH-的赝电容电化学反应,从而将赝电容惰性的氧化锡、氧化锌和氧化铟,转化为高电化学活性的超级电容器电极材料。通过控制间隙硼掺杂的浓度,这一类介孔透明半导体氧化物的体积比容量可以达到每立方米1172毫法拉,实现与其他非透明金属氧化物的赝电容性能相近。这种新型透明半导体材料与聚乙撑二氧噻吩—聚(苯乙烯磺酸盐)导电聚合物均匀共混后,通过气溶胶喷涂技术涂敷在透明聚对苯二甲酸基底上制作电极。基于这种电极构建的透明柔性超级电容器,在15000次循环后容量保持率接近100%,其面积能量密度和器件透光率可达每平方米1.36 × 10毫瓦时和 85%。该研究为设计合成具有优异电化学活性的透明半导体氧化物提供了全新的研究思路。
  • 市场监管总局发布8项食品检验方法,涉及气质、液质等仪器
    近日,市场监管总局发布2021年第2号公告,发布了《食品中对苯二甲酸二辛酯的测定》等6项食品补充检验方法和《食品中赭曲霉毒素A的快速检测 胶体金免疫层析法》等2项食品快速检测方法的公告。最新的8项食品检验方法主要检测食品中对苯二甲酸二辛酯、链霉素、双氢链霉素、磷酸盐等物质,涉及仪器包括液相色谱-串联质谱、气相色谱-质谱等,具体公告如下:市场监管总局关于发布《食品中对苯二甲酸二辛酯的测定》等6项食品补充检验方法和《食品中赭曲霉毒素A的快速检测 胶体金免疫层析法》等2项食品快速检测方法的公告2021年第2号根据《中华人民共和国食品安全法》和《中华人民共和国食品安全法实施条例》有关规定,《食品中对苯二甲酸二辛酯的测定》《特殊食品渗透压测定》《蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法》《小麦粉中次磷酸盐的检测》《橄榄油中脂肪酸烷基酯含量测定气相色谱-质谱法》《食品中3-乙酰基-2,5-二甲基噻吩的测定》6项食品补充检验方法和《食品中赭曲霉毒素A的快速检测胶体金免疫层析法》《水产品中组胺的快速检测》2项食品快速检测方法已经市场监管总局批准,现予发布。方法文本可在市场监管总局食品补充检验方法数据库(http://www.samr.gov.cn/spcjs/bcjyff/)和食品快速检测方法数据库(http://www.samr.gov.cn/spcjs/ksjcff/)中查询和下载。
  • 检测新策略助力痴呆症药物筛选
    近日,华东理工大学化学与分子工程学院教授郭志前课题组在淀粉样蛋白β(Aβ)斑块活体检测标准方法研究领域取得突破。相关研究以《近红外激活型聚集诱导发光探针制备及其对小鼠脑部淀粉样蛋白Aβ的检测应用》为题在《自然—实验手册》发表。神经退行性疾病与蛋白质错误折叠和病理积累息息相关。其中,阿尔茨海默症(AD)是一种起病隐匿的神经系统退行性疾病,也是痴呆症最常见的病症类型。值得注意的是,Aβ斑块积累是阿尔茨海默症最显著的病理特征。因此,开发可视化的荧光探针检测Aβ斑块对阿尔茨海默症的早期诊断至关重要。半个世纪以来,硫磺素衍生物(ThT或ThS)作为检测Aβ斑块的“金标准”染料,已被广泛用于AD大脑组织切片染色。然而,这类染料具有浓度猝灭、信噪比低和血脑屏障(BBB)穿透性差等缺陷,难以对Aβ斑块进行活体成像检测。特别是如何克服染料延伸波长的亲脂性需求与实现Aβ点亮型检测之间的矛盾是目前亟待解决的科学问题。针对现有商业染料ThT的固有缺陷,该研究提出分子设计策略并建立了标准化检测及成像应用方法:引入亲脂性噻吩桥连单元延伸发射波长至近红外区域,并满足穿透血脑屏障的亲脂性需求;利用本组聚集诱导发光母体喹啉腈克服染料浓度猝灭问题;优化亲水性磺酸盐基团取代位置,以保证探针分子在结合Aβ斑块前的状态。基于该策略发展的探针具有荧光波长长、检测信噪比高、Aβ亲和力好、BBB穿透性优异的特点,已成功实现对小鼠大脑中Aβ斑块的近红外荧光标记。该探针有望代替市售染料ThT进行高保真度组织学染色,在阿尔茨海默症新药筛选和药理研究中显示出巨大潜力。
  • 有机薄膜太阳能电池材料P3HT的TG-MS测定
    有机薄膜太阳能电池就是由有机材料构成核心部分的太阳能电池。其中,P型有机半导体(P3HT)是使用的材料之一,属于结晶性高分子,是一种3-己基噻吩的聚合物。实际使用的过程中,高分子的老化是不可避免的,因此需要对材料进行热稳定性的评价。日立热重-差热同步热分析仪STA7000系列,采用数字水平差动方式,基线更加稳定,能够检测到微量变化。并且有良好的扩展性,开发出TG-MS专用接口,可以与质谱(MS)进行联用,用于溢出气体定性分析。下面,通过热重-质谱联用(TG-MS)来评价P3HT的热稳定性,并分析其反应产生的气体。 实验结果■ TG和总离子流色谱图(TIC)P3HT在470℃附近开始发生热分解,有1个热失重台阶。由TIC图可见,P3HT产生的气体几乎全部是由热分解过程中产生的。■ MS(480℃附近)上图是480℃的MS图谱,可以得到溢出气体成分质核比和离子强度的信息,从而对热分解产物进行定性分析。 综上所述:TG-MS联用可以考察样品热失重过程中产生的气体或特定成分,为样品的分子结构和热分解反应机制提供必要的解释。关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。  本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。  本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。  第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告  根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:  GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)  GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)  GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)  GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)  GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)  GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)  GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)  GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)  GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)  GB 29924-2013 食品添加剂标识通则  GB 29925-2013 食品添加剂 醋酸酯淀粉  GB 29926-2013 食品添加剂 磷酸酯双淀粉  GB 29927-2013 食品添加剂 氧化淀粉  GB 29928-2013 食品添加剂 酸处理淀粉  GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯  GB 29930-2013 食品添加剂 羟丙基淀粉  GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯  GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯  GB 29933-2013 食品添加剂 氧化羟丙基淀粉  GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉  GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯  GB 29936-2013 食品添加剂 淀粉磷酸酯钠  GB 29937-2013 食品添加剂 羧甲基淀粉钠  GB 29938-2013 食品用香料通则  GB 29939-2013 食品添加剂 琥珀酸二钠  GB 29940-2013 食品添加剂 柠檬酸亚锡二钠  GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)  GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)  GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)  GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)  GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)  GB 29946-2013 食品添加剂 纤维素  GB 29947-2013 食品添加剂 萜烯树脂  GB 29948-2013 食品添加剂 聚丙烯酸钠  GB 29949-2013 食品添加剂 阿拉伯胶  GB 29950-2013 食品添加剂 甘油  GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯  GB 29952-2013 食品添加剂 &gamma -辛内酯  GB 29953-2013 食品添加剂 &delta -辛内酯  GB 29954-2013 食品添加剂 &delta -壬内酯  GB 29955-2013 食品添加剂 &delta -十一内酯  GB 29956-2013 食品添加剂 &delta -突厥酮  GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮  GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯  GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮  GB 29960-2013 食品添加剂 二烯丙基硫醚  GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)  GB 29962-2013 食品添加剂 2-巯基-3-丁醇  GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)  GB 29964-2013 食品添加剂 二甲基二硫醚  GB 29965-2013 食品添加剂 二丙基二硫醚  GB 29966-2013 食品添加剂 烯丙基二硫醚  GB 29967-2013 食品添加剂 柠檬酸三乙酯  GB 29968-2013 食品添加剂 肉桂酸苄酯  GB 29969-2013 食品添加剂 肉桂酸肉桂酯  GB 29970-2013 食品添加剂 2,5-二甲基吡嗪  GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛  GB 29972-2013 食品添加剂 乙醛二乙缩醛  GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑  GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)  GB 29975-2013 食品添加剂 二糠基二硫醚  GB 29976-2013 食品添加剂 1-辛烯-3-醇  GB 29977-2013 食品添加剂 2-乙酰基吡咯  GB 29978-2013 食品添加剂 2-己烯醛(叶醛)  GB 29979-2013 食品添加剂 氧化芳樟醇  GB 29980-2013 食品添加剂 异硫氰酸烯丙酯  GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺  GB 29982-2013 食品添加剂 &delta -己内酯  GB 29983-2013 食品添加剂 &delta -十四内酯  GB 29984-2013 食品添加剂 四氢芳樟醇  GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)  GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮  GB 29987-2013 食品添加剂 丁苯橡胶  GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)  GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定  GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单  特此公告。  附件:75项食品安全国家标准及BHT第1号修改单.zip  国家卫生计生委  2013年11月29日
  • AFM vs. STM 分子级别分辨率成像技术
    如果你已经看过我上一篇介绍低电流STM成像的短文[i],那么那些HOPG上钴和镍八乙基卟啉(CoOEP 和NiOEP)自组装二维晶格子的高分辨STM图像一定会令你印象深刻。Roger也是一样,在看到那些图片之后,他向我建议可以尝试使用Cypher AFM的轻敲模式(调幅AC模式)来代替STM观察CoOEP的 晶格,因为我们知道Cypher AFM在空气中的成像质量相当稳定。当我把这个想法告诉Kerry Hipps教授时,他第一反应是“这不可能!”。我接着跟他说: “我非常确定这个是可行的。” 好吧,我承认我的倔强和执着,所以无论如何,我都要尝试一下这个“疯狂”的想法。我选择了一个尖锐,敏捷,硬度中等,悬臂为硅材料的镀金探针(FS-1500AuD探针)。 它的针尖半径为Rtip = 10± 2 nm,空气中的共振频率为fair≈1.5MHz,弹性系数为k≈6N / m。您也可以在我们的探针库找到它.当我将针尖接近样品表面时,样品表面的苯基辛烷薄层会立即吸附在探针悬臂上(见图1)。在这样一种气相-液相混合振荡介质中,针尖的共振频率会立即降到0.66 MHz。这种情况下的溶液需要大约10分钟之后才达到平衡,而在此之后,即使探针在表面移动也不会再次影响到溶液的稳定性。图1. 苯基辛烷/ HOPG界面处干涉条纹的时间序列图像。这些图像是通过Cypher ES顶视光学系统捕获的。当溶液吸附到AFM悬臂上时,苯基辛烷弯月面起到衍射器的作用而产生出干涉条纹。由于BlueDrive出色的光热激发稳定性,在平衡溶液中调谐悬臂后,我能够将自由驱动振幅和设定点分别稳定在~1.44 nm(90 mV)和~0.34 nm(21 mV)[iii] 。瞧瞧图2中的图像,CoOEP晶格渐渐在视野中显现出来,这里观察到的的~1.4 nm的晶格的分子间距和预期的理论值一摸一样!我向 Hipps教授展示了这组图片,他不得不惊叹地说一句 “Wow!”图2. 低振幅轻敲模式下CoOEP的分子晶格分辨率图像。 (A)扫描边长为100 nm。 (B)沿(A)中的白线的截面,从中可以清楚的观察到CoOEP分子有规则间隔。 (C)扫描边长为100nm 的3D图像。将图2继续放大后(见图3),我确信自己可以在一部分相位图中看到卟啉环结构。您可能会注意到的是,相比上一篇短文中的STM图像,这里的测量结果似乎对样品表面的污染更加敏感。我们可以看到样品表面上有一些无定形的团聚物,这些污染物会和扫描过程中的针尖相互作用,使扫描的图像发生了一些变化。这意味着在AFM测量之前,您务必对样品表面,探针和探针支架进行全方位的清洁。图3.在轻敲模式下CoOEP晶格的AFM放大图像。 (A)扫描边长为20纳米的形貌图。 (B)扫描边长为20纳米的相位图。注意卟啉环结构在图像的上部清晰可见。这些数据让我想起了纽卡斯尔大学的Rob Atkin教授,诺丁汉大学的Peter Beton教授和南京大学的王欣然教授曾经发表的一些关于使用Cypher 在大气环境下进行的AFM的研究 [iv-vi]。这里我来具体介绍一下这些研究的成果。第一项研究[iv]阐明了在恒电位控制偏压下石墨(HOPG)表面的离子液体(EMIm + TFSI-)的纳米结构(见图4A)。此外,施加的偏压在开路电位附近有规律地变化,同时分子Stern层作为偏压的函数(以及离子组分的函数,例如Li +和Cl-)进行了重新整合。第二项研究[v]主要集中在观察吸附在六方氮化硼(hBN)和其他样品表面上的5,10,15,20-四(4-羧基苯基)卟啉(TCPP)的超分子结构,及分析该吸附现象对TCPP分子的光电子特性的影响。图4B显示了hBN上TCPP的正方晶格结构。第三项研究[vi]探讨了HOPG和hBN上高流动性的二辛基苯并噻吩并苯并噻吩(C8-BTBT)的少层二维分子晶体的范德瓦尔外延结构,这种材料可用于实现有机场效晶体管。图4C显示了在hBN上生长的C8-BTBT晶格的高分辨率形貌。图4. 2D分子晶格的AFM成像。 (A)吸附在HOPG基片上的纯EMIm + TFSI-Stern层的相位图 扫描边长为30nm,在块体EMIm + TFSI-离子液体中成像(参见参考文献[iv])。 (B)组装在hBN基片上的TCPP的正方晶格的形貌图像 扫描边长为50nm,在空气中成像(参见参考文献[v])。 (C)在hBN基片上生长的C8-BTBT晶格的形貌图像 扫描边长为10nm,在空气中成像(参见参考文献[vi])。References[i] April Current Amplifiers Bring May Ultra-Low-Current STM[ii] Learn more about Cypher here: https://www.oxford-instruments.com/products/atomic-force-microscopy-systems-afm/asylum-research/highresolution-fast-scanning-afm.[iii] (a) Learn more about blueDrive at https://afm.oxinst.com/bluedrive and athttps://pdfs.semanticscholar.org/e807/9171fb282e6340f6813a0f6b8cee8b4bae74.pdf. (b) A. Labuda, K. Kobayashi,Y. Miyahara, and P. Grütter, Retrofitting an atomic force microscope withphotothermal excitation for a clean cantilever response in low Qenvironments, Review of Scientific Instruments, 2012 83, 053703.https://aip.scitation.org/doi/abs/10.1063/1.4712286.[iv] A. Elbourne, S. McDonald, K. Vo?chovsky, F. Endres, G. G. Warr, and R.Atkin, Nanostructure of the Ionic Liquid–Graphite Stern Layer, ACS Nano,2015, 9(7), 7608–7620. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b02921.[v] V. V. Korolkov, S. A. Svatek, A. Summerfield, J. Kerfoot, L. Yang, T. Taniguchi,K. Watanabe, N. R. Champness, N. A. Besley, and P. H. Beton, van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional PorphyrinArrays on Boron Nitride, ACS Nano, 2015, 9(10), 10347–10355.https://pubs.acs.org/doi/10.1021/acsnano.5b04443.[vi] D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y.Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B.Xu & X. Wang, Two-dimensional quasi-freestanding molecular crystals forhigh-performance organic field-effect transistors, Nature Communications,2014, 5:5162, 1–7. https://www.nature.com/articles/ncomms6162.*转载文章前请与牛津仪器联系,未获许可谢绝转载,谢谢。
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。  加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:  按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。  禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。  加强联邦环境质量手册对多溴联苯醚的检测。  对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。  检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。  此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。  BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • “食物嗅嗅”能嗅出啥?
    p  食品安全乃是人命关天的头等大事,万万不可掉以轻心。每年在全球范围内发生的食品安全丑闻事件、因问题食品而致病的案例不计其数,不仅对人的健康产生有害影响,让其遭受病痛的折磨,还大幅增加了政府在了公共卫生、医疗救护方面的开支。所以长久以来,欧盟在食品安全领域倾注了很多的人力和资金。/pp  在当前,对于食品样品中有害物质的检测只能在实验室中依靠各种仪器设备才能完成。但样品需要运送至实验室,而检测仪器十分贵重,操作人员也必须是经过严格训练的专业人士,检测时间也通常要在24至48小时左右。这些复杂的程序和过长的等待时间使普通经销商或消费者无力对食品进行安全监测。/pp  为了突破这一难关,2016年,由欧盟投资,荷兰瓦格宁根安全食品联盟(Trustfood stichting)与多国研究机构协力完成了新发明——食物嗅嗅(foodsniffer)。/pp style="text-align: center "img title="636244992591947262898.jpg" src="http://img1.17img.cn/17img/images/201703/insimg/e5d8daa6-f03b-46a2-abca-916b0b1304c9.jpg"//pp style="text-align: center "strong食物嗅嗅/strong/pp  食物嗅嗅只有A5打印纸大小,却内置了10个传感器和全硅集成芯片,具有极高的精确度,可以在短时内快速完成检测。检测结果将传送至用户的智能手机,通过智能手机的GPS定位系统能将检测结果和特定检测站点联系起来,并上传至中央监测系统。/pp  strongspan style="color: rgb(0, 176, 240) "什么样的用户需要它?/spanspan style="color: rgb(0, 176, 240) "/span/strong/pp  1. 过敏者:对部分食物过敏的人可以通过食物嗅嗅测试食物中是否包含特定致敏原,特别适合过敏者在旅途中或在一些食品安全信息不明的高风险地区使用。/pp  2. 素食者或有机食品消费者:它可以帮助你测试食品中是否包含肉类蛋白或有机农业中禁止的农药残留。/pp  3. 葡萄酒爱好者:食物嗅嗅可以通过DNA分析鉴定出葡萄酒中所含葡萄的种类。/pp  4. 不愿食用转基因食品的人:食物嗅嗅可以帮你检测出食物样品中多种转基因成分。/pp  5. 食品供应商与销售商:食物嗅嗅可以为食品的生产环节保驾护航。食品销售商则可以在食品上架前,对其进行安全检测。/pp  供食品生产商和销售商使用的食物嗅嗅专业版于2016年投入市场,供普通消费者使用的将会在一至两年后面世。/pp  有了食物嗅嗅在手,简直像拥有了一座行走的食品安全实验室一样爽快,让你更加了解你的食物,吃得更健康、更安全。/pp  span style="color: rgb(0, 176, 240) "strong关于食品安全,你还应该知道:/strong/span/pp  1.病从口入:超过200种的疾病是通过我们的食物传播的/pp  2.在美国,每天发生二十万起食源性疾病,很多人因此失去生命/pp  3.在工业化国家中每年有约三分之一的人口可能感染食源性疾病/pp  4.在食物看起来、闻起来或尝起来腐坏之前,引发食源性疾病的细菌就已经可以让你生病了/pp  span style="color: rgb(0, 176, 240) "strong你的肉食是怎么变坏的?/strong/span/pp  生产过程:/pp  动物肉中自带的细菌在宰杀和生产过程中可以繁殖,鲜活动物体内的细菌越多,它的肉就会越快坏掉。/pp  商店(销售环节):/pp  1.商店的卫生条件是否过关?/pp  2.浸泡在血水中的肉类会更快腐坏/pp  家中/pp  1.室温下或通过微波炉解冻的肉类,变质的可能性更大,最好用冰箱冷藏解冻。/pp  2.肉类在室温条件下腐坏速度加快4倍,由于肉中的水分膨胀破坏了细胞膜,细菌更容易滋生。所以解冻后的肉类,那简直就是细菌的天堂。要及时消费已经解冻的肉类,避免反复解冻又冷冻。/p
  • 国家市场监督管理总局对《肥料中正丁基硫代磷酰三胺和双氰胺的同时测定 高效液相色谱法》等158项拟立项国家标准项目公开征求意见
    各有关单位:经研究,国家标准委决定对《水文化遗产资源分类与代码》等158项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年11月17日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001439,查询项目信息和反馈意见建议。2023年10月18日 相关项目如下:#项目中文名称制修订截止日期1保健食品原料 辅酶Q10制定2023-11-172保健食品原料 螺旋藻制定2023-11-173保健食品原料 破壁灵芝孢子粉制定2023-11-174保健食品原料 褪黑素制定2023-11-175保健食品原料 鱼油制定2023-11-176苯中噻吩含量的测定方法修订2023-11-177便携式割灌机 切割附件 单片金属刀片制定2023-11-178便携式割灌机和割草机 切割附件安全罩 尺寸制定2023-11-179便携式割灌机和割草机 切割附件安全罩 强度制定2023-11-1710标准大气制定2023-11-1711不锈钢器皿修订2023-11-1712肥料中正丁基硫代磷酰三胺和双氰胺的同时测定 高效液相色谱法制定2023-11-1713风险管理 风险预警制定2023-11-1714风险管理 新兴风险管理指南制定2023-11-1715感官分析 方法学 量值估计法修订2023-11-1716感官分析 感官评价员的选拔和培训修订2023-11-1717锅炉和压力容器 第1部分:性能要求制定2023-11-1718锅炉和压力容器 第2部分:GB/T XXXXX.1的符合性检查程序要求制定2023-11-1719化工园区气体防护站建设运行指南制定2023-11-1720跨境电子商务商家风险防控指南制定2023-11-1721绿色产品评价 生物基材料及制品制定2023-11-1722马铃薯种植机 技术规范修订2023-11-1723农林拖拉机和机械、草坪和园艺动力机械操作者操纵机构和其他显示装置用符号 第4部分:林业机械用符号修订2023-11-1724起重机 限制器和指示器 第3部分:塔式起重机修订2023-11-1725起重机 载荷与载荷组合的设计原则 第3部分:塔式起重机修订2023-11-1726商品条码 条码符号放置指南修订2023-11-1727数字化供应链 供应链网络设计要求制定2023-11-1728塑料薄膜和薄片水蒸气透过率的测定 第4部分: 气相色谱法制定2023-11-1729土壤氨挥发测定方法制定2023-11-1730卫生纸及其制品 第13部分:可分散性的测定制定2023-11-1731限定的非检疫性有害生物管理指南制定2023-11-1732植物检疫措施在国际贸易中的应用指南制定2023-11-1733植物品种特异性、一致性和稳定性测试指南 谷子制定2023-11-1734植物品种特异性、一致性和稳定性测试指南 向日葵制定2023-11-1735植物栽培用放电灯(荧光灯除外) 性能规范制定2023-11-1736纸和纸板 色牢度评价试验制定2023-11-1737组织治理 指南制定2023-11-17
  • 从“007实验猿”到高枕无忧“北京瘫”,您只需一台岛津全新Nexis SCD-2030
    早上9点上班、晚上9点下班,一周工作6天,这就是被广大的“程序猿”吐槽的“996”工作制。但只有在化工企业科研或检测中心工作过的人才知道,化工实验室的工作又何止“996”呢,化工装置开起来24小时运转,一天24小时的工艺监控,一周7天的“007”质检工作需要化验员三班倒才能完成,加上实验室工作量大,繁琐而零碎,且需要不断重复,费时费力,把分析工作者都训练成了“007特工”。 如何才能从“007”的化工“特工实验猿”到高枕无忧的“北京瘫”惬意完成关键的硫化物分析任务呢?岛津全新Nexis SCD-2030硫化学发光检测系统给您带来春天般舒适: 微量硫化物的分析,一直是化工质检工作的关健性工作,石油和煤炭中含有大量的硫化物,对后续的化工品加工过程、油品、环境都会造成影响,实现化工品中微量硫化物的分析岛津全新Nexis SCD-2030硫化学发光检测系统是您最佳的选择,多种完善的主流应用方案助您一臂之力! 01 天然气中微量硫化物分析 ASTM D5504 中对SCD有选择性和烃对SCD淬灭效应的测试: 图1. 硫化物混标、天然气中硫化物、无硫天然气色谱图对比 图2. 15ppb H2S 和 15ppb COS 的优良响应 图3. 天然气中硫化物谱图,线性和重现性满足ASTM标准要求 02 轻质石油烃中硫化物分析 图4. 汽油中常见硫化物良好的出峰图5. 连续16天的严苛的稳定性测试,结果得到良好的重复性 图6.汽油中加标测试 03 ASTM D7011 –苯中噻吩分析? 4.75 min苯不出峰,无干扰? Linearity (10 – 1000 ppb) R2 = 0.9999 04 乙烯/丙烯中微量硫化物分析 图7.氦气和乙烯中的10ppm硫混合物谱图 ? 从硫化氢到正丁基硫的良好分离? 乙烯基体对H2S和COS无干扰 图8.丙烯中微量H2S和COS谱图 ? H2S 和 COS 可以分析到ppb级? 烯烃无干扰 05 柴油中硫化物分析柴油中含有什么类型的硫化物呢? 图9.柴油加氢脱硫工艺流程图 图10.轻柴油中硫化物分析 柴油加氢工艺过程中,DBTs 容易引起催化剂中毒,如果同时还存在sulfides and BTs,热交换器容易出现泄露等问题,SCD帮助更多的了解柴油中硫化物情况,助力提升工艺水平。 岛津Nexis GC-2030硫化学发光检测器采用了多项前沿设计,如横卧式燃烧器、超短流路、检测器设计等实现了世界卓越的高灵敏度和高稳定性。 图11. 横卧式燃烧器 岛津横卧式燃烧器设计,内部陶瓷管的拆装变得易于操作,大幅度缩短了以往棘手的内部陶瓷管的更换时间,仅需5分钟即可完成(图3)。 图13. 内部陶瓷管更换 同时,Nexis SCD-2030通过高效全自动化软件、自动老化功能和自动耗材更换提示,实现了极佳的操作和维护体验。 图14. 从开机到分析到关机全过程的自动化软件界面
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制