当前位置: 仪器信息网 > 行业主题 > >

黄铜矿

仪器信息网黄铜矿专题为您提供2024年最新黄铜矿价格报价、厂家品牌的相关信息, 包括黄铜矿参数、型号等,不管是国产,还是进口品牌的黄铜矿您都可以在这里找到。 除此之外,仪器信息网还免费为您整合黄铜矿相关的耗材配件、试剂标物,还有黄铜矿相关的最新资讯、资料,以及黄铜矿相关的解决方案。

黄铜矿相关的方案

  • 以黄铜矿为主的低品位硫化铜矿生物浸出体系中的细菌优势菌群
    摘要:通过对以黄铜矿为主的低品位硫化铜矿中温硫杆菌生物浸矿体系的细菌优势菌群的研究,探讨了黄铜矿的细菌作用机理. 采用9K 培养基从细菌浸出矿浆中分离出了14 株中温硫杆菌,其浸矿能力都弱于分离前的自然混菌菌种,在浸矿过程中自然形成的混菌群落中各菌株之间存在着协同效应. 从上述菌株中随机挑选出氧化浸出能力有较大差异的YK8, YK12 和YK14 进行了16S rDNA 克隆测序分析,显示它们与Acidithiobacillus ferrooxidans 的同源性均达到99%,为嗜酸氧化亚铁硫杆菌. 由此说明该浸矿体系的优势菌群为嗜酸氧化亚铁硫杆菌,细菌氧化作用机理以直接作用为主. 各纯菌株对Fe2+的氧化率存在较大差异,对菌浸矿浆用不同能源诱导培养后的混菌浸矿能力有显著变化.
  • 岛津电子探针分析铟在黄铜矿中的富集特征
    "电子探针元素面分布及微区定量分析表明,脉状锡铅锌矿体载铟黄铜矿中,铟含量较高,在0.04-0.40%之间,且分布较为均匀,是矿区重要的载铟矿物。岛津电子探针通过配置高灵敏度和高分辨率的全聚焦型分光晶体和52.5° 的高特征X射线检出角,使之具备非常优异的元素检测限,能够对载铟矿物进行观察和有效分析。"
  • 硫化物矿物岛津电子探针定量分析方法标准验证
    硫化物矿物是自然界中仅次于硅酸盐矿物的第二大类矿物,矿物种类繁多。本文以某黄铜矿样品为例,对标准《GBT 15246-2002 硫化物矿物的电子探针定量分析方法》进行了验证。
  • 飞秒激光剥蚀MC-ICP-MS法测定硫化物原位微区硫同位素标准的制备(英文原文)
    在使用标准样品进行原位微区硫同位素测定时,我们制备了一系列粉末压片和黄铜矿玻璃标准样品来纠正质量偏差。采用飞秒激光剥蚀多收集器电感耦合等离子体质谱法(fsLA-MC-ICP-MS)测定了标准样品的硫同位素组成。黄铜矿玻璃(YN411-m)是将黄铜矿在N2保护条件下于1000° C融化,然后快速淬火制成。采用fsLA-MS-ICP-MS对YN411-m进行了多次均匀性测定,外部精度为0.28‰(n = 35)。当测定黄铜矿(GC)δ 34S时,使用矿物颗粒、粉末压片、黄铜矿玻璃片作为标准。结果表明,基体效应是由浓度、元素组成和晶体结构引起的。从实用性考虑,熔融玻璃比粉状压片更合适作为标准样品。我们还发现载气流量、激光通量和光斑尺寸对结果的规律性有影响。因此,我们可以不使用匹配的标准样品,通过调整激光和MC-ICP-MS的参数来获得准确的δ 34S结果。此外,fsLA-MC-ICP-MS由于可以极大地提高灵敏度、空间分辨率(10 - 20μ m)因此非常有利于原位微区硫同位素测定。可以通过分析较小的矿物微区,特别是成矿后期充填的硫化物矿物,来解释多成因矿床的成因
  • 箱式电阻炉在铜矿石冶炼与提纯实验中的应用
    本实验旨在探究箱式电阻炉在铜矿石冶炼和提纯过程中的应用,通过高温还原的方法,将铜矿石中的铜元素提取出来,并进行提纯,以获得高纯度的铜。
  • 碘氟法测定铜矿石中铜的含量
    实验目的:1、掌握Na2S2O3溶液的配制及标定原理2、学习铜矿石的溶解方法3、了解碘氟法测定铜矿石的原理及其方法实验原理:在PH值为3~4的微酸性溶液中,加入氟化氢铵隐蔽铁,用碘化钾与试液中反应,生成难溶于稀酸的,析出相应的。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定,其反应式为
  • 科迈斯手持式矿石分析仪在铜矿勘探中的应用
    近年来,铜矿资源的开发和利用一直是全球矿业市场的热点。
  • ICP-5000测定铜矿石中11种金属元素含量
    技术特点1.基体干扰大2.微波消解3.痕量元素分析铜矿石传统的分析方法一般采用容量法、分光光度法等,但这些方法操作步骤复杂,不能同时测定多种元素。电感耦合等离子体原子发射光谱法(ICP-OES)是20世纪80年代发展起来的新的无机元素分析测试技术,它具有高效率、高准确度、低检出限、抗干扰能力强、操作简便、分析过程简单,可同时进行多元素快速分析等特性。本文采用微波消解法对铜矿石进行消解,采用全谱直读ICP-5000测定铜矿石标准样品中多种元素,加标回收率均在85.82%~105.6%,实验结果令人满意。
  • MA-3000直接燃烧法在地质矿产行业测定铜矿中总汞的应用
    MA-3000直接燃烧法在地矿行业测定铜矿中总汞的应用汞以元素形式作为天然汞齐存在于铜等天然金属中。大多数铜矿石仅包含一小部分结合在有价值矿石矿物中的铜金属,其余矿石为脉石(不需要的矿物)。矿石首先被压碎(粉碎),所产生的各个矿物相颗粒被分离以去除脉石,这是富含汞的尾矿可以进入当地分水岭的地方。汞蒸气也可以在冶炼过程中释放到大气中,在该过程中矿石被加热和还原,以去除气体或炉渣等其他元素。尽管元素汞仅以痕量存在于大气中,但这已被确定为水生环境中汞的重要来源。众所周知,汞会在人类中生物蓄积,因此海洋生物中的生物蓄积会转移到人类群体中,从而导致在汞中毒中。汞对自然生态系统和人类都是危险的,因为它具有剧毒,特别是因为它能够破坏中枢神经系统。汞对子宫内和儿童早期的人类发展构成特别威胁。因此,为防止汞中毒,必须准确量化铜矿石中的总汞含量。 NIC公司 MA-3000是一款专用的直接汞分析仪,通过热分解、金汞齐化和冷原子吸收光谱有选择地测量几乎任何样品基质(固体、液体和气体)的总汞。MA-3000提供快速测试的结果,没有任何繁琐、耗时和复杂的样品制备过程。这是一个理想的解决方案,以满足当今实验室对简单,快速和准确的汞测量的需求。
  • 与ns-LA-ICP-MS相比,fs-LA-ICP-MS对硫化物分析的能力:降低激光诱导基体效应
    我们分别用三种不同的LA系统(213nm、193nm和200nm飞秒激光)耦合四极ICP-MS或扇区场ICP-MS分析不同的硫化物矿物(黄铁矿、黄铜矿和闪锌矿)。利用背散射电子(BSE)图像对烧蚀坑进行了研究,比较了熔体的产生量,并计算了分馏因子,确定了井下分馏程度。结果表明,三种体系的熔点存在显著差异。当使用ns系统时,样品显示有大量熔化,而使用fs激光时没有观察到熔化。多种元素对的分馏系数表明,即使在熔体产量*的情况下,井下也没有分馏。不同硫化物试样的熔化程度与这些材料的熔化温度无关。虽然未见井下分馏,但应用193nm ns和200nm fs体系时,根据黄铜矿和磁黄铁矿的敏感性计算得到的Fe/S分馏结果存在偏差。使用200nm fs LA系统对已知PGE浓度的合成磁黄铁矿进行分析,得到了较为准确的浓度数据(3-4% 4-14% 2SD)利用硫化物作为外部参考材料。采用NIST610作为参考材料,精度提高到1.4-2.4% 2SD,与参考值的偏差提高到5-7%。
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行. 利用研究建立的方法分析了都龙锡锌铟多金属矿带中的黄铜矿、黄铁矿和闪锌矿中Pb 同位素组成. 结果表明, 该矿区不同硫化物矿物间及同一种硫化物不同颗粒间的Pb 含量差异可达1000 多倍, 黄铁矿具有相对较高的Pb 含量,而闪锌矿的Pb 含量则偏低. 高Pb 含量的黄铁矿具有变化小且相对均一的Pb 同位素组成, 而低Pb 含量的闪锌矿的Pb 同位素组成变化极大, 一方面它可能较易受后期热液叠加作用而改变, 另一方面由于闪锌矿中铅含量较低, 则其中所含微量铀的影响显著加大,因而由铀放射性衰变随时间积累起来的放射成因铅也可能是造成其Pb 含量和同位素组成分布范围较大的原因之一. Pb 含量高于10 ppm 的黄铜矿和闪锌矿颗粒显示了一致的Pb 同位素分布, 而Pb 含量高于100 ppm 的所有硫化物颗粒均具有误差范围内一致的Pb同位素组成, 且与化学法得到的结果误差范围内吻合, 表明本研究方法的数据可靠. 本研究还表明, 只有Pb 含量相对较高的硫化物矿物中的Pb 同位素组成才能较真实地记录其成矿物质来源. 而Pb 含量偏低的硫化物矿物中的Pb 同位素组成则可能受样品中微量铀的影响而具有高放射成因铅同位素比值, 也可能代表了后期交代流体改造后的Pb 同位素组成.
  • 使用EDX和XRD分析铜精矿
    利用EDX和XRD对选矿前后铜矿石中的成分和化合物形态作了分析。借助EDX定性分析中获得的所含元素信息,可使得XRD物相检索结果更准确。此外,借助XRD定性分析获得的化合物信息,可使得EDX元素定量分析更准确。根据这些结果,利用EDX和XRD可以有效地分析选矿前后的铜矿石。
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法. 研究发现中国国家标准物质研究中心研制的以铜为基体的标准样品GBW02137(青铜)中Pb同位素组成均一(208Pb/204Pb=37.9661± 0.0005 (2 s), 207Pb/204Pb=15.5770± 0.0002 (2 s), 206Pb/204Pb= 17.7462± 0.0002 (2 s)), 可作为原位微区分析黄铜矿、古钱币等含铜基体样品中Pb同位素组成的外部标准物质和监控样品(QC), 为矿床成因研究提供原位微区的Pb同位素地球化学制约, 亦可为利用古钱币、青铜器等中的Pb同位素来研究矿料来源、古代工艺、文化交流等. 利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 上海力晶:电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素铟的干扰消除
    对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中铟,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200 μg /mL 锌对上述微量元素的测量没有干扰 溶液中共存大于50 μg /mL 的铜对铟测量有负干扰,共存大于100μg /mL 铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰 溶液中共存大于20 μg /mL 的铅对铊的测量有正干扰,选择203 Tl 为测量质量数,可使耐受铅的干扰浓度提高到50μg /mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。
  • 上海力晶:电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓的干扰消除
    对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中镓,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200 μg /mL 锌对上述微量元素的测量没有干扰 溶液中共存大于50 μg /mL 的铜对镓的测量有负干扰,共存大于100μg /mL 铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰 溶液中共存大于20 μg /mL 的铅对铊的测量有正干扰,选择203 Tl 为测量质量数,可使耐受铅的干扰浓度提高到50μg /mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。
  • 上海力晶:电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素钨的干扰消除
    对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中钨,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200 μg /mL 锌对上述微量元素的测量没有干扰 溶液中共存大于50 μg /mL 的铜对钨的测量有负干扰,共存大于100μg /mL 铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰 溶液中共存大于20 μg /mL 的铅对铊的测量有正干扰,选择203 Tl 为测量质量数,可使耐受铅的干扰浓度提高到50μg /mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。
  • 上海力晶:电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素铊的干扰消除
    对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中铊时,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200 μg /mL 锌对上述微量元素的测量没有干扰 溶液中共存大于50 μg /mL 的铜对铊的测量有负干扰,共存大于100μg /mL 铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰 溶液中共存大于20 μg /mL 的铅对铊的测量有正干扰,选择203 Tl 为测量质量数,可使耐受铅的干扰浓度提高到50μg /mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。
  • 上海力晶:电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素钼的干扰消除
    对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中钼时,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200 μg /mL 锌对上述微量元素的测量没有干扰 溶液中共存大于50 μg /mL 的铜对钼的测量有负干扰,共存大于100μg /mL 铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰 溶液中共存大于20 μg /mL 的铅对铊的测量有正干扰,选择203 Tl 为测量质量数,可使耐受铅的干扰浓度提高到50μg /mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。
  • 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除
    对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中镓、铟、铊、钨和钼量时,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200 μg /mL 锌对上述微量元素的测量没有干扰 溶液中共存大于50 μg /mL 的铜对镓、铟、铊、钨、钼的测量有负干扰,共存大于100μg /mL 铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰 溶液中共存大于20 μg /mL 的铅对铊的测量有正干扰,选择203 Tl 为测量质量数,可使耐受铅的干扰浓度提高到50μg /mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。
  • PDA分析黄铜中常规元素之方法
    使用岛津PDA-7000直读光谱仪分析黄铜样品,有很好的分析稳定性,分析数据的重复性和再现性指标完全满足YS/T 482-2005和SN/T 2083-2008中的规定,为有色金属黄铜样品的常规分析提供有效的检测手段。
  • 德国耶拿:铜和黄铜制品中 P, Sn, Si, 和Zn 的测定
    本方法使用 contrAA® 直接进行铜和黄铜制品中 P, Sn, Si, 和Zn 的测定。样品的光谱背景在分析线上被同时直接地校正了。方法建立简单,且可以清晰地分辨出由复杂基体可能产生的光谱干扰,也就是说用高分辨分光系统进行分析没有干扰。为此,谱线的选择 仅取决于待分析的元素及其含量(高浓度样品无需稀释),如黄铜中的锡分析。
  • 电镀黄铜钝化溶液中氯化钠含量的测定
    为了提高铜的耐腐蚀性,钝化处理作为最常用的手段而被广泛应用,在钝化溶液中氯化钠含量超标会破坏钝化膜,是造成黄铜点腐蚀、缝隙腐蚀和应力腐蚀破裂的根源。
  • 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用
    通过检测器分析透射或反射光的光密度, 就可以确定样品的组分及该组分的含量。 并非所有的矿物在短波红外光区内都有显示, 常见的适合短波红外光谱测量的矿物主要是含氢基团’()(’*+、,、-)及含+-$ /.、0-$ 1. 的矿物等, 如各种含羟基矿物、含氨基矿物,以及部分碳酸盐矿物及硫酸盐矿物等。
  • 浪声XRF系列分析仪在黄铜检测中的应用
    黄铜是与人类关系非常密切的合金,因其具有优良的导电性、导热性、延展性、耐腐蚀性、耐磨性等特性,被广泛地应用于电力、电子、能源及石化、机械及冶金、交通、轻工、新兴产业及等领域,在我国有色金属材料的消费中仅次于铝。
  • 采用瞬态平面热源法测量4H碳化硅晶片、紫铜和黄铜薄片的导热系数
    本文针对新一代高导热半导体材料4H碳化硅晶片,介绍了采用瞬态平面热源法(HOT DISK法)进行室温导热系数测试的整个过程和结果。为了保证测量的准确性,采用同样是高导热材料并具有公认导热系数的紫铜和黄铜薄片对测试方法进行了考核验证,证明了高导热碳化硅晶片的导热系数最终测试结果具有较可靠的参考价值。
  • 岛津EDX在地矿浮选过程中锌含量的分析
    作为铜矿优先浮选、硫精矿浮选过程中有危害性的硫化锌含量一般会限制在一定的范围以内。随着EDX荧光仪器的分辨率和灵敏度的大幅提高,以及快速无损分析和操作简单的优势,加之EDX荧光分析对样品要求不高(甚至可以直接测试矿浆),EDX荧光光谱仪越来越多地用于地矿浮选工艺中的元素分析。使用岛津EDX-LE Plus 荧光光谱仪可以直接对矿浆样品进行快速无损分析,无需烘干或压片,可以随时取样分析,操作简单而又快捷。
  • 铜锌冶炼行业除汞过程中汞的监测方案(LUMEX高频塞曼法)
    硫酸是锌厂和铜厂的重要副产品。铜矿石和锌矿石的汞含量通常也较高。在焙烧过程中加热时,汞从矿石中蒸发,如果不除去,最终会在硫酸中出现。硫酸在食品和其他工业中进一步使用中是不允许含有汞的。因此在硫酸生产过程中需要采用特殊工艺除汞。焙烧气体中的汞去除效率可以由RA-915M/RA-915AM汞分析仪进行有效监测,因为其独特的特征—塞曼背景校正的非选择性吸收-即使在高含量SO2的存在下也可以实现汞的准确测定。通过汞分析仪的在线监测,硫酸生产商可以在线监测除汞过程的效率,并在形成最终产品之前采取措施防止汞污染。
  • 新拓仪器:超声—微波协同萃取法提取甘草黄酮的研究
    采用超声- 微波协同萃取法, 从甘草中提取黄酮, 用分光光度法测定黄酮含量。结果: 用超声- 微波协同萃取法提取, 测得甘草中黄酮的含量为2.04 %,平均回收率为97.64 %(n=6)。结论: 甘草黄酮的提取可优选超声- 微波协同萃取法。
  • 岩石学、矿物学和地球化学约束下的柴达木盆地西部(中国青藏高原东北部)始新世湖相微生物岩的形成和保存
    对柴达木盆地湖泊微生物群落的研究可以为极端恶劣的陆地环境中微生物群落的产生和矿化过程提供线索。在柴达木盆地始新世湖泊体系中,厚层锑铜矿(约0.4至1m厚)通常在近岸环境中形成,具有罕见或丰富的陆源混合物,并具有四种不同的凝块结构。相比之下,小规模叠层石、锑铜矿和复合凝块层状微生物岩(厘米级)呈现出圆顶状、柱状和层状形状,可能表明它们在非常浅的环境(如泻湖)中发育。外部结壳的早期岩化作用以及内部层状和凝结结构有助于微生物的保存。本研究中分析的始新世微斜长石的层状和凝结结构由隐晶质到微晶(模拟)白云石组成,可能形成于早期矿化过程中。这可能是由于始新世-渐新世气候过渡期间青藏高原上强烈的蒸发湖泊条件造成的。白云石过饱和孔隙流体中的微生物矿化过程也可能有助于早期白云石化。相比之下,微斜长石的中至粗晶成分由方解石矿物组成,这意味着这些成分在成岩过程中经历了胶结/重结晶。此外,大量的自生硫酸盐(天青石重晶石)和硫化物(粉体黄铁矿)矿物仅分布在模拟白云石化、层状和凝结的微生物结构中。据推断,盐湖条件和矿物溶解(碳酸盐和陆源颗粒)促成了SrSO4和BaSO4过饱和流体条件,并使天青石重晶石结晶。青藏高原东北部始新世湖泊微生物碳酸盐的发育为与广泛分布的湖泊微生物碳酸盐记录进行比较提供了一个案例,本研究中使用的微结构特征和分析工具可能为探索微生物碳酸盐的复杂矿化过程提供了新的视角。
  • 铁矿─铜含量的测定─原子吸收光谱法
    铁矿─铜含量的测定─原子吸收光谱法1范围本推荐方法用火焰原子吸收光谱法测定铁矿中铜的含量本方法适用于天然铁矿铁精矿烧结矿和球团矿中0.003%(m/m)1.00%(m/m)铜含量的测定2原理试样用盐酸溶液到原子吸收光谱仪的空气乙炔火焰中于波长324.8nm处测量铜的吸光度硝酸和氢氟酸分解吸喷制成酸性溶液加高氯酸蒸发除氟3试剂3.1 盐酸r 1.19g/mL3.2 盐酸113.3 硝酸r 1.42g/mL3.4 硝酸133.5 氢氟酸r 1.15g/mL3.6 高氯酸r 1.67g/mL
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制