当前位置: 仪器信息网 > 行业主题 > >

氧化锰

仪器信息网氧化锰专题为您提供2024年最新氧化锰价格报价、厂家品牌的相关信息, 包括氧化锰参数、型号等,不管是国产,还是进口品牌的氧化锰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧化锰相关的耗材配件、试剂标物,还有氧化锰相关的最新资讯、资料,以及氧化锰相关的解决方案。

氧化锰相关的资讯

  • 郝吉明院士:控制氮氧化物排放是改善空气质量关键
    中国许多城市目前正遭受着严重的空气污染,而氮氧化物被认为是导致空气污染的罪魁祸首。原因在于,氮氧化物排放造成的二次污染可以产生多种环境影响:酸沉降、水体富营养化、臭氧、PM2.5、气候变化……   “因此,NOx(氮氧化物)排放控制是改善我国环境空气质量的关键。”近日,中国工程院院士、清华大学教授郝吉明在贵阳“第七届全国环境化学”大会报告上如此表示。   氮氧化物主要来自电厂燃煤烟气和汽车尾气。郝吉明说,仅通过锅炉优化燃烧和机内净化控制氮氧化物远不能满足日益严格的排放标准,“而选择性催化还原(SCR)氮氧化物为氮气是最有效的净化方法”。   该方法要用到脱硝催化剂——其功能在于促使还原剂选择性地与烟气中的氮氧化物发生化学反应。郝吉明说,关键在于高效低成本脱硝催化剂的设计,目前该领域主要聚焦在“高性能催化体系设计和复杂环境下技术适应性”两个方面。   SCR催化剂可以分为金属氧化物和分子筛两类催化剂,前者主要应用于燃煤烟气脱硝,后者用在柴油车尾气氮氧化物控制。   郝吉明说,我国燃煤烟气脱硝主流技术为NH3-SCR,但这一技术存在高温选择性差、抗中毒能力弱、工作温度窗口窄等问题,难以满足我国电厂复杂烟气排放特征(高灰高钙高硫),及不同负荷宽工作温度下脱硝的需求。   而影响催化剂选择性及抗中毒和温度窗口的关键因素是脱硝催化剂的氧化还原性和酸性。   因此,郝吉明提出通过合理调控催化剂的氧化还原性和酸性,设计新的催化剂体系,从而最终解决上述难题的思路。   我国2003年前建设的电厂,由于没有预留脱硝空间,烟气脱硝装置被安装在除尘或脱硫之后,此时烟气温度已经降到200℃以下。要在如此低温条件下,将氮氧化物还原为氮气,对国内外学术界和工业界都是一个挑战。   郝吉明认为,解决这一问题的关键,仍然是探索新的活性组分。由于锰具有很好的低温活性,研究人员将二氧化锰应用到低温脱硝领域,最终发明了锰铈锡三元复合氧化物催化剂体系。目前该团队已完成了从原材料到脱硝催化剂制造的整个产业链工作,相继完成了小试、中试和产业化应用全过程。   在分子筛研究方面,当前国际上主要聚焦在小孔高硅CHA分子筛上。郝吉明研究团队发现,Cu/CHA分子筛具有优异的脱硝活性和氮气选择性,铜含量的增加会有效提高低温活性,且具有优异的抗水热老化和抗积碳能力,成为柴油车尾气净化的关键催化材料。   郝吉明说,下一步需要对不同排放源的氮氧化物开展污染控制,但关键的脱硝催化剂材料研究及应用仍然面临着三个方面的挑战。   一是再生及废弃催化剂如何资源化利用。“十二五”期间将大规模安装脱硝装置,脱硝催化剂市场良莠不齐,很难保证所有的脱硝催化剂都能够达到设计寿命,所以脱硝催化剂寿命和稳定性仍然是一个挑战。此外,将来大量的废旧催化剂如何再利用是下一阶段的研究课题。   二是推动烟气多污染物的协同控制。零价汞是全球性的大气污染物,燃煤烟气是汞的主要排放源之一,燃煤烟气汞的排放控制成为需要迫切解决的问题,研究如何能够在高效脱硝的同时氧化汞。   三是研发高效低成本分子筛脱硝催化剂。对于柴油车尾气中氮氧化物控制,虽然小孔分子筛负载铜的催化剂体系具有良好的脱硝性能及高热稳定性和抗积碳特性,但针对国内的劣质柴油,仍然需要解决催化剂的抗硫性能。   此外,替代燃料车尾气排放控制也面临难题。含氧替代燃料会造成尾气中氮氧化物排放量增加,提高了脱硝难度 不同燃料车尾气中非常规污染物(醛类、酸类等)的排放和危害也成为环境化学家必须关注的问题。
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 部分扣式电池进出口将实施汞含量专项检测
    进出口锌-氧化银、锌-空气、锌-二氧化锰扣式电池(下称扣式电池)将于7月1日起实施汞含量专项检测。   此前,进出口扣式电池尚无汞含量限值国家标准,因此暂不实施汞含量检测,但必须办理备案手续。2009年9月30日,国家质检总局和国家标准委联合发布《锌-氧化银、锌-空气、锌-二氧化锰扣式电池中汞含量的限制要求》,该标准将于2010年7月1日实施,含汞量小于等于0.005毫克每克属于无汞电池,含汞量小于等于20毫克每克属于含汞电池,超出此标准限值属于不合格电池。   根据《进出口电池产品汞含量检验管理办法》规定:检验检疫机构对进出口电池产品实行备案和汞含量专项检测制度,未经备案或汞含量检测不合格的电池产品,不准进口或出口。
  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 16px " strong span style=" color: rgb(0, 112, 192) font-size: 16px text-indent: 2em " 看——把烟囱“搬”进显微镜 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿” /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " img style=" max-width: 100% max-height: 100% width: 450px height: 393px " src=" https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width=" 450" height=" 393" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 算——“白马”“黑马”最佳配比 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。” /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 334px " src=" https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title=" 理论计算理解位阻效应.png" alt=" 理论计算理解位阻效应.png" width=" 450" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 理论计算理解位阻效应 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。” /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 测 /span /strong /span span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " —— /span span style=" text-indent: 2em " 1000小时耐力测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title=" 持续稳定的抗中毒性能.png" alt=" 持续稳定的抗中毒性能.png" width=" 450" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 持续稳定的抗中毒性能 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。” /span /p
  • 又一批行业标准报批公示 这些有变化
    p   7月23日,工信部发布行业标准修改单报批公示,此次涉及电子、化工、冶金、有色、纺织、石化领域。 /p p   具体来说包括:《品牌培育管理体系实施指南 电子信息行业》等6项电子行业标准、《合成氨行业绿色工厂评价导则》等3项化工行业标准、《钢渣集料混合料路面基层施工技术规程》等13项冶金行业标准、《岩土工程勘察报告编制规程》等11项有色行业标准、《涂层织物 低温耐折性能试验方法》等48项纺织行业标准和《石油化工钢制管法兰》1项石化行业标准修改单。 /p p   其中,有多项涉及检测: /p p & nbsp /p table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" uetable=" null" tbody tr class=" firstRow" td width=" 83" p style=" TEXT-ALIGN: center" strong 标准编号 /strong /p /td td width=" 104" p style=" TEXT-ALIGN: center" strong 标准名称 /strong /p /td td width=" 258" p style=" TEXT-ALIGN: center" strong 标准主要内容 /strong /p /td td width=" 75" p style=" TEXT-ALIGN: center" strong 代替标准 /strong /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4708-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了火焰原子吸收光谱法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4709-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 高碘酸钾(钠) 分光光度法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了高碘酸钾(钠)分光光度法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4710-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化亚铁含量的测定& nbsp 重铬酸钾滴定法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了重铬酸钾滴定法测定氧化亚铁含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化亚铁含量的测定,测定范围(质量分数):2.00%~20.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4711-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了采用火焰原子吸收光谱法测定氧化钾和氧化钠含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化钾和氧化钠含量的测定,测定范围:氧化钾0.02%~0.10%。(质量分数);氧化钠0.02%~0.10%(质量分数)。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4716-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 轧钢铁鳞& nbsp 含水量和含油量的测定 热重法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了热重法测定轧钢铁磷含水量和含油量的原理、仪器和设备、取样、分析步骤、分析结果的计算等。 br/ & nbsp & nbsp & nbsp 本标准适用于轧钢铁鳞含水量和含油量的测定。含水量测定范围(质量分数):0.50%~45.00%;干基含油量测定范围(质量分数):0.10%~30.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center"   /p /td /tr /tbody /table p & nbsp /p p   附件: /p p   a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269672.doc" target=" _blank"  1.81项行业标准主要内容.doc /a /p p    a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269673.doc" target=" _blank" 2.1项石化行业标准修改单.doc /a /p p & nbsp /p
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 煤中碳氢氮含量检测标准方法比对
    目前,市场上关于煤中煤中碳氢氮含量检测的标准方法,主要采用《GBT476-2008 煤中碳和氢的测定方法》和《GBT30733---2014煤中碳氢氮的测定仪器法》,二者分别有何优劣,今天就让小编来给大家做一个全面的比对。1.测试原理《GBT476-2008 煤中碳和氢的测定方法》:采用俗称的二节炉或三节炉,通过吸收剂将煤中碳元素燃烧产生的二氧化碳吸收、氢元素燃烧产生的水蒸气吸收,由吸收剂的增量来确定煤中碳元素的含量。《GBT30733---2014 煤中碳氢氮的测定仪器法》:采用红外光谱法和热导法,煤样完全燃烧后,煤中碳元素转化为二氧化碳、氢元素转化为水蒸气、氮元素转化为氮氧化物,燃烧后的气体根据朗伯-比尔定律(不同气体在红外区有不同的吸收波段,而在特定波段,气体吸收红外光强与其浓度成一定的函数关系),计算得到被测煤样的碳氢元素含量。取一定量的气体进行还原后,进入热导池测试得到氮元素含量。2.自动化程度《GBT476-2008 煤中碳和氢的测定方法》:仪器主要包括净化系统、燃烧系统、吸收系统三大部分,每个系统均需在使用前填充试剂或其他材料,操作繁琐,若试剂或材料填充不好,将直接影响测试结果。测试结束后,需仔细、小心进行U型吸收管表面的干燥、擦拭及称量操作,稍有不慎,则会导致测试结果异常。从空白样测试(空白试验不成功则无法进行测试样的测定)、气体收集、冷却、称量到计算均需人工操作,过程繁琐、难度大,且测试结果的准确度无法保证。《GBT30733---2014 煤中碳氢氮的测定仪器法》:每次测试前开启计算机及仪器,点击升温后仪器自动恒温、控温,操作人员只需将当天需测试的所有煤样一次性称量好后放入放样盘即可(预留空白样测试孔位),录入空白样及测试样信息后,点击开始实验,仪器将自动完成所有样品的测试。3.主要试剂及材料《GBT476-2008 煤中碳和氢的测定方法》:铬酸铅(需用蒸馏水调成糊状,挤压成型,放入高温炉中,在850℃下灼烧2h,取出冷却备用)、银丝卷、高锰酸银、二氧化锰、无水高氯酸镁、铜丝卷、氧化铜、氧气、三氧化钨、碱石棉、真空硅脂、硫酸等。三节炉:需用铬酸铅和银丝卷消除硫和氯对碳测定的影响;二节炉:需用高锰酸银热解产物消除硫和氯对碳测定的影响;三节炉/二节炉:需用粒状二氧化锰消除氮对碳的测定的影响。《GBT30733---2014 煤中碳氢氮的测定仪器法》:氧气、氮气、氦气、氧化钙、无水高氯酸镁、碱石棉、线状铜、铜线、氮催化剂。4.测试时间《GBT476-2008 煤中碳和氢的测定方法》: 约30min/个《GBT30733---2014 煤中碳氢氮的测定仪器法》:约5min/个5.测试示意图《GBT476-2008 煤中碳和氢的测定方法》: 三节炉和二节炉碳氢测定示意图《GBT30733---2014 煤中碳氢氮的测定仪器法》:三德科技SDCHN536碳氢氮元素分析仪测试气路示意图结论《GBT30733---2014煤中碳氢氮的测定仪器法》与《GBT476-2008 煤中碳和氢的测定方法》相比,具备以下显著优势:01自动化程度高,操作步骤简单;02所需试剂及材料种类少;03测试速度快。《GBT30733---2014煤中碳氢氮的测定仪器法》是煤中碳元素测定的优选方法。
  • 中国科大提出纳米胶束电解质新思路并用于高性能水系锌锰二次电池
    近日,中国科学技术大学闫立峰教授课题组通过利用两亲性甲基脲分子,设计了一种新型结构的水基纳米胶束电解质。这一工作打破了以往对于电解质连续溶剂相的认识,通过纳米胶束结构包裹了自由移动的离子,建立了局部/界面相互作用网络,通过金属离子的控制释放,有效地维持了离子的三维扩散形式和有利的界面成核反应,实现了金属枝晶和电极副反应的有效抑制。相关研究成果率先在锌-锰电池体系中得到了证实,并发表于化学专业知名期刊《美国化学会志》(Journal of the American Chemical Society)。   锌离子电池由于锌阳极的高理论比容量(820 mA h g-1)、高储量、成本低、氧化还原电位低(-0.762 V vs. SHE)等优势,被认为是下一代清洁能源存储的有前途的候选者。然而,锌离子电池的寿命受到锌阳极不可逆电化学反应的严重限制,如析氢反应(HER)、“死锌”的持续积累以及不受控制的枝晶生长等。同时,以二氧化锰为正极材料代表的一系列锌离子电池普遍具有低的工作电压(1.5 V)和难以匹配锌阳极的电极容量。如何通过电解质的设计优化来调控锌电池的电化学性能是至关重要的问题。   该文提出了一种独特的纳米胶束电解质设计思路,由ZnSO4、MnSO4和高浓度甲基脲(Mu)分子通过自组装策略构建,水溶剂环境被划分为亲水区和疏水区,阳离子和阴离子则被封装到纳米域中(图1)。纳米胶束阻断了连续的水基体相,打破了水分子之间氢键网络并在胶束内部和胶束/水界面上重构了局部氢键。此外,Mu分子参与了Zn2+/Mn2+离子的溶剂鞘结构,排斥了溶剂化水分子,降低了脱溶剂化能垒,抑制了水分解反应。更重要的是,Zn2+/Mn2+离子可以可控地从胶束团簇中释放出来,以三维扩散方式扩散并在电极表面均匀沉积。此外,在锌阳极表面一种新的固体电解质界面(SEI)保护层Znx(Mu)ySO4∙nH2O得以原位生成,以避免水分子持续渗入造成的锌腐蚀。 图1.胶束电解质的自组装示意图   动态光散射结果表明电解质A3Mu中存在约14nm左右的纳米胶束,核磁结果证实了胶束内部的多重氢键相互作用,DFT计算结果也表明Zn2+/Mn2+和Mu分子上的羰基和具有更强的结合能力,进而有利于进入到胶束内核中,减少溶剂鞘结构中的水分子数(图2)。此外,红外,拉曼光谱结果也识别到了SO42-阴离子扭曲的正四面体结构,可能是由于胶束内部拥挤的空间和电荷-偶极相互作用造成的,这些结果表明了胶束电解质的成功构建。 图2.胶束电解质的核磁,红外,拉曼以及结合能计算表征   得益于胶束电解质内部氢键的重构,电解质和碳布正极界面接触角降低,MnO2/Mn2+成核电位降低,同时由于Mn2+的控制释放特性,生成了反应可逆性更高,结构更加疏松的二氧化锰颗粒。在不同SOC状态下,非原位SEM,XPS,Raman, XRD等测试方法核实了高度可逆的二电子转化反应。利用二电子反应的锌锰电池显示出前所未有的高能量密度800.4 Wh kg-1(基于正极活性材料)以及高达1.87 V的放电电压(图3)。 图3.Zn||Mn 电池的电化学性能   中国科学技术大学化学与材料科学学院博士生邓永琦为该文章的第一作者,闫立峰教授为通讯作者。该研究得到了科技部、国家自然科学基金和中国科学技术大学的经费资助。
  • 九阳:紫砂定义暂无国家统一检测标准
    九阳声称紫砂定义暂无国家统一检测标准 问题“紫砂煲”遭遇退货难   行业潜规则浮出水面:九阳声称,紫砂定义暂无国家统一检测标准,该公司在进入这个行业时也沿用了“紫砂”这个称呼给产品命名   本报记者卢舒倩报道 “怎么九阳紫砂煲就不给退呢?”继本报26日报道《美的、九阳紫砂煲一夜消失》后,不少市民在了解“紫砂门”事件后,陆续赶赴商场要求退货。不过,连日来本报陆续接到一些市民的投诉——一些商场表示,目前仅接到美的的退货通知,九阳方面并没有明确处理方案。为此,不少市民遭遇了九阳紫砂煲退货遭拒的问题。   各大商场退货标准不一   记者走访多家商场发现,不时有消费者拿着问题紫砂煲要求退货,办理退货过程中,各商超标准不一。   其中,国美、苏宁、华润万家方面表示,凡购买美的和九阳紫砂煲的消费者,须凭电脑小票、发票等购物凭证到购买点办理全额退款。天虹公关部负责人徐小姐表示,倘若购物凭证遗失,消费者可持天虹VIP卡通过查询购物记录办理退货。商场工作人员表示,这两天前来退货的消费者当中,以美的为主,对于无法提供购物凭证的,商场只能建议其到美的售后服务中心咨询退货事宜。   家乐福公关部负责人邱嘉萍告诉记者,具体退货方式为:美的紫砂锅购物期间为一年之内的,如顾客有购物小票或发票,可直接到各门店顾客服务中心进行退货 如顾客无购物小票或发票、购物时间为一年以上或已经有所损坏的,顾客可到美的售后服务点进行退货。她表示,和美的不同的是,九阳方面给商场发来的回复函态度“强硬”——声称迄今为止,所有的检验和监测报告结果都表明:九阳紫砂煲是符合国家标准的健康安全的合格产品,消费者可以放心使用。不过,基于消费者的疑虑,九阳对在销售渠道的产品暂行下架,留存仓库,等待检测结果后另行处理。   “但是九阳并没有像美的一样给商场明确回复是否启动召回工作。”为此,有商场表示很为难,有的选择暂时给消费者登记,有的则表示暂时不管厂家态度,只要消费者能提供购物凭证,均给予退货。   对于市民非常关注的其他品牌紫砂煲是否也能退货的问题,各大卖场均表示,依立、三源等品牌的产品则暂未允许退换。   紫砂煲可能“改名”再卖?   对于不少市民来电投诉九阳退货难问题,记者多方采访了解到,截至昨天下午,九阳股份有限公司尚未对此事作出正式回应。根据九阳提供给商场的回复函件,九阳一直强调自家产品是合格的:进入这个行业至今,九阳公司一直坚持每季度都主动将九阳的紫砂煲系列产品送到国家级权威检验部门进行安全检测。   记者同时致电九阳全国客户服务热线:4006186999,九阳客服给出的答复也一直强调九阳紫砂内胆是符合国家强制性产品认证的(3C认证),是符合国家标准的健康安全的合格产品。至于紫砂煲到底有多少紫砂,其暂时还没有相关的调查结果,随后会有结果给消费者。调查结果合格的话,产品会重新上架。   有商场销售人员还预测,现在紫砂煲产品全面下架,也只是暂时下架,等政府检测结果出来了,肯定大部分都是安全合格的,“只是就不用紫砂这个概念了,说不定重新包装命名,很快可以再上市。”   行业潜规则背后的标准缺失   针对消费者质疑的“紫砂煲”到底含有多少紫砂?记者在《九阳关于媒体报道紫砂煲行业相关问题的回复》一文中看到了这样一句陈述——作为紫砂煲行业的后进入者,由于目前紫砂定义暂无国家统一检测标准,九阳在进入这个行业时也沿用了“紫砂”这个称呼给产品命名。   一语惊醒梦中人,揭开了紫砂煲行业的潜规则。据业内人士介绍,目前市场有售的紫砂煲有三种。一种是美的牌紫砂煲,以普通陶土为原料,添加“铁红粉”、二氧化锰等化工制剂进行增色制造而成。第二种是苏泊尔品牌的紫砂类电器,其内胆均使用的是红陶材质,并非真正紫砂,但符合国家卫生安全方面的标准。第三种内胆由天然紫砂产品制作而成,对人身体非常有利的紫砂类电器产品。但目前这三类产品均在市场有售并同被称为紫砂电器产品,到底谁能给紫砂一个标准定位?   据了解,目前家电行业还没有标准界定紫砂类电器产品。正是由于市场上没有一个具体的关于监管紫砂类电器产品的具体标准,才让美的等电器厂家有机会把完全由普通陶土制作而成的所谓“紫砂煲”搬到广大消费者面前。   这一潜规则的浮出水面,购买其他品牌紫砂煲的市民也开始担心紫砂煲的安全性。记者采访了解到,为了挽救紫砂煲的产品形象,目前仍在售的部分紫砂煲品牌进行了紧急澄清。有商场知情人士称,目前依立品牌厂家紧急拿到了最新的紫砂煲产品质量检测报告,“依立的紫砂煲还是采用产自江西的矿泥,成分也符合天然紫砂”。   也有市民指出,即使质检部门证明了这些紫砂煲厂家产品无害,“但普通的陶土被宣传成天然的紫砂,在价值上是不能等同的,这就是欺诈行为,应该道歉!
  • 大连化物所傅强和慕仁涛团队在表面氢溢流原子可视化研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组研究员傅强和慕仁涛团队在表面氢溢流原子可视化研究中取得进展,发现氧化物表面结构对氢溢流的有效调控,利用表面晶格限域效应提升氢溢流速率。氢活化和氢溢流是诸多涉氢反应的重要基元过程,对其进行有效调控是提高涉氢催化反应性能的关键。该团队在前期研究中通过构筑氧化物表界面活性中心调控H2活化(ACS Catal. ),利用氢溢流形成的表面氢物种提升反应选择性和催化剂稳定性(Angew. Chem. Int. Ed. 、ACS Catal. 、J. Phys. Chem. Lett. ),并通过氢溢流再生“Ni-O路易斯酸碱对”活性中心实现H2O的有效活化(J. Phys. Chem. Lett. )。本工作在Pt(111)衬底表面构建MnO(001)和Mn3O4(001)单层结构。近常压扫描隧道显微镜(NAP-STM)原位成像显示,在MnO(001)表面氢物种沿着晶格条纹一维扩散,而在Mn3O4(001)表面上呈现出二维扩散特征,且在MnO(001)上的扩散速率是Mn3O4(001)上的4倍。理论研究表明,氧化锰表面晶格中合适的O-O间距利于氢扩散,而存在低配位表面O原子则抑制氢扩散。该研究揭示了氧化物表面晶格限域效应对氢溢流的促进作用。相关研究成果以Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院碳中和光子科学中心等的支持。大连化物所表面氢溢流原子可视化研究获进展
  • 紫砂门鉴定 行业协会模糊处理 官方失语
    被央视多次曝光的“紫砂门”事件在经过了一个多月之后,终于有了第三方的声音。也正是由中国家用电器协会联合中国陶瓷协会发布的这份鉴定结果,使人们再次将目光聚集到“紫砂门”。   尽管对于这份结果,使一直处于焦急状态的紫砂产品生产企业表现得十分欣喜,但值得关注的是这份鉴定结果对矛盾的焦点“是不是紫砂”回答得十分模糊,而最应该发出“权威”声音的质检部门和卫生部门却始终沉默,这也让人们对鉴定事   件本身产生了更多的联想。   鉴定结果出炉的背后   沉寂了一个多月之后,“紫砂煲”再次出现在公众的视野中。但与上次不同,引发此轮关注的是一份中国家用电器协会和中国陶瓷协会发布的鉴定结果。   6月21日,中国家用电器协会突如其来地在其官方网站上公布了其联合中国陶瓷协会对紫砂煲生产企业的产品的抽检结果和专家论证鉴定结果。   鉴定结果称,根据广东美的生活电器制造有限公司、九阳股份有限公司、简氏依立电器有限公司、浙江苏泊尔家电制造有限公司四家家电企业和潮州市金航陶瓷实业有限公司的申请,中国陶瓷工业协会和中国家用电器协会委托国家陶瓷产品质量监督检验中心(江西)对其家电用陶瓷内胆产品进行了抽检,产品质量符合 QB/T2580-2002《精细陶瓷烹调器》标准要求。   据记者了解,在5月23日央视曝光美的紫砂煲造假后,许多紫砂煲生产企业主动要求相关部门进行检测,这其中包括是否含有紫砂成分和是否有毒有害等。   一位不愿具名的生产商对记者表示,紫砂煲事件后其当时联系了多个检测部门,但基本都遭到了拒绝。   而作为企业的娘家,中国家用电器协会和中国陶瓷协会最后顺理成章成为了急于验明正身的企业的“救命稻草”。   据该协会的一位负责人对记者透露,这项结果是6月17日和18日两天召开的“家电用陶瓷内胆生产应用情况研讨会”上专家意见的结论和总结。参会者包括部分高校、陶瓷科研院所、国家陶瓷质量检测机构、企业等专家。   不难看出,该鉴定结果中上述申请企业的“家电用陶瓷内胆均符合安全质量标准”实际上为企业产品进行了底线认定,即该类产品不会危害人的身体健康。   而且,结果还特别提出了“适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格的产品不会危害人体健康”。这也从一个侧面回应了央视针对紫砂煲内胆的生产添加氧化锰是否对人体有害的质疑。   是不是紫砂仍无定论   尽管鉴定结果的出炉让企业松了一口气,但同时一些矛盾和争辩的问题也暴露了出来。值得关注的是,对于这些“家电用陶瓷内胆”是否为紫砂陶器,鉴定结果则未直接提及,只称:“从陶瓷科学的角度,利用宜兴产区以外的粘土原料,通过配方的调整,同样可以制作出符合GB/T10816-2008《紫砂陶器》标准的产品。其他产区(宜兴之外)的紫砂器产品虽然在化学成分上、烧结后的矿物组成上与宜兴紫砂陶接近,如果产品胎体不呈赤褐色,仅利用化妆土装饰而称为‘紫砂’是不恰当的。”   对此,有业内人士向本报记者表示,两个协会对抽检产品是否为紫砂产品未直接界定,而且阐述的也较为模糊,其实是对央视曝光的造假问题的“含蓄肯定”,即把上釉的普通陶器宣传为紫砂类产品是“造假”行为。   “之所以对其没有界定是因为当前只有对紫砂的定义而没有相关的工艺标准和规范,所以在鉴定结果上并没有直接给予产品紫砂陶器与非紫砂陶器的认定。”上述家电协会的负责人对本报记者表示。   根据GB/T5000-85《日用陶瓷名词术语》的定义,紫砂陶器是指用质地细腻、含铁量较高的特种粘土制成的,颜色以赤褐为主,质地较坚硬的无釉制品。   “简单来说,富含铁的、不带釉的、赤褐色就可以认为是紫砂陶器。”上述协会负责人表示,“但仅仅通过定义是不能直接对上述抽检产品进行认定的,这还要对生产的技术和工艺过程进行规范,目前还没有针对工艺过程的相关标准出台。”   记者了解,国家在1989年颁布了《紫砂陶器》标准,对产品的技术要求做出规范,2008年又做了修订,修改后的新标准于去年6月1日实施。   新标准主要对铅、镉溶出量进行了修改,而且对注浆、机械成型及上釉紫砂陶器进行了排斥,技术标准也多处细化。   但新标准对于工艺过程却没有过多规范,相关工艺过程的标准一直处于“真空”状态。   谁最应该鉴定?  虽然行业协会作为第三方对“紫砂门”事件作出了一个回应,但显然,如果“无毒无害”的鉴定由卫生部门出具可能更加权威,而有关质量等相关问题则要看质检部门了。然而,“紫砂门”事件后,包括质检总局、工商总局和卫生部等相关部门始终噤声。   记者日前致电质检总局和工商总局,前者并未给予任何置评,而后者则表示,工商部门的职责范围是根据质检部门的检测结果检查和监督卖场撤架。   不仅是质检和工商部门沉默,对于紫砂产品的底线问题——是否有毒有害也没有相关部门发布任何公告。   此前,广东省质监局的有关人士曾在接受媒体采访时表示,质检部门的职责是紫砂煲有没有按照国家的生产规范标准去生产,而对于紫砂成分则很难通过检测鉴定,至于对人体有没有毒、有没有害,要通过卫生部门的毒性检测才能确定。   一位不愿透露姓名的专家对本报记者表示,官方的重视和表态无论对企业还是消费者个人,都会起到以正视听和引导行业健康发展的作用,但遗憾的是,企业很焦急,消费者很期盼,行业很受伤。   记者走访了几个大型卖场和超市,紫砂产品确实都已经下架。   据一位卖场负责人介绍,恢复上架还没有时间表。“虽然家电协会的鉴定结果出来了,但还要看权威部门的检测结果和有关通知才能决定是否上架。”而对于紫砂煲等紫砂类产品的销售情况,该负责人表示,其销售只占该卖场小家电销售量的很小一部分。   据记者了解,受紫砂门事件影响,已有生产企业出现规模罢工、停工事件,更有消息称,有5万紫砂行业工人面临下岗失业。“行业出现问题可以规范和引导,如果坐视不管和一棒子打死都会对整个行业产生巨大影响。”上述专家表示。   看来,这份行业协会出具的鉴定结果,要想拯救现在处于水深火热中的紫砂行业还很难。
  • 力合科技新品LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪
    01OC/EC监测的背景意义碳质气溶胶是大气气溶胶中的重要含碳组分,主要由有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)组成,OC是一种具有光散射性,含有上百种有机物的混合气溶胶,来源复杂,既包括由排放源直接排放的一次有机碳(POC),又包括一些大气中气态前体物(如VOCs等)经过光化学反应、二次凝结凝聚及吸湿增长后生成的二次有机气溶胶(SOC)。碳质气溶胶是我国大气气溶胶的重要组成部分,约占我国城市大气气溶胶的20%~50%,随着我国大气气溶胶治理工作的深入,大量学者对气溶胶中含碳组分进行了研究。02产品介绍LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪采用国际上使用最广泛、公认较成熟的分析方法-热光法,可用于对碳质气溶胶的持续监测,广泛应用于全国各大重点城市颗粒物组分站中,实现环境空气颗粒物中OC和EC浓度的准确测量,探究污染成因、开展来源解析工作。在恒定流速下,激光照射在采集颗粒物样品的石英滤膜上,首先,在氦气的非氧化环境中样品逐级升温,有机碳被加热挥发;此后,在氦气/氧气混和气环境中样品再次逐级升温,元素碳被氧化分解为气态氧化物,两个过程中产生的分解产物经过二氧化锰氧化炉被转化为CO2后,由NDIR探测器定量检测。通过判断激光的强度找到有机碳/元素碳的分割点,分割点前的为有机碳,此后的为元素碳。03产品优势独创石英膜固定方式。采用独创的石英膜固定方式,滤膜安装、更换方便,数据可信度更高;两种方法同时测量。热光透射法(TOT)和热光反射法(TOR)同时测量,满足不同的标准要求;短路径设计。解析炉-氧化炉短路径设计,提高响应的同时避免了有机物的传输损耗,测量误差小;高性能温控。炉丝采用高性能合金丝结合精密的温控算法,升温快速,升温准确,炉丝使用寿命长;自动零点核查。每日自动零点核查,提高数据的可靠性,可自定义升温程序,方便用户自由选择;维护安装方便。光路上光学元器件的精简和可拆卸设计,维护清洗方便,采样独特的结构设计,滤膜安装、更换方便。04应用领域LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪在湖南、四川、新疆等全国多个省市颗粒物组分站中得到应用,可用于评估区域碳质气溶胶排放水平,分析PM2.5来源及组分特征、污染成因及规律、重污染天气污染源成分等,提高颗粒物精细化管理水平,为精准防控提供科学依据。
  • 东西分析应对《水泥化学分析方法》国标
    水泥是一种良好的建筑材料,在建筑行业中具有广泛的使用范围。近些年来,我国经济水平在不断地提高,建筑行业也有了很大地发展。如果要保证建筑的质量,就必须保证所使用水泥的质量,因此对于水泥的化学分析变显得十分重要。本文通过对GB/T176-2017《水泥化学分析方法》的研读,整理出一套东西分析应对水泥化学分析的解决方案,希望对水泥生产厂商、建筑施工方及第三方检测分析检测人员提供便利。国标检测对象本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本标准的其它水泥和材料。国标涵盖内容本标准规定了水泥化学分析方法、X射线荧光分析方法和电感耦合等离子体发射光谱法对烧矢量(LOI)、SO3、不溶物(IR)、SiO2、Fe2O3、Al2O3、CaO、MgO、TiO2、Cl-、K2O、Na2O、S2-、MnO、P2O5、CO2、ZnO、F-、游离氧化钙(CaO)、SrO的测定。水泥化学分析方法又分为基准法和代用法,如果同一成分列了多种测定方法,当有争议时以基准法为准。东西分析应对方案(基准法)原子吸收分光光度法(AAS法)水泥中MgO(氧化镁)成分测定 AAS法水泥中 ZnO(氧化锌)成分测定 AAS法AA-7050原子吸收分光光度计三十年来,东西分析一直致力于原子吸收光谱仪器和分析技术发展,共研发出五代原子吸收分光光度计,继续领跑国产原子吸收新技术。AA-7050型原子吸收分光光度计,一款全功能、全自动仪器,使客户在工作中可以更加便捷、直观和高效,简化客户分析过程。示例:紫外-可见分光光度法(UV法)水泥中Fe2O3 (三氧化二铁)成分分析 UV法 水泥中TiO2(二氧化钛)成分分析 UV法水泥中MnO(氧化锰)成分分析 UV法Cintra 系列紫外-可见光分光光度计 双光束光学系统,具有长时间稳定性、准确性;配合Cintral 软件,能够进行波长扫描、时间扫描和固定波长测量,还具有定量分析和系统性能验证等应用特性;采用Czerny-Turner单色器,标配1.5nm固定狭缝宽度,可升级成1.0nm-3.0nm范围内狭缝连续可调。附录:水泥中全部检测成分及方法关于我们北京东西分析仪器有限公司,拥有三十年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 新型纳米材料的流动合成法
    p    strong 爱沙尼亚塔尔图大学物理研究所选用了一款搭载Flow-UV& #8482 探测器的Uniqsis FlowSyn& #8482 连续流动反应器来帮助他们开发可用于下一代应用的新型纳米材料。 /strong /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/aac6b0cc-ddae-46ee-b9eb-5de725939aa7.jpg" / /p p   材料科学研究小组的Aile Tamm博士在采购Uniqsis FlowSyn系统之前评估了不同种合成纳米材料的技术路径。 /p p   Aile Tamm博士谈到:“我们已研究过具有先进电磁性能的纳米颗粒和纳米复合材料。例如,我们已成功制备出含有平均粒径在5-50纳米的氧化铁、氧化铁铒、氧化锰铁和氧化镧微粒的薄固体膜粒子复合涂层。这些新型复合材料已被证明具有电子设备开发所需要的非线性饱和磁化及强制磁滞现象。除这些纳米材料以外,我们研究所也正在研究若干其他形式的纳米颗粒。” /p p   Uniqsis总经理,Paul Pergande评论道:“我们很高兴欢迎Tamm博士的知名研究团队加入到这一日渐发展的群体中来,这一群体涵盖了多家国际领先的使用Flowsyn来研究纳米颗粒合成的材料科学实验室。”他还补充道:“Flow-UV内嵌式二极管阵列探测器可被用于确定何时达到稳态,从而可确定何时开始与停止收集反应产物。紫外-可见吸收光谱测量法对于纳米颗粒分布具有特别重大的意义,并可提供有关粒径及是否发生团聚的信息。” /p p   FlowSyn& #8482 是一种被设计成可简单、安全、有效运行的集成化持续流动反应系统。FlowSyn& #8482 包含了一系列可进行单重或多重的均相或非均相反应的产品型号,并具有手动或自动运行功能。反应的范围通过Uniqsis的集成模块化流动化学系统的不断探究,已变得越来越广,并被越来越多发表于学术刊物和Uniqsis应用注释中的应用文章所证明。 /p p br/ /p p   获取更多有关FlowSyn& #8482 连续流动反应器的信息,及讨论该系统的试验请联系Uniqsis的电话+44-845-864-7747或电子邮箱 info@uniqsis.com /p p   Uniqsis擅于设计中等规格的,用于各种不同化学和药学研究应用的持续流动化学系统。公司目标是使初学者和经验丰富的使用者都易于使用我们的流动化学系统。 /p p /p
  • 紫砂煲产业出台国家标准成当务之急
    一场“紫砂门”事件,对紫砂煲产业造成了沉重打击。如今事情过去两月有余,紫砂煲目前销售情况如何?   据业内人士透露,在这次“紫砂门”事件中,依立、九阳等一批紫砂品牌虽然未出问题,但是也受到波及。目前,这些企业正积极引导行业走出低谷,通过行业协会与主管部门沟通,争取各种渠道向广大消费者公布自家原料检测报告、原料基地情况,重新取得消费者的认可。同时,一面恢复国内市场,一面积极拓展国际市场,并联合业内人士呼吁:需尽快出台国家标准,促进产业良性有序的发展。   据了解,作为紫砂煲的创始者,依立占据了国内50%以上的市场份额,是紫砂煲行业的第一品牌。在这次“紫砂门”事件中,依立虽然未出问题,但是也受到波及。有消息灵通人士透露,近日中国陶瓷工业协会与中国家用电器协会邀请全国产业界、学术界以及国家陶瓷质量检测机构、企业等单位召开了家电用陶瓷内胆生产应用情况研讨会,并发布联合声明表示:依立等5家企业生产的紫砂煲产品是安全无毒害的。依立电器董事长简广认为:“紫砂是我国的物质文化财产,不能因为极少数企业的非良性竞争而全盘否定整个紫砂煲行业。为了保障紫砂行业的良性发展,这个行业需要制定国家标准。”   “从紫砂电器产品诞生近20年的历史来看,还未发现1例由于消费者使用紫砂产品引发的食品安全事故。”中国陶瓷工业协会高级工程师樊瑞新介绍,这更进一步证明该产品是健康安全的。专家认为,作为无机非金属材料,陶瓷与金属材料和其他有机材料制品相比,用于饮食器具更卫生、安全。因为陶瓷的形成依赖于高温烧成,经过一系列的物理、化学变化,各类原料形成更稳定的物质。而适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格产品不会危害人体健康。   据了解,紫砂产品在欧美等海外市场深受欢迎,依立紫砂产品长期大量出口海外,且经受住了欧美严格的相关安全检测。依立先后获得了国家级重点新产品荣誉、欧盟CE品质认证、德国GS认证、香港安全标志认证、加拿大CSA认证、美国UL认证等食品安全认证,获得了通往全球的“通行证”。依立至今已有30多项国家专利,此前出台的国家非金属陶瓷电饭煲的标准也由依立参与起草完成。目前,依立正积极与有关部门沟通,推动政府尽快制定紫砂容器电炊具的国家标准,规范市场引领行业健康发展。   广东省家电商会秘书长谢德盛表示:“近年来,加入紫砂电器行业的厂家越来越多,这本来是件好事,但浮躁的风气却大大伤害了大有前途的紫砂行业,相应国家标准的缺乏是造成紫砂煲产品市场鱼龙混杂的重要原因。”   据悉,由国家质检总局和国家标准委联合发布的《紫砂陶器国家标准》,并未对紫砂陶成分有明确界定,而只是对紫砂陶器的技术要求作了说明。“如果紫砂没有一个判定标准,那就是标准的缺失。”标准化方面的专家赵祖明指出,目前很多行业都存在标准缺失的问题,但国家有关部门正在不断地完善之中,这需要有一个过程。
  • 紫砂门后行业苦等标准 上百紫砂企业停工避风
    两个协会通过召开“家电用陶瓷内胆生产应用情况研讨会”,得出结论认为,紫砂陶发源于宜兴,但从陶瓷科学的角度,利用宜兴产区以外的黏土原料,通过配方的调整,同样可以制作出符合标准的产品。   协会:合格产品不会危害人体健康   中国陶瓷工业协会与中国家用电器协会昨日透露,通过邀请全国部分高校、陶瓷科研院所、国家陶瓷质量检测机构、企业等单位专家召开的“家电用陶瓷内胆生产应用情况研讨会”可得出结论:适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格的产品不会危害人体健康。   研讨会还强调,紫砂陶发源于宜兴,随后全国各地利用当地原料陆续开始生产,逐步形成了日用陶瓷的一个重要品种。从陶瓷科学的角度,利用宜兴产区以外的黏土原料,通过配方的调整,同样可制作出符合标准的产品。   昨日,紫砂煲产品的创始人——佛山简氏依立电器公司董事长简广则在接受本报记者专访时指出,造成行业目前局面混乱的原因,是因为“紫砂”定义没有明确,缺乏相关的细化的标准。   厂家:紫砂泥不稀缺,番禺大夫山就有   值得注意的是,对于此前外界普遍认为的紫砂矿“稀缺”的论调,简广认为并不准确。“中国的紫砂泥含量足以支撑工业化制造紫砂煲几百年,紫砂矿不是一种稀缺的资源”,简广反复强调,“即使是最贵的紫砂产品,其紫砂原材料价格也就几元钱一斤,价格是否昂贵不在于原材料,而在于成形的工艺”。   简广随后带领记者来到位于番禺区禺山西路的大夫山一角,指出该处存在的赤褐色泥土都是紫砂泥。记者在现场看到,由于亚运道路工程施工,大夫山的该处山体已呈现大片切面,在裸露的切面上,赤褐色泥土面积规模不小。简广表示,他已经通过公司的实验室对这些泥土的化学成分和矿物成分进行分析,结论就是这些泥土就是“紫砂泥”,并且已经在实验室成功制作一个紫砂煲。   求证:尚无官方证据证明大夫山有紫砂泥   记者随后向此前来过这片山体考察的江西理工大学材料与化学工程学院教授王平求证,王平证实,该处泥土的矿物成分与化学成分与宜兴的紫砂成分“非常相近”,王教授透露,事实上包括广东在内的江南地区,这种紫砂泥都非常常见。   不过到目前为止,尚无任何官方证据可以证明该处泥土属紫砂泥。
  • 石化、冶金、化工等87项行业标准报批,涉及ICP-OES、分光光度计等多种方法
    近日,工业和信息化部科技司发布87项行业标准及1项行业标准修改单,其中,化工行业标准12项、石化行业标准4项、冶金行业标准40项、有色行业标准19项、黄金行业标准2项、建材行业标准3项、稀土行业标准7项以及石化行业标准的修改工作1项。其中涉及ICP-OES、分光光度计等多种分析方法。87项行业标准及1项行业标准修改单报批公示根据行业标准制修订计划,相关标准化技术组织已完成《黄磷行业绿色工厂评价要求》等12项化工行业标准、《石油化工企业职业安全卫生设计规范》等4项石化行业标准、《含铁尘泥 二氧化钛含量的测定 二安替吡啉甲烷分光光度法》等40项冶金行业标准、《电解铝行业节能监察技术规范》等19项有色行业标准、《金矿充填料力学性能测定方法》等2项黄金行业标准、《建筑材料生产企业固体废物综合利用规范》等3项建材行业标准、《稀土采选冶行业绿色工厂评价导则》等7项稀土行业标准的制修订工作,《石油化工设备和管道涂料防腐蚀设计标准》1项石化行业标准的修改工作。在以上87项行业标准及1项行业标准修改单批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2021年2月26日。以上标准及标准修改单报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2021年1月26日—2021年2月26日附件:1.87项行业标准名称及主要内容.doc2.1项石化行业标准修改单.doc工业和信息化部科技司2021年1月26日附件1:87项行业标准名称及主要内容化工行业1 HG/T 5900-2021黄磷行业绿色工厂评价要求本标准规定了黄磷行业绿色工厂评价的评价原则、评价指标体系、一般程序等综合内容。本标准适用于黄磷生产企业的绿色工厂评价。 2 HG/T 5901-2021合成氨行业节能监察技术规范本标准给出了合成氨企业节能监察的内容、方法、程序等内容。本标准适用于对以优质无烟块煤、非优质无烟块煤、型煤、粉煤(包括无烟煤、烟煤)、天然气为原料生产合成氨产品的企业实施节能监察。对其它原料生产合成氨产品的企业实施节能监察可参照执行。 3 HG/T 5902-2021化学制药行业绿色工厂评价要求本标准规定了化学制药行业绿色工厂评价的总则、指标及要求、方法、程序、报告格式等。本标准适用于化学药品原料药制造和化学药品制剂制造的绿色工厂评价工作。 4 HG/T 5903-2021电石行业节能监察技术规范本标准规定了电石行业生产企业节能监察的内容、方法、程序等内容。本标准适用于对所有类型的电石生产企业实施节能监察,对电石和其他产品联合生产企业实施节能监察可参照执行。 5 HG/T 5904-2021氯碱行业节能监察技术规范本标准给出了氯碱生产企业节能监察的内容、方法、程序等内容。本标准适用于对氯碱生产企业实施节能监察。对氯碱和其他产品联合生产企业实施节能监察可参照执行。 6 HG/T 5905-2021石油和化工行业绿色供应链管理 导则本标准规定了石油和化工行业绿色供应链管理的目的、范围、总体要求以及产品生命周期绿色供应链的策划、实施与控制要求。本标准适用于石油和化工行业绿色供应链的建立、管理。 7 HG/T 5906-2021绿色化工园区评价导则本标准规定了绿色化工园区评价的基本要求、评价指标体系、评价实施方法与指标计算方法。本标准适用于各类化工园区开展绿色发展评价。 8 HG/T 5907-2021染料副产硫酸铵本标准规定了染料和染料中间体副产硫酸铵的要求、试验方法、检验规则和标志、包装、运输和贮存。本标准适用于染料和染料中间体生产过程中产生的含硫酸废水经净化、氨中和、浓缩、结晶、过滤等过程制备的副产硫酸铵产品。产品主要用作复混肥生产的原料和染料助染剂、稀土提炼等工业用途。不得直接施肥或用于食品、饲料等领域。 9 HG/T 5908-2021异氰酸酯行业绿色工厂评价要求本标准规定了异氰酸酯行业绿色工厂评价的总则、评价指标体系及要求、评价程序。本标准适用于异氰酸酯生产企业绿色工厂的评价工作。 10 HG/T 21637-2021化工管道过滤器系列本标准规定了化工管道过滤器的基本技术要求,包括公称尺寸、公称压力、材料、密封面尺寸、公差及标记等。本标准适用于化工行业管道过滤器的选用。HG/T 21637-199111 HG/T 20534-2021化工固体原、燃料制备设计规范本标准规定了化工固体原、燃料制备的设计要求。本标准适用于新建、改建和扩建化工企业物料的破碎、筛分、磨粉和干燥等固体原、燃料制备系统的工程设计。HG/T 20534-199312 HG/T 20721-2021浓盐水蒸发塘设计规范本标准规定了浓盐水蒸发塘的设计要求,主要技术内容包括总则、术语、选址、总体设计、系统设计、封场设计等。本标准适用于新建、改建、扩建化工企业生产过程中或化工工业园区产生的浓盐水用蒸发塘处置的规划、设计。 石化行业13 SH/T 3047-2021石油化工企业职业安全卫生设计规范本标准规定了石油化工企业职业安全卫生设计需要分析和评估的危险和有害因素,给出工厂布置、职业安全、职业卫生、个人防护装备、应急救援、气体防护站等工程设计技术要求。本标准适用于以石油、煤或天然气为原料制取燃料和化工品的生产、储运工程建设的职业安全卫生设计。SH 3047-199314 SH/T 3152-2021石油化工粉粒物料输送设计规范本标准规定了石油化工粉粒物料输送的系统设计、工艺布置、设备选型、安全卫生与环境保护等方面的设计要求。本标准适用于石油化工新建、改建、扩建工程中粉粒物料的输送设计。SH/T 3152-200715 SH/T 3153-2021石油化工电信设计规范本标准规定了石油化工电信系统的设计内容、系统构成、设计原则与技术要求。本标准适用于石油化工及天然气化工企业、以煤为原料经过煤气化或煤液化过程制取燃料和化工产品的企业、液化天然气接收站、石油储备库、特级石油库、一级石油库的新建、扩建和改建工程的电信系统设计。SH/T 3153-2007 SH/T 3028-200716 SH/T 3552-2021石油化工电气工程施工及验收规范本标准规定了石油化工电气工程施工及验收的技术要求。本标准适用于石油化工和煤化工新建、改建和扩建工程项目中电压等级为220kV及以下的电气工程施工及验收。SH 3552-2013冶金行业17 YB/T 4726.3-2021含铁尘泥 二氧化钛含量的测定 二安替吡啉甲烷分光光度法本标准规定了用二安替吡啉甲烷分光光度法测定含铁尘泥中二氧化钛含量的方法。本标准适用于含铁尘泥中二氧化钛含量的测定,测定范围(质量分数):0.02%~1.0%。 18 YB/T 4726.4-2021含铁尘泥 硅含量的测定 硫酸亚铁铵还原-硅钼蓝分光光度法本标准规定了用硫酸亚铁铵还原-硅钼蓝分光光度法测定含铁尘泥中硅含量的方法。本标准适用于含铁尘泥中硅含量的测定,测定范围(质量分数):0.10%~5.0%。 19 YB/T 4726.8-2021含铁尘泥 碳含量的测定 红外线吸收法本标准规定了用红外线吸收法测定含铁尘泥中碳含量的方法。本标准适用于含铁尘泥中碳含量的测定。测定范围(质量分数):0.1%~30.0%。 20 YB/T 4726.10-2021含铁尘泥 氧化铝含量的测定 EDTA滴定法本标准规定了用EDTA滴定法测定含铁尘泥中氧化铝含量的方法。本标准适用于含铁尘泥中氧化铝含量的测定。测定范围(质量分数):0.2%~3.0%。 21 YB/T 4726.11-2021含铁尘泥 氧化亚铁含量测定 重铬酸钾滴定法本标准规定了用重铬酸钾滴定法测定含铁尘泥中氧化亚铁含量的方法。本标准适用于含铁尘泥中氧化亚铁含量的测定,测定范围(质量分数):4.0%~80.0%。 22YB/T 4726.12-2021含铁尘泥 氧化锰含量的测定 高碘酸钾(钠)分光光度法本标准规定了用高碘酸钾(钠)分光光度法测定含铁尘泥中氧化锰含量的方法。本标准适用于含铁尘泥中氧化锰含量的测定,测定范围(质量分数):0.03%~7.00%。 23 YB/T 4939-2021绿色设计产品评价技术规范 冷镦用线材本标准规定了冷镦用线材绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于冷镦用线材绿色设计产品评价。 24 YB/T 4940-2021绿色设计产品评价技术规范 桥梁缆索用盘条本标准规定了桥梁缆索用盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于桥梁缆索用盘条绿色设计产品评价。 25 YB/T 4941-2021绿色设计产品评价技术规范 钢帘线用热轧盘条本标准规定了钢帘线用热轧盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于钢帘线用热轧盘条绿色设计产品评价。 26 YB/T 4942-2021绿色设计产品评价技术规范 焊接用钢盘条本标准规定了焊接用钢盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于焊接用钢盘条绿色设计产品评价。 27 YB/T 4943-2021绿色设计产品评价技术规范 胎圈钢丝用盘条本标准规定了胎圈钢丝用盘条绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于胎圈钢丝用盘条绿色设计产品评价。 28 YB/T 4944-2021绿色设计产品评价技术规范 轨道扣件用弹簧钢本标准规定了轨道扣件用弹簧钢绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于轨道扣件用弹簧钢绿色设计产品评价。 29 YB/T 4945-2021绿色设计产品评价技术规范 机械用易切削钢本标准规定了机械用易切削钢绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于机械用易切削钢绿色设计产品评价。 30 YB/T 4946-2021绿色设计产品评价技术规范 汽车用非调质钢棒材本标准规定了汽车用非调质钢棒材绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于汽车用非调质钢棒材绿色设计产品评价。 31 YB/T 4947-2021绿色设计产品评价技术规范 汽车用轴承钢本标准规定了汽车用轴承钢绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于汽车用轴承钢绿色设计产品评价。 32 YB/T 4948-2021绿色设计产品评价技术规范 塑料模具用预硬型合金钢板本标准规定了塑料模具用预硬型合金钢板绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于塑料模具用预硬型合金钢板绿色设计产品评价。 33 YB/T 4949-2021绿色设计产品评价技术规范 船舶及海洋工程用钢板和钢带本标准规定了船舶及海洋工程用钢板和钢带绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用高炉炼铁、炼钢、热轧等工序生产的船舶及海洋工程用钢板和钢带绿色设计产品评价。 34 YB/T 4950-2021绿色设计产品评价技术规范 石化行业用铬钼钢板本标准规定了石化行业用铬钼钢板绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用高炉炼铁、炼钢、热轧等工序生产的石化行业用铬钼钢板绿色设计产品评价。其他行业也可参考使用。 35 YB/T 4951-2021绿色设计产品评价技术规范 食品包装用镀锡(铬)板本标准规定了食品包镀锡(铬)板绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用冷轧基板生产的食品包装用电镀锡(铬)钢板绿色设计产品评价。 36 YB/T 4952-2021绿色设计产品评价技术规范 饮用水管用不锈钢钢板和钢带本标准规定了饮用水管用不锈钢钢板和钢带绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于饮用水管用不锈钢钢板和钢带绿色设计产品评价。 37 YB/T 4953-2021绿色设计产品评价技术规范 超超临界火电机组用不锈钢无缝钢管本标准规定了超超临界火电机组用不锈钢无缝钢管绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于超超临界火电机组用不锈钢无缝钢管绿色设计产品评价。 38YB/T 4954-2021绿色设计产品评价技术规范 油气开采用套管和油管本标准规定了油气开采用套管和油管绿色产品评价的术语和定义、评价原则和方法、评价要求和生命周期评价报告编制方法。本标准适用于油气开采用套管和油管绿色设计产品评价。 39 YB/T 4955-2021绿色设计产品评价技术规范 建筑结构用方矩形钢管本标准规定了建筑结构用方矩形钢管绿色设计产品评价的术语和定义、评价原则和方法、评价要求和生命周期评价报告编制方法。本标准适用于建筑结构用热轧无缝、焊接方矩形钢管绿色设计产品评价。 40 YB/T 4956-2021转底炉法粗锌粉 铁、铅、银、铜和镉含量的测定 电感耦合等离子体发射光谱法本标准规定了用电感耦合等离子体发射光谱法测定铁、铅、银、铜和镉含量的方法。本标准适用于转底炉法粗锌粉中铁、铅、银、铜和镉含量的测定。 41 YB/T 4957-2021耐磨混凝土用钢渣砂本标准规定了耐磨混凝土用钢渣砂的术语和定义、技术要求、试验方法、检验规则、标志、贮存和运输。本标准适用于公路工程水泥混凝土细集料用钢渣。 42 YB/T 4958-2021机制砂用含钛高炉渣本标准规定了机制砂用含钛高炉渣的术语和定义、技术要求、试验方法、检验规则、包装、标志、储存和运输等。本标准适用于用作机制砂生产的含钛高炉渣。 43 YB/T 4959-2021冶金矿山尾矿胶结充填技术规范本标准规定了冶金矿山尾矿胶结的术语和定义、充填系统、充填料浆、充填采场、自动化控制。本标准适用于冶金矿山尾矿胶结充填开采、设计、运行等。 44YB/T 4960-2021冶金企业污染场地地下水抽提技术规范本标准规定了冶金企业污染场地地下水抽提技术的术语和定义、抽提井的布设、抽提井的结构设计、施工与运行、过程监测等内容。本标准适用于在产及停产冶金企业污染场地开展地下水抽提,包括建井和地下水抽出,不包括抽出后地下水的处理。 45 YB/T 4961-2021钢铁行业地下水监测技术规范本标准规定了钢铁行业地下水监测过程中的术语和定义、监测点网布设、监测项目及方法、样品采集及管理、资料整编及数据库建立等内容。本标准适用于钢铁企业开展地下水自行监测工作。 46 YB/T 4962-2021高炉循环冷却水系统能耗限额与能效等级本标准规定了钢铁企业高炉循环冷却水系统能耗限额与能效等级的术语和定义、能效指标与能效等级划分、提高高炉循环冷却水系统能效等级方法等。本标准适用于高炉循环冷却水系统的能耗测定与计算、能效比计算与能效等级评定,也可作为现有高炉循环冷却水系统是否需要改造的判断依据、改造方案的选择依据。 47 YB/T 4963-2021钢铁行业富氧燃烧节能技术规范本标准规定了富氧燃烧节能技术的术语和定义、原理与流程、应用分类与适用条件、技术要求和评价指标。本标准适用于钢铁行业高炉、热风炉、加热炉和锅炉等工业炉窑,铁包、钢包、中间包等烘烤设备可参照执行,其他行业也可参照执行。 48  60 YS/T 1421-2021铝用炭素焙烧能耗测试方法本标准规定了铝用炭素焙烧燃料能耗的测试方法。本标准适用于铝用炭素焙烧工序。 
  • 毒紫砂恐慌蔓延 部分合格产品也下架
    部分紫砂企业喊冤:没问题也“被下架”   “美的紫砂门”事件让消费者变得更加小心翼翼。记者昨日了解到,包括南方一些以紫砂产品为主业的制造企业正试图通过与有关部门的沟通,推动紫砂产品相关标准的建立,为自己正名。   央视再爆调色紫砂壶   5月23日,央视《每周质量报告》曝光,包括美的在内的紫砂锅事实上“无紫砂”,其“天然紫砂内胆”是用田土、黄土、黑土等普通陶土添加铁红粉、二氧化锰等化学颜料配制加工而成的“伪紫砂”。消息发布后,各大超市、家电卖场内纷纷下架紫砂产品,但却并未平息消费者的愤怒。5月30日,央视最新一期《每周质量报告》再度爆出市场上很多紫砂壶实际上是化工原料调色的“化工壶”。   全行业面临信任危机   “经销商告诉我们暂时不能销售了。”佛山一家紫砂制品企业负责人告诉记者,尽管已经在这个行业干了20年,并有相当规模的市场份额,公司还是难以逃过“紫砂门”的泥沼。由于自认没有质量问题,这家公司并未向经销商发出下架和退货通知,但除了自建的专卖店,在其他渠道销售的产品都已经“被下架”。   随着媒体不断曝光,“毒紫砂”引发的恐慌已经波及整个紫砂行业。在茶具市场,原本足以证明紫砂品质的“江苏宜兴”产地标签变得可疑起来。   作为历史上紫砂的主要产地,宜兴因紫砂成名,不过由于宜兴市的紫砂矿破坏严重,当地的紫砂矿“禁采令”已经实施了5年。但是,记者在马连道茶城看到,几乎每一家茶叶店都摆放着数十款甚至上百款紫砂壶、紫砂杯等。从几十元到上万元,价格相差百倍不止的产品在产地一栏无不标榜产自“江苏宜兴”。晨报记者 刘映花   紫砂行业呼吁制定国标   紫砂煲”造假引爆整个行业信任危机。记者5月31日了解到,目前一些正规紫砂电炊具企业正与有关部门沟通,希望能够明确紫砂概念、认证机构等等,为紫砂产品洗去污名。同时,尽快制定“紫砂容器电炊具”的国家标准。   某紫砂电炊具企业负责人表示,紫砂行业陷入今天的尴尬境地,很大原因在于行业标准的缺失。   据陶瓷专家介绍,所谓的“潜规则”,首先要明确“什么是紫砂”。人们常说的紫砂是紫砂陶器的简称,根据《紫砂陶器》国家标准的定义,紫砂陶器与其他陶器的区别是:含铁量较高的黏土制成、不上釉、透气性,因此,符合上述三点的陶器就是紫砂,同时,产品品质必须符合《紫砂陶器》国家标准各项技术要求的规定。制作紫砂陶器的原料在各地区也都广泛具备,不仅限于“宜兴”地区,广西、广东、江西、江南一带都有。制作不同的紫砂陶器产品,根据需要可加入某种氧化物,也就是业内所说的“配方”,没有“化学料”之说。由于要经过高温烧制(通常在1100度以上),因此,对人体是无毒、无害的。   目前,国家并没有紫砂的量化成分标准,由于制陶工艺比较复杂,各个厂有不同的配方工艺,并不统一,也让不良企业有了可乘之机。广东省家电商会秘书长谢德盛认为“市场上没有真正紫砂的说法”并不准确,“个别企业的不诚信行为,如果被扭曲扩大成整个行业潜规则的话,将对千年紫砂文化的发扬传承带来灾难性的后果。”
  • 卤素水分测定仪应用于红枣水分测定的作用
    禾工HM-105L水份测定仪是一款高精度,多功能的水份分析仪器。用于替换早期采用烘箱进行加热烘干等失重法检测样品的最佳水份测定仪器,完全避免了传统烘干法检测水份时的长时间等,样品重复性不好等现象,HM快速水份测定仪实现快速测定,大大提高了水份测定的工作效率,经严格的测试完全符合我国的计量标准。现已广泛应用于实验室、食品工业、饲料工业、茶叶加工业、烟草制造业、化学工业、制药行业、中草药加工业、造纸业、农副产品加工业等行业。 适用领域:塑料粒子类:木塑,母料,PA,云母,聚乙烯,聚丙烯,PVC,PS,ABS,聚甲醛, PC, PET,聚苯硫醚(PPS),LCP,聚醚醚酮(PEEL),聚醚酮(PEK),聚醚砜(PES), PSF,硅胶,塑胶粉, 橡胶、轮胎,保丽龙,木粉,塑胶填充剂,珍珠棉,色母粉; 粮食干果饲料:玉米,大米,花生,大豆,棉籽,菜籽,谷物,燕麦,莲子,薏米,荞麦面,酒糟, 八角,魔芋,淀粉(面粉,豆粉,藕粉等),豆粕,麸皮,饲料添加剂,动物饲料,食盐, 咖啡豆, 酵母粉, 腊肉,辣椒、辣椒粉,挂面,月饼馅料,燕窝,红枣, 粉条粉丝, 脱水蔬菜,奶粉,豆奶粉, 米粉,饼干,干果、干货,茶叶,种子,食用菌类,农作物,烟草; 海鲜肉类:海参,虾米,海带,裙带菜,紫菜,鱿鱼干,鱼粉, 琼脂,猪肉,牛肉(羊肉、鸡肉),肉干,鱼干,鱼糜等; 无机化工品:胶水,乳胶,肥皂,洗洁精洗衣粉,颜料染料涂料,润滑油,硫磺,氢氧化钾,氢氧化铝,石墨,电池,玻璃纤维,陶瓷, 氧化锰, 矿石,煤粉,硝安硝石,胚土,磁粉,铁粉,硝化棉,二氧化硅,氧化铁,氧化锌,硅粉,重钙、纳米钙,碳酸钙,硫酸钡,高岭土,滑石粉,石膏,耐火材料,活性炭,造纸,肥料,煤炭等等; 制药保健品类:西药类,保健品(冬虫夏草,人参、西洋参,鹿茸,山药,花粉等); 建筑材料类: 玻璃,水泥,陶泥,沙土沙石,淤泥,防火门材料,淤土,混凝土,瓦片,木材水分仪 / 木板,石英沙,瓷砖原料,白玉石,型砂等; 下面是几种红枣的生产地及其生长环境的介绍和特点:1、沧州金丝小枣:沧州金丝小枣含糖量高达65%。2、阿克苏红枣:阿克苏地区有“塞外江南”、“瓜果之乡”之称,阿克苏实验林场被誉为“中国枣园中的枣园”。由于独特的地理气候,生产的干灰枣均是在树上自然风干的吊干枣,具有皮薄、肉厚、质地较密、色泽鲜亮、含糖量高、口感松软、纯正香甜的特点。3、若羌灰枣:楼兰红枣新疆若羌地区(塔里木楼兰丝路)的“若羌红枣”冰川融水灌溉,最高温差28度左右,华夏第一栆。4、和田玉枣:新疆和田地区的“和田玉枣”。和田玉枣的营养和保健价值极高。它含蛋白质、脂肪、糖类、纤维素;红枣营养十分丰富。5、临泽小枣:甘肃临泽小枣,肉质致密,多汁,鲜枣可溶性固形物含量35~43%,维生素C含量高一般为662.7mg/100g,制干率56%,含糖分72~80%:果皮韧性强,极耐贮藏运输。 主产地新疆、山西、河北、甘肃、山东水份含量干制小红枣水分不高于28%干制大红枣水分不高于25%湿枣水分在35~45% 用户案例:新疆天海绿洲、塔里木大漠枣业、思维特果业、天昆百果、刀郎枣业、驼玲红果业、穗峰绿色农业等 历史据史料记载,红枣是原产中国的传统名优特产树种。经考古学家从新郑斐李岗文化遗址中发现枣核化石,证明枣在中国已有8000多年历史。早在西周时期人们就开始利用红枣发酵酿造红枣酒,作为上乘贡品,宴请宾朋。红枣的营养保健作用,在远古时期就被人们发现并利用。 上海禾工科学仪器有限公司 上海市复华路33号复华高新技术园区 B4-1 电话:021-51001666 传真:021-62607656 禾工分析仪器网:www.hg17.com
  • 关于水质分析不得不说的秘密
    近年来,伴随着工业自动化程度的不断提高;人力资源成本的不断攀升;国家十二五规划对饮用水安全、重点流域水污染防治等一系列因素都将在不同程度上推动中国水质分析仪表以较快速度发展。未来几年,对于中国的水质分析仪器产业而言,随着国家食品、药品安全以及环保政策的落实推动,全民不断提高的环保意识以及不断攀升的备件、耗材、服务需求,水质分析仪表依旧会有较快增长。 回顾中国水处理行业的发展历史,从上世纪五、六十年代就有一批国有、军工、科研院所背景的企业开始从事水处理工程以及水质分析仪表的生产制造。直到1995年,整个中国水处理行业市场容量仅仅只有5000万人民币左右。从1995年至今,伴随着中国经济的飞速发展,2013年,中国整个水处理行业规模快速发展至约600亿元人民币。 溶氧(DO)是溶解氧(Dissolved Oxygen)的简称,溶解于水中的分子态氧,天然水中的溶解氧含量取决于水体与大气中氧的平衡。溶解氧是水生生物生存和水质的重要指标。水中溶解氧的饱和含量和空气中氧的分压、大气压力、水温、水中含盐量等有密切关系。清洁地面水中溶解氧一般接近饱和,20℃清洁水中饱和溶解氧含量约为9mg/L。水体受有机、无机还原性物质污染,会使溶解氧降低,当水中溶解氧低于2mg/L时,水体即产生恶臭。目前,测定DO的方法有多种:如化学Winkler法、电化学法、光学法等。 滴定碘量法应用历史最为悠久,该法由文科勒(Winkler)教授于1888年首次提出,其基本操作过程为:向一定量的样品中加入硫酸锰和碱性碘化钾然后生成氢氧化锰Mn(OH)2。 由于Mn2+ 不稳定,在加入硫酸酸化时,Mn2+和水中的氧发生反应生成Mn4+,然后Mn4+和KI发生反应,将碘离子氧化成游离碘,游离碘的量与水样中的溶解氧的量成比。接着,再采用硫代硫酸钠对溶液进行滴定,选择淀粉作为滴定终点指示剂,最后根据硫代硫酸钠的消耗量来计算水中的溶解氧含量。碘量法的所有反应步骤如下:MnSO4+2NaOH= Mn(OH)2↓+Na2SO42Mn(OH)2+O2 = 2H2MnO3↓2H2MnO3+2H2SO4 = 2Mn(SO4)2↓+3H2O2KI+ Mn(SO4)2 = Mn(SO4)2+K2SO4+I22Na2S2O3+I2 = Na2S4O6+4NaI 该滴定法用于测量水中的溶解氧,尽管在100多年的实际应用过程中,该方法经过不断修正,但是由于受限于取样过程、试剂配制、滴定操作、周围环境以及分析样品存在的诸如亚铁离子、亚硝酸盐、有机物、不稳定性易氧化物等多种干扰物质的影响,碘量滴定法在测量溶解氧时存在一定局限性,该方法不适宜进行ppb级的低氧测量。滴定法测量水中溶解氧的方法适用于市政污水、工业废水、养殖、天然水源等溶解氧含量水平较高的水处理应用场合。 那么大家对于滴定碘量法是否有了更加深入的了解了呢?随着技术不断地革新,更为先进的溶氧测量技术已经被投放使用在水质分析中,小编将在下期为您继续介绍现代水质分析三大处理方法。
  • 电厂汞监测:数百万元的高价仪器未必好用
    仪器信息网讯 电力行业是国家的支柱产业,也是环保工作中的重点行业,在污染防治工作中有着具足轻重的作用。根据《火电厂大气污染物排放标准》,火电厂将从2015年1月1日起执行汞及化合物污染物排放限值,基于我国火电机组的巨大基数和汞排放量,其汞污染防控是个很大的市场,如何监测和控制火电厂的汞污染排放,你准备好了吗? 中国环境监测总站齐文启研究员分析汞监测技术   2014年4月18日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站齐文启研究员应邀就《燃煤电厂排放汞的控制与监测》做了报告,就我国及世界火电行业的汞排放现状、汞的减排技术、汞在电厂三废中的分布、国内外烟尘烟气中汞的检测技术、汞监测仪器性能比对、汞监测中的一些技术难点和注意事项做了全面的阐述,引发参会业内人士的高度关注。   据介绍,我国为产煤耗煤大国,年耗煤20亿吨以上,汞含量平均为300微克/千克,年排放汞约600吨,远超过美国的41吨和日本的1.5吨,但限于我国经济发展需求,我国的汞排放标准与控制仍是远比欧美日宽松。   齐文启表示,无论是汞的在线分析还是实验室分析,采样均为关键,目前国际上主要有湿法、干法,湿法又包括EPA29方法、安大略法(OHM)、BS EN13211方法等,美、日、英等国家主要采用用湿法,其方法准确度高、精度好、复杂 我国使用较多的干法主要采用活性炭、二氧化锰、高锰酸钾捕集柱等进行消解分析,成本低、简单,但只用于净化后烟气,只能测气态汞 而在线监测仪器通常备有形态转换模块,其响应快,但价格比较贵而且复杂。而分析方法主要有CVAAS、CVAFS、ZAAS、AES、UV等。   对目前市面上的仪器,齐文启直言不讳,对一些高价仪器提出了质疑:&ldquo 目前美、德、加、日、俄等国都已研发生产出烟气汞在线监测仪器,但这些进口仪器普遍价格非常高,如Tekran、Lumex、MI等均为150-200万的价格。&rdquo 而不仅如此,这些仪器往往还使用专利技术的一次性配件,使得其运行费用也很高,一台150万元的仪器甚至年运行费用也要约150万元,需要日均投入数千元。   如此高价的仪器却不一定好用。齐文启说,2009年北美对36家运行此类仪器的电厂调查显示,运行3个月内仅6家未出现故障,光源、探头堵塞、腐蚀、系统故障灯等多方面出现问题。对六家厂商的仪器进行7天的比对后,仅一家合格。而环境监测总站也使用手工采样分析与某些进口仪器进行了比对,发现其数据上相差较大,用于环境监测执法是有问题的。   齐文启表示,不建议在汞监测中购买如此高价的进口仪器。他给大家算了一笔账,如果购买原子荧光仪器,再配两名检测人员,也可以完成相关工作,哪怕为两位检测人员各开出20万元高薪,仪器及消解设备等的费用加上人员开支,每年也不过80万元左右,远低于某些高价仪器。齐文启认为,这方面国内的仪器研发应该跟上,而在2013年,我国也的确启动了相关课题,并在重大仪器专项研发中投入约1800万元。
  • “紫砂门”:美的出尔反尔 设置退款条件限制
    近日,美的“紫砂门”事件备受关注,而其出尔反尔,对退款条件的限制再次引发消费者的强烈质疑。 5月30日,美的客服人员仍声称自己的产品“无毒害”,纯属“宣传不当”,并对退货附加了“购买一年之内才能退货”的新条件。   据了解,自美的紫砂煲被央视曝出内胆用普通陶土,添加铁红粉、二氧化锰等化学原料增色,而非真正的紫砂做成后,广东美的生活电器制造有限公司承诺,设立咨询电话接受消费者退货。不过,美的紫砂煲却被曝出,退货要收折旧费,也没有具体退换货细则。   紧接着,美的生活电器总裁通过央视新闻频道承诺,无条件退换货,且“无发票也能退货”。令消费者大跌眼镜的是,美的方面又发生变卦表示“无发票不能退货”。   然而,5月30日,美的客服人员却表示,购买美的紫砂煲的消费者如果要退货,应保证购买日期在一年之内,并需要带上正规发票或电脑小票和身份证,拿到经销商或者所购买的门店办理退货。如果不符合上述要求,可将紫砂煲送到该公司的维修部门。该人员还表示,在对美的紫砂煲的宣传中,外界一些“不当”的报道将“普通砂煲”说成“天然紫砂”,给消费者造成误解。但当记者表示其锅上明明写的就是紫砂时,该人员含糊其辞,没有作答。   为此,吴冬律师表示,美的宣称产品是“纯正紫砂烧制”的,已属于虚假宣传,并且造假售假,侵犯了消费者的合法权益,消费者不但可以要求退货,还有权要求全额退款。根据《消费者权益保护法》第49条,生产厂家应对产品进行退货处理,并对消费者进行双倍赔偿。即“假一赔双”。而根据第35条和第38条的规定,如果只是产品质量问题,消费者只能以违约为由起诉销售者,不能起诉生产厂家;如果因为产品存在缺陷损害了消费者以及其他任何人的人身、财产,则可以以侵权为由起诉销售者或者生产厂家。   “从某个角度看,这类现象的发生也反映出监管的缺失。”吴冬律师说,餐具的质量安全比食品更容易把控,相关部门应建立一套完整的检测指标,完善相关的行业制度,加强监管,避免造成更严重的后果。
  • OPTON的微观世界|第22期 SEM技术在Li电池中的应用(上)
    前 言随着全球能源与环境问题不断凸显,发展新能源汽车已成为世界各国的共识,欧洲多个国家已经制定了燃油汽车限售的时间表,同时据人民网消息,我国工信部表示我国已启动研究传统燃油车的退出时间表,这一消息使得新能源汽车与锂电池产业站在了资本的风口,那么作为新能源汽车的重要一个方面的锂电池产业又将呈现更广泛的应用潜力。那么今天小编就将简单介绍一下Li电池的基本原理与其组成的正负极材料。一、锂电池概述首先,我们来介绍一下锂电池的概念。“锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。锂电池大致可以分为两类:锂金属电池和锂离子电池。其中锂金属电池最早于1912年由Gilbert N.Lewis提出并研究。20世纪70年代时,M.S.Whittingham首先采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂金属电池。由但由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,其安全隐患备受关注,所以,锂金属电池长期没有得到应用。1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。1991年索尼公司发布了首个商用锂离子电池,锂离子电池革新了消费电子产品的面貌。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。随着锂离子电池正极材料的发展,多种类型的锂离子电池被研发出来,锂离子电池由于其电压高、电容量高、低消耗、无记忆效应、无公害、体积小、内阻小、自放电小循环次数多,广泛应用在移动电子设备等民用军用设备中。二、锂电池工作原理锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。放电反应:Li+MnO2=LiMnO2锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。如图1显示了锂离子电池的示意图。图1.锂离子电池示意图以LiCoO2为例子充电正极上发生的反应为LiCoO2=Li(1-x)CoO2+XLi+Xe-充电负极上发生的反应为6C+XLi+ Xe-=LixC6充电电池总反应LiCoO2+6C=Li(1-x)CoO2+LixC6三、Li电池正极材料一般可选的正极材料有很多,例如:钴酸锂、锰酸锂、磷酸铁锂、镍酸锂、三元、富锂相、硅酸铁锂、磷酸锰锂、硫酸氟铁锂。不同的正极材料对应不同的平均输出电压于能量密度:
  • 海关总署调整必须实施检验的进出口商品目录,6月10日起实施
    2021年6月1日,海关总署发布关于调整必须实施检验的进出口商品目录的公告(2021年第39号)。根据《中华人民共和国进出口商品检验法》及其实施条例,海关总署决定对必须实施检验的进出口商品目录进行调整,具体如下:一、对涉及机电产品、金属材料、化工品、仿真饰品等234个10位海关商品编号取消监管条件“A”,海关对相关商品不再实施进口商品检验。二、对涉及进口再生原料的8个10位海关商品编号增设监管条件“A”,海关对相关商品实施进口商品检验。三、对涉及出口钢坯、生铁的24个10位海关商品编号增设海关监管条件“B”,海关对相关商品实施出口商品检验。该公告自2021年6月10日起实施。必须实施检验的进出口商品目录调整表序号海关商品编号商品名称调整前监管条件调整后监管条件18417100000矿砂、金属的焙烧、熔化用炉A28417801000炼焦炉A38417802000放射性废物焚烧炉A48417803000水泥回转窑A58417804000石灰石分解炉A68417805000垃圾焚烧炉A78417809010平均温度1000℃的耐腐蚀焚烧炉A88417809020热裂解炉A98417809090其他非电热的工业用炉及烘箱A108419391000微空气流动陶瓷坯件干燥器A118419399020烟丝烘干机A128419399030干燥箱A138419399050污泥干燥机A148419399090其他用途的干燥器A158419409010氢-低温蒸馏塔A168419409020耐腐蚀蒸馏塔A178419409090其他蒸馏或精馏设备A188419500030冷却UF6的热交换器A198419500040冷却气体用热交换器A208419609010液化器A218419891000加氢反应器A228419899021凝华器(或冷阱)A238419899023UF6冷阱A248456110090其他用激光处理的机床A258456120000用其他光或光子束处理的机床A268456200000用超声波处理各种材料的加工机床A278456301010数控放电加工机床A288456301090其他数控的放电处理加工机床A298456309010非数控放电加工机床A308456309090其他非数控的放电处理加工机床A318456409000其他用等离子弧处理的机床A328456500000水射流切割机A338456900000其他方法处理材料的加工机床A348457101000立式加工金属的加工中心A358457102000卧式加工金属的加工中心A368457103000龙门式加工金属的加工中心A378457109100铣车复合加工中心A388457109900其他加工金属的加工中心A398457200000加工金属的单工位组合机床A408457300000加工金属的多工位组合机床A418458110090其他切削金属的卧式数控车床A428458190000切削金属的其他卧式车床A438458911090其他切削金属的立式数控车床A448458912090其他切削金属的数控车床A458458990000切削金属的其他车床A468459100000切削金属的直线移动式动力头钻床A478459210000切削金属的其他数控钻床A488459290000切削金属的其他钻床A498459310000切削金属的其他数控镗铣机床A508459390000切削金属的其他镗铣机床A518459410000切削金属的其他数控镗床A528459490000切削金属的其他镗床A538459510000切削金属的升降台式数控铣床A548459590000切削金属的其他升降台式铣床A558459611000切削金属的其他龙门数控铣床A568459619000切削金属的其他数控铣床A578459691000切削金属的其他龙门非数控铣床A588459699000切削金属的其他非数控铣床A598459700000切削金属的其他攻丝机床A608460121000加工金属的数控平面磨床A618460199000加工金属的其他非数控平面磨床A628460221000加工金属的数控无心磨床A638460229000加工金属的其他数控无心磨床A648460231100加工金属的数控曲轴磨床A658460231900加工金属的其他数控外圆磨床A668460239000加工金属的其他数控外圆磨床A678460241100加工金属的数控内圆磨床A688460241900加工金属的其他数控磨床A698460249000加工金属的其他数控磨床A708460291100加工金属的非数控外圆磨床A718460291200加工金属的非数控内圆磨床A728460291900加工金属的其他非数控磨床A738460299000加工金属的其他非数控磨床A748460310000加工金属的数控刃磨机床A758460390000加工金属的其他刃磨机床A768460401000金属珩磨机床A778460402000金属研磨机床A788460902000金属抛光机床A798460909000其他用磨石、磨料加工金属的机床A808461401100切削金属的数控齿轮磨床A818461401900切削金属的数控切齿机、数控齿轮精加工机床A828461409000切削金属的其他切齿机,齿轮磨床A838479600000蒸发式空气冷却器A848479710000机场用旅客登机桥A858517691001用于呼叫、提示和寻呼的便携式接收器A868521909010用于光盘生产的金属母盘生产设备A878521909020光盘型广播级录像机A888525801110抗辐射电视摄像机A898525801190其他特种用途电视摄像机A908525801200非特种用途广播级电视摄像机A918525803100特种用途视频摄录一体机A928525803200非特种用途的广播级视频摄录一体机A938525803300非特种用途的家用型视频摄录一体机A948525803910非特种用途的航拍摄录一体无人机A959022299090其他非医疗用α、β、γ射线设备A968506101110扣式无汞碱性锌锰的原电池及原电池组A978506101210圆柱形无汞碱性锌锰的原电池及原电池组A988506101910其他无汞碱性锌锰的原电池及原电池组A998506109010其他无汞二氧化锰的原电池及原电池组A1008506400010氧化银的原电池及原电池组(无汞)A1018506600010锌空气的原电池及原电池组(无汞)A1028506800011无汞燃料电池A1038506800019其他无汞原电池及原电池组A1048507100000启动活塞式发动机用铅酸蓄电池A1058507200000其他铅酸蓄电池A1068507300010飞机用镍镉蓄电池A1078507300090其他镍镉蓄电池A1088507400000镍铁蓄电池A1098507500000镍氢蓄电池A1108507600030飞机用锂离子蓄电池A1118507803000全钒液流电池A1128507809010燃料电池A1138507809090其他蓄电池A11472082610004.75mm厚≥3mm其他大强度热轧卷材A1157208269000其他4.75mm厚≥3mm热轧卷材A11672083810004.75mm厚度≥3mm的大强度卷材A1177208389000其他4.75mm厚度≥3mm的卷材A11872091610003mm厚度1mm的大强度冷轧卷材A11972091710001mm≥厚度≥0.5mm大强度冷轧卷材A1207211230000含碳量低于0.25%的冷轧板材A1217214200000铁或非合金钢的热加工条、杆A1227214300000易切削钢的热加工条、杆A1237214990000其他热加工条、杆A1247216101000截面高度<80mmH型钢A1257216102000截面高度<80mm工字钢A1267216109000截面高度<80mm槽钢A1277216210000截面高度<80mm角钢A1287216220000截面高度<80mm丁字钢A1297216310000截面高度≥80mm槽钢A1307216321000截面高度200mm工字钢A131721632900080mm≤截面高度≤200mm工字钢A1327216331100截面高度800mmH型钢A1337216331900200mm<截面高度≤800mmH型钢A134721633900080mm≤截面高度≤200mmH型钢A1357216401000截面高度≥80mm角钢A1367216402000截面高度≥80mm丁字钢A1377222400000不锈钢角材、型材及异型材A1387225110000取向性硅电钢宽板A1397225401000宽≥600mm热轧工具钢材A1407225409100宽≥600mm热轧含硼合金钢材A1417225991000宽≥600mm的高速钢制平板轧材A1427226110000取向性硅电钢窄板A1437226200000宽度<600mm的高速钢平板轧材A1447226911000宽度<600mm热轧工具钢材A1457226919100宽度<600mm热轧含硼合金钢板材A1467227100000高速钢的热轧盘条A1477227200000硅锰钢的热轧盘条A1487227901000不规则盘卷的含硼合金钢热轧条杆A1497228100000其他高速钢的条、杆A1507228200000其他硅锰钢的条、杆A1517228301000含硼合金钢热加工条、杆A1527228701000履带板合金型钢A1537228709000其他合金钢角材、型材及异型材A1547228800000其他合金钢空心钻钢A1557302100000钢轨A1567302300000道岔尖轨、辙叉、尖轨拉杆A1577302400000钢铁制鱼尾板、钢轨垫板A1587302901000钢铁轨枕A1597302909000其他铁道电车道铺轨用钢铁材料A1602842904000磷酸铁锂A1612933610000三聚氰胺(蜜胺)A16229337100006-己内酰胺A1632935900034磺胺双甲基嘧啶A1643104202000纯氯化钾A1657106101100平均粒径3微米非片状银粉A1667106101900平均粒径≥3微米非片状银粉A1677117110000贱金属制袖扣、饰扣A1687117190000其他贱金属制仿首饰A1697117900000未列名材料制仿首饰A1708517180010其他加密电话机A1718517180090其他电话机A1728517691091卫星地球站(含终端地球站)无线电发射设备A17385446012001千伏<额定电压≤35千伏的电缆A1742525300000云母废料A1752618001001主要含锰的冶炼钢铁产生的粒状熔渣,含锰量>25 %A1762618001090其他主要含锰的冶炼钢铁产生的粒状熔渣A1772618009000其他的冶炼钢铁产生的粒状熔渣A1782619000010轧钢产生的氧化皮A1792619000021冶炼钢铁所产生的含钒浮渣、熔渣,五氧化二钒含量>20%A1802619000029其他冶炼钢铁所产生的含钒浮渣、熔渣A1812619000030含铁大于80%的冶炼钢铁产生的渣钢铁A1822619000090冶炼钢铁产生的其他熔渣、浮渣及其他废料A1832620190000其他主要含锌的矿渣、矿灰及残渣A1842620999011含其他金属及其化合物的矿渣、矿灰及残渣,五氧化二钒>20%(冶炼钢铁所产生的及含钒废催化剂除外)A1852620999019含其他金属及其化合物的矿渣、矿灰及残渣,10%<五氧化二钒≤20%的(冶炼钢铁所产生的及含钒废催化剂除外)A1862620999020含铜大于10%的铜冶炼转炉渣及火法精炼渣、其他铜冶炼渣A1872804619011含硅量>99.9999999%的多晶硅废碎料A1882804619013含硅量>99.9999999%的太阳能级多晶硅废碎料A1892804619091其他含硅量≥99.99%的硅废碎料A1902804619093含硅量≥99.99%的太阳能级多晶硅废碎料A1913915100000乙烯聚合物的废碎料及下脚料A1923915200000苯乙烯聚合物的废碎料及下脚料A1933915300000氯乙烯聚合物的废碎料及下脚料A1943915901000聚对苯二甲酸乙二酯废碎料及下脚料A1953915909000其他塑料的废碎料及下脚料A1964004000090未硫化橡胶废碎料、下脚料及其粉、粒A1975202100000废棉纱线A1985505100000合成纤维废料A1995505200000人造纤维废料A2007112911010金的废碎料A2017112911090包金的废碎料A2027112921000铂及包铂的废碎料A2037204300000镀锡钢铁废碎料A2047204490010废汽车压件A2057204490020以回收钢铁为主的废五金电器A2067204490090其他未列名钢铁废碎料A2077204500000供再熔的碎料钢铁锭A2087401000010沉积铜(泥铜)A2097404000010以回收铜为主的废电机等A2107404000090其他铜废碎料A2117503000000镍废碎料A2127602000010以回收铝为主的废电线等A2137602000090其他铝废碎料A2147902000000锌废碎料A2158002000000锡废碎料A2168101970000钨废碎料A2178103300000钽废碎料A2188104200000镁废碎料A2198106001092其他未锻轧铋废碎料A2208108300000钛废碎料A2218109300000锆废碎料A2228112924010铌废碎料A2238112929011未锻轧的铪废碎料A2248113001010颗粒或粉末状碳化钨废碎料A2258113009010其他碳化钨废碎料,颗粒或粉末除外A2268506101190扣式含汞碱性锌锰的原电池及原电池组A2278506101290圆柱形含汞碱性锌锰的原电池及原电池组A2288506101990其他含汞碱性锌锰的原电池及原电池组A2298506109090其他含汞二氧化锰的原电池及原电池组A2308506300000氧化汞的原电池及原电池组A2318506400090氧化银的原电池及原电池组(含汞)A2328506600090锌空气的原电池及原电池组(含汞)A2338506800091含汞燃料电池A2348506800099其他含汞原电池及原电池组A2357204100010符合GB/T 39733-2020标准要求的再生钢铁原料A2367204210010其他符合GB/T 39733-2020标准要求的再生钢铁原料A2377204290010其他符合GB/T 39733-2020标准要求的再生钢铁原料A2387204410010符合GB/T 39733-2020标准要求的机械加工中产生的再生钢铁原料(机械加工指车,刨,铣,磨,锯,锉,剪,冲加工)A2397204490030符合GB/T 39733-2020标准要求的未列名再生钢铁原料A2407404000020符合标准GB/T38470-2019规定的再生黄铜原料A2417404000030再生铜原料(符合标准GB/T 38471-2019规定的)A2427602000020再生铸造铝合金原料(符合标准GB/T 38472-2019规定的)A2437201100010高纯生铁(含锰量0.08%,含磷量0.03%,含硫量0.02%,含钛量0.03%)﹝999﹞B2447201100090非合金生铁,含磷量≤0.5%(含锰量0.08%,含磷量0.03%,含硫量0.02%,含钛量0.03%的高纯生铁除外)﹝999﹞B2457201200000非合金生铁,按重量计含磷量0.5%﹝999﹞B2467201500010含金生铁﹝999﹞B2477201500090镜铁﹝999﹞B2487205100000生铁、镜铁及钢铁颗粒﹝101非合金生铁﹞,﹝102合金生铁﹞,﹝103其他铁合金﹞,B2497205210000合金钢粉末﹝999﹞B2507205290000生铁、镜铁及其他钢铁粉末﹝999平均粒径10微米的超细铁粉﹞B2517206100000铁及非合金钢锭﹝999﹞B2527206900000其他初级形状的铁及非合金钢[101板坯],[102其他钢坯(锭)]B2537207110000宽度小于厚度两倍的矩形截面钢坯(含碳量0.25%)﹝999﹞B2547207120010其他矩形截面的厚度400毫米的连铸板坯[含碳量0.25%(正方形截面除外)]﹝999﹞B2557207120090其他矩形截面钢坯[含碳量0.25%(正方形截面除外]﹝999﹞B2567207190010其他碳含量0.25%的厚度400毫米的连铸板坯﹝999﹞B2577207190090其他碳含量0.25%的钢坯﹝999﹞B2587207200010车轮用连铸圆坯(直径为380毫米和450毫米,公差±1.2%,含碳量:0.38%-0.85%,含锰量:0.68%-1.2%,含磷量≤0.012%,总氧化物含量≤0.0012%)﹝999﹞B2597207200090其他含碳量≥0.25%的钢坯﹝999﹞B2607218100000不锈钢锭及其他初级形状﹝999﹞B2617218910000矩形截面的不锈钢半制成品(正方形截面除外)﹝999﹞B2627218990000其他不锈钢半制成品﹝999﹞B2637224100000其他合金钢锭及其他初级形状﹝999﹞B2647224901000粗铸锻件坯(单件重量≥10吨﹝999﹞B2657224909010其他合金钢圆坯,直径≥700毫米(其他合金钢锭及其他初级形态的)﹝999﹞B2667224909090其他合金钢坯,直径≥700毫米的合金钢圆坯除外(其他合金钢锭及其他初级形态的)﹝999﹞B
  • 细胞外囊泡又双叒叕大显身手!
    “学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化。同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题。”--中国科学院院刊 细胞外囊泡(EVs)作为递送载体,已被广泛应用于生化工程学、生物医学工程学、纳米材料学、分子影像学等交叉学科中。通过交叉学科的火花碰撞,利用前沿新技术,提高疾病治疗效果,造福广大病患。本文与您分享EV递送纳米抗氧化剂等应用案例,拓展您的课题研究思路。巨噬细胞EV参与“免疫调控-化学动力-乏氧激活 ”多级联动 2022年3月,深圳市第二人民医院李维平团队联合中国科学院大学化学工程学院魏炜团队共同发表题为“Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects”于《Signal Transduction and Targeted Therapy》期刊(IF:18.19)。 被称为“终结者”的胶质母细胞瘤(GBM)是颅内神经系统最常见的恶性肿瘤。临床治疗GBM以外科手术为主,辅助放化疗,但效果收效甚微。难以穿透的血脑屏障 (BBB) 阻止药物进入中枢神经系统,使得治疗难度雪上加霜。因此,亟需更为有效的药物递送策略。 研究人员利用M1型巨噬细胞来源细胞外囊泡(M1EVs),使其膜被两种疏水剂功能化:化学激发源CPPO(C)和光敏剂Ce6(C),并装载亲水缺氧激活原药AQ4N(A),构成的CCA-M1EVs可穿过BBB,并可趋化富集在GBM部位,通过调控巨噬细胞表型实现GBM微环境免疫调控,增加过氧化氢(H2O2)水平。H2O2和CPPO之间可进行反应,产生的化学能量进一步激活Ce6,产生大量活性氧,实现化学激发的光动力疗法(CDT)。由于该反应消耗氧气,肿瘤缺氧的加剧也导致无毒的 AQ4N 转化为有毒的 AQ4 用于化疗。因此,CCA-M1EVs在GBM中实现了免疫调控-化学动力-乏氧激活的多级联动协同作用,发挥了强大的治疗效果。 研究人员利用全自动Digital Western检测M1巨噬细胞和M1EV中CD9、CD81、ALIX、TSG101、iNOS、F4/80和GAPDH的蛋白水平(如上图b所示)。EV递送纳米抗氧化剂 2021年来自中科院过程所魏炜团队,联合上海交大医学院附属同仁医院等多家单位,共同发表题为“In situ growth of nano-antioxidants on cellular vesicles for efficient reactive oxygen species elimination in acute inflammatory diseases”于《Nano Today》期刊(IF:20.72)。 临床上常见的急性炎症疾病,有急性肠炎和急性肝损伤等等。病情严重的患者,会出现脏器功能紊乱甚至器官衰竭。急性炎症过程中,会产生大量的活性氧自由基(ROS)。ROS会引起细胞膜脂质过氧化,导致细胞膜通透性改变和进一步DNA损伤,进而引起器官功能障碍。ROS大量产生是体内炎症发生发展过程中的一个重要环节,因此需要高效手段,将药物富集在炎症部位,然后消灭ROS。 纳米抗氧化剂,例如氧化铈、氧化钼和氧化锰,可借助其催化活性清除ROS,以此减少ROS引发的组织损伤,并控制疾病进展。然而,这些纳米抗氧化剂在炎症组织中的蓄积量较低。研究人员利用红细胞囊泡递送纳米抗氧化剂,效果显著。该项研究的另一亮点是研究人员将具有组织修复功能的干细胞外泌体融合(ReMeV),并在此基础上原位生长氧化铈(shi)纳米晶体(Ce-ReMeV),用于重症急性肠炎和急性肝损伤的治疗,在有效清除ROS同时,还能修复受损组织和器官,在小鼠模型上取得了满意的效果。 研究人员利用全自动Digital Western检测外泌体 Marker(CD9)、外泌体和红细胞Marker(TSG101、HSP70)以及MSC生长因子(HGF)(如上图c所示)。每个样品仅需3μL。全自动Digital Western,为何备受大家的喜爱? 传统Western Blot(WB)属于劳动密集型技术,时间长、步骤冗长、人为操作引入过多误差,最终导致数据质量低......最重要的是实在太影响心情!图片取材于网络 全自动Digital Western技术平台的横空出世,一扫传统Western带给广大科研工作者的阴霾,每一天都是做WB的良辰吉日,让您从此享受WB!节省出大量宝贵时间去专注于阅读、思考、交流、仰望天空、参与社团、思考人性、(校园恋爱)等更有价值的事务。全自动Digital Western检测全流程(上样后,剩下的一切都交给她,一顿晚饭的功夫拿到结果) 全自动数字式Western,带给您的仅仅是3 μL超微量的上样量?3小时出结果?全程自动化标准化?更重要的是真正数字化的高质量数据和全膜结果,让您的数据不被质疑!撤稿?不存在的!扫码索取全自动Digital Western产品资料解放双手,从此爱上WB,告别实验Emo!
  • 220项拟立项国标征求意见 涉及多种仪器分析方法
    日前,国家标准委决定对《无焊连接 第7部分:弹性夹连接 一般要求、试验方法和实用指南》等220项拟立项推荐性国家标准项目公开征求意见,征求意见截止时间为2021年6月1日。有关单位和相关人员可登录全国标准信息公共服务平台的拟立项标准公示网页,查询项目信息和反馈意见建议。218项拟立项国家标准项目中,有数项涉及仪器检测方法,包括液相色谱串联质谱法、火焰原子吸收光谱法、气相色谱法、原子力显微镜法、氮吸附法等。部分摘录如下:序号项目中文名称制修订截止日期1化妆品中限用组分月桂醇聚醚-9的测定 液相色谱串联质谱法制订2021/6/12化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法制订2021/6/13无损检测 纤维增强聚合物的声发射检测方法和评价准则制订2021/6/14纳米技术 拉曼光谱法测量二硫化钼薄片的层数制订2021/6/15钢渣 氧化钠和氧化钾含量测定 火焰原子吸收光谱法制订2021/6/16钢渣 硫含量的测定 高频燃烧红外吸收法制订2021/6/17纺织品 禁限用染料的测定 液相色谱-高分辨质谱法制订2021/6/18贵金属合金电镀废水化学分析方法 第4部分:氯离子含量的测定   氯化银浊度法制订2021/6/19镍铂靶材合金化学分析方法 第1部分:铂含量的测定   电感耦合等离子体原子发射光谱法制订2021/6/110钯锭分析方法   银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法制订2021/6/111工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定   气相色谱法修订2021/6/112贵金属合金电镀废水化学分析方法   第2部分:锌、锰、铬、镉、铅、铁、铝、镍、铜、铍含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/113镍铂靶材合金化学分析方法   第2部分:镁、铝、钛、钒、铬、锰、铁、钴、铜、锌、锆、银、钯、锡、钐、铅、硅含量的测定 电感耦合等离子体质谱法制订2021/6/114贵金属合金电镀废水化学分析方法   第1部分:金、银、铂、钯、铱含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/115镍铂靶材合金化学分析方法 第3部分:碳含量的测定   高频红外检测法制订2021/6/116工业用丙烯中烃类杂质的测定 气相色谱法修订2021/6/117钢中纳米级第二相定量测试-原子力显微镜法制订2021/6/118钢渣 氧化锰含量的测定 火焰原子吸收光谱法制订2021/6/119纳米制造 关键控制特性 纳米储能   第6部分:纳米电极材料中的碳含量测定 红外吸收法制订2021/6/120钢渣 磷含量的测定 铋磷钼蓝分光光度法制订2021/6/121纺织品 纤维定量分析 显微镜智能识别法制订2021/6/122铜精矿化学分析方法 第12部分:氟和氯含量的测定   离子色谱法和电位滴定法修订2021/6/123无损检测 声发射检测 混凝土声发射信号的测量方法制订2021/6/124无损检测 声发射检测 混凝土结构活动裂缝分类的检测方法制订2021/6/125钢产品无损检测 孔类构件残余应力分布状态超声检测方法制订2021/6/126铁矿石 钍含量的测定 偶氮胂Ⅲ分光光度法制订2021/6/127氧化铝化学分析和物理性能测定方法第27部分:粒度分析 筛分法修订2021/6/128氧化铝化学分析和物理性能测定方法第35部分:比表面积的测定   氮吸附法修订2021/6/129钴酸锂电化学性能测试 首次放电比容量及首次充放电效率测试方法修订2021/6/130铜精矿化学分析方法   第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化镁、氧化钙、氧化铝含量的测定 电感耦合等离子体原子发射光谱法修订2021/6/131无损检测 声发射检测 钢筋混凝土梁损伤评定的检测方法制订2021/6/132变形铝、镁合金产品超声波检验方法修订2021/6/133硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法修订2021/6/134染料 在有机溶剂中溶解度的测定 重量法和光度法制订2021/6/135钢轨超声检测方法制订2021/6/136无机化工产品中铝测定的通用方法 铬天青S分光光度法修订2021/6/137圆钢涡流检测方法修订2021/6/138锡化学分析方法   第12部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍、钴含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/139镓基液态金属化学分析方法 第1部分:铅、镉、汞、砷含量的测定   电感耦合等离子体质谱法制订2021/6/140变形铝及铝合金制品组织检验方法 第1部分:显微组织检验方法修订2021/6/141钢产品无损检测 轴类构件扭转残余应力分布状态超声检测方法制订2021/6/1
  • 南理工纳米储能材料研究进展发表在《Advanced Materials》
    p   近日,南京理工大学材料学院/格莱特研究院纳米能源材料(NEM)实验室夏晖教授团队在超级电容器氧化铁电极材料研究方面又取得新的突破。相关研究成果“Achieving Insertion-Like Capacity at Ultrahigh Rate Via Tunable Surface Pseudocapacitance”于2018年2月在线发表在材料科学领域顶尖期刊《Advanced Materials》(Adv. Mater., 2018, 1706640 IF=19.791)上。青年教师翟腾为第一作者,夏晖教授为通讯作者。这是该团队近一年内发表的第十篇影响因子10以上的论文。 /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/65ea0c55-1754-4fe1-9d91-1251d20715d3.jpg" title=" 1cf9e2e6-cadc-4938-be3e-aa30c04f9a31.jpg" / /p p   图 改性氧化铁/亚硫酸钠体系容量随扫速变化及储能机理 /p p   与超级电容器的其它负极材料如碳材料相比,三氧化二铁(Fe2O3)不但拥有较高的比电容量,而且资源丰富、价格低廉、环境友好,是一种极具应用潜力的高性能负极材料。但是其弱电子、离子传导性能,导致功率密度偏低和稳定性较差,严重制约着它在高性能超级电容器中的广泛应用。自2017年以来,夏晖教授团队在超级电容器电极材料的研究上取得了一系列研究进展,其研究结果均发表在国际材料能源领域的顶尖期刊上。在前期工作中,青年教师徐璟等人利用超细镍纳米管阵列上生长Fe2O3纳米片(Adv. Funct. Mater., 2017, 27, 1606728 IF=12.124),有效的提高了复合电极的赝电容性能。尽管如此,氧化铁的本征弱电子、离子传导性能依然亟待提升。在此基础上,NEM实验室的博士生孙硕首先发明了一种利用硼氢化钠溶液还原处理的普适方法制备具有本征高导电性和高离子传导性的Fe2O3结晶/非晶-核壳异质纳米结构(Nano Energy, 2018, 45, 390 IF=12.343):通过构筑非晶壳-结晶核异质结构并引入氧空位,成功在不损失能量密度的前提下有效地提高了赝电容超级电容器的功率密度以及循环稳定性。在这一工作进行的同时,夏晖教授团队通过同种改性方法引入的氧空位,调控改性氧化铁电极“牵手”氧化还原电解液中可贡献赝电容量的亚硫酸钠电解质。增量吸附的亚硫酸根为电极提高了可存储的电量,同时不受离子扩散限制的储能反应的快速动力学过程保证了大充放电倍率下实现更高的比容量(3.2 V s-1,290 C g-1)。高性能氧化铁负极材料/体系的研发,为高能量密度水系超级电容器的构筑提供了新的思路。此外,青年教师翟腾等人通过在金属氧化物表面实现磷酸根离子的表面改性,从而大幅度提高材料的表面反应活性而显著提高其赝电容贡献(Adv. Mater., 2017, 29, 1604167)。除了电极材料/体系比容量的提升,工作电压的拓展是获得高能量密度水系超级电容器的另一个关键。夏晖教授与化工学院朱俊武教授合作的2.6 V水系不对称超级电容器的研发成果于2017年6月在线发表在《Advanced Materials》(Adv. Mater., 2017, 29, 1700804)上。系列研究成果的结合将为水系高电压不对称超级电容器的应用研究提供有力的技术支撑,有望在未来取代铅酸电池。 /p p   习近平总书记在十九大报告中关于“建设美丽中国”中指出,要“推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系”。能源存储材料作为高效储能装置的关键,是大力发展清洁能源不可或缺的一环。夏晖教授团队立足于清洁能源高效利用,围绕多种储能系统的关键材料开展研究,在过去一年中取得了一系列进展。 /p p   其中围绕锂离子电池研究方向,取得的研究成果包括博士生薛亮完成的三维自支撑多孔LiCoO2纳米片阵列正极(Adv. Funct. Mater., 2018, 28, 1705836 IF=12.124)、青年教师岳继礼和硕士生嘉蓉完成的碳包覆SnO2-x多孔纳米片阵列负极(Energy Storage Mater., 2018, 13, 303 即时IF=13.39)、博士生夏求应完成的简易可控的硼(B)氮(N)双掺杂三维多孔碳纳米纤维正负极用于锂离子电容器(Adv. Energy Mater., 2017, 1701336 IF=16.721)、青年教师徐璟和硕士生蒋瑶完成的多孔氧化锰纳米立方负极的研究工作(Small, 2018, DOI:10.1002/smll.201704296 IF=8.643)。 /p p   围绕钠离子电池研究方向,取得的研究成果包括青年教师杨梅和硕士生马依凡完成的氮(N)硫(S)共掺类石墨烯材料(Energy Storage Mater., 2018, 13, 134)、青年教师杨梅和博士生陈婷婷完成的功能化石墨烯/硫化钴量子点复合电极(J. Mater. Chem. A, 2017, 5, 3179 IF=8.867)、博士生郭秋卜完成的CoSx量子点内嵌氮硫共掺类石墨烯材料(ACS Nano, 2017, 11, 12658. IF=13.942)、硕士生陈琪等完成的硫化镍嵌入的柔性三维碳纤维电极材料用于柔性钠离子电池(Adv. Energy Mater., 2018, DOI:10.1002/aenm.201800054 IF=16.721)的研究工作。上述研究工作受到了能源存储领域的专家学者以及新能源企业的广泛关注。 /p
  • 有毒难退货 美的紫砂煲“霸王条款”何时了
    央视每周质量报告继续曝光“紫砂真相”,重金属溶出量异常,而深陷“紫砂门”事件的美的却设定种种障碍拒绝给消费者退货,引起消费者不满。   近日,央视曝光美的紫砂煲黑幕,立即在消费者群中引起了极大反响,许多有健康意识的消费者本以为可以利用此煲养生降脂、获得更多矿物质,但现在却换来“铁红粉”、“二氧化锰”等对身体有致癌作用的化学物质。   当天下午,事件主角美的对外表示,已将该公司相关负责人停职,并接受消费者退货。同时,美的公司还出示了一份《国家陶瓷及水暖卫浴产品质量检验中心》检测报告的证据。宣称该中心检测报告显示,美的紫砂煲内胆、紫砂盖,无毒无害,请消费者不要恐慌。   但仔细对照央视等权威媒体曝光的“美的紫砂煲黑幕”细节和美的公司事后发表的公开申明,不难发现:美的被迫道歉是真,道歉内容是假 知错不改是真,改错方法是假。   马桶生产标准=紫砂煲生产标准?   在常识里,马桶和紫砂煲内胆是两个毫不相干的东西,但据媒体调查发现,为美的生产紫砂煲内胆的厂家,同时也是一家生产马桶的作坊工厂。试问,用来生产“方便”马桶的质量技术安全标准怎么可用来生产解决“一日三餐”的紫砂煲内胆?   卫浴产品质检标准=厨房电器质量安检标准?   假紫砂煲骗局刚被曝光,美的公司就忙不迭地亮出“国家陶瓷及水暖卫浴产品质量检验中心”的牌,声称称该中心检测报告显示,美的紫砂煲内胆、紫砂盖,无毒无害,请消费者不要恐慌。   但据记者调查了解,“国家陶瓷及水暖卫浴产品质量检验中心”就位于美的总部所在的佛山,该检验中心的检验范围主要覆盖建筑陶瓷、卫生陶瓷、日用陶瓷、水龙头、阀门、卫浴电器等产品及原材料等领域。作为一个主要负责陶瓷产品物理性能检验的机构,是否有资格出具厨房电器食品安全方面的检测报告?   为此,记者致电国家陶瓷及水暖卫浴产品质量检验中心进行求证。问及是否该中心给美的公司出具过紫砂煲无毒无害证明时,该中心人士表示不清楚,没有查到过这份报告。随后记者拨通美的生活电器制造有限公司新闻发言人的电话,该发言人拒绝回答。   关于假紫砂煲是否有毒,岂能企业自己说了算?   美的紫砂锅黑幕曝光后,至今没有看到权威监管部门的有关产品查封声明。而按照正常程序,问题产品应该第一时间被撤出市场,库存产品也要在第一时间被查封。关于问题产品有毒与否,也应该是由国家权威技监部门从封存产品中抽样检测,而不能由肇事者自己说了算。   作为“造假”事件的主角,美的绕开国家质量监督检验等权威部门,绕开广大消费者的知情渠道,单方面沟通送检机构,无论结果如何,显然不具备公信力。而且面对美的以往一连串的造假行为,消费者完全有理由质疑其悔改的真实性。   央视曝光:紫砂壶有毒,紫砂煲无毒?   央视每周质量报告继续曝光“紫砂真相”:13个紫砂壶样品重金属溶出量异常   第二期的质量报告中中央视记者随机购买了15件紫砂壶和紫砂杯送到上海材料研究所检测中心进行检测。检测项目主要针对记者调查时发现人为添加的钡、锰、钴、铬等几种重金属元素。经过检测,15件紫砂茶具,除了两件原矿紫砂茶具之外,其余13件样品重金属溶出量都出现了异常。这些重金属熔点较高,在紫砂陶器的煅烧过程中很难挥发,最终还是会残留在烧制好的茶具里面,在使用时可能会产生不同程度的溶出量。保健专家指出,长期摄入钡、锰、钴、铬等金属离子,就会危及人体健康。   随着事件的深入,美的仍不承认造假事实,也没给受害者相应赔偿,而且又拉上了九阳、伊立等同行垫背,甚至在媒体上为自己道歉、退货的举动进行自我歌颂。试问,如果央视没有曝光其造假行为,美的会主动承认造假事实吗?如果央视没有曝光其造假行为,美的还要欺骗中国消费者多久?
  • 国标委发布47项检测方法国家标准
    国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 GB/T 208-2014 水泥密度测定方法 GB/T 208-1994 2014-12-01 GB/T 3286.5-2014 石灰石及白云石化学分析方法 第5部分:氧化锰含量的测定 高碘酸盐氧化分光光度法 GB/T 3286.5-1998 2015-01-01 GB/T 3286.8-2014 石灰石及白云石化学分析方法 第8部分:灼烧减量的测定 重量法 GB/T 3286.8-1998 2015-01-01 GB/T 3286.9-2014 石灰石及白云石化学分析方法 第9部分:二氧化碳含量的测定 烧碱石棉吸收重量法 GB/T 3286.9-1998 2015-01-01 GB/T 3558-2014 煤中氯的测定方法 GB/T 3558-1996 2014-10-01 GB/T 4633-2014 煤中氟的测定方法 GB/T 4633-1997 2014-10-01 GB/T 5059.1-2014 钼铁 钼含量的测定 钼酸铅重量法、偏钒酸铵滴定法和8-羟基喹啉重量法 GB/T 5059.1-1985 2015-01-01 GB/T 5059.2-2014 钼铁 锑含量的测定 孔雀绿分光光度法 GB/T 5059.2-1985 2015-01-01 GB/T 5059.3-2014 钼铁 铜含量的测定 火焰原子吸收光谱法 GB/T 5059.3-1985 2015-01-01 GB/T 5059.5-2014 钼铁 硅含量的测定 硫酸脱水重量法和硅钼蓝分光光度法 GB/T 5059.5-1986 2015-01-01 GB/T 5059.7-2014 钼铁 碳含量的测定 红外线吸收法 GB/T 5059.7-1988 2015-01-01 GB/T 5161-2014 金属粉末 有效密度的测定 液体浸透法 GB/T 5161-1985 2014-12-01 GB/T 5447-2014 烟煤黏结指数测定方法 GB/T 5447-1997 2014-10-01 GB/T 5448-2014 烟煤坩埚膨胀序数的测定 电加热法 GB/T 5448-1997 2014-10-01 GB/T 5450-2014 烟煤奥阿膨胀计试验 GB/T 5450-1997 2014-10-01 GB/T 6730.71-2014 铁矿石 酸溶亚铁含量的测定 滴定法 2015-01-01 GB/T 8358-2014 钢丝绳 实际破断拉力测定方法 GB/T 8358-2006 2015-01-01 GB/T 13480-2014 建筑用绝热制品 压缩性能的测定 GB/T 13480-1992 2014-12-01 GB/T 30592-2014 透光围护结构太阳得热系数检测方法 2014-12-01 GB/T 30594-2014 双层玻璃幕墙热性能检测 示踪气体法 2014-12-01 GB/T 30701-2014 表面化学分析 硅片工作标准样品表面元素的化学收集方法和全反射X射线荧光光谱法(TXRF)测定 2014-12-01 GB/T 30702-2014 表面化学分析 俄歇电子能谱和X射线光电子能谱 实验测定的相对灵敏度因子在均匀材料定量分析中的使用指南 2014-12-01 GB/T 30703-2014 微束分析 电子背散射衍射取向分析方法导则 2014-12-01 GB/T 30704-2014 表面化学分析 X射线光电子能谱 分析指南 2014-12-01 GB/T 30705-2014 微束分析 电子探针显微分析 波谱法实验参数测定导则 2014-12-01 GB/T 30706-2014 可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价 2014-12-01 GB/T 30707-2014 精细陶瓷涂层结合力试验方法 划痕法 2014-12-01 GB/T 30709-2014 层压复合垫片材料压缩率和回弹率试验方法 2014-12-01 GB/T 30710-2014 层压复合垫片材料蠕变松弛率试验方法 2014-12-01 GB/T 30711-2014 摩擦材料热分解温度测定方法 2014-12-01 GB/T 30713-2014 砚石 显微鉴定方法 2014-10-01 GB/T 30714-2014 电感耦合等离子体质谱法测定砚石中的稀土元素 2014-10-01 GB/T 30725-2014 固体生物质燃料灰成分测定方法 2014-10-01 GB/T 30726-2014 固体生物质燃料灰熔融性的测定方法 2014-10-01 GB/T 30727-2014 固体生物质燃料发热量测定方法 2014-10-01 GB/T 30728-2014 固体生物质燃料中氮的测定方法 2014-10-01 GB/T 30729-2014 固体生物质燃料中氯的测定方法 2014-10-01 GB/T 30732-2014 煤的工业分析方法 仪器法 2014-10-01 GB/T 30733-2014 煤中碳氢氮的测定 仪器法 2014-10-01 GB/T 30735-2014 屋顶及屋顶覆盖制品外部对火反应试验方法 2014-10-01 GB/T 30737-2014 海洋微微型光合浮游生物的测定 流式细胞测定法 2014-10-01 GB/T 30738-2014 海洋沉积物中放射性核素的测定 &gamma 能谱法 2014-10-01 GB/T 30739-2014 海洋沉积物中正构烷烃的测定 气相色谱-质谱法 2014-10-01 GB/T 30740-2014 海洋沉积物中总有机碳的测定 非色散红外吸收法 2014-10-01 GB/T 30741-2014 海洋大气干沉降物中总硫的测定 非色散红外吸收法 2014-10-01 GB/T 30742-2014 海洋大气干沉降物中总碳的测定 非色散红外吸收法 2014-10-01 GB/T 30749-2014 矿物药材及其煅制品视密度测定方法 2015-01-01
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制