当前位置: 仪器信息网 > 行业主题 > >

萘普索

仪器信息网萘普索专题为您提供2024年最新萘普索价格报价、厂家品牌的相关信息, 包括萘普索参数、型号等,不管是国产,还是进口品牌的萘普索您都可以在这里找到。 除此之外,仪器信息网还免费为您整合萘普索相关的耗材配件、试剂标物,还有萘普索相关的最新资讯、资料,以及萘普索相关的解决方案。

萘普索相关的论坛

  • 【原创大赛】探究土壤中萘提取液的浓缩方法比较

    【原创大赛】探究土壤中萘提取液的浓缩方法比较

    [align=center][b]探究土壤中萘提取液的浓缩方法比较[/b][/align][align=center]徐凤利,刘 炜,环明玲[/align][align=center](上海清宁环境规划设计有限公司,上海 松江[size=18px]201617[/size])[/align]摘 要[size=21px]:[/size][font=宋体][size=16px]随着科学技术的发展,工业产品越来越丰富。工[/size][/font][font=宋体][size=16px][color=#333333]业工艺过程[/color][/size][/font][font=宋体][size=16px]、缺氧燃烧、[/size][/font][font=宋体][size=16px][color=#333333]垃圾焚烧和填埋等生产活动,产生了大量的多环芳烃物质。这些物质通过复杂的物理迁移、化学及生物转化反应,进入土壤,严重污染环境,给人类及其生物的安全带来严重危害。如何快速、准确检测土壤中多环芳烃的含量,成为治理污染等相应策略实施的首要条件。当前测定土壤中多环芳烃的前处理方法有加压流体萃取、索式萃取、超声波萃取、微波萃取。在这些成熟萃取手段中,浓缩又是一个关键步骤。目前浓缩的手段有KD浓缩、氮吹浓缩、旋转蒸发浓缩、旋转与氮吹合用浓缩。本文采用四种浓缩手段对多环芳烃中的萘提取液进行浓缩分析比较,并获得了一定结果,望给行业内提供有效的参考意见。[/color][/size][/font][color=#333333]关键词[/color][size=21px][color=#333333]:[/color][/size][font=宋体][size=16px][color=#333333]土壤;萘;浓缩;方法比较[/color][/size][/font][color=#333333]Abstract:[/color][color=#333333]With the development of science and technology, industrial products are more and more various. Industrial process, anoxic combustion, waste incineration, landfill and other production activities produce a quantity of polycyclic aromatic hydrocarbons. These substances would percolate through the soil by complex physical migration and chemical and biological reactions, which seriously pollute the environment and bring serious harm to human security and biosafety. Detecting the content of PAHs in soil quickly and accurately has become the prime condition for the implementation of pollution control strategies. At present, the preparation methods for determination of PAHs in soil include pressurized fluid extraction, cable extraction, ultrasonic extraction and microwave extraction. And concentration is a critical process in these extraction methods. By now, the methods of concentration include KD concentration, nitrogen blowing concentration, rotary evaporation concentration, and combination of rotary and nitrogen blowing concentration. In this paper, these four concentration methods used to concentrate and analyze the naphthalene extract from PAHs are compared, and some results are obtained, which may provide some effective reference for the industry.[/color][color=#333333]Key words:[/color][color=#333333]Soil;Naphthalene;Concentrate;Method comparison[/color][color=#333333]1.实验部分[/color][color=#333333]1.1实验基本原理[/color][color=#333333] 对60mL正己烷-丙酮(1:1)混合溶液,加入一定量含有萘的16种多环芳烃和2种替代物,制作成提取液。提取液分别采用KD、氮吹、旋转蒸发、旋转蒸发与氮吹合用四种浓缩方法进行浓缩处理,最后用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪进行分析。通过加标回收率比较,分析四种浓缩方式对萘损失的影响。[/color][color=#333333]1.2仪器和设备[/color][color=#333333] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪:美国安捷伦7890B-5977B,具有电子轰击(EI)电离源。[/color][color=#333333] 色谱柱:安捷伦HP-5MSUI, 30m×250μm×0.25μm。[/color][color=#333333] KD浓缩器:10mL+500mL,具有三阶冷凝。[/color][color=#333333] 全自动平行浓缩仪:Reeko AutoEVA 20L,配有80mL刻度浓缩管。[/color][color=#333333] 旋转蒸发器:RE-52AA,具250mL蒸发瓶。[/color][color=#333333]1.3试剂与耗材[/color][color=#333333] 丙酮:农残级,4L。[/color][color=#333333] 正己烷:农残级,4L。[/color][color=#333333] 多环芳烃标准贮备液:1000μg/mL 苯:二氯甲烷(1:1)中16种多环芳烃标准溶液。[/color][color=#333333] 多环芳烃标准使用液:取多环芳烃标准贮备液250μL至5mL容量瓶,用正己烷-丙酮(1:1)混合溶液定容至刻度,浓度为50μg/mL。[/color][color=#333333] 内标标准贮备液:4000μg/mL 二氯甲烷中5种内标物标准溶液(萘-d[/color][color=#333333]8[/color][color=#333333]、苊-d[/color][color=#333333]10[/color][color=#333333]、菲-d[/color][color=#333333]10[/color][color=#333333]、?-d[/color][color=#333333]12[/color][color=#333333]、苝-d[/color][color=#333333]12[/color][color=#333333])。[/color][color=#333333] 替代物标准贮备液:2000μg/mL 丙酮:正己烷(1:1)中2种替代物(2-氟联苯、对三联苯-d[/color][color=#333333]14[/color][color=#333333])。[/color][color=#333333]提取液:配置60mL正己烷-丙酮(1:1)混合溶液后,分别加入200μL 多环芳烃标准使用液和10μL 替代物标准贮备液,制作成提取液。提取液供浓缩使用。[/color][color=#333333]1.4浓缩[/color][color=#333333]1.4.1 KD浓缩[/color][color=#333333] 影响因素:水浴温度。[/color][color=#333333]1.4.1.1水浴温度对KD浓缩的影响[/color][color=#333333]在室内温度控制在25±2℃,水浴高度在12cm(充分保证KD浓缩器受热面积)条件下,根据溶剂的沸点,实验选取70℃、75℃、80℃、85℃四个水浴温度分别对60mL提取液进行浓缩。每个温度进行3次平行浓缩实验。[/color] [img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110111418238589_8371_3141805_3.png[/img][color=#333333]从时间效率和回收方面考虑,水浴温度在75℃条件下,使用KD浓缩器浓缩时,可以得到良好的回收率。萘的平均回收率为85.7%。[/color][color=#333333]1.4.2氮吹浓缩[/color][color=#333333]影响因素:水浴温度、氮气气流压力。[/color][color=#333333]1.4.2.1水浴温度对氮吹浓缩的影响[/color][color=#333333]在室内温度控制在25±2℃,氮气气流压力为1.5psi,氮吹高度为3cm条件下,实验选取30℃、35℃、40℃、45℃、50℃、55℃六个水浴温度分别对60mL提取液进行浓缩。每个温度条件下进行3次平行浓缩实验。在氮吹过程中,每浓缩约10mL时,用正己烷冲洗露出氮吹管壁一次,以减少萘损失。[/color] [img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110111418240240_1083_3141805_3.png[/img][color=#333333]通过实验发现,随着温度的升高,浓缩时间变短,萘的回收率变大,但[/color][color=black]温度过高时,萘的回收率变小。[/color]1.4.2.2氮气气流压力对氮吹浓缩的影响[color=#333333]在室内温度控制在25±2℃,水浴温度控制在35℃,氮吹高度3cm条件下,实验选取0.5psi、1.0psi、1.5psi、2.0psi四个氮气气流压力分别对60mL提取液进行浓缩。每个氮气气流压力条件下进行3次平行浓缩实验。在氮吹过程中,每浓缩约10mL时,用正己烷冲洗露出氮吹管壁一次,以减少萘损失。[/color] [img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110111418242124_3575_3141805_3.png[/img][color=#333333]通过实验发现,氮气气流压力过小时,浓缩时间长,萘回收率变低;氮气气流压力过大时,形成浓缩液气涡,萘回收率也会变低。[/color][color=#333333]综合温度与与氮气压力对氮吹浓缩的影响,在水浴温度为45℃,氮气气流压力为1.0psi,氮吹高度为3cm条件下,进行3次氮吹浓缩实验,可以得到良好的回收率。萘的平均回收率为78.8%。[/color][color=#333333]1.4.3旋转蒸发浓缩[/color][color=#333333]本方式浓缩试验均在真空度为-0.08Mpa条件下进行。[/color][color=#333333]影响因素:水浴温度、旋转速度。[/color][color=#333333]1.4.3.1 旋转蒸发水浴温度对浓缩的影响[/color][color=#333333]在室内温度控制在25±2℃,旋转转速控制在80rpm条件下,实验选取30℃、35℃、40℃、45℃、50℃、60℃六个水浴温度分别对60mL提取液进行浓缩。每个温度进行3次平行浓缩实验。[/color][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110111418242945_2687_3141805_3.png[/img][color=#333333]通过实验发现,随着温度升高,浓缩时间变短,在水浴为30~45℃时,萘有着相对较好的回收率。当温度过高时,萘损失变大。[/color][color=#333333]1.4.3.2 旋转速度对浓缩的影响[/color][color=#333333]在室内温度控制在25±2℃,水浴温度控制在35℃条件下,实验选取20rpm、40rpm、80rpm、120rpm四个旋转转速分别对60mL提取液进行浓缩。每个转速进行三次平行浓缩实验。[/color][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110111418243726_2829_3141805_3.png[/img][color=#333333]通过实验发现,随着转速的升高,浓缩时间变短,但当转速达到一定程度,浓缩时间反而开始变长。旋转瓶转速对萘的回收率基本没有影响。[/color][color=#333333]综合水浴温度与与转速对旋转蒸发浓缩的影响,选取水浴温度40℃,转速为80rpm,条件下,进行三次浓缩实验,萘的平均回收率为54.5%。[/color][color=#333333]1.4.4旋转蒸发与氮吹合用浓缩[/color][color=#333333]综合旋转蒸发与氮吹的各自优点,60mL提取液先于真空度为-0.08Mpa、40℃水浴、转速80rpm条件下旋转蒸发,浓缩约3mL后,完全转移至氮吹瓶中。在水浴温度45℃,氮气气流压力1.0psi,氮吹高度3cm条件下,进行氮吹浓缩。萘的平均回收率为66.5%。[/color][color=#333333]2 分析与讨论[/color][color=#333333]2.1 KD浓缩[/color][color=#333333]温度是影响KD浓缩损失的一个重要因素。对于正己烷-丙酮(1:1)混合提取液萘样品进行浓缩时,随着水浴温度升高,浓缩时间变短,萘的回收率变小。特别注意的是,保持合适的水浴高度,保证KD浓缩器足够受热面积,以便取较为低的水浴温度进行浓缩,减少损失。同时加入适量沸石,防止浓缩爆沸,浓缩液溅出,减少损失,以便获得较高的回收率。[/color][color=#333333]优点:可以获得较高的回收率,适应于大体积样品浓缩 缺点:不利于大批量样品浓缩处理。[/color][color=#333333]2.2 氮吹浓缩[/color][color=#333333]温度与气流压力是氮吹损失的两个重要因素。当温度升高时,样品氮吹浓缩时间变短,萘回收率变大,然而当温度过高时,萘回收率变小。当气流压力过小时,样品浓缩时间变长,萘回收率变小;气流压力过大,形成浓缩液旋涡时,萘回收率变小。特别注意的是要多次洗涤氮吹过程中已露出的浓缩器管壁,以减少损失。[/color][color=#333333]优点:操作便捷,适应大批量样品浓缩;缺点:单个样品浓缩时间长,不适应大体积样品浓缩。[/color][color=#333333]2.3 旋转蒸发浓缩[/color][color=#333333]水浴温度、真空度、旋转速度是旋转蒸发三个重要因素。在真空度一定情况下,水浴温度升高,样品浓缩变快,在水浴温度为30~45℃时,可以得到一个相对较好的回收率。对于旋转速度,其随着旋转速度加快,浓缩时间变短,然而当旋转速度过高时,浓缩时间开始变长,且容易导致旋转瓶脱落。特别注意的是,当样品浓缩小于0.5mL时,萘有着较大的损失率。[/color][color=#333333]优点:单个样品浓缩时间快,适应于大体积样品预先浓缩;缺点:不适应于大批量样品浓缩,样品损失相对其他方法较大。[/color][color=#333333]2.4 旋转蒸发与氮吹合用浓缩[/color][color=#333333]结合旋转蒸发浓缩快的优点,对于大体积样品可以先选择旋转浓缩至3mL左右,然后再用氮吹浓缩,可以获得一个良好的回收率。[/color][color=#333333]优点:适合大体积样品浓缩,单个浓缩时间短;缺点:操作繁琐,不适应于大批量样品浓缩。[/color][color=#333333]3 结束语[/color][color=#333333]通过实验发现,对于正己烷-丙酮(1:1)混合溶剂提取土壤中萘,进行浓缩,从回收率上考虑,KD浓缩>氮吹浓缩>旋转蒸发与氮吹合用浓缩>旋转蒸发浓缩。从时间效率上考虑,采用氮吹浓缩为宜,可以大批量浓缩样品,节省时间;对于较大体积样品浓缩时,可以采取KD浓缩或者先旋转蒸发后氮吹浓缩的方法。综上所述,样品在浓缩前处理过程中,要慎重选择浓缩方法。良好的浓缩方法有助于减少样品的损失,从而保证样品分析的准确性、时效性。[/color][color=#333333]参考文献[/color][color=#333333][1]中华人民共和国国家环境保护标准HJ805-2016土壤和沉积物多环芳烃的测定[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法-质谱法,中国环境科学出版社,2016.[/color][color=#333333][2] 周峥惠,吴佳,顾桔. 土壤中半挥发性有机物前处理方法的比较研究[J]. 环境与发展,2019,22(9):72-73.[/color]

  • Raman1000萘拉曼谱图

    http://ng1.17img.cn/bbsfiles/images/2011/10/201110221847_325755_1998484_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/10/201110221852_325757_1998484_3.gif附件为天瑞Raman1000所测萘的拉曼谱图,与标准谱图之对比.请参阅

  • 气相色谱法测定焦炉煤气中低含量萘

    我国煤气中萘含量的测定长期采用苦味酸法,此法虽然准确度较高,但定量下限高,吸收处理操作繁琐费时(3—4小时) 而相应的国标[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法同样也存在操作繁琐(1—2小时)、定量下限高,二甲苯吸收液有毒污染环境等缺点,因此其应用推广方面受到限制。而公司冷轧生产线对煤[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的技术指标要求高,净化后的煤气中萘可达到10mg/m3以下,对检验周期的要求也进一步提高,因此提高分析方法的灵敏度和准确度、缩短分析周期迫在眉睫。  2实验部分  2。1仪器和试剂  色谱仪:GC-2010  毛细柱:30m×0.25mm×0。5μmSE—54  检测器:FID  数据处理:N2000工作站  进样器:10μl微量注射器  取样器:100ml玻璃注射器,9号注射针头吸收瓶:5ml  萘:色谱纯  无水乙醇:分析纯  2。2分析原理  所谓无分流分析法就是设定色谱柱zui初温度为较低温度(50—60℃),注人试样前关闭分流口,注人样品汽化后,待试样大部分导人柱内后(1—2min),打开分流口,升高柱温,将在低温时凝聚在柱前端的成分洗脱、分离、检测的方法,一般适用于沸点较高的低浓度样品的分析。但此方法易使化合物热分解,因而不适合易热分解化合物的分析。  2。3色谱分析条件  柱温:60℃(2min)200℃(5min)  汽化温度:2OO℃检测器:200℃  柱人口压力:140kPa空气压力:50kPa  氢气压力:60kPa分流流量:40.8ml/min  隔垫吹扫:12.2ml/min尾吹:32ml/min  采样时间:1.5min进样器:1μl  2。4定性方法  在选定的条件下,依次用l0的注射器分别注人lμl乙醇和5%萘乙醇溶液,其保留时间分别为2.98min、7.04min,确定在这两保留时间处的峰依次对应乙醇、萘。  2。5标准曲线的绘制  用微量注射器抽取标准样品(2、5、l0、20、50mg/m’)lμl注人色谱柱,测量萘的峰面积,每个标样分析2次测量萘的峰面积,取平均值后按外标法绘制标准曲线,结果如图l,其回归系数r=0。999562,线性关系良好。  5结语  a。用此法测定焦炉煤气中萘含量的重现性较好,结果的准确度和精密度较高。  b。本实验方法操作简便,分析周期由国标的3~4小时缩短到20~30rain,能够满足冷轧监控分析的需要。  c。本方法定量下限低,灵敏度高,可准确测定出煤气中2rag/m。的萘,能够满足冷轧煤气技术指标的要求。

  • 请问如何计算耐晒试样所接受到的辐射量?

    我这边现在遇到这样一个问题,就是不清楚进行耐晒实验的试样在进行了一定时间的耐晒后所接受到的光辐射量,我们用是氙灯,灯体长18cm,试样与灯体近似平行,正对着试样,试样距离灯体35cm,请问这样一个试样在单位面积上所辐射得到的功率是多少?

  • 工作场所气相色谱法测萘、萘烷和四氢化萘

    请问: 工作场所气相色谱法测萘、萘烷和四氢化萘,色 谱 柱1(用于萘的测定)2m×4mm,聚乙二醇20M:阿皮松L:Chromosorb WAW DMCS=5:10:100;色 谱 柱2(用于萘烷和四氢化萘的测定):2m×4mm,阿皮松L:6201担体 =15:100;哪有卖的?多少钱?

  • 氘代四氢萘和四氢萘使用气相色谱能否分开

    [color=#444444]氘代四氢萘和四氢萘使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]能否分开,现在又氘代四氢萘和普通四氢萘的混合物想知道各组分所占的质量分数多少,怎么办[/color]

  • 苏州纳米所与耐驰公司共建热分析联合实验室

    1月16日上午,中科院苏州纳米技术与纳米仿生研究所与耐驰科学仪器有限公司签署合作协议,共建热分析联合实验室。苏州纳米所所长杨辉、耐驰公司总经理杨大中分别代表双方在合作协议书上签字,并共同为联合实验室揭牌。签约揭牌仪式由所长助理、先进材料部主任李清文研究员主持,相关科研人员出席签约仪式。  杨辉希望耐驰公司继续提供优异的售后服务和技术支持。杨大中表示,耐驰公司非常重视与苏州纳米所的合作,希望以共建实验室为依托,不断拓展热分析在纳米材料领域的应用。

  • 瑞典研究人员发现饮用大量牛奶可能使人寿命缩短

    医生常说,牛奶有益健康,所以应该多喝,但瑞典一项研究发现,事实未必如此。 在《英国医学杂志》(BMJ)刊登的这项研究报告显示,饮用大量牛奶的瑞典人寿命反而缩短,也有较多女性发生骨折。 研究员说,由于这可能是巧合,所以仍有必要做进一步的研究,但人们可能得要谨慎看待多多饮用牛奶的建议。 在这项研究中,瑞典研究员追踪研究61000名39岁到74岁的女性20年以及超过45000名45岁到79岁的男性11年,他们向这群志愿者收集有关其饮食及生活、体重、抽烟习惯、运动、教育程度及婚姻状况等资料。 研究结束时,志愿者中有25500人死亡,22000人患上骨折。研究发现,饮用更多牛奶并没有降低骨折的风险,但却与“较高的死亡率有关联”。 在女性当中,每天喝三杯或更多牛奶的人,10年内死亡的比例是180‰;如果不计牛奶的摄取量,她们的平均死亡比例则是126‰。至于那些每天只喝一杯或更少牛奶的女性,死亡比例是110‰。 此外,喝大量牛奶的女性发生髋关节骨折的比例是42‰,而在喝最少牛奶的女性中比例则是31‰。 至于男性部分,在10年间每天喝三杯牛奶的人死亡比例是207‰,不计牛奶摄取量的话是189‰;喝较少牛奶的是182‰。他们发生骨折的几率则没有差异。 乌普萨拉大学的研究员麦可森说,所有种类的牛奶包括全脂、半脂和脱脂牛奶都与较高的死亡率有关联;而所谓的饮用大量牛奶指的是每天喝两杯或更多牛奶。 研究员也发现,乳酪或优格等发酵奶产品则和降低死亡率与骨折有关,特别是在女性方面。他们猜测原因之一可能是牛奶、而非乳酪,富含D-半乳糖(D-galactose)。在动物研究中,这类糖份会加速老化和缩短性命。

  • 【求助】帮我确认这个是不是萘呢?

    各位大侠,前两天在做原材料PAHs检测时,好几个样品里出现了这样一个情况,我还是新手自己确定不了,麻烦大家帮帮忙。 情况如下:1、样品出完的TIC里,只有126,128,51的图,从谱库里检索的也是萘。2、可是MIC图里126的百分比为零。我想知道这个物质到底能不能判定为是萘呢?

  • 气质空跑出很强的萘峰(已解决,氦气污染)

    求助:新安装的气质,色谱柱老化完,未进样,只要把柱温升高就出现强峰,就像进了标样似的。谱库检索是萘,特征离子是128。不升温基线里也有128。是不是氦气污染了。大家遇到过氦气被多环芳烃污染的情况吗。

  • 萘的质谱解析

    [color=#444444]大家好,现有萘的质谱图,要求进行峰的归属,请高手帮帮忙,请问萘的裂解规律,谢谢!m/z为 62 、64、65、75、86、101、102、103、111、125、126、127、128、129、130[/color]

  • 文献检索任务一一七(117.1-117.10)

    文献检索任务一一七(117.1-117.10)

    117.1 HPLC法测定萘普生钠片的含量 杨俊玲1 康新立21.山西省运城市药品检验所,山西运城044000;2.山西省运城市环保研究所,山西运城044004【摘要】目的:采用高效液相色谱法测定萘普生钠的含量。方法:色谱柱为Diamonsil C18(5um,200 mmx4.6 mm),流动相为甲醇一水(75:25);流速1.0 ml/min;检测波长为332 nln。结果:萘普生钠在45.02~162.07ug的范围内线性关系良好,r=-0.999 8(n=7),平均回收率为98.9%(RSD为0.82%,n=6)。结论:本方法操作简便、精密度好、结果准确,无其他成分的干扰,可用于测定萘普生钠片的含量。【关键词】高效液相色谱法;萘普生钠片;含量测定;回收率;线性http://ng1.17img.cn/bbsfiles/images/2012/10/201210102106_395810_2432394_3.jpg

  • 萘酮与中间体杂质I的分离

    萘酮与中间体杂质I的分离

    [align=center]萘酮与中间体杂质I的分离[/align]根据客户提出的依赖分析需求,实验室对以下结构的萘酮(RSL)及其中间体杂质I(Ser-I)进行分离尝试。[align=center][img=,638,249]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_01_2222981_3.png[/img][/align][align=center][img=,690,226]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210850_01_2222981_3.png[/img][/align]注:在客户给出的数据文件中,RSL命名为萘酮,Ser-I命名为中间体I;在加磷酸体系中,中间体I先出峰,不加磷酸体系中,萘酮先出峰。由于萘酮(RSL)与中间体I(Ser-I)在水相中会发生结构转换现象,因此我们在无水条件下开展实验。使用资生堂疏水性与表面极性得到良好平衡的反相色谱柱CAPCELL PAK C18 MG S5 4.6 mm i.d. × 250 mm进行分析,同时对柱温进行优化,结果如图1所示。[align=center][img=,690,280]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_02_2222981_3.png[/img][/align][img=,581,198]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_04_2222981_3.png[/img]图2、图3分别为萘酮和杂质I的光谱图。[align=center][img=,690,271]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_03_2222981_3.png[/img][/align]由图1可知,在萘酮的分析中,柱温越高其保留时间越短。同时发现在萘酮与杂质I之间出现一较明显倒峰。由图2、图3决定检测波长,由于流动相中添加了三乙胺,会对短波长检测产生一定干扰,因此建议在254nm或者288nm进行检测(本实验选择254nm)。我们对图1中倒峰的来源进行了多方排查,最终发现该实验体系中不得引入任何水,建议客户使用的所有实验容器必须烘干,并且需将洗针液更换为纯有机相。排除水干扰后分析对比结果如图4所示。[align=center][img=,638,363]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_05_2222981_3.png[/img][/align]同时,为进一步延长保留时间,我们也尝试使用了资生堂键合金刚烷基团的高表面极性色谱柱CAPCELL PAK ADME S5 4.6 mm i.d. × 250 mm进行分析,所得结果如图5所示,相较于MG色谱柱,ADME色谱柱能够得到更强保留。[align=center][img=,616,304]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_06_2222981_3.png[/img][/align]

  • 萘的挥发气体气相色谱

    我在做萘的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的时候,萘溶于有机溶剂在密封瓶子里。取气体进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],发现出现两个小峰一个大峰的结果,小峰应该是溶质,大峰是溶剂,但是溶质峰出现在溶剂峰前面,溶剂峰也没有出现该有的特点。请问该怎么处理?

  • 多环芳香烃中萘判定。

    多环芳香烃中萘判定。

    测试多环芳香烃中萘:[img=,90,54]https://ng1.17img.cn/bbsfiles/images/2020/04/202004290946106339_3802_3053480_3.png!w90x54.jpg[/img]时,检索普库匹配度最高的物质是[b][size=12px][color=#666666]奥苷菊环[/color]:[/size][/b][img=,74,53]https://ng1.17img.cn/bbsfiles/images/2020/04/202004290947388545_8504_3053480_3.png!w74x53.jpg[/img]SI为82,萘匹配度为81,怎么确定是哪种物质呢?

  • 【我们不一YOUNG】多谱库PBM检索(Multiple Lib PBM Search)

    [align=center]【我们不一YOUNG】多谱库PBM检索(Multiple Lib PBM Search)[/align]PBM检索:PBM (Probabilty Based Matching)检索是一种谱库检索技术,它可以将未知化合物的质谱和参比质谱库进行比较。MSD 化学工作站的检索流程使用基于概率匹配(PBM)的算法,该算法由康奈尔大学的 Fred McLafferty 教授及其合作者共同开发。PBM 检索验证在未知质谱中是否存在参比质谱的主峰,以此来识别参比谱库中与未知化合物最相似的质谱。该算法叫做反检索(反向匹配),即使样品质谱包含有共流化合物,算法也能在谱库中检索到相应质谱。质谱的相似性通过称为匹配质量的量来衡量。多谱库PBM检索(Multiple Lib PBM Search:多谱库PBM检索(Multiple Lib PBM Search)是安捷伦的工作站在安装NIST组件之后扩展项菜单,包括NIST search和Amdis等选项。 [img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407111342578670_1537_1615838_3.png[/img][align=center]图 宽展菜单[/align]使用多谱库PBM检索可以得到多个谱库(一般2-3个谱库)的检索结果。可以进行对比核对。

  • 【转帖】近物所等建立牛奶添加剂检测HPLC新方法

    中国科学院近代物理研究所和中国农业科学院兰州畜牧与兽药研究所的科研人员联合甘肃凯悦奶牛场、黑龙江汇丰兽药有限公司进行攻关,通过对牛奶中各种化合物物理及化学性质的研究,应用高效液相色谱法(HPLC),建立了一种检测牛奶添加剂的新方法。该方法具有分离能力好、灵敏度高、分析速度快、操作方便等优点。掺假蛋白质问题,直到最近几年的食品安全事件才引起关注。所有含氮的物质都可能被用于掺假。假蛋白氮(NPN)的形式具有多样性,如:三聚氰胺及其类似物、尿素、硝酸铵等廉价高氮物质,还包括一些体内其它含氮物质,如核酸、尿酸、肌酐等。任何一种假蛋白氮物质的加入都会引起食品中蛋白值的虚高。除假蛋白以外,牛奶中常见的添加剂是聚乙烯吡咯烷酮,其具有吸湿性和很强的膨胀性能,无臭或微臭,在医药上广泛用于片剂崩解剂,还可用作啤酒、果酒、饮料酒的稳定剂。该化合物添加在牛奶中主要作用是提高蛋白质的稳定性,使其不易变质。检测牛奶添加剂新方法是在实施国家跨越计划——新型安全兽药的产业化及示范项目的基础上建立的。该项目主要针对当前我国面临的食品安全的迫切需要,通过熟化组装新型天然饲料添加剂“葛根素”,研制出免疫增强饲料和奶牛绿色催乳饲料,并在示范单位进行工业化生产和实验示范,在建立畜产品兽药残留检测与评价方法的基础上,按照绿色食品标准,对示范单位生产的无抗畜产品进行药物残留的检测与评价,实现了生态奶、蛋、肉制品的生产。今年这一成果已获得兰州市科技进步一等奖,正在申报甘肃省科技进步奖。

  • 牛奶指纹识别新技术:牛奶检测技术的革新

    对于食品行业来说,什么问题都不如安全来得重要。而如果想要知道食用的东西是否安全,产品的来源追溯就显得特别关键。日前,在新西兰的创新者颁奖典礼上,一种可以追溯奶源的新技术——牛奶指纹识别受到了广泛的关注。对于人类来讲,识别不同的人最常用的技术就是指纹。现如今,人类的指纹识别应用已经非常普遍,连小小的手机都已经开始用指纹来解锁,更别提短期出国也被要求采集指纹。但是,对于想要知道自己吃的东西和喝的牛奶从何而来怎么确定呢?牛奶指纹识别就是针对这种对于奶源追溯问题的技术。简言之,牛奶指纹识别技术通过光分析和精密计算准确获取牛奶成分的详细信息。  新西兰是奶业大国,奶业的安全对于这个国家支柱行业来讲至关重要。因此,新西兰耗资两百多万新西兰元,耗时5年来研究这项技术。恒天然集团的杰瑞米·希尔(Jeremy Hill)博士和史蒂夫·霍尔罗伊德(Steve Holroyd)博士与设备制造商Foss公司在这项技术的研发上紧密合作了几年。后来,农业专家布里奇特·麦克莱恩(Bridget McLean)先生也加入了研发小组。此外,恒天然也曾与丹麦乳业集团Arla食品公司合作研发过一段时间。  这项技术使用光谱仪对牛奶进行检测,它射出的光扫过牛奶样本时,一些光会被牛奶的不同成分所吸收,而另一端留下的光谱就是“牛奶指纹”。随后,检测员会采用先进的精密计算方法来分析其牛奶成分。为了保障食品安全,通常的检测都是抽样式的,牛奶指纹技术可节约超过99%的检测成本,同时大幅度缩短检测时间。具体到奶业,之前有些检测时间长达几天甚至几个星期,而通过牛奶指纹识别技术,人们可以在几秒钟内检测数以百计的样品,这大大缩短检测时间并节约成本。因此,这项技术带来的益处远不止于保障乳品的质量和安全性。  牛奶的成分会因为季节、牧场和所在区域的不同而有所变化。有些牛奶更适合加工成某种特定产品;那些适合加工成高品质超高温灭菌牛奶的牛奶成分不同于那些适合加工成黄油的牛奶成分。借助这项技术,人们可以把装运更适合加工成超高温灭菌产品的牛奶的奶罐车分配到一个工厂,而把装运另一种牛奶的奶罐车分配到黄油加工厂。牛奶指纹识别技术可以快速提供每个牧场出产的牛奶信息,与奶罐车的精密调度系统相结合,可以将牛奶运往相应的生产基地,以确保每一滴牛奶价值最大化。  牛奶指纹识别技术开发的部分资金来自一个名为“转化乳品价值链”的项目。该项目是由新西兰初级产业部、恒天然和新西兰乳业协会(DairyNZ)联手成立的初级成长伙伴项目,旨在开发新产品、提高牧场生产效率、减少对环境的影响并加强农业教育。在日前举行的新西兰创新者颁奖典礼上,恒天然研发团队凭借牛奶指纹识别技术获得“卓越创新研发大奖”。

  • 【求助】HPLC法测盐酸普萘洛尔含量

    HPLC法测盐酸普萘洛尔含量,采用紫外检测器,用安捷伦-SB-C18柱,以乙腈:0.05M磷酸二氢钾30:70为流动相,但出来的色谱峰拖尾,且峰形对称性差。本人试过加酸加碱来改善拖尾,但效果不明显,特此求助,望有关人士能解我燃眉之急,非常感谢!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制