当前位置: 仪器信息网 > 行业主题 > >

萘拉诺

仪器信息网萘拉诺专题为您提供2024年最新萘拉诺价格报价、厂家品牌的相关信息, 包括萘拉诺参数、型号等,不管是国产,还是进口品牌的萘拉诺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合萘拉诺相关的耗材配件、试剂标物,还有萘拉诺相关的最新资讯、资料,以及萘拉诺相关的解决方案。

萘拉诺相关的资讯

  • 牛奶中喹诺酮类药物残留的测定
    喹诺酮类药物是人工合成的含有4-喹酮母核的一类抗菌药,通过抑制DNA旋转酶的活性杀死细菌,因其有抗菌谱广、吸收好、半衰期长、能制成各种剂型等特点而得到迅速推广,被广泛用于家畜的疾病防治中。但喹诺酮对人体有一定的副作用,如皮肤并发症、中枢神经系统并发症、胃肠毒性、心脏毒性等,因而牛奶、肉类中的喹诺酮残留量已引起人们的广泛关注。欧盟早在90年代就对肉类中喹诺酮药物的最大残留量进行了限制,由此产生很多检测喹诺酮类残留的方法。目前喹诺酮残留的检测方法主要有酶联免疫吸附法、液相色谱法等。酶联免疫吸附法,测定方法简单快速,可同时筛选大量样品,但精确度不高,目前常将其作为筛选法。液相色谱法可实现精准的测定,是国标指定的方法。日立采用液相色谱法对牛奶中的喹诺酮残留进行测定,结果优异,显示了日立液相色谱仪的高性能。 图1. 色谱分析条件 图2. 标准品的色谱图(1. 环丙沙星 2. 达氟沙星3. 恩诺沙星4. 沙拉沙星 5. 双氟沙星) 图3. 标准曲线 从实验结果可以看到,在0.004 ~ 0.5 mg/L的浓度范围内,五种标准品的线性相关系数均是0.9999-1.0000,结果优异。 图4. 保留时间和峰面积的重现性 重复测定六次,五种标准品的保留时间和峰面积的精密度分别在0.02%-0.04%和0.29%-0.46%,重现性优异。 图5. 实际样品前处理流程 图6. 实际样品测定结果(1. 环丙沙星 2. 达氟沙星 3. 恩诺沙星 4. 沙拉沙星 5. 双氟沙星)对牛奶样品按图5前处理后进行测定,结果显示未检出喹诺酮类药物。对牛奶样品进行加标回收率实验,在0.01~0.05 mg/kg的添加浓度下,牛奶中喹诺酮类药物的加标回收率在79.72%~99.07%之间。 本实验所用方法可用于测定牛奶中的喹诺酮类药物残留,分析时间35min,标准曲线线性良好,回收率在预期范围内,可用于质检、品控、生产等部门。 日立高效液相色谱仪兼具性能优异、操作简便、结实耐用等优点,可让您获得高分离度和高灵敏度。 关于日立高效液相色谱仪的信息,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm
  • 牛奶中五种喹诺酮类药物残留的测定
    喹诺酮类(4-quinolones),又称吡酮酸类或吡啶酮酸类,是人工合成的含4-喹诺酮基本结构的抗菌药。喹诺酮类抗生素是一类人畜通用的药物,因其具有抗菌谱广、抗菌活性强、与其他抗菌药物无交叉耐药性和毒副作用小等特点,被广泛应用于畜牧、水产等养殖业中。由于喹诺酮类药物在动物机体组织中的残留,人食用动物组织后喹诺酮类抗生素就在人体内残留蓄积,造成人体疾病对该药物的严重耐药性,影响人体疾病的治疗。因此其残留问题引起广泛关注。 在此,我们参考《国标GB 29692-2013牛奶中喹诺酮类药物多残留的测定》中的方法一,使用高效液相色谱仪Chromaster荧光检测器对牛奶中的5种喹诺酮类药物残留进行了分析测定。五种喹诺酮类药物在参考的分析条件下得到了较好的分离,达氟沙星检测限可达0.15 μg/kg(国标为1 μg/kg ),充分体现了Chromaster荧光检测器高灵敏度的特点。 关于该应用的详细信息,请参考:http://www.instrument.com.cn/netshow/SH102446/s548264.htm关于高效液相色谱仪Chromaster,请参考:http://www.instrument.com.cn/netshow/SH102446/C137940.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 英诺德德国慕尼黑首秀告捷,以创新点亮Smart Lab主题
    4月12日,为期4天的德国慕尼黑国际分析生化博览会顺利收官,英诺德INNOTEG以亮眼的展台形象、丰富的产品系列与专业的服务素质为此次海外首秀画上圆满句号。作为全球重要的实验室技术、分析、生物技术贸易展及分析大会,本届analytica投射出了行业的一个新发展机遇——Smart Lab智慧实验室。从包含英诺德INNOTEG在内许多展商所展示的解决方案与技术设备可以看出,智能化、低碳环保与可持续正在成为科学仪器行业所追求的新趋势,智能化将开启下一个时代的序幕。基于数十年的行业经验,德祥科技很早就敏感察觉到这一行业趋势。因此,作为其自研品牌英诺德INNOTEG在本届analytica 2024,带来了相对成熟的科研解决方案与满足产业智能化、绿色化转型需求的科研产品。产品与解决方案紧扣以下smart lab的需求特点:● 智能化、自动化● 绿色化● 高精度、高效率从基础实验步骤开启Smart Lab体验关键词:高效数据通讯,远程控制监控,精确调节搅拌是实验室操作中最基础也是常被忽略的步骤之一。本次会上,英诺德INNOTEG带来WM-1磁力搅拌器,选配RS485接口可实现高效数据通讯,提升实验室自动化与智能化水平。通过远程控制和监控,它能精确调节搅拌速度,优化实验过程,确保实验结果的准确性和重复性。据许多参展观众现场体验后反馈总结,WM-1磁力搅拌器的智能化设计照顾到了实验基础操作中的方方面面,改善了传统搅拌操作体验,其数据化的特点也避免了许多不必要的时间成本。化零为整:全自动的化合物制备分析关键词:一体化,高精度,全自动工作站控制传统的化合物分离、检测和收集涉及一连串的实验技术与步骤。而现在一台英诺德INNOTEG EasyPrep 系统却能全部搞定,不怪此次会上许多参展观众为之回首。英诺德INNOTEG EasyPrep 系统(左)这是一款一体化的快速纯化制备色谱系统,能对化合物进行分离、检测和收集。采用高精度计量泵,耐受溶剂腐蚀,全自动工作站控制,且更符合化学操作者的日常习惯。高效实用与绿色环保两手抓关键词:排除污染,可靠安全,可持续绿色低碳和可持续发展是全球各国的重要主题。英诺德INNOTEG于本次会上带来的Sampling Case-B便携式呼吸采样系统是一种采集呼吸气的自动采样装置,可与Needle Trap动态捕集针技术联用,通过CO2传感器识别呼吸周期,在前处理阶段就能排除来自口腔和环境气体的污染,为呼吸分析提供了完全无创、可靠安全的结果。其同系列产品可以用于医学诊断、环境检测等多个领域,相比传统处理手段更符合可持续发展的特点。微萃取新产品为绿色化学创造无限可能关键词:微萃取,VOCs,避免二次污染,绿色化学微萃取技术是一种被广泛应用于环境、医药等多个领域中的样品前处理技术。英诺德INNOTEG所带来的自主研发的Thin Film SPME薄膜固相微萃取,是一种把萃取相加载在碳网片上的微萃取技术,通过增加萃取相的体积和表面积,增加吸附容量和提高萃取效率,涂层更加坚固不易脱落,为痕量VOCs分析创造更多的可能性。其处理过程操作方便,测定快速高效,避免了对环境的二次污染,贴合了绿色化学的发展需求。Smart Lab基石:“匠心质造”耗材关键词:高品质,性能稳定,耐用度高,减少浪费耗材可谓是实验室不可或缺的存在,高品质的耗材通常性能更稳定、耐用度更高,能够帮助科研人员得到更为精准的结果。英诺德INNOTEG多款经典产品在本次展会中得到了现场观众高度评价。英诺德INNOTEG SPE小柱,应用广泛,有多种填料可选,规格齐全,满足各种国标、行标的要求。采用高纯度硅胶,产品质量稳定可靠;更高的重现性,相对标准偏差(RSD)借着此次展示机会,英诺德INNOTEG让国内外更多同仁与客户了解到英诺德对于创新研发和品质制造的追求,增强了英诺德在国际上的吸引力。展会告一段落,但英诺德的“匠心质造”之旅仍在继续。未来传统产业的高端化、智能化、绿色化转型,以及利用新材料、新能源等新兴产业的快速发展都意味着,对科学仪器的品质和创新需求会越来越高。英诺德INNOTEG将继续不断融合前沿技术,提升产品与服务质量,帮助研究人员确保实验可靠性与准确性,提升研究效率,助力打造Smart Lab科研环境。
  • 2018“诺奖风向标”拉斯克医学奖揭晓
    p style=" text-indent: 2em text-align: justify " 日前,位于美国纽约的阿尔伯特与玛丽拉斯克基金会(Albert and Mary Lasker Foundation)公布了2018年拉斯克医学奖的得主名单。获奖者分别为洛克菲勒大学的David Allis、加州大学洛杉矶分校的Michael Grunstein、全球知名制药公司阿斯利康的John Glen,以及耶鲁大学的Joan Argetsinger Steitz,4人分享了今年拉斯克奖的三个重要奖项。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/03838c6a-76ac-4776-990f-469670b31c00.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em text-align: justify " 对于已从英国制药公司阿斯利康退休的John B. Glen博士,该奖项主要奖励其发现和开发了广泛应用于麻醉的化学物质异丙酚,John B. Glen也是拉斯克奖史上的第二位兽医。值得一提的是,异丙酚还曾因美国流行天王迈克尔?杰克逊过量使用致死事件一度名誉受损。 其余两个奖项的科学家则分别在阐释组蛋白化学修饰影响基因表达,以及RNA生物学领域等方面作出了突出贡献。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/45389cab-87c0-44b2-9961-5c2435071360.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-indent: 2em text-align: justify " 拉斯克奖在生命科学、医学领域享有盛誉,素有“诺贝尔奖风向标”之称。该奖项于1946年由美国广告经理人、慈善家阿尔伯特 strong · /strong 拉斯克(Albert Lasker)及其夫人玛丽 strong · /strong 沃德 strong · /strong 拉斯克(Mary Woodard Lasker)共同创立,表彰在生命科学、医学领域作出突出贡献的科学家、医生和公共服务人员。此前共设置有三个奖项:基础医学研究奖、临床医学研究奖和公共服务奖,后又增设特殊贡献奖。 /p p style=" text-align: justify "   迄今为止,在该奖项的所有获得者中,有87人同时获得了诺贝尔奖。其中中国科学家屠呦呦因发现青蒿素于2011年获得“拉斯克临床医学研究奖”,并在2016年成为诺贝尔生理或医学奖得主。 /p p   拉斯克奖由阿尔伯特与玛丽拉斯克基金会颁发,三个奖项分别设立25万美元奖金。 /p p    strong span style=" color: rgb(0, 112, 192) " 2018年阿尔伯特· 拉斯克基础医学研究奖 /span /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Albert Lasker Basic Medical Research Award /span /strong /p p style=" text-indent: 2em " strong 获奖理由:发现并阐释了组蛋白化学修饰对基因表达的影响。 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/465313a1-3154-4a58-b8d0-5459d7ca76cd.jpg" title=" michael_grunstein.jpg__350x350_q85_crop_subsampling-2_upscale.jpg" alt=" michael_grunstein.jpg__350x350_q85_crop_subsampling-2_upscale.jpg" / br/ strong Michael Grunstein /strong br/ /p p style=" text-align: justify "   Michael Grunstein(加州大学洛杉矶分校)通过在酵母中的遗传学研究,证明了组蛋白对活细胞内的基因活性有显著影响,并为理解特定氨基酸在这一过程中的关键作用奠定了基础。David Allis(洛克菲勒大学)发现了一种组蛋白修饰酶,这种酶以特定的化学基团附着在组蛋白的特定氨基酸上,这种组蛋白修饰酶被证明是一种基因共激活物,其生化活性一直未被研究。2位科学家揭示此前未知的基因调控因素,开辟了一个新领域。 /p p style=" text-indent: 2em text-align: justify " “我进入了这个领域的时候,每个人都在研究基因活性,我想研究组装材料。”Michael Grunstein在拉斯克基金会制作的一段视频中说,“我不想走别人的路。” /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/be890313-f546-4189-9bd6-640a91229fcb.jpg" title=" david_allis.jpg__350x350_q85_crop_subsampling-2_upscale.jpg" alt=" david_allis.jpg__350x350_q85_crop_subsampling-2_upscale.jpg" / br/ strong C. David Allis /strong br/ /p p style=" text-indent: 2em text-align: justify " 2位科学家发现,实际上,组蛋白在开启和关闭基因方面起着至关重要的作用,这些过程使得每个细胞都能完成自己的任务。Michael Grunstein专注于遗传学,David Allis则致力于生物化学过程。 /p p style=" text-align: justify "   虽然他们的获奖源于在基础科学方面做出的贡献,但对实际应用的影响也是深远的。David Allis在视频中说,“这方面的错误似乎很明显引起了癌症。” /p p style=" text-align: justify "   随着对组蛋白不断深入的理解,药物开发人员提出了新的治疗方法,包括癌症治疗,如默克公司出售的用于治疗皮肤癌的伏立诺他(Zolinza)。更多的药物还在试验中。 /p p style=" text-align: justify "   “它在人类治疗中产生了一个全新的潜在领域,这是非常有益的。”David Allis说。 /p p    span style=" color: rgb(0, 112, 192) " strong 2018年拉斯克· 德贝基临床医学研究奖 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong   Lasker~DeBakey Clinical Medical Research Award /strong /span /p p    strong 获奖理由:发现和开发了化学物质异丙酚,广泛应用于麻醉。 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/6312b426-340e-479e-b7ba-f4d7f45cc730.jpg" title=" john_glen2.jpg__350x350_q85_crop_subsampling-2_upscale.jpg" alt=" john_glen2.jpg__350x350_q85_crop_subsampling-2_upscale.jpg" / br/ strong span John B. Glen /span /strong /p p style=" text-align: justify "   来自英国制药公司阿斯利康的John B. Glen博士(已退休),发现并开发了异丙酚。异丙酚因起效快、持续时间短、苏醒迅速而平稳,且无残留和不良反应少等特点,已广泛应用于全世界临床各科麻醉及重症病人身上。2016年,世界卫生组织(WHO)认定异丙酚是一种“基本药物”,在发布该决定时,全球已有超过1.9亿人使用过这种药物。 /p p   根据基金会数据,John B. Glen是73年来第二位获得拉斯克奖的兽医。 /p p style=" text-align: justify "   John B. Glen曾在苏格兰格拉斯哥大学的兽医学院教过麻醉学课程。据纽约时报报道,他在一次采访中曾说,“我麻醉过狗、猫、马,甚至任何能接触到的动物。”他曾经在一只鹈鹕身上做了麻醉,并修复了它的喙。 /p p style=" text-align: justify "   John B. Glen将注意力从动物转向人类后,致力于寻找一种替代硫喷妥钠的方法。硫喷妥钠此前广泛使用,可以迅速让病人入睡,但之后往往会让他们长时间昏昏沉沉。在一次小鼠实验中,John B. Glen及其同事发现,现有的一种化合物异丙酚,似乎和硫喷妥钠一样有效,但不同的是药力可以很快消失。 /p p   异丙酚于1986年在英国获得批准,3年后美国也批准了该药物。 /p p style=" text-align: justify "   异丙酚呈乳白色,也被称为“失忆牛奶”。 自John B. Glen发现该药物之后,大量患者使用了异丙酚,被认为直接影响了门诊手术的快速扩张,病人因此恢复加快。 /p p style=" text-align: justify "   值得一提的是,2009年,在私人医生穆雷(Conrad Murray)替其注射了致命剂量的麻醉药物后,美国流行天王迈克尔杰克逊((Michael Jackson)意外逝世,异丙酚声誉一度受到打击,莫瑞也在2011年因过失杀人罪被判有罪。 /p p   John B. Glen说,他密切关注了审判,“从来没有打算它会以这种方式被使用”。 /p p span style=" color: rgb(0, 176, 80) "    span style=" color: rgb(0, 112, 192) " strong 2018 拉斯克· 科什兰医学特殊成就奖 /strong /span /span /p p span style=" color: rgb(0, 112, 192) " strong   Lasker~Koshland Special Achievement Award in Medical Science /strong /span /p p    strong 获奖理由:表彰其40年来作为生物医学领域,尤其是在RNA生物学领域所发挥的领导作用,以及对年轻科学家的慷慨指导和对女性科学家的大力支持。 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/ed7d4fdd-d5ed-4954-84f0-6d11cdf207f9.jpg" title=" joan_steitz2.jpg__310x310_q85_crop_subsampling-2_upscale.jpg" alt=" joan_steitz2.jpg__310x310_q85_crop_subsampling-2_upscale.jpg" / br/ strong span Joan Argetsinger Steitz /span /strong /p p style=" text-align: justify "   40年来,Joan Argetsinger Steitz教授(耶鲁大学)在生物医学领域发挥了领导作用。她的一系列研究成果和发现对RNA分子研究影响广泛而深刻。此外,作为一名女性科学家,她在多个领域起到了榜样力量,并扶持青年科学研究者。 /p p style=" text-align: justify "   她在接受采访时说,“当我开始对科学感到兴奋时,并没有其他女性科学家,我认为我没有任何希望。”“我希望我所做的科学贡献,以及我对科学界的参与能得到同行的尊重。” /p p style=" text-align: justify "   40多年后,Joan Argetsinger Steitz教授在耶鲁大学拥有自己的实验室。她不仅因为在RNA生物学上的发现而闻名,更在于她在一个仍然由男性主导的领域里支持女性科学家的工作。 /p p style=" text-align: justify "   根据拉斯克基金会的引文,在她的实验室里的360篇论文中,有60篇不包括她的名字,“这是一种慷慨的姿态,反映了她的观点,即那些完全独立工作的学生和博士后应该被允许自己发表文章。” /p
  • “诺奖风向标”拉斯克奖揭晓,光遗传学会不会获诺奖?
    北京时间9月25日零点,2021年拉斯克奖(The Lasker Awards)公布了三大奖项获奖名单。其中,基础医学研究奖由Dieter Oesterhelt、Peter Hegemann 和Karl Deisseroth获得,以表彰他们对光遗传学的贡献;来自BioNTech的Katalin Karikó和宾夕法尼亚大学的Drew Weissman获得临床医学研究奖,以表彰他们发现基于mRNA修饰的新治疗技术;医学科学特别成就奖则颁给了诺贝尔奖得主David Baltimore。 光遗传学被认为是一项注定要得诺奖的技术(相关文章: 光遗传学:一项注定要得诺贝尔奖的技术)。 实际上,对于光遗传学技术作出贡献的科学家不止这三人,还有他们的合作者和其他科学家。 科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位探索在知识边缘的科学家都值得我们深深的敬意。 撰文|王承志 梁希同 林岑 责编|夏志坚 陈晓雪 北京时间2021年9月25日零点,有 “诺奖风向标” 之称的拉斯克奖(the Lasker Awards)公布,三位在光遗传学领域作出重要贡献的科学家获得阿尔伯特拉斯克基础医学研究奖。 获奖理由: 发现了可以激活或沉默单个脑细胞的光敏微生物蛋白,并将其用于开发光遗传学——神经科学领域的一项革命性技术。 根据拉斯克奖官网介绍,三位获奖人的具体贡献分别是: 迪特尔奥斯特黑尔特(Dieter Oesterhelt),发现了一种古细菌蛋白质,它可以在光照条件下将质子泵出细胞; 彼得黑格曼(Peter Hegemann),在单细胞藻类中发现了相关的通道蛋白; 卡尔代塞尔罗思(Karl Deisseroth),利用这些分子创建了光触发系统,这些系统可以在活的、自由移动的动物身上使用,以理解在迷宫一般的脑回路中特定类别乃至一类神经元的作用。 大脑是人最复杂的器官,人的感觉、记忆、思考、运动等诸多生理活动,以及各种神经系统疾病都与神经元的功能息息相关。多年以来,理解各种神经元的具体功能一直是神经生物学的中心研究领域。 特异性地控制神经元活动对神经生物学家具有无法抵挡的吸引力。如果能特异性地激活一类神经元,那么就可以通过观察激活后的生理现象来推测其功能。同理,如果能特异性地抑制一类神经元,则可以推测这类神经元对哪些生理活动是必须的。 神经生物学家们尝试过各种方法来达到这个目标。比如,用微电极来刺激神经元,或者使用化学物质来模拟或者拮抗神经递质。但这些方法都有难以克服的缺陷:微电极控制的精度不够,比如不能特异性地控制一类神经元;化学物质控制神经元的速度难以控制,很难在毫秒级别进行操作。 紫色的膜与光传感器 1969 年,29岁的青年化学家迪特尔奥斯特黑尔特(Dieter Oesterhelt,1940年-)从德国慕尼黑大学学术休假,来到了美国加州大学旧金山分校电子显微镜专家沃尔瑟斯托克尼乌斯(Walther Stoeckenius,1921年7月3日-2013年8月12日)的实验室。 当时,斯托克尼乌斯正在研究一种可以在高盐环境中生存的古细菌的细胞膜,这种微生物现在被称作盐生盐杆菌(Halobacterium salinurum)。在这次合作中,奥斯特黑尔特证实盐生盐杆菌的细胞膜中紫色的组分含有视黄醛。随后,他和斯托克尼乌斯确定了古细菌中的一种蛋白质,并将其命名为细菌视紫红质(bacteriorhodopsin)。1971 年,他们提出细菌视紫红质起到了光传感器或光感受器的作用。迪特尔奥斯特黑尔特 | 图源:biochem.mpg 回到德国后,奥斯特黑尔特和斯托克尼乌斯继续合作这一研究。奥斯特黑尔特发现,细菌视紫红质可以将质子泵出细胞。这个神奇蛋白质,像是一个微型光能发电机,能吸收光子的能量,用这些能量把质子泵到细胞的外面,从而进一步转化为细菌所需的能量。 后来,科学家们发现了另外一种含视黄醛的光激活泵——卤化视紫红质(halorhodpsin),可以将氯离子输送到细胞中。这两种物质的发现和对其生物物理、结构和遗传学的研究,为光遗传学的发展提供了基础性的见解。 来自微生物的光敏蛋白 20世纪80年代,彼得黑格曼在位于慕尼黑的马克思普朗克生物化学研究所攻读博士学位。他的导师正是发现细菌视紫红质的迪特尔奥斯特黑尔特。 黑格曼的博士论文,研究的是来自另一种细菌的视紫红质——卤化视紫红质(halorhodopsin)。 卤化视紫红质存在于一种耐盐古细菌中,其利用光能将其生活的高盐度环境中的氯离子排出体外。黑格曼首先通过生物化学技术分离提纯了这一蛋白。彼得黑格曼 | 图源:project-stardust.eu 此时,刚刚在法兰克福的马克思普朗克生物物理研究所建立自己实验室的恩斯特班贝格(Ernst Bamberg)参与了进来,他通过构建体外系统来研究黑格曼所提纯出的halorhodopsin的电化学特性。 1984年获得博士学位后,黑格曼来到美国雪城大学的肯福斯特(Kenneth Foster)的实验室从事博士后研究。 福斯特研究的是另一种对光敏感的微生物:单细胞绿藻。这些单细胞的藻类具有趋光性,能够挥舞鞭毛向着有光的方向游去(它们需要光进行光合作用)。福斯特认为,单细胞绿藻也可能使用某种视紫红质作为它们的眼睛,从而得知光亮的方向,并且能驱动鞭毛游往有光的地方。莱茵衣藻 Chlamydomonas reinhardtii 1986年,黑格曼回到普朗克生物化学研究所建立起自己的实验室,开始潜心研究莱茵衣藻(Chlamydomonas reinhardtii,一种微小的绿藻)趋光性行为。 1991年,黑格曼发现,莱茵衣藻的光受体也是一种视紫红质,但它的工作方式与之前发现的各种视紫红质都不一样。衣藻视紫红质的光照之后会引起钙离子流入细胞中,从而引起的电流能够激发鞭毛的运动,他称之为光电流(photocurrent)。恩斯特班贝格(Ernst Bamberg) 人眼中的视紫红质感光之后也会产生光电流,通过神经传递到大脑之后就形成了视觉。人眼中视紫红质引起光电流需要经过细胞内一系列蛋白的信号传导,而黑格曼发现衣藻视紫红质产生光电流的速度比人眼中的视紫红质快得多。据此他大胆地推测:衣藻视紫红质本身可能就是一个可以作为电流开关的离子通道。 然而,此后的十年里,黑格曼使尽各种办法,也无法像当初分离提纯一样分离卤化视紫红质提纯出衣藻视紫红质,来验证他的猜想。 随着分子生物的发展,2001年,黑格曼和其他科学家通过测序衣藻的基因组发现了两个新的光受体基因。 为了证明它们究竟是不是苦苦追寻十余年的衣藻视紫红质,黑格曼找到了当初和合作研究卤化视紫红质电化学特性的班贝格。 此时的班贝格已经是普朗克生物物理研究所的所长。此前的1995年,班贝格就和普朗克生物物理研究所的科学家格奥尔格纳格尔(Georg Nagel)将细菌视紫红质表达在动物细胞中,使得动物细胞在受到光照时产生光电流。奥尔格纳格尔(Georg Nagel) 2003年,从黑格曼那里得到光受体基因后,班贝格和纳格尔用同样的方法成功地在动物细胞中表达了衣藻视紫红质蛋白,从而发现只要有这个蛋白单独存在,就能产生光电流,使阳离子流入细胞中,造成细胞去去极化。他们的结果终于证明黑格曼的假说:衣藻视紫红质是一个能被光所打开的阳离子通道。 从前人们知道,特定的化学分子,或者电压的变化,或者机械力的变化可以开关特定的离子通道,而能被光直接控制的离子通道还是第一次被发现,于是他们把衣藻视紫红质命名为视紫红质通道蛋白(Channelrhodopsins,ChR1)。这个词由离子通道(Channel)和视紫红质(Rhodopsin)组合而成。 他们还在爪蟾的卵细胞中表达了这种蛋白,发现光照可以引起细胞的静息电位发生变化。这项开创性的工作发表在了2002年6月的 Science 上。 2003年,纳格尔和黑格曼又发现了一个新的通道蛋白——ChR2。这一次,他们不但做了更深入的机制研究,而且把ChR2首次在人的细胞(HEK)中表达。作者在文章结论中写道:“ChR2能够成为控制细胞内钙离子浓度或者细胞膜极化水平的有用工具,特别是在哺乳动物细胞中”。 ChR1和ChR2的发现,让一些神经生物学家眼前一亮——这或许就是使用光来控制神经元的理想介质。而光遗传学的大门从这里也正式开启了。 光遗传学的诞生 视紫红质通道蛋白的发现,不仅仅解释的衣藻的趋光性行为,纳格尔和班贝格的实验还证明了这个来自衣藻的光敏感通道能独自驱使动物细胞产生光电流。因此,借助这个光敏感通道,就可以通过光来遥控动物细胞,特别是神经细胞的电活动。 用光来改变神经细胞的电活动是神经科学家长久以来的梦想,光刺激有着比传统药物刺激和电刺激更高的时间和空间的精确性,并且对组织的伤害更小。 20世纪90年代,科学家开始使用光控释放神经递质来激活细胞,但这种方法的时间和空间的精确性仍然不够。 2002年,奥地利神经科学家格罗米森伯克 (Gero Miesenböck)开始在光控中引入遗传学,尝试将果蝇眼中的视紫红质表达在哺乳动物细胞中,或者将哺乳动物的离子通道表达的果蝇的神经细胞中。使用遗传学的优势在于,可以专门针对研究者想到测试的神经细胞进行遥控,但米森伯克缺乏一种强有力的工具可以让光精确地改变神经活动。格罗米森伯克 (Gero Miesenböck) | 图源:cncb.ox.ac.uk 2003年在衣藻中发现的视紫红质通道蛋白正好提供了这样一个强有力的工具。 2000年,爱德华博伊登(Edward S. Boyden,1979-)来到斯坦福大学,在钱永佑(Richard Tsien,钱永健的哥哥)和詹妮弗雷蒙德(Jennifer Raymond)教授的指导下,研究小脑神经回路。 在钱永佑的实验室,博伊登遇到了钱永佑之前的博士生卡尔代塞尔罗思(Karl Deisseroth,1971-)。代塞尔罗思之前在斯坦福大学学习神经生物学,并在斯坦福医院当过精神科住院医师。 有着工程背景的博伊登和医学背景的代塞尔罗思经常在一起讨论当时神经生理学的研究技术。多次的思想碰撞让两位年轻人意识到,当时的技术还有很大局限,神经生物学家需要更好的工具来控制大脑中特异的神经元,他们决定开发这样的工具。Edward S. Boyden | 图源:mcgovern.mit.edu 他们最初设想可以使用磁场来控制神经元,在神经元中表达机械拉力敏感的离子通道,然后把微小的磁珠特异性连接到这种通道蛋白上,这样就可能通过外部磁场来控制神经元的电活动。但是,无论是找到合适的机械敏感离子通道基因还是把磁珠连接到通道蛋白上,技术难度都非常大。 后来,博伊登在阅读一篇1999年发表的论文中得到了灵感。这篇论文报道了在嗜盐碱单胞菌中发现的卤化视紫红质(halorhodopsin),能够在大脑的氯离子浓度下工作。这种视紫红质可以在受光照时激活离子通道。 博伊登意识到使用光来控制离子通道比磁场更容易实现。他写邮件给这篇论文的作者,索要了这个蛋白的基因。但后来由于博伊登忙于博士学位论文,这件事情被晾在了一边。 2003年秋天,代塞尔罗思即将独立成为PI,组建自己的实验室。他写邮件给博伊登,希望博伊登博士毕业后可以去他的实验室做博后,一起开展之前讨论的使用磁场控制神经元的项目。卡尔代塞尔罗思 | 图源:www.hhmi.org 从2003年10月到2004年2月,代塞尔罗思和博伊登为即将开始的磁控神经元项目阅读了大量的文献。恰在此时,纳格尔、黑格曼和班贝格及同事们在 PNAS 期刊上发表了前文提到的ChR2的论文。 博伊登阅读这篇论文时立刻意识到,ChR2拥有他们设想过的一切特性:在一个蛋白中把输入信号(光)和输出(去极化神经细胞)偶联起来。事实上,同时意识到这一ChR2这一特性可以用于光控神经细胞的,远不止博伊登一人。 博伊登写信给代塞尔罗思,希望能联系纳格尔索要ChR2的克隆。代塞尔罗思于2004年3月联系了纳格尔。那时,纳格尔已对ChR2做了一些改良,他把这些改良后的克隆寄送给了代塞尔罗思和博伊登。 博伊登当时还在钱永佑的实验室做博士课题。但从2004年7月开始,博伊登几乎把博士课题放在了一边,专心做起了ChR2在神经元中表达的项目。 2004年8月4日的凌晨1点,博伊登在钱永佑的实验室里用蓝光照射表达了ChR2的神经元,成功观察到了去极化和动作电位。早上,他发邮件给代塞尔罗思告诉了他的发现。代塞尔罗思回信:“太棒了!!!!!” 五个感叹号显示了他当时的兴奋心情。 2005年初,张锋(就是后来最早在哺乳动物细胞中使用CRISPR做基因编辑的那位,现麻省理工学院教授)来到代塞尔罗思实验室开始了研究生生涯。他改进了博伊登的表达体系,使用慢病毒在神经元中表达ChR2,大大增加了该系统的稳定性。 2005年4月19日,博伊登和代塞尔罗思把他们的发现投稿给 Science 杂志,遭拒稿,理由是没有具体的科学发现。5月5日,他们投稿到 Nature 杂志,Nature 建议把稿件转投给 Nature Neuroscience 杂志。经过一轮修改,Nature Neuroscience 接受了这篇文章。 光遗传学的其他研究者 自从黑格曼等在2003年发表了光敏通道蛋白ChR1和ChR2,很多科学家都意识到这类光控通道蛋白有极大的应用潜力。一场无形的竞争也在悄然展开。
  • 岛津应用:牛奶中喹诺酮类抗生素残留的检测方案
    喹诺酮类(Quinolones)是一类含有4-喹诺酮母核的化学合成抗菌药,它的抗菌谱广、抗菌活性强,广泛应用于畜牧、水产等养殖业中。然而,喹诺酮类药物有潜在的致癌性和遗传毒性,同时还容易使病菌产生耐药性。因此,喹诺酮类药物残留问题越来越引起人们的关注。美国FDA已于2005年宣布禁止用于治疗家禽细菌感染的抗菌药物恩诺沙星的销售和使用。联合国粮农组织/世界卫生组织食品添加剂专家联席委员会、欧盟都已制定了多种喹诺酮类药物在动物组织中的最高残留限量。 高效液相色谱-串联质谱联用技术是近些年来发展很快的分析技术,具有很高的选择性和灵敏度,对复杂基质中的抗生素类残留具有很强的定性能力,准确度高,是目前超痕量残留分析的首选方法。 本文建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用测定牛奶中14种喹诺酮类抗生素的方法。该方法在7.0 min之内完成14 种目标物的分离分析,且精密度高,线性范围宽,校准曲线的相关系数均在0.999以上。对不同浓度的标准溶液进行精密度实验,连续6次进样保留时间和峰面积的相对标准偏差分别在0.437%和4.937%以下,系统精密度良好。该方法具有超快速、高灵敏的特点,适合动物食品、水产品中喹诺酮类抗生素残留量的快速检测。 岛津三重四极杆质谱仪LCMS-8040 了解详情,敬请点击《超高效液相色谱三重四极杆质谱联用法测定牛奶中的喹诺酮类抗生素残留》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 诺奖风向标:2018年拉斯克奖揭晓
    p style=" text-align: left " & nbsp & nbsp 拉斯克奖被誉为诺贝尔奖“风向标”,在该奖项的所有获得者中,有近90人同时也获得了诺贝尔奖。如下为今年的三个奖项的获得者。 /p p style=" text-align: left " & nbsp & nbsp 2018年,生物医学领域的重要奖项拉斯克奖(Lasker Awards)公布。来自洛克菲勒大学的David Allis、加州大学洛杉矶分校的Michael Grunstein、制药公司阿斯利康的John Glen,以及耶鲁大学的Joan Argetsinger Steitz四名学者,分享了今年拉斯克奖的三个重要奖项。 /p p style=" text-align: left " & nbsp & nbsp 拉斯克奖在生命科学、医学领域享有盛誉,被誉为诺贝尔奖“风向标”。在该奖项的所有获得者中,有近90人同时也获得了诺贝尔奖。中国首位自然科学诺贝尔奖得主、2015年诺贝尔生理或医学奖获得者屠呦呦,2011年也曾荣获拉斯克奖。 /p p style=" text-align: left " & nbsp & nbsp 2018年,拉斯克奖共设立三个奖项:基础医学研究奖、临床医学研究奖以及医学科学特别成就奖。 /p p style=" text-align: left " br/ 2018年阿尔伯特· 拉斯克基础医学研究奖 /p p style=" text-align: left " Albert Lasker Basic Medical Research Award br style=" text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/df6541e2-d83c-40ef-afa9-c37286b19efb.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: left " 获奖理由:发现并阐释了影响基因表达的组蛋白化学修饰。 /p p style=" text-align: left " & nbsp & nbsp 来自加州大学洛杉矶分校的Grunstein教授通过酵母菌的遗传学研究,证明了组蛋白能显著影响活细胞内的基因活性,并为理解特定氨基酸在这一过程中的关键作用奠定了基础。来自洛克菲勒大学的Allis教授发现了一种组蛋白乙酰转移酶,这种酶以特定化学基团附着在组蛋白的特定氨基酸上,被证明是一种基因共激活因子,有着很强的生化活性。 /p p style=" text-align: left " br/ 2018年拉斯克· 德贝基临床医学研究奖 /p p style=" text-align: left " 2018 Lasker~DeBakey Clinical Medical Research Award br style=" text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/0203bd5a-6aff-46d3-a4b0-d11fa378483c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: left " 获奖理由:发现和开发了异丙酚,从而能够广泛应用于麻醉。 /p p style=" text-align: left " & nbsp & nbsp 来自英国制药公司阿斯利康的John B. Glen博士(已退休),发现并开发了异丙酚。异丙酚因起效快、持续时间短、苏醒迅速而平稳,且无残留和不良反应少等特点,已广泛应用于全世界临床各科麻醉及重症病人身上。2016年,世界卫生组织(WHO)认为异丙酚是一种“基本药物”,在发布该决定时,全球已有超过1.9亿人使用过这种药物。 /p p style=" text-align: left " br/ 2018 拉斯克· 科什兰医学特殊成就奖 /p p style=" text-align: left " 2018 Lasker~Koshland Special Achievement Award in Medical Science br style=" text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/3eaab590-0a0e-4ea2-84e1-9a78315b26e0.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: left " 获奖理由:表彰其40年来作为生物医学领域,尤其是在RNA生物学领域所发挥的领导作用,以及对年轻科学家的慷慨指导和对女性科学家的大力支持。 /p p style=" text-align: justify " & nbsp & nbsp 来自耶鲁大学的Steitz教授在生物医学领域发挥着领导作用。她的一系列研究成果和发现对RNA分子研究影响广泛而深刻。作为一名女性科学家,她在多个领域展现着榜样的力量,扶持青年科学研究者,一生致力于科学事业的创新。 /p p style=" text-align: justify " 拉斯克奖简介 /p p style=" text-align: justify " & nbsp & nbsp 拉斯克奖由美国广告经理人、慈善家阿尔伯特· 拉斯克及其夫人玛丽· 沃德· 拉斯克(Mary Woodard Lasker)于1946年共同创立,以表彰在医学领域作出突出贡献的科学家、医生和公共服务人员。该奖项之前共设置有三个奖项:基础医学研究奖、临床医学研究奖和公共服务奖,后又增设特殊贡献奖。 /p p style=" text-align: justify " & nbsp & nbsp 每个奖项的获奖者将会获得25万美元的资助,该奖项由美国和国际的专业团体提名候选人,候选人需准备翔实的证明材料予以专业委员会进行评定,专业委员会里面的专家也是来自相关领域的权威学者。中国科学家屠呦呦2011年获得该奖项,从而使得国内外对其研究工作有深入的认识和了解。 /p p style=" text-align: justify " br style=" text-align: left " / /p
  • 郑州安诺发布安诺液相自动进样器LAS-3620新品
    1.PC端软件操作,操作简便,清晰明了。2.具备多种连接方式,供用户选择。3.兼容性强,可配套不同厂家的仪器设备。4.稳定性高,编码器实时反馈对比,仪器运行更加准确。5.自动化程度高,无人值守,24小时不间断工作。6.200位样品位,充分满足用户样品量大的需求。7.注射器、定量环、缓冲管均可更换不同规格,以满足用户不同需求。8.具有不同进样模式,全定量精度高,半定量灵活性高,可自由设置。9.具有漏液检测功能,实时检测,安心使用。10.具有进样针防撞保护措施,有效防止进样针因意外而损坏。11.具有空瓶检测功能,遇空瓶可选报警或者跳过,避免浪费分析时间。12.具有门检测功能,可选开门亮灯或者开门报警,方便观察和防止意外开门。13.具有样品温控功能(可选),满足用户对样品的温度环境要求。创新点:安诺液相自动进样器LAS-3620有200位样品位,充分满足用户样品量大的需求。同时,还可与液相色谱、质谱,离子色谱联用,在PC端软件以及漏液检测方面与市场同类产品更具创新。 安诺液相自动进样器LAS-3620
  • 诺奖风向标 2017年度拉斯克奖获奖名单揭晓
    p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/611fbb66-6050-4e2a-96bc-421f3de0f516.jpg" / /p p   近日,被誉为“诺贝尔生理学或医学奖风向标”的拉斯克奖名单公布,今年该奖项分别授予在人乳头状瘤病毒HPV(human papillomaviruses)疫苗研发、雷帕霉素靶蛋白TOR(target of rapamycin)激酶信号通路,以及为妇女提供基础健康和生殖保健服务领域做出卓越贡献的科学家或机构。 /p p   2017年度拉斯克奖临床医学研究奖项由美国国家癌症研究所的道格拉斯· 洛伊与约翰· 席勒获得,或将理由是他们的工作“使研发预防宫颈癌和其他肿瘤的HPV疫苗成为可能”,HPV会引起女性宫颈癌以及其他恶性肿瘤等,洛伊和席勒采取了“大胆而又适当的方式”,为好几种安全有效的疫苗设计了蓝图,有望帮助降低宫颈癌的发生率和死亡率。 /p p   2017年度拉斯克基础医学研究奖被由瑞士巴塞尔大学生物中心的迈克尔· 霍尔(Michael N. Hall)获得,因其发现了一种叫作雷帕霉素靶蛋白的TOR激酶,能够控制细胞生长和代谢。TOR信号通路的破坏可能导致糖尿病、癌症甚至是一些与年龄相关的疑难杂症。同时,它对人类具有深刻的医学意义,纠正了很多人类病理学的错误。 /p p   2017年度拉斯克公共服务奖则授予美国计划生育联合会(the Planned Parenthood Federation of America, PPFA),以奖励该组织在过去超过一个世纪的时间里为数百万妇女提供必需的健康与生殖保健服务,美国计划生育联合会是为美国甚至全球提供生育健康护理的非盈利组织。在美国,大约每5名妇女中就有1名曾得到过美国计划生育联合会的帮助。 /p p   拉斯克奖在生命科学、医学领域享有盛誉,在该奖项的所有获得者中,有87人也获得了诺贝尔奖,因此有“诺贝尔生理学或医学奖风向标”之称。例如,2011年,拉斯克奖临床医学研究奖项授予我国科学家屠呦呦,4年后屠呦呦获得诺贝尔生理学或医学奖。 /p p   拉斯克奖奖项由美国先驱广告经理人、慈善家阿尔伯特· 答维斯· 拉斯克(Albert Davis Lasker)及其夫人玛丽· 沃德· 拉斯克(Mary Woodard Lasker)于1946年共同创立,通过奖励在医学领域作出突出贡献的科学家、临床医生及公共事业服务者以改善公共健康状况、支持医学研究。该奖项之前共设置三个奖项:基础医学研究奖、临床医学研究奖和公共服务奖,后又增设特殊贡献奖,拉斯克每个奖项的获奖者将会获得25万美元的奖励。 /p p /p
  • 郑州安诺发布河南安诺+液相自动进样器+LAS-3620新品
    1.PC端软件操作,操作简便,清晰明了。2.具备多种连接方式,供用户选择。3.兼容性强,可配套不同厂家的仪器设备。4.稳定性高,编码器实时反馈对比,仪器运行更加准确。5.自动化程度高,无人值守,24小时不间断工作。6.200位样品位,充分满足用户样品量大的需求。7.注射器、定量环、缓冲管均可更换不同规格,以满足用户不同需求。8.具有不同进样模式,全定量精度高,半定量灵活性高,可自由设置。9.具有漏液检测功能,实时检测,安心使用。10.具有进样针防撞保护措施,有效防止进样针因意外而损坏。11.具有空瓶检测功能,遇空瓶可选报警或者跳过,避免浪费分析时间。12.具有门检测功能,可选开门亮灯或者开门报警,方便观察和防止意外开门。13.具有样品温控功能(可选),满足用户对样品的温度环境要求。创新点:LAS-3620是一款高效、智能的液相自动进样器,该产品可与液相色谱、质谱,离子色谱联用。可自动完成管路清洗、气泡排空、进样、进样后清洗,使工作效率有效提高。该设备配有专用操作软件,方便快捷。 河南安诺+液相自动进样器+LAS-3620
  • 岛津推出牛奶中喹诺酮类抗生素残留的三重四极杆质谱法检测方案
    喹诺酮类(Quinolones)是一类含有4-喹诺酮母核的化学合成抗菌药,它的抗菌谱广、抗菌活性强,广泛应用于畜牧、水产等养殖业中。然而,喹诺酮类药物有潜在的致癌性和遗传毒性,同时还容易使病菌产生耐药性。因此,喹诺酮类药物残留问题越来越引起人们的关注。美国FDA已于2005年宣布禁止用于治疗家禽细菌感染的抗菌药物恩诺沙星的销售和使用。联合国粮农组织/世界卫生组织食品添加剂专家联席委员会、欧盟都已制定了多种喹诺酮类药物在动物组织中的最高残留限量。 高效液相色谱-串联质谱联用技术是近些年来发展很快的分析技术,具有很高的选择性和灵敏度,对复杂基质中的抗生素类残留具有很强的定性能力,准确度高,是目前超痕量残留分析的首选方法。 岛津公司建立了一种使用岛津超高效液相色谱仪和三重四极杆质谱仪联用测定动物源性食品中14种喹诺酮类抗生素的方法。样品经处理后,用超高效液相色谱LC-30A在7 min内实现快速分离,三重四极杆质谱仪LCMS-8040进行定量分析。使用外标法内绘制14种喹诺酮类抗生素的校准曲线,线性良好,相关系数为0.999以上;对不同浓度的标准溶液进行精密度实验,连续6次进样保留时间和峰面积的相对标准偏差分别在0.437 %和4.937%以下,表明仪器精密度良好。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定牛奶中的喹诺酮类抗生素残留&rdquo 。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 诺奖风向标——2022年拉斯克医学奖公布获奖者,包含中国元素!
    拉斯克医学大奖被业界誉为“诺奖风向标”,今年拉斯克大奖获奖项目,包括基础医学奖;临床医学奖和公共卫生服务奖,堪称是诺奖级医学成就!值得关注两项获奖成就中包含了“中国元素”。一是临床医学奖得主是中国香港中文大学的卢煜明教授(详解临床医学讲视频)。他开创性利用孕妇外周血液中存在胎儿微量DNA,发明了无创产前胎儿检测是否患唐氏综合症。其二是围绕着连续近三年的新冠疫情。中国是爆发新冠疫情最早的国家,在当时环境下,各国政府和国际公共卫生机构都在密切关注新冠病毒传播和疫情发展,但苦于无法获得疫情实时数据,预测发展趋势(类似天气预报)。就读约翰霍普金斯大学城市工程系的硕士生董恩生(Ensheng Dong)萌生了建立一个可视化地图的想法,示踪全球新冠疫情实时数据。在导师Lauren Gardner支持下,他发挥了自己不但看懂中文,而且能在第一时间检索到国内疫情数据的独特优势,迅速搭建起来了全球第一个新冠疫情“数据盘”可视化地图模型。被称为新冠疫情仪表盘“大脑”的董恩生他的导师Dr. Lauren Gardner也因新冠疫情可视化“仪表盘”(Dashboard)项目,获得了公共卫生服务大奖。业界称之为流行病学和全球疫情标准化预测模式。(详见获奖感言视频)。拉斯克公共卫生服务奖得主Dr. Lauren Gardner约翰霍普金斯大学新冠疫情“仪表盘”模型获得今年拉斯克基础医学奖的三位科学家因研究和发现细胞与细胞;细胞与细胞基质之间黏附的关键介质整合素Integrins。该重大发现在生理和病理情况下,特别是针对癌症细胞基质和癌细胞之间粘附作用机制给出了全新解答。堪称是诺奖级研究和重大发现。2022拉斯克基础医学奖:Richard O. Hynes (MIT) ;Erkki Ruoslahti (斯坦福Burnham Prebys)和Timothy A. Springer (Boston Children’s Hospital,哈佛医学院)2022年拉斯克临床医学奖获得者及获奖成就——卢煜明教授2022年拉斯克公共卫生服务奖得主Lauren Gardner
  • 诺奖得主阿夫拉姆来宁搭建实验室 加速推动科技成果落地
    日前,诺贝尔化学奖获得者、中国科学院外籍院士阿夫拉姆赫什科加盟宁企,担任江苏公元前科技有限公司生命科学研究院院长,并将搭建其在中国的首个实验室,未来依托自己的研究领域,进一步加速推动科技成果落地。2004年,阿夫拉姆因“破译”泛素调节的蛋白质降解机制获得了诺贝尔化学奖。“泛素调节的蛋白质降解”是一个让普通人感到陌生的专业术语,但在学术界有着颠覆性的意义。阿夫拉姆曾将一个细胞比喻成一支管弦乐队,而这里面蕴藏着成千上万的演奏者——蛋白质,细胞和蛋白质必须有序协作,才能保障人体的健康运行。在人类年轻的时候,这套运行机制可以将坏掉的蛋白质迅速处理掉,然而随着年龄的增长,机制可能出现功能缺失,坏的蛋白质在大脑等器官中累积,造成帕金森病、阿尔茨海默病等疾病。阿夫拉姆的学术贡献是,发现了一种叫“泛素”的蛋白质可以标记出受损和坏的蛋白质,并且与它们结合,直到这些坏掉了的蛋白质被降解。这一发现,将助力人类解开神经退行等疾病之谜。2011年,阿夫拉姆赫什科当选为中国科学院外籍院士。阿夫拉姆此次加盟的江苏公元前科技有限公司是一家以人才为驱动、以ai大模型为先导的科技型健康企业。目前,企业研究院由阿夫拉姆担任院长,企业实验室设计中心主任由瑞典卡罗林斯卡学院医学生物化学和生物物理学系教授罗曼祖巴列夫担任。罗曼祖巴列夫是世界质谱领域的最高荣誉之一——美国质谱学会biemann奖章的获得者。这些高端人才将依托各自的专业积淀,推动更多科技成果在宁加速落地。近年来,南京坚持人才优先理念,夯实引智平台建设,优化服务保障体系,提升科技人才工作水平,重点“引进、留住、用好”科技创新人才资源,为加快培育新质生产力提供强有力的人才和智力支撑。
  • 基于“拉曼组”的最快“细菌耐药性”快检技术诞生
    p   日前,中科院青岛生物能源与过程研究所对外发布,该所单细胞中心提出了基于“拉曼组”的耐药性快检技术,通常能够在一个小时内完成细菌耐药性测量和机制区分,相对于原先需要24至48小时的检测方法大为提速。 /p p   众所周知,抗生素的滥用导致了耐药性的广泛传播。据青能所单细胞中心功能基因组团队徐健研究员介绍,自细菌发现至今,培养法仍是病原菌药敏试验的主流通用标准,但对于临床常见致病菌,培养法耗时长达24至48小时,难以揭示耐药机制,且对于难培养或生长缓慢的细菌无能为力。临床实践上为了指导“精准用药”,急需细菌耐药性及其耐药机制的直接、快速测量技术。 /p p   青能所单细胞中心提出了基于“拉曼组”的耐药性快检技术,证明通过高通量单细胞拉曼成像,能够不经培养、快速、定性、定量地表征细菌的药物应激性并区分其应激机制。据徐健介绍,“拉曼组”是特定条件和时间点下,一个细菌细胞群体之单细胞拉曼光谱的集合。对于任一细菌群体,一个拉曼组的变化可直接反映和表征其针对特定抗生素的敏感性和耐受性。研究人员以大肠杆菌为模式,通过单细胞拉曼光谱的高通量采集,结合多变量分析方法的创新,定量考察了抗生素、醇类、重金属等三类共六种不同类型化学药物在多个剂量、给药时间、细胞抗性条件下的拉曼组变化,证明了拉曼组能够快速区分抗性细菌与非抗性细菌,因此它在抑菌药物筛选或耐药细菌筛选这两方面均具备成为一种新式平台技术的潜力。由于拉曼组基于单细胞成像,不依赖于细菌的繁殖,因此通常能够在一个小时内完成细菌耐药性测量和机制区分。通过系统构建各种主要病原菌和常用抗生素的拉曼组参照数据库,将能建立一个新型细菌耐药性表型组学技术平台,以服务耐药性快检,支撑临床精准用药。 /p p   据了解,上述工作由单细胞中心徐健实验室和英国牛津大学黄巍等合作完成,获得了科技部、基金委、中科院生物高通量检测分析服务网络(STS)项目的支持。 /p
  • 青蒿素挽救数百万生命 屠呦呦领“准诺奖”拉斯克奖
    中广网北京2011年9月25日消息,据中国之声《全球华语广播网》报道,中国中医科学院终身研究员屠呦呦9月23日在美国纽约举行的拉斯克奖颁奖仪式上领奖。当日,有诺贝尔奖“风向标”之称的国际医学大奖――美国拉斯克奖将其2011年临床研究奖授予81岁的屠呦呦,以表彰她“发现了青蒿素――一种治疗疟疾的药物,在全球挽救了数百万人的生命”。这是中国科学家首次获得拉斯克奖,也是迄今为止中国生物医学界获得的世界级最高大奖。     当地时间23日,中国中医科学院终身研究员屠呦呦(中)在美国纽约举行的拉斯克奖颁奖仪式上领奖。   北京时间24日凌晨,纽约,81岁的中国中医科学院研究员屠呦呦因发现青蒿素而登上了拉斯克奖的领奖台。这是拉斯克奖设立65年来首次颁予中国科学家,这一奖项不但是美国最具影响力的医学大奖,更堪称诺贝尔奖的“风向标”。屠呦呦在发表获奖感言时表示,青蒿素的发现是中国传统医学给人类的一份礼物。据了解,拉斯克奖的每个奖项设25万美元奖金。   挽救数百万生命   “在人类的药物史上,我们如此庆祝一项能缓解数亿人疼痛和压力、并挽救上百个国家数百万人生命的发现的机会并不常有。”斯坦福大学教授、拉斯克奖评审委员会成员露西・ 夏皮罗在讲述青蒿素发现的意义时说。夏皮罗表示,青蒿素这一高效抗疟药的发现很大程度上归因于屠呦呦及其团队的“洞察力、视野和顽强信念”,屠教授的工作为世界提供了过去半个世纪里最重要的药物干预方案。   世界数亿人受益   拉斯克基金会网站详细介绍了屠呦呦发现青蒿素及其应用于疟疾治疗的工作。文章指出,几千年来,疟疾肆虐人类、蹂躏文明,2000多年前中国医书《五十二病方》首次记载了青蒿的药物功能,公元340年间葛洪《肘后备急方》记载了青蒿用于抗疟治疗。在中国政府于1967年5月23日启动的“523项目”中,屠呦呦先锋性地发现了青蒿素,开创了疟疾治疗新方法,世界数亿人因此受益,未来还会有更多的人们将受益。“屠呦呦领导的团队将一种古老的中医治疗方法转化为今天最强有力的抗疟疾药。”“通过将现代技术和严密性应用于5000多年前中国传统中医师们留下的遗产,她将这座宝库带入21世纪。”   激动心情难表述   在发表获奖感言时,屠呦呦衷心感谢为青蒿素的发现和应用作出重要贡献的同事。她表示,青蒿素的发现是中国传统医学给人类的一份礼物,传统中医药多年来一直服务中国和亚洲人民,开发传统医药,必将给世界带来更多的治疗药物。她呼吁开展全球性合作,使中医药和其他传统医药更好地造福人类健康。   屠呦呦还在接受美国《临床研究期刊》专访时表示,在经过了那么多次的失败之后,当时自己都怀疑路子是不是走对了,当发现青蒿素正是疟疾克星的时候,那种激动的心情也是难以表述的。自己对获得2011年拉斯克奖深感荣幸,自己只是一个普通的植物化学研究人员,但作为一个在中国医药学宝库中有所发现、并为国际科学界所认可的中国科学家,她为此感到自豪。   揭秘   古代中医药方化出神奇青蒿素   金鸡纳树短暂辉煌   人类对付疟疾的药物,最初并非来自青蒿,而是源于另一种植物――金鸡纳树。   19世纪,法国化学家从金鸡纳树皮中分离出抗疟成分奎宁。随后,科学家人工合成了奎宁,又找到了奎宁替代物――氯喹。氯喹药物一度是抗击疟疾的特效药。   但在第二次世界大战结束后,引发疟疾的疟原虫产生了抗药性。20世纪60年代初,疟疾再次肆疟东南亚,疫情难以控制。科学家们开始寻找对付这种疾病的新药。   美国投巨资打水漂   1967年5月23日,一个集中全国科技力量联合研发抗疟新药的大项目――“523项目”正式启动。漫长的探索中,60多个单位的500名科研人员组成了研发大军,屠呦呦是其中一员。   那是在1969年1月,时年39岁的屠呦呦以中医研究院科研组长的身份加入“523项目”。此前,美国投入巨额资金,筛选出20多万种化合物,但没有找到理想的药物 国内多个省份的科研人员已经筛选了4万多种抗疟疾的化合物和中草药,没有令人满意的结果。屠呦呦首先面临的问题仍是怎么找药。   搜集600多种草药方   从系统整理历代医籍入手,她查阅经典医书、地方药志,四处走访老中医,做了2000多张资料卡片,最后整理了一个600多种包括青蒿在内的草药《抗疟单验方集》,供研究者进一步发掘。   1971年,经过反复筛选、试验,屠呦呦领导的研究小组将目光锁定青蒿。   青蒿是一种菊科草本植物,植株有香气,一岁一枯荣。公元340年,东晋的葛洪在其撰写的中医方剂《肘后备急方》一书中,描述了青蒿的退热功能 李时珍的《本草纲目》则说它能“治疟疾寒热”。   在众多中草药中,研究小组发现青蒿对疟疾的抑制率相对较高,能达到68%。然而,之后的重复试验中,青蒿的抑制率反而降低了。   190多次失败终成功   “我们祖先早有用青蒿治疗疟疾的经验。我们为什么就做不出来呢?”屠呦呦再次翻阅古代文献寻找答案。《肘后备急方》中的几句话引起了她的注意:“青蒿一握,以水二升渍,绞取汁,尽服之。”   绞汁使用的办法,和中药常用的煎熬法不同。这是不是为了避免青蒿的有效成分在高温下被破坏?屠呦呦受到启发,想到用沸点较低的乙醚制取青蒿提取物。   经过190多次失败后,终于,用乙醚制取的191号样品,对鼠疟猴疟的抑制率达到了100%。   1972年3月,屠呦呦在南京召开的“523项目”工作会议上报告了实验结果 1973年初,北京中药研究所拿到青蒿素的结晶。随后,青蒿结晶的抗疟功效在其他地区得到证实。“523项目”办公室将青蒿结晶物命名为青蒿素,作为新药进行研发。   几年后,有机化学家完成了结构测定 1984年,科学家们终于实现了青蒿素的人工合成。
  • 磐诺-仪器维护服务推出啦!
    您在使用GC时是不是会碰到下列问题:公司内部报修流程繁琐?整年维修费用不可控,增加财务风险?仪器维修不及时,影响生产?结果是花了大量时间、人力还不能解决问题。不用担心,磐诺会帮您解决所有问题!多种仪器维护方案可供您选择,您可以放心使用仪器,专注于您的实验分析!磐诺仪器维护服务包括:● 全面的预防性维护提前发现隐患,避免更大损失和影响。● 磐诺品牌旗下所有GC的专业维修服务LAB GC、Pro-GC 、GC-MS、在线GC等系列产品,让您放心购买磐诺产品。● 其他主流品牌(安捷伦、岛津)的维护、维修针对安捷伦、岛津等主流产品,磐诺根据实际情况,也可在一定程度上提供相应的维护及备件销售。● 定制化服务独家设定适合您需要的服务内容,为您提供管家式服务。为什么一定要选择磐诺维护服务?● 专业化的售后服务团队覆盖全国(西藏青海除外)。专业:磐诺服务团队60%以上工程师具有8年以上各大主流品牌维修维护经验,您的实验室多个品牌的同一选择。全国覆盖:常州总部设立服务调度中心,服务站点覆盖全国,敏捷快速地响应您的需求。● 完善的服务体系,协作效率高,为您的仪器保驾护航。专业的事,交给专业的人!您还在犹豫什么,赶紧联系吧!服务专线:400-608-6890
  • 重磅!默沙东新冠治疗药莫诺拉韦胶囊获批进口注册
    据国家药监局网站,12月29日,国家药监局根据《药品管理法》相关规定,按照药品特别审批程序,进行应急审评审批,附条件批准默沙东公司新冠病毒治疗药物莫诺拉韦胶囊(商品名称:利卓瑞/LAGEVRIO)进口注册。本品为口服小分子新冠病毒治疗药物,用于治疗成人伴有进展为重症高风险因素的轻至中度新型冠状病毒感染(COVID-19)患者,例如伴有高龄、肥胖或超重、慢性肾脏疾病、糖尿病、严重心血管疾病、慢性阻塞性肺疾病、活动性癌症等重症高风险因素的患者。患者应在医师指导下严格按说明书用药。国家药监局要求上市许可持有人继续开展相关研究工作,限期完成附条件的要求,及时提交后续研究结果。
  • 发妻揭中科院院士候选人挪用科研经费包二奶
    中科院地质与地球物理研究所:已得知网帖举报但是否属实尚难定   从7月9日开始,一则题为《中科院院士段振豪包养二奶,小三,小四,养私生女》的帖子在网上疯传,其中在天涯论坛点击量达65万多次。   根据发帖的“发妻”描述,“准院士”段振豪包二奶养私生女,被老婆发现,竟谎称是“捐精”。结婚24年发妻在美国带着儿子辛苦打拼,他却在北京给几名情人各送一套房,并且挪用了国家的科研经费。而网帖所指风流案主角直指中科院院士候选人、中科院地质与地球物理研究所研究员段振豪。   昨日,中科院地质与地球物理研究所回应称,已经关注到网上关于段振豪包二奶的举报,但情况是否属实目前尚不清楚。而当事人段振豪也一直对事件保持沉默。   在中科院地质与地球物理研究所“杰出青年”一栏,段振豪的名字在列,并担任多项学术职位。包括颇有分量的国际地球化学学会 “哥德斯密特”奖评委,国际重大科学计划(地球深部碳探测)共同主席,中国矿物岩石地球化学学会副理事长,中国科学院地球科学学位委员会副主席,杰青获得者、百千万人才工程国家级人才。   在今年5月底公布的2011年中科院院士增选有效候选人名单中有段振豪的名字,其专业为计算地球化学,年龄51岁,为地学部52名候选人之一。   爆料:私生事发称在“捐精”   这位“发妻”还披露,段振豪包养二奶的钱是挪用科研经费。“段的家人包括他的母亲,两个弟弟、弟妹、侄子都知道这个私生女及私生女的母亲。这对母女住大庆市。每次来回不坐飞机,不是为给段家省钱,而是因为火车票是不记名的,段可以用科研经费报销。段教授这些年送出去的3套北京房产,价值千万以上,他从哪里拿到这么多的钱。用脚去想,都知道国家每年拨的上千万的科研经费哪里去了?”   这位“发妻”还表示,段除了与蔺×梅有私生女和与张×红有不正当关系外,还与自己的博士学生张×捷也长期保持私情。据其描述,由于张×捷之前跟另一个博导做课题,但她干了半天什么也干不出来,照这样下去张×捷肯定是毕不了业,于是转投做了段的学生。“我真不知道张×捷为什么跟段上床,我的唯一的解释就是她要段振豪给她的毕业开绿灯。”   这位“发妻”还表示,段振豪为了掩盖他丧失道德底线地与有夫之妇生私生女的行为,还编造一个自欺欺人的“捐精说”。据其介绍,当她掌握并证实段有私生女及小三蔺×梅、张×红的证据之后,于3月30日到段振豪的办公室跟他摊牌。当她要他交代他所有隐瞒她的人、事、物时,段振豪称自己在“捐精”。   网友在围观“准院士”的“风流韵事”时,呼吁段振豪的主管单位中科院应介入调查,给公众一个交代。   “发妻”:电子邮件露“奸情”   这位“发妻”在网帖中说,自己与段于1987 年结婚。段于1988年6月22日赴美到加州大学圣地亚哥分校做博士后。自己于1989年儿子9个月的时候放弃了律师职业到美国与段团聚。段1998年应聘百人计划回国在大学培养研究生,2001年又应聘百人计划到了北京著名的科研单位。在2007年之前,段每年在美国的时间比在中国的多,2007年后他一年回美国两三次,每次两三个星期。近年来段的国内、国际头衔逐渐增加,于是他整天忙得没有时间关心自己,自己也理解。   据其介绍,今年3月份收到的一封电子邮件使得段振豪包二奶的事情败露。这封邮件的内容是:“您恨我恨错对象了,我既不是为您老公生私生女的女人,更不是能够威胁到您将来财产的人。”随后她回到国内进行调查,发现蔺×梅、张×红是段振豪的“小三”,并且段振豪还与蔺×梅有一名名叫“逸飞”的私生女。   单位:已知举报是否属实难定   记者昨日向中科院进行求证。中科院纪检监察一室郭建军主任表示,中科院对干部职工进行分级管理,由于段振豪只是一般研究人员,“中科院像这样的科研人员一共有六七百人,一般我们对厅局级以上的才直接进行过问或调查。”郭主任还表示,段振豪并非中科院院士。目前,中科院纪检监察部门并未收到群众举报,也未收到地质与地球物理研究所关于段振豪包二奶情况的汇报。  中科院地质与地球物理研究所党群办公室负责审计工作的尹东岳告诉记者,已听说了段振豪研究员在网上被举报包二奶的事情,但情况是否属实,目前尚不清楚,具体还有待调查。   记者拨打了中科院地质与地球物理研究所网站上公布的段振豪的办公电话,但没能联系上段振豪。   后续报道:中科院候选院士段振豪贪污科研经费被刑拘
  • Think-lab思科莱博超纯水进入诺贝尔奖得主实验室
    2014年04月08日,中国上海,Think-lab思科莱博继在2013年完成中国主要城市北京、上海、广州首批用户机器安装调试并投入使用之后,在刚刚过去的2014年一季度,再传捷报: Think-lab思科莱博超纯水强势进入2013年诺贝尔奖得主、美国科学家詹姆斯E罗斯曼(James E. Rothman)领衔的上海科技大学免疫化学研究所实验室,超越所有竞争对手,成为该实验室超纯水首选品牌,数量达到5台。 2013年诺贝尔奖得主、美国科学家詹姆斯E罗斯曼(James E. Rothman) 作为全球最顶级科学家的实验室,对产品品质有近乎苛刻的要求,最终选用Think-lab思科莱博超纯水,既是对Think-lab思科莱博超纯水高品质的一种肯定,也是对Think-lab思科莱博“创新、专注、分享,帮助客户取得成功!”核心价值观的认可。 来自德国的顶级实验室纯水/超纯水Think-lab思科莱博以工艺精湛、品质稳定著称,秉持专注于高端市场的市场策略,过去一年,取得了非常可喜的成绩,客户全部为高级别的高校科研机构和医院,包括:中科院、上海交通大学、同济大学、第二军医大学、上海中医药大学、上海海洋大学、上海科技大学、北京亦庄生物医药园、华南理工大学等高校科研机构;长征医院、同济医院、龙华医院、上海市第十人民医院、上海市胸科医院等三甲医院。 关于上海科技大学: 上海科技大学是由上海市人民政府与中国科学院共同举办、共同建设、共同管理,经教育部批准的小规模、高水平、国际化的研究型大学,2013年正式成立,目前受聘的专任老师中,已有3位诺贝尔奖得主、1位美国三院院士、26位两院院士、70位国家杰出青年科学基金获得者、30位“千人计划”人才和3位外专“千人计划”人才。 2013年诺贝尔奖得主成为上海科技大学特聘教授链接如下: http://www.edu.cn/xw_1608/20131129/t20131129_1046355.shtml 关于Think-lab思科莱博: Think-lab思科莱博是一家来自美国的公司,专注于生命科学研究相关的实验室设备及实验室信息系统领域的研发与销售服务。Labonova是Think-lab思科莱博旗下专注于高端实验室纯水/超纯水业务的品牌,产品全部来自于德国,工厂拥有超过30年的实验室纯水/超纯水生产经验,以工艺精湛、品质稳定著称,拥有业内最精准的技术,为广大科研工作者提供新选择。 2014年Think-lab思科莱博投入极大的资源与全国合作伙伴一起推广Labonova纯水/超纯水,将在9月份上海举办的业内最大的慕尼黑生化展1号馆生命科学馆设有36平米的独立展台,与业内众多一线品牌共同为广大客户和经销商提供支持和服务。
  • 人民日报:“诺奖效应”能推动中医走多远
    p style=" text-align: center "    img title=" u=515896581,1046558850& amp fm=11& amp gp=0.jpg" src=" http://img1.17img.cn/17img/images/201512/insimg/7be51b3e-fb14-45e6-9dc8-cd0e50d75b6c.jpg" / /p p   85岁的中国中医科学院终身研究员屠呦呦开启了诺奖之旅。北京时间12月7日晚,瑞典卡罗林斯卡医学院诺贝尔大厅,屠呦呦用中文发表题为《青蒿素——中医药给世界的一份礼物》的演讲。10日,她还将出席颁奖典礼,实现中国大陆科学家诺奖零的突破。 /p p   屠呦呦获得诺奖,使一向被质疑“不科学”的中医,终于吐气扬眉、为国争光,更让世界认识到了中医药这个伟大宝库,也被业界认为是岐黄之术发扬光大的最好时机。对中医药宝库来说,青蒿素的发现,不过是“小荷才露尖尖角”,人们相信,中国传统医学带给世界的礼物,会越来越多。 /p p   但也有人担心,“诺奖效应”有限。如果制约中医药发展的根本性障碍不能破除,青蒿素获得诺奖这一事件,不过是打了一针兴奋剂,一时风光无限,却易潮涨潮退,中医药“捆着手脚”的发展处境仍难扭转。 /p p   忧虑并非多余。 /p p   在2015年诺贝尔奖生理学或医学奖得主新闻发布会上,屠呦呦说:“青蒿素一旦产生耐药性,就需要再花十年时间研究新药。”科学家的担忧是理性的。青蒿素尽管来源于中医药,却是一个不折不扣的西药。在人类与疟疾的斗争中,无论是最初“抗疟神药”氯喹,还是如今的“中国神药”青蒿素,临床应用上都容易产生耐药性。这根源于“对抗医学”,是西医学无法解决的通病。耐药细菌出现了,超级病毒诞生了,人类会陷入无药可医的窘境。 /p p   以肺结核为例,曾经一度销声匿迹,近年却卷土重来。随着西医药局限性的凸显,中医药的独特作用引人注目。遵循“道法自然”“天人合一”的思想,中药极少出现耐药性,展现出中医和平介入、系统治疗模式的强大优势。这也难怪屠呦呦老人多次强调:“青蒿素是一个古老中药的真正馈赠。”如果不能继续挖掘、善用,浪费馈赠还算小事,更重要的,是不能造福世人。 /p p   屠呦呦老人对青蒿素前景的担心,也是人们对中医药前景的担心。不可否认,近年来,中医药在国内的发展取得长足进展,这把打开中国传统文化的“钥匙”,正在惠及更多民众。然而,中医药长期处于被审视、被验证的地位并没有得到根本改变。源于西方的评价审批体系,常常强迫“不科学”的中医药“削足适履”、委屈地穿上西医的鞋子。中医西化、中药西管,缺乏灵活和本土特色的机制,以至于有人戏称,“杀死中医不用刀,强制西化就能让其武功尽废”。话虽尖锐,却是警醒:作为一种独特的医药资源、潜力巨大的经济资源,一种具有原创优势的科技资源、优秀的文化资源,如果我们自身不注重传承、不注重创新、不注重弘扬,“有宝挖不出”,那么今后,只怕类似青蒿素的药品,都将成为“中西医结合”的产物,中国也只能成为“中医的故乡”——倘如此,我们将如何面对先祖? /p p   从2011年获得拉斯克奖,到2015年获得诺贝尔奖,中医药早已不是“养在深闺人未识”,这让人们对中医药未来多了自信。借助诺奖劲风,如果能重新审视定位中医药,打破束缚发展的痼疾,加快建立激励机制,让古老的中医药在现代科学体系里光大发扬,那么,诺奖就不再只是世界吹向中国的一阵风,“诺奖效应”才会发挥更大效用。如此,才能有更多“青蒿素”走向世界,让更多“屠呦呦”造福民众。 /p
  • 多重naica® 数字PCR方法同时监测水质中多种细菌种类和计数
    导读在现代水产养殖中,水产养殖系统是为鱼类或其他物种的集约养殖而设计,其水质直接影响鱼类的健康和生产,而微生物在去除有机物和氮循环、有毒硫化氢(H2S)的产生方面发挥着至关重要的作用,微生物种类和数量会直接影响鱼类的健康,准确计数特定种类的细菌对控制潜在风险至关重要,尤其是那些对养殖鱼类及其最终消费者具有致病性的细菌。因此亟需高精度、高特异性、高敏感性且快速的方法,监测特定种类的细菌和数量。挪威海洋科技研究中心SINTEF Ocean科学家建立基于naica® 微滴芯片数字PCR系统的多重数字PCR绝对定量评估鲑鱼三种关键病原体、人病原体单核增生李斯特菌、影响鲑鱼生存环境的硫酸盐还原菌(SRB),用于水产养殖的相关优势细菌进行监测。该方法在发表于《Journal of Microbiological Methods》杂志上,题为“Absolute quantification of priority bacteria in aquaculture using digital PCR”。应用亮点:▶ 使用naica® 微滴芯片数字PCR系统直接绝对定量水产养殖系统中五种细菌。▶ 开发同时定量水产养殖水质检测相关五种细菌的多重数字PCR检测方法。▶ 基于naica® 微滴芯片数字PCR检测方法具有灵敏度高、特异性高、耗时少的优势。科学家建立数字PCR方法监测与鲑鱼养殖生产过程中三类不同的细菌:第一类:鱼类病原体,与鱼类的溃疡性疾病有关的粘放线菌Moritella viscosa,会引起肠性红嘴病的鲁氏耶尔森菌Yersinia ruckeri以及与鱼类的细菌性冷水病有关的黄杆菌Flavobacterium psychrophilum。第二类:人类病原体,可以从海产品转移到消费者身上的人病原体,单核增生李斯特菌Listeria monocytogenes。第三类:破坏鱼类生长环境的细菌。通常硫酸盐还原细菌(SRB)在厌氧条件下通过将硫酸盐(SO42-)转化为有毒的硫化氢(H2S)来影响鱼类健康。可通过以脱硫弧菌Desulfovibrio desulfuricans为参考菌株进行SRB检测。研究学者利用naica® 微滴芯片数字PCR系统的单重和多重检测方法对上述优势菌种进行绝对定量。结果表明粘放线菌Moritella viscosa,鲁氏耶尔森菌Yersinia ruckeri,黄杆菌Flavobacterium psychrophilum检出限低至20fg,李斯特菌Listeria monocytogenes和脱硫弧菌Desulfovibrio desulfuricans DNA检测含量可低至2fg,均具有更宽的线性范围,线性拟合度R2均在0.999以上(图1)。多重naica® 微滴芯片数字PCR系统检测结果与单重分析中检测到的目标基因浓度吻合(图2,图3)。此次研究充分证明了naica® 微滴芯片数字PCR系统可以同时精确定量复杂水质样品中多种类细菌。▲图1:naica® 微滴芯片数字PCR系统定量5种细菌的线性回归图,分别给出相应的方程和回归系数。▲图2:对鲁氏耶尔森菌Yersinia ruckeri(A)黄杆菌Flavobacterium psychrophilum(B)的单、双重分析结果进行比较。在MMC-DNA背景(1 ng/μl)中添加鲁氏耶尔森菌Yersinia ruckeri ,黄杆菌Flavobacterium psychrophilum gDNA,10倍稀释后进行基因拷贝数定量。▲图3:在1 ng/μl MMC-DNA背景下,单重(圆形)和三重(三角形)测定的靶基因拷贝浓度绘制。恒等线表示每个点的X坐标和y坐标相等的位置。原文链接如下:http://creativecommons.org/licenses/by/4.0/挪威海洋科技研究中心SINTEF Ocean为全球开展的海洋相关科学研究和创新,致力于海洋技术、生物标记和海洋环境技术研究。
  • Q-Lab 2011上海国际汽车耐候老化技术研讨会成功召开
    Q-Lab公司作为行业的领导者,多年来一直坚持不懈地致力于光老化及耐候性的技术推广工作。继2006年广州之后,2007年和2009年相继在上海举办了国际汽车耐候老化技术研讨会,并得到一致的好评。今年我们又一次成功地举办了&ldquo 国际汽车耐候老化技术研讨会&rdquo ,此次会议有近100家单位,200位嘉宾与会,是汽车行业的一次盛大而成功的技术交流会。 美国Q-Lab公司上海代表处首席代表张恒先生主持了此次会议,来自汽车产业链的九位专家给大家作了精彩的演讲,主机厂的专家有:中国第一汽车集团公司技术中心王纳新高工、奇瑞汽车股份公司陈拯主任;检测机构专家有:襄樊国家汽车测试研究中心柳立志主任、美国Q-Lab公司副总裁Mr. Ronald Roberts先生、孙杏蕾经理、国防科技工业自然环境试验研究中心李泽华高工;来自汽车材料和设备供应商专家:上海普利特复合材料股份有限公司张鹰博士、BASF公司徐莉珺经理、柯尼卡美能达(中国)投资有限公司赵伟琦经理与大家分享了汽车产业有关耐候老化的新标准、新进展和新技术。 主要议题涵盖了老化测试标准、检测分析以及如何提高材料耐候性等诸多内容,老化标准方面的议题包括: 中国汽车内外饰老化国家标准的制定过程、主要成果和相关性研究;美国最新的、与佛罗里达曝晒相关性更好的加速老化测试方法;汽车内饰材料的发粘评估方法等。检测方面及如何提高材料耐候性的议题包括:汽车内外饰材料老化现象分析;汽车内饰材料环境失效分析方法探讨; UV穿透率测试在涂层性能检测中的应用;材料日晒老化的色彩测量等;汽车PP/TPO材料的稳定性等。 汽车工业协会相关分会周一兵名誉理事长、泛亚汽车技术中心刘树文经理、上海大众有限公司李鹏主任、神龙汽车有限公司杨娇娥主任、通标公司汽车部华东区王子翼总经理等专家在头脑风暴环节回答了大家有关中国汽车行业发展的诸多问题。 参会嘉宾对此次会议给予很高的评价,认为这是一次成功的会议,此次会对国家标准制定的指导过程结果进行了充分的讨论,并对一系列的科研成果及老化技术重点做了交流;并希望以后多举行这样的研讨会,有针对性的解决各汽车厂商及材料生产厂家在生产过程中遇到的问题,把最新研发的新技术新方案及时共享。 如需了解详情,敬请联系: 美国Q-Lab公司上海代表处 Q-Lab China Office Tel:+86-21-58797970 Fax: +86-21-58797960 E-mail: info@q-lab.com.cn www.q-lab.com
  • Q-LAB中国2016年涂料行业耐候老化技术交流会将于上海举行!
    Q-Lab中国2016年涂料行业耐候老化技术交流会将于上海举行!时间:2016年4月20日(周三)13:00-17:00 行业:涂料会议地点:上海市中心某酒店,根据报名参会人数待定。(故请尽早联系我们,以便及时安排会场及讲义!) 主办单位:美国Q-Lab公司是一家材料耐久性测试产品的全球供应商。公司成立于1956年,设计和生产标准测试底板、老化、光稳定性试验箱及腐蚀盐雾箱。此外,Q-Lab佛罗里达和亚利桑那办事机构还提供第三方测试服务,其服务内容有加速实验室测试和老化、光稳定性和腐蚀户外曝晒测试。 H. J. Unkel Ltd — 翁开尔有限公司, 始创于1925年,总部位于香港。专业代理世界知名的涂料业的检测仪器和化工原料,并提供相关的技术和维修和设备保养服务。公司目前业务遍及亚洲包括中国在内的七个国家和地区。翁开尔公司在国内下辖上海和佛山两家公司以及北京、青岛、武汉、重庆和厦门八个办事处。翁开尔公司在国内拓展业务多年来,立足涂料行业,已经和众多知名的涂料厂商有了广泛的合作。随着涂料应用领域的延伸,公司目前的客户涉及科研院所、检测认证机构、汽车、塑料、型材、包装等。 随着中国材料行业的蓬勃发展和社会消费水平的提高,价格已经不再是大众选择的唯一标准,材料的外观及品质逐渐成为消费者及厂家关注的焦点。近几年来,如何提高材料的耐候老化性能也逐渐成为这个行业的重要课题,但许多厂家对于材料的老化测试及评价还比较陌生。因此,对于材料老化测试的最新进展及研究成果的了解和讨论是非常必要的。 材料的老化是不可避免的,但进行对比测试会有何收益?您可以进行材料优劣筛选,通过选用不同的或者新的原材料把产品的老化带来的损失降低到最低;还可以选用一些价格相对便宜但老化性能符合要求的材料,降低产品的成本。这次研讨会将提供一个交流的平台,将从以下两个方面探讨涂料耐候老化相关问题:-材料老化测试机理、实验室加速测试及户外曝晒测试的相关性研究-国内外涂料标准的解读:ASTM D 7869 vs. SAE J2527的对比-现代腐蚀测试方法-Q&A嘉宾答疑时间免费参会,名额有限,请及时联系我们注册!期待您的参与! 请联系: 美国Q-Lab公司中国代表处 info.cn@q-lab.com +86-21-5879-7970 扫描关注Q-Lab中国微信公众账号:耐候腐蚀设备及测试专家耐候腐蚀测试领域咨询、技术零距离!
  • 诺基亚(中国)研发中心选用HunterLab顶级的颜色检测系统
    近日,诺基亚(中国)研发中心选用美国HunterLab顶级的分光光度计HunterLab UltraScan Pro,用来配合新的手机产品及配件的颜色检测系统。这样,诺基亚在全球的研发部门都是选用了HunterLab UltraScan Pro,检测数据达到高度一致。
  • 耐驰成功参展2011 China Plas
    2011年5月17日,广州琶洲展馆,2011年China Plas 盛大开幕。China Plas作为亚洲最具规模的橡塑业展会,在中国已经成功举办二十一届,当然这次也不例外,参展人数再创新高,开放展馆达22个,参观的人流络绎不绝。展会分设原材料、注塑机械、包装材料、辅助设备及测试仪器专区,还根据参展企业来自不同国家分设德国、美国、加拿大、法国、英国、奥地利、台湾等展区。展会不但设有展区,还分设技术交流报告,报告场次多达40几场,这些报告增加了展会的学术氛围,更提亮了整个盛会。 会场一隅 德国耐驰仪器公司作为国际一流的热分析仪器供应商,成功参展此次盛会。耐驰携带两款经典产品(差热分析仪DSC204F1、热重分析仪TG209F1)亮相展会现场,DSC和TG分析仪是塑料及橡胶行业必不可少的分析手段,在橡塑界已得到广泛应用,他们可以快速分析材料的各种物化性能、表征材料的各种重要的特征转变温度、重量变化等信息。 新老客户热烈交谈 展会现场,可以说成了新老朋友交流的平台,参展的很多企业都是我们的老客户,大家难得再次重逢,现场交流技术经验。同时又有很多新朋友对热分析仪器感兴趣,一一到展台索取资料,参观仪器,询问各种技术问题,耐驰带来了最新的各种仪器样本、技术资料,为客户提供了最新的耐驰新技术。 如想了解更多耐驰公司的信息,请登录公司网站:www.netzsch.cn
  • Q-Lab 2013上海国际汽车耐候老化技术研讨会成功召开
    Q-Lab公司作为行业的领导者,多年来一直坚持不懈地致力于光老化及耐候性的技术推广工作。继2006、2007、2009和2011年举办国际汽车耐候老化技术研讨会, &ldquo 2013国际汽车耐候老化技术研讨会&rdquo 于今年9月12日, 在上海齐鲁万怡大酒店成功举行,此次会议有近100家单位,150多位嘉宾与会,是汽车行业的一次盛大而成功的技术交流会。 本次会议共有10位专家做了精彩的演讲,其中Q-Lab副总裁Ron Roberts先生和前巴斯夫专家John Boisseau先生分别介绍了最新发布的ASTM D7869的技术背景和详细内容;Q-Lab的技术经理孙杏蕾女士介绍了汽车老化国家标准的技术背景和应用。其它议题还包括:比亚迪汽车工程院的零部件试验部汪浩主任的如何真实反映汽车使用中腐蚀老化问题探讨;重庆59所自然环境试验中心田月娥研究员的车辆涂层海洋环境腐蚀的快速评估;SGS汽车部辛羽的几种光老化测试方法及典型汽车零部件综合老化测试结果分析;清华大学杨睿教授的聚烯烃复合材料的老化行为和机理研究;BYK仪器部沈恺经理的分光色彩精灵用于耐候性试验试后颜色变化的监测;金发科技技术研发高级经理的车用聚丙烯材料老化的影响因素及解决方案;北京天罡商业发展经理刘罡的汽车用塑料材料的防老化技术发展。这些来自主机厂、测试机构、高校和材料供应商的嘉宾分别结合各自的工作领域和研究成果, 从老化问题的提出、发现、研究和解决方面,对材料耐候老化问题多角度地进行了深入的探讨,吸引了众多与会者的极大兴趣和参与。 本次会议受到了参会者的一致好评,如来自上海日之升新技术发展有限公司的娄先生在反馈中所述:&ldquo 这是一次成功的会议,在行业内的资讯都很前沿,机理和实用性探讨都受益匪浅。&rdquo
  • 诺奖得主小组用石墨烯制成隔气透水材料
    英国曼彻斯特大学教授安德烈海姆最近利用氧化石墨烯制作出了一种新型隔气透水材料。这种材料的神奇之处在于,绝大多数液体和气体都无法通过它,但水蒸气可以畅通无阻。   石墨烯是从石墨材料中剥离出来的,由碳原子组成的二维晶体。它只有一层碳原子的厚度,是目前世界上最薄的材料。海姆和同事康斯坦丁诺沃肖洛夫2004年在世界上最早制作出石墨烯,并因此共同获得2010年诺贝尔物理学奖。   近日,海姆在美国《科学》杂志上报告说,他的研究小组把石墨烯加工为氧化石墨烯后,制成一种薄膜,这种薄膜的厚度只有一根头发的几百分之一,但强度和韧性都很好。   特别神奇的是,这种薄膜具有特殊的隔气透水的性能。在实验中,用这种薄膜封装的绝大部分气体和液体都无法逸出来,显示出良好的密封性,唯有水能够照常蒸发。   海姆研究小组成员拉胡尔奈尔说,他们做了一个有趣的实验,用这种薄膜封好一瓶伏特加酒,结果随着水分蒸发,酒的味道越来越浓。   奈尔说,独特的隔气透水性质,注定这种新型材料将会拥有广阔的应用前景。(来源:新华网 黄堃)
  • 【干货分享】昊诺斯第九期“组织研磨和样品处理分享、讨论”
    【干货分享】昊诺斯第九期“组织研磨和样品处理分享、讨论”这一期我们为大家提供的案例是“石榴皮研磨提取RNA”:实验:石榴皮研磨提取RNA实验地点:武汉某生物公司试验样品:石榴皮样品 1、将石榴皮剪成小碎块冻存,实验时取出放入圆底离心管,单管放入体积不超过离心管体积的1/3;2、在离心管中加入硬质不锈钢研磨珠,盖好管盖,与适配器一起放入液氮然后取出;3、将取出后的适配器安装在TL2010S中通量组织研磨仪上,参数设置为一定转速,研磨一定时间。在昊诺斯销售工程师对以上案例简单讲解之后,用户们在“昊诺斯鼎昊源组织研磨分享”群内进行了热烈的分享、讨论: 用户:石榴皮含有果胶吧? 昊诺斯:应该含有少量果胶,其实石榴皮也算是植物样品中的一类。用户:果胶纤维素的存在对检测过程有影响吗? 昊诺斯:研磨的方法与研磨叶片相同。用户:我看看。 昊诺斯:应该不会有影响,现在的RNA提取试剂还是挺成熟的。用户:时间不一样吧。 昊诺斯:您是说研磨时间?用户:嗯,知道了,还有提取试剂存在。 昊诺斯:石榴皮冻过液氮以后还是很好研磨的。用户:前面的负八十有必要吗?后面直接液氮了? 昊诺斯:前面的-80是保存样品。用户:前面的负八十有必要吗?后面直接液氮了?我也有同样的疑问。用户:负八十是为了降低空气体积吧,免得液氮时爆开。 昊诺斯:这个使用的客户也是服务公司,样品都是别的客户提供的。 昊诺斯:也有这方面的原因。用户:液氮的温度是多少度?用户:我想问管和钢珠需要depc水处理吗? 昊诺斯:负一百九十多。用户:这个是必须的吧,196。 昊诺斯:如果提取的是RNA,是必须处理的。用户:那我想问问有没有替代离心管的适配器?我一用就裂管。用户:换管子材料吧,能禁得起冷冻的。用户:你们用哪一种牌子的? 昊诺斯:我们的经验是选用圆底2ml离心管,减少液氮冷冻时间,缩短组织研磨仪研磨时间,或者换个牌子的离心管。用户:我都试过了,就在组织研磨仪研磨后发现裂了,所以想问问你们用什么牌子。 昊诺斯:哪位老师用的管效果还可以,可以介绍一下。用户:我们用的一直都不错,也出现过裂管。 昊诺斯:据用户说这款的不错。昊诺斯:还有eppendorf的。用户:进口的?无须灭酶了?用户:然后就调低组织研磨仪转速1000吧,延长打样时间。 昊诺斯:进口的,第一个是Thermo的。用户:其实我个人觉得RNA也没有想象的那么恐怖。用户:哦哦,谢啦。用户:三无的管子。用户:裂管是因为温差变化太大么?用户:就是不清楚。用户:有个疑问啊,DNA和RNA能实现分离吗?用户:钢珠用酒精泡泡,提的RNA就OK。用户:组织研磨仪能否控温? 昊诺斯:现在好像有种提取液可以实现。用户:管子裂是因为液氮下塑料变得脆了,然后高速钢珠一冲撞就裂了。用户:为什么要分离呢?样品很珍贵?用户:您的意思是先提取DNA,然后继续利用提取完的原材料来提取RNA?用户:塑料材质达不到低温保护。用户:提完分别用对应的酶处理这样技能保证量也能保证质。用户:不是,我的意思是两者有没有分离干扰?用户:用trizol说明书上说是可以DNA和RNA分离。 昊诺斯:应该是没有,之前我问过一个客户,用组织研磨仪研磨一次,用特定的提取液,可以同时提取DNA和RNA。用户:同一样品可以同时提取。用户:提 RNA不如DNa省事。用户:我们打样裂过后采取的措施第一减低组织研磨仪转速,打样后然后再冻再打,延长打样时间;二把样品分装两管打样后加上TRIZON再合并。用户:嗯,看来提取剂的选择性已经非常高了。 昊诺斯:您可以先降低下组织研磨仪研磨速度,比如1900转或者1800转,试下。用户:我用的是1700。用户:速度关系不大,是温度导致的。用户:那如何是好?用户:只能换管子材料。 昊诺斯:嗯嗯,就像吕老师说的,可以研磨比如30s,取出后再冻液氮,然后再磨,少量多次。用户:国外进口的不知道现在怎样,之前也碎过好几个,把老板心疼坏了。 昊诺斯:进口的应该效果会好一点,毕竟国内的良莠不齐。用户:当时还不是研磨,只是离心。用户:有个疑问:离心管有金属材料的么?用户:感觉应该有,但没见过。 昊诺斯:我们有5ml不锈钢的研磨管。用户:容积大的我们也有,但是1.5的没见过。用户:304材质的可以,耐低温和高温。用户:不锈钢的成本太高吧,会不会引进交叉污染?用户:但是不锈钢的可以重复使用呀,灭菌即可。 昊诺斯:清洗消毒干净,应该不会交叉污染。用户:304的很耐操的。昊诺斯:304很耐腐蚀。 昊诺斯:盖是什么材质的?用户:标配是聚乙烯,可选配硅橡胶。用户:应该挺成熟了。用户:现在可以适配上这个机器吗? 昊诺斯:看介绍和2ml离心管的尺寸一样,应该可以。 访问http://www.herosbio.com/pro.asp?thebigclassid=14&bpro_id=93可以了解先关产品信息!扫码关注昊诺斯微信公众号
  • 2019“诺奖风向标”拉斯克医学奖揭晓 B细胞、T细胞还有赫赛汀发现者获奖
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/0fda08c7-fee8-4be8-998f-28d5e99fe90e.jpg" title=" 000.png" alt=" 000.png" / /p p style=" text-align: justify text-indent: 2em " Albert和Mary Lasker基金会于9月10日宣布了2019年拉斯克奖(Lasker prize)的获奖者。拉斯克奖奖金为25万美元,是美国顶级生物医学研究奖项,多位获奖者在数年后继续获得了诺贝尔奖,因此常被称为诺奖“风向标”。 /p p style=" text-align: justify text-indent: 2em " 获奖名单如下: /p p style=" text-align: center" img style=" width: 582px height: 383px " src=" https://img1.17img.cn/17img/images/201909/uepic/ffbd1f39-26bb-42c2-baaa-123c47755721.jpg" title=" 001.png" width=" 582" height=" 383" / /p p style=" text-align: justify text-indent: 2em " 2019 年拉斯克奖三大奖项的获奖者为:来自美国埃默里大学(Emory University)的& nbsp Max D. Cooper& nbsp 和来自澳大利亚沃尔特和伊丽莎· 霍尔医学研究所(Walter and Eliza Hall Institute of Medical Research)的& nbsp Jacques Miller& nbsp 获得& nbsp Albert Lasker 基础医学研究奖。 /p p style=" text-align: center" img style=" width: 581px height: 283px " src=" https://img1.17img.cn/17img/images/201909/uepic/f41726cc-08a3-4258-bc7d-1c6e29569d07.jpg" title=" 002.png" width=" 581" height=" 283" / /p p style=" text-indent: 2em text-align: justify " 来自美国基因泰克公司(Genentech)的& nbsp H. Michael Shepard,来自美国加州大学洛杉矶分校(University of California, Los Angeles)的& nbsp Dennis J. Slamon& nbsp 和来自德国马克斯· 普朗克生物化学研究所(Max Planck Institute of Biochemistry)的& nbsp Axel Ullrich(也曾是基因泰克的科学家)获得 Lasker DeBakey 临床医学研究奖。 /p p style=" text-align: center" img style=" width: 580px height: 309px " src=" https://img1.17img.cn/17img/images/201909/uepic/289bf635-ad79-4caa-8f5f-7b881e03ba7b.jpg" title=" 003.png" width=" 580" height=" 309" / /p p style=" text-align: justify text-indent: 2em " 全球疫苗免疫联盟& nbsp GAVI& nbsp 获得 Lasker Bloomberg 公共服务奖。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20180913/471260.shtml" target=" _blank" 查看2018年拉斯克奖(Lasker prize)的获奖者 /a /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201909/uepic/d335bf0d-ec47-4ac1-a8b2-49b33cdefc64.jpg" title=" 企业微信截图_20190906131817.png" / /p p style=" text-align: center " img style=" " src=" https://img1.17img.cn/17img/images/201909/uepic/cfd6e896-5cb4-450a-b800-03ece666dd07.jpg" title=" 企业微信截图_20190828172054.png" / /p
  • 2017年诺贝尔化学奖,花落谁家?
    p   前不久,科睿唯安发布了2017年的各奖项“引文桂冠奖”。自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,因此该奖被认为是“诺奖风向标”。北京时间10月2日起,诺贝尔奖委员会将陆续宣布获得2017年各分类奖项的得主。 /p p   获奖预测是多年来的“传统”节目,各类分析平台、权威机构及个人博客都在为自己“选中”的名单列举获奖理由。 /p p   “引文桂冠奖”、化学权威杂志《化学世界》、著名预测博客等,在25日前后分别对今年的化学奖进行了预测,与碳纳米管、太阳能电池材料和基因编辑技术CRISPR相关的重大成果及其发现者,被认为有望获得第109届诺贝尔化学奖900万瑞典克朗的巨额奖励。北京时间26日,《科学美国人》杂志对此进行了报道。 /p p   strong  “诺奖风向标”指向谁 /strong /p p   科睿唯安(Clarivate Analytics)是各预测机构中的佼佼者。其基于此前汤森路透旗下的知识产权与科技业务板块和出版物索引平台Web of Science,发布了2017年的各奖项“引文桂冠奖”。 /p p   自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,因此该奖被认为是“诺奖风向标”。其最近一次成功预测是2016年诺贝尔化学奖得主之一——弗雷泽· 斯托达特。因此,《化学世界》杂志也将今年的奖项得主纳入预测之列。 /p p   今年,科睿唯安化学领域获得“引文桂冠奖”的有三项:第一项授予俄罗斯科学家格奥尔盖· 舒里平(Georgiy Shul& #39 pin)、美国化学家约翰· 伯考(John Bercaw)和罗伯特· 伯格曼(Robert Bergman),他们的获奖理由是对C-H官能团化的发现有重要贡献 第二项授予美国斯坦福大学化学工程师吉恩斯· 诺斯科夫(Jens Norskov),因其在实体面材的多相催化方面的理论和实践研究,带来了合成氨和燃料电池重大进展而上榜 第三项授予日本的宫坂力(Tsutomu Miyasaka)、韩国的朴南圭(Nam-Gyu Park)以及英国的亨利· J· 斯内斯(Henry J.Snaith),他们因为发现并应用钙钛矿材料实现有效能量转换而获奖。 /p p strong   权威杂志和博客看好谁 /strong /p p   《化学世界》杂志还认为,美国化学物理学家费顿· 艾文瑞斯(Phaedon Avouris)、保尔· 麦克尤恩(Paul McEuen)和荷兰物理学家考恩内利斯· 代克尔(Cornelis Dekker)因对碳基电子产品做出重大贡献,虽然获得了“引文桂冠奖”的物理学奖,但因研究涉及碳纳米管、石墨烯和纳米带等在电子学领域的应用,因此,也有可能受到诺贝尔化学奖的青睐。 /p p   美国加利福尼亚大学研究人员、著名博客作者塞缪尔· 劳德认为,诺贝尔化学奖还有可能颁发给围绕新一代基因编辑技术CRISPR开展原创工作的珍妮弗· 杜德娜(Jennifer Doudna)、伊曼纽尔· 夏波尼(Emmanuelle Charpentier)以及华人科学家张峰(Feng Zhang)。这一提议也获得了遗传生物学家克里斯安托· 盖迪尔瑞兹,以及分子生物学家艾利克斯· 沃尔格的赞同,他们在推特上认为这三个人将拔得头筹。 /p p   此外,还有的著名博客将锂离子电池发明家斯坦利· 惠廷翰(Stanley Whittingham)和约翰· 古德伊纳夫(John Goodenough),以及生物无机化学先驱哈里· 格雷(Harry Gray)和史蒂芬· 利帕尔(Stephen Lippard)列为本届化学奖的竞争对手。 /p p   具体花落谁家,我们还要拭目以待。 /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制