当前位置: 仪器信息网 > 行业主题 > >

扑蛲灵

仪器信息网扑蛲灵专题为您提供2024年最新扑蛲灵价格报价、厂家品牌的相关信息, 包括扑蛲灵参数、型号等,不管是国产,还是进口品牌的扑蛲灵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合扑蛲灵相关的耗材配件、试剂标物,还有扑蛲灵相关的最新资讯、资料,以及扑蛲灵相关的解决方案。

扑蛲灵相关的资讯

  • 我国高端磁兼容脑PET成像仪器实现零突破
    近日,中国科学院深圳先进技术研究院(简称“深圳先进院”)成功研发国内首台高清晰磁共振兼容人脑PET功能成像仪器(命名为“SIAT bPET”),实现了我国在高端磁兼容脑PET成像仪器研发方面零的突破。“通常,PET成像仪器由于探测器的深度不确定效应,空间分辨率会随着偏离成像视野中心而变差,严重影响成像精度。”深圳先进院医工所劳特伯生物医学成像研究中心研究员杨永峰表示,他们团队研发了高三维分辨率双端读出探测器,使得该大口径成像系统达到14%的中心效率(350-750 keV能量窗),和整个成像视野好于1.4 mm的空间分辨率,两项性能指标都处于国际领先水平。 杨永峰介绍道,与国外商业磁兼容脑PET成像仪器相比,SIAT bPET的效率提高了近2倍(从7.2%到14%),平均体分辨率提高了30倍以上(从约64mm3到2mm3)。同时,SIAT bPET采用了创新的电子学和磁兼容设计,使得磁共振成像对PET成像的影响几乎可以忽略不计,PET成像对磁共振成像图像信噪比的影响小于5%,满足同时开展PET/MRI成像的尖端科研需求。 据了解,PET和MRI都是脑科学研究和脑疾病诊断的重要工具,PET的高灵敏度、高定量精度功能代谢成像和MRI的高空间分辨率、高软组织对比度解剖结构成像高度互补,PET和MRI还可以相互辅助,进一步提升各自的脑神经成像能力。PET分子成像通过测量大脑的血流、葡萄糖和氧的代谢、蛋白质的生成、药物的分布和神经递质的动力学等,探索不同脑区的功能,确定病变脑区的功能演变,对于脑疾病干预治疗策略和新药物探索具有重要意义。 “不过,目前市场上并没有高性能脑PET成像仪器。”杨永峰说,与美国脑计划项目正在资助研发的多个高性能脑PET成像仪器相比,SIAT bPET的空间分辨率和效率也处于先进水平。“高空间分辨率使得研究大脑的细微焦点脑功能区和小的核团成为可能,还可以通过降低部分容积效应来提高脑PET成像研究的定量精度;高效率除了通过提高脑PET图像的信噪来提高研究的定量精度,也为高精度研究神经递质活动和其他动态脑生化与功能活动奠定基础。” 2022年,团队成员邝忠华在国际核医学和分子影像年会与IEEE医学成像会议上口头报告了该研究成果,随即引起了广泛的国际关注。同时,该仪器也为开展基于PET功能成像的脑科学研究、老年性痴呆等疾病的早期定量诊断研究和新药开发提供了一台重要的新工具。 据悉,相关研究由基金委国家重大科研仪器研制、深圳市孔雀团队和中国科学院仪器研制团队等项目资助。深圳先进院研制的SIAT bPET探测器系统和脑成像仪器照片SIAT bPET获得的Derenzo模体图、人脑FDG代谢图和兔子NaF骨扫描图SIAT bPET和联影uMR790 3T磁共振成像系统上同时获得的人脑PET/MRI图像
  • Science封面|全球首个脑再生时空图谱
    Science期刊封面近日,由杭州华大生命科学研究院主导,联合来自3个国家的17个单位的科学家共同组成的研究团队分析比较了蝾螈脑发育和再生过程,构建了首个蝾螈脑再生时空图谱,这也是全球首个脑再生时空图谱。9月2日,相关成果以背靠背封面文章的形式发表于国际顶级学术期刊Science。至此,短短半年内,华大时空组学与单细胞技术的相关研究成果已连续四次在《细胞》《自然》和《科学》三大顶级期刊发表,实现了大满贯。人类大脑在受伤之后,很难自行恢复,但是两栖类模式动物墨西哥钝口螈(Ambystoma mexicanum)可以。大脑再生是一个复杂的生物学过程。在这个过程中,发生了哪些关键的变化,有哪些重要的细胞参与?它们又分别行使了哪些功能?通过研究,研究团队找到了蝾螈脑再生过程中的关键神经干细胞亚群,描绘了此类干细胞亚群重构损伤神经元的过程,同时还发现脑再生与发育过程具有一定的相似性,为认知脑结构和发育过程提供助力,为神经系统的再生医学研究和治疗提供新的方向。在具体的研究中,要知道大脑是怎么再生的,研究团队先要了解大脑是如何发育来的。于是,研究团队利用堪称超广角百亿像素“生命照相机”的时空组学技术Stereo-seq,在蝾螈脑发育的6个重要时期,分别“拍摄”“照片”,这组“照片”就构成了蝾螈的脑发育时空图谱。通过它们,研究团队能够“看到”蝾螈脑在发育的过程中,各类神经元的分子特征以及空间分布动态变化。结果发现,蝾螈脑从青少年时期就开始特化出具有空间区域特征的神经干细胞亚型。那大脑受到损伤后再生的过程是如何的呢?研究团队对蝾螈脑的皮层区域进行机械损伤手术,并在损伤后的第2、5、10、15、20、30及60天,利用时空组学技术Stereo-seq对大脑样本进行“拍照”,得到各个时间点的蝾螈脑再生图集,完整记录了蝾螈大脑从损伤,到再生修复完成的过程。这就像对蝾螈大脑恢复过程定期做一个X光检查。不过,得到的片子可比X光片清晰度高多了,不只能看到大脑的形状,还能持续放大,看到大脑里的细胞,以及细胞里的分子变化状态。通过对比7个时期再生“照片”和过程中的伤口状态,研究团队发现,伤口区域在损伤早期就出现了新的神经干细胞亚群,这群重要的细胞由损伤区域附近的其他神经干细胞亚群在受到损伤刺激后转化而来,并在后续的再生过程中新生出神经元以填补损伤部位缺失的神经元。此外,虽然伤口处在修复早期便开始逐步被新生组织填充,但直到损伤后第60天,“照片”才显示损伤区域的细胞类型及空间分布恢复到了未损伤侧的状态。蝾螈脑再生时空图谱图片来源于Science最后,研究人员还对比了蝾螈脑发育和再生过程的神经元形成过程,发现这一过程在再生与发育过程中高度相似,或许脑损伤诱导了蝾螈神经干细胞逆向转化,回到发育时期的年轻化状态,以启动再生过程。论文的共同通讯作者、杭州华大生命科学研究院顾颖博士表示:“蝾螈在进化上相较于其他硬骨鱼类更高等,与哺乳动物脑结构具有更高的相似度。同时,它的基因编码序列与人类极其相似,研究蝾螈脑再生的启动机制,发现其中的关键基因,或将为人类神经系统损伤或退行性疾病的修复提供重要指导。”蝾螈脑再生过程中的关键基因,在人类的基因序列中也存在。那为什么其没有像在蝾螈脑中一样发挥再生的作用?这或许会是科学家下一步研究的课题。技术的发展让本研究的推进成为可能,“本研究主要基于华大自主研发的时空组学技术Stereo-seq进行,其达到了纳米级亚细胞分辨率,结合蝾螈细胞体积大的优势,使得研究人员可以在时空单细胞分辨率上解析蝾螈脑再生这一过程的重要细胞类型,并追踪其细胞谱系变化的空间轨迹。”论文的第一作者、杭州华大生命科学研究院魏小雨博士介绍说。“蝾螈脑发育及再生时空细胞图谱的构建,对于我们理解脑再生这一重要的生命过程、两栖类动物脑结构以及大脑结构的演化具有重要意义,为我们寻找有效的临床治疗方法,促进人类组织器官自我修复与再生提供了新的方向,也为物种进化研究提供了宝贵的数据资源。”论文的共同通讯作者、华大生命科学研究院院长徐讯表示,“未来,我们还将通过时空多组学技术去探究更多器官、更多物种的发育和再生过程,找到再生过程中的关键调控机制,助力人类再生医学的发展。”
  • 实验室非甲烷总烃分析全烦恼?谱育GC来支招~
    非甲烷总烃分析是环境监测中最为常见的分析项目之一。是否时常会发现,天天在做的实验,也有诸多顽疾困扰:甲烷、总烃、氧峰分离不理想;样品中含较多重组分,使得甲烷分析时间过长;污染源样品中组分容易在系统中残留,形成交叉污染等等。问题困扰太多怎么办?别担心,谱育来支招谱育科技GC 2000实验室高端气相色谱仪帮助您解决烦恼~GC 2000 气相色谱仪顽疾1 甲烷柱上组分多,时间长、效率低?众所周知,非甲烷总烃分析过程中甲烷柱上只需要实现甲烷峰的分离并进行定量即可,样品中很多其它组分实际上都是不需要参与计算的。但为了避免交叉污染,这些组分仍然需要通过延长单次分析时间来排出甲烷柱。这样就会带来不必要的时间浪费。谱育科技GC 2000采用了对甲烷柱反吹的方式,等甲烷顺利离开甲烷柱后,立即通过阀切换改变甲烷柱中的载气流向,将剩余组分反向吹离色谱柱至放空出口。如此,即可将实验室非甲烷总烃分析的时间压缩至不到1.5min。非甲烷总烃出峰小于1.5min谱图顽疾2污染源样品多残留,交叉污染难排除?实验室还常会遇到组分复杂的污染源样品,其中不乏沸点高、活性大的组分形成污染。当实验室采用的方案又不幸将进样阀体置于常温下,且样品流路未经惰性化,那么,这些来自污染源样品的组分残留将十分严重。谱育科技GC 2000将进样阀置于一个独立控温的阀箱之中,使阀体一直处于一定的高温,确保高沸点的重组分不致冷凝;同时,样品所流经的管路及阀体均进行了惰性化的处理,以隔绝活性组分的吸附。这样,对污染源样品如加油站的空气样品进行分析,仍然能保证样品间“零”交叉污染。加油站样品谱图顽疾3组分之间分离差,总烃峰形圆又胖?污染源的样品除了会带来残留外,通常还会改变各组分的峰形,产生较为明显的拖尾现象。更有填充柱分析总烃时,1ml的定量环会带来总烃有一定峰展宽的现象。这些都会使甲烷峰、氧和总烃的色谱峰分离更为困难。谱育科技GC 2000优选了总烃和甲烷的分析柱,在尽可能提升各组分分离度的同时,还能改善总烃的峰形,使其更加尖锐且对称。因此,在分析复杂如汽车尾气的样品时,系统仍能保证甲烷峰、氧峰和总烃峰的完美分离。汽车尾气的样品谱图
  • 质谱POCT——90秒诊断脑胶质瘤术中分子病理
    脑胶质瘤是最常见的原发恶性脑肿瘤之一,具有边界不清、毗邻功能区、放化疗不敏感等特点,手术切除困难,预后差。此前已有研究发现,2-3级胶质瘤患者中80%存在代谢酶异柠檬酸脱氢酶(Isocitrate dehydrogenase,以下简称IDH)突变,这类IDH突变胶质瘤好发于周边脑叶,年轻人常见,在最大限度肿瘤手术切除后,可显著提升生存率。因此,术中快速识别IDH突变,实现胶质瘤术中分子病理诊断对提升患者预后意义重大。2024年5月28日,复旦大学附属华山医院毛颖/花玮教授团队、清华大学精密仪器系张文鹏/欧阳证教授团队、美国普渡大学R. Graham Cooks教授团队以及梅奥诊所Alfredo Quinones-Hinojosa教授团队合作在《美国国家科学院院刊》(PNAS)上发表了题为术中质谱法快速检测胶质瘤中IDH突变“Rapid Detection of IDH Mutations in Gliomas by Intraoperative Mass Spectrometry”的最新研究成果。此项研究中,使用清谱科技便携式质谱分析系统Cell及活检组织检测直接毛细管电喷雾(Direct Capillary Spray,DCS)试剂盒实施了脑胶质瘤术中检测与分型。清谱科技创新设计中心科学家吴俊函博士是本文的共同第一作者,清谱科技应用中心负责人王南博士参与本研究工作。该项研究由中美顶尖研究和临床机构合作近5年完成,是迄今为止已知规模最大的术中胶质瘤IDH突变检测临床试验。通过临床队列研究,确定了质谱诊断IDH突变的最佳指标和阈值。实验结果表明,通过术中质谱技术以2-HG和GLU的比值作为诊断指标,在260位胶质瘤病人的697例样品检测中实现了100%的IDH突变检测准确率。其中,183位病人的309例样品使用清谱科技Cell便携式质谱分析系统与DCS试剂盒完成检测。胶质瘤是目前发病率最高的颅内原发恶性肿瘤,具有进展快、死亡率高且预后差的特点,超过80%WHO 2-3级的胶质瘤中都存在异柠檬酸脱氢酶(Isocitrate dehydrogenase,IDH)基因突变。IDH突变的胶质瘤患者在最大限度肿瘤手术切除后,可显著提升生存率,所以实现胶质瘤术中IDH突变检测对胶质瘤患者预后提升具有重要意义。脑胶质细胞发生IDH突变后,三羧酸循环中的α-酮戊二酸(α-KG)将转变为一种特殊的肿瘤小分子代谢标志物 2-羟基戊二酸(2-HG),进而促进癌变。因此,IDH突变患者的肿瘤区域将会积累大量2-HG,通过检测2-HG可诊断IDH突变情况。图1 IDH突变型胶质瘤中的代谢变化示意图在本研究中,美方研究团队使用电喷雾解吸电离方法(DESI)和传统大型质谱仪结合的方案;中方团队则采用直接毛细管电喷雾DCS试剂盒与便携式质谱分析系统Cell结合的即时化学检测方案,实现了:1. 2-HG和内标谷氨酸的快速准确检测;2. 成功构建了完整的脑胶质瘤IDH突变术中诊断流程;3. 将术中组织采集到IDH突变检测结果反馈全流程时间压缩至1.5分钟。本研究开创了脑肿瘤术中便携式质谱即时检测的应用范式,将为临床医生在术中进行肿瘤分析提供新的技术储备,为胶质瘤患者预后提升提供重大帮助。图2 术中质谱分析流程示意图本研究在对复旦大学附属华山医院和梅奥诊所的样品检测,实现了100%的IDH突变检测准确率。在实际的术中实践中,该方法还展现了在辅助临床医生明确肿瘤类型、平衡肿瘤切除率与神经功能保全关系、术中进行肿瘤边界判断等方面的优势。这项研究不仅实现了术中分子病理快速诊断,同时为外科手术带来革命性变化和想象空间,为医生的手术策略制定提供重要的分子诊断依据,具有重要的临床价值,是未来手术个性化、精准化的发展方向。图3 临床队列情况以及检测结果图4 脑胶质瘤IDH基因突变检测试剂盒分析流程该研究首次将质谱仪搬进手术室,便携式质谱分析系统将成为外科医生的代谢之眼,为医生及时提供有效分子诊断信息,为患者带来福音。同时,清谱科技的便携式质谱分析系统已经应用于公共安全、科学研究以及临床医学领域。清谱科技将进一步推广便携质谱技术及原位电离技术在医疗行业如血药浓度检测、术中诊断、基于精细结构脂质组学的疾病诊疗研究等方面的广泛应用。
  • 生物物理所关于脑磁图核心器件的研究获进展
    中国科学院生物物理研究所脑成像团队面向脑磁图等生物磁探测需求,完成了新型脑磁图工程化和产业转化的关键部件——国产化零场原子磁力计的研制。经第三方检测,灵敏度、带宽等主要性能指标达到国际先进水平;对脑磁图成像特别重要的磁敏感轴正交性,信号稳定性等指标达到国际领先水平。同时,该部件通过生物物理所转化企业实现标准化批量生产。脑磁图是兼具高时空分辨率的无创脑功能成像技术。生物物理所脑成像团队于2018年完成国内首台多通道原子磁力计脑磁图原型机,摆脱了对液氦的依赖,是高性能、可穿戴、低成本的新一代脑功能成像技术。脑磁图核心器件研发及量产获进展
  • 235万!北京脑科学与类脑研究中心计划采购质谱分析系统
    一、项目基本情况项目编号:HCZB2023-033项目名称:北京脑科学与类脑研究中心质谱分析系统采购项目预算金额:235.0000000 万元(人民币)采购需求:名称、数量、简要技术需求如下:序号货物名称数量简要技术需求1▲质谱分析系统1套……1.1配备独立的可加热电喷雾离子源ESI……(详见招标文件第六章)注:1.标注“▲”的,允许提供进口产品;未标注允许采购进口产品的,如投标人所投货物为进口产品,其投标无效。2.本项目共1个包,投标人只可投完整包,不允许将一包中的内容拆开进行投标。合同履行期限:合同签订后3个月内完成供货。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(1)投标人不为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人、重大税收违法案件当事人名单的投标人和被列入拖欠农民工工资失信联合惩戒对象名单的主体,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的投标人(以开标现场查询为准);(2)投标人单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动;3.本项目的特定资格要求:/三、获取招标文件时间:2023年02月21日 至 2023年02月28日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼19层方式:现场领购。获取招标文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖投标人公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买招标文件等手续,加盖投标人公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖投标人公章)。2.如自然人投标的,上述资料仅需签字或盖章即可。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年03月15日 13点30分(北京时间)开标时间:2023年03月15日 13点30分(北京时间)地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼17层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.招标文件编号:HCZB2023-0332.评标方法和标准:采用综合评分法;满分为100分:投标报价部分30分,商务部分36分,技术部分34分。3.需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)、《关于进一步加大政府采购支持中小企业力度的通知》(财库[2022]19号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:北京脑科学与类脑研究中心地址:北京市昌平区中关村生命科学园医药科技中心3号楼联系方式:邢永涛,010-819126152.采购代理机构信息名称:华诚博远工程咨询有限公司地址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼19层联系方式:于曼,158115966733.项目联系方式项目联系人:于曼电话:15811596673
  • 我国首台多通道原子磁力计新型脑磁图原型机研制成功
    p style=" text-indent: 2em text-align: justify " 近日,中国科学院生物物理研究所完成我国首台基于原子磁力计的新型多通道脑磁图系统原型机,并成功获得高质量脑磁信号。 /p p style=" text-indent: 2em text-align: justify " 脑磁图(MEG)设备可通过探测大脑神经活动产生的颅外微弱的磁信号,来反映神经活动发生的位置和时间过程。与其他脑成像技术相比,脑磁图设备能观测到功能磁共振成像(fMRI)无法获得的脑功能实时动态信息,空间定位精度显著高于脑电(EEG),且安全、无创,是脑科学研究中的先进技术手段。脑磁图在临床医学上也有重要应用,例如在癫痫病灶的定位、术前语言功能区定位等领域具有特殊重要的作用。 /p p style=" text-indent: 2em text-align: justify " 传统脑磁图设备基于超导量子干涉仪(SQUID),需在超低温下运行,购置和运行成本高昂,且探头位置固定并距头皮较远,适应性差,大大妨碍了该技术的普及。基于原子磁力计的脑磁图系统是近年来新出现的技术,可在常温下工作,探头可紧贴头皮,具备低建设/运行成本、高灵敏度和高适应性(可做成可穿戴式系统)的优势,有望提高脑磁图普及率并拓展到更多的研究和临床领域。 /p p style=" text-indent: 2em text-align: justify " 生物物理所已成功搭建一套12通道的原子磁力计脑磁图原型机,其中包含96通道3D打印个性化定制,可兼容多种探测器可调型脑磁图头盔等创新技术,并已成功获得高质量脑磁成像信号。与传统SQUID脑磁图系统相比,该原型机信噪比局部提高一倍以上,在某些应用上,通过调整探测器布置,可使用比传统SQUID脑磁图少得多的探头就能达到相同或更高的定位精度。该原型机可有效探测海马、小脑等传统脑磁无法有效探测的脑深部区域,还可有效应用于传统脑磁图难以应用的低龄儿童、帕金森患者等群体,在发育心理学和脑疾病诊断等领域有着潜在的应用前景。 /p p style=" text-indent: 2em text-align: left " 相关研究由生物物理所脑与认知科学国家重点实验室完成。该实验室已装备国内首台科研专用3T、7T人类磁共振成像系统和传统脑磁图系统。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/d829f8d2-1fea-4093-abc8-71f31428286c.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em text-align: center " 原子磁力计脑磁图原型机 br/ /p
  • 我国首台高清晰磁兼容脑PET功能成像仪器研制成功!
    近日,中国科学院深圳先进技术研究院(简称“深圳先进院”)成功研发国内首台高清晰磁共振兼容人脑PET功能成像仪器(命名为“SIAT bPET”),实现了我国在高端磁兼容脑PET成像仪器研发方面零的突破。“通常,PET成像仪器由于探测器的深度不确定效应,空间分辨率会随着偏离成像视野中心而变差,严重影响成像精度。”深圳先进院医工所劳特伯生物医学成像研究中心研究员杨永峰表示,他们团队研发了高三维分辨率双端读出探测器,使得该大口径成像系统达到14%的中心效率(350-750 keV能量窗),和整个成像视野好于1.4 mm的空间分辨率,两项性能指标都处于国际领先水平。 杨永峰介绍道,与国外商业磁兼容脑PET成像仪器相比,SIAT bPET的效率提高了近2倍(从7.2%到14%),平均体分辨率提高了30倍以上(从约64mm3到2mm3)。同时,SIAT bPET采用了创新的电子学和磁兼容设计,使得磁共振成像对PET成像的影响几乎可以忽略不计,PET成像对磁共振成像图像信噪比的影响小于5%,满足同时开展PET/MRI成像的尖端科研需求。 据了解,PET和MRI都是脑科学研究和脑疾病诊断的重要工具,PET的高灵敏度、高定量精度功能代谢成像和MRI的高空间分辨率、高软组织对比度解剖结构成像高度互补,PET和MRI还可以相互辅助,进一步提升各自的脑神经成像能力。PET分子成像通过测量大脑的血流、葡萄糖和氧的代谢、蛋白质的生成、药物的分布和神经递质的动力学等,探索不同脑区的功能,确定病变脑区的功能演变,对于脑疾病干预治疗策略和新药物探索具有重要意义。 “不过,目前市场上并没有高性能脑PET成像仪器。”杨永峰说,与美国脑计划项目正在资助研发的多个高性能脑PET成像仪器相比,SIAT bPET的空间分辨率和效率也处于先进水平。“高空间分辨率使得研究大脑的细微焦点脑功能区和小的核团成为可能,还可以通过降低部分容积效应来提高脑PET成像研究的定量精度;高效率除了通过提高脑PET图像的信噪来提高研究的定量精度,也为高精度研究神经递质活动和其他动态脑生化与功能活动奠定基础。” 2022年,团队成员邝忠华在国际核医学和分子影像年会与IEEE医学成像会议上口头报告了该研究成果,随即引起了广泛的国际关注。同时,该仪器也为开展基于PET功能成像的脑科学研究、老年性痴呆等疾病的早期定量诊断研究和新药开发提供了一台重要的新工具。 据悉,相关研究由基金委国家重大科研仪器研制、深圳市孔雀团队和中国科学院仪器研制团队等项目资助。 深圳先进院研制的SIAT bPET探测器系统和脑成像仪器照片SIAT bPET获得的Derenzo模体图、人脑FDG代谢图和兔子NaF骨扫描图SIAT bPET和联影uMR790 3T磁共振成像系统上同时获得的人脑PET/MRI图像关于PET:正电子发射断层扫描(PET)是一种核成像技术(也称为分子成像),可以显示体内代谢过程。PET成像的基础是该技术检测由正电子发射放射性核素(也称为放射性药物,放射性核素或放射性示踪剂)间接发射的γ射线对。将示踪剂注入生物活性分子的静脉中,通常是用于细胞能量的糖。PET系统灵敏的探测器捕获身体内部的伽马射线辐射,并使用软件绘制三角测量排放源,创建体内示踪剂浓度的三维计算机断层扫描图像。目前主要的PET系统制造商包括GE Healthcare,Philips Healthcare,Siemens Healthcare和Toshiba。PET/MRI系统的供应商包括GE,飞利浦和西门子。SPECT供应商包括通用电气,飞利浦,西门子和Digirad公司。
  • 骆清铭团队获取大鼠全脑高分辨数据集在欧盟脑计划平台发布
    由华中科技大学武汉光电国家实验室(筹)骆清铭教授、龚辉教授研究团队获取的一套大鼠全脑高分辨数据集,近期发布在欧盟人脑计划(Human Brain Project, HBP)的神经信息平台(Neuroinformatics Platform, NIP)上。这标志着该团队建立的“鼠脑最精细脑图谱基础数据库”为欧盟人脑计划正式采用。  此次发布在HBP-NIP上的数据集由该研究团队独立完成,样本为Golgi-Cox法染色的Sprague Dawley大鼠全脑,用显微光学切片断层成像(MOST)系统获取了全脑图像,成像分辨率为 0.35μ m×0.35μ m×1μ m,共包含16216层矢状原始切面。该数据集也同时在全脑网络可视化(Visible Brain-wide Networks, VBN)网站进行了共享,访问地址为 https://vbn.org.cn/2D/id3.html。  HBP是2013年经欧盟委员会批准发起的旗舰级拨款项目,汇集了欧洲神经科学领域的众多科研团队与神经科学前沿研究课题,有超过120个参与机构和10亿欧元的项目资金。神经信息平台是HBP的重要组成部分,用于神经科学数据的发布与检索,近期发布的是神经信息平台的第一个公开版本,可直接通过 https://nip.humanbrainproject.eu 访问。HBP还同时发布了脑模拟平台、高性能计算平台、医学信息平台、神经形态计算平台和神经机器人平台,可通过 https://collab.humanbrainproject.eu 注册、登录和使用。
  • 基于拉曼光谱学的新激光探测仪能“听”出脑内癌细胞
    在脑外科手术中,医生的眼睛在显示屏和病人间来回穿梭会影响他们的专注力。据《新科学家》杂志网站11月7日报道,英国几个大学和医院的科学家合作开发出一种激光探测仪,能把脑细胞光谱信号转换成音频,让医生通过“听”来辨别癌细胞与健康细胞。新技术能帮助医生更快速、更安全地完成脑外科手术。  新激光探测仪在去年研发基础上改进而成。之前的探测仪也能帮助医生辨别脑内癌细胞所在区域,但只能通过显示屏可视化呈现。而新探测仪能将图谱信号转换成音频信号,使医生能“听”出脑内癌细胞,从而将眼睛集中于手术切除部位。参与研究的斯特拉斯克莱德大学的马修贝克表示,新技术能精准地发出信号指导,让医生“目不转睛”地专注于手术。  激光探测仪的工作原理基于拉曼光谱学,可向脑细胞发出激光,并对反射回来的光谱进行分析,形成一个类似细胞指纹的光谱图。光谱图的形状能告诉医生所照射细胞是否癌变。研究团队这次为探测仪安装了一套全新的音频信号软件,该软件能够捕获图谱信号的重要特征,并将这些信号特征转换成声音。  初步检测结果表明,只用耳听,医生依靠激光检测仪辨别出健康细胞和癌变细胞的准确率高达70%。贝克表示,虽然比看光谱信号90%的准确率要低,但他们有信心通过改进继续提高。  对脑癌患者来说,癌变细胞未清除干净会留下复发和转移隐患,而切除健康细胞,神经功能又会受到损害,造成严重的副作用。下一步,他们将争取早日对激光检测仪进行临床试验,以帮助医生尽量将癌变脑细胞清除干净,又不会切除健康细胞。
  • 传感器阵列以最高分辨率记录脑信号 为中长期脑机接口研究提供新的可能
    一个由工程师、外科医生和医学研究人员组成的团队发布了来自人类和大鼠的数据,证明一种新的大脑传感器阵列可直接从人脑表面记录电信号,并实现破纪录的细节处理。该大脑传感器具有密集网格,由1024或2048个嵌入式皮质电图(ECoG)传感器组成。如果获准用于临床,传感器将直接从大脑皮层表面为外科医生提供大脑信号信息,且分辨率比目前可用的高100倍。该论文于19日发表在《科学转化医学》杂志上。  人的大脑总是在运动,例如,随着每一次心跳,大脑会随着流过它脉动的血液而发生活动。从直接放置在大脑表面的传感器网格记录大脑活动,已经被外科医生普遍用作一种工具,用来切除脑肿瘤和治疗对药物或其他药物无反应的癫痫症。  此次新研究提供了广泛的同行评审数据,证明具有1024或2048个传感器的网格可用于可靠地记录和处理直接来自人类和大鼠大脑表面的电信号。相比之下,当今手术中最常用的ECoG网格通常具有16到64个传感器。  能够以如此高分辨率记录脑信号,可提高外科医生尽可能多地切除脑肿瘤的能力,同时最大限度地减少对健康脑组织的损害。对于癫痫,更高分辨率的脑信号记录能力可提高外科医生精确识别癫痫发作起源的大脑区域的能力,这样就可在不接触附近未参与癫痫发作的大脑区域的情况下移除这些区域。通过这种方式,这些高分辨率网格可以增强正常功能脑组织的保存。  研究团队表示,此次能以更高的分辨率记录大脑信号,归因于他们能够将单个传感器放置得更靠近彼此,而不会在附近的传感器之间产生干扰。例如,该团队的3厘米×3厘米网格和1024个传感器直接记录了19名志愿者的脑组织信号。在这种网格配置中,传感器彼此相距一毫米。相比之下,已经批准用于临床的ECoG网格通常具有相距1厘米的传感器。这为新网格提供了每单位面积100个传感器,而临床使用的网格每单位面积1个传感器。  该项目由加州大学圣地亚哥分校雅各布斯工程学院领导,团队其他成员来自马萨诸塞州总医院和俄勒冈健康与科学大学。该团队正在研究这些高分辨率ECoG网格的无线版本,可用于对顽固性癫痫患者进行长达30天的大脑监测。
  • 中科院脑智卓越中心建立跨分化阶段高通量谱系示踪技术
    2023年3月18日,《Cell Stem Cell》期刊以封面文章的形式在线发表了中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、神经科学国家重点实验室陈跃军研究组题为《人神经分化过程中跨时间段的克隆谱系追踪》的研究论文,该研究通过建立能够跨分化阶段高通量谱系示踪新技术-SISBAR,解析了人多能干细胞分化为人腹侧中后脑神经细胞的单细胞谱系,发现了许多新的谱系分化路径和分子调控机制,研究进一步展示了基于SISBAR技术的新发现在改进帕金森症细胞治疗策略中的应用。SISBAR技术有望为干细胞研究带来新的突破。发育与干细胞生物学中的一个基础性问题是如何解析生物体内不同细胞类型之间的发育谱系关系。解析这些谱系关系能够更加深入地解析生命体的正常发育过程以及病理状态(包括癌症与发育障碍)下的分子机制,为操纵在体细胞分化命运,优化体外细胞分化方法,以及促进基于细胞替代疗法的再生医学的发展提供线索。然而,经典的正向谱系追踪和逆向谱系追踪方法,主要用于解析同一个分化/发育时间点不同细胞类型之间的谱系关系,而不能同时提供在上一个阶段与它们有亲缘关系的前体细胞的身份特征。如何持续地追踪细胞在多个分化/发育时间点的细胞状态,从而描绘更完整的细胞发育路径,是发育学领域中亟待解决的问题。针对以上问题,团队成员通过结合病毒介导的细胞条形码标记技术、单细胞测序技术,以及克隆分离策略,开发了SISBAR技术,并应用在基于人多能干细胞的神经分化模型中。SISBAR技术可以跨分化阶段追踪单个前体细胞衍生的谱系克隆,同时获取该前体细胞的单细胞转录组信息(图A)。研究团队一直致力于人多能干细胞神经分化技术的开发和神经系统疾病的细胞治疗研究,建立了将人多能干细胞分化为人腹侧中脑和后脑细胞的方法,其中包含能够用于帕金森症细胞替代疗法的关键细胞类型–中脑多巴胺能神经元(2016 Cell Stem Cell; 2021 Cell Stem Cell; 2022 JCI)。团队成员把SISBAR技术应用于人腹侧中后脑的体外分化体系,并建立了“潜能视角”和“起源视角”的谱系分析方法来分别解析由转录组定义的不同细胞类型的分化潜能及分化起源,从而构建了一个多层级的谱系树来描绘整个分化过程(图B)。这一多层级谱系树揭示了中后脑细胞分化过程中许多之前未被报道过的发散型和汇聚型跨阶段谱系分化路径。团队的研究还揭示了跨分化阶段的群体水平谱系和克隆水平谱系之间的关系:在发散型谱系关系中,发现同种类型的前体细胞(单细胞转录组定义的细胞簇)中单个前体细胞的命运可以不同;不同前体细胞差异的分化命运的集合代表了该前体细胞类型在群体水平的分化命运。在汇聚型谱系关系中,发现同种类型子代细胞中的单个细胞可以有不同的谱系起源,并且这些不同来源的子代细胞会带有其亲代细胞独特的基因印迹(图C-D)。研究团队进一步展示了基于SISBAR技术的跨分化阶段谱系关系和相关分子调控机制的解析在神经系统疾病细胞治疗中的应用。利用SISBAR技术,研究团队发现中脑多巴胺能神经前体细胞具有至少三种命运分化潜能,包括中脑多巴胺能神经元、中脑谷氨酸能神经元、血管软脑膜样细胞(VLMCs)。研究团队还鉴定了早期中脑多巴胺能神经前体细胞的特异性表面分子标记物APCDD1(图E)。将表达APCDD1的神经前体细胞进行流式分选并移植到帕金森病模型小鼠的纹状体后,移植物中目的细胞-中脑多巴胺能神经元的比例得到了显著提高(图F)。并且,与通过SISBAR技术发现的中脑多巴胺能神经前体细胞多分化潜能的结果一致。研究团队在APCDD1分选的移植物中检测到了中脑谷氨酸能神经元和一种血管软脑膜样细胞的存在,这一结果展示了SISBAR技术在改进细胞治疗策略和预测移植细胞体内分化命运中的应用。基于人多能干细胞的细胞替代疗法在治疗许多用传统药物难以治愈的疾病(如帕金森症)方面具有广阔的应用前景。然而,人多能干细胞分化得到的供体细胞(细胞药物)存在显著的异质性,这将导致供体细胞和移植物中目的细胞的低比例和细胞组成的不稳定性,阻碍了细胞替代疗法在临床上更广泛地应用。可以预见的是,作为一种通用型技术,SISBAR能够广泛地应用于包括神经分化在内的基于人多能干细胞的体外分化系统中,构建整个分化过程的谱系发育树,解析谱系分化的分子调控机制,使我们更好地理解目的细胞和非目的细胞在分化过程中产生的机制,从而改进细胞治疗策略,获得更安全稳定的细胞治疗结果。同时,SISBAR还为我们解析细胞分化/发育过程中的谱系关系提供了新的方法和视角,是经典谱系追踪方法的重要补充。本研究中群体水平谱系和克隆水平谱系关系的解析,为我们理解细胞分化分过程中复杂而精确的细胞命运决定事件提供了重要的理论基础。该研究由中科院脑智卓越中心博士研究生游致文与中科院营养健康所王露悦博士,在脑智卓越中心陈跃军研究员和临港实验室魏武研究员的指导下完成,中科院脑智卓越中心何慧博士、吴子彦博士、章馨月、薛帅翔、许培博博士,职工张晓、刘兵,中科院营养与健康所洪延泓,复旦大学脑科学研究院熊曼研究员,复旦大学附属肿瘤医院胡欣研究员为本研究提供了重要帮助。本研究得到了中科院、科技部、基金委和上海市科委的资助。
  • 岛津“运用功能性近红外光学成像技术对脑功能进行深入研究”
    近代自然科学发展的趋势表明,21世纪的自然科学重心将在生命科学,生命科学研究必将飞速发展。分子生物学的奠基人之一,诺贝尔奖获得者沃森宣称:&ldquo 20世纪是基因的世纪,21世纪是脑的世纪。&rdquo 。创业于1875年的岛津制作所,始终站立在科学技术的前沿,从不间断地向世间推出一个又一个尖端科学技术,为社会发展做出着贡献。在当今令人瞩目的脑功能研究领域,随处可见岛津制作所活跃的身姿,从医学生物学领域的基础研究到临床应用,再到产业应用,在广泛领域内对作为尖端学术性领域之一的脑科学实施了深入研究。 目前,作为脑功能研究的手段主要有脑电图、fMRI(功能性磁共振成像)、PET、MEG等。而fNIRS:(functional Near Infrared Spectroscopy)功能性近红外光学成像技术,是近年来日本发明的新型脑功能测量手法。它可以通过生物体穿透性高的近红外光谱对脑功能进行无侵袭性测量。其原理是通过三个特定波长的近红外光来测量大脑皮层的含氧血红蛋白和脱氧血红蛋白以及总血红蛋白的含量,从而表征大脑在接受外界刺激或思维过程中不同区域的反应和功能表达。 岛津制作所早于1980年开始了近红外光谱测量身体组织内氧动力学的研究,1991年发售了日本国内首台临床用无侵袭氧监测仪OM-100A。目前,在全世界范围内发售多通道型红外光学成像装置(FOIRE-30000系列,OMM-300系列)。 近红外光学脑成像系统可广泛应用于脑功能、脑认知领域,在医疗、教育、脑疾病康复、诊断、产业、基础研究等领域有着广泛的应用前景。岛津的近红外光谱系统,为大脑功能研究提供了极大的可能性。 我们不妨阅读以下文章,可以加深对近红外光学脑成像技术的发展和应用的了解。 《在新技术下观察大脑机能》 从血流量测量到大脑的功能分析 YOKO HOSHI是fNIRS在大脑成像中研究和开发的主要专家,现任神经学东京研究院综合神经科学研究组的主任,但是她对近红外光谱临床应用的兴趣,源自于1987年在北海道大学开始的关于监控大脑中血流量的项目。那时候,她已经加入了近红外光谱的开发者之一 &mdash &mdash Mamoru Yamura实验室,她的第一个任务是测量细胞色素C氧化酶,这种酶通过氧气供应改变氧化态。HOSHI解释说:&ldquo 我认为通过这个途径有可能来监测大脑中的氧,因为细胞色素C氧化酶的氧态是通过神经细胞中氧浓度改变的。&rdquo 近红外光用于脑功能成像的思想源于和Tamura交流中的偶然发现,Tamura作为实验室领导人,那时其研究关注在心肌方向,有一天询问Hoshi:&ldquo 如果人不能再思考,是因为大脑正经受缺乏能量的痛苦吗?&rdquo Hoshi认为可能并不是如此,她转而想通过交给学生一些问题,并同时用近红外光监测他们大脑的方法来测验这个想法。测量结果显示当他们正在思考的时候,大脑血流量增加,但当他们停止思考这些问题的时候,大脑血流量减小。 因为血红蛋白在近红外波长范围内的光吸收特性不依赖一定有氧的存在,所以她决定与其分析细胞色素c氧化酶,不如研究血液血红蛋白。Hoshi回应到:&ldquo 经过大量的技术改进和实验,我们已经撰写利用NIRS检测血红蛋白改变来测量大脑功能的相关文章。&rdquo 与岛津共同发展 不久后,来自岛津的研究人员加入了HOSHI在北海道大学的研究团队,在Tamura 和Hoshi的指导下,岛津公司着力发展一个NIRS的通用模型。终于,岛津成功开发了NIRS系统,可以对大脑和四肢进行局部测量,1991年扩展了它的第一个测量系统。随后伴随大量的设计修改和持续的改进,直到2001年岛津开始发售OMM-2001多波段fNIRS系统。这种新的设计可以测量大脑更大范围的区域,紧接着2003年新的改进版本OMM-3000面世。这些设备自此开始应用于临床研究,2006年,岛津公司看到这些应用,于2006年开发了新的设计FORIE-3000系统,此系统现在仍应用在全日本的基础大脑科学研究中。 多波段fNIRS允许病人在自然条件下活动的同时实时监测大脑功能,比如,与婴儿母亲配合可以监测婴儿的大脑,或者记录脑损伤患者在复原过程中的大脑功能。&ldquo 现在,越来越多的研究人员开始在新生儿和患者的大脑活性的研究中应用fNIRS系统,希望fNIRS能在我们获得神经网络生长机制方面有所帮助&rdquo hoshi如此说到,她同时注意到一个新发现:在脑损伤复原过程中,在正常活动中大脑某一部分减除活性,一旦损伤部位得以康复,大脑的相应部位在康复运动中不再变的活跃。 近红外光用于情绪分析 HOSHI把FOIRE-3000平台作为她最新研究项目的一部分,&ldquo 我最近的工作是当志愿者在注视可引起肯定或否定的情绪回应的图像的时候,分析其大脑机能的变化。&rdquo fMRI经常用于包括大脑的函数图像的研究中,但是,由于志愿者必须躺在狭窄的通道中,fMRI的测量系统才能执行,所以fMRI不太适合应用于实时情感分析试验中,对于志愿者姿势和行动有很少限制的实验可使用fNIRS来执行。 Hoshi解释说:&ldquo 我们的实验结果显示,当志愿者经历一个非常强烈的不愉快情绪,情绪开始3到4秒后,大脑中特定区域的血流量明显增大。&rdquo 相同实验显示愉悦的情绪可以降低大脑另一部分的血流量,这与之前报告的愉快的感觉可以降低血流量是一致的。HOSHI持续深入分析后解释说&ldquo 情绪和情感研究常常靶向大脑内部的边缘系统,但是,我们认为大脑控制认知能力的部分,诸如脑前额叶表层,同样与控制非愉快情绪有密切的关系。&rdquo 分离认知空间 Hoshi的另外一个持续项目是利用fNIRS实施眼动的联合测量,hoshi说到&ldquo 当我们试图记住某物或者试图思考的时候,我们会使眼睛偏向特定的方向,我希望能找出其原因。&rdquo 当我们全神贯注思考的时候,我们试图把眼睛投射到某一物体上,而且在相同任务下每个人凝视的方向也不同。儿童以相似的方式移动头部,但是会有更大的变化范围,随着年龄的增长,他们凝视的方向和范围会变得聚焦,&ldquo 10岁大概是明确路线形成的临界年龄。&rdquo 通过对上述现象设计方法所获得的fNIRS数据的分析,可以发现当人陷入沉思开始注视的时候,大脑的两个特定区域是活跃的。&ldquo 这两个区域中的一个是ventral premotor,当人们把注意力放在某一个物体上的时候这个区域会被激活,另外一个区域是人们从一个物体转移注意力到另外一个物体时被激活的。心理学家和信息科学家都认为认思考发生在认知空间内,在思考中注视某一物体也许反应了我们对认知空间的注意,和这个空间内从一个到另外一个信息过程转换我们的注意力。&rdquo fNIRS的更多可能 fNIRS众多优点中其中一个是它可以很方便和其它分析方法结合在一起,它也是一个非常容易使用的系统,并应用于非常多的领域,不管是工程教学,还是动物学和医药领域,尤其是令人激动的领域是脑机接口(BMI)领域。岛津已经开始实验用BMI来控制由本田公司开发的MSIMO类人机器人,在肉眼观察诸如腿脚活动等人为动作的同时,可以通过应用fNIRS来描述志愿者大脑机能特点,志愿者精神上的努力可以被实时的监测和处理,并被转化成机器人行动的信号。 Hoshi作为在基础和应用研究中,不断推进大脑图像技术深入发展的众多专家中的一员,她说到,&ldquo fNIRS提供了更多的可能,我希望科研人员在了解了fNIRS的原理和限制后,可以在自己的研究项目中可以积极运用fNIRS。&rdquo 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 我国研发高分辨“脑地图”可视仪
    人脑中错综复杂的神经元网络,就如同地球上密布的道路网,如今人们借助遥感卫星分辨地球上的路网容易多了,但要绘制“脑地图”,似乎远比发射几颗遥感卫星困难许多。近日,华中科技大学的专家,正着手解决这一问题,他们开始研发高分辨全脑神经元网络的可视化仪器。   该校骆清铭教授领导的团队经过8年的攻关,在国际上率先建立了可对厘米大小样本进行突起水平精细结构三维成像、具有自主知识产权的显微光学切片断层成像系统(MOST),该研究成果曾发表于《科学》(Science)期刊上。MOST技术相对于传统成像技术优势明显,创造出迄今为止最精细的小鼠全脑神经元三维连接图谱,为实现全脑网络可视化创造了必要条件。此研究成果将在脑结构、脑功能、脑疾病,以及药物作用效果等研究中发挥非常重要的作用。   骆清铭介绍说,通过MOST技术将会更全面深入地了解大脑结构和功能,为治愈多种神经性疾病提供重要的手段。该成果曾入选“2011年度中国十大科学进展”。
  • 质谱成像新科研动态:髓鞘疾病脑脂质体空间分布和组成变化定义
    美国 Abbvie (Cambridge)、Biogen 和 Moderna Therapeutics 生物技术公司*联合在最近一期的 JHC 期刊 (Journal of Histochemistry & Cytochemistry 2019, Vol. 67(3) 203–219) 发表了髓鞘疾病脑脂质体空间分布和组成变化定义的研究论文。本文的主要作者之一李晓萍(音译)是 Biogen 的研究人员,她带领的研究小组使用solariX MALDI 高分辨质谱成像(MALDI-IMS)、免疫组织化学(IHC)和液相色谱-电喷雾-质谱法(LC-ESI-MS)评价由 Shi 和 Cz 小鼠模型构建的髓鞘疾病的脑脂质成分变化。MALDI-IMS 结果显示出磺胺肽和磷脂酰胆碱物质在胼胝体白质区域空间分布减少,而在 Cz 小鼠模型中,这些脂质物种的变化在发病后得到一定程度的自发恢复。通过 IHC 肯定了脂质分布变化和局部形态变化的相关性,同时也被 LC-ESI-MS 分析所验证。这些发现强调了磺胺肽和磷脂酰胆碱物质在维持正常髓鞘结构中的作用。Biogen 的方法为定义髓鞘疾病相关的脂质组成异常提供了形态学基础。*Biogen 是位于马萨诸塞州剑桥的神经科学研究公司, 主要从事重度神经性和神经退行性疾病的发病机理和治疗方法研究,Moderna 和 Abbvie 分别是 mRNA 个体治疗方案和生物医药开发的公司。
  • Neuron:最新下丘脑室旁核(PVH)催产素神经元单细胞全脑投射图谱
    前言骆清铭院士和龚辉教授带领MOST团队发明的显微光学切片断层成像系列技术(MOST/fMOST)作为介观尺度最精准的三维完整器官成像技术,已在神经机制、脑疾病、心脑血管疾病以及药理毒理等科学前沿领域研究中发挥重要作用,并带动了相关标记技术和大数据处理和解析技术的发展。 文章题目:Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns发表时间:2024年1月29日发表期刊: Neuron研究团队:北京大学生命科学学院黎胡明珠、华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者;北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者 催产素是九个氨基酸组成的环状神经肽,由大脑中的神经细胞合成、分泌。其最早被报道的作用是促进分娩和泌乳,主要由垂体分泌至外周循环的催产素完成。进一步研究发现催产素还参与维持机体代谢平衡和内稳态,并调控社交行为、学习与记忆、奖赏等复杂行为。关于催产素的研究已经持续百年,但其多样功能的结构基础仍不清楚。一个关键问题是,催产素神经元如何将催产素分泌至各个脑区及外周组织,从而实现特定功能的调控。前人研究表明大脑中产生催产素的神经元主要分布在14个脑区中,其中下丘脑室旁核(paraventricular hypothalamic nucleus, PVH)拥有数量最多且投射最为复杂的催产素神经元。因此,对于室旁核催产素神经元投射的形态解析对理解其功能多样性至关重要。室旁核包含两类传统方法定义的催产素神经元类群:大细胞催产素神经元被认为拥有复杂的轴突结构并参与中枢和外周的调控,小细胞催产素神经元主要参与中枢自主神经调控(图1)。然而群体示踪的方法无法精细区分两类神经元的投射图谱,也无法揭示每一类群中是否存在进一步的功能与形态异质性。系统性重构单神经元形态为解答这一问题提供了可能。 2024年1月29日北京大学于翔团队与合作者在 Neuron 期刊发表了题为“Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns”的研究论文,在单细胞水平揭示了下丘脑室旁核催产素神经元的完整形态。中国科学院脑科学与智能技术卓越创新中心与上海科技大学联合培养,目前就职于北京大学生科院的黎胡明珠博士为第一作者。 图1:(左)根据传统分类与群体示踪的大细胞催产素神经元(magnocellular)与小细胞催产素神经元(parvocellular)分类。(右)基于系统性重构单神经元形态提出的室旁核催产素神经元C1与C2分类 该研究首先构建了病毒载体rAAV-EF1α-DIO-YPet-p2A-mGFP,在Oxytocin-ires-Cre小鼠中实现了室旁核催产素神经元的稀疏高亮标记。通过荧光显微光学切片断层成像(fluorescence micro-optical sectioning tomography, fMOST)对稀疏标记样本进行全脑成像,用Fast Neurite Tracer进行形态追踪,重构了264个室旁核催产素神经元的完整三维形态,从而绘制了亚微米分辨率下的单神经元全脑投射图谱。进一步通过层级聚类和投射靶点相关性分析,揭示室旁核催产素神经元包含两类投射模式互斥的类群。其中,C1类包括177个神经元,轴突较短且终止于正中隆起(连接下丘脑与垂体的脑区),仅有少量分支分布于下丘脑区域,且对其他脑区几乎没有投射(图2,红色);C2类包括87个神经元,其轴突广泛投射至除正中隆起之外的两百余个脑区,涵盖新皮质、嗅区、海马结构、皮质板下层、纹状体、苍白球、丘脑、下丘脑、中脑、脑干、脑桥、延髓、小脑和纤维束(图2,绿色)。每一类群又可进一步分为投射模式不同的三个亚类。此外,还发现室旁核催产素神经元,特别是C2类神经元的树突形态复杂并可延伸至室旁核以外,而C1类神经元的树突则较简单且分布在胞体附近,两类神经元胞体位置有一定偏好,并具有独特的转录特征与分子标志。 图2:小鼠下丘脑室旁核催产素神经元根据单神经元投射图谱可分为C1类(红色)和C2类(绿色)。 C1类和C2类神经元及其亚类在投射模式上的高度异质性,表明各亚类神经元可能分别执行了催产素的不同生理功能:(1)正中隆起—垂体后叶是催产素向外周分泌的重要途径,因此C1类神经元应主要负责通过神经内分泌调控外周生理活动,同时其在下丘脑的投射分支可能参与中枢自主神经调控;(2)C2类1亚型(C2-1)神经元投射至脑干多个区域,可能参与自主神经调控、介导躯体感觉以及伤痛感觉的调控;(3)C2-2 和 C2-3亚型神经元拥有复杂且精细轴突分支,全脑广泛投射,除了涵盖C2-1亚型神经元的功能之外,很可能介导社会识别、亲社会行为、学习与记忆、奖赏行为及厌恶行为等高级脑功能;(4)脑室周围存在C2类神经元轴突分布,提示其分泌的催产素可能是脑脊液中催产素的重要来源之一;(5)对催产素神经元树突的重构发现其分支延伸至室旁核周围核团中,可能具有整合信号输入及通过催产素的树突释放调控周围脑区的作用(图3)。 图3:(A, B) 室旁核催产素神经元各亚类的单神经元投射图谱。(C) C1类与C2类神经元具有截然不同的投射模式。(D) C2类神经元轴突投射至脑室附近区域。 综上,该研究对室旁核催产素神经元进行全方位的、单细胞精度的胞体、树突和轴突形态学分析,为进一步理解催产素神经元调控复杂生理功能提供了详实的结构基础。两类神经元分子标记物的鉴定,为后续特异性的分子、环路操作和功能探索奠定了基础。该项工作从单细胞水平,更新了人们长久以来对于室旁核催产素神经元形态结构的认知,并将为后续研究提供重要的参考。 该研究工作是多团队联合攻关的成果。中科院脑科学与智能技术卓越创新中心和上海科技大学博士毕业生,现北京大学生命科学学院研究助理黎胡明珠是该论文的第一作者。华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者。北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者。华中科技大学骆清铭、龚辉与李安安团队,中科院遗传与发育研究所吴青峰课题组,中科院脑科学与智能技术卓越创新中心严军与许晓鸿课题组及全脑介观神经联接图谱平台中心对该研究做出了重要贡献。 原文链接:https://www.cell.com/neuron/fulltext/S0896-6273(23)01010-3
  • 拉曼巧析“红颜”,南北玛瑙终分辨丨前沿用户报道
    自古以来,玛瑙被视为吉祥、富贵的象征,一直被人们当做装饰品、护身符使用,其中红色玛瑙最受追捧。我国最为著名的红色玛瑙当属产于四川凉山、云南保山的“南红玛瑙”和黑龙江大小兴安岭地区的“北红玛瑙”。随着珠宝玉石行业的快速发展,如何准确鉴别这两种红玛瑙产地成为了收藏者关注的重点。图1 产于四川(左)、云南(中)的”南红玛瑙”和产于黑龙江的“北红玛瑙”(右)中国地质大学(北京)珠宝学院何雪梅课题组,利用显微拉曼光谱技术,对玛瑙的物相组成和致色矿物进行无损测试,获得了“南红玛瑙”和“北红玛瑙”的拉曼特征谱,结合色度学特征,成功开发了一种鉴别玛瑙产地的方法。对玛瑙的物相组成测试结果表明,“南红玛瑙”的主要物相组成为α-石英,次要矿物为赤铁矿、针铁矿、方解石等,少量样品含有斜硅石;“北红玛瑙”的主要物相组成为α-石英和斜硅石,次要矿物组成为针铁矿、赤铁矿(见图2、图3)。可以看出,“南红玛瑙”的斜硅石含量极少,而“北红玛瑙”普遍含有斜硅石。图2 四川、云南“南红玛瑙”,黑龙江“北红玛瑙”样品的拉曼光谱图3 四川、云南、黑龙江红玛瑙样品的峰强度比与面积比另外,对玛瑙的致色矿物结果显示,“南红”“北红”玛瑙致色矿物均与铁质矿物相关。颜色最红,被称为“赤玉”的“南红玛瑙”红色成因主要与赤铁矿相关。颜色偏黄且更加丰富的“北红玛瑙”红色成因主要与针铁矿相关。结合显微拉曼技术检测出的斜硅石含量差异和色度学特征,何雪梅课题组成功将四川、云南“南红玛瑙”和黑龙江“北红玛瑙”区分开来。该研究成果对玛瑙产地鉴定、出土文物溯源等具有重要意义。在对玛瑙等宝石进行鉴定时,由于样品的特殊性,对检测仪器有很高的要求。例如,由于样品十分珍贵,一般要求在测试过程中尽量不损坏样品,要求仪器能进行无损分析。另外,对玛瑙的成分分析需要准确鉴定样品上的微小矿物,这就要求仪器能进行微区测试。显微拉曼光谱技术则因其具备微区、无损、快捷等众多检测优点,成为珍贵宝石矿物检测手段的优先选择。本实验中全程使用了LabRAM HR Evolution 高分辨拉曼光谱仪,配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率,并实现了高度自动化。LabRAM HR Evolution 高分辨拉曼光谱仪何雪梅课题组简介何雪梅,中国地质大学(珠宝学院)副教授、硕士生导师,主要从事宝石材料学与宝石矿物学领域的教学和科研工作。承担十余项科研项目,其中包括国家标准化技术委员会《北红玛瑙》国家标准研制项目和新中国成立以来首部《中国矿产地质志宝玉石卷普及本》的研编工作。在国内外珠宝专业期刊上发表一百三十余篇论文(其中SCI论文8篇)。想要了解更多关于玛瑙的拉曼测试方法、玛瑙的物相组成和形成过程的知识,请扫描下方二维码或点击阅读原文进一步学习。扫码查看文献(来自何雪梅公众号:原文传递 | 辽宁北票战国红玛瑙的宝石学特征及成因研究:显微观察、X射线粉晶衍射和拉曼光谱综合分析)
  • 岛津与全球科学家一起行动丨脑功能成像探索生命领域的奥秘
    脑功能成像探索生命领域的奥秘 联合研究合作方美国耶鲁大学医学院Joy Hirsch教授 我想通过fNIRS这一新技术对人与人的互动进行成像,以了解我们的脑如何适应实际生活和社会活动。比如,使用fNIRS,研究人与人之间的目光接触在交流中起到什么样的作用。我们与岛津制作所具有共同的价值观,希望能够作为伙伴长期一起合作。我不打算满足现状,岛津也是如此。正因为如此,我们才是伙伴。 在不断发展的脑科学研究中,可实现脑功能可视化的功能性近红外脑成像技术(fNIRS:functional Near-Infrared Spectroscopy),作为一种在日常环境中测量大脑活动的新方法而受到关注。 功能性近红外脑成像技术能够在安全、自然的状态下进行检测,对动静的限制较少,已被广泛应用于康复研究、药物开发、医学研究、精神和神经科学等研究领域。 功能性近红外光脑成像系统LABNIRS fNIRS的检测原理 脑内产生神经活动,周边区域的血红蛋白量即发生局部变化。fNIRS能够通过照射高生物透射性的近红外光,来检测吸收波长不同的含氧血红蛋白(Oxy-Hb)和脱氧血红蛋白(Deoxy-Hb),实时动画显示由脑活动引起的相对变化。 根据每个通道的时间序列数据的二维成像,安静时(左)与手指轻触时(右)的比较(Oxy-Hb) 功能性近红外光脑成像(fNIRS)的方案伦敦大学学院(UCL)的认知神经科学研究所,使用fNIRS,检测在莎士比亚剧中演员的脑活动模型。它用于研究人类社会认知和自闭症患者之间的社会交往差异。详情请扫描下方二维访问: PC端网址:https://www.shimadzu.com/about/momentum/feature/vol10.html 参考文献: Noah, J. A., Zhang, X., Dravida, S., Ono, Y., Naples, J. A., McPartland, J. C., & Hirsch, J. (2020). Real-time eye-to-eye contact is associated with cross-brain neural coupling in angular gyrus. Frontiers in Human Neuroscience 14(19), 1-10. doi: 10.3389/fnhum.2020.00019 Zhang, X., Noah, J. A., Dravida, S., & Hirsch, J. (2020). Optimization of wavelet coherence analysis as a measure of neural synchrony during hyperscanning using functional near-infrared spectroscopy. Neurophotonics, In Press.
  • 央视:95%玛瑙手镯由剧毒化学品染色
    【央视调查:玛瑙由剧毒化学品染色 销往全国各个旅游点!】在厦门市东埔村,记者发现色彩艳丽的玛瑙手镯竟然是灰白毛料加工而成。想要什么颜色,都可以依据不同的化学药液和浸泡工序完成。检测显示,这种染色玛瑙的重金属含量普遍高,在人体蓄积具有致癌性,并可能诱发基因突变!   【业内人士:市面95%玛瑙手镯染色而成】当地经营者介绍,厦门东埔村是全国玛瑙原料最大集散地,仅玛瑙手镯每年生产近2亿只,市面可见的几乎都出自这里。加工者坦言,基本95%以上的玛瑙手镯都做过化学染色处理。染色药水主要成分就是高腐蚀性的硝酸钾、硝酸钠、硝酸银&hellip &hellip
  • 当拉曼应用到活体脑成像!华东师范大学特聘教授田阳冬至开讲
    大脑是人体最复杂的器官,是神经系统最高级的部分,解析大脑的生理和病理过程具有非常重要的意义,大脑功能的实现依赖于神经元电信号和化学信号的传递。从分子层面获取脑中化学物质的浓度、分布及相互作用,对于深入解析神经系统疾病发生发展的机制具有重要意义。电化学分析法作为一种成熟的研究手段常被用于大脑的研究工作中,解析神经元编码机制及大脑传递的信息,这项技术因其高时空分辨、原位、实时的特点,在活体研究中备受关注。然而,由于大脑结构和功能复杂,涉及化学物质众多,且动态变化,脑分子机制的精准解析仍存在巨大的挑战。同时, 电生理技术只能获取神经元交流的电信号,而电信号的产生主要取决于神经递质和离子的化学信号的变化。因此,只有同时监测这些化学信号和电信号,才能更加充分了解大脑中的生理和病理过程。拉曼成像技术在这种时候就起到了无可替代的作用。拉曼成像是一种无标记的单细胞分析技术,能够从分子水平获得细胞的结构和组成信息,广泛应用于生物医药研究领域。然而,拉曼散射截面十分微小,并无法捕捉到细胞器的时空演变信息。拉曼探针作为另一种拉曼信号增强方法,具有细胞可透过性、靶向性、低毒性等特点。那么,有没有这样一个科研灵感,一方面既可以弥补外部电信号对脑电信号产生扰动的难点,又可以活用拉曼成像技术,以实现脑电波的成像?也许,你只需要30分钟,就可以免费聆听到这样一位大咖的最新科研成果——华东师范大学特聘教授,博士生导师田阳,受邀于2022年12月22日直播进行《活体脑成像分析》报告分享,现场更设有专家答疑环节,有机会与田教授一对一答疑交流!免费报名》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022/田阳,华东师范大学特聘教授,博士生导师《活体脑成像分析》田阳,北京航空航天大学学士、日本东京工业大学硕士和博士、东京大学博士后。致力于活体脑与细胞内化学信号分子成像、原位传感研究,在活体脑氧化应激相关分子的定性定量分析、自由移动动物脑的快速、灵敏成像等方面做出了系统、创新性研究。获得国家杰出青年基金资助,入选国家百千万人才工程,宝钢优秀教师奖等;获中国分析测试协会科学技术奖一等奖;日本化学会“The Distinguished Lectureship Award”;中国化学会女分析化学家奖;2018年获得上海市自然科学一等奖。2020年,田阳受邀担任英国皇家化学会期刊Chemical Communications 副主编和《高等化学学报》副主编。本报告首先提出了多重识别的探针分子设计新策略,设计并合成了系列神经递质等的特异性识别分子,基于分子的识别信号与电/光化学信号协同识别,建立了模块化、多重识别的高选择性新方法,实现了活体神经分子的精准分析。其次,针对传统传感界面的组装稳定性差,难以长程稳定获取活体神经化学分子信号这一挑战,本报告率先构建了基于金炔键的长时程稳定探针阵列,突破了经典Au-S键在含有大量硫醇的脑环境界面组装不稳定的瓶颈问题,实现了自由移动动物不同脑区离子电信号的成像和长程稳定追踪。并且发展了新型抗污染碳纤维微电极阵列,实现了鼠脑中多个脑区中Ca2+浓度的长达60天实时监控,率先发现了ROS清除剂保护Ca2+内流和中风后神经元活性的机制。针对传统电化学分析需要施加外部电信号,可能对脑电信号产生扰动的难点,本报告率先提出了光生理探针新策略,设计并开发了系列近红外光激发的微纳拉曼探针阵列,首次实现了脑电信号的拉曼化学成像分析。同时、合理调控和合成了基于光诱导电荷转移新机制的半导体探针,使其拉曼增强因子提升至1010。免费报名》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022/
  • 重磅!马斯克称第二例脑机接口设备植入成功
    近日,马斯克在节目录制时透露,其脑机接口公司“神经连接”已成功为第二名人类患者植入脑机接口设备。据悉今年年初,“神经连接”公司进行了脑机接口设备的首例人体移植。患者的脑部活动信号可被实时读取。患者只需通过意念就能控制手机、电脑,并通过它们控制几乎所有设备。失去四肢功能的人群将是这款产品的首批使用者。脑机接口”是一种人机交互技术,工作原理是采集脑部神经信号并分析转换成特定的指令。(Brain-Machine Interface,BMI;Brain Computer Interface,BCI ),指在人或动物大脑与外部设备之间创建的直接连接,实现脑与设备的信息交换。这一概念其实早已有之,但直到20世纪90年代以后,才开始有阶段性成果出现。这种技术能够在人或动物大脑与外部设备之间创建直接的连接,不依赖正常的由外周神经和肌肉组成的输出通路,实现“脑”与“机”之间的直接信息交换。除“神经连接”公司外,目前全球还有多家公司也正在研发脑机接口技术,有些公司已开始进入人体临床试验阶段。2024年,中国团队成功研发65000通道脑机接口芯片。武汉高德红外股份有限公司董事长黄立3月份介绍,他带领中华脑机接口公司团队成功研发65000通道双向的脑机接口芯片,居于国际领先水平。当天,十四届全国人大二次会议第二场“代表通道”采访活动举行。黄立在受访时说:“目前,国外的脑机接口芯片还只能做到3000多个通道,而且是单向的。而我们的脑机接口芯片可以做到65000通道,是双向的,居于国际领先水平。他表示,这项技术可以让很多目前实现不了的医疗应用成为可能。比如,可以让假肢有真实感觉,可以用人脑、意念控制假肢,神经系统的疾病治疗也成为可能,比如癫痫、老年痴呆、郁症、帕金森病等。盘点5家具有影响力的脑机接口公司一、NeuralinkNeuralink公司是由特斯拉创始人Elon Musk于2016年7月成立的,旨在开发一种可以将人类与AI融合的脑机接口系统。这个系统可以通过植入大脑的芯片,将人类的思想上传到云端,并实现人与机器的交互。目前,Neuralink已经成功地开发出了一种名为“Link”的脑机接口设备,该设备可以通过手术植入到大脑中,并使用无线充电技术来保持运行。Link设备可以读取大脑中的神经元信号,并将其转化为数字格式,然后通过云端进行进一步处理。Neuralink的脑机接口技术可以应用于多个领域,包括医疗、娱乐和军事等。例如,它可以帮助瘫痪患者恢复运动能力,还可以帮助正常人更好地控制机器人肢体。此外,Neuralink还开展了一些有趣的研究,例如通过脑机接口技术实现意念打字和意念控制电子游戏等。为了将Neuralink的脑机接口技术推向市场,公司一直在积极开展动物实验和人体实验,并已经获得了美国食品药品监督管理局(FDA)的批准。如果一切顺利,Neuralink的脑机接口技术有望在未来几年内进入市场。二、NeuroSkyNeuroSky是一家脑机接口技术公司,总部位于美国加利福尼亚州圣克拉拉市。它的使命是利用脑机接口技术改变人们与世界互动的方式,让每个人的生活都变得更好。该公司开发了一系列神经科学产品,如脑电图(EEG)、多通道生物电位记录器(EOG)和脑部活动监测设备(BAE)等,以帮助客户研究大脑活动,开发治疗方法和产品。NeuroSky的脑机接口技术基于EEG和EOG信号,可以非侵入性地监测大脑的活动,从而了解用户的意图、情感和认知状态等。该公司的产品和服务广泛应用于医疗、娱乐、教育、心理学、智能家居等领域。例如,在医疗领域,NeuroSky的技术可以用于诊断和治疗抑郁症、注意力缺陷多动障碍(ADHD)、焦虑症等心理疾病。在教育领域,NeuroSky的技术可以用于提高学生的学习成绩和注意力。在智能家居领域,NeuroSky的技术可以用于控制家庭设备,如灯光和温度等。除了开发和销售产品,NeuroSky还提供脑机接口解决方案,帮助客户在各种应用领域开发自己的产品和服务。该公司的客户包括迪士尼、微软、IBM、索尼等知名公司。三、InteraXonInteraXon是一家开发神经科学技术的公司,总部位于加拿大安大略省多伦多市。它开发了一种名为“Muse”的头戴式设备,可以监测大脑活动并提供反馈,以帮助人们提高专注力和放松力。Muse是一款基于脑电图(EEG)技术的产品,可以通过测量大脑活动来了解用户的注意力和放松程度等。该设备采用了低功耗蓝牙技术,可以与智能手机应用程序进行无线连接,让用户实时了解自己的大脑活动情况。Muse的应用程序提供了多种功能,包括冥想、专注和放松练习等。用户可以在应用程序中选择自己喜欢的冥想课程,并跟随Muse的反馈来调整自己的大脑状态。Muse还可以记录用户的脑波数据,让用户了解自己的大脑活动情况,从而更好地控制自己的情绪和行为。除了Muse,InteraXon还开发了一系列其他的神经科学产品,如“Sigmund”和“MindSet”等。Sigmund是一款可以监测和反馈大脑活动的头戴式设备,主要用于研究和诊断注意力缺陷多动障碍(ADHD)等心理问题。MindSet是一款可以减轻疲劳和增强专注力的头戴式设备,主要应用于劳动生产力提高、驾驶安全等领域。四、Blackrock NeurotechBlackrock Neurotech是一家心理科技公司,总部位于美国加利福尼亚州圣克拉拉市。它主要研究脑电图技术(EEG)和生物电位记录器(EOG)等神经科学产品,并开发了名为“Quell”的疼痛管理产品,以帮助缓解疼痛。Quell是一款基于EEG技术的可穿戴设备,可以通过监测大脑活动来缓解疼痛。该设备采用了低功耗蓝牙技术,可以与智能手机应用程序进行无线连接,让用户实时了解自己的疼痛管理情况。Quell的应用程序提供了多种功能,包括疼痛管理、冥想和专注练习等。用户可以在应用程序中设置自己的疼痛管理计划,并跟随Quell的反馈来缓解自己的疼痛。Quell还可以记录用户的脑波数据,让用户了解自己的疼痛管理情况,从而更好地控制自己的疼痛。除了Quell,Blackrock Neurotech还开发了一系列其他的神经科学产品,如“Think”和“Attune”等。Think是一款可以监测和反馈大脑活动的可穿戴设备,主要用于研究和诊断注意力缺陷多动障碍(ADHD)等心理问题。Attune是一款可以监测和反馈情绪的可穿戴设备,主要应用于情感识别和心理健康管理等领域。五、NeuroLutionsNeuroLutions是一家人工智能公司,总部位于美国马萨诸塞州沃尔瑟姆市。它的目标是利用神经科学技术和人工智能技术,为人们提供更好的健康和生活体验。NeuroLutions主要开发神经科学技术产品,如脑电图(EEG)、多通道生物电位记录器(EOG)和脑部活动监测设备(BAE)等,以及提供神经科学解决方案。该公司利用AI技术分析EEG和EOG信号以及行为数据,以帮助客户研究和开发治疗方法和产品。NeuroLutions的客户包括医疗设备公司和制药公司等。该公司的神经科学解决方案可以帮助客户更好地了解大脑活动和认知过程,从而提高治疗和诊断的准确性。此外,NeuroLutions还与游戏和娱乐公司合作,提供脑机接口解决方案,以帮助客户开发更智能和更具互动性的游戏和服务。
  • 元宵福利丨趣味挑战赛,欢乐闹元宵
    正月十五迎元宵庆团圆 福利超“虎”想象春节的欢乐气氛还未散元宵节的气息又扑面而来趁着还在正月里好好地再热闹一阵儿2022年元宵节连华科技特别推出“趣味挑战赛,欢乐闹元宵”活动福利满满,快乐翻倍快来一起欢度元宵佳节吧~活动介绍【活动时间】2022年2月14日17:00——2月16日17:00【活动内容】元宵节-水质检测挑战赛!移动仪器,接住掉下来的水质指标,即可获得游戏分数,小心避开恐怖的炸弹哦。单次游戏达到80分即可参与抽奖活动。每人每日拥有5次游戏机会,每日最多可获得3次抽奖机会,活动期间最多可获得9次抽奖机会。【参与方式】长按识别二维码,关注“连华科技”微信公众号。1、公众号回复“元宵节”,点击活动链接即可参加小游戏。2、点击公众号菜单栏-产品-闹元宵,即可参加小游戏。温馨提示1、中奖用户请填写真实姓名、手机号码、详细地址,便于我们在您中奖后核实相关信息。2、本次活动奖品由凡科互动商城提供,中奖用户请于7日内自行兑换奖品,超出时间未兑换奖品的用户视为放弃本次活动奖励。出了十五年过完趁着春节的尾巴让我们尽情欢度元宵佳节吧衷心祝福您人圆事圆 花好月圆心愿梦圆 阖家团圆
  • Nano Letters:法兰西公学院应用液体电化学技术在电镜原位研究Na-O_2电池中NaO_2形成机理方面取得重要进展
    p 【引言】 /p p   日益增加的环境污染与化石燃料消耗对清洁能源的开发和存储提出了越来越高的要求。Na-O sub 2 /sub 二次电池因具有理论能量密度高(1100 Wh/kg)和储量丰富等特点,有潜力成为下一代绿色大规模能源存储器件。然而,Na-O sub 2 /sub 电池研究仍处于初级阶段,复杂的反应机理及低循环稳定性是Na-O sub 2 /sub 电池面临的主要挑战。目前,研究者们通过改善电解液、电极结构等途径来提升钠氧电池的性能,但是针对其反应机理及失效机制的研究比较少,尤其是原位监测电池的充放电过程。反应机理与失效机制的研究对于钠氧电池的进一步研发起着至关重要的作用。原位透射电镜技术的发展为此研究的深入开展创造了新的契机。 /p p 【成果简介】 /p p   近日,法兰西公学院Alexis Grimaud研究助理(通讯作者)、Arnaud Demortie?re助研(共同通讯)和Jean-Marie Tarascon教授等研究人员应用原位透射电镜液体样品杆技术(Protochips公司)及快速成像技术,首次报道了Na-O sub 2 /sub 电池充放电过程中NaO sub 2 /sub 立方体生长演变过程的原位观测,并提出了其生长过程受限于NaO sub 2 /sub (溶剂)?NaO sub 2 /sub (固体)之间的平衡和可溶性产物的质量传输。同时,通过对电池充电过程的原位监测,阐明了溶剂化-去溶剂化平衡导致过氧化钠溶解的机理。最后,他们发现,随着钠氧电池充放电的进行,过氧化钠立方体表面逐渐形成一层壳层,钝化电极表面,阻止了氧气参与氧化还原反应以及过氧化钠的进一步形核,进而降低了电池的充电效率及循环稳定性。该研究揭示了Na-O sub 2 /sub 电池中过氧化钠的生长-溶解机理以及电池失效的机制,对于Na-O sub 2 /sub 电池的进一步研发提供了一定的理论基础。相关成果以“Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na?O sub 2 /sub Battery Using Liquid-Electrochemical Transmission Electron Microscopy”为题发表在Nano Letters上。法兰西公学院博士研究生Lukas Lutz为论文第一作者。 /p p 【实验方法】 /p p   电解液:分子筛处理乙二醇二甲醚(DME, 99.9%)溶剂5天以去除多余的水分 NaPF sub 6 /sub (99.9%)置于真空烘箱,80度保温24 h。氩气环境的手套箱(O sub 2 /sub , 0.1 ppm H sub 2 /sub O, 0.1 ppm)中制取0.5 M电解液。在原位电镜测试前将电解液溶解饱和的超纯O sub 2 /sub 。 /p p   原位电化学透射电镜测试:电镜型号,FEI-TECNAI G2 (S)TEM,200 kV。1. 首先利用空白溶剂排除电子束对于结果的影响:固定电子束剂量(10 e?/nm sup 2 /sup )照射空白溶剂360 s,观察溶剂的变化,防止电解液发生分解 确定该剂量,该照射时间,电解液未发生变化,即认为电子束照射对于实验结果没有影响。2. 微电池是两个由氟橡胶O-型垫密封的硅芯片构成,上芯片包括两个Pt电极,一个玻碳电极,500 nm厚的SU-8聚合物绝缘层,50 nm厚的Si sub 3 /sub N sub 4 /sub 窗口 下芯片包括500 nm绝缘层,50 nm Si sub 3 /sub N sub 4 /sub 窗口。3. 用带螺丝的不锈钢片将装好的芯片压在O-型垫上以维持密封效果。4. 将此微反应器固定在样品杆顶端,采用蠕动泵通入流速为0.5-5 μL/min的电解液 在通入电解液之前一定要用超纯氩气冲洗微电池及管路。 /p p 【图文导读】 /p p style=" text-align: center " strong 图1 Protochips液体样品杆及NaO sub 2 /sub 生长-氧化机理示意图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/2623ba3e-18dd-4077-9804-be4e0686c5a1.jpg" title=" 图1 Protochips液体样品杆及NaO2生长-氧化机理示意图.png" alt=" 图1 Protochips液体样品杆及NaO2生长-氧化机理示意图.png" / /strong /p p style=" text-align: center " strong (a) 用于原位电化学测试的(Protochips公司)顶端示意图 (b-c) 芯片展示图 (d) 芯片的剖面图 (e)充放电过程中NaO sub 2 /sub 生长-氧化机理图。 /strong /p p   要点:利用Protochips公司产的Poseidon 510透射液体原位样品杆揭示了Na-O sub 2 /sub 电池中NaO sub 2 /sub 生长-氧化机理。 /p p style=" text-align: center " strong 图2 NaO sub 2 /sub 显微结构图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/81e4f4cc-9254-4622-8fbe-f3071d682258.jpg" title=" 图2 NaO2显微结构图.png" alt=" 图2 NaO2显微结构图.png" / /strong /p p style=" text-align: center " strong (a-b) Swagelok电池得到的NaO sub 2 /sub SEM图 (c-d) TEM微电池得到的NaO sub 2 /sub TEM图 (e-f) TEM微电池得到的NaO sub 2 /sub HAADF-STEM图。 /strong /p p   要点:Swagelok电池(a-b)与TEM原位微电池(c-f)得到NaO sub 2 /sub 产物结构比较。结果显示,两种方法得到的NaO sub 2 /sub 产物结构类似,证明Poseidon 510透射液体原位样品杆能为电池提供工作的真实环境。 /p p style=" text-align: center " strong 图3 电池放电过程中NaO sub 2 /sub 结构演变图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/4aa90ca5-389d-437b-a120-cd45cec9d5bb.jpg" title=" 图3 电池放电过程中NaO2结构演变图.png" alt=" 图3 电池放电过程中NaO2结构演变图.png" / /strong /p p style=" text-align: center " strong (a, e) 电池放电过程中NaO sub 2 /sub 结构演变的TEM图 (b) NaO sub 2 /sub 颗粒的TEM图 (c) NaO sub 2 /sub 颗粒生长时间曲线图 (f) 电池放电结束形成的NaO sub 2 /sub 颗粒TEM图。 /strong /p p   要点:电池放电时,溶液相沉淀析出导致NaO sub 2 /sub 纳米立方体的产生,生长速率受限于其质量传输效率。 /p p style=" text-align: center " strong 图4 核壳结构的演变过程图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/82ecd2fa-bc23-4762-bce7-d2f160a84dec.jpg" title=" 图4 核壳结构的演变过程图.png" alt=" 图4 核壳结构的演变过程图.png" / /strong /p p style=" text-align: center " strong (a) 核壳结构演变的TEM图 (b) 外层生长的时间曲线图 (c) 核壳结构的TEM图。 /strong /p p   要点:揭示了电池放电过程中核壳结构的演变规律:放电90 s时,壳层厚约200 nm。 /p p style=" text-align: center " strong 图5核壳结构的成分分析图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/ef8ee95c-9bc1-4f4f-a4cd-d2cc1c46ff2f.jpg" title=" 图5核壳结构的成分分析图.png" alt=" 图5核壳结构的成分分析图.png" / /strong /p p style=" text-align: center " strong (a, e) 电池放电结束后NaO sub 2 /sub 的HAADF-STEM图 (b) 核壳结构的TEM图 (c-d) 核壳结构的EDX图 (f) 核壳结构的SAED图。 /strong /p p   要点:核壳成分确认:NaO sub 2 /sub /NaOx/organic carbonates( Poseidon 兼容于TEM内的多种探测器,其中包括高角度的EDS探测器)。 /p p style=" text-align: center " strong 图6电池放电过程中CO sub 2 /sub 释放量的监测图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/e52b1e18-e358-41ba-b03c-2bd4954b059b.jpg" title=" 图6电池放电过程中CO2释放量的监测图.png" alt=" 图6电池放电过程中CO2释放量的监测图.png" / /strong /p p style=" text-align: center " strong (a) 电池放电曲线图 (b) 电池充放电过程中CO sub 2 /sub 的释放曲线图 (c) 放电过程中12CO sub 2 /sub 及13CO sub 2 /sub 释放曲线图。 /strong /p p   要点:同位素标记法验证了有机壳层组分(b)及来源(c):大部分来自于电解液的分解 随着电流密度的增加,电极表面的分解加剧。 /p p style=" text-align: center " strong 图7电池充电过程中NaO sub 2 /sub 氧化过程的监测图 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/f802d45c-bed8-46a7-a1bb-bb42960bd2de.jpg" title=" 图7电池充电过程中NaO2氧化过程的监测图.png" alt=" 图7电池充电过程中NaO2氧化过程的监测图.png" / /strong /p p style=" text-align: center " strong (a-d) 电池充电过程中NaO sub 2 /sub 结构演变的HAADF-STEM图 (e-h) 单个NaO sub 2 /sub 立方体在充电过程中高度曲线图图 (i) 电池放电结束后NaO sub 2 /sub 颗粒的HAADF-STEM图。 /strong /p p   要点:电池充电时,NaO sub 2 /sub 结构演变原位监测(a-d):其氧化过程是由外至内逐步进行的,放电过程形成的壳层结构得以保留(i)。 /p p 【小结】 /p p   该文章采用原位透射电镜技术原位监测了Na-O sub 2 /sub 电池的充放电过程,首次报道了Na-O sub 2 /sub 电池中NaO sub 2 /sub 的形核-生长机理 证实了电池充电过程中过氧化钠的溶解机理 并原位观测到了过氧化钠表面壳层的形成过程,阐明了电池低充电效率及循环稳定性的机制,为高性能钠氧电池的设计指明了方向,提供了新的思路,同时推动了原位电化学透射电镜技术的发展。 /p
  • 中科院三院士谈AI:人工智能的“脑洞”有多大?
    p strong   李德毅 /strong /p p strong   中国工程院院士、中国人工智能学会理事长 /strong /p p   我们今天的科学家,尤其是计算机科学家,把‘计算’用得太狠了,对‘计算’的依赖甚至有些‘贪得无厌’了! /p p   人工智能学者不能只盯着计算认知,一味要求 人脑研究的步伐有多快,而要拿出更多的精力放在“记忆认知”和“交互认知”上。 /p p   关于自动驾驶,无论是对话、诗词或者驾驶,图灵测试都允许测试者现场介入,判定结果都带有近似性和主观性。但是,和对话、诗词测试相比,驾驶的图灵测试可以进行更为精确、更为客观的评测。 /p p   当初汽车被发明出来的时候,人们最感兴趣的是汽车的结构、机械、传动、轮胎、底盘和车身。到20世纪,人们感兴趣的则是发动机、碳排放和被动安全。到20世纪末、21世纪初,人们总体上关心3件事情,轻量化、清洁化、智能化。 /p p   智能化,有4个阶段,第一是理性辅助驾驶,以人驾为主 第二是自动驾驶,局部时段可以放开手和脚 第三是自动驾驶,即用自动驾驶接管驾驶权 第四是人机协同驾驶。 /p p   无人驾驶的重点,难在拟人。汽车是从马车演变而来,作为动力工具,汽车的马力可以达到100匹马力,但汽车远远不如马应对不同的负荷、天气、路面,以及不同车辆情况下的适应能力。说白了,汽车的感知、认知能力远远不如马这个认知主体,“老马识途,车不如马!” /p p   所以根本问题不在于车而在于人,要解决人的问题,就要让驾驶员的认知能够用机器人替代,让机器人具有记忆、决策和行为能力,于是新的概念产生了——“驾驶脑”。 /p p   “驾驶脑”不等于驾驶员脑,“驾驶脑”是要做驾驶员的智能代理,要去完成包括记忆认知、计算认知和交互认知在内的驾驶认知,他说,这应该是人工智能时代最有意义的课题之一。 /p p strong   蒲慕明 /strong /p p strong   中国科学院外籍院士、中国科学院神经科学研究所所长 /strong /p p   不管是国内还是国外,都是如此,不过随着研究手段不断丰富,研究领域不断突破,两者的交叉融合成为热点,甚至出现一个新的研究名词,类脑智能。美国、欧盟都相继启动相关研究计划,中国也启动了脑计划。但中国的计划是将脑科学和人工智能结合得最为紧密的。 /p p   比如,现在流行的深度学习,就是基于人工神经网络的一个应用,这些人工神经网络都可以从神经科学的一些规律中得到灵感。蒲慕明说,比如可以借鉴神经突触的可塑性、记忆储存、提取与消退,等等。 /p p   目前的脑科学研究能启发人工智能的并不是特别多。因为当前的脑科学研究,仅相当于物理、化学等学科在19世纪末期的研究水平,要完全理解大脑,可能是几个世纪的事情,而不是我们这个世纪就可以达到的。 /p p   对于类脑研究,必须要在这个时候做一些适当的应用,假如不把已经知道的知识应用到对脑疾病的诊断、干预和治疗上,那么到2050年我们的医疗系统很可能要面临崩溃——那时你会发现仍然没有一个脑疾病能够治愈。 /p p   对于人工智能的应用,不一定非要完全搞清楚,神经科学一些具有阶段性的成果,也可以给人工智能的发展提供启发。 /p p strong   谭铁牛 /strong /p p strong   中国科学院院士、中国科学院自动化研究所研究员 /strong /p p   “模式识别”是人类最重要的智能行为,也是人工智能重要的研究内容——机器的“模式识别”能力,在一定程度或者很大程度上反映了机器智能“类人”的程度。 /p p   比如语音识别,近些年突飞猛进的科大讯飞,能将维吾尔语翻译成汉语,汉语翻译成维吾尔语 再如步态识别,在看不到人脸、虹膜和指纹的时候,就能通过步态在几十米外感知到其身份。 /p p   此外,还有图像识别,其中具有代表性的人脸识别,早在几年前马云刷脸支付已经引爆舆论热点。图像识别不仅可以用在手机上,还可在查找丢失儿童上发挥作用。 /p p   关于模式识别的技术瓶颈,可通过借鉴生物的机理改进,未来生物启发的模式识别在人工智能领域前景可期。其最终追求,是希望模拟逼近人的模式识别,这是非常艰巨的过程。 /p p   目前,模式识别的主要瓶颈在于鲁棒性、自适应性和可泛化性。 /p p   关于鲁棒性,说白了,就是人工智能“够不够皮实”“是不是稍微有点扰动,就会出错”。比如在酒会上聊天,背景噪音比较多,如果想听清其中某一个人的声音,就要忽略或者抑制背景中其他对话的干扰——人类可以做到这一点,也就是听觉系统所谓的鸡尾酒效应,但人工智能可以吗? /p p   关于自适应性,则比较容易理解,人类的眼睛会随着灯光的变化、环境的变化进行调整,这说明自适应性非常强。这一点可以应用到人工智能上,比如人脸识别,有一位朋友十几年甚至几十年没见,再见面是否还能认出来?他说,现有的模式识别在这方面还不是很理想。 /p p   可泛化性,说白了就是“举一反三”。当小孩认识苹果后,即便只记住了一次,也可以识别其他类型的苹果,这说明人类看到一个东西后,不仅知其然,还知其所以然。而知其所以然,就是人工智能领域所说的“深度学习”。但目前的人工智能深度学习,必须建立在大量数据的基础之上,这一点也有待进一步研究。 /p p   要解决这3个问题,关键还是看人类本身,在微观层面上,人工智能的模式识别可借鉴人类的神经元,神经元有兴奋性、抑制性、功能可塑性和传播性。科学家受到这个启发,增强了模式识别动态系统的稳定性。 /p p br/ /p
  • 561万!北京脑科学与类脑研究中心纳升超高效液相色谱仪、质谱仪采购项目
    项目编号:HCZB2022-147项目名称:北京脑科学与类脑研究中心纳升超高效液相色谱仪、质谱仪采购项目预算金额:561.0000000 万元(人民币)采购需求:名称、数量、简要技术需求如下:序号货物名称数量简要技术需求1▲串联四极杆质谱仪、纳升超高效液相色谱仪1套… … 3.1.1设备应是采用成熟技术生产而非实验性的工业产品,且适用于代谢组学分析的成熟系统。… … (详见招标文件第六章) 注:1.标注“▲”的,允许提供进口产品;未标注允许采购进口产品的,如投标人所投货物为进口产品,其投标无效。2.本项目共1个包,投标人只可投完整包,不允许将一包中的内容拆开进行投标。合同履行期限:合同签订后3个月内完成供货。本项目( 不接受 )联合体投标。
  • 检测脑毛细血管血液循环问题的新方法
    通过贝塞尔光束双光子显微镜检测毛细血管血液循环问题的新方法,可能会导致相关疾病的治疗方法的发展。国际光电工程学会9月13日消息对于血流和氧气供应的变化,大脑可能是最敏感的器官。即使是短暂的毛细血管血流中断(或称“失速”)也可能表明急性神经系统问题。有证据表明,阿尔茨海默病和帕金森病等慢性疾病与失速事件(stalling events)密切相关。因此,研究失速的影响可能会导致这种疾病的治疗方法的发展。然而,尽管在过去的几十年里,医学成像取得了巨大的进步,但识别毛细血管中的失速仍然是一个艰巨的挑战。光学相干断层扫描(Optical coherence tomography ,OCT)是目前监测小体积内毛细血管的最佳方法。但是这种方法存在时间分辨率差的问题,这意味着它只能捕获长时间的失速事件。此外,分析通过 OCT 收集的数据以确定失速事件需要大量的手工工作。John Giblin 博士在最近发表在国际光电工程学会(International Society for Optics and Photonics,SPIE)期刊《神经光子学》(Neurophotonics)上的一项研究中,由美国波士顿大学(Boston University,BU)的 John Giblin 博士领导的一个研究小组试图解决这些问题。利用定制的装置,研究人员展示了一种名为贝塞尔光束双光子显微镜(Bessel beam two-photon microscopy)的技术的潜力,该技术可以获得脑毛细血管的容积图像。此外,该团队还提出了一种创新的分析方法,可以半自动地识别失速事件。论文题目“贝塞尔光束双光子显微镜高通量检测毛细管失速事件”( High throughput detection of capillary stalling events with Bessel beam two-photon microscopy)。研究于2023年9月12日发表在《Neurophotonics》(最新影响因子:5.3)杂志上但什么是贝塞尔光束双光子显微镜?双光子显微镜是一种广泛使用的成像方式,它利用激光激发样品中的荧光分子。发光必须同时发生两个光子与荧光分子的碰撞,这可以大大降低背景杂波。此外,利用贝塞尔光束,一种具有独特强度分布的激光束,使其能够在相对较长的距离内保持聚焦在狭窄的空间内,使该技术更具前景。由于这种方法,研究人员可以大约每两秒获得 713 × 713 × 120 μm3 体积内所有毛细血管的清晰图像。在这些图像中,通过聚焦红血球的运动,可以直接检测到失速,红血球以阴影的形式出现。如果细胞停留在毛细血管内的同一位置连续两帧或更多帧,这意味着毛细血管内的血液流动已经停止。与 OCT 相比,使用贝塞尔光束双光子显微镜的方法可以更快地生成图像,提供更好的时间分辨率。然而,这种设置产生的大量数据只会加剧数据分析的问题。因此,该团队提出了一种方法,可以更容易地识别失速事件。所提出的分析程序依赖于这样一个事实,即在双光子图像中沿失速毛细血管的强度将保持相对不变。研究人员实现了一种算法来计算单个毛细血管的帧间强度相关性,高相关性意味着毛细血管已经停止运转。通过可视化计算出的相关性,而不是原始的强度图像,研究人员发现识别失速事件更容易、更快。研究小组通过小鼠体内实验测试了他们的半自动数据分析技术,以探索卒中前后失速的变化。提出的策略将分析所需的时间缩短了一半。此外,可视化强度相关性被证明比“盲目”观察原始图像更可靠地检测失速。与 OCT 不同,这种成像策略也能够检测到短暂的失速事件。此外,贝塞尔光束双光子显微镜使血管直径的估计基于荧光强度。为了展示这一特征,研究人员调查了失速事件与动脉扩张之间的关系,发现扩张的血管可以短暂地减少失速。《神经光子学》副主编、约翰霍普金斯大学(Johns Hopkins University,JHU)眼科学和生物医学工程教授 Ji Yi 评论道:“综合来看,这项研究的发现证明了贝塞尔光束双光子显微镜在探索大脑循环系统的复杂运作及其对神经系统健康的影响方面的力量。”在不久的将来,检测失速的全自动方法有望帮助科学家调查、诊断和评估脑部疾病的治疗方法。创立于1839年的波士顿大学
  • 领谱科技:致力于拉曼快检市场的便携化、快速化与精准化
    这两年,拉曼光谱仪一直吸引着业内人士的眼球,各大仪器厂商不断在新产品、新技术、新应用等方面推陈出新,精心布局,不仅如此,新迈入此领域的仪器厂商也层出不穷,可谓热闹非凡。  拉曼光谱如此的蓬勃发展给广大用户提供了更多可选择的空间,那么,当前有哪些主流企业/主流产品?有哪些最新的技术/应用?哪款仪器更适合用户自己的研究工作?  仪器信息网:贵公司拉曼光谱仪的定位?  领谱科技:合肥领谱科技有限公司(以下简称“领谱科技”)成立于2016年3月,专注于光谱技术的研发与应用市场的拓展,是国内为数不多拥有独立自主知识产权的拉曼光谱公司。基于美国LASERLAB 20余年的拉曼光谱制造经验,采用最新的设计理念、高端的制造工艺,并携手中科院合肥创新院科研团队,融合生物、医疗、化学、纳米、大数据等基础学科,创新专业设备,为快检市场提供独有、可靠、领先的便携式拉曼分析仪。  截至目前,拉曼光谱仪系列产品依然是领谱科技的主打产品,本公司致力于拉曼快检市场的便携化、快速化与精准化的发展与研究。根据对应市场以及应用领域,领谱科技分别研发了手持式拉曼快速检测仪、便携式拉曼快速检测仪、显微拉曼光谱仪、激光拉曼光谱仪等一系列拉曼快筛快检设备产品。  仪器信息网:请回顾贵公司拉曼光谱仪的研发及技术进展历史,贵公司在拉曼光谱仪器方面有哪些优势/专利技术?  领谱科技:领谱科技的技术渊源早可追寻到1994年,三位美国普渡大学的教授成立了SPECTRACODE,两年以后推出了RP-1,这是北美市场第一台基于拉曼技术的快检设备,当时的一台拉曼设备足足有一个冰箱的大小,大大限制了使用范围。2003年SPECTRACODE更名为LASERLAB 到了2012年,我们决定把这项技术带回中国,组织本土化的研发团队,进军应用市场,并开发市场所需的应用模式及解决方案。2014年我们发布了便携式拉曼设备(其中包括手持式和显微拉曼)。2016年我们携手中科院合肥创新院在合肥成立了领谱科技,并且更加丰富了我们的产品线和相对应的解决方案。  现在,领谱科技不仅拥有完整的本土化的关于拉曼光谱设备的知识产权及生产能力,更重要的是组织了一个具有开发解决方案的团队。我们坚信这种组合是把一项新技术带向市场并成功的必备条件。领谱科技就手持式拉曼光谱仪推出了五个方向的专业应用设备:毒品-易制毒化学品检测、药品原辅料成品药检测、食品及农产品安全检测、病毒原生物检测和爆炸残留及危化物检测。  仪器信息网:贵公司当前的主流产品和主流技术?有什么样的产品发展计划?  合肥领谱:领谱科技的产品线在往手持式,便携式方向转移,以更好的顺应快检市场的需求。纵观我们的产品线可以总结出三大创新点:  1、 高光通量——全光路设计,我们的手持式设备光通量高达60%,相较于其他产品,我们的检测速度快了3-5倍,更加省电;  2、高适用性——我们所有软件采用JAVA编译开发,以APP模式展示,适用于手机,平板,电脑,服务器,可实现跨平台的数据交换;  3、高拓展性——世界首创的分离式光谱系统,以光谱仪为数据采集终端,手机,平板为智能化信息交互端,云平台为数据存储及分析端。这种方式彻底改变了高端分析仪器的使用模式,为我们最终进军消费市场铺平了道路。  仪器信息网:目前贵公司重点关注的应用领域有哪些?最看好哪个领域?主推的解决方案?  领谱科技:纵观拉曼技术的发展,现在有两个趋势:在中国,拉曼技术在快检领域的应用飞速发展;在国外,拉曼技术被越来越多的应用在产品生产线质量控制领域。作为一个中国本土公司,我们更注重于快检领域的应用开发。  拉曼技术的定性半定量的特点,决定了这项技术的首要应用方向是在解决“有没有”的方面。所以对毒品,危化物的检测,对生化战剂的探测,对食品中的非法添加物的检测是我们公司认为的“Low Hanging Fruit”,也是现阶段领谱科技的重点。比如说我们公司推出的毒品易制毒化学品检测仪,可以检测出200多种毒品、新精神活性物质、易制毒化学品。同时在实战应用中发现百分之一,甚至千分之一浓度的毒品物质。  为了应对拉曼技术检测限比较低的问题,拉曼技术与表面增强技术的融合是必须的。另外领谱科技花费很大资源的方向是在病毒原生物的快筛快检方案,比如说流感病毒。病毒检测的市场太大了,它不仅在对病毒在高密集人群中爆发时的应对措施有着举足轻重的意义,甚至在养殖业,畜牧业中也有很多的应用。  仪器信息网:从整个行业来分析,目前拉曼光谱仪都有哪些先进的技术值得大家期待?同时有哪些问题亟待解决?未来拉曼光谱仪的技术发展趋势?  您认为目前国产与进口的差别?请从零部件、系统、应用等方面阐述。  领谱科技:我想从设备和系统两个方面进行阐述:  1. 从设备本身来看,现在的拉曼光谱仪都是以CCD为感光源。而能生产出针对拉曼光谱范围的CCD厂家就是那么几家日美企业。所以从本质上来说,国产和进口的产品都是大同小异,不存在数量级上的差异。比如说,我们的拉曼光谱仪在灵敏度上是做的最好的,即使和国外的产品来比较。这种成熟的设计迟早会改变的,因为价格是制约拉曼技术发展的重要因素,而定价权还是掌握在一些重要元器件的生产厂家上。我们已经在尝试一些新的技术,比如说使用PMT,或一些新型的基于纳米技术制成的感光器件来代替CCD,甚至光栅。  2. 从系统来看,国产设备在迅速的赶上甚至超越进口设备。因为市场在中国,所以中国的厂家可以更快速的应对市场需求。做为一个完整的检测系统,它包括了光谱仪,自校准,数据库,算法,人机对话,数据检索,通讯,大数据等等,表面增强技术的运用使拉曼技术更加如虎添翼。把这些技术融合在一起,使用户可以简单快捷的得到结果,是现在所有单位的努力方向,也需要比较长时间的经验积累。在这个方面,中国的研发团队做出了卓越的贡献,取得了长足的进步。当然,国外品牌的工业化设计能力,去荧光技术等等也是我们学习的榜样。  总之,我们认为现在拉曼技术已经被广大应用客户所接受,基本完成了“能不能用”的阶段。下一步,我们希望能和广大用户一起,在“好不好用”及“检测方向拓展“方面做更深入的探讨与研究。  仪器信息网:预测未来拉曼光谱仪的市场发展潜力(包括应用方向、方法标准、政策法规等)?  领谱科技:目前拉曼光谱仪市场正在从科研市场向监管市场过渡,这是技术成熟的必然结果。所以从市场规模来看,数量的大爆发正在发生。我们期待着市场在未来的几年内有个连续性的大幅度增长。2015年拉曼技术在药典的阐述是个良好的开端,这项技术在公共安全,食品安全,质量监控上的应用会越来越广泛。  政府部门从行业学会,协会,地方等角度也越来越多的参与到标准,政策法规的工作中。这些规则的制定会加速拉曼技术的推广。我们的唯一希望就是把这些工作更快更好的落实下去。 (内容来源:领谱科技)
  • 北京脑科学与类脑研究中心184.80万元采购共聚焦显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 共聚焦显微镜 开标时间: null 采购金额: 184.80万元 采购单位: 北京脑科学与类脑研究中心 采购联系人: 邢永涛 采购联系方式: 立即查看 招标代理机构: 华诚博远工程咨询有限公司 代理联系人: 于曼 代理联系方式: 立即查看 详细信息 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 北京市-昌平区 状态:公告 更新时间:2022-03-11 招标文件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 北京脑科学与类脑研究中心 行政区域 昌平区 公告时间 2022年03月11日 16:02 获取采购文件时间 2022年03月11日至2022年03月18日每日上午:9:30 至 11:30 下午:14:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 响应文件开启时间 2022年03月24日 09:30 响应文件开启地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 预算金额 ¥184.800000万元(人民币) 联系人及联系方式: 项目联系人 于曼 项目联系电话 15811596673 采购单位 北京脑科学与类脑研究中心 采购单位地址 北京市昌平区中关村生命科学园科学园路26号院 采购单位联系方式 邢永涛,010-81912615代理机构名称 华诚博远工程咨询有限公司 代理机构地址 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 代理机构联系方式 于曼,15811596673 附件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告.pdf 项目概况 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购项目的潜在供应商应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取采购文件,并于2022年03月24日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HCZB2022-058 项目名称:北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购方式:竞争性磋商 预算金额:184.8000000 万元(人民币) 采购需求: 名称、数量、简要技术需求如下: 序号 货物名称 数量 简要技术需求 1 ▲高分辨快速双扫描共聚焦显微镜 1套 …… 4.1 同一软件控制显微镜、激光器、扫描器,所有硬件均由软件控制。 …… (详见竞争性磋商文件第五章) 注: 1.标注 ▲ 的,允许提供进口产品;未标注允许采购进口产品的,如供应商所响应货物为进口产品,其响应文件按无效响应处理。 2.本项目共1个包,供应商只可投完整包,不允许将一包中的内容拆开进行响应。 合同履行期限:合同签订后,乙方应在3个月内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)供应商不为 信用中国 网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(以评审现场查询为准);(2)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动; 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年03月11日 至 2022年03月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 方式:现场领购。获取竞争性磋商文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖供应商公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买竞争性磋商文件等手续,加盖供应商公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖供应商公章)。2.如自然人参加磋商的,上述资料仅需签字或盖章即可。3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、进行体温检测及人员信息登记等事宜,自觉做好个人防护。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 五、开启 时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.竞争性磋商文件编号:HCZB2022-0582.评审标准和方法:采用综合评分法;满分为 100分:经济部分30分,商务部分36分,技术部分34分。3. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京脑科学与类脑研究中心 地址:北京市昌平区中关村生命科学园科学园路26号院 联系方式:邢永涛,010-81912615 2.采购代理机构信息 名 称:华诚博远工程咨询有限公司 地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 联系方式:于曼,15811596673 3.项目联系方式 项目联系人:于曼 电 话: 15811596673 × 扫码打开掌上仪信通App查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:共聚焦显微镜 开标时间:null 预算金额:184.80万元 采购单位:北京脑科学与类脑研究中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:华诚博远工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 北京市-昌平区 状态:公告 更新时间: 2022-03-11 招标文件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 北京脑科学与类脑研究中心 行政区域 昌平区 公告时间 2022年03月11日 16:02 获取采购文件时间 2022年03月11日至2022年03月18日每日上午:9:30 至 11:30 下午:14:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 响应文件开启时间 2022年03月24日 09:30 响应文件开启地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 预算金额 ¥184.800000万元(人民币) 联系人及联系方式: 项目联系人 于曼 项目联系电话 15811596673 采购单位 北京脑科学与类脑研究中心 采购单位地址 北京市昌平区中关村生命科学园科学园路26号院 采购单位联系方式 邢永涛,010-81912615 代理机构名称 华诚博远工程咨询有限公司 代理机构地址 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 代理机构联系方式 于曼,15811596673 附件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告.pdf 项目概况 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购项目的潜在供应商应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取采购文件,并于2022年03月24日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HCZB2022-058 项目名称:北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购方式:竞争性磋商 预算金额:184.8000000 万元(人民币) 采购需求: 名称、数量、简要技术需求如下: 序号 货物名称 数量 简要技术需求 1 ▲高分辨快速双扫描共聚焦显微镜 1套 …… 4.1 同一软件控制显微镜、激光器、扫描器,所有硬件均由软件控制。 …… (详见竞争性磋商文件第五章) 注: 1.标注 ▲ 的,允许提供进口产品;未标注允许采购进口产品的,如供应商所响应货物为进口产品,其响应文件按无效响应处理。 2.本项目共1个包,供应商只可投完整包,不允许将一包中的内容拆开进行响应。 合同履行期限:合同签订后,乙方应在3个月内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)供应商不为 信用中国 网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(以评审现场查询为准);(2)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动; 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年03月11日 至 2022年03月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 方式:现场领购。获取竞争性磋商文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖供应商公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买竞争性磋商文件等手续,加盖供应商公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖供应商公章)。2.如自然人参加磋商的,上述资料仅需签字或盖章即可。3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、进行体温检测及人员信息登记等事宜,自觉做好个人防护。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 五、开启 时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.竞争性磋商文件编号:HCZB2022-0582.评审标准和方法:采用综合评分法;满分为 100分:经济部分30分,商务部分36分,技术部分34分。3. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京脑科学与类脑研究中心 地址:北京市昌平区中关村生命科学园科学园路26号院 联系方式:邢永涛,010-81912615 2.采购代理机构信息 名 称:华诚博远工程咨询有限公司 地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 联系方式:于曼,15811596673 3.项目联系方式 项目联系人:于曼 电 话: 15811596673
  • 【小坛直播】回顾:元宵喜乐会-坛墨新品来添“闹”
    天增岁月人增寿,春满乾坤福满门。一家和气又喜气,美满幸福和团圆!恰逢正月十五元宵节巧遇坛墨直播共猜谜昨天的元宵直播没时间看?灯谜谜底没有猜出来?新产品品类没有看全?今天小编带大家一起“逛”坛墨元宵!虎年伊始,这不,坛墨就开始了新动作在直播间举行了新品发布会!实验室专用水 直播间实验水免费领纯水作为实验室广泛使用的一种溶剂水质的重要性已经越来越为实验室工作人员所关注验室工作人员所关注可以说一滴水决定实验成败趁着元宵佳节之际我们帅气的马厂长带着他的新产品走来了坛墨实验室专用水做实验 用坛墨专用水! 设备先进 品类齐全 助力中国检测降本增效我们邀请到了生产部经理-马明辉为直播间的客户们现场讲解了实验室水的通性介绍、纯度检测指标以及实验用水的分类。为了加强用户体验,在现场更是免费赠送300瓶实验用水!马经理讲解时说到了坛墨实验室专用水,采用设备先进配置,品类齐全,希望我们的客户,做实验,用坛墨专用水!为助力中国检测行业降本增效尽一份绵薄之力!离子对试剂 在这竞争激烈的时代,坛墨也追求多元化发展,此次新品发布会坛墨质检产品开发经理张吉萍老师也来了我们的直播间,为我们带来了一系列的试剂新品:色谱溶剂、分析纯大包装溶剂,更有离子对试剂!促销活动疯狂来袭!价格昂贵的离子对试剂在直播间首次给到了45折的优惠价。元宵喜乐会,好礼送不停!新品发布完之后呢,马经理和张老师都在直播间进行了幸运大抽奖,空气炸锅,屡送不爽!由此可见,直播间的福利还真是不少啊! 小坛小墨闹元宵 既然是元宵节怎么能少得了猜灯谜环节?小坛小墨为直播间的客户朋友们准备了灯谜和一些答题小礼物,但是礼物数量有限,一切都要靠“手速”迅速连麦啦~公众号的朋友们也可以一起来猜一猜① “下基层”打一字是什么字?② “无事横起,有事立起,上磨肩头,下磨脚底。”打一文具③ “共下小旁多一点”打一字④ “目字加两点,不作贝字猜。”打一字⑤ “园外隐约闻猿啼,星月小桥听萧声”打一节日小坛小墨2.0用直播间粉丝的名言,小坛小墨也迎来了2.0时代,小坛大师姐和小墨大师兄,首次露面就在直播间上演了新官上任三把火,铆足了劲为我们直播间的客户们带来各种优惠及福利。滤膜类产品低至2.5折,土壤质控样百元即可到手,红包雨和大抽奖一个都不少!不知道这次的直播有没有俘获你的心呢?小编我已经是看的心痒痒啦!错过本次直播的也不要气馁,关注坛墨质检公众号,下一次在我们直播间不见不散!
  • 《科学》:利用核磁共振进行脑研究在中国遭遇困境
    核磁共振标记这个区域。 谭力海的小组发现,与对照组相比阅读障碍的儿童大脑特定的区域活性较低,这个区域对中国人的读写来说非常重要。   北京师范大学的神经学家臧玉峰和他的同事们开始招募儿童志愿者,进行多动综合症的研究。他们计划利用功能性磁共振成像(fMRI)探测健康儿童和患病儿童之间大脑活动的差异。为了征集测试者,大学生们在一所小学前发放传单。然而,他们最后只能空手而归:家长担心核磁共振扫描可能会伤害到自己的孩子。对此,臧玉峰表示,“脑功能性磁共振实验实在是太难进行了。”   尽管在中国核磁共振已经作为一种诊断工具被广泛接受,但家长们仍不愿意自己的孩子暴露在强磁场中。这方面的忧虑并不是唯一的障碍。“公众对医生的不信任与日俱增,所以MRI 研究真是越来越难做了,”北京大学第一医院的放射科医生谢晟表示。她认为原因包括病人的维权意识和媒体对治疗方法的争论。招募健康儿童的艰难已经迫使MRI研究真是越来越难做了,不得不通过罹患其它病症的儿童进行研究测试,当然这种方式可能会事与愿违。   “经过三十余年的使用,核磁共振被公认较X射线和正电子发射断层扫描更为安全的检测方法”,美国国家药物滥用研究所(位于美国马里兰州巴尔的摩市)的核磁共振物物理学部主任、物理学家杨一鸿表示。检测的主要危险是针对那些身体里有起搏器或在其他金属物质的人。“到目前为止数百万人已经进行过核磁共振检查,因而现在看来不太可能会有副作用,”马克斯普朗克(Max Planck)人类脑与认知科学研究所(位于德国莱比锡市)认知神经科主任阿诺威尔林格(Arno Villringer)表示。   这种解释对中国的病人收效甚微——甚至是一些科学家。“我不敢让我自己的孩子接受核磁共振测试,”北京大学第三医院的放射科医生韩鸿宾表示。“没有人担保绝对没有任何潜在的危险,尤其是在进行非常规磁共振扫描中会迅速提升磁场强度或使用极高场强时,”他说。   面对诸如此类的问题,一些研究人员尝试走某种捷径。比如,谢晟最近向《癫痫研究》(Epilepsy Research)提交了一篇关于6岁以下癫痫患儿的研究报告。不过,上个月这个期刊拒绝发表她的文章,理由是她的对比对象并非完全健康。谢晟也承认:被她列为对比对象的大多数孩子因为其它病症才做核磁共振检查。“招募真正健康的儿童参加核磁共振测试太困难了,”谢晟表示。   一些同行对此表示同情,并建议有时候适当地准许规范研究实践的例外情况。臧玉峰认为,在谢晟的例子里,那些没有患有癫痫之类神经系统疾病但是可能患有其它病症的孩子,是可以作为对照组的。但是,北京师范大学磁共振物理学家黄瑞旺却不这么想,他认为不录用谢晟的文章是正确的。   在美国招募志愿者进行地要更加顺利。“经过对功能性核磁共振的详细解释,很多家长同意让孩子参加测试,” 俄勒冈卫生科技大学(美国波特兰市)的神经学家达米安费尔(Damien Fair)表示。即使在中国,一些团体也取得了进一步的成功。香港大学脑与认知科学国家重点实验室副主任谭力海表示,他从未在科研项目招募志愿者中遇到麻烦,他的团队通过研究已经能够辨别出决定中国儿童阅读和读写障碍的大脑区域。   谭力海的成功令臧玉峰感到振奋,臧玉峰相信他的小组一定能够克服困难。他们将在这周结束的农历新年之后继续招募活动——臧玉峰表示这一次将竭力向父母们解释他们的研究目的。(原文标题为——中国:对核磁共振对健康的担忧阻碍脑研究)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制