当前位置: 仪器信息网 > 行业主题 > >

壬烯醛

仪器信息网壬烯醛专题为您提供2024年最新壬烯醛价格报价、厂家品牌的相关信息, 包括壬烯醛参数、型号等,不管是国产,还是进口品牌的壬烯醛您都可以在这里找到。 除此之外,仪器信息网还免费为您整合壬烯醛相关的耗材配件、试剂标物,还有壬烯醛相关的最新资讯、资料,以及壬烯醛相关的解决方案。

壬烯醛相关的资讯

  • 院士团队|同时蒸馏萃取结合GC-MS分析酿酒五粮原料蒸煮香气成分分析
    中国白酒风味独特、历史悠久,是我国居民日常生活的重要组成部分。根据生产原料和工艺的不同,中国白酒按香型可分为浓香型、酱香型、清香型和米香型等12 种代表香型。浓香型白酒以绵甜柔和、谐调爽净、余味悠长的特点,深受广大消费者喜爱,且在白酒市场占有率最高。蒸馏萃取(SDE)是一种将水蒸气蒸馏与溶剂萃取相结合,将挥发性成分的提取与溶剂萃取相结合,通过少量溶剂提取大量样品的浓缩方法,具有操作简便且重复性好的优点,是一种分析粮食蒸煮香气有效的前处理方法。北京工商大学,酿酒分子工程中国轻工业重点实验室,北京市食品风味化学重点实验室的廖鹏飞、孙金沅*等采取SDE对蒸酒所用的5 种单粮和混粮中的香气成分进行提取,并结合气相色谱-质谱(GC-MS)对其进行分析;另外,结合香气提取稀释分析(AEDA)和香气活性值(OAV)对混合粮食蒸煮香气中关键香气化合物进行分析,从而确定影响粮香的关键化合物。01 5 种单粮挥发性化合物定性结果如图1所示,高粱蒸煮香气中检测到的挥发性化合物种类数量最多,有108 种;除了酯类和萜烯类外,鉴定到的其余类别的化合物数量均是5 种单粮中最多的。由于高粱是古井贡白酒酿酒原料中比例最高的粮食,可能将更多的粮食香气带入白酒中,丰富白酒粮香。GC-MS结果表明,高粱蒸煮香气中,己酸乙酯、正己醇、己醛等化合物的相对峰面积较大,证明这些化合物相对含量较大。玉米中共检测出93 种挥发性化合物;其中,萜烯类化合物种类显著高于其他单粮,有9 种,芳樟醇是其中相对含量最高的化合物。糯米和大米中检测出的挥发性化合物最少,均为66 种,二者种类相似,重合率为83.3%,且鉴定出的挥发性化合物在其他单粮中均可检出。高粱中检测到其他粮食中没有的挥发性化合物种类最多,有27 种,而玉米和小麦中分别有18 种和12 种。02 混合粮食原料挥发性化合物定性结果由图2可知,在不同极性色谱柱下均检出较多的烷烃类、醛类、酮类和酯类化合物;醇类化合物和芳香类化合物在极性柱条件下检出效果优于非极性柱,分别检出11 种和15 种;酸类化合物在极性柱条件下检出效果更好,检出7 种。烷烃类化合物和醛类化合物在检出数量和相对峰面积两个方面均明显高于其他类别化合物,是组成混合粮食蒸煮香气中最重要的两类化合物。03混合粮食原料中香气活性成分的筛选由表1可知,成功定性的29 种香气化合物中,通过极性柱鉴定出26 种,FD因子≥9的香气化合物有16 种,分别是乳酸乙酯(81,奶油香)、苄硫醇(81,大蒜味)、(E,E)-2,4-癸二烯醛(81,青草香、脂肪味)、4-乙基愈创木酚(81,烟熏、坚果香)、己酸乙酯(27,水果香)、辛酸乙酯(27,果香)、(E)-2-壬烯醛(27,青草、脂肪味)、(E,Z)-2,6-壬二烯醛(27,黄瓜香、脂肪味)、香叶基丙酮(27,叶子、花香)、十八醛(27,奶油香)、(E)-2-辛烯醛(9,青草香、脂肪味)、正庚醇(9,青草香)、(E)-2-癸烯醛(9,腊味、脂肪味)、(E,E)-2,4-壬二烯醛(9,脂肪味、青草香)、正己酸(9,脂肪味)、棕榈酸甲酯(9,油脂味、蜡味),同时除己酸乙酯、十八醛和(E)-2-癸烯醛外均有较高的嗅闻强度。通过非极性柱鉴定出11 种香气化合物,FD因子≥9的香气化合物有7 种,分别为苄硫醇(81,大蒜味)、(E)-2-壬烯醛(81,青草香、脂肪味)、正己醇(27,树脂、植物味)、苯乙醛(27,花香)、4-乙基愈创木酚(9,烟熏、坚果香)、辛醛(9,青椒味)、香草醛(9,蜡质味),除4-乙基愈创木酚外均具有较高的嗅闻强度。未能定性的3 个香气区间的感官描述词分别为绿茶、山楂和土豆。04 混合粮食原料中香气化合物的确定 如表2所示,本实验所得到的标准曲线R2均不低于0.99,表明该曲线具有良好的线性关系;LOD均低于0.909 mg/L,表示仪器灵敏度满足实验的需要;回收率均在80%~120%之间,表明所用定量方法可行。采用上述标准曲线对混合粮食以及5 种单粮中重要的香气化合物进行定量,并根据文献中化合物香气阈值,计算不同原料蒸煮样品中化合物的OAV,如表3所示。不同香气化合物的OAV在不同粮食样品中存在一定差异。混合粮食蒸煮香气中,苄硫醇、(E,E)-2,4-壬二烯醛和(E)-2-壬烯醛等17 种化合物的OAV≥1,被认为是混合粮食蒸煮香气中的关键香气化合物,如图3所示。 05 结论结果表明,5 种单粮中共鉴定出153 种化合物;高粱、小麦、玉米、糯米、大米中分别鉴定出108、93、93、66、66 种化合物,其中鉴定出较多数量的醛类、醇类、酮类、芳香类、酯类等化合物。采用双柱定性,在混合粮食样品中共鉴定出140 种化合物。采用气相色谱-嗅闻-质谱联用法在混合粮食样品中共鉴定出29 种香气活性化合物,结合香气提取稀释分析和香气活性值评价不同化合物对粮食蒸煮整体风味的影响。经计算,苄硫醇、(E,E)-2,4-癸二烯醛、(E)-2-壬烯醛、壬醛、己醛、辛醛、(E)-2-辛烯醛、(E,Z)-2,6-壬二烯醛、正庚醇、(E)-2-癸烯醛、(E,E)-2,4-壬二烯醛、苯乙醛、4-乙基愈创木酚、己酸乙酯、香叶基丙酮、辛酸乙酯、香草醛17 种化合物的香气活性值不低于1,被认为是对粮香有贡献的重要风味化合物,其中苄硫醇和(E,Z)-2,6-壬二烯醛首次在蒸煮粮食香气中被鉴定。原文链接:https://www.spkx.net.cn/CN/10.7506/spkx1002-6630-20220609-091
  • 阿拉丁代谢物 | 解码生物体的代谢蓝图
    阿拉丁代谢物 | 解码生物体的代谢蓝图 「一」 代谢物——生物体内外的化学“翻译官” 代谢物是生物体内外的化学物质,反映了生物在不同生理和病理状态下的代谢活动。它们不仅是研究生物标志物和代谢途径的关键工具,更是解析生命奥秘的重要窗口。 「二」代谢组学——揭示生命的“翻译图谱” 代谢组学通过全面分析生物体内的所有代谢物(代谢组),揭示生物在不同环境和条件下的全面代谢状态。这种系统生物学方法不仅有助于理解生物的生理状态和疾病机制,还为药物研发、疾病诊断和个性化医学提供了重要支持。 「三」阿拉丁® 代谢物的科研应用 (1)生物标志物的探索者:精确捕捉并分析生物体内的微小变化,为早期疾病诊断提供重要依据,助力精准医疗。(2)药物开发的智囊团:深入研究药物在体内的代谢途径和安全性,加速新药研发进程,确保药物的有效性和安全性。(3)健康风险的预测师:通过代谢物分析,评估个体的健康状况和潜在风险,支持个性化健康管理和预防性医疗。 为什么选择阿拉丁? (1)卓越的品牌影响力和信誉保证:作为科创板上市公司,阿拉丁连续十几年被评选为“最受用户欢迎的试剂品牌”,深受全国科研院所、高等院校和A股上市公司的信任。(2)全面的产品覆盖和高效的供应链:拥有覆盖全国的现代化物流仓库和超过7.5万种常备库存产品,为您提供广泛、全面的选择。(3)优质的产品和服务创新:阿拉丁通过电子商务平台,为科研工作者提供便捷的在线购物体验。我们以进口替代为己任,持续优化产品结构和服务意识,为科研创新提供可靠支持。(4)科技驱动和持续创新:我们通过不断提升研发能力和产品质量,推动科学进步。作为上市公司,阿拉丁公司以稳定的生化试剂质控和标准,为客户提供信心和支持。 产品货号产品名称规格/纯度包装规格U111899尿素99.999% metals basis25g/100g/500g/5kgL118493L-乳酸≥98%(T)1g/5g/25g/100gG116306D-(+)-葡萄糖超纯级,≥99.5%25g/100g/500g/1kg/5kgK105570α-酮戊二酸99%,用于细胞培养25g/100gH2748824-羟基壬烯醛≥97%1mg/5mg/25mg/50mg/100mgH110523氢化可的松98%1g/5g/25g/100gD106380去氢表雄酮99%1g/5g/25g/100g/500gP129960前列腺素E1≥98%(HPLC)1mg/5mg/25mg/100mg/250mg 欢迎访问我们的官网,了解更多关于阿拉丁代谢物的信息。
  • 靠香味就能知道柠檬产地?用NTME-GC-MS法分析
    柠檬(Citrus limon)是继橙子和柑橘之后颇受欢迎的柑橘类水果之一,全球产量为420万吨,主要集中在美国、阿根廷、西班牙、意大利和墨西哥。柠檬富含多种次生代谢物,广泛用于制药、营养保健品、食品和化妆品行业。除了维生素C外,柠檬还含有植物化学物质,包括多酚(类黄酮和非类黄酮)、柠檬酸和萜类化合物,这些物质作为营养保健品发挥着重要作用。其中一些代谢物已被证明具有抗癌、抗菌、抗氧化和抗糖尿病的特性。此外,柠檬和其他柑橘类水果的精油被认为是食品工业中化学添加剂的优良替代品,既满足了安全需求,又满足了消费者对天然食品成分的需求。食品基质的挥发性成分是影响风味和消费者接受度的重要因素之一。在柠檬中,已广泛报道了代谢途径和相应的挥发性成分受到与基因型(存在许多杂交品种)、成熟度和地理相关的几个因素的影响。如何确定食品基质和食品相关样品的挥发性成分?目前,使用不同的方法来确定食品基质和食品相关样品的挥发性成分。气相色谱-质谱法(GC-MS)是VOCs分析的金标准仪器技术,适用于各种不同的样品。然而,之前的样品准备通常被忽视,这对于浓缩VOCs和消除干扰至关重要,特别是从复杂的基质中。传统的提取技术,包括溶剂提取、蒸馏和顶空技术,主要基于VOCs的溶解度或挥发性。这些方法可以定义挥发性成分的指纹图谱和目标样品的风味/香气的综合信息。英诺德INNOTEG旗下的NeedleTrap(NT)动态针捕集技术,为气态基质中的痕量分析提供了一种全新的样品制备方式。通过增加吸附剂的量以及复合不同种类的吸附剂在增加吸附能力,尤其是对小分子的吸附。利用样品量少和内部膨胀气流热解析的全新技术进行快速解析而无需冷凝装置,有利于痕量级别的气体分析,其灵敏度高,检出限低。如何利用NeedleTrap分辨柠檬的产地?样品来源从当地市场中随机选择来自同一品种(尤里卡)的柠檬样品,但种植在不同的地区(葡萄牙大陆和马德拉岛,阿根廷和南非)。选择后,分别收集每个柠檬的果皮(外果皮),立即在&minus 80°C的氮气下保存,250mg等分直到分析。英诺德INNOTEG NeedleTrap(NT)选择(60 mm × 0:41 mm id,0.72 mm od, Divinylbenzene/Carboxen 1000/Carbopack X -DVB/Car1000/CarX)样品采集过程1. 将250 mg样品放入20 ml的提取管中,并加入100 μL 2-庚醇(30 ppm)作为内标;2. 密封提取管,在50 ± 1 °C下平衡10 min;3. 然后,将预先连接到一次性1 mL注射器的NTD插入萃取管的顶空,并通过吸附剂手动加载30 mL的气体(30个抽取循环,平均速度10 ± 2 mL min&minus 1);4. 提取后,丢弃注射器,用PTFE帽封住NTD的两端;5. 在250 °C下将NTD注入GC-MS系统60秒,以实现提取VOC的热解吸;* 在下一次萃取之前,将NTD置于250 °C恒流氦恒压1 bar下30 min的调节器中,使吸附剂重新活化。除非有指示,所有步骤都至少用三个不同的样品(N = 3)重复,并分析三份(N = 3)。分析● 分析是在安捷伦6890N气相色谱仪系统(安捷伦技术公司,帕洛阿尔托,加利福尼亚州,美国)与安捷伦5975四极惰性质量选择检测器耦合进行的;● 提取的化合物在BP-20熔融硅胶毛细管柱(60 m×0.25 mm×0.25 μm)上进行分离;● 采用以氦为载气的无裂解注射,以1.0 mL min&minus 1的恒定流速进行;● 烘箱温度条件为:45℃(保持2 min),然后从45 oC开始梯度温度梯度,保持1 min,然后以2 ℃/min的速度升至90℃,保持3min,然后以3 ℃/ m的速度升至160 ℃(保持6 min),终末以6℃/min的速度从160℃升至220℃保持15 min;● 进样口温度和离子源温度分别为250 ℃和230 ℃;● 化合物的质谱在70 eV的电子撞击(EI)模式下获得。电子倍增器设置为自动调谐程序。数据采集采用扫描模式(质量范围m/z = 35–300 amu;每秒6次扫描)。● 使用GC-MS的Enhanced ChemStation软件(Agilent Technologies, Palo Alto, CA, USA)记录和处理色谱图和光谱。不同地理区域的柠檬皮的挥发性有机物图谱 图片:NTME/GC-MS柠檬(尤里卡品种)果皮的典型特征,来自研究调查的地区:葡萄牙(大陆和马德拉岛)、阿根廷和南非尽管从谱图中可以看到四个柠檬样品的VOCs分布明显相似,但与各VOC和功能群的相对丰度有关的一些特征是特别的。南非柠檬似乎比其他组更芳香,因为相对峰面积的总和明显更高(分别是马德拉、葡萄牙大陆和阿根廷柠檬的1.5倍、2倍和3倍)。单萜烯是所有样品中含量最高的功能类,占挥发分的95%以上。这种表现主要是由于D-柠檬烯,其次是α-和β-烯,β-烯和γ-萜烯,这是所有柠檬样品中含量最高的VOCs。相比之下,葡萄牙大陆柠檬中的高醇含量比其他组分析的要高得多。醛类也观察到类似的趋势,葡萄牙(大陆和马德拉)种植的柠檬中醛类含量比阿根廷和南非样品高。对挥发性数据矩阵进行统计分析为了评估本研究获得的挥发性指纹图谱在根据地理区域区分尤里卡柠檬中的潜力,利用MetaboAnalyst 4.0网络工具对挥发性数据矩阵进行统计分析,结果如下图所示:从图中可以看到,PCA的第一个主成分(PC1)总方差为52.1%,可以将柠檬生长在葡萄牙大陆和马德拉的品种进行区分,(乙醇、乙酯,辛酸、反式-βα,紫苏醛和挥发性有机物挥发性有机物)。第二主成分(PC2)占模型总方差的24.4 %,并将南非生产的品种与阿根廷生产的品种(α-pinene、 α-thujene、甲苯、甲苯、1-丁醇、d-柠檬烯和2-甲基-2-庚烯)分开。结论在这项工作中,我们报告了根据其地理来源使用简单的分析布局和相当经济的实验装置来识别柠檬。NTME/GC-MS,可以对不同地理来源——葡萄牙马德拉岛(葡萄牙)、阿根廷和南非——种植的Eureka品种柠檬皮(外果皮)的挥发性成分进行深入和全面的了解。在Eureka品种的柠檬皮中共鉴定出75种VOCs,这一数字略高于之前发表的关于同一品种的研究结果。单萜烯家族是最主要的VOCs,占Eureka品种柠檬皮挥发性成分的95%左右。D-柠檬烯、β-烯和γ-萜烯是目标地理来源的柠檬皮中鉴定出的主要挥发物。本研究中鉴定的VOCs能够根据其地理区域区分柠檬。因此,丁醛、α-烯、α-丁烯、2-庚酮、D-柠檬烯、2-甲基-2-庚烯、壬烯醛、癸醛、1-辛醇、柠檬烯氧化物、β-石竹烯和2,6-二甲基2,6-辛二烯是对这种区分贡献最大的VOCs。英诺德INNOTEG NeedleTrap 英诺德INNOTEG新型的动态针捕集装置(Needle Trap),把吸附剂填充在针尖内,可装填多达三种不同商用固体填料,是一种新型的无溶剂微萃取技术,集采样、萃取、浓缩、进样于一体,适于痕量挥发性及半挥发性有机物分析。英诺德INNOTEG Needle Trap动态针捕集技术,为气态基质中的痕量分析提供了一种新的样品制备方式。通过增加吸附剂的量以及复合不同种类的吸附剂在增加吸附能力,尤其是对小分子的吸附。利用样品量少和内部膨胀气流热解析的技术进行快速解析而无需冷凝装置,有利于痕量级别的气体分析,其灵敏度高,检出限低。技术特点1. 英诺德INNOTEG Needle Trap技术易于操作使用,便捷,可用于现场采样的技术;2. 灵敏度高,填有多种吸附剂的动态针捕集装置分析ppb/ppt级低浓度范围挥发性有机物;3. 英诺德INNOTEG Needle Trap的体积小,需要的样品量少,热解析速率只需30s,一方面不需要冷阱聚焦聚焦来解吸样品并且不会造成拖尾峰,另一方面,投入成本和使用成本大大降低;4. 样品采集和存储稳定性强,针头两端有PTFE堵头密封,易于保存,运输方便。产品规格Luer-Lock连接头长度:在50mm至70mm之间直径:三种尺寸可选0.7mm/0.4mm;22号规格 (0.72mm/0.4mm) ;23号规格 (0.64mm/0.35mm) ;针尖形式:圆锥形(侧孔,钝面,或根据需求定制)填料:可根据目标组分选择填充不同种类的吸附剂,增大吸附容量和吸附范围如果您对上述产品感兴趣,欢迎随时联系德祥科技德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多项奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德INNOTEG还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 微生物实验室里的“啤酒极客”:通过基因改造寻找新味道
    Kevin Verstrepen(中)和同事们在实验室品尝啤酒  使用传统育种方法,我们能把风味加强10倍,但使用基因改造方法,我们能加强100倍或1000倍。  Kevin Verstrepen 的实验室会议有时会让人变得醉醺醺。每周两次,他在比利时鲁汶大学和佛兰德斯生物技术研究所的几个组员都会围坐在桌边,桌上则放满了郁金香形的黑色啤酒杯以及痰盂和饼干。  Verstrepen举起一只酒杯,然后闻了闻。“我觉得这就像个乙酸乙酯炸弹。”这种化学品经常用在梨子味的甜食中,在高浓度下散发出一股指甲油味儿。  实验室里的一位研究生Brigida Gallone还闻到了另一种味道。“乙酸乙酯和4-乙烯基愈创木酚。”她说。后者闻起来像烟雾、丁香和牙医办公室的味道。“我喜欢4-乙烯基愈创木酚,但这个太浓了。”  另一位学生Stijn Mertens 闻到了湿硬板纸的味道,这种味道在陈啤酒中很常见。“我闻到了反-2-壬烯醛。”他说。  该小组结束了对这种啤酒的分析,开始品尝第九杯,也是最后一杯啤酒。时间还没到上午11点。  “在注意力涣散之前,你只能做那么多。”博士后Miguel Roncoroni 说。他主持这些品酒会已经4个多月了。他们所属的项目旨在描述市场上200多种比利时啤酒的特点。他们的评价以及对产生口味和香气的几十种化学物质的精确测量,能帮助消费者将自己喜爱的啤酒与实验室介绍进行对比,挑选出想尝试的新啤酒。  但Verstrepen的梦想不止于此。他想培养出完美的酵母。他的实验室正在把有关啤酒风味的化学和遗传知识运用到培育酵母菌株上,以培育出独特风味和受追捧的可口饮品。  该实验室里的“啤酒极客”横跨两界,既从事科学研究,也参与工业酿造。他们通过酵母研究演化、生物化学,甚至神经科学,但也与来自全世界的啤酒制造商签订合同。在一篇即将发表于《细胞》期刊的论文中,该实验室报告了150个用于酿造啤酒、清酒以及其他发酵制品的酵母菌株的基因组。  走出酿造厂  对啤酒这个价值5000亿美元且产品依赖化学与微生物学间复杂反应的行业而言,高级酵母菌株可是抢手货。“你总想知道Kevin的实验室有什么新东西。”美国New Belgium 啤酒厂的酿酒师Peter Bouckaert 说,“人们都关注他的动态。”  啤酒的味道来自寥寥几种原料。谷物(主要是大麦麦芽)提供了糖和酒体,也能影响风味,比如常见于黑啤的巧克力味。而啤酒花带来了苦味和一些手工啤酒中的热带水果调。可溶矿物质会影响来自谷物和啤酒花的风味。酿酒酵母提供了酒精、气泡和上百种香味化合物。发酵过程生成了其他一切,从乙酸异戊酯(德国维森小麦白啤香蕉味的来源)到带来丁香味的4-乙烯基愈创木酚。  啤酒制造商曾经是酵母科学的领军者。丹麦的嘉士伯酒厂在1875年建立了全世界最早的酵母生物学实验室。在那里,Emil Christian Hansen 于1883年首次分离出了酿酒酵母的纯菌株。在20世纪30~40年代,另一位就职于嘉士伯的科学家Jvind Winge 发现酵母既能有性生殖,也能无性生殖,并利用这一特点来培育具有实用酿造性状的新菌株。  Winge 的工作让酵母从酿酒厂走进了生物学实验室。现在,许多科学家使用酿酒酵母作为探索复杂细胞内部运作机制的模型。尽管酵母与生命科学的结合由来已久且成果卓著,Verstrepen 仍然认为,许多啤酒制造商在酵母使用上还停留在19世纪。“啤酒制造商,尤其是传统的啤酒制造商,使用的往往不是最理想的酵母。”  Verstrepen 想要改变这点。起初,他在南非的一家葡萄酒酵母菌实验室工作,然后于1999年进入鲁汶大学啤酒实验室攻读博士学位。但他失望地发现,研究的大部分内容都是在为酿酒商解决问题。“没人真的在做生物学研究。”他说。梦想破灭后,他来到马萨诸塞州怀特黑德生物医学研究所,跟随Gerald Fink 从事博士后研究。Gerald Fink 在上世纪70年代开创了酵母菌基因工程研究。  然而,尽管那里的科学家喜欢酵母,但没人对啤酒有兴趣。他的研究重点是致病性酵母菌黏连在人体组织上所使用的蛋白质。他发现,酵母菌的“黏性”取决于某个特定基因上的DNA序列重复次数。“这就好比尼龙搭扣越长,就越容易黏住东西。”他解释道。这种蛋白质还与酵母菌的絮凝有关,即酵母菌细胞在啤酒中凝聚成团、从溶液中析出的过程。不同菌株的絮凝特性不同,会影响啤酒的风味、澄清度和酒精含量。  啤酒实验室  2005年,Verstrepen在哈佛大学设立了自己的实验室,着重研究不同DNA序列重复在产生多样性方面的作用。他也在哈佛大学给本科生教授生物学,并在这门课程中融入了酿酒学。“那门课挺难的。”他说。但在2009年回到鲁汶大学前,啤酒一直没有成为他的研究课题。  Verstrepen一直希望能将研究与对啤酒和葡萄酒的兴趣结合起来。他与业界的合作始于一家瑞士巧克力公司打来的电话。百乐嘉利宝公司是全世界最大的可可生产商之一,其需要把苦味的可可豆转化成可可粉(这在传统上是由环境中的酵母菌完成的)。“而我回答他们,巧克力也是发酵的吗?”Verstrepen 说。  尽管如此,该公司还是成为了Verstrepen 实验室的第一位咨询客户。现在,其实验室的25位科学家中,有一半人从事有关啤酒、生物燃料和其他发酵产品的应用研究,其他人则从事表观遗传学、分子演化和其他基础研究。  乍一看,Verstrepen 的实验室和其他实验室没什么两样,实验桌上摆放着离心机、培养皿和移液器,还有一个装满了小玻璃瓶的培养箱。如果瓶子里装着的不是浓浓的大麦麦芽、糖和啤酒花的话,这个孵化器在任何微生物学实验室都不会显得突兀。  但该实验室的冰箱里存放了约3万种酵母菌,包括在全世界范围内用于酿酒、烘培和其他用途的1000种菌株,以及从水果、花卉、昆虫,甚至人类身上分离出来的1000种野生菌株。其中许多品种都已经根据影响口味以及啤酒制造商关注的其他性状的基因进行了归类。实验室正与加州怀特纯酵母发酵实验室和合成基因组公司合作,构建工业用酵母菌的系谱。  冰箱里的其他菌种则是实验室的发明创造:拥有独特性状组合的全新菌株。团队通过让不同的菌株配种并筛选后代的香气制造新菌种。最近,实验室也开始筛选这些性状背后的基因。Verstrepen 认为,它将改变酿造业。  该实验室还使用了一种一天能完成上百次酵母配种的机器人,生产出的菌株根本来不及分析品尝。为了解决生产过剩问题,研究者正在研发一种同时能产生2000多种不同酵母菌、每种20皮升的微流控芯片,每种酵母都只含有一个酵母单细胞。它们可以自动检验这些微量酿造产物的酒精含量,并希望最终能测量产生的香味化合物。  寻找新味道  Verstrepen 的酵母存档让他的实验室成为了啤酒制造商寻找特定风味的一站式商店。 “Kevin 的研究有点超过啤酒制造商的应用范畴。”Bouckaert 说,“但这并不意味着它们不能在未来转化为巨大的商机。”  Verstrepen 表示,酿酒酵母的自然变异为风味和其他性状的调整提供了空间,但这种方法也有局限。基因改造工具可以在此基础上改进。“使用传统育种方法,我们能把风味加强10倍,但使用基因改造方法,我们能加强100倍或1000倍。”Verstrepen 说。啤酒制造商对他们的成果很激动,但转基因食品的“污名”意味着实验室在生产供给业界的菌株时使用的一直都是更为传统的技术,比如传统育种和定向演化。  诸如CRISPR之类的基因编辑技术也能将自然发生、会带来风味的变异型引入生长良好、但没有什么味的酵母菌株,更快完成与传统育种方法相同的目标。  虽然一些手工啤酒厂曾向实验室索要过转基因酵母,但Bouckaert 表示酿造业中的大多数企业对此并无兴趣。“美国的手工啤酒厂正在挑战极限,但基因改造是个禁区。”他说。  不过,Mertens 很乐意看到自己的发明被制成商业啤酒,但也希望能为他发明的其他菌株的基因组测序,以理解不同物种如何杂交——或许甚至能找出最初的拉格啤酒酵母产生的条件。“我们研制出了新的酵母,啤酒制造商很喜欢它。”他说,“但我们研究的是杂交的运作基础,比啤酒科学更进一步。”  在上午的啤酒品尝结束之际,桌上的痰盂已经吐满了。Verstrepen 与一家DNA测序公司有个会议,Mertens 和其他学生都有研究工作要做。实验室或许吸引了许多啤酒极客,但并不是狂饮派对。  “没错,你研究的产品很有趣,但这归根结底还是遗传学工作,”Mertens 说,“我们喝酒不是为了取乐。”至少下班前不是。
  • “蛋白质组学研究技术与方法进展”会议精彩视频出炉
    p style=" text-indent: 2em " 6月18日,仪器信息网主办的“蛋白质组学研究技术与方法进展”主题网络研讨会成功召开,会议为期半天,共吸引近700人报名参会。会议现场,网友纷纷积极提问,与在线专家形成良好的互动氛围。 br/ /p p style=" text-indent: 2em " 为方便更多从事蛋白质组学研究的科研人员学习相关技术,现特将会议内容剪辑整理,点击 strong 报告题目 /strong 或 strong 报告图片 /strong 即可进入视频页面。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112929.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/13b79024-5ab6-46a9-ba61-aa729fa12726.jpg" title=" 1.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 1.jpg" / /a /p p style=" text-align: center " 报告嘉宾:邓海腾(清华大学 ) /p p style=" text-align: center " 报告题目:《 a href=" https://www.instrument.com.cn/webinar/video_112929.html" target=" _blank" 功能蛋白质组学技术的进展和挑战》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 随着质谱技术的发展,高通量地检测细胞、体液和组织中的蛋白表达谱已经成为常规分析,蛋白质组学的研究重心开始从揭示蛋白的表达水平转移到蛋白的生物学功能研究上。在本次讲座中,我将和大家一起探讨常用的功能蛋白质组学方法和在分子生物学研究中的应用,以及功能蛋白质组学分析面临的挑战。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112930.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/e6517efa-7c9c-4df5-8b90-784a1ff0e53d.jpg" title=" 2.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 2.jpg" / /a /p p style=" text-align: center " 报告嘉宾:申华莉(复旦大学 )& nbsp & nbsp & nbsp /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn/webinar/video_112930.html" target=" _blank" 《拟靶向质谱定量技术用于大规模生物标志物筛选》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 血液包含了人体各器官实时的生理病理状态信息,是最理想的检测目标样本。目前的血清标志物研究方法通量小、效率低,导致血清标志物发现少,向临床转化效率低。我们利用MRM技术的特点实现血清中标志物的高灵敏、高精确定量,并通过时间窗口的设置大幅度提高MRM检测的通量。这一策略可以实现高灵敏、高通量的血清标志物筛选。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112932.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/3ecece59-eff5-4527-b974-047f2710ee1a.jpg" title=" 3.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 3.jpg" / /a /p p style=" text-align: center " 报告嘉宾:田瑞军(南方科技大学 ) /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn/webinar/video_112932.html" target=" _blank" 《基于生物质谱技术的动态蛋白质复合物分析及生物医学应用》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 蛋白质复合物是介导细胞微环境信号转导网络的关键分子机制,一般都经历一个由细胞间、细胞膜、细胞质到细胞核的“链条式”激活和动态组装的过程。目前针对细胞信号转导的蛋白质组学研究大多集中于对蛋白质表达量及其翻译后修饰的分析,仅能阐述通路节点的变化,无法诠释信号蛋白的动态组装和信号传递过程。本团队致力于开发基于生物质谱技术的蛋白质组学新方法和新技术,并专注于其在动态蛋白质复合物及肿瘤微环境信号转导研究方面的应用。最近,我们设计合成出一种具有酪氨酸磷酸化识别蛋白结构域SH2、光交联基团和富集基团的化学生物三功能亲和探针,实现了对疏水性动态受体膜蛋白复合物及相关药物靶点蛋白的高效富集和质谱精准鉴定;发展了样品前处理新技术SISPROT,实现了微纳克级别亲和富集样品前处理的集成化和通量化操作,并实现了受体膜蛋白相关复合物分钟级别动态变化规律的高准确度定量表征;发展了通用的受体膜蛋白复合物多维度协同富集和蛋白质组学分析方法,并成功地用于胰腺癌肿瘤微环境受体膜蛋白复合物的规模化发现。上述研究发现并验证了胰腺癌的新药靶点和疾病标志物白血病抑制因子LIF,并促成了首个针对胰腺癌的anti-LIF抗体药物的美国一期临床试验。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112935.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/79709921-762a-47fe-b158-b7195b607ca9.jpg" title=" 4.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 4.jpg" / /a /p p style=" text-align: center " 报告嘉宾:陆豪杰(复旦大学 )& nbsp & nbsp & nbsp /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn/webinar/video_112935.html" target=" _blank" 《定量蛋白质翻译后修饰组学》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 对蛋白质翻译后修饰的定量分析可以帮助我们了解和调控生命过程。蛋白质翻译后修饰使蛋白功能多样以满足复杂的生命过程,同时使得蛋白质的结构复杂。基于生物质谱的组学技术,极大推动翻译后修饰的规模化定量分析。我们发展了一系列方法用于蛋白质后修饰组的定量研究,包括蛋白质的糖基化、泛素化、棕榈酰化、4-羟基壬烯醛(HNE)修饰以及蛋白质的N/C末端。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112933.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/b27ac34d-5153-4f1c-9d16-8a679f98d718.jpg" title=" 6.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 6.jpg" / /a /p p style=" text-align: center " 报告嘉宾:隋欣煜(安捷伦) /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn/webinar/video_112933.html" target=" _blank" 《安捷伦蛋白组学样品前处理自动化解决方案》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " AssayMAP Bravo生物样品前处理工作站,由96通道的注射器式移液头、微量色谱小柱、功能全面的工作站台面和为生物制药专家量身定制的操作软件组成,利用自动化操作来减少人为实验操作带来的误差,提升实验结果的稳定性,减少污染的可能性,同时利用自动化精准的时间控制和操作,来优化实验流程,提高实验室运行效率,同时适应未来趋势,节省时间和体力让实验人员从事更加有深度的分析和探索职能。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " ●AssayMAP Bravo仪器功能介绍; /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " ●AssayMAP Bravo实验的稳定结果; /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " ●AssayMAP Bravo在蛋白组学前处理的应用和文献解读; /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112931.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/9d190992-caea-4b22-afb1-1f04a98f1095.jpg" title=" 5.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 5.jpg" / /a /p p style=" text-align: center " 报告嘉宾:陈宁(布鲁克· 道尔顿) /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn/webinar/video_112931.html" target=" _blank" 《布鲁克4D-Proteomics& #8482 研究方案及dia-PASEF@、prm-PASEF@最新技术进展》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 随着分析技术的不断发展,高分辨率质谱已成为蛋白质组学研究的核心仪器。由于生物样本的高复杂性和宽动态范围,蛋白质组学的深度研究仍面临极大挑战。捕集型离子淌度的引入,带领着传统蛋白质组学进入了4D新时代,带来了鉴定深度、定量准确性、扫描速度、仪器稳定性等性能的全面提升。本次报告将主要介绍4D-ProteomicsTM研究方案,以及dia-PASEF& reg 、prm-PASEF& reg 技术进展。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112934.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/074d05d3-7121-4343-adc9-0205390abdb5.jpg" title=" 7.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 7.jpg" / /a /p p style=" text-align: center " 报告嘉宾:周岳(赛默飞 ) /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn/webinar/video_112934.html" target=" _blank" 《突破蛋白质组学分析的极限——赛默飞蛋白质组学技术最新进展》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 赛默飞近几年在蛋白质组学领域开发了多种新技术来突破蛋白质组分析的极限。FAIMS Pro离子淌度可以接在Orbitrap质谱的前端选择特定的离子进入质谱,提高了蛋白质组学的覆盖度和定量准确性,同时也提高了质谱的稳定性。Orbitrap Eclipse独有的实时检索算法(RTS)使TMT定量的覆盖度和准确度可以兼得,加上TMT 16plex标记试剂的推出,使得TMT定量具有更高的通量。靶标定量一直是蛋白质组学的最后一环也是最关键的一环,基于Orbitrap质谱的独有SureQuant定量方法可以在很短的梯度内绝对定量500多个蛋白,同时不需要太多方法优化,该方法可以很快地在实验室间进行方法转移。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " 点击链接,观看全部“蛋白质组学研究技术与方法进展”网络会议视频:& nbsp a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10572" target=" _blank" https://www.instrument.com.cn/webinar/Video/Video/Collection/10572 /a /p
  • 1246项标准,国家能源局公布2024年拟立项计划
    根据《能源标准化管理办法》及实施细则,国家能源局发布了2024年能源领域拟立项行业标准制修订计划和外文版翻译计划项目,并公开征求意见(见附件)。其中涉及新制定计划775项,修订计划422项,外文翻译计划49项。1246 项标准中,检测相关标准多达100+项,包括燃料电池检测、石油产品检测、煤岩测试、天然气测试、无损检测等,也涉及GC-MS、全二维色谱等新技术。下表列举了部分检测相关标准,供大家参考。序号标准化管理机构技术委员会或技术归口单位标准项目名称标准类别制定或修订完成年限替代标准1中国电器工业协会全国电气绝缘材料与绝缘系统评定标准化技术委员会电气绝缘用复合材料 聚合物的鉴定 裂解气相色谱——质谱法方法制定2025无2全国燃料电池及液流电池标委会质子交换膜燃料电池 膜电极边框材料测试方法方法制定2025无3能源行业液流电池标准化技术委员会铁铬液流电池 第3部分: 电堆技术要求及测试方法方法制定2025无4能源行业液流电池标准化技术委员会铁铬液流电池 第4部分: 离子传导膜技术要求及测试方法方法制定2025无5能源行业液流电池标准化技术委员会锌铁液流电池 第1部分:电堆技术要求及测试方法方法制定2025无6能源行业高温燃料电池标准化技术委员会固体氧化物燃料电池 固定式发电系统 性能测试方法方法制定2025无7能源行业高温燃料电池标准化技术委员会可逆固体氧化物电池 单电池和电池堆性能测试方法方法制定2025无8能源行业高温燃料电池标准化技术委员会熔融碳酸盐燃料电池 单电池测试方法方法制定2025无9中国核电发展中心能源行业核电标准化技术委员会核电厂可居留空间流量的测定示踪气体法方法制定2026年无10中国电力企业联合会全国电气化学标准化技术委员会磷酸酯抗燃油中游离酚含量测定 气相色谱法方法制定24个月无11全国电气化学标准化技术委员会磷酸酯抗燃油氧化安定性的测定 氧弹法方法制定24个月无12全国太阳能光热发电标准化技术委员会储能熔盐中氯化物的测定 X射线荧光光谱法方法制定24个月无13电力行业电厂化学标准化技术委员会发电厂水汽分析方法 铜、铁、钡、锶、铝的测定 原子吸收分光光度法方法修订24个月DL/T 955-201614电力行业电厂化学标准化技术委员会发电厂水汽分析方法 第32部分:硬度和钙、镁的测定 滴定法方法修订24个月DL/T 502.32-200615电力行业电站锅炉标准化技术委员会循环流化床锅炉燃料成灰特性的测定 静态燃烧与冷态振筛法方法制定24个月无16电力行业电站锅炉标准化技术委员会电站锅炉高温受热面烟气侧腐蚀气氛测量技术导则方法制定24个月无17电力行业电站金属材料标准化技术委员会汽轮机焊接隔板相控阵超声检测技术导则方法制定24个月无18电力行业联合循环发电标准化技术委员会燃气轮机进气调温装置效能测试导则方法制定24个月无19中国电力企业联合会标准化专家组屋面轻质光伏组件抗风揭测试技术规范方法制定24个月无20中国电力企业联合会标准化专家组火电厂烟气二氧化碳化学吸收法捕集系统性能验收试验规程方法制定24个月无21中国电力企业联合会标准化专家组火电厂烟气二氧化碳化学吸收系统胺逃逸测试规程方法制定24个月无22全国电气化学标准化技术委员会发电厂润滑剂中磨损颗粒的测定—电磁感应法方法制定24个月无23全国高电压试验技术和绝缘配合标准化技术委员会高电压试验技术分技术委员会变压器测试仪技术条件 第6部分:变压器低电压短路阻抗测试仪产品制定24个月无24全国高电压试验技术和绝缘配合标准化技术委员会高电压试验技术分技术委员会高压电力紫外成像仪检测规范方法制定24个月无25全国电力设备状态维修与在线监测标准化技术委员会超声成像带电检测仪技术规范产品制定24个月无26全国电力设备状态维修与在线监测标准化技术委员会变电设备在线监测装置现场测试 第7部分:变压器铁心接地电流在线监测装置方法制定24个月无27全国电力设备状态维修与在线监测标准化技术委员会变电设备在线监测装置检验规程 第7部分:高频局部放电在线监测装置方法制定24个月无28全国电力设备状态维修与在线监测标准化技术委员会变电设备在线监测装置技术要求 第7部分:高频局部放电在线监测装置产品制定24个月无29电力行业高压试验技术标准化技术委员会现场检测分技术委员会变压器/电抗器运行振动测量方法方法修订24个月DL/T 1540-201630全国电气化学标准化技术委员会电力用油颜色测定法方法修订24个月DL/T 429.2-201631全国电气化学标准化技术委员会油浸纤维质绝缘材料水分含量的测定方法修订24个月DL/T 449-201532全国电气化学标准化技术委员会油浸纤维质绝缘材料水分含量的测定方法修订24个月DL/T 449-201533中电联标准化中心综合标准化工作组火电厂烟气二氧化碳排放连续监测技术规范环保修订24个月DL/T 2376-202134全国电气化学标准化技术委员会绝缘油中含气量测定方法 真空压差法方法外文翻译24个月Determination of dissolved gas content in insulating oil Method of vacuum pressure difference35全国电力设备状态维修与在线监测技术委员会变电设备在线监测装置技术规范 第2部分: 变压器油中溶解气体在线监测装置安全环保外文翻译24个月Technical specification for on-line monitoring device of transformation equipment Part 2: on-line monitoring device of gases dissolved in transformer oil36全国高电压试验技术和绝缘配合标准化技术委员会高电压试验技术分技术委员会变压器测试仪校准规范 第3部分:油浸式变压器测温装置方法外文翻译24个月Calibration specification of transformers tester Part 3:Temperature measuring devices for oil-immersed transformers37水电水利规划设计总院能源行业水电水力机械标准化技术委员会水斗式水轮机泥沙磨损试验技术要求和评估导则方法制定2026年无38全国锅炉压力容器标准化技术委员会(TC262)全国锅炉压力容器标准化技术委员会(TC262)焊接接头射线检测图像智能诊断系统技术规范方法制定24个月无39全国锅炉压力容器标准化技术委员会(TC262)承压设备无损检测系统性能测试与评价 第3部分:涡流阵列检测系统方法制定24个月无40全国锅炉压力容器标准化技术委员会(TC262)承压设备无损检测系统性能测试与评价 第4部分:高频X射线机方法制定24个月无41全国锅炉压力容器标准化技术委员会(TC262)输氢管道材料氢相容性评价导则方法制定24个月无42全国压力容器标准化技术委员会(SAC/TC262)压力管道振动评价方法方法制定24个月无43全国压力容器标准化技术委员会(SAC/TC262)在役钢制承压设备小接管检测与评价方法制定24个月无44中国煤炭工业协会煤炭行业煤矿安全标准化技术委员会煤层原位瓦斯含量保压测试方法方法制定2年无45煤炭行业煤矿专用设备标准化技术委员会煤矿地应力水压致裂法和应力解除法井下测试规范方法制定2年无46全国煤炭标准化技术委员会井工煤矿甲烷逃逸排放监测及核算方法方法制定2年无47全国煤炭标准化技术委员会选煤厂甲烷逃逸排放监测及核算方法方法制定2年无48全国煤炭标准化技术委员会煤中水溶性离子的测定方法方法制定2年无49全国煤炭标准化技术委员会粉煤灰白度测量方法方法制定2年无50全国煤炭标准化技术委员会煤的粉尘-水分关系的测定方法方法制定2年无51全国煤化工标准化技术委员会煤液化沥青轻油组分含量的测定 全二维气相色谱-质谱法方法制定2年无52全国煤炭标准化技术委员会煤矿水中铜、铅、锌、镉、锰的测定方法修订1.5年MT/T 361-200753全国煤炭标准化技术委员会煤矿水中砷的测定方法修订1.5年MT/T 359-200554全国煤炭标准化技术委员会煤矿水中硒的测定方法修订1.5年MT/T 1045-200755中国石油化工集团有限公司全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)汽油中芳烃组成的测定 多维气相色谱法方法制定2026无56全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)基于光谱测量预测石油产品、液体燃料和润滑剂性质的校正模型建立与验证指南方法制定2026无57全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)石油产品中水含量的测定 电容法方法制定2026无58全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)石油产品中痕量元素的测定 电感耦合等离子体质谱法方法制定2026无59全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)润滑油水分离能力的测定 蒸汽乳化法方法制定2026无60全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)润滑油气相和液相铜腐蚀试验法方法制定2026无61全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)润滑油相对胶合承载能力的评定 高速FZG法方法制定2026无62全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)工程机械用液压油氧化耐久性的测定 高压柱塞泵A2F10法方法制定2026无63全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)评价汽油清净剂使用效果的试验方法 直喷汽油机燃油喷嘴沉积物生成倾向评价 EB04法方法制定2026无64全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)挤出成型催化剂和催化剂载体尺寸分布测定 动态图像法方法制定2026无65全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)ZSM-5分子筛晶胞参数的测定 X射线衍射法方法制定2026无66全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)变压吸附提纯吸附剂一氧化碳和氮气吸附量的测定 常温静态容量法方法制定2026无67全国石油产品和润滑剂标准化技术委员会石油静态和轻烃计量分技术委员会(SAC/TC280/SC2)石油和液体石油产品 立式圆筒罐自动测量系统的检验方法制定2026无68全国石油产品和润滑剂标准化技术委员会合成油脂分技术委员会(SAC/TC280/SC5)航空涡轮发动机油热老化性能的测定方法制定2026无69全国石油产品和润滑剂标准化技术委员会合成油脂分技术委员会(SAC/TC280/SC5)航空涡轮发动机油导热系数的测定 瞬态热线法方法制定2026无70全国石油产品和润滑剂标准化技术委员会合成油脂分技术委员会(SAC/TC280/SC5)低黏度聚α-烯烃(PAO)润滑油基础油中氟含量测定 离子色谱法方法制定2026无71全国石油产品和润滑剂标准化技术委员会在用润滑油液应用及监控分技术委员会(SAC/TC280/SC6)在用固定式燃气发动机油质量监控规范产品制定2026无72全国石油产品和润滑剂标准化技术委员会在用润滑油液应用及监控分技术委员会(SAC/TC280/SC6)在用润滑油磨损颗粒分析方法 可视铁谱法方法制定 2026无73能源行业地热能专业标准化技术委会员孔隙型热储采热性能室内测试方法方法制定2026无74国家能源局科技司能源行业煤制燃料标准化技术委员会煤直接液化石脑油中单体烃组成的测定 气相色谱法方法制定2025.12.31无75能源行业煤制燃料标准化技术委员会储热炭材料损耗率的测定 热重分析法方法制定2026无76能源行业煤制燃料标准化技术委员会煤制油产品中碳氢含量的测定 元素分析仪法方法制定2025无77能源行业煤制燃料标准化技术委员会1-戊烯、1-庚烯及1-壬烯纯度及烃类杂质的测定-气相色谱法方法制定2026无78能源行业非粮生物质原料标准化技术委员会能源用生物质中碳、氢含量的测定 元素分析仪法方法标准制定2025无79能源行业非粮生物质原料标准化技术委员会能源用生物质中碳、氢含量的测定 电量-重量法方法标准制定2025无80中国石油天然气集团有限公司石油地质勘探专业标准化委员会岩石中镁同位素测定方法方法制定2026无81石油地质勘探专业标准化委员会氦气含量现场分析方法方法制定2026无82石油地质勘探专业标准化委员会激光剥蚀-电感耦合等离子体质谱微区元素分析方法方法制定2026无83石油地质勘探专业标准化委员会岩石中有机质及原油Re-Os同位素分析方法方法制定2026无84 石油钻井工程专业标准化委员会水基钻井液性能现场在线测试方法方法制定2025无85石油工程建设专业标准化委员会油气田集输管道腐蚀性介质取样与分析方法工程建设制定2026无86石油管材专业标准化技术委员会油井管无损检测方法 第3部分:电磁超声检测方法制定2024无87油气计量及分析方法专业标准化技术委员会原油中总氯含量的测定 微库仑法方法制定2026无88油气储运专业标准化技术委员会天然气管道站场泄漏监测技术规范安全环保制定2026无89油气储运专业标准化技术委员会在役油气管道应力检测技术规范 第1部分:超声折射纵波检测方法制定2026无90油田化学剂专业标准化技术委员会油田化学剂中烷基酚聚氧乙烯醚类成分含量测定方法制定2026无91能源行业页岩气标准化技术委员会页岩气 岩样孔径分布测定 低温冻融核磁共振法方法制定2024无92能源行业页岩气标准化技术委员会页岩气 页岩热演化程度评价方法 第1部分:激光拉曼光谱法方法制定2024无93能源行业页岩气标准化技术委员会页岩气 覆压孔隙度测定 第1部分:气测法方法制定2024无94能源行业页岩气标准化技术委员会页岩气 气田腐蚀评价与控制规范 第1部分:固着细菌测定方法制定2024无95能源行业页岩油标准化技术委员会页岩基质物性GRI测试方法方法制定2025无96能源行业页岩油标准化技术委员会页岩储层流体启动压力测定方法方法制定2025无97油气田开发专业标准化委员会致密储层地层渗透率测定方法方法制定2025无98能源行业页岩油标准化技术委员会页岩油注剂吞吐置换效率测定方法方法制定2023无99能源行业页岩油标准化技术委员会页岩润湿性参数测定方法方法制定2025无100能源行业煤层气标准化技术委员会煤系储层岩心实验评价方法方法制定2026无101能源行业煤层气标准化技术委员会煤岩孔缝CT扫描评价规范方法制定2026无102能源行业煤层气标准化技术委员会深层煤岩含气量测定方法-保压取心法方法制定2026无103能源行业煤层气标准化技术委员会煤岩孔隙结构特征的测定 图像分析法方法制定2026无104石油地质勘探专业标准化委员会岩石比表面积和孔径分布测定 静态吸附容量法方法修订2026SY/T 6154-2019105石油地质勘探专业标准化委员会钙质超微化石分析鉴定方法方法修订2026SY/T 7360-2017106石油地质勘探专业标准化委员会储层定量荧光分析方法方法修订2026SY/T 7309-2016107石油测井专业标准化委员会岩样声波特性的实验室测量方法方法修订2025SY/T 6351-2012108石油工程建设专业标准化委员会石油天然气钢质管道无损检测方法修订2026SY/T 4109-2020109石油管材专业标准化技术委员会油井管无损检测方法 第 2 部分:漏磁检测方法修订2025SY/T 6858.1-2012,SY/T 6858.2-2012110石油工程建设专业标准化委员会石油天然气钢质管道全自动超声检测方法修订2025SY/T 7676-2023111能源行业页岩气标准化技术委员会页岩气态烃等温吸附测定 重量法方法修订2025NB/T 10117-2018112中国石油化工集团有限公司全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)石油产品溴价、溴指数测定 电量法方法修订2026SH/T 0630-1996113全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)喷气燃料静态热安定性测定法方法修订2026SH/T 0241—1992114全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会(SAC/TC280/SC1)石油和石油产品中氮含量的测定 舟进样化学发光法方法修订2026
  • 解密甲缩醛“汽油”
    图为央视3· 15晚会画面,经过检测,调和汽油甲缩醛含量占7.85%。   也许在央视3· 15晚会之前,没有多少人会知道甲缩醛这个纯化工专业的名称,直到晚会节目中,炼油商人用石脑油、甲缩醛等添加剂调和汽油全面曝光。   其实,在晚会曝光之前,这样的&ldquo 汽油&rdquo 已经以&ldquo 低廉&rdquo 的价格打开了不少市场,甚至还能屡屡顺利通过国家标准检测。   但是,这样的汽油,其真实的面目却是,&ldquo 易造成汽车线路漏油&rdquo ,还会&ldquo 挥发有害气体&rdquo ,被专家直指为&ldquo 毒汽油&rdquo 。   针对3· 15晚会曝光的&ldquo 甲缩醛调和汽油&rdquo ,《中国消费者报· 汽车周刊》通过一系列的调查采访,一步一步揭开了&ldquo 甲缩醛调和油&rdquo 的真面目。   &ldquo 混合油&rdquo 中的甲缩醛是什么?   在今年3· 15晚会前,除了化学圈的&ldquo 内行&rdquo ,知道甲缩醛的人几乎寥寥无几 一夜之间,消费者不仅知道了它的名称,还了解它近乎&ldquo 神奇&rdquo 的用途。   &ldquo 调和本身实际上是汽柴油生产过程中必不可少的加工环节,调和汽油主要原料包括催化汽油、混合芳烃、MTBE(甲基叔丁基醚)、C5、C9、石脑油(轻油)等。这类原料经过一定比例合理调配后,能够达到国家标准。&rdquo 中国化工集团蓝星(北京)化工有限公司研发部专员耿宁对《中国消费者报· 汽车周刊》表示。   虽然调和属于一种正常的加工现象,但是,必须按照严格的比例进行调和生产。而为了降低成本,追求更大利润,一些企业私自改变配方,在调和汽油中大量添加甲缩醛、甲醇、碳酸二甲酯、非芳烃等化学原料,导致了化工调和汽油质量问题频出。   央视3· 15晚会曝光的,实际上是把一部分90号汽油配上大量的石脑油、芳烃各种混合油料简单混合而成,并且标称为为93号汽油。   燕京理工学院兼职教授陈丙珍向《中国消费者报· 汽车周刊》透露,甲缩醛本是一种无色、澄清、易挥发可燃性液体,主要用于杀虫剂配方、皮革和汽车上光剂、空气清新剂等 甲醇则是主要用于农药(杀虫剂、杀虫螨)、医药(磺胺类、合霉素类)。但因为有些非法添加物目前并不在国标的检测范围内,所以一些企业为了赚取差价,采取了瞒天过海的手段,在汽油中添加非法添加物。   本是制造杀虫剂的原料,直接掺入会导致调和汽油的质量下降。一些车主也渐渐发现,原来好使的车,现在不那么随心了,但是哪里出的问题,他们也不知道。就算怀疑到油品问题,面对检测指标,结果也就是变得无从指责,虽然疑窦更深。   杀虫剂原料的&rdquo 聪明&ldquo 用法   非标准调和汽油出现的最主要原因,就是低成本。   据了解,以甲缩醛为例,它替换的是标准调和油中的MTBE。甲缩醛的市价是3500元/吨左右,而MTBE的市价通常要在6800元/吨左右,两者价格相差近一倍。   耿宁认为,化工调和汽油市场在最近几年一直处于一种恶性价格战的环境,这直接导致谁家的油价低廉就会吸引更多的消费者前来加油,造成一种&ldquo 价低者得天下&rdquo 的市场乱象。   据了解,调和汽油本是调油商采购大量的非标准油,加入一堆相应调整各个指标的其他化学产品组分或是添加剂后,调出后接近正常汽油标准。   调和工艺是炼油企业比较常用的工艺,调和汽油作为汽油一类分支,很早就存在于油品市场。一名中国石油(601857,股吧)天然气股份有限公司(以下简称中石油)内部人士告诉《中国消费者报· 汽车周刊》,这类原料本身存在一定的调和缺陷,并不适用于调和汽油,甲缩醛、甲醇等原本只应用在杀虫剂中,但这种搭配在行业内早已心照不宣。   &ldquo 甲缩醛油&rdquo 的伤害有多深   长期使用调和汽油的结果是什么?没有其他,只有危害。它不仅会给使用车辆和人体造成损害,还会造成环境污染,助推雾霾天气的产生。《中国消费者报· 汽车周刊》了解到,由于部分化工调和汽油的质量并不稳定,长期使用后会对汽车发动机、三元催化器等设备带来损害。&ldquo 便宜&rdquo 的调和汽油表面看上去很便宜,其实未必省钱。因为调和汽油会导致车辆油耗增大,说白了就是&ldquo 不耐用&rdquo 。长期用调和汽油直接影响汽油发动机正常工作。车子没劲、油也不经使,上坡上不去,严重时甚至会趴窝,车辆跑不起来的现象时常发生。   而用了这样的油,车辆损坏几率则会增大。   中国化工集团蓝星(北京)化工有限公司工程技术部王心指出,长期加调和汽油,会损坏汽车的三元催化器,会腐蚀汽车发动机系统和排放系统 在发动机燃烧过程中,使油路、喷嘴堵塞,产生沉积物,进气阀和汽缸产生胶质及积碳,直接影响汽油发动机正常工作。   不仅车会受到影响,人长期处于被甲缩醛包围的氛围中更是后果严重。由于调和汽油中含有甲缩醛等成分,长期使用不仅会使人体慢性中毒,造成呼吸系统和中枢神经系统的逐步病变,甚至严重时可能会衍变为癌症。   &ldquo 调和汽油质量是完全可以把控的。2011年时,中石油就已经明文规定外采汽油中不得含有甲缩醛。但目前市场多以利益为重,压价竞争形成的恶性循环,利益驱使很多调油商昧着良心,整个调和汽油市场也没有一个明确的行业规范,缺乏监管机制。这类加入甲缩醛的汽油原料价格便宜,且与正规汽油外观类似,使得整个调和汽油市场鱼龙混珠,普通消费者很难准确辨认孰优孰劣。&rdquo 对于调和油监控管理的问题,中石油内部人士对《中国消费者报· 汽车周刊》说道。
  • 地板业无醛概念频现 有待市场检验
    按照国家标准,甲醛释放量达到E1级别,即可认为是对人体安全的。   随着消费者对于居家环保的要求,不少地板品牌推出无醛产品。由于地板的污染主要来自于生产和安装过程中使用的黏合剂,部分企业将大豆、秸秆等天然材料制作成生态黏合剂,希望达到甲醛释放接近于零的目的。业内人士认为,尽管技术上确实可以实现,但目前对于“无醛级”产品并没有确定的标准,消费者只能通过检测报告来判断产品的环保性能。   生物环保概念频出   近日,德尔推出无甲醛环保地板,以可再生资源大豆豆粕为原料制作出大豆蛋白胶,做到不含甲醛、苯酚等有害物质,黏结性和稳定性都达到最佳效果,且没有废料排放问题。   除了德尔外,一些地板品牌也曾做出过“无醛”尝试。2004年,德华兔宝宝装饰新材股份有限公司利用非醛类生物质原料研制出“人造板用无醛级胶粘剂”、“无醛级薄木装饰贴面板”,并称达到无醛级标准,超过美国CARB级和日本F四星级要求 2010年,万华生态板业股份有限公司推出万华禾香板,称应用MDI生态黏合剂,以农作物秸秆为主要原料,甲醛释放量低于欧洲E0级环保标准。随后,金泉森地板的大豆生物胶、生活家地板的肽能系列产品均以“无醛”为卖点推向消费者,并强调达到了国家标准、获得国际认证。   德尔国际家居股份有限公司董事兼副总经理姚红鹏告诉记者,地板中的甲醛主要产生于生产和安装过程中使用的有醛胶,此次德尔的无醛添加地板,用纯天然大豆蛋白胶取代了传统的有醛胶,它以可再生资源大豆豆粕为原料,完全是天然材料。   中国林产工业协会地板专业委员会副秘书长方崇荣认为,生物胶要达到完全没有甲醛,从理论和技术上都能够做到。但各企业的研发能力不一样,有的企业的确是在做研究,有的可能为了宣传才制造这样的噱头吸引消费者。   “无醛”标准正在制定   中国木材与木制品流通协会地板委员会副秘书长胡会军表示,国家对于地板只有生产标准,符合标准的就发“生产许可证”。据方崇荣介绍,各类地板有不同的生产标准,比如实木地板是GB15036-2009,实木复合是GB/T18103-2000,强化地板则是GB18102-2007。然而这些国家标准都只是对市场准入进行限制,可以说是行业最低标准。   地板的环保问题多是针对复合地板成品而言,所执行的国家标准是GB18580-2001《室内装饰装修材料人造板及其制品中甲醛释放限量标准》,即要求甲醛释放量达到E1级别,每升小于或等于1.5毫克,符合该标准的产品即可认为是对人体安全的。   胡会军称,尽管各企业都表示自己的产品是无醛产品,也并不代表产品中没有一点甲醛释放,只是通过现有技术难以检测出来。消费者在市场上看到的各类认证,包括日本F四星级、美CARB级等,也难以判断。越来越多的企业引用国外认证来说明自己的产品,也是因为国家标准的E1级并不足以清晰地体现出产品的环保程度。   胡会军表示,目前国家对于“无醛级”的相关标准也正在制定当中。目前在国内,惟一由政府颁布的权威环保产品标志是由国家环保总局授权的“十环”认证,目前获得此认证的企业并不多。   ■ 业内声音   “井密”结构适用地暖家庭   ●姚红鹏,德尔国际家居股份有限公司董事兼副总经理   以前,木地板都是一片一片的胶合板粘起来的,容易热胀冷缩。现在我们的地板是一种“井密”结构,将竹子与木头结合起来,大大提高地板的稳定性。竹子具有韧性,利用竹子的韧性巧妙地调节木材因为湿度和温度而发生的变化,具有很好的稳定性。北方地热取暖较多,所以地板有两个要求:一个是环保,二就是稳定性,无醛添加地板再加上这个结构正好满足要求。   新事物被接受需要过程   ●吴洪涛,安信伟光(上海)木材有限公司北京分公司市场部经理   任何一个新鲜事物被接受都需要一个过程。现在很多品牌,包括一些一线品牌都在提一些生物技术所达到的无醛环保概念,感觉可能会对整个地板行业尤其是复合板的生产带来新的冲击。但新事物也需要市场的检验,有可能产品本身无醛,却含有其他的污染物 另外无醛产品价格上升,消费者接受可能也需要一段时间。   ■ 专家说法   不必片面追求无醛   ●方崇荣,中国林产工业协会地板专业委员会副秘书长   客观上讲,选择环保等级更高的产品当然是好的,但是居住空间不光是地面材料,室内环境污染也不是地板来决定的,还有家具所使用的板材、木工制品等。这些都会有不安全的因素,应该综合考虑。目前地板在行业整体的环保水平当中,已经是比较好的。总体上,甲醛释放量都符合国家强制的标准GB18580,达到E1级水平。我们不希望企业过分宣传无醛产品就是环保的,即使没有甲醛,室内也可能存在其他污染物。   无醛产品只是低醛   ●胡会军,中国木材与木制品流通协会地板委员会副秘书长   无醛产品并不是完全不含甲醛。天然木材本身也含有甲醛,只是因为天然的对人体无害,与人造板所说的甲醛不是一个概念。大部分企业所说的无醛,实际上就跟纯实木地板一样,从基材、辅料到生产,都是天然的、生态的。所检测的甲醛含量特别低,但是低到什么程度,目前没有一个确切数据。
  • 新品上市:醛、酮-DNPH溶液
    醛酮类化合物具有毒性,对人体有很大危害。由于许多醛酮类化合物化学性质不稳定,直接配置标准溶液稳定性差,尤其是甲醛,甲醛在溶液中容易发生聚合、歧化等反应;用分光光度法分析醛酮类混合物选择性差,本标准推荐使用2,4-二硝基苯肼(DNPH)对醛酮类化合物进行原位衍生化后,用高效液相色谱法或气相色谱法进行分离检测;此方法用于检测多种醛酮类化合物的混合样品,具有选择性好,灵敏度高等特点。一、方法原理:使用填充了涂渍2,4-二硝基苯肼(DNPH)的硅胶柱采集空气样品,在酸性条件下,空气中的醛、酮类化合物与DNPH发生反应,生成稳定的2,4-二硝基苯腙类衍生物,用乙腈洗脱后,用具紫外检测器的高效液相色谱仪(HPLC-UV)或具有电子捕获检测器的气相色谱仪(GC-ECD)分离、检测。 醛酮类 2,4-二硝基苯肼 稳定有色的腙类衍生物注1:R和R1是烷基或芳香基团(酮)或是氢原子(醛)二、参见国标:HJ/T400-2007《车内挥发性有机物和醛酮类物质采样测定方法》HJ 683-2014 《空气 醛、酮类化合物的测定 高效液相色谱法》GBT 18204.26-2000 《公共场所空气中甲醛测定方法》三、产品信息:我司配置了乙腈中甲醛-2,4-二硝基苯腙、乙醛-2,4-二硝基苯腙和丙烯醛-2,4-二硝基苯腙等三种标准溶液(具体见下表),下一步将配置其他醛酮类标准溶液及其混标。四、高效液相色谱检测方法及色谱图:乙腈中甲醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=60:40波 长:360nm流 速:1.0ml/min进样量:2μL 2.色谱图:乙腈中乙醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=70:30波 长:363nm 流 速:1.0ml/min进样量:2μL 2.色谱图:乙腈中丙烯醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=70:30波 长:374nm流 速:1.0ml/min进样量:2μL 2.色谱图:
  • 辽阳石化首创醛及同系物含量分析方法
    中国石油网消息:(特约记者 董新光 通讯员 刘爱明)8月25日,经过连续10多天攻关,辽阳石化公司首创醛及同系物含量检测分析方法。   近一段时间以来,辽阳石化新建乙二醇装置中醛含量居高不下,影响下游聚酯装置的产品质量。为突破这一困扰生产的瓶颈,公司从检测分析入手,组织技术力量攻关,迅速建立液相色谱法和分光光度计法相结合的醛及同系物含量测定方法。   新建立的检测分析方法不仅准确测出182个样品的甲醛、乙醛含量,还能发现未知醛的存在和产生部位,为工艺参数调整提供了可靠的技术保障。
  • 国标用醛酮气体采样管强力促销!(2012.3.6-2012.5.1)
    2012年3月1日,《GB/T 27630-2011 乘用车内空气质量评价指南》正式实施,博纳艾杰尔大力促销关键耗材:Cleanert DNPH-Silica 醛酮气体采样管 1)终端用户:一次购买2盒,赠送一盒; 2)经销商:一次购买3盒,赠送2盒; 一次购买5盒,赠送4盒; 一次购买10盒以上,买N盒送N盒。 注意:以上前提均为原价购买,有折扣购买不遵循此规则。 符合《HJ/T 400-2007车内挥发性有机物和醛酮类物质采样测定方法》要求的14种醛酮采样管 名称 规格 订货号 报价(元) Cleanert DNPH-Silica 醛酮气体采样管 200mg/3mL,50支/盒 DN2003 5750 200mg/1mL, 50支/盒ICDN2001 5750 产品详细信息请见:http://www.agela.com.cn/pro_show.aspx?id=14
  • 甲醛监测神器 海尔"醛知道"京东首发
    近日,有网友在论坛发帖称,新房装修三个月了,去看过两次感觉没味了就欢天喜地的搬了进去,没想到第二天老人就出现头晕眼花的症状。到医院一检查才知道,原来是甲醛超标导致。幸亏发现及时,要是晚点可能就麻烦了。通风三个月,明明没味道了,怎么还会出现这种情况?此帖一出,引来了众多网友的吐槽。网友&ldquo 就像一阵风&rdquo 跟帖道,这种情况不算什么,自己当时用了环保装修建材,本以为会没问题,但搬进去一年多了还经常闻到刺鼻的怪味。这些都是甲醛惹的祸啊!   记者就此联系了呼吸道疾病方面专家。专家表示,甲醛是一种无色、有强烈刺激气味的气体,普遍存在于装修建材中。即使采用了环保建材,也只是意味着甲醛浓度相对较低,并不会完全消除。甲醛是公认的潜在致癌物,是目前室内污染的&ldquo 头号杀手&rdquo 。那么有没有专门监测甲醛含量的仪器,能为人们解决后顾之忧呢?   带着这个疑问,记者来到几家大型卖场调查发现,市面上号称能监测甲醛含量的监测仪品牌众多,价格从几百元到千元不等。业内专家告诉记者,目前甲醛监测仪市场鱼龙混杂,大部分都不是正规品牌,所宣称的功能也都有过分夸张的成分。记者进一步了解到,现阶段的甲醛监测仪只能监测,但无法给出解决建议,更无法关联相关设备优化空气质量,而且监测出的数值一般人都看不明白,消费者期待能有一款更简便而专业的监测设备问世。   记者经过多方打探得知,日前海尔推出了一款名为&ldquo 醛知道&rdquo 的甲醛监测仪。据了解,此款产品是全球首款智能家用甲醛监测仪,采用原装进口的高性能电化学传感器,具有高达0.01mg/m?的分辨率和出色的稳定性,而且&ldquo 醛知道&rdquo 采用4.3寸屏幕直观显示,监测数值能够清晰可见。据知情人透露,与目前市面上的监测设备相比,海尔&ldquo 醛知道&rdquo 的一大亮点是在监测出室内甲醛含量后,能够根据测量数值的范围推荐切实有效的优化建议,比如多放置一些绿色植物、保持室内通风等。   除此之外,&ldquo 醛知道&rdquo 还是空气净化的好助手。下载手机APP后,&ldquo 醛知道&rdquo 会根据监测的数据,利用独有的物联技术,实现家中空调设备的远程开启,及时改善室内空气质量,为家人创造一个绿色健康的生活环境。   据悉,目前海尔&ldquo 醛知道&rdquo 已然开始预约,已于6月1日上午10:00在京东首发。这样一机多能、超值实用的家用甲醛监测仪,相信上市后必定受到消费者追捧。
  • 【德泉快讯】德泉公司助力华大基因企业培训会
    2017年5月12日,北京德泉兴业商贸有限公司市场部、产品部走进华大基因,应邀成功开展了RAININ移液器产品研讨会,就RAININ移液器的型号、特点及应用展开了交流,为双方未来的合作提供了可靠的保障。 本次RAININ移液器产品研讨会由华大基因产品部王经理主持开展,由北京德泉兴业商贸有限公司产品部付经理针对RAININ移液器产品线作了精彩的报告。双方就移液器的选型、优势、应用等展开探讨,取得了较好的反响。 参加此次研讨会的华大基因的北区产品经理、销售经理在提问环节针对RAININ移液器的技术特点及应用领域进行了认真而热烈的讨论,希望我们的分享对与会人员日后的工作有所帮助,在此也特别感谢华大基因对北京德泉兴业商贸有限公司的支持。
  • 博纳艾杰尔推出车内空气检测用醛酮采集管
    《汽车内环境质量标准》有望年底实施,DNPH-Silica助您维权   随着车内空气质量引发的维权纠纷日益增多,2008年3月1日,国家颁布了-《HJ/T 400—2007 车内挥发性有机物和醛酮类物质采样测定方法》,迈出了改善车内坏境的第一步;该《方法》规定了测量机动车乘员舱内挥发性有机物和醛酮类物质的采样点设置、采样环境条件技术要求、采样方法和设备、相应的测量方法和设备、数据处理、质量保证等内容,但并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,该标准有望于今年年底出台。   车内空气污染物主要是含6个碳到16个碳的挥发性有机组分和甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等羰基化合物两类。   车内醛酮类污染物采样利用了羰基化合物和2,4-二硝基苯肼(DNPH)的特异性反应来富集污染物,再经洗脱、浓缩,进行HPLC定量分析。商品化的醛酮采集管DNPH-Silica一直被国公司垄断,而该产品经过进口漫长的运输过程,容易导致醛酮本底值的增加,使检测结果受到影响。   为打破国外产品垄断,克服进口产品货期过长、本底值增加等弊端,北京艾杰尔科技有限公司从2007年初启动了CleanertTM DNPH-Silica醛酮采集管的研发,该研发项目获海淀区科委专项资金资助(项目编号:k2007092);2007年12月,CleanertTM DNPH-Silica醛酮采集管实现产业化生产,产品通过了中国计量科学研究院计量验证;2007年12月,CleanertTM DNPH-Silica醛酮采集管获国家重点新产品证书。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管甫一推出,即受好评,国内率先开展车内气体质量检测的单位:北京市劳动保护科学研究所,华测检测技术股份有限公司,美国GD(高迪)深圳检测中心,北京大学环境学院,北京理工大学车辆与交通工程学院,上海市疾病与预防控中心等都选择了博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管采用了与国际同步的先进制作生产工艺,更有本土化的供货优势,产品在一周内可到达国内任何手中,避免了长时间运输导致本底值增加的问题。所以,在客户的使用过程中,CleanertTM DNPH-Silica醛酮采集管的性能都优于同类进口产品;使得车内空气质量的检测更加快捷,更加方便,更加准确,为广大车主提供有力的安全保障。   同时,博纳艾杰尔科技联合国内检测专家,为客户提供车内气体质量检测的整体解决方案服务,包括:检测舱建立,实验室仪器配置,采样检测方法培训。 国家重点新产品证书 北京市劳动保护科学研究所使用报告 中国计量科学研究院测试报告
  • 农夫山泉频出质量问题 网友:农夫山泉有点悬
    中新网3月26日电 综合报道,最近,农夫山泉“有点烦”,在不到20天的时间里,农夫山泉先后被曝出喝出黑色不明物、棕色漂浮物以及“水源地垃圾围城”等消息。号称“大自然的搬运工”的农夫山泉接二连三地陷入“质量门”,令消费者心头上蒙上了一层阴影。   农夫山泉水中现黑色不明物   315前期,有消费者投诉农夫山泉水中现黑色不明物。媒体报道指出,2013年3月8日,消费者李女士投诉称,其公司购买的多瓶未开封农夫山泉380ml饮用天然水中出现很多黑色的不明物。发现这些水中的黑色不明物后,消费者李女士曾与农夫山泉联系,但是农夫山泉坚称产品合格的做法让其很气愤,也并未解答其黑色不明物究竟是何物的疑问。   对此,农夫山泉3月15日通过其官方微博发表声明表示,近期有消费者反应农夫山泉丹江口工厂生产的部分瓶装水中有细小沉淀物。获悉后,农夫山泉将产品送至第三方权威检测机构,检测结果显示,其符合国家标准的各项安全指标。   农夫山泉强调,含有天然矿物元素的瓶装水在运输储存过程中,有时会受到温差等影响而析出矿物盐,并不影响饮用,亦无安全问题。农夫山泉还称,若消费者仍对此有疑虑,将予免费更换。   农夫山泉中现棕红色漂浮物   一波未平一波又起,315过后,媒体又曝出农夫山泉一起“质量门”。据中国广播网3月22日报道,宁夏消费者王先生今年3月11号购买了一瓶550ml装的农夫山泉,第二天正要打开喝时,突然发现瓶中有不少棕红色的漂浮物,水看着还有些浑浊。   于是,王先生找到经销商投诉,经销商在未取走问题样品的情况下回复表示,自己是从湖北丹江口工厂进的货,经过厂家检测得出的结果是,棕红色的不明物质为矿物质析出所致,水可以正常饮用。农夫山泉总裁办主任钟晓晓在接受采访时也坚称,农夫山泉在生产工艺肯定没有问题。   对此,经济之声特约评论员、资深媒体人张立栋表示,由于近年来居民对于普通水质的担忧,农夫山泉的产量、销售确实得到了很大的提升。但张立栋称,农夫山泉的产量、人力、物力的投入应该成正比,不能因为市场需求大,“萝卜快了不洗泥”。针对消费者投诉的问题,农夫山泉没有作出一个科学合理的解释,而是比较武断的回复,这不太负责任。   丹江口水源地“垃圾围城”?   值得注意的是,先后发生的这两起“质量门”中的水均产自农夫山泉的水源地之一:湖北丹江口。那么湖北丹江口的水源地到底是怎么样呢?   据21世纪网3月25日报道,经过实地调查发现,在风景秀丽的丹江口水库背后,掩藏的是农夫山泉水源惊人的污染。在农夫山泉取水点周边水域岸上,遍是各种各样的生活垃圾,其中不乏大量疑似医用废弃药瓶,俨然“垃圾围城”之势,让人产生误入垃圾掩埋场的感觉。而农夫山泉用焚烧的方式来处理这些垃圾,其焚化后渗入水中对水质的影响不免令人担忧。然而,农夫山泉厂区人员却表示,生活垃圾对水质影响不大,犹如“米饭中的沙粒”。   对此,农夫山泉25日晚通过其官方微博发表了“关于丹江口岸边杂物的说明”,说明中表示,媒体所报道的不整洁区域距离其公司取水口下游约1.4公里,对取水质量并无影响。声明表示,农夫山泉取水口源水符合DB33/383-2005《瓶装饮用天然水》天然水源水质量要求。   网友:农夫山泉,有点悬   虽然一再澄清,但屡屡发生的质量事件,让部分网友对其失望。网友“8千与千寻8”说,“我们不生产水,我们只是大自然的搬运工。原来就是搬运点垃圾水!” 网友“左岸华叔”则评论称““农夫山泉,有点悬”。   中新网财经频道了解到,农夫山泉目前拥有四个主要水源基地,分别位于浙江千岛湖、湖北丹江口、广东万绿湖和吉林长白山。除了此次被曝光的湖北丹江口外,其余三个水源地是否被污染尚未可知。
  • 安谱实验新产品系列之三——醛酮及其衍生物篇
    醛酮类化合物具有慢性毒性,被列为空气中的有害物质,主要来自于汽车尾气、化工行业、木材加工防腐等直接产生的醛酮类化合物。近年来,随着人民生活水平的提高及化工等行业的发展,对空气中醛酮类有机污染物的分析与监测显得尤为重要。目前醛酮类化合物检测方法主要有:1.HJ 683-2014 空气醛、酮类化合物的测定 高效液相色谱法2.HJ/T 400-2007《车内挥发性有机物和醛酮类物质采样测定方法》说明:1.对于车内空气以及零部件中醛酮类化合物检测,各企业以HJ/T 400-2007为基础,制定符合要求的企业标准,给出所涉及分析物的限值。2.对于多种醛酮的检测主要采用衍生化方法。
  • 【名家案例】一步到位——醛的直接氧化酯化反应
    【名家案例】一步到位——醛的直接氧化酯化反应康宁反应器技术 2023-05-25 16:43 发表于上海研究背景将醛直接氧化酯化是有机合成的研究热点,但醛直接氧化酯化却常有以下问题:“贵”:氧化醛酯化的典型方法依赖于在不同氧化剂,如H2O2、叔丁基过氧化氢(TBHP)或O2存在下的各种过渡金属催化剂,这种方法通常需要将昂贵的配体与特殊催化剂相结合;“危”:过氧化反应生产的过氧化物都含有过氧基(-O-O-),属含能物质。过氧化反应体系危险度已达到了四级或五级,而采用降低过氧化剂累积度的措施降低危险度很难保证不发生操作失误。欧洲著名连续流专家,奥地利Graz大学C.Oliver Kappe教授开发了一种过硫酸原位生成并在线消耗,直接实现醛的氧化酯化连续流合成的工艺,大大降低了安全隐患。该工艺可扩展到多种脂肪族和芳香族醛的转化,并通过多克级合成验证了其制备能力。研究过程01 过硫酸的生成Oliver教授将H2O2与硫酸混合生成过硫酸。考虑到过硫酸的不稳定性和爆炸性分解的倾向,作者通过连续流反应器,实现过硫酸的原位生成与在线消耗,提高过硫酸的实用性,并将安全风险降至最低。在连续流工艺开发之前,为了表征过硫酸的形成和分解,评估反应过程中潜在的安全隐患,作者使用反应量热仪探究了H2SO4-H2O2反应体系的热行为。图1. 热量滴定试验研究发现过硫酸的形成需要高于70°C (图 1),过硫酸在生成后直接发生降解,反应焓(-271.5±10.1 KJ.mol-1)包括过硫酸的生成和分解。02 氧化醛酯化反应装置搭建:在获得了足够的过硫酸形成与分解的数据后,作者搭建了连续流的反应装置:在甲醇存在下形成过硫酸并随后进行氧化醛酯化反应。图2. 直接氧化酯化的连续流动示意图实验中肉桂醛作为底物溶解在MeOH中,将H2SO4的MeOH溶液与H2O2溶液进行连续混合,分别泵入反应器。经反应器流出的反应液又通过加热且带有背压的反应线圈,最后反应液被导入含有饱和NaHCO3水溶液以及MnO2混合物的烧瓶中,进行反应的在线淬灭。反应优化:作者对反应进行了优化,结果如下。表1. 肉桂醛直接氧化酯化反应的优化在反应温度为100℃,H2SO4和H2O2都只有2eq. 时,转化率可以达到100%,仅检测到少量的副产物氢肉桂酸(2) (table1,entry2);相对于H2O2,使用过量的H2SO4更加有利于反应。推测其原因是更加利于缩二甲酯的形成(table1, entry6, entry7);当H2SO4为2.4eq.,反应器温度达到120°C时,可以实现定量转化和97%的选择性(table 1, entry9 VS entry10)。反应机理研究:通过对反应的研究,作者给出了可能的硫酸醛类氧化酯化反应的反应机理。图3. 可能的反应机理03 过硫酸氧化酯化反应拓展作者进一步研究了多种脂肪醛以及取代芳醛作为底物的反应体系,验证过硫酸氧化酯化反应的实用性。向下滑动查看完整表格表2. 取代芳醛作为底物的拓展研究研究表明,该方法不管是对脂肪醛还是对芳香醛都有着广泛的实用性。04 可持续性和对环境影响的研究为了评估过程的可持续性和对环境的影响,作者研究了著名药物帕罗西汀合成中的关键中间体。帕罗西汀是一种选择性血清素再摄取抑制剂,广泛用于治疗抑郁症和惊恐障碍。图4. 帕罗西汀的合成对γ-硝基醛(5)氧化酯化制γ-硝基酯(6),作者利用连续过硫酸氧化酯化得到的数据和基于N-溴代琥珀酰亚胺(NBS)的氧化的文献数据,进行了分析E因子、过程质量强度(PMI)、反应质量效率(RME)、原子经济性(AE)和最优效率(OE)的比较。表3. 可持续性和对环境影响的研究结果表明,流动过程执行地更好。流动过程对环境更友好、产生的废物更少,因此更可持续。研究小结作者提出了一种过硫酸原位生成并在线消耗,直接实现醛的氧化酯化连续流合成的工艺。将过硫酸的安全隐患降到最低。通过一系列脂肪族和芳香族底物的氧化酯化反应,验证了该工艺的拓展通用性,均实现了良好的转化率和较高的选择性。连续流反应器的应用使过硫酸成为一种简单而有效的氧化剂,它在各种通量规模的合成应用都将成为可能。流动过程对环境更有友好、产生的废物更少,因此更可持续。参考文献:ChemSusChem 2023, 16, e202201868
  • 赛默飞醛酮类化合物分析解决方案
    赛默飞参加2012车内空气污染控制、检测与环保材料应用学术年会 2012年3月2日赛默飞世尔科技(中国)有限公司参加了在南京举办的2012车内空气污染控制、检测与环保材料应用学术年会,会议为期两天。本届会议吸引了来自40多家整车厂、零部件和第三方检测机构约160人出席。赛默飞世尔科技(中国)有限公司带来了最新的汽车污染检测技术,并同与会来宾亲切的交流。 中国现在已成为世界汽车制造和消费第一大国,2011年更是达到史无前例的产销量突破1800万辆,这种长期的高速度增长是世界汽车工业史上没有过的。这就为中国汽车市场迎来了新的机遇,也极大的刺激了汽车技术的发展。目前车内环境污染严重己越来越受到汽车主机厂和众多配套厂家的重视,如何净化车内环境,保障车主及乘客的身心健康,已成为整个汽车行业迫切需要解决的问题。环保部和质监总局关于车内环境标准己于近日公布,并将于2012年3月1日执行。本次会议的主要议题就是车内环境现状及目前国内外研发及实施上所做的工作、车内有害物质的检测及对人体的危害的研究进展和成果、国外先进技术、标准及材料的应用等等。 赛默飞世尔科技本次会议除做大会报告外,还带来了采用Dionex U-3000高效液相色谱系统,测定样品中13种醛酮类物质的含量的系列方法,该系列方法获得了非常理想的分析结果。 UltiMate 3000 HPLC醛酮类化合物分析解决方案第一种分析方法: 高效液相色谱 - ODS 3µ m常规色谱柱法第二种分析方法: 超高效液相色谱 - ODS 1.7µ m色谱柱法第三种分析方法: 超高效液相色谱 - Carbonyl专用色谱柱法 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技(中国)有限公司赛默飞世尔科技进入中国发展已有30余年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,员工人数超过1900名,服务于第一线的专业人员超过1000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。 欲了解更多信息,请登陆我们的网站:www.thermofisher.cn (中国); www.thermofisher.com(全球) 公司电子邮箱:sales.china@thermofisher.com
  • 空气醛酮污染亟待检测,艾杰尔受任于“危难”
    甲醛等羰基化合物是城市大气中主要的污染物,甲醛污染的主要来源包括汽车尾气排放,煤气及吸烟,在使用某些化学物质的工业生产过程中也会释放甲醛。在室内,甲醛来自硬木镶板,尿素、甲醛泡沫塑料制成的绝缘材料和家具。车内空气中所含的甲醛多是来自座椅沙发垫、车顶装饰布内衬等装饰材料。在美国健康和公共事业部及公共卫生局发布的致癌物质的报告中,已将甲醛列入一类致癌物质。国际癌症研究机构已经于2004年将甲醛上升为第一类致癌物质。专家研究认为,有足够的证据可以证明甲醛引起人类的鼻咽癌、鼻腔癌和鼻窦癌,并有证据证明甲醛可引发白血病。目前,国内已有多起由空气中甲醛超标引起的诉讼案。 醛酮检测势在必行:呼唤优越的检测方法 检测甲醛等羰基化合物在大气、室内,车内以及其他场所的含量水平和分布规律是十分重要的。但羰基化合物在大气中的浓度非常低,需要比较灵敏的方法才能检测,国内很多行业制定了空气中污染物的检测方法和标准,其中所有涉及检测甲醛和羰基类污染物方法中的大部分均采用DNPH衍生法。 汽车内空气中醛酮组分较为复杂,通常含有甲醛、乙醛及丙烯醛等多种物质,且含量分布较广,分光光度法不能同时测定多种醛酮组分,与气相色谱法相比,采用2,4-DNPH 吸附管吸附高效液相色谱法具有操作简便快捷、结果稳定等特点。 检测配件尚需进口:成本高,质量无保证 为了保护环境,促进人体健康,改变目前国内尚无车内环境检测标准的现状,为检测车内空气污染物工作提供技术依据,我国有关部门正在加紧制定国家环境保护标准&ldquo 车内空气污染物测量方法&rdquo 。方法征求意见稿中采用2,4-DNPH 吸附管吸附高效液相色谱法,正式的方法出台后,汽车生产厂家和检测机构将会大量使用DNPH-Silica样品采集管,检测成本也会因此成为影响效益的瓶颈问题。 目前国内使用的DNPH-Silica采集管全部从国外进口,由于DNPH-Silica采集管需要在4℃冷藏,不仅价格昂贵,而且供货周期漫长,质量无法保证。基于此现状,国内相关领域的企业也转向DNPH-Silica采集管的研发与生产,期望能够取代进口产品,降低使用成本,保证产品质量。 展望:艾杰尔将填补国内空白 北京艾杰尔科技有限公司在现有SPE产品技术的基础上,进行了国产DNPH-Silica气体样品采集管的研发,该项目已列入北京市海淀区2007年科技支持项目,完成了实验室试制,得到了小试样品,并对样品的质量进行了初步评价,其功能与进口产品性能相当,符合羰基化合物采样分析的要求;如能实现规模化生产,将对检测和监测大气环境污染起到很好的作用。本项目产品不但可替代进口,填补国内该类产品的空白,而且本产品的价格远低于进口产品,并可保证质量和及时供货。
  • 凯莱谱CalQuant-S液质系统获批上市!
    2022年3月16日,由杭州凯莱谱精准医疗检测技术有限公司(以下简称:凯莱谱)旗下全资子公司浙江迪赛思诊断技术有限公司(以下简称:迪赛思)自主生产的CalQuant-S液相色谱串联质谱检测系统(浙械注准20222220116)正式经浙江省药品监督管理局批准上市。CalQuant-S将性能优异的二元液相色谱和高性能串联质谱仪相结合,并配套中文界面的系统操作软件,可在临床上为人体样本中内源性和外源性物质苛刻的定性与定量分析需求提供高灵敏度、稳定性与精准性,配合强大的抗污染系统设计,可让临床检验工作人员轻松应对各类临床生物样本的复杂基质和痕量分析带来的双重挑战。CalQuant-S为临床定量应用量身设计,采用了V型高效抗污染离子源和双喷气帘气接口技术,并独特的结合了分段式聚焦型离子导向技术、线性加速弯曲碰撞池、双模式高能打拿极检测器等技术。作为精准诊疗的核心技术之一,液相色谱-串联质谱(Liquid Chromatography-Tandem Mass Spectrometry, LC-MS/MS)检测技术具有高灵敏度、高特异性及一次进样可以检测多种生物标志物等特点,在检测痕量小分子化合物以及具有较多结构类似物的代谢产物方面具有显著优势。目前已逐渐成为临床小分子标志物检测的推荐方法。关于凯莱谱与SCIEX战略合作自2017年以来,凯莱谱与丹纳赫集团旗下SCIEX公司的战略合作不断深入,携手推进先进质谱仪器在中国的标准化、临床化与本土化。同时,凯莱谱与SCIEX合资企业迪赛思诊断,已通过自主研发为中国临床用户推出了25-羟基维生素D、脂溶性维生素群、多种类固醇激素、免疫抑制剂药物浓度等多款获得二类医疗器械注册证的临床质谱试剂盒产品,可适用于凯莱谱CalQuant-S、AB SCIEX Triple Quad 4500MD与AB SCIEX API 3200MD等临床质谱检测系统。关于迪赛思诊断2011年迪安诊断在深交所挂牌上市,2017年开始迪安集团陆续成立凯莱谱、迪赛思诊断、FMI肿瘤精准诊断实验室、迪谱诊断等公司。2020年11月,迪安诊断子公司凯莱谱股权受让并控制迪赛思诊断,凯莱谱持股比例为80%,上海爱博才思分析仪器贸易有限公司持股20%。公司主要人员架构为:
  • 东南科仪广州员工珠海海泉湾温泉胜地两日游
    20年光辉岁月,20载光辉历程。为迎接东南科仪成立周年庆,东南科仪广州总部员工于2012年11月24-25日前往珠海海泉湾温泉胜地度假,共同庆祝东南科仪20岁生日。 宜人的珠海海泉湾度假胜地 充满乐趣的神秘岛 度假酒店风景优美,设施齐全,2天的旅程中,我们尽情享受温泉带来的轻松和惬意,一起在神秘岛乐园寻找快乐和激情,这大大促进了广大员工彼此深入了解,更加激发同事们热爱公司、拥护团队的热情,提高东南科仪的凝聚力,增强东南人勇担企业发展责任的意识。活动在一片美好的气氛中完美结束。
  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 壁纸净醛遭质疑 国家建材检测中心卷入其中
    瑞宝壁纸于今年3月15日发布了全新产品心净界系列,号称是&ldquo 国内第一款集净醛、抗菌、耐污染三重功效于一体的壁纸产品&rdquo 。其宣称壁纸借助光触媒技术达到室内90%甲醛去除率、有效期在3&mdash 15年等。而其提供的检测报告则让人疑问重重,虽是正规检测报告,并且依据《室内空气净化功能涂覆材料净化性能》这一标准,但其一直标榜使用光催化材料,却在报告备注一栏明确显示&ldquo 样品按非光催化材料检测,净化时间24h&rdquo 的字样。   记者采访了《室内空气净化功能涂覆材料净化性能》起草人之一冀志江教授,其明确表示,备注栏中有&ldquo 样品按非光催化材料检测,净化时间24h&rdquo 的字样,说明检测材料并非采用光催化技术,如果也有净化功能,&ldquo 可能是吸附原理或添加助剂。&rdquo 对于光催化的有效期,目前并没有统一说法。而检测报告上显示的90%以上的甲醛去除率,也仅为实验室效果,真实家居环境很难照搬。   近日,记者终于与瑞宝北京公司方面取得联系,希望就检测报告问题及产品除醛有效期问题得到解释。瑞宝相关人士回复表示,首先,瑞宝壁纸心净界壁纸的净化功能是得到国家建筑材料检测中心检测结果支持的,他们的宣传是科学和谨慎的。至于为何检测报告中有&ldquo 样品按非光催化材料检测&rdquo 字样,其解释,送检时已经申明为光催化材料,但检测方法是由检测机构来指定的,并非瑞宝选择的。所以瑞宝认为,该检测报告已经证明其产品净化效果。就该问题,记者采访了冀志江教授,其明确表示,企业送检时必须申明其使用技术,然后检测部门按其材料性质选择方法进行检测。&ldquo 光催化材料必须按光催化类材料检测方法来检测,不可能随意指定检测方法。&rdquo 对于产品去除甲醛持久性的问题,瑞宝方面承认,导购先前介绍的3&mdash 15年并不准确,但具体有效期他们也要联系相关专家解答。
  • 国家标准化管理委员会对《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准复审结论进行公示
    各有关单位:根据国家标准复审工作计划,国家标准化管理委员会已组织完成了《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准的复审工作,现将复审结论进行公示。如对复审结论有不同意见,请于2024年5月19日前,通过下方意见反馈功能,将意见反馈至国标委。国家标准化管理委员会2024-03-20部分相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 11934-1989水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止2GB/T 11935-1989水源水中氯丁二烯卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止3GB/T 11936-1989水源水中丙烯酰胺卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止4GB/T 11937-1989水源水中苯系物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止5GB/T 11938-1989水源水中氯苯系化合物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止6GB/T 11939-1989水源水中二硝基苯类和硝基氯苯类卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止7GB/T 11940-1989水源水中巴豆醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止8GB/T 11941-1989水源水中硫化物卫生检验标准方法国家卫生健康委员会废止废止过渡期: 公告后12个月废止
  • 【新案例】产能700倍提升!不可不知的醇醛氧化新工艺!
    背景介绍酮类和醛类化合物在生物化学和香料工业中占有重要地位,通常是有机合成的关键中间体。最常见的是将醇直接氧化产生酮和酯。常用的氧化剂包括氯铬酸吡啶(PCC)、Jones试剂、重铬酸吡啶(PDC)、Swern、TEMPO、TPAP和Collins试剂。这些试剂或具有毒性或对环境不友好,与之相比,在相转移催化剂(PTC)作用下,使用次氯酸钠氧化醇类化合物具有以下优点:原料成本低;反应条件温和;能快速、高产地氧化伯、仲醇和醛;无重金属污染。应用该试剂氧化醇类的可行性很早之前就得到了证实,Lee和Freedman是最先利用次氯酸钠进行醇的两相催化氧化研究的人。该类反应使用间歇反应器进行放大有较多问题由于反应速率受反应器的大小、形状和搅拌速率等影响,通常收率较低;换热效率较低,局部的热量很容易导致氧化剂的热降解;氧化反应,存在安全隐患。缓解上述挑战的有效方法之一是使用连续流微反应器(图1a)连续流微反应器可以提供更好的传质和传热;无放大效应(康宁反应器具有);持液量相对较低,安全性高。Yanjie Zhang等人使用康宁微通道反应器,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。结果显示:从流速每小时几微升的反应器放大到每分钟几十毫升的康宁反应器均能获得较好的反应效果;氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法 从螺旋微反应器优化条件通过康宁反应器放大通量提高了700倍,无明显放大效应。 一. 实验简介Yanjie Zhang等人使用康宁公司生产的低流量反应器(LFR)和高通量反应器G1(AFR)(图1b、c)进行实验.,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。图1、 各种微反应结构(a)螺旋设计微反应器和螺旋反应器内丁醇/水的流动模式(b)康宁LFR套装(c)康宁AFR装置和AFR模块内正己烷/水的流动模式结果显示:在康宁微反应器中,从小试到中试其传质和传热效率并未发生明显改变 氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法  数据表明在从螺旋微反应器到LFR再到AFR的不同型号的反应器,生产效率提高了700倍,而没出现明显放大效应。关于传质传热的分析:在康宁微通道反应器独有的心形混合通道内反应物料快速流动,进行有效的非均相混合,有机相在水相中迅速分散成小液滴,从而产生较高的传质速率,所以其非均相流体的效率比螺旋盘管反应器更高(见图2)。图2、用水从正丁醇中提取丁二酸得到的液-液流动中单个模块停留时间与传质系数(kLa)的关系在这些反应模块中,反应区夹在两个玻璃传热板之间,传热路径变短,传热性能得到了很大的改善。图3. 康宁反应器反应模块结构 二、实验过程作者在小范围内进行了PTC催化的次氯酸钠溶液氧化反应的尝试(方案1),• 在螺旋微型反应器(图1a)中进行反应条件优化;• 随后将反应工艺条件在到康宁LFR和G1反应器中进行放大研究;图4. 方案1:(a)1-苯乙醇、(b)3-硝基苯甲醇、(c)苯甲醛氧化反应条件的优化1-苯基乙醇的氧化初步试验表明,最有效的加速反应的方法是将水相的pH值调整到9.3-9.5(图5a)。在该pH范围内,大多数次氯酸盐阴离子被质子化并形成次氯酸,然后用相转移催化剂将其萃取到含有次氯酸盐阴离子的有机相中,从而显著提高反应速率。使用14.6%次氯酸钠溶液与饱和碳酸氢钠,很容易获得pH 9.3~9.5的反应体系,这是一个比氢氯酸和乙酸效率更高的反应体系。饱和次氯酸钠溶液具有较高的离子强度,有助于有机盐从水相萃取到有机相 在相同的停留时间下,由于比表面积的增加,水相流速和有机相流速的比值(QA/QO)在控制整个反应速率方面也起着重要作用,因此随着QA/QO 的增加,传质速率有所提高(见图3b)。与螺旋反应器相比,康宁LFR系列具有更高的生产率,因为LRS持液体积较大,在相同的停留时间内,它的流量更高。图5. (a) 螺旋微反应器中1-苯乙醇在不同反应条件下的停留时间与转化率的关系(方案1a)。(b) 康宁AFR和螺旋微反应器中1-苯乙醇停留时间为1分钟的氧化转化率与流量比(QA/QO)的关系。1-苯乙醇浓度为0.8 M,NaOCl浓度为2 M。菱形,螺旋微反应器(pH 9,τ=1 M in);方块,康宁LFR(pH 9,τ=1 min)。3-硝基苄醇的氧化在甲醇存在下,3-硝基苄醇可以直接氧化成其甲酯(方案1b)。在此反应中,醇首先被氧化成相应的醛,醛与甲醇迅速形成半缩醛,并进一步氧化成相应的甲酯。 该反应受pH影响大,实验最优pH是9?9.5,最佳的水相与有机相比为2:1,浓度和停留时间分别为0.8M和1.5min。在康宁LRS和AFR反应器上,3-硝基苄醇氧化反应的停留时间在1min时产能达到最大,效率明显优于螺旋微反应器。图6. 不同反应物在康宁反应上的生产效率苯甲醛的氧化 在甲醇存在下,苯甲醛可以直接氧化为苯甲酸甲酯,而不需要经过酸的过渡态( 方案1c)。但Leduc和Jamison研究发现,一旦转化率达到60%,反应会停止。用甲醇取代乙酸乙酯作为溶剂,反应能够完全进行反应是均相,无需相转移催化剂苯甲醛的氧化在2.7min内在康宁反应器中可以100%转化,而在螺旋微反应器中3min后转化率仅为90%(图6c)图7. 螺旋微反应器与康宁LFR和AFR氧化(A)1-苯乙醇、(B)3-硝基苄醇和(C)苯甲醛的转化率和收率比较;蓝色,转化率(%);红色,产品收率(%)实验总结• 作者使用次氯酸钠溶液做了三种底物的氧化反应,从螺旋微反应器优化到康宁LFR和AFR系统均获得了较好的结果;• 这些物质的氧化反应为非均相反应,通过微反应器增强传质可以提高反应效果;• 工艺过程中替换溶剂或者使用传质更好的反应结构单元都可以起到提高传质的作用;• 和传统微反应器相比,康宁反应器可以实现更高的转化率且单台反应器可以获得更高的通量(生产效率);• 从螺旋微反应器到康宁G1反应器通量提高了700倍,同时保持了良好的传质传热效果。参考文献:dx.doi.org/10.1021/op500158h | Org. Process Res. Dev. 2014, 18, 1476?1481
  • 两项醛酮类化合物环境标准发布 涉及高效液相
    p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,规范生态环境监测工作,现批准《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》等两项标准为国家环境保护标准,并予发布。 /p p   标准名称、编号如下。 /p p   一、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/975321.shtml" target=" _self" title=" 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf" span style=" font-size: 16px " 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf /span /a /p p   本标准规定了测定固定污染源废气中醛、酮类化合物的高效液相色谱法。 /p p   本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、 2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共 12 种醛、酮类化合物的测定。 /p p   仪器和设备包括高效液相色谱仪、色谱柱、烟气采样器、连接管、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。 /p p   二、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/975320.shtml" target=" _self" title=" 《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf" span style=" font-size: 16px " 《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf /span /a /p p   本标准规定了测定环境空气和无组织排放监控点空气中醛、酮类化合物的高效液相色谱法。 /p p   本标准适用于环境空气和无组织排放监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和 2,5-二甲基苯甲醛共 16 种醛、酮类化合物的测定。 /p p   仪器和设备包括高效液相色谱仪、色谱柱、空气采样器、棕色多孔玻板吸收瓶、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。 /p p   以上标准自2021年3月15日起实施,由中国环境出版集团有限公司出版,标准内容可在生态环境部网站(http://www.mee.gov.cn)查询。 /p p   特此公告。 /p p style=" text-align: right "   生态环境部 /p p style=" text-align: right "   2020年12月14日 /p p   抄送:各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局,各流域生态环境监督管理局,环境标准研究所,各标准承担单位。 /p p   生态环境部办公厅2020年12月15日印发 /p
  • 上海伍丰-车内挥发性有机物和醛酮类物质 采样测定方法
    车内挥发性有机物和醛酮类物质 采样测定方法 一、说明 本方法可以测定15 种以上醛酮类化合物,包括:甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等。 二、仪器 等度、紫外、C18柱 固相萃取装置及其附件 超声波清洗器 DNPH 采样管 标准样品:2,4-二硝基苯腙 三、液相色谱分析条件 a) 色谱柱:等效C18 反相高效液相色谱柱; b) 流动相:乙腈/水; c) 洗脱:均相等梯度,60%乙腈/40%水; d) 检测器:紫外检测器360nm,或二极管阵列; e) 流速:1.0 ml/min; f) 进样量:25 &mu l。
  • 磐诺A91 Plus测定PET树脂中残留乙醛含量
    方法概要——参考SH/T 1817-2017《瓶用聚对苯二甲酸乙二醇酯(PET)树脂中残留乙醛含量的测定 顶空气相色谱法》,利用顶空进样器进样,毛细管柱分离,氢火焰离子化检测器检测其中乙醛的残留含量,根据保留时间进行定性,外标法定量。 1、配置方案 序号主机配置数量备注1A91 Plus气相色谱仪1配分流/不分流进样口(S/SL)和氢火焰离子化检测器(FID)2色谱柱AB-FFAP 30m×0.32mm×0.25μm1或其他等效色谱柱3全自动顶空进样器14标准品1水中乙醛1000mg/L5计算机1Win10系统,64位专业版或旗舰版,4G以上内存 2、测试条件分流/不分流进样口(S/SL)温度:250℃,载气:N2,分流比:5:1柱箱恒温40℃,保持3min色谱柱AB-FFAP,30m×0.32mm×0.25μm氢火焰离子化检测器(FID)温度:250℃,氢气:30mL/min,空气:400mL/min,尾吹气:25mL/min顶空进样器平衡温度:70℃,管路温度:110℃,阀箱温度:100℃,平衡时间:30min,间隔时间:10min,吹扫时间:1min,载气压力:0.1Mpa,吹扫气压力:0.2Mpa 3、测试结果3.1 乙醛定性结果 图1 乙醛定性谱图 3.2 校正曲线的配置用超纯水将乙醛标准溶液(1000 mg/L)分别稀释成20、40、60、80、100 mg/L系列标准使用液; 将5个顶空瓶用氮气吹扫置换空气后, 用微量注射器分别吸取上述不同浓度的乙醛标准使用液各10 μL注入顶空瓶中, 迅速用封盖器将垫片及铝盖封好瓶口。按照气相色谱及顶空仪器的方法进行测试。以乙醛含量为横坐标, 峰面积为纵坐标绘制标准曲线。注意点:乙醛在室温下易挥发,在标准溶液配置过程中对移液针或移液枪头进行冷针处理,否则重现性和线性容易受到影响。3.3 不同浓度点谱图 图2 空白 图3 20 mg/L乙醛 图4 40mg/L乙醛 图5 60mg/L乙醛 图6 80mg/L乙醛 图7 100mg/L乙醛 3.4 重复性谱图 图8 20mg/L重复性 图9 100mg/L重复性 3.5 校正曲线
  • 中国法规与欧盟标准:柠檬醛在儿童化妆品中的限制
    2024 年 8 月 26 日,欧盟消费者安全科学委员会(SCCS)发布了关于柠檬醛(INCI 名称:CITRAL,CAS No. 5392-40-5, EC No. 226-394-6)致敏节点的最终意见(SCCS/1666/24)。柠檬醛柠檬醛,具有独特的、类似柠檬的宜人气味,以香精、芳香剂收录于欧盟 CosIng 数据库,被广泛用于食品、饮料以及各种化妆品和家居用品。目前,柠檬醛收录于欧盟化妆品法规 (EC) No 1223/2009 附录 III 第 70 条,根据法规第 19(1)(g) 条,当柠檬醛在驻留类产品中的浓度超过 0.001 % 或在淋洗类产品中的浓度超过 0.01 % 时,需在配方表中注明。定量风险评估模型香精是化妆品原料中的 5 大致敏原之一,尤其受到消费者、行业和监管机构的关注。国际日用香料协会(IFRA)开发了皮肤致敏定量风险评估(QRA)模型,基于健康人类志愿者和/或动物实验建立阈值(无影响或低影响水平),并结合安全系数得出“可接受的暴露水平”。2008 年,消费者产品科学委员会(SCCP,SCCS前身)曾使用 QRA 方法对柠檬醛进行安全评估(SCCP/1153/08),无法断定 QRA 确定的皮肤致敏剂水平对消费者是安全的,但认为经过改进和验证的模型可能在未来用于新物质的风险评估;2012 年,SCCS 在关于香精过敏原的意见(SCCS/1459/11)中重申了这一立场。2018 年,SCCS 在香精成分的 QRA2 评估意见(SCCS/1589/17)中指出,QRA2 在方法、假设等方面仍有不明之处,需要进一步简化、调整或在科学基础上进行解释,因此目前还无法使用 QRA2 来确定香精的致敏阈值。SCCS最终评估意见相比早前发布的征求意见稿,SCCS 发布的最终意见对序言、部分评论和结论的措辞,以及 QRA2 评估流程进行了适当调整。最终评估结论如下:1. 基于所提供的数据,结合采用 QRA2 方法得出的致敏节点最高安全用量,SCCS 认为柠檬醛在资料所述的最大浓度范围内作为化妆品香精使用是否安全?SCCS 注意到,QRA2 方法表明柠檬醛在化妆品中的推荐使用浓度下,在诱导致敏方面可以被认为是安全的。然而,SCCS 表示 QRA2 方法的某些方面仍需要明确和完善,因此当前无法得出关于柠檬醛安全性的确切结论。2. 对于采用 QRA2 方法得出柠檬醛或香精致敏原在致敏节点的最高安全用量,SCCS 是否有进一步的科学关注?虽然 SCCS 认为 QRA2 方法是对 QRA1 方法的改进,但仍需要更多案例来进一步证实这种方法对香精和其他化妆品原料的适用性。在此之前,关于该方法对香精和其他化妆品原料的适用性(未过敏人群),SCCS 将针对具体案例进行具体分析。中国化妆品法规对柠檬醛的限制根据我国化妆品法规,柠檬醛收录于《已使用化妆品原料目录(2021年版)》,在驻留类产品中的最高历史使用量为 1.17 %,目前仅对其在儿童化妆品的使用做出规定。如果柠檬醛含量在驻留类产品中 0.001 %,在淋洗类产品中 0.01 % 时,应当对儿童使用安全性进行充分评估,并在产品标签中标注。
  • 【盛奥华】拳拳赤子心,点亮回家路
    门前的黄河水啊  洗过那光脚丫  屋后的胡杨林啊  玩过过家家  水车转了千年  依旧吱呀呀  就像爷爷讲的故事  不会停下......熟悉的歌词回荡在耳边,勾起浓浓的思乡之情。一首【甘肃老家】唱出了多少游子的心声。天下的路千万条,唯有回家的路最是难忘。我公司总经理---魏总是一个地地道道的甘肃人,虽然很早就出来打拼事业,但是思乡的情怀总是萦绕心头,始终关注着家乡的建设和发展。2019年1月9日,在魏总的带领下,盛奥华环保科技采购了一批太阳能路灯,爱心捐赠给甘肃甘谷县,希望藉由我们微弱的力量,拳拳赤子心,照亮更多人回家的路。最美不过家乡景,最亲不过故乡情。我们会继续努力,积极投身到社会公益活动之中,回馈社会,不忘初心。也期待更多的有识之士加入队伍中来,将爱心的火种持续传播下去,建设祖国美好的明天。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制