当前位置: 仪器信息网 > 行业主题 > >

异黄烷

仪器信息网异黄烷专题为您提供2024年最新异黄烷价格报价、厂家品牌的相关信息, 包括异黄烷参数、型号等,不管是国产,还是进口品牌的异黄烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异黄烷相关的耗材配件、试剂标物,还有异黄烷相关的最新资讯、资料,以及异黄烷相关的解决方案。

异黄烷相关的论坛

  • 黄烷醇的检测

    咨询了很多家机构 说做不了可可粉中的黄烷醇或者是多酚类物质 哪里有能够检测的机构呢 或者提供一下方法呢

  • 44.7 血竭中5-羟基-7-甲氧基黄烷的含量测定

    44.7 血竭中5-羟基-7-甲氧基黄烷的含量测定

    【作者】 付梅红; 方婧; 杨洪军; 王祝举; 唐力英; 黄璐琦; 杨岚; 张东;【Author】 FU Meihong,FANG Jing,YANG Hongjun,WANG Zhuju,TANG Liying,HUANG Luqi,YANG Lan,ZHANG Dong(Institute of Chinses Materia Medica,China Academy of Traditional Chinese Medicine,Beijing 100700,China)【机构】 中国中医科学院中药研究所;【摘要】 目的:建立血竭药材中有效成分5-羟基-7-甲氧基黄烷的HPLC含量测定方法。方法:Dikma Diamonsil C18色谱柱(4.6 mm×150 mm,5μm),流动相为乙腈-水(60∶40),检测波长210 nm,柱温30℃,流速1 mL.min-1。结果:5-羟基-7-甲氧基黄烷在0.01~0.10μg呈良好线性关系,r=0.999 9。平均回收率100.1%(n=6)。结论:该方法简便快速、结果准确,可用于检测血竭药材中有效成分5-羟基-7-甲氧基黄烷的含量。 更多还原http://ng1.17img.cn/bbsfiles/images/2012/08/201208131333_383468_2379123_3.jpg

  • 茶叶的检测——5月加3钻石币

    近日,食药监局部署在全省强化茶叶质量监管,对茶叶生产企业开展飞行检查,加大抽检监测力度,严厉查处违法行为,重点抽检监测项目为铅、农药残留等指标。确实,这些指标不容忽视。目前,中国茶叶质量安全问题主要表现在四个方面,农药残留、金属元素污染、微生物污染、以及其它污染物,其中农药残留污染占问题总量80%。   虽然农药残留问题在茶叶质量安全问题中占比较大,但并非人们所传的那么恐怖。一般来说,春茶生产期间因气温较低,受病虫害的影响非常小,基本不用药。夏秋茶相对于春茶,农药使用量要大些。不过,即使用药,大多数茶园使用的农药种类和量也是按照国家标准来的。我国《食品安全国家标准食品中最大农药残留限量》对茶叶的农药残留有严格的规定。2016版限量标准规定了48项农药在茶叶中的限量要求,比2014版新增了20项,而且对一些农药限量要求也变得更严格了。  铅超标:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法是食品中铅检测的国标方法。此方法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。   农药有机氯农药残留:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。传统的方法采用填充柱恒温操作,低沸点组分解易重叠,高沸点组分峰易扩展,分离效果不理想。采用电子捕获-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(ECD-GC)OV-17中等极性毛细管柱,进行程序升温操作,组分分离完全,分辩率高,精密度、准确度高,适应于各类食品中有机氯农药残留量的分析。   茶多酚:高效液相色谱法。茶多酚是茶叶中多酚类物质的总称,包括黄烷醇类、花色苷类、黄酮类、黄酮醇类和酚酸类等。其中以黄烷醇类物质(儿茶素)最为重要。由于具有广泛的保健和药理功效以及较强的食品抗氧化特性,近几年它已成为食品和医药研究领域的热点,那么用什么方法来测定会受到更准确的结果?用高效液相色谱法可以方便、快速、准确的分析茶叶及茶多酚。

  • 液相色谱分析巴西红蜂胶中化学标志物

    文献报道了使用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]检测和定量9种红蜂胶的酚类化学标记物,包括甘草素、毛蕊花素、异甘草素、芒柄花素、[font=Arial, sans-serif][size=13px][color=#333333]维斯体素[/color][/size][/font]、neovestitol、[font=Arial, sans-serif][size=13px][color=#333333]美迪紫檀素、异黄酮、异黄烷。色谱柱采用 Supelco Ascenti Express C18,流动相为0.1%甲酸水和乙腈,PDA检测器检测。分析表明,在湿度较高和太阳辐射较低的雨季,蜂胶中的酚类化合物含量较高。该方法能为相关研究蜂胶中特质性标记物的筛选和鉴定提供有益借鉴。详见[url]https://doi.org/10.1016/j.jpba.2021.114029[/url][/color][/size][/font]

  • 茶多酚含量快速检测仪的检测范围和精度

    茶多酚含量快速检测仪的检测范围和精度是评估其性能的重要指标。以下是对这两个方面的详细阐述:   检测范围   茶多酚含量快速检测仪的检测范围广泛,主要涵盖各类茶叶和茶饮料中的茶多酚含量。茶多酚是茶叶中重要的活性成分,包括黄烷醇类、花色苷类、黄酮类、黄酮醇类和酚酸类等。这些成分在茶叶中的含量因茶叶种类、产地、采摘季节及加工方式等因素而异。因此,茶多酚含量快速检测仪能够适用于不同种类的茶叶,如绿茶、红茶、乌龙茶(青茶)、白茶、黄茶以及各类茶饮料等,为茶叶生产和质量控制提供全面的技术支持。   精度   茶多酚含量快速检测仪的精度是衡量其检测结果准确性的关键参数。一般来说,这类检测仪的精度误差在±3%左右,线性误差在±5‰以内。这意味着在检测过程中,仪器能够准确反映样品中茶多酚的真实含量,误差范围较小,能够满足茶叶生产和质量控制的需求。   此外,茶多酚含量快速检测仪还具备其他与精度相关的特点,如:   稳定性:仪器在长时间连续工作下,光源无温漂现象,确保检测结果的稳定性。   波长准确度:光源采用进口超高亮发光二极管,波长准确度通常小于2.0nm,确保检测结果的准确性。   透射比重复性:透射比重复性误差在±1%以内,表明仪器在多次检测同一样品时,结果的一致性较高。   综上所述,茶多酚含量快速检测仪具有广泛的检测范围和较高的检测精度,能够满足茶叶生产和质量控制中对茶多酚含量快速、准确检测的需求。同时,随着科技的不断发展,茶多酚含量快速检测仪的性能和应用范围还将不断扩展和完善。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/08/202408141401415929_1859_6238082_3.jpg!w690x690.jpg[/img]

  • 【分享】天然有机质谱学

    天然有机质谱学书 名:天然有机质谱学作 者:丛浦珠 等 出版日期:2003年1月1日出版社: 中国医药科技出版社发行部ISBN号: 7-5067-2595-9 页 数: 1478页【简介】本书是一部描述天然有机化合物的质谱特征与裂解方式和天然有机化合物分子结构的质谱推导与测定的专著。在书首的概论中介绍了六大基本结构裂试,在其后的39章中描述了天然有机化合物的质谱特征,在第40章中举例介绍了天然有机化合物分子结构的质谱推导和测定。本书内容丰富,共讨论了7150个化合物的质谱离子和相对丰度,以供读者查阅对照。本书可供从事一般有机化学、植物及中草药化学、有机质谙学的科研、生产工作者和大专院校有关专业师生参考。【目录】概论第一章 吲哚生物碱第二章 二氢吲哚生物碱第三章 氧化吲哚生物碱第四章 四氢吡咯吲哚生物碱第五章 B-咔啉生物碱第六章 四氢-B-咔啉生物碱第七章 喹啉生物碱第八章 四氢民喹啉生物碱第九章 高苄基四氢异喹啉生物碱第十章 阿朴啡生物碱第十一章 双苄基四氢异喹啉生物碱第十二章 其他异喹啉生物碱第十三章 其他菲核生物碱第十四章 四氢高异喹啉生物碱第十五章 莨菪烷类生物碱第十六章 双吡咯烷类生物碱第十七章 其他吡咯烷类生物碱第十八章 氮杂环已烷生物碱第十九章 肽生物碱第二十章 二萜生物碱第二十一章 甾族生物碱第二十二章 其他类型生物碱第二十三章 黄酮第二十四章 黄烷酮第二十五章 异黄酮和异黄烷酮第二十六章 查耳酮第二十七章 与黄酮有关的化合物第二十八章 香豆精第二十九章 单萜第三十章 倍半萜第三十一章 二萜第三十二章 三萜第三十二章 三萜第三十三章 胡萝卜素第三十四章 甾醇第三十五章 其他甾体化合物第三十六章 木脂素第三十七章 醌第三十八章 色酮、缩酚酸、缩酚酮、和三缩酚酸第三十九章 其他第四十章 天然有机化合物分子结构的质谱推导化合物英文名称索引

  • 【原创】大赛璐手性色谱柱CHIRALPAK OD-H资料

    大赛璐化学工业株式会社在手性固定相和手性色谱柱的研究开发领域里具有20多年的丰富经验, 选用多糖衍生物作为手性固定相,其拆分能力,上样量和耐久性等方面均拥有最优越的性能. 先后推出CHIRALPAK AD-H, CHIRALPAK AS-H, CHIRALCEL OJ-H, CHIRAL CEL OD-H和键合型色谱柱CHRALPAK IA, CHIRALPAK IB和 CHIRALPAK IC三大类型, 使得色谱柱流动相的使用范围得到了大幅度的扩展.CHIRALPAK OD-H(3,5-二甲苯基氨基甲酸酯) 高通用手性柱,特别适用于β阻断剂类和类固醇分离。如心得舒、氯酰心胺、黄烷酮、美托洛尔、心得平等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=63507]大赛璐手性色谱柱资料[/url]

  • Dihydromyricetin 二氢杨梅素 98%

    Dihydromyricetin 英文名:Dihydromyricetin CAS No:27200-12--0   分子量:320.25    分子式:C15H12O8 成分分类:黄酮类,属于一种黄烷醇 flavenol物质。别名:蛇葡萄素;Ampelopsin,ampeloptin   化学名:(2R,3R)-3,5,7-三羟基-2-(3,4,5-三羟基苯基)苯并二氢吡喃-4-酮 (2R,3R)-3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-4-one   主要含有二氢杨梅素 ( ampelopsin/ dihydromyricetin ) 、杨梅素( myricetin )、槲皮素(quercetin)、槲皮素-3-O-β-D-葡萄糖苷(quercetin-5-O-β–D-glucoside) 、花旗松素( taxifolin)、洋芹苷(apiin)等黄酮类物质。其主要成分为二氢杨梅素。 外观::白色或类白色粉末物理化学性质:本品为白色针状结晶(乙醇),易溶于热水,热乙醇及丙酮,溶于乙醇、甲醇,极微溶于醋酸乙酯,不溶于氯仿、石油醚。Microherb 研究表明二氢杨梅素热稳定性较好,但随着温度的升高大于100℃二氢杨梅素会发生不可逆的氧化反应。二氢杨梅素在中性和偏酸性条件下稳定。[color

  • 茶叶安全问题多 检测技术需奋起直追

    导读:茶叶作为国饮,一直是大多数国人的心头好,古代丝绸之路在发展过程中,它也一直扮演着重要的角色,然而随着食品安全被提上日程,茶叶开始处在一个尴尬的地位,农残超标、以次充好、重金属超标等阴影挥之不去。 中国是欧盟最大的绿茶供应国,然而欧美几乎每年更新检测标准,让我国的茶叶产业喘不过气来,暴露出我国茶叶检测标准偏低,茶叶安全无法得到保障。  茶叶问题重重  国家标准为每千克茶叶稀土含量不超过2毫克,2015年4月,“知福”铁观音茶第四次被检出稀土超标,公开资料显示,长期低剂量摄入稀土可能会引起脂肪肝,给人体健康或体内代谢产生不良后果。可惜时至11月,这个问题还是没有得到解决,期间“知福”茶叶先后被曝光16次。  2015年上半年,台湾连续曝出茶叶里农残超标,其中“3点1刻直火乌龙玫瑰茶”验出DDT等杀虫剂成分。DDT主要代谢产物DDE易在动物脂肪中累积,造成长期毒性;此外,DDT也具有潜在的基因毒性、干扰内分泌、致癌,及造成糖尿病在内的多种疾病。  2015年5月,北京市消费者协会曝出近四分之一的茶叶虚标等级以次充好,而销售商家中不乏沃尔玛、卜蜂莲花、大润发、乐天玛特等知名品牌。产品等级是消费者在选购包装茶叶时重要的依据,简单来讲,茶叶等级越高,价格越贵,一些名优品种的茶叶相邻等级间差价甚至能达到每斤几千元,可虚标等级导致消费者根本无法从标签上分辨茶叶的品质优劣。  2015年7月,多地食药监曝出在食品检测中检出茶叶中含有三氯杀螨醇,引起了社会各界的广泛关注。三氯杀螨醇经常被用于杀除果树、花卉上的害虫,残留有较强的毒性,早在1997年就被农业部禁用,然而在茶叶行业,它却如挥之不去的牛皮癣,一直深深刻着烙印。  如何检测茶叶合格否?  根据茶叶中被曝出的问题可以看出,茶叶中经常超标的农药为有机氯农药残留,因此就需要用气相色谱法来检定茶叶中的农残含量。  传统的方法采用填充柱恒温操作,低沸点组分解易重叠,高沸点组分峰易扩展,分离效果不理想。采用电子捕获-气相色谱法(ECD-GC)OV-17中等极性毛细管柱,进行程序升温操作,组分分离完全,分辩率高,精密度、准确度高,适应于各类食品中有机氯农药残留量的分析。  茶多酚是茶叶中多酚类物质的总称,包括黄烷醇类、花色苷类、黄酮类、黄酮醇类和酚酸类等。其中以黄烷醇类物质(儿茶素)最为重要。由于具有广泛的保健和药理功效以及较强的食品抗氧化特性,近几年它已成为食品和医药研究领域的热点,那么用什么方法来测定会受到更准确的结果?用高效液相色谱法可以方便、快速、准确的分析茶叶及茶多酚中儿茶。此外,液相色谱法还可被用来检测茶叶中的黄曲霉毒素B1。  11月14日,漳州科技学院天康检测中心揭牌成立,它拥有专业实验室11间,专业检测设备及辅助设备20多台,其中高尖端的检测仪器有5台,具有国际先进水平,能很好地满足茶叶及食品中农药残留、稀土检测、重金属等检测的需求。据悉,这套检测设备是与美国公司合作,是目前检测茶叶、食品最先进的仪器。  多年以来,茶叶已经成为国人生活中不可或缺的一部分,这几年,茶叶农残超标等问题一直制约着中国茶的发展,食品安全问题也影响着国人的消费心理,因此,让检测技术奋起直追,全面为茶叶安全保驾护航,才能为国人提供更好的生活品质。

  • 2015年版《中国药典》数据:儿茶素和表儿茶素

    2015年版《中国药典》数据:儿茶素和表儿茶素

    表儿茶素(L-Epicatechin)分子式:C15H14O6分 子 量:290.27白色结晶性粉末。儿茶素又称儿茶精,茶单宁。为黄烷醇的衍生物。分子式:C15H14O6分子量:290.27儿茶素最初由儿茶中提取出。为无色结晶形固体,能溶于水。其水溶液受热或在无机酸存在下,容易聚合成无定形鞣质。 和咖啡因同属茶叶中的两大重要机能性成分,但是又以儿茶素为茶汤中最主要的成分。临床实验调查显示,儿茶素可以通过血液循环进入全身,加强新陈代谢,增强脂肪的氧化和能量消耗从而达到抑制肥胖的作用,尤其是对内脏脂肪的抑制作用,能达到理想的减肥效果。以下为使用资生堂色谱柱对儿茶素和表儿茶素检测得到的谱图,请参考。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669681_2222981_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611221550_01_2222981_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611221550_02_2222981_3.jpg【色谱条件】色谱柱:CAPCELL PAK C18 S5; 4.6×150流动相:(N,N-二甲基酰胺/四氢呋喃=4:1)/0.04moL/L枸橼酸溶液=13/87流 速 : 1.0mL/min检 测 : UV280nm注:文献中所用液相方法与《中国药典(2015版)》中小儿泻速停颗粒检测方法一致。

  • 【资料】高速逆流色谱介绍---天然产物资源分离纯化和制备中的应用-黄酮成分的分离

    【资料】高速逆流色谱介绍---天然产物资源分离纯化和制备中的应用-黄酮成分的分离

    黄酮类化合物在自然界分布非常广泛,是一类非常重要的天然有机化合物。传统意义上黄酮类化合物主要是指基本母核为2-苯基色原酮类化合物,现在泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连接而成的一系列化合物。根据黄酮类化合物结构特点,可分为黄酮、黄酮醇、二氢黄酮、二氢黄酮醇、黄烷醇、查耳酮、异黄酮、双黄酮、花色素等种类。黄酮类化合物具有多方面的生物活性,如葛根总黄酮及葛根素(puerarin)、银杏叶总黄酮等具有扩张冠状血管作用,临床用于治疗冠心病;水飞蓟素(silymarin)、异水飞蓟素( silydianin)及次水飞蓟素(slychristin)等有肝脏保护作用,临床上用于治疗急、慢性肝炎、肝硬化及多种中毒性肝损伤等;木犀草素(luteolin)、黄芩苷( baicalin)、黄芩素(baicalein)以及槲皮素等具有抗菌、抗病毒作用;牡荆素( vitexin)、桑色素、儿茶素等具有抗肿瘤作用等。游离黄酮类化合物一般难溶或不溶于水,易溶于甲醇、乙酸乙酯、氯仿、乙醚等有机溶剂及稀碱水溶液中。黄酮苷一般易溶于水、甲醇、乙醇等强极性溶剂中。花色苷及其苷元以离子形式存在具有盐的通性,亲水性较强,水溶度较大。黄酮化合物单体的分离主要依靠各种色谱方法来实现,除经典的柱色谱法和薄层色谱法、HPLC外,近年来HSCCC已经得到广泛的应用。对于多数极性较弱的黄酮苷元,在进行HSCCC分离实验时,通常可以选用氯仿-甲醇-水的溶剂系统,而氯仿-甲醇-水(4:3:2或5:3:2)则是最常用的溶剂系统。根据被分离样品的具体情况,在上述溶剂系统的基础上,对组成诸元的比例进行适当的调整,就能获得良好的分离效果。还有些苷元也可采用正己烷(石油醚)-乙酸乙酯-甲醇-水的溶剂系统,通过调整溶剂的组成比例来实现有效分离。对于极性较强的黄酮糖苷类成分的HSCCC分离,通常使用的是乙酸乙酯–水为基本结构的溶剂系统,可以通过添加正丁醇、甲醇、乙醇、乙酸来调节溶剂系统的极性。分离这类化合物的典型性溶剂系统有:氯仿-[color

  • 【分享】国外:巧克力防病新知

    [align=left]预防中风 美国约翰霍普金斯大学医学院的研究人员发现黑巧克力中含有一种化合物,它能在病人中风3.5小时内降低大脑的损伤程度。[/align][align=left]研究人员表示,每周吃一份巧克力,中风风险可减少22%。 降低血压 德国科研人员对44名健康成年人的调查表明,每天吃热量不高于30卡路里的黑巧克力,18周后这些人的血压平均降低2.9毫米汞柱。不过白巧克力和过量食用巧克力却没有这种功效。有益心脏。[/align][align=left]《美国药物杂志》发表的一篇论文称,巧克力,尤其是黑巧克力含有一种天然抗氧化剂黄酮素,能防止血管变硬,同时增加心肌活力、放松肌肉,防止胆固醇在血管内积累,对防治心血管疾病有一定功效。[/align][align=left]缓解腹泻 黑巧克力的可可含量从50%—90%不等,可可富含一种叫类黄酮的多酚成分,能抑制肠道内蛋白质、氯离子以及水分的吸收,从而达到减少水分流失、防止人因腹泻而脱水的功效。[/align][align=left]平稳血糖 据《美国临床营养学杂志》报道,意大利一项研究发现,健康人吃黑巧克力连续15天,每天100克,对胰岛素的敏感性就有所增强。医生们估计,黑巧克力对糖尿病患者可能有一定的帮助。最新一项研究还发现,黑巧克力中的黄烷醇能起到平稳血糖的作用。[/align][align=left]黑巧克力板硬度较大,可可脂含量较高。黑巧克力有不同的级别,如:软质黑巧克力,可可脂含量32%-34% 硬质巧克力,可可脂含量38%-40% 超硬质巧克力,可可脂含量38%-55%,便于脱模和操作。[/align][align=left]黑巧克力在点心加工中用途最广,如:巧克力夹心、淋面、巧克力面包和巧克力饼干等。从营养上来说,黑巧克力的脂肪要低于牛奶巧克力。适宜人群:中老年人和女性。每天食用黑巧克力的量应控制在10—20克。棕色的巧克力是牛奶巧克力,长期以来,牛奶巧克力口感均衡成为世界上消费量最大的一类巧克力产品。[/align]

  • 坛墨质检-国家标准物质目录(142)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。BW6156 α-常春藤皂苷 HPLC≥98% BW6157 白头翁皂苷A3 HPLC≥98% BW6158 常春藤苷C,对照品,有报告 HPLC≥98% BW6160 白头翁皂苷D,对照品,有报告 HPLC≥98% BW6161 白头翁皂苷E2 HPLC≥98% BW6162 白头翁皂苷E3 HPLC≥98% BW6163 白头翁皂苷E4 HPLC≥98% BW6164 常春藤苷H HPLC≥98% BW6165 灰毡毛忍冬次皂苷甲 HPLC≥98% BW6168 齐墩果酸-3-O-β-D葡萄糖( 1→3)-α-L-鼠李糖(1→2)-α-L-阿拉伯糖苷 HPLC≥98% BW6169 Lup-20(29)-en-28-oic acid, 3-ox HPLC≥98% BW6170 Hederagenin 3-O-α-L-rhamnopyranosyl(1→2)-(β-D-glucopyranosyl(1→4))-α-L-arabinopyranoside HPLC≥98% BW6171 3-O-β-D-葡萄糖( 1→3)- -L-鼠李糖(1→2)- -L-阿拉伯糖 齐墩果酸- 28-O-鼠李糖(1→4)葡萄糖(1→6)葡萄糖苷 HPLC≥98% BW6172 白头翁皂苷E,对照品,有报告 HPLC≥98% BW6173 白头翁皂苷H HPLC≥98% BW6174 黄花败酱甙C HPLC≥98% BW6175 8-姜烯酚 HPLC≥98% BW6176 麦冬甲基黄烷酮A HPLC≥98% BW6178 Ophiopojaponin C HPLC≥98% BW6179 3-O-α-L-鼠李糖-(1→2)-β-葡萄糖麦冬苷元 HPLC≥98% BW6180 薯蓣皂苷元-3-O-β-D-木糖-(1→3) -β-D-葡萄糖苷 HPLC≥98% BW6181 去乙酰基Ophiopojaponin A HPLC≥98% BW6182 14α-羟基Sprengerinin C HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 坛墨质检-国家标准物质目录(297)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 BW6170Hederagenin 3-O-α-L-rhamnopyranosyl(1→2)-(β-D-glucopyranosyl(1→4))-α-L-arabinopyranosideHPLC≥98%BW61713-O-β-D-葡萄糖( 1→3)- -L-鼠李糖(1→2)- -L-阿拉伯糖 齐墩果酸- 28-O-鼠李糖(1→4)葡萄糖(1→6)葡萄糖苷HPLC≥98%BW6172白头翁皂苷E,对照品,有报告HPLC≥98%BW6173白头翁皂苷HHPLC≥98%BW6174黄花败酱甙CHPLC≥98%BW61758-姜烯酚HPLC≥98%BW6176麦冬甲基黄烷酮AHPLC≥98%BW6178Ophiopojaponin CHPLC≥98%BW61793-O-α-L-鼠李糖-(1→2)-β-葡萄糖麦冬苷元HPLC≥98%BW6180薯蓣皂苷元-3-O-β-D-木糖-(1→3) -β-D-葡萄糖苷HPLC≥98%BW6181去乙酰基Ophiopojaponin AHPLC≥98%BW618214α-羟基Sprengerinin CHPLC≥98%BW6183甲基麦冬高黄酮AHPLC≥98%BW6184麦冬皂苷B单硫酸酯HPLC≥98%BW6185麦冬皂苷DHPLC≥96%BW6187丹酚酸B二甲酯,对照品,有报告HPLC≥90%BW61889’-丹酚酸B单甲酯HPLC≥98%BW61899’’’-丹酚酸B单甲酯HPLC≥98%BW6190大豆皂苷AaHPLC≥98%BW6191大豆皂苷AbHPLC≥98%BW6192大豆皂苷BaHPLC≥98%BW6193大豆皂苷AcHPLC≥98%BW6194大豆皂苷BbHPLC≥98%BW6195大豆皂苷BdHPLC≥98%BW6196大豆皂苷Be,对照品,有报告HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 坛墨质检-国家标准物质目录(547)

    国内最大最专业的国家标准物质服务平台坛墨质检-国家标准物质中心(北京坛墨质检科技有限公司),是国家质检总局指定的国家标准物质研制单位,是国内最大最专业的食品、环境、职业卫生标准物质生产商和服务商。 产品编号 产品名称 标准值 BW6164常春藤苷HHPLC≥98%BW6165灰毡毛忍冬次皂苷甲HPLC≥98%BW6166灰毡毛忍冬次皂苷甲对照品HPLC≥98%BW6168齐墩果酸-3-O-β-D葡萄糖( 1→3)-α-L-鼠李糖(1→2)-α-L-阿拉伯糖苷HPLC≥98%BW6169Lup-20(29)-en-28-oic acid, 3-oxHPLC≥98%BW6170Hederagenin 3-O-α-L-rhamnopyranosyl(1→2)-(β-D-glucopyranosyl(1→4))-α-L-arabinopyranosideHPLC≥98%BW61713-O-β-D-葡萄糖( 1→3)- -L-鼠李糖(1→2)- -L-阿拉伯糖 齐墩果酸- 28-O-鼠李糖(1→4)葡萄糖(1→6)葡萄糖苷HPLC≥98%BW6172白头翁皂苷E,对照品,有报告HPLC≥98%BW6173白头翁皂苷HHPLC≥98%BW6174黄花败酱甙CHPLC≥98%BW61758-姜烯酚HPLC≥98%BW6176麦冬甲基黄烷酮AHPLC≥98%BW6178Ophiopojaponin CHPLC≥98%BW61793-O-α-L-鼠李糖-(1→2)-β-葡萄糖麦冬苷元HPLC≥98%BW6180薯蓣皂苷元-3-O-β-D-木糖-(1→3) -β-D-葡萄糖苷HPLC≥98%BW6181去乙酰基Ophiopojaponin AHPLC≥98%BW618214α-羟基Sprengerinin CHPLC≥98%BW6183甲基麦冬高黄酮AHPLC≥98%BW6184麦冬皂苷B单硫酸酯HPLC≥98%BW6185麦冬皂苷DHPLC≥96%BW6187丹酚酸B二甲酯,对照品,有报告HPLC≥90%BW61889’-丹酚酸B单甲酯HPLC≥98%BW61899’’’-丹酚酸B单甲酯HPLC≥98% 坛墨质检现有员工79人,办公室面积450平米,实验室1650平米;销售、客服、财务及行政人员35人,实验室工作人员21人,库房14人,市场部8人。实验仪器设备:气相色谱、液相色谱、气质联用、液质联用、离子色谱、紫外分光光度计,原子吸收、ICP-OES和ICP-MS;库房面积450平米,库房工作人员12人,现货产品5万个,坛墨质检自主研发的产品近3000个,已申报国标345项,填补国内空白的产品达到65项。坛墨质检是国内唯一提供标准溶液定制服务的标准物质研制单位,定制范围:特殊浓度定制、特殊溶剂定制、混标定制。

  • 文献检索任务贴(08.13)任务四十一 至 任务五十 领任务的版友注意不要带进其他网页的链接

    任务号文献名称发布时间任务领取人完成情况任务四十一41.1 当归养血丸中阿魏酸的HPLC测定 8.13dahua1981已完成 迪马奖励积分20分41.2 枳术丸中辛弗林的HPLC测定41.3 高效液相色谱法测定二妙丸中盐酸小檗碱的含量 41.4 高效液相色谱法测定虫草安肺片中盐酸麻黄碱含量41.5 安乳颗粒质量标准研究 41.6 感特灵胶囊中黄芩苷的HPLC测定41.7 双黄连颗粒中绿原酸含量的HPLC测定41.8 高效液相色谱法测定穿龙骨刺片中淫羊藿苷的含量41.9 高效液相色谱法测定健脾养胃胶囊中黄芩苷的含量41.10高效液相色谱法测定茴桂妇炎胶囊中芍药苷的含量 任务四十二42.1 高效液相色谱法测定大风丸中蛇床子素的含量8.13dahua1981已完成 迪马奖励积分20分42.2 不同季节虎杖根茎与茎叶中大黄素含量变化研究42.3 止咳平喘糖浆中盐酸麻黄碱的HPLC测定 42.4 黄菊解毒片中盐酸小檗碱含量测定 42.5 HPLC法测定盐酸青藤外敷散中盐酸青藤碱含量42.6 HPLC法测定犀羚解毒丸中甘草酸的含量 42.7 HPLC法测定四季感冒片中连翘苷的含量 42.8 HPLC法测定复方五指柑胶囊中盐酸小檗碱的含量42.9 HPLC法测定补肾健脑软胶囊中补骨脂素和异补骨脂素的含量42.10 不同采收期及贮存时间广陈皮药材主要成分含量的动态变化研究 任务四十三43.1 RP-HPLC法同时测定舒肝祛脂胶囊中4种大黄蒽醌的含量 8.13dahua1981已完成 迪马奖励积分20分43.2 高效液相色谱法测定链麻喷雾剂中麻黄碱的含量 43.3 RP-HPLC法测定复方产舒颗粒中人参皂苷Rb1的含量 43.4 高效液相色谱法测定新雪颗粒中栀子苷的含量 43.5 HPLC法测定银黄制剂中绿原酸的含量 43.6 HPLC法测定消渴灵片中五味子醇甲的含量 43.7 HPLC测定养血当归片中芍药苷的含量 43.8 某药酒中非法添加PDE5抑制剂的HPLC检测43.9 高效液相色谱法测定宫炎片中丹参素钠的含量43.10 蔬菜和水果中三氯杀螨醇和拟除虫菊酯类农药的气相色谱测定法任务四十四44.1 高效液相色谱法测定黄芪总皂苷氯化钠注射液中黄芪甲苷的含量 8.13yu3226033已完成 迪马奖励积分20分44.2 五子衍宗片质量控制方法的研究 44.3 HPLC法测定天麻头风灵颗粒中阿魏酸的含量 44.4 82 HPLC-ELSD同时测定白英中延龄草苷和去半乳糖替告皂苷的含量 44.5 《中国中药杂志》现状简介正交试验优选佛波醇酯的水解工艺 44.6 RP-HPLC同时测定温胆汤中甘草苷、柚皮苷、橙皮苷和甘草酸 44.7 血竭中5-羟基-7-甲氧基黄烷的含量测定 44.8 RP-HPLC法测定八角莲属植物中槲皮素及山柰酚的含量44.9 HPLC测定癃闭舒片中补骨脂素的含量44.10 紫杉醇PLGA口服纳米粒的制备及生物利用度的研究任务四十五45.1 HPLC法测定不同产地和品种石韦中绿原酸和芒果苷的含量 8.13yu3226033已完成 迪马奖励积分20分45.2 HPLC测定穿心莲内酯原料药的含量 45.3 HPLC法测定复方神安颗粒中苦参碱含量45.4 HPLC测定覆盆子中椴树苷的含量 45.5 HPLC测定参仙片中淫羊藿苷的含量45.6 44种中药中1,2,3,4,6-五-O-倍酰-D-葡萄糖含量的测定 45.7 伪人参皂苷GQ的排泄试验研究 45.8 HPLC测定决明子中红镰霉素龙胆二糖苷的含量 45.9 HPLC测定番泻叶中5种主要化学成分的含量 45.10 顶空毛细管GC法测定硫酸头孢匹罗中有机溶剂残留量 任务四十六46.1 刺五加抗疲劳活性部位中刺五加苷B的含量测定8.13yu3226033已完成 迪马奖励积分20分46.2 红花药

  • 【原创大赛】一轮月,一盏茶,都是故乡的味道

    中秋节始于唐朝初年,“中秋月饼茶,人生最得意。” 唐朝诗人这句著名的诗句便是在讲述中秋节这约定俗成的活动。那时候的月饼,叫圆饼;那时候的茶,叫团茶,即团状的茶饼。诗人们常用团茶比作月亮,将泡出来的茶水称为“团圆茶”。中秋之夜,赏圆月饮团茶真真是无比应景的一桩美事。说起来,茶叶可谓是比中秋节有着更源远流长的脉络。在上古时期,尝百草的神农氏就已经品尝过茶,并记录在《神农本草》中:“神农尝百草,日遇七十二毒,得荼而解之”。 这里的荼,就是茶。[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/d07edad228ac422faa37ca8096f4995e.png[/img][/align]延续至今,茶叶已经在我国有几千年的历史了。茶叶具备多种健康的功效:止渴、清神、利尿、治咳、祛痰、明目、益思、除烦去腻、驱困轻身、消炎解毒等,是我们健康首选的饮料。[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/880de49c985d4f7387f796c0e9a45500.png[/img][/align]而茶叶的这些保健功能主要成分之一便是茶多酚。茶多酚我从电视广告的宣传里都听得多了,但是我们知道茶多酚的物质构成吗?下面,小C带领大家了解一下茶叶中的主要成分“茶多酚”。[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/724f943cc5c14b199b38ee07b1d0d803.png[/img] [/align]▌▌什么是茶多酚▲中文名称:茶多酚▲别称:茶鞣质、茶单宁▲释义:茶多酚是茶叶中多酚类物质的总称▲主要成分:茶多酚占茶叶干重的20%~30%。按主要化学成分分为儿茶素类(黄烷醇类)、黄酮类、花青素类和酚酸类等四大类,其中儿茶素占60-80%。▲功能作用:茶多酚是茶叶中的主要水溶性物质。茶多酚是形成茶叶色香味的主要成份之一,也是茶叶中有保健功能的主要成份之一。研究表明,茶多酚具有抗氧化、防辐射、抗衰老、降血脂、降血糖、抑菌抑酶等多种生理活性。【1】[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/596a041e0aad458481b29951b579b0c0.png[/img][/align]▌▌茶多酚主要物质构成图[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/122e5e6baebd48f58be5f7f5673e0f7a.png[/img][/align]注:图中物质比例为该类物质占茶叶干重的比例[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/2ad0bc475e59481c9bad7bef1ce64b4a.png[/img][/align]▌▌影响茶叶中茶多酚含量的因素由于树种不同、生长环境不同、加工工艺不同茶叶中的茶多酚含量也都会有所不同,从而造成茶叶色泽、茶汤滋味、香气等不同的情况,给人带来不同的品饮感受。1. 茶树品种:大叶种茶叶含有的茶多酚相对要多,小叶种含的茶多酚相对较少。2. 生长环境:一般而言,南方茶产区种的茶比北方茶产区的所含茶多酚相对要多;一般茶树超过一定海拔高度(约500米)时,茶多酚的含量随海拔增加而降低。茶多酚在茶树幼嫩的,新陈代谢旺盛的,特别是光合作用强的部位合成最多,因此芽叶愈嫩,茶多酚愈多,随着新梢成熟,含量逐渐下降。3. 加工工艺(发酵程度):并非所有茶类的茶多酚含量都是一样的。随着茶叶发酵程度越大,茶多酚被氧化的就越多,含量就会变得越少,我们知道,茶叶按照发酵程度依次可分为绿、白、黄、青、红、黑茶共六大基本茶类,其中绿茶是不发酵,黑茶是后发酵的。由此茶多酚的含量可简单的依次判别为:绿茶白茶、黄茶青茶红茶、黑茶。[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/fa9e2d79693b45a480492b5fed5310b6.png[/img][/align]▌▌茶多酚与茶汤颜色按照发酵程度的轻重,茶多酚转变成了茶黄素(TF、亮黄色)、茶红素(TR、深红色)以及茶褐素(TB、暗红色)三大物质。这三种物质不但具有味道,还是茶汤颜色的主要组成物质,也正是由于这个转变的程度不同,我们所喝的茶汤才有了从黄到红、从明到暗的颜色的过渡。[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/e6c049cd695a4efdb5ace930aa5b5c28.png[/img][/align]▌▌茶多酚作为抗氧化剂在GB 2760的规定茶多酚作为食品添加剂(抗氧化剂)已经列入《食品安全国家标准食品添加剂使用标准》(GB2760-2014),允许用于基本不含水的脂肪和油、油炸面制品、即食谷物、方便米面制品、糕点、酱卤肉制品类、发酵肉制品类、预制水产品、复合调味料、植物蛋白饮料等食品类别。2016年11月1日国家卫生计生委发布公告将茶多酚使用范围扩大到果酱(食品类别04.01.02.05)和水果调味糖浆(食品类别11.05.01)。【2】[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180921/2f48134d726749e6a7544e8451333a91.png[/img][/align]参考资料:【1】茶多酚在食品工业中的应用【2】关于食品用香料新品种9-癸烯-2-酮、茶多酚等7种食品添加剂扩大使用范围和食品营养强化剂钙扩大使用范围的公告图源:Unsplash、网络、八马茶叶

  • 【原创大赛】关于“茶叶中茶多酚含量测定”的质控图建立与判定

    【原创大赛】关于“茶叶中茶多酚含量测定”的质控图建立与判定

    关于“茶叶中茶多酚含量测定”的质控图建立与判定 多酚类物质是茶叶中重要的成分,茶叶中的多酚类物质又可分为茶多酚(儿茶素类,又称黄烷醇类)、黄酮及黄酮苷、酚酸及缩酚酸、花青素及花色素等四大类,其中茶多酚占其多酚类物质总量的70%左右。茶多酚具有抗氧化、防晒老,抑制细菌生长等作用,同时茶多酚含量是判别普洱生熟的关键指标(判定依据为GB/T 22111-2008地理标志产品 普洱茶 详见http://down.foodmate.net/standard/sort/3/17709.html GB/T 22111-2008 地理标志产品 普洱茶;)。茶叶精加工过程中,茶多酚发生了复杂的物理、化学反应,从而由茶黄素变为茶红素、茶红素转变为茶褐素,茶褐素为普洱熟茶中重要的保健物质。因此准确测定茶叶中茶多酚含量具有十分重要的意义。 目前,现行有效的茶叶中茶多酚检测标准为GB/T 8313-2008 ( 详见http://down.foodmate.net/standard/sort/3/16310.html GB/T 8313-2008 茶叶中茶多酚和儿茶素类含量的检测方法;)。现今社会上多家初建的检测实验室均不能有效检测茶叶中的茶多酚含量,为解决这一现状,本实验室已对茶叶中茶多酚含量的检测进行深入研究,细致梳理并探讨茶多酚测量不确定度评估,分析出影响茶多酚检测结果的关键因素有5个,其中标准曲线是最大因素( 详见http://www.cnki.com.cn/Article/CJFDTotal-HXTB201310015.htm 陈孝权, 肖海军. 分光光度法测定茶叶中茶多酚含量的不确定度评估. 化学通报 2013 年 第76 卷 第10 期。)。标准曲线中斜率是影响对茶多酚定量检测的关键指标,若想获得准确、有效的茶多酚含量,必须对标准曲线斜率进行严密监控,即针对标准曲线斜率做检测质量控制图。 正是如此,茶叶中茶多酚含量测定的质量控制图可有效转化成标准曲线中斜率的质量控制图。然而,检测质量控制图为当今实验室中的难点工作,并且多数人员对质控图的相关理论及概念缺乏了解,为此本文从质控图概述、质控图的建立条件与步骤、质控图建立的实例(茶多酚检测的标准曲线斜率)以及质控状态的判定与分析等四大方面深入探讨关于“茶叶中茶多酚含量测定”的质控图建立与判定。希望对后来的研究者有一定的指导及借鉴意义。 一、质控图概述一)质控图的起源控制图是美国质量管理专家休哈特在20世纪20年代后期首创的。二)质控图的定义控制图是一种将显著性统计原理应用于控制试验(生产)过程的图形。 ---源自《GB/T4091-2001 常规质控图》控制图理论认为存在两种变异:1.随机变异,由偶然原因(一般原因)造成;特点:始终存在、不易识别; 解决措施:重新配置资源以改进过程和系统。2.表征过程实际的改变,由操作不当、设备故障等造成;特点:可查明、可消除、易识别;解决措施:设备维修、人员培训、方法优化等。三)质控图的基本形式http://ng1.17img.cn/bbsfiles/images/2017/10/2015070121315803_01_2275853_3.png相关名词解释:1.质量特性值— —质量控制图中需要监控的参数;2.上控制界限— —监控的质量特性值不得超越的值;3.中线( 或μ)— —指一组数据的平均值或中位值(特殊);4.下控制界限— —监控的质量特性值不得低于的值;5.σ— —监控的质量特性值的标准差,即+3σ为正3倍的标准差、-3σ为负3倍的标准差;6.试验日期——指做试验的日期。四)质控图的分类1.按控制对象的质量数据性质分:①计量值控制图 ②计数值控制图 2.按标准值是否给定的情形分:①标准值给定控制图 ②标准值未给定控制图1).计量值控制图有以下四种:①均值---极差控制图( -R图); ②均值---标准差控制图( -σ图);③中位数---极差控制图(μ-R图);④单值---移动极差控制图( X-RS图)。2).标准值给定控制图标准值给定控制图用来确定若干个子组测定值的均值μ、极差R 等特性的观测值与其对应的标准值X0(或μ0)之差是否显著大于仅由预期的偶然原因造成的差异,其中每个子组的n值相同。 ---源自《GB/T4091-2001 常规质控图》3).标准值未给定控制图标准值未给定控制图用来发现所有点绘特性(如均值μ、标准差σ或任何其他统计量)观测值本身的变差是否显著大于仅由偶然原因造成的差异,此控制图完全基于子组数据,用来检测非偶然原因造成的那些变差。 ---源自《GB/T4091-2001 常规质控图》标准值给定质控图的数据由标准给定数据和观测值(实验室测试数据)两种,此质控图主要功能体现在表征标准值与观测值的接近程度(准确度)和测试系统的稳定性、变异。[c

  • 【转帖】酵母双杂交系统的发展和应用

    随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。   酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。  酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。  根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了  酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。  基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。 1、利用酵母双杂交发现新的蛋白质和蛋白质的新功能  酵母双杂交技术已经成为发现新基因的主要途径。当我们将已知基因作为诱饵,在选定的cDNA文库中筛选与诱饵蛋白相互作用的蛋白,从筛选到的阳性酵母菌株中可以分离得到AD-LIBRARY载体,并从载体中进一步克隆得到随机插入的cDNA片段,并对该片段的编码序列在GENEBANK中进行比较,研究与已知基因在生物学功能上的联系。另外,也可作为研究已知基因的新功能或多个筛选到的已知基因之间功能相关的主要方法。例如:Engelender等人以神经末端蛋白alpha-synuclein 蛋白为诱饵蛋白,利用酵母双杂交CLONTECH MATCHMARKER SYSTEM 3为操作平台,从成人脑cDNA文库中发现了与alpha-synuclein相互作用的新蛋白Synphilin-1,并证明了Synphilin-1与alpha-synuclein 之间的相互作用与帕金森病的发病有密切相关。为了研究两个蛋白之间的相互作用的结合位点,找到影响或抑制两个蛋白相互作用的因素,Michael等人又利用酵母双杂交技术和基因修饰证明了alpha-synuclein的1-65个氨基酸残基和Synphilin-1的349-555个氨基酸残基之间是相互作用的位点。研究它们之间的相互作用位点有利于基因治疗药物的开发。  2、利用酵母双杂交在细胞体内研究抗原和抗体的相互作用  利用酶联免疫(ELISA)、免疫共沉淀(CO-IP)技术都是利用抗原和抗体间的免疫反应,可以研究抗原和抗体之间的相互作用,但是,它们都是基于体外非细胞的环境中研究蛋白质与蛋白质的相互作用。而在细胞体内的抗原和抗体的聚积反应则可以通过酵母双杂交进行检测。例如:来源于矮牵牛的黄烷酮醇还原酶DFR与其抗体scFv的反应中,抗体的单链的三个可变区A4、G4、H3与抗原之间作用有强弱的差异。Geert等利用酵母双杂交技术,将DFR作为诱饵蛋白,编码抗体的三个可变区的基因分别被克隆在AD-LIBRARY载体上,将BD-BAIT载体和每种AD-LIBRARY载体分别转化改造后的酵母菌株中,并检测报告基因在克隆的菌落中的表达活性,从而在活细胞的水平上检测抗原和抗体的免疫反应。  3、利用酵母双杂交筛选药物的作用位点以及药 物对蛋白质之间相互作用的影响  酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之间的相互作用。对于能够引发疾病反应的蛋白互作可以采取药物干扰的方法,阻止它们的相互作用以达到治疗疾病的目的。例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5)与拓扑异构酶NS3,以及细胞核转运受体BETA-importin的相互作用有关。研究人员通过酵母双杂交技术找到了这些蛋白之间相互作用的氨基酸序列。如果能找到相应的基因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病毒的复制,从而达到治疗这种疾病的目的。  4、利用酵母双杂交建立基因组蛋白连锁图(Genome Protein Linkage Map)众多的蛋白质之间在许多重要的生命活动中都是彼此协调和控制的。基因组中的编码蛋白质的基因之间存在着功能上的联系。通过基因组的测序和序列分析发现了很多新的基因和EST序列,HUA等人利用酵母双杂交技术,将所有已知基因和EST序列为诱饵,在表达文库中筛选与诱饵相互作用的蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。对于认识一些重要的生命活动:如信号传导、代谢途径等有重要意义。

  • 【原创大赛】磷钼钨酸-干酪素法测定中药注射剂中的鞣质

    【原创大赛】磷钼钨酸-干酪素法测定中药注射剂中的鞣质

    [b] 磷钼钨酸-干酪素法测定中药注射剂中的鞣质引言:[/b]鞣质( tannins) 亦称鞣酸、丹宁、丹宁酸,为多酚类化合物,在 70% 以上的中草药中广泛存在,其存在部位以树皮和虫瘿( galls) 中常见。鞣质可分为可水解鞣( hydrolysable tannins) 和缩合鞣质( condensed tannins)。鞣质是一类具有沉淀蛋白作用的水溶性多酚类化合物,约70%以上的中草药中含鞣质类化合物。它是由没食子酸(或其聚合物)的葡萄糖(及其它多元醇)酯、黄烷醇及其衍生物的聚合物以及两者混合共同组成的植物多元酚。鞣质常作为杂质除去,因为在中药制剂中,鞣质除了会影响制剂的稳定性和澄明度外,还可能会引起一系列严重的生理反应。例如,某些鞣质注入体内会引起黄疸和肝坏死等一系列临床症状。近年来中药注射剂的安全性问题已引起人们的广泛关注,中药注射剂中鞣质将使血液中的蛋白质凝固,从而引起皮下出血 多次注射局部组织可能导致组织坏死,造成无菌炎症 加速红细胞的凝聚,并能与血红蛋白形成药物性沉淀。此外,鞣质检查也是中药注射剂的特殊检查项目之一。一、仪器电子分析天平:Mettler Toledo ME204 CAB-002紫外可见分光光度计:Agilent Cary60 CUV -001[img=,312,227]http://ng1.17img.cn/bbsfiles/images/2017/09/201709241152_01_2204446_3.png[/img]水浴锅 江苏省金坛市荣华仪器制造有限公司 中药所005二、试剂及样品1、试剂:干酪素 AR 250g 批号 20160812 天津市福晨化学试剂厂磷钼钨酸试液 AR 500ml 批号 20170817 天津市光复精细化工研究院无水碳酸钠 AR 500g 批号 20120526 国药集团化学试剂有限公司2、对照品没食子酸 约30mg 110831-201605 中国食品药品检定研究院 纯度90.8%3、样品:XXX注射液 20170207 超滤后样品、20170209 超滤后样品 三、实验依据:《中国药典》2015年版四部 2202鞣质含量测定法四、实验过程:1、对照品溶液的制备:取2017年09月11日配制的对照品溶液(0.04867mg/ml)2、供试品溶液的制备:分别精密量取20170207、20170209批样品10ml,分别置100ml容量瓶置,加水稀释至刻度,摇匀,得供试品溶液。3、最大吸收波长的测定:精密量取对照品溶液2ml,置25ml棕色量瓶中,加入磷钼钨酸试液lml,加水10ml,用29%碳酸钠溶液稀释至刻度,摇勾,放置3 0分钟,以相应的试剂(水)为空白,在500nm-800nm波长范围内扫描,测定其最大吸收波长。4、总酚 精密量取供试品溶液2ml,置25ml棕色量瓶中,加入磷钼钨酸试液lml,加水10ml,用29%碳酸钠溶液稀释至刻度,摇勾,放置3 0分钟,依法在760nm处测定吸光度,从标准曲线计算得供试品溶液中没食子酸的量(mg)。5、不被吸附的多酚 精密量取供试品溶液25ml,加至已盛有干酪素0.6g的100ml具塞锥形瓶中,密塞,置30℃水浴中保温1小时,时时振摇,取出,放冷,摇匀,滤过,弃去初滤液,精密量取续滤液2ml,置25ml棕色量瓶中,自“加入磷钼钨酸试液lml”起,加水10ml,同总酚处理方法,依法测定吸光度,同时进行干酪素吸附空白试验,计算扣除空白值,计算没食子酸的量(mg)。6、按下式计算鞣质的含量:鞣质含量= 总酚量—不被吸附的多酚量五、测定数据见报告[align=left]1、经光谱扫描,对照品光谱再765nm-750nm波长处有较大的宽幅吸收,可选择760nm作为测定波长。2、①760nm波长处总酚吸光度:20170207: 0.2539、0.252120170209:0.2714、0.2669;干酪素吸附空白:0.2186;不被吸附的多酚吸光度:20170207: 0.2347 20170209: 0.2682以曲线方程 y=108.48x+0.0661 R2=0.9926样品鞣质浓度为(X总-X不)*25*100/2则20170207 鞣质含量C1=0.22mg/ml, C2=0.20mg/ml, C平均=0.21 mg/ml;20170209 鞣质含量C1=0.037mg/ml, C2=-0.015mg/ml, C平均=0.011 mg/ml;[/align]②755nm波长处总酚吸光度:20170207: 0.2540、0.252320170209:0.2719、0.2669;干酪素吸附空白:0.2186;不被吸附的多酚吸光度:20170207: 0.2353 20170209: 0.2690以曲线方程 y=108.92x+0.0651 R2=0.9928样品鞣质浓度为(X总-X不)*25*100/2则20170207 鞣质含量C1=0.21mg/ml, C2=0.19mg/ml, C平均=0.20 mg/ml;20170209 鞣质含量C1=0.033mg/ml, C2=-0.026mg/ml, C平均=0.003mg/ml。[img=,503,556]http://ng1.17img.cn/bbsfiles/images/2017/09/201709241155_01_2204446_3.png[/img]3、结果分析:①760nm、755nm波长处结果和曲线无明显差异;[img=,575,436]http://ng1.17img.cn/bbsfiles/images/2017/09/201709241159_01_2204446_3.png[/img]②20170207总酚和不被吸附的多酚吸光度能较好的区分,20170209总酚与不被吸附的多酚吸光度较接近,结果准确性较差;③可能 由于样品中鞣质含量较低,其他酚类物质较多,且干酪素吸附实验条件对结果影响较大,吸附能力较弱,需考察干酪素吸附的影响因素;④样品稀释100倍后吸光度较为合适,不被吸附的多酚实验中滤液较为澄清,也可以继续考察其他稀释倍数。[img=,554,439]http://ng1.17img.cn/bbsfiles/images/2017/09/201709241159_02_2204446_3.png[/img]参考文献:1、中国药典2015年版四部22202鞣质含量测定法。2、沈洁 浙江大学药学院 《磷钼酸-干酪素法测定丹参药材中鞣质含量》分析化学2008.04[align=left][/align]

  • 【原创大赛】从黄芩中提取黄酮类化合物的工艺研究

    【原创大赛】从黄芩中提取黄酮类化合物的工艺研究

    [align=center]从黄芩中提取黄酮类化合物的工艺研究[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]食品事业部:李灿[/align][b]摘要:[/b]探讨超声波辅助法提取黄芩中总黄酮的最佳提取条件及对提取物的抗氧化性活性研究,这为黄芩作为天然抗氧化剂和功能性食品的开发利用提供理论基础和实验依据。[b][/b] 通过设计正交试验,采用超声波辅助法提取黄芩中总黄酮的最佳工艺条件条件,并通过对羟自由基、超氧自由基和DPPH自由基的清除效果研究其抗氧化活性。[b][/b]超声波辅助提取黄芩中总黄酮的最佳条件为:乙醇浓度为50%,时间为25min,料液比为1∶10,温度为30℃,黄芩总黄酮的提取率为3.25%。并且研究了黄芩提取物中的黄酮类物质对O[sub]2[/sub]-• 、• OH和DPPH自由基的抗氧化性能。研究结果表明洋葱提取物中黄酮类物质的抗氧化性较VC强。在浓度为0.0125mg/ml下,对羟基自由基的清除率为88.30%,对超氧基自由基的清除率为90.01%,对DPPH自由基的清除率为93.87%。[b]关键词[/b]:黄芩;超声波提取;总黄酮;抗氧化活性 [align=center][b] Study on extraction technology of flavonoids from Scutellaria[/b][/align][align=center]Li Can[/align][align=center] (Department of Chemistry and Chemical Engineering, Xi′an University of [/align][align=center]Arts and Science, Xi′an 710065)[/align][b]Abstract: [/b]To investigate the ultrasonic assisted extraction optimum extraction conditions of total flavonoids from Scutellaria and to extract antioxidant activity, which is a skullcap as a natural antioxidant and functional food development and utilization of theoretical and experimental evidence provided . [b][/b] Through orthogonal experiment, the optimum conditions using ultrasonic assisted extraction conditions of total flavonoids from Scutellaria, and to study its antioxidant activity by hydroxyl radicals, superoxide radicals and DPPH radical scavenging effect. Optimal conditions . [b] [/b]Ultrasonic assisted extraction of total flavonoids from Scutellaria: ethanol concentration of 50%, the time is 25min, solid-liquid ratio of 1:10, the temperature is 30 ℃, extraction of total flavonoids was 3.25%. And studied the extract of Scutellaria flavonoids on O2-• , • OH and DPPH radical antioxidant properties. The results show that the onion extract antioxidant flavonoids than VC strong. At a concentration of under 0.0125mg/ml, hydroxyl radical scavenging rate of 88.30% for super-group was 90.01% scavenging of DPPH radical scavenging rate was 93.87%.[b][color=#2b2b2b]Key Words[/color][/b][color=#2b2b2b]:[/color][color=#2b2b2b] [/color][color=#2b2b2b]Skullcap [/color][color=#2b2b2b]U[/color][color=#2b2b2b]ltrasonic extraction [/color][color=#2b2b2b]T[/color][color=#2b2b2b]otal flavonoids [/color][color=#2b2b2b]A[/color][color=#2b2b2b]ntioxidant activity[/color][b]1 前言[/b]黄岑主要生长在陕西秦岭,为常用中草药之一,性寒,味苦。具有清热燥湿,泻火解毒,止血安胎[sup][/sup]等功效,它的主要成分为黄酮类化合物[sup][/sup],黄酮类化合物主要存在于双子叶及裸子植物的叶、果、实、根、皮中,在植物中主要与糖结合成苷的形式存在[sup][/sup]。目前从黄酮类物质有很多种,黄酮类化合物的结构特点是具有 C[sub]6[/sub]- C[sub]3[/sub]- C[sub]6[/sub]的基本骨架,根据中间三碳链的氧化程度、B 环( 苯基) 连接位置( 2-或3-位) 以及三碳链是否呈环状等特点,主要有黄酮醇,二氢黄酮,二氢黄酮醇,黄烷,黄烷醇,异黄酮等,被广泛应用在医药、功能食品添加剂、兽药和农药等领域。在医药方面,根据其在心血管系统、内分泌系统、抗肿瘤方面的药理作用,很多以黄酮类成分为主的制剂已作为成药上市[sup][/sup]。在食品中它们应用于功能性食品添加剂,如天然甜味剂、天然抗氧化剂、天然色素等;应用于功能食品,如生物类黄酮口香糖、银杏叶袋泡茶等防衰、抗癌、提高免疫力食品;在兽药、农药等领域,现已开发出些具有特效功能的含有黄酮类化合物药品和驱虫、杀虫剂等[sup][/sup]。目前国内侧重于对黄酮类化合物的研究,但他们常被当作残渣而扔掉,因而就造成了黄芩的浪费,没有使黄芩得到充分利用,本文主要针对黄芩总黄酮的提取方法及其抗氧化能力测定方法进行研究,以期为黄芩黄酮类成分的进一步开发利用从黄岑中提取黄酮类化合物的方法有很多种,传统提取方法有煎煮法[sup][/sup]、有机溶剂提取法[sup][/sup]、浸渍法、渗漉法、回流提取法[sup][/sup]、水提法等,新的提取方法有超声波提取法、微波提取法、索氏提取法、超临界萃取法、大孔树脂吸附法、酶解法提取[sup][/sup]。黄芩黄酮的提取主要为溶剂萃取法,包括无机溶剂萃取法和有机溶剂萃取法。其主要原理是利用黄芩黄酮能溶于碱水或甲醇等有机溶剂的特性来提取黄芩中的黄酮[sup][/sup],考虑到该法提取时间长,提取率较低的缺点,我们采用超声波辅助提取法。因为超声波提取法是一种新型方法,它具有能耗低、效率高、不破坏有效成分的特点,在低温下可以强化水浸提效率,达到省时高效节能的目的,而且是目前广泛使用的方法。超声提取的主要理论依据是超声的空化效应、热效应和机械作用。当大能量的超声波作用于介质时,介质被撕裂成许多小空穴,这些小空穴瞬时闭合,并产生高达几千个大气压的瞬间压力,即空化现象。超声空化中微小气泡的爆裂会产生极大的压力,使植物细胞壁及整个生物体的破裂在瞬间完成,缩短了破碎时间,同时超声波产生的振动作用加强了胞内物质的释放、扩散和溶解,从而显著提高提取效率。因此本实验拟决定用超声波提取法来提取黄酮类化合物。黄酮类化合物的测定方法也多种多样,目前有薄层扫描法、紫外分光光度法、液相色谱法等[sup][/sup]。但是以上方法测定黄芩提取液中总黄酮的含量都比较繁琐,非黄酮类物质干扰比较大。由于Al[sup]3+[/sup]仅与黄酮类物质有特征反应,使用这种显色方法可以使黄酮类化合物溶液在510nm左右出现吸收峰,采用紫外分光光度法测定黄芩提取液中总黄酮含量,方法简单快速[sup][/sup]。对于黄酮类化合物的抗氧化性研究,国内外所做研究也比较多。方法可分为体外抗氧化与体内抗氧化,其中体外抗氧化运用较为广泛,体外抗氧化还可分为直接清除活性氧自由基、抑制油脂过氧化反应[sup][/sup]等;体内抗氧化是用受试物连续喂饲大鼠或小鼠1个月~3个月,然后处死动物,测定其血或组织(如肝、脑)中各物质的含量,同对照组进行比较,间接地说明受试物的抗氧化活性。采用体外抗氧化性研究,常用到的自由基有OH[sup] [/sup],O[sub]2[/sub][sup]-[/sup], DPPH等,由于直接清除活性自由基的方法易行且效果直观,本次实验采用该种方法。本实验将从两个方面研究黄芩黄酮类化合物。第一部分为黄芩总黄酮最佳提取方法的研究。本环节采取超声辅助提取法,采用料液比(A),乙醇浓度(B), 超声时间(C),超声温度(D)作为研究因素,采用四因素三水平,选择L[sub]9[/sub](3[sup]4[/sup])设计正交试验。用芦丁做标准曲线测定黄芩提取液中总黄酮的含量。第二部分为总黄酮类化合物抗氧化性的研究,采用对OH,O[sub]2[/sub][sup]-[/sup]自由基和DPPH自由基的清除作用研究其抗氧化性。[b]2 实验部分2.1 材料与仪器2.1.1 材料和试剂[/b] 黄芩(购于西安同仁堂大药房),芦丁(分析纯,上海试剂药品厂),亚硝酸钠(分析纯,成都市科龙化工试剂厂),硝酸铝(分析纯,成都市科龙化工试剂厂),氢氧化钠(分析纯,成都市科龙化工试剂厂),邻苯三酚(分析纯,成都市科龙化工试剂厂),盐酸(分析纯,天津市天力化学试剂有限公司),双氧水(天津市天力化学试剂有限公司),硫酸亚铁(分析纯,成都市科龙化工试剂厂),水杨酸(分析纯,天津市天力化学试剂有限公司),无水乙醇(分析纯,天津市天力化学试剂有限公司),三羟基甲基氨基甲烷(分析纯,天津市福晨化学试剂厂),邻二氮菲(分析纯,天津市福晨化学试剂厂),DPPH(购于阿拉丁试剂)。[b]2.1.2 仪器[/b] 高速粉碎机(FW80型,北京中兴伟业仪器有限公司);紫外可见分光光度计(722N,上海精密科学仪器有限公司) 电子天平(YP202W,上海精密科学仪器有限公司);循环水式多用真空泵(SHB-Ⅲ,郑州长城科工贸有限公司);超声波清洗机(11—1404,宁波新芝生物科技股份有限公司);智能型恒温鼓风干燥箱(CMD-20X型,上海琅轩试验设备有限公司);玻璃仪器气流烘干器(TH48SYBQ-1型,北京中兴伟业仪器有限公司)。[b]2.2实验方法2.2.1黄芩样品的制备[/b] 将黄芩在烘箱中60℃干燥8h,干燥后的黄芩用粉碎机粉碎成粉末,用分样筛(40目)筛分黄芩粉末,保证粉末均匀一致,密封保存,待用。[b]2.2.2 总黄酮的测定方法2.2.2.1 芦丁标准曲线的绘制[/b] 准确称取干燥至恒重的芦丁4.0mg 于小烧杯中,用50%乙醇溶解,并定容于25ml的容量瓶,摇匀,得浓度0.16mg/ml的标准液。准确吸取标准应用液0、1.0、2.0、3.0、4.0、5.0ml 于6 个10ml容量瓶中,与上述容量瓶中分别加入5% NaNO[sub]2[/sub]0.3ml,摇匀,放置6min后,分别加入10% Al(NO[sub]3[/sub])[sub]3[/sub] 溶液0.3ml,摇匀,放置6min后,再分别加入4% NaOH 溶液4ml,加50%乙醇定容至10ml,摇匀,以试剂空白为参比,放置10~15min,用紫外可见分光光度计进行全波长扫描,在最大吸收波长510nm处测定吸光度,得到吸光度Y与芦丁浓度X(mg/ml)间标准曲线回归方程。[b]2.2.2.2 提取液总黄酮含量的测定 [/b]准确称取1.00g黄芩粉末,在不同的提取条件下提取黄芩总黄酮,提取液用乙醇稀释定容至50ml。准确吸取提取液1.0ml于25ml容量瓶,按上述方法显色后测定吸光度,代入标准曲线回归方程中可以得到黄芩中黄酮类物质的含量(mg/ml),从而计算出黄芩中黄酮类物质的提取率,即:黄芩中黄酮类物质的提取率= ×100%[b]2.2.3 单因素试验[/b] 主要研究料液比、乙醇浓度、超声波时间、超声波温度4个因素,在保持其他因素相同的条件下分别进行单因素试验,研究各因素对黄芩总黄酮提取效果的影响,筛选最佳的提取条件。 准确称取黄芩粉末,在不同的条件下进行超声提取,提取液冷却后用乙醇定容,按照2.2.2的测定方法,计算黄芩中总黄酮的含量。[b]2.2.4 正交试验[/b]在单因素试验基础上,选择料液比、乙醇浓度、超声时间、超声温度4因素,设计L[sub]9[/sub](3[sup]4[/sup])正交试验,以总黄酮的含量为评价指标,确定黄芩总黄酮超声辅助法的最佳提取工艺。[b]2.2.5 总黄酮体外抗氧化性的研究2.2.5.1 对羟自由基清除作用的研究[sup][/sup][/b]原理:通过反应所产生的羟基自由基可将Fe[sup]2+[/sup]氧化为Fe[sup]3+[/sup], Fe[sup]2+[/sup]和邻二氮菲反应可产生有色络合物,向有色沉淀加入抗氧化剂后,其反应效果会相对减弱。羟基自由基对二价铁离子的氧化作用,会导致吸光值不断变化,从而评价样液消除羟基自由基的能力。步骤:取0.75 mmoL/L邻二氮菲溶液1 mL,加入不同浓度的样液,再加0.75 mmoL/L硫酸亚铁1 mL混匀,加0.75mmol/l的过氧化氢1 mL,于37 ℃ 水浴下,水浴60 min后,在536 nm处测其吸光度,所得吸光度A[sub]b[/sub]。 反应方程式:H[sub]2[/sub]O[sub]2[/sub] + Fe[sup]2+[/sup]=OH[sup]-[/sup] +OH + Fe[sup]3+ [/sup]清除率S(%)=「Ax- A[sub]b[/sub]]/[As- A[sub]b[/sub]] ×100% 其中 A[sub]b[/sub]:标准体系的吸光度 Ax:不含黄芩提取液的吸光度As:不含过氧化氢的标准体系吸光度本底吸光度[b]2.2.5.2 对超氧自由基清除作用的研究 [sup][/sup][/b] 原理:在碱性条件下,邻苯三酚能迅速发生自氧化反应,生成超氧阴离子自由和有色中间产物,且邻苯三酚自氧化速率与生成超氧阴离子自由基的浓度呈正相关,该有色中间产物在300nm处有一特征吸收峰。当加入抗氧化剂能催化超氧阴离子自由基与H[sup]+[/sup]结合生成O[sub]2[/sub]和H[sub]2[/sub]O[sub]2[/sub] ,从而阻止了中间有色产物积累,溶液在320nm 处的吸收减弱。因此可通过测定添加试样前后吸光度[i]A[/i]的变化来表示抗氧化剂对超氧阴离子自由基的清除效果。步骤:取0.05mol/L三羟甲基氨基甲烷盐酸缓冲液(pH =8.2)4.5mL,置于25℃水浴中预热20min,分别加入0.1mL试样和0.4mL2.5mmol/L邻苯三酚溶液,混匀后于25℃水浴中反应4min,加入8mol/L HCl溶液两滴终止反应,于波长299nm处测定吸光度As,空白对照组以相同体积的蒸馏水代替样品,并计算清除率。 清除率计算公式: S(%)=[(1-(As-A[sub]0[/sub] )/A[sub]b[/sub]]×100%其中 A[sub]b[/sub]:不含黄芩提取物的标准体系吸光度 As:标准体系的吸光度值 Ao:不含邻苯三酚的标准体系吸光度[b]2.2.5.3 对DPPH自由基清除作用的研究[sup][/sup] [/b]原理:DPPH 在有机溶液中是一种稳定的自由基,其乙醇溶液呈深紫色,当 DPPH 溶液中加入自由基清除剂时,其孤对电子被配对,溶液颜色变浅,可由此来检测自由基的清楚状况,从而评价物质的抗氧化能力。步骤:将样品储备液适当稀释得到不同浓度的黄芩黄酮溶液。 向一系列 10 mL比色管中加入 3.5 mL 1.0×10[sup]-4[/sup]mol/L 的 DPPH 溶液和 0.5 mL 样品液,摇匀避光反应30 min,与波长517 nm下测定吸光度 A s。空白对照组以无水乙醇代替样品,并计算清除率。清除率计算公式: 清除率S(%)=[(1-(As-A[sub]0[/sub] )/A[sub]b[/sub]]×100% 其中 A[sub]b[/sub]:不含黄芩提取物的标准体系吸光度 A[sub]s[/sub]:标准体系的吸光度值 A[sub]0[/sub]:不含DPPH的标准体系吸光度[b]3. 结果与分析 3.1 芦丁标准曲线[/b]由图可得,芦丁在0.02—0.10mg/ml浓度范围内与吸光度呈良好的线性关系,R[sup]2[/sup]= 0.9998。回归方程为Y= 11.47X+ 0.0554 [align=center]表1 芦丁浓度与吸光度的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]芦丁浓度/(mg/ml)[/align][/td][td][align=center]0.02[/align][/td][td][align=center]0.04[/align][/td][td][align=center]0.06[/align][/td][td][align=center]0.08[/align][/td][td][align=center]0.10[/align][/td][/tr][tr][td][align=center]吸光度(A)[/align][/td][td][align=center]0.288[/align][/td][td][align=center]0.514[/align][/td][td][align=center]0.736[/align][/td][td][align=center]0.976[/align][/td][td][align=center]1.204[/align][/td][/tr][/table][align=center] [/align][align=center] [/align][align=center] [/align][align=center][img=,463,249]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091813421003_7187_2904018_3.png!w463x249.jpg[/img] [/align][align=center]图1 芦丁标准曲[/align]Fig.1 Standard curve of rutin[b]3.2 总黄酮提取条件的优化3.2.1 料液比对黄酮类化合物提取效果的影响[/b]在料液比为1:6,1:8,1:10,1:12,1:14时,50%乙醇作为提取剂,超声波时间为20min,超声波温度为60℃,冷却后采用超声波提取法提取黄芩中黄酮类化合物含量,研究料液比对提取效果的影响。[align=center]表2 料液比与提取率的关系[/align][align=center][img=,394,250]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815178933_5515_2904018_3.png!w394x250.jpg[/img][/align][align=center] 图2 料液比对黄芩黄酮提取的影响[/align][align=center]Fig.2 Solid-liquid ratio on the extraction of flavonoids from Scutellaria impact[/align]由图2可见,随着料液比的增加,黄酮类化合物的提取率也逐渐升高,当料液比为1:10时,黄酮类化合物的提取率达到最高值,继续增加料液比,提取率会有一定的降低。在一定范围内料液比的增加有利于物料中黄酮类物质的溶出,但料液比过大的时候,会导致溶液浓度太小,从而影响到黄酮类物质对超声波能的吸收,导致黄酮得率下降。因此选定料液比在1:10的条件下进行实验。[b]3.2.2 乙醇浓度对黄酮类化合物提取效果的影响[/b]当乙醇浓度为30%,40%,50%,60%,70%时作为提取剂,超声波时间为20min,超声波温度为60℃,料液比为1:10的条件下,冷却后采用超声波提取法提取液中总黄酮含量,研究料液比对提取效果的影响。结果如图2所示[align=center]表3 乙醇浓度与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]乙醇浓度(%)[/align][/td][td][align=center]30[/align][/td][td][align=center]40[/align][/td][td][align=center]50[/align][/td][td][align=center]60[/align][/td][td][align=center]70[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]2.08[/align][/td][td][align=center]2.44[/align][/td][td][align=center]3.18[/align][/td][td][align=center]2.15[/align][/td][td][align=center]1.28[/align][/td][/tr][/table][align=center][img=,457,289]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815413326_3128_2904018_3.png!w457x289.jpg[/img][/align]图3 乙醇浓度对黄芩总黄酮提取的影响[align=center] Fig.3 The effect of ethanol concentration on the extraction of flavonoids from Scutellaria[/align]由图3可见,随着乙醇浓度的增加,黄酮类化合物的提取率逐渐升高,在乙醇浓度为50%时提取率最高,再增加乙醇浓度,提取率逐渐降低。这主要是随着乙醇浓度的增加导致溶液极性的改变,使提取液中杂质含量增加,因此选择50%的乙醇溶液作为提取剂。[b]3.2.3 超声波时间对黄酮类化合物提取效果的影响[/b]当超声波时间为5min,10min,15min,20min,25min,料液比为1:10,乙醇浓度为50%,超声波温度为60℃的条件下,冷却后采用超声波提取法提取液中总黄酮含量,研究料液比对提取效果的影响。[align=center]表4 超声波时间与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]超声波时间(min)[/align][/td][td][align=center]5[/align][/td][td][align=center]10[/align][/td][td][align=center]15[/align][/td][td][align=center]20[/align][/td][td][align=center]25[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]1.67[/align][/td][td][align=center]1.82[/align][/td][td][align=center]1.93[/align][/td][td][align=center]2.19[/align][/td][td][align=center]2.08[/align][/td][/tr][/table][align=center][img=,420,258]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815572952_9256_2904018_3.png!w420x258.jpg[/img][/align]图4 超声时间对黄芩总黄酮提取的影响[align=center]Fig.4 Ultrasonic time of total flavonoids extracted[/align]由图4可见,随着超声波时间的延长,黄酮类化合物提取率逐渐升高,在20min时提取率最高,继续延长超声波提取时间提取率几乎不变,主要是因为在初期,黄芩中黄酮类化合物没有完全浸提到溶剂中,而随着时间的增加,黄酮类化合物逐渐完全溶于提取剂中,因此提取率几乎不变。所以选择超声波时间为20min时进行实验。[b]3.2.4 超声波温度对黄酮类化合物提取效果的影响[/b]当超声波温度为20℃,30℃,40℃,50℃,60℃,料液比为1:10,乙醇浓度为50%,超声波时间为20min的条件下,冷却后采用超声波提取法提取液中总黄酮含,研究料液比对提取效果的影响。[align=center]表5 超声波温度与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]超声波温度(℃)[/align][/td][td][align=center]20[/align][/td][td][align=center]30[/align][/td][td][align=center]40[/align][/td][td][align=center]50[/align][/td][td][align=center]60[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]1.87[/align][/td][td][align=center]2.34[/align][/td][td][align=center]2.44[/align][/td][td][align=center]2.25[/align][/td][td][align=center]2.31[color=#ff0000] [/color][/align][/td][/tr][/table][align=center][img=,360,256]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091816171242_5784_2904018_3.png!w360x256.jpg[/img][/align][align=center] [/align][align=center] [/align]图5 超声温度对黄芩黄酮提取的影响[align=center]Fig.5 Skullcap ultrasonic extraction temperature on impact[/align] 由图5可见,随着超声波温度的升高,黄酮类化合物提取率逐渐升高,在40℃时提取率最高,继续升高超声波提取温度,提取率反而略有下降。高温提取的过程是先使物料升温,保持一定时间后,利用温度使细胞壁破碎,乙醇溶剂溶入细胞内部,黄酮充分溶解,再继续升高温度,反而使更多的杂质释放出来,导致黄酮提取率不再上升。所以选择超声波温度为40℃进行实验。[b]3.3 正交试验确定最佳工艺3.3.1 正交试验结果[/b]通过上述单因素试验,得出各个单因素的最佳条件,其中料液比为1:10,乙醇浓度为50%,超声时间为20min,超声温度为40℃。选择料液比、乙醇浓度、超声波时间、超声波温度4因素3水平,设计L[sub]9[/sub](3[sup]4[/sup])正交试验,因素与水平见表1,试验结果见表2为了进一步判断上述4类因素对试验结果的影响是否存在,将以正交试验数据进行方差分析,找出这些因素中起主导作用的来源。表1 正交试验因素及水平表Tab 1 Factors and levels of the orthogonal tests[table][tr][td=1,2]水平[/td][td] 因素[/td][/tr][tr][td]A B C D料液比(g/ml) 乙醇浓度(%) 超声时间(s) 超声温度(℃)[/td][/tr][tr][td=2,1]1 1:8 40 15 302 1:10 50 20 403 1:12 60 25 50[/td][/tr][/table]表2 正交试验结果及分析 Tab 2 The results and analysis of orthogonal tests [table][tr][td=1,2]试验号[/td][td] 因素[/td][td=1,2]提取量(%)[/td][/tr][tr][td]A B C D料液比(g/ml) 乙醇浓度(%) 超声时间(s) 超声温度(℃)[/td][/tr][tr][td=3,1]1 1:8 40 15 30 2.622 1:8 50 20 40 2.903 1:8 60 25 50 2.764 1:10 50 25 30 3.255 1:10 60 15 40 2.626 1:10 40 20 50 2.507 1:12 60 20 30 2.408 1:12 40 25 40 2.589 1:12 50 15 50 2.85K[sub]1[/sub]/3 2.76 2.57 2.70 2.76K[sub]2[/sub]/3 2.79 3.00 2.60 2.70K[sub]3[/sub]/3 2.61 2.59 2.86 2.70R 0.18 0.43 0.26 0.06[/td][/tr][/table]由表1、2可知,主次因素由极差大小确定:B>C>A>D,即影响黄芩总黄酮提取效率的因素贡献率为乙醇浓度>超声时间>料液比>超声温度。以总黄酮含量为评价指标,得最佳提取工艺条件为A[sub]2[/sub]B[sub]2[/sub]C[sub]3[/sub] D[sub]1[/sub],即乙醇浓度为50%、超声时间为25min、料液比为1∶10、超声温度为30℃。最佳条件为正交表中的第四组,因此测抗氧化性实验选择此组数据。[b]3.4 总黄酮的抗氧化性3.4.1 对羟自由基的清除作用[/b][align=center]表6 提取液浓度对羟基自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]VC清除率(%)[/align][/td][td][align=center]20.54[/align][/td][td][align=center]42.88[/align][/td][td][align=center]59.39[/align][/td][td][align=center]74.44[/align][/td][td][align=center]79.09[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]40.39[/align][/td][td][align=center]67.21[/align][/td][td][align=center]78.42[/align][/td][td][align=center]85.29[/align][/td][td][align=center]88.30[/align][/td][/tr][/table][align=center][img=,360,256]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091816376703_5430_2904018_3.png!w360x256.jpg[/img][/align]图6 黄芩总黄酮对羟自由基的清除Fig.6 Scutellaria Flavonoids on Scavenging of Hydroxyl Radicals黄芩总黄酮对羟自由基的清除作用,结果见图6。由图6可知,黄芩总黄酮对羟基自由基具有一定的清除作用。在相同的浓度范围下,清除能力大小为:提取物VC溶液。在0.0025—0.0125mg/ml浓度下,各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了88.30%。3.4.2 [b]对超氧自由基的清除作用[/b][align=center]表7 提取液浓度对超氧基自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]VC清除率(%)[/align][/td][td][align=center]26.77[/align][/td][td][align=center]43.09[/align][/td][td][align=center]61.73[/align][/td][td][align=center]78.69[/align][/td][td][align=center]80.20[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]49.81[/align][/td][td][align=center]75.29[/align][/td][td][align=center]84.38[/align][/td][td][align=center]89.21[/align][/td][td][align=center]90.01[/align][/td][/tr][/table]黄芩总黄酮对超氧自由基的清除作用,结果见图7。由图7可知,黄芩总黄酮对邻苯三酚自氧化产生的超氧自由基有一定的清除作用,其清除率随浓度的增大而增大。在相同的浓度范围下,清除能力大小为:提取物VC溶液。各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了90.01%。3.4.3 [b]对DPPH自由基的清除作用[/b][align=center]表8 提取液浓度对DPPH自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]Vc清除率(%)[/align][/td][td][align=center]27.36[/align][/td][td][align=center]52.41[/align][/td][td][align=center]79.98[/align][/td][td][align=center]80.49[/align][/td][td][align=center]81.31[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]55.7[/align][/td][td][align=center]82.3[/align][/td][td][align=center]89.78[/align][/td][td][align=center]93.74[/align][/td][td][align=center]93.81[/align][/td][/tr][/table][b] [/b]黄芩总黄酮对DPPH的清除作用,结果见图8。由图8可知,黄芩总黄酮对DPPH有一定的清除作用,其清除率随浓度的增大而增大。相同的浓度范围下,清除能力大小为:提取物VC溶液。各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了93.81%。[b]4.总结[/b]1.通过单因素实验,得出各个单因素的最佳条件,其中料液比为1:10,乙醇浓度为50%,超声时间为20min,超声温度为40℃,为正交试验奠定了基础。然后用设计正交试验,确定了超声辅助法提取黄芩总黄酮的最佳工艺条件:乙醇浓度为50%、超声时间为25min、料液比为1∶10、超声温度为30℃。黄芩总黄酮的提取率为3.25%。2.本实验分别就黄芩提取物对羟基自由基,超氧阴离子自由基和DPPH自由基的抗氧化性进行了测定,并与VC进行了对比实验,得到如下结论:在0.0025—0.0125mg/ml浓度下,提取物对各自由基清除能力为:DPPH O[sub]2[/sub][sup]-[/sup]• • OH ,同浓度黄芩提取物清除能力普遍高于VC溶液,黄芩黄酮提取液和VC溶液对自由基清除率随其浓度的增大而增大。在浓度为0.0125mg/ml下,对羟基自由基的清除率为88.30%,对超氧基自由基的清除率为90.01%,对DPPH自由基的清除率为93.87%,由此可知黄芩总黄酮是一种天然有效的自由基清除剂。黄芩中黄酮类化合物的利用已经有一定的规模,但黄芩中黄酮化合物的提取方法和工艺尚未成熟,所以充分利用黄芩资源是我国药用研究的科学发展方向。基于提取率、成本等因素的影响,通过对各种因素的比较分析,从而探索开发出适合工业化生产应用的方案,提高黄芩利用率,仍是研究工作的重点之一。随着人们对健康的日渐重视,因黄芩中的黄酮化合物有着极高的药用营养及良好的保健作用,具有极为广阔的市场前景[b]。[/b]本文旨在研究黄芩中黄酮类物质的提取工艺及其体外抗氧化活性,为黄芩中黄酮类化合物作为天然抗氧化剂和功能性药品得到开发利用提供理论基础和实验依据。[align=center][b] [/b][/align] 刘雄,高建德.黄芩研究进展.甘肃中医学院,2007,24(2):46-50. 罗小文.黄芩中黄酮类成分提取工艺研究进展.中国现代中药.2010,12(7):5-8. 张睿,徐雅琴,时阳.黄酮类化合物提取工艺研究.食品与机械.2003,15(1):21-22. 梁丹,张保东.黄酮类化合物提取和分离方法研究进展.周口师范学院学报,2007,24(5):87-89. 龙春,高志强,陈凤鸣,等.黄酮类化合物的结构-抗氧化活性研究进展.重庆文理学院学报.2006,5(2):13-15. 刘雄,高建德.黄岑研究进展.甘肃中医学院学报,2007,24(2):46-50. 郭雪峰, 岳永德. 黄酮类化合物的提取-分离纯化和含量测定方法的研究进展. 安徽农业科学. 2007, 35(26): 8083- 8086.. 唐德智.黄酮类化合物的提取、分离、纯化研究进展.中药与天然产物,2009,21(12):101-104.. 张岩, 曹国杰, 张燕,等. 黄酮类化合物的提取以及检测方法的研究进展.天食品研究与开发,2008,29(1):154-157. 韩雅慧,陶宁萍.甘草黄酮提取及其抗氧化能力测定方法研究进展.山西农业科学,2010, 38(11):89- 93. 崔永明,余龙江,等. 甘草总黄酮的提取技术及其抑菌活性研究.中药材,2006, 29(8): 838-840. 孙墨珑, 宋湛谦, 方桂珍. 核桃楸总黄酮的提取工艺.东北林业大学学报, 2006, 34 (1) : 38 - 39. 徐清萍,钟桂,芳孟君. 抗氧化剂抗氧化方法研究进展.食品工程,2007,6(7):23-25. 安卓,贾昌喜.苦苣菜总黄酮提取、纯化工艺优化抗氧化活性研究.食品科学. 赵新淮.大黄醇提取物对三种自由基的清除能力的研究.东北农业大学学报.1998,29(3):284-288 杨立琛,李荣.花椒叶黄酮的微波提取及其成分分析.食品科学. CHI Ru-an,ZHOU Fang,HUANG Kun,ZHANG Yue-fei.Separation of baicalin form Scutellaria Baicalensis Georgi with polyamide.Key Laboratory for Green Chemical Process of Ministry of Education.2008,15(1):606-611.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制