当前位置: 仪器信息网 > 行业主题 > >

直接紫

仪器信息网直接紫专题为您提供2024年最新直接紫价格报价、厂家品牌的相关信息, 包括直接紫参数、型号等,不管是国产,还是进口品牌的直接紫您都可以在这里找到。 除此之外,仪器信息网还免费为您整合直接紫相关的耗材配件、试剂标物,还有直接紫相关的最新资讯、资料,以及直接紫相关的解决方案。

直接紫相关的资讯

  • 紫金山天文台等提出直接寻找暗光子暗物质新方法
    中国科学院紫金山天文台研究员黄晓渊与清华大学、北京大学合作,提出利用射电望远镜直接寻找暗光子暗物质的新方法。5月2日,相关研究成果以《利用射电望远镜直接探测暗光子暗物质》(Direct detection of dark photon dark matter using radio telescopes)为题,发表在《物理评论快报》(Physical Review Letters)上。该论文被列为物理学特别推荐(Featured in Physics),并得到美国物理学会(APS)的推荐报道。   暗物质是一种在天文观测中被发现的物质,具有引力作用但不发光,占据宇宙总能量的27%。关于暗物质的粒子物理性质的研究是当前粒子物理和宇宙学最重要的研究课题之一。超轻暗光子作为暗物质的候选者越来越被物理学家重视。   20世纪60年代初,彭齐亚斯和威尔逊在进行射电天文学研究时意外发现了一个低水平的背景噪音。后来,这个噪音被证实是宇宙微波背景辐射,是早期灼热宇宙膨胀的重要证据之一。超轻暗光子通过与光子的动力学混合,呈现出类似光子的电磁相互作用。作为弥散在宇宙中的暗物质的候选者,超轻暗光子暗物质可表现出类似于宇宙微波背景辐射的行为。如果现代射电望远镜仔细聆听,可能会听到来自黑暗世界微妙的声音。   暗光子暗物质可以在地面上的射电望远镜的反射板或偶极天线上引起电子振荡,从而在望远镜的探测器上产生单频射电信号,其辐射频率与暗光子质量根据质能方程转换得到的特征频率相同。利用我国500米口径球面射电望远镜(中国天眼,FAST)的观测数据,黄晓渊与合作者在1-1.5GHz寻找暗光子暗物质产生的信号,给出了这个频率范围内对暗光子暗物质的最强实验限制。已有的低频阵列射电望远镜(LOFAR)、在建的平方千米阵列射电望远镜(SKA)以及未来FAST望远镜将能够达到更高的灵敏度,有发现此类暗物质的潜力。   研究工作得到国家自然科学基金、科技部、中国科学院、江苏省、清华大学、北京大学等的支持。 (左)暗光子暗物质在FAST镜面上转化成普通光子的示意图;(右)本文结果对暗光子暗物质的限制(图中标注“FAST”部分)。相关成果已被暗光子综述网站收录。
  • 《自然》子刊:中国团队首创新算法,让细胞与计算机直接“对话”
    细胞内有数以亿计的碱基、表达程序以及运行策略,而且各不相同。单细胞测序技术可解读单个细胞里的这些信息,但人工干预多、过度依赖人为选定的标记基因使得单细胞测序技术对细胞的注释稳定性较低。可以理解为,同一类细胞用不同的模型解析,结果不同,对一些特殊细胞“公说公有理婆说婆有理”的分析结果往往难以得到广泛认可。解决上述问题的关键是减少人工干预。9月27日,《自然》子刊《自然机器智能》刊载了我国团队首创的单细胞转录组细胞类型注释算法。该算法可以将细胞中的信息转变为计算机能够理解和学习的“语言”,让计算机和细胞直接“对话”,减少人为因素影响。细分细胞亚型,准确度提升7%据算法研发团队腾讯人工智能实验室方面介绍,新算法,即scBERT模型,对最难分类的外周血单核细胞进行了分类,结果显示人工智能能够做到精准标注、注释极其难区分的两类细胞,例如能够准确区分CD8+细胞毒性T细胞和CD8/CD45RA+T细胞。研发团队成员告诉科技日报记者,“在极具挑战的外周血细胞亚型细分任务上,新算法相较现有最优方法的70%准确度再提升了7%。”此外,团队还在已有的单细胞数据集中,将新算法的性能与其他算法进行了对比,这些数据集涵盖17个主要器官或组织、包含50多个细胞类型、超过50万个细胞。论文中显示,对于每个数据集,团队均采用了五倍交叉验证策略,以避免随机结果对结论的影响。结果显示,新算法对大多数数据集的分析结果在精确度和综合得分方面均表现优异。研发人员表示,针对不同的单细胞分析任务和数据集解析任务,都会有不同的算法成为最佳算法,也就是说有的算法擅长某几类任务,有的算法擅长另几类任务,无法通用,而基于scBERT模型的新算法则表现了很强的通用性,在全部的数据集解析任务中均被列为最佳算法。跨界使用“工具”,让机器读懂细胞语言那么,新算法为什么能让机器通过学习读懂细胞中的复制、翻译、转录的语言呢?相关研发人员解释,“我们首次将‘transformer’运用到单细胞转录组测序数据分析领域。 transformer这种架构从发明以来一直被用在自然语言处理领域,用于进行诸如机器翻译类的工作,成为比较通用的一个框架组件,但我们将它运用到了细胞注释领域。”得益于对计算机处理人类语言和单细胞信息之间的共性理解,团队将已经成熟的人工智能架构进行创新性地“跨界”使用,大大提升了细粒度单细胞分子图谱的构建效率。“跨界工具”让新模型赋予计算机读懂细胞活动的基础,但要想读得准、读得透、读得精,还需要基于大规模的语言预训练。论文显示,为了解决来自不同项目、测序平台的数据难以互通有无的难题,“scBERT” 模型在预训练数据上没有做任何的降维或筛选处理,最大程度上保留数据本身的特性和信息,并学习了包含不同实验来源、批次和组织类型的单细胞数据,以保证模型理解“通用”的知识,不仅捕获单个基因的表达信息还理解基因间的协作。据介绍,该技术可以给生物体中每个细胞都印上专属“身份证”,“单细胞身份证”的应用不仅可以助力疾病致病机制分析、药物靶点发现等基础研究,也可以在临床上高精度地“刻画”肿瘤微环境,推动精准治疗的进一步完善。
  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 沃特世在中国可直接销售泰尔仪器产品
    沃特世公司在中国地区可直接销售泰尔仪器公司的产品 —占据“绿色”分离科技领先地位, 扩大色谱应用范围   中国 上海- 2010年3月1日,沃特世(Waters)公司宣布其在中国地区直接销售泰尔仪器公司的产品。沃特世公司是在2009年2月于全球宣布其已收购总部位于匹兹堡市的全球最大超临界流体色谱(SFC)制造商泰尔仪器(Thar)公司所有剩余净发股本。时隔一年,沃特世公司便可以在中国地区直接销售其旗下的所有产品。   超临界流体色谱(Supercritical Fluid Chromatography,简称SFC),近年来由于在技术上的突破与革新,成为一种完全成熟的效率特别高、使用成本低的色谱方法,发展迅速,得到了学术界和工业界越来越广泛的重视和应用。它是一种与HPLC(高效液相色谱)类似的色谱分离技术,以超临界或亚临界状态下的CO2作为流动相的主组分,一般加入改性剂/添加剂以调节流动相的极性, 采用梯度洗脱的方法使样品得到分离。   但是SFC的分析速度比HPLC快5至10倍,溶剂成本为HPLC的1/10至1/40。SFC通过调节流动相的流速、温度和组成及出口压力,实现优化的分析和制备。与HPLC相比,它具有分析和制备速度快、使用成本低、适用范围更广、“绿色”环保等优点。   超临界流体色谱在生产和科学研究上得到了越来越多的应用。如今,超临界流体色谱(SFC) 的应用已经涵盖了药物、天然产物、烟草、精细化工、石油化工、刑侦、环境、兴奋剂检测、火炸药等各种领域。   泰尔公司的SFC和提取系统被认为是领先的“绿色”分析和净化技术,用于分离、隔离和确定化合物的量。 沃特世公司将泰尔先进的SFC仪器与本公司的色谱专业技术相结合,致力于把SFC的优势引进世界更多的实验室,用于分析及净化过程。 SFC符合沃特世超高效液相色谱的环境理念,也就是在不影响分析能力的前提下减少溶剂的使用。   随着客户对环保产品的呼声日益强烈,SFC提高了沃特世公司在“绿色”分离科技上的领先地位,并不断致力于使用创新“绿色”化学方法。   关于泰尔仪器公司 (www.tharsfc.com)   泰尔仪器公司原隶属于泰尔技术公司,是世界上最大的专业致力于超临界流体色谱(SFC)的升级和应用的制造商。总部位于匹兹堡。在设计、研发和生产用于制药和精细化学工业的SFC分析和制备仪器方面占据世界领先地位。基于多年的超临界流体技术研究经验,泰尔仪器公司研发并且生产了性能可靠,技术先进的超临界流体色谱仪。泰尔仪器公司的产品覆盖了从分析级,实验室级到工厂级不同规模,并为用户提供研发,系统升级,放大,优化以及商品生产等方面的解决方案。泰尔仪器公司追求不断地技术进步和为客户提供更优质的服务,其客户遍及世界各地,包括各大一流制药公司、高等学府和政府科研机构   关于沃特世公司(www.waters.com)   50年来,沃特世公司(NYSE:WAT)通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。   沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。   沃特世公司2008年的总收入达15.8亿美元,员工人数达5000人 公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 光电二极管中的带隙之争:直接与间接材料的能量之战
    直接带隙和间接带隙是固体材料中两种不同类型的能带结构,它们在电子的能级分布和电子激发行为上有显着差异,影响着器件的效率、响应速度和应用场景。工作原理直接带隙光电二极管直接带隙指的是材料的价带(valence band)和导带(conduction band)的能级在动量空间中的最小距离发生在相同的动量值(通常是在动量为零处)。换句话说,电子在从价带跃迁到导带时,其动量不会发生显着变化,这种跃迁过程不需要额外的动量(或波矢)。因此,直接带隙材料通常在吸收或发射光子时具有高效率,能量损失较小。例如,常见的直接带隙材料包括氮化镓(GaN)和砷化镓(GaAs)。直接带隙材料的光电二极管利用其电子从价带到导带的直接跃迁特性。当光子(光量子)击中材料并激发电子从价带跃迁到导带时,电子和空穴对会迅速分离并在电场作用下产生电流。这种跃迁过程不需要额外的动量,因此直接带隙材料在光电二极管中表现出高效的光电转换效率和快速的响应速度。例如,氮化镓(GaN)和砷化镓(GaAs)等直接带隙材料被广泛用于高速光通信、激光雷达和高频光电探测器等应用中。 间接带隙光电二极管间接带隙则是指材料的价带和导带的能级在动量空间中的最小距离发生在不同的动量值上。在这种情况下,电子在从价带跃迁到导带时,除了能量外还必须具备额外的动量(波矢)以保持能量守恒。这使得在光子吸收或发射时,电子可能会通过与晶格振动(声子)相互作用来释放或吸收额外的动量。因此,间接带隙材料通常在吸收或发射光子时会有较大的能量损失。典型的间接带隙材料包括硅(Si)和锗(Ge)。 间接带隙材料的光电二极管则需要额外的动量来实现电子的跃迁。这种额外的动量通常是通过与晶格振动(声子)相互作用来获得,因此在光电转换过程中会引入更大的能量损失。典型的间接带隙材料如硅(Si)和锗(Ge),虽然其光电转换效率较低,但由于在集成电路、传感器和太阳能电池等应用中具有成熟的制造技术和低成本的优势,仍然被广泛使用。研究方向直接带隙材料的研究方向包括:提高效率和响应速度: 进一步优化直接带隙材料的电子结构和晶体质量,以提高光电转换效率和响应速度。新型器件架构: 探索新型光电二极管的结构设计,如量子阱结构和纳米结构,以改善光电性能。应用拓展: 将直接带隙材料应用于更广泛的光电子器件中,如高功率激光二极管和光伏电池。间接带隙材料的研究方向包括:提高光电转换效率: 探索通过材料工程和表面修饰等方法提高间接带隙材料的光电转换效率。减小能量损失: 研究如何减少光子吸收到电子-空穴对生成之间的能量损失,以提高器件性能。集成电路应用: 开发新型间接带隙材料的光电子集成电路应用,包括在传感器和数据通信中的应用。直接带隙和间接带隙在光电二极管中的不同应用和研究方向反映了它们在材料科学和光电子技术中的重要性和多样性。随着技术的发展和对能源效率的不断追求,研究人员和工程师在不同的材料选择和器件设计中持续探索和优化,以满足不同应用场景下的需求和挑战。光伏检测请搜寻光焱科技
  • 韩媒曝出:日本拒绝他国对核污水直接取样
    日本近日罔顾国际社会反对,强行启动福岛核污染水排海,其国内、周边国家乃至遥远的太平洋岛国民众都对这一悍然之举愤懑不已。韩媒《韩民族日报》表示,核污水排海的安全性争议巨大,但日方却通过各种手段来阻止他国对水质进行独立验证,一直反对韩国等利益相关国家直接取样,并在排海后也坚持这一立场。“如果日本不允许其他国家独立测试,等公众对核污水排海的关注度降低的时候,我毫不怀疑日本会胡乱排放。”韩国核能领域专家李丁润受访时直言。8月24日,福岛核污染水排海后,海面呈现出两种颜色 图自视觉中国尹锡悦胜选上台后,新一任韩国政府在对日本核污水排海问题的态度上不断软化。自日本7月正式公布排海计划,韩国政府便与其和国际原子能机构(IAEA)保持一致,称“排海被认为是最现实的处置方法”,韩国“不一定赞成或支持日方计划”。韩国海洋水产部长官赵承焕一句“韩国别无选择,只能接受”,更是激怒众多韩国民众。面对民意滔天,早前曾宣称“福岛核污水达标就能喝”的韩国总理韩德洙在记者恳谈会上表示,若日方排放不符合标准,韩国外交部随时准备好提起国际诉讼。若有任何一种核素不符合韩方认为的浓度标准,都将要求日方立即停止排放。韩联社报道称,韩国外交部也表示,韩政府积极参与了IAEA对日本排放计划安全性的验证过程,并单独研讨排海的安全性。政府还提出若实际排放与计划不符,或安全性得不到保障时,将加以反对的立场。韩国总理韩德洙但《韩民族日报》报道指出,日本核污染水的安全验证仅依赖于东京电力自己的取样分析,韩国方面要想确认日方排海是否合规,完全取决于对方单方面提供的数据。“日本方面建立了一个单独的网站,每小时公布一次排放状况数据,(据称)是连续实时检测的,这些数据还有韩语版本。”据报道,在24日首次排海后,日本向韩国提供了日方测定的放射性物质浓度值和氚浓度值,韩国原子能安全技术院收到这些信息后,再发布在其官网的“福岛(核)污染水排放信息”页面上公开。《韩民族日报》还提到,韩国政府曾要求派出专家常驻福岛核电站,但遭日方拒绝,最后只能与国际原子能机构(IAEA)协商,决定每两周派一次韩国专家前往IAEA设置在福岛的办事处。但韩国专家在限定时间里,能否直接查出日方是否违反了IAEA安全规定,存在一定困难,更何况目前这些专家被准许的活动范围也没有公开。报道担忧道,鉴于此前韩国福岛考察团访日时,日方只在规定日期向考察团展示了想展示的内容,韩国政府对核污染水的独立验证受限恐怕极有可能重演。有政府相关人士解释称,韩国专家主要负责拿与每次排海情况有关的日方资料和IAEA资料进行交叉对比检查。这让韩媒更加不安:因为IAEA福岛办事处的能力也是有限的——根据IAEA3月自己发布的一份报告,驻福岛办事处能起到的主要作用是“观察”和“见证”东京电力公司和日本原子能管制委员会进行排海作业,远不是检查或核查等更具强制力的作用。福岛核污水排放部分实时数据 截图自IAEA官网25日,美国伍兹霍尔海洋研究所海洋放射化学家肯布塞勒在接受美国全国公共广播电台采访时也指出,目前公开的核污染水数据都只有日本单方面提供的内容,而且这些数据不透明也不全面,根本无法证明其核污染水排海安全性的说法。接受《韩民族日报》采访时,韩国市民团体“原子能安全和未来”代表、核能领域专家李丁润(音译)明确表示不信任日本:“如果日本不允许(其他国家)进行独立客观的验证,我毫不怀疑,当公众(对排放核污水)的关注度减弱时,他们就会在排放标准上敷衍了事,胡乱排放。”25日,韩国最大在野党共同民主党在首尔市中心发起国民抗议游行
  • 案例分享 | 直接饮用水回用示范厂中的有机物监测
    总结示范厂厂址 – 美国犹他州南乔丹市(South Jordan)技术应用 – 直接饮用水回用(DPR,Direct Potable Reuse)工艺中的有机物监测技术设备 – Sievers® 总有机碳TOC分析仪项目简介 – 直接饮用水回用(DPR)项目的成功实施能够极大增强当地的抗旱能力。为了消除公众对作为饮用水源的DPR水的误解,并使DPR水处理工艺保持最佳运行水平,水处理厂需要使用能够实时监测水质的技术设备,例如总有机碳TOC分析仪。水质监测是优化膜生物反应器(MBR,Membrane Bioreactor)和臭氧氧化工艺性能的关键步骤。影响技术选择的因素 – DPR示范厂需要一台能够灵活监测多个不同水质样品流的TOC分析仪。他们还需要用紫外过硫酸盐氧化和膜电导(MC,Membrane Conductometric)检测技术来进行可靠、准确的TOC测量。关键词 – 直接饮用水回用(DPR)、总有机碳(TOC)、有机物监测、Sievers M5310 C TOC分析仪项目背景犹他州是美国最干旱的州之一,其5400万英亩的土地中有90%极度干旱。犹他州盐湖县南乔丹市的地下水被尾矿污染,因此当地没有饮用水源。城市的饮用水大多购自尤因塔山区(Uintah Mountain)和普罗沃河地区(Provo River)的供水商。犹他州政府资助了DPR示范项目,以测试未来在当地实施DPR计划的可行性。示范厂将运行3到5年,为未来DPR计划的正式实施提供参考架构。图1. DPR示范项目的鸟瞰图DPR示范项目的水源是处理后的南谷下水道系统(South Valley Sewer)的废水。DPR示范厂采用先进工艺组合以求实现高水质目标,并成功实施稳健的多重障蔽除污法的废水处理工艺。示范厂由5个不同的工艺部分组成,即臭氧化处理(Ozonation)、生物活性过滤(BAF,Biologically Active Filter)、超滤(UF,Ultrafiltration)、颗粒活性炭处理(GAC,Granular Activated Carbon)、紫外消毒(UV Disinfection)。来自膜生物反应器的进水滤液通过臭氧化处理之后,进入深度处理工艺部分。臭氧是强氧化剂,能够分解有机污染物。在臭氧化工艺之后,是生物活性过滤工艺,为生物提供生长介质,并进一步分解污染物。超滤工艺过滤掉微生物,而粒状活性炭处理工艺吸附残留的微量污染物。DPR示范项目的最后一步是紫外消毒工艺,能够有效地消除水中的病原体。挑战DPR计划成功与否,取决于公众对DPR的接受程度和意见。由于公众普遍对DPR认知不足,因此需要花时间向公众讲解有关废水回用及净化处理的知识。DPR示范项目未来能否成功,很大程度上还取决于基于监测数据的决策,因此项目工程师面临如何实时连续监测工艺中的有机污染物含量的难题。废水处理工艺的目的是去除源水和废水中有害人体健康和破坏环境的有机污染物,因此掌握一套使用便捷和性能可靠的水质监测方法就至关重要,其中最关键的是必须能够了解和测量初始工艺和后续工艺中的水中的有机物含量。解决方案犹他州南乔丹市的DPR示范厂将总有机碳测量值作为主要的关键工艺指标(KPI,Key Process Indicator),因此需要使用能够灵活测量多个不同水质的样品流的TOC分析仪。示范厂为了达到监测要求,选用Sievers M5310 C TOC分析仪,这款分析仪采用膜电导(MC,Membrane Conductometric)检测和紫外过硫酸盐氧化技术。图2是示范厂的总体工艺流程图和各个工艺部分。在DPR工艺开始时进行TOC监测。严密监测从废水厂进入DPR示范厂的废水,并根据监测结果来调整深度处理工艺。在生物活性过滤工艺之后再次进行TOC监测,以确保污染物的去除率。在紫外消毒工艺之后,可以通过TOC分析来确定最终水质。图2. 直接饮用水回用示范项目工艺步骤[1]结论许多地区面临饮用水短缺的问题,而DPR项目等创新性解决方案是未来提高当地抗旱能力和自主供水的不二选择。有了这种严格的水质监测系统,水处理厂就能够根据监测结果来做决策,并用准确可靠的监测数据来消除公众对DPR等新饮用水源的不信任。用于监测有机物的TOC分析法是一种简便而功能强大的方法,可用于优化工艺、保证水质、满足法规要求等领域。南乔丹市选用Sievers M5310 C分析仪来成功展示DPR项目的可行性,并为未来此类项目提供参考框架,从而为当地社区提供足够安全和低廉的饮用水。参考文献[1].Whotcott, G., & Rasmussen, J. (2019, July 29). South Jordan City – DPR Demonstration Project. Arizona Reuse Symposium. Symposium conducted at the meeting of WaterReuse Arizona & AZ Water Association, Flagstaff, AZ.◆ ◆ ◆联系我们,了解更多!
  • 沃特世携手IonSense,合作开发质谱检测实时直接分析技术
    双方将共同探索IonSense DART离子源与沃特世ACQUITY QDa质谱检测器联用的无限可能 沃特世公司(纽约证券交易所代码:WAT)近日宣布与IonSense(美国马萨诸塞州索格斯市)签订合作协议,通过联合紧凑型的Waters ACQUITY QDa质谱检测器与IonSense DART离子源两款产品,在只需少量甚至无需样品制备操作的前提下,直接从液态或固态样品中快速获取质谱数据。该技术有望为需要进行反应监测的药物化学家、法医调查人员、产品质量团队以及诸多其它应用提供有力支持。 沃特世公司质谱产品管理高级总监Gary Harland表示:“自2013年QDa质谱检测器上市以来,其高质量的质谱信息已惠及众多领域的各类应用。我们与IonSense的此次合作必定能协助更多客户和为更广泛的市场轻松获取质谱数据。” 关于DART技术 DART(实时直接分析)是一项应用于开放环境的离子源技术,能快速对化合物进行非表面接触式采样,而且对样品制备的要求极低。这种离子源在不同温度下对样品进行热解吸,然后执行近瞬时的快速样品分析,可大大提升分析的速度并同时保持样品的完整性。 DART方法适用范围广泛,可快速检出数百种化学物质,其中包括药物及其代谢物、合成有机分子、有机金属化合物、爆炸物和毒素等。此外,该方法能在各种表面上检测上述化学物质(包括混凝土、沥青、人体皮肤、货币、纸张、蔬菜、水果乃至衣物),是国土安全、产品造假以及污染物检测等新兴领域应用的理想之选。 关于沃特世ACQUITY QDa质谱检测器沃特世ACQUITY QDa质谱检测器于2013年上市,满足了液相色谱分析实验室对紧凑式、低噪音且实惠型质谱检测器的需求。QDa能够检出无UV响应和UV响应水平无法通过光学检测技术测定的化合物。QDa检测器可显著降低样品组分漏检的风险,并能减少因疑似存在共洗脱物而必须进行的重新分析。 QDa质谱检测器目前在常规分析中被应用于获取小分子药物信息、食品及食品原料品质信息,以及蛋白质、肽、游离寡糖、寡聚核苷酸等生物药物的相关信息。 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。 关于IonSense公司IonSense成立于2005年,致力于实时直接分析(DART)离子源及相关技术的开发、推广、销售,并在全球范围内提供技术支持。公司拥有遍及全球的销售和技术支持网络。
  • 实时直接分析质谱技术在临床检验领域的应用前景如何?
    仪器信息网讯 原位电离质谱技术是指在大气压条件下,无需或只需极少样品预处理即可对复杂基质样品中的待测物质直接电离和分析,具有微量、快速、灵敏、原位、实时、在线的特点。待测样品中的待测物主要是在大气压下通过与初级电荷/能量载体(如带电液滴、激发态等离子体、光子等)发生能量和电荷交换被离子化,然后引入质谱仪检测。  自2004年美国普渡大学的Cooks教授和2005年日本电子美国公司的Chip Cody博士分别提出解吸电喷雾(DESI)和实时直接分析(DART)两种原位电离质谱技术以来,已经有几十种新方法、新技术被提出,在国际上出现了一股基于原位离子化技术的快速质谱分析研究热潮。  目前,质谱技术不仅在化学分析领域发挥重要作用,在生命科学领域的重要性更是日益凸显,甚至被称为科学家们探索生命奥秘的”最佳拍档”。同时,原位电离质谱技术至今已出现近17年,业界专家和国内外研究新秀也在不断拓展该类技术的应用领域,从分析测试行业到生命科学甚至临床检验等领域。而当下更多的人更想要了解,原位电离质谱技术未来在临床检验领域的前景究竟如何?  在“2021年原位质谱主题网络研讨会”期间,DART-MS(实时直接分析质谱)技术的发明人Chip Cody博士给出了他的答案。  众所周知,关于DART离子源的主要优势主要有:1)直接分析,基本不需要样品制备,样品分析时间很短,满足快速分析的需求 2)操作简便,操作人员仅需要调节DART离子源的温度和正负极 3)绿色、低碳,分析过程几乎不需要化学溶剂,仅以氮气或氦气等做载气,耗能少 4)可在常压条件下分析样品 5)最后也是很重要的优势即,DART可以和众多主流的质谱仪器联用。  (图片整理自报告PPT)  报告伊始Cody博士便表示,当前DART-MS技术没有任何临床认证的产品。但早在该技术出现后的两年,即2007年,DART-MS(实时直接分析质谱)就已用于细菌全细胞鉴定(相关论文发表于Chemical Communications)。  (图片整理自报告PPT)  紧接着,Cody博士在报告中还介绍了DART技术在病原微生物学和临床化学领域的最新应用进展,其中包括DART-病原学对细菌完整细胞的脂肪酸(无需衍生化)信号的 PCA 分析以区分10种病原菌和17种酵母菌、DART-毒化对体液样品中的毒品和代谢物进行快检、DART-TDM 用于唾液、血尿、人发等的临床治疗药物监测、DART-DBS 干血斑法用于新生儿筛查、DART-HRMS 乳腺癌、卵巢癌、胰腺癌的早筛和诊疗、pDART用于微生物组研究等各种案例。  (图片整理自报告PPT)  不仅如此,Cody 博士还进一步介绍了专为处理高通量原位质谱数据而开发的 AnalyzerPro 新软件、高通量全自动 DART 设备的开发和场景应用、及密闭式 DART 的商业化进程。  (图片整理自报告PPT)  据了解,DART最早期的应用开始于化学战剂、爆炸物检测和药物滥用控制,之后其在全球各地的应用百花齐放,涵盖传统的物证分析、药物鉴定、化学化工分析、新颖的药物研发和食品安全检测等等。  可以看出,从原位电离技术发明至今,该类技术已发展较为成熟,转化的产品已有10余种,其也迅速应用在诸如食品、药品、材料、物证、环境、卫生等领域的安全检测与品质控制。而当前原位电离质谱技术在组学分析、新药研发、中药及天然产物分析和生物分子成像等领域的应用也有着十分广泛的应用,相信未来该类技术在临床检验领域大有可为。关于“2021年原位质谱”网络研讨会的部分回放视频链接如下:点击观看
  • 沃特世携手IonSense,合作开发质谱检测实时直接分析技术
    p   2017年6月12日–沃特世公司(纽约证券交易所代码:WAT)近日宣布与IonSense(美国马萨诸塞州索格斯市)签订合作协议,通过联合紧凑型的Waters ACQUITY QDa质谱检测器与IonSense DART离子源两款产品,在只需少量甚至无需样品制备操作的前提下,直接从液态或固态样品中快速获取质谱数据。该技术有望为需要进行反应监测的药物化学家、法医调查人员、产品质量团队以及诸多其它应用提供有力支持。 /p p   沃特世公司质谱产品管理高级总监Gary Harland表示:“自2013年QDa质谱检测器上市以来,其高质量的质谱信息已惠及众多领域的各类应用。我们与IonSense的此次合作必定能协助更多客户和为更广泛的市场轻松获取质谱数据。” /p p   关于DART技术 /p p   DART(实时直接分析)是一项应用于开放环境的离子源技术,能快速对化合物进行非表面接触式采样,而且对样品制备的要求极低。这种离子源在不同温度下对样品进行热解吸,然后执行近瞬时的快速样品分析,可大大提升分析的速度并同时保持样品的完整性。 /p p   DART方法适用范围广泛,可快速检出数百种化学物质,其中包括药物及其代谢物、合成有机分子、有机金属化合物、爆炸物和毒素等。此外,该方法能在各种表面上检测上述化学物质(包括混凝土、沥青、人体皮肤、货币、纸张、蔬菜、水果乃至衣物),是国土安全、产品造假以及污染物检测等新兴领域应用的理想之选。 /p p   有关DART技术的详细信息,请参见http://www.ionsense.com/Products/DART/DART_Technology/en。 /p p   关于沃特世ACQUITY QDa质谱检测器 /p p   沃特世ACQUITY QDa质谱检测器于2013年上市,满足了液相色谱分析实验室对紧凑式、低噪音且实惠型质谱检测器的需求。QDa能够检出无UV响应和UV响应水平无法通过光学检测技术测定的化合物。QDa检测器可显著降低样品组分漏检的风险,并能减少因疑似存在共洗脱物而必须进行的重新分析。 /p p   QDa质谱检测器目前在常规分析中被应用于获取小分子药物信息、食品及食品原料品质信息,以及蛋白质、肽、游离寡糖、寡聚核苷酸等生物药物的相关信息。 /p p   有关沃特世QDa质谱检测器的详细信息,请参阅www.waters.com/qda。 /p p    strong 关于沃特世公司 /strong /p p   沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。 /p p    strong 关于IonSense公司 /strong /p p   IonSense成立于2005年,致力于实时直接分析(DART)离子源及相关技术的开发、推广、销售,并在全球范围内提供技术支持。公司拥有遍及全球的销售和技术支持网络。 /p
  • 首次!宏观世界的量子纠缠,被直接观测到了
    图片来源:阿尔托大学在量子力学面前,我们在生活中积累的常识往往不再适用。好在由于普朗克常数很小,我们平时并不会被种种奇怪的量子效应困扰,不过这并不意味着量子力学仅能描述微观层面几个原子、分子的行为。宏观物体的量子效应是存在的,只不过它们太微弱,很容易就淹没在种种噪声之中。今天,两组科学家分别在《科学》上发文指出,他们首次直接观测到了宏观物体的量子纠缠,甚至还能以此“规避”不确定性原理。量子力学掌控着从基本粒子到宏观物体的运动规律,但对于后者而言,这种掌控往往显得不太明显。在众多因素的干扰下,量子效应对经典物理造成的偏差变得几乎不可见。因此,确认、测量宏观物体的量子效应,就成为众多物理学家的目标。就在今天,发表于最新一期《科学》杂志的两项研究实现了突破:其中一项研究找到了宏观物体量子纠缠的直接证据,另一项则在一个类似的系统中“规避”了量子力学的基本定律之一——不确定性原理。当然,这里的宏观仅仅是相对于分子、原子的宏观,两项研究中实验对象的大小都在红细胞级别。但是,让这样尺度的“宏观”物体产生量子效应也绝非易事,它们与环境之间多种多样的相互作用随时都会破坏脆弱的量子态。为此,两个实验环境温度都被控制绝对零度附近。宏观量子纠缠在其中一项研究中,美国国家标准技术研究所(NIST)的什洛米科特勒(Shlomi Kotler)团队用微波脉冲让两张小的铝片膜进入量子纠缠状态。每张铝片膜长20微米,宽14微米,厚度为100纳米。其质量为70皮克,相当于大约1万亿个原子的质量。以量子的标准而言,它们已经达到了相当大的尺度。该实验中使用铝鼓膜的扫描电镜照片(伪色图) 图片来源:Science vol. 372 no. 6542 622-625两张铝片膜与一个电路相连,并被放置在低温腔中。当研究人员施加脉冲微波时,电路会与铝片膜相互作用,控制铝片膜的振动模式。在此条件下,铝片膜可以维持大约1毫秒的量子状态。这在量子力学的尺度下,已经是相当长的时间了。微波被处于量子状态的铝片膜反射后,会被信号器接收。通过对比反射前后的微波性质,研究人员可以分析出铝片膜的位置和动量信息。该实验系统示意图 图片来源:Science vol. 372 no. 6542 622-625研究团队仔细分析了反射的微波。在宏观世界中,反射回来的微波应该是随机的。但是当他们将结果绘制成图时,却发现微波具有特定的模式——两张铝片膜中,一个相对平静,而另一个则在轻微地抖动,表明两张铝片膜发生了量子纠缠。“单独分析两张铝片膜振动的位置和动量信息,你只能看出它们在振动而已,”这篇论文的作者之一,NIST的物理学家约翰托伊费尔(John Teufel)表示,“但是当你对比两者的信息时,你就会发现两张铝片膜看似无规律的振动之间,其实存在着高度的关联性。这一点只有量子纠缠才做得到。”研究团队的斯科特格兰西(Scott Glancy)解释称,他们发现两张铝片膜的位置和动量之间都存在关联,如果这种关联比经典物理学所能产生的关联要强,那么就表明铝片膜之间肯定存在量子纠缠。尽管返回的脉冲微波信号能够同时测量铝片膜的位置和动量信息,但是不确定性原理表明,其测量仍然存在一定的误差。为了尽可能地减少误差,研究团队进行了1万次重复实验,并利用统计学方法对铝片膜的位置等实验结果的一致性进行了计算。最终他们可以确定,这两个宏观物体的振动模式被量子纠缠关联了起来。“规避”不确定性原理在同期发布的另一篇论文中,来自芬兰阿尔托大学等研究机构的科学家在8毫开尔文的温度下,让两个铝鼓膜进入长时间、相对稳定的纠缠态。在这种纠缠态下,研究人员可以对同一个纠缠态进行多次测量,从而“规避”量子力学中的不确定性原理。在实验中,鼓膜振动的相位总是相反的。如果对鼓膜1施加一个力,则鼓膜2的运动方向一定和力的方向相反。论文作者米卡西兰普(Mika Sillanp)表示:“一个鼓膜对力的响应总是和另一个鼓膜相反的,有点类似于负质量。”该实验示意图 图片来源:Science vol. 372 no. 6542 625-629“在这种情况下,如果将两个鼓视为一个量子力学实体,那么鼓运动状态的不确定性就被消除了。”该研究的主要作者劳雷梅西尔德斯特普(Laure Mercier de Lépinay)解释说。不确定性原理是20世纪20年代末由海森堡提出的。根据这个量子力学的基本概念,由于波函数的数学性质,我们不可能同时准确得知一个物体的位置和动量。不过,这并不意味着我们不能准确得知物体的位置和动量,只是在同时测量两者时,不确定性原理的限制才会出现。而反作用规避(Back-action evasion)就是在不违反不确定性原理的情况下,绕过这一限制的一种方式。在这次的实验中,研究团队就利用了反作用规避。本质上,他们没有测量每个鼓的位置和动量,而是通过鼓膜运动对电路电压造成的影响,测量了铝鼓膜的动量之和。瑞士苏黎世联邦理工学院研究员楚一文(Yiwen Chu,音译,未参与这两项研究)表示:“实验中没有任何地方违反了不确定性原理。你只是选择了一组特定的,不会被(不确定性原理)禁止的参数。”宏伟的蓝图这两项实验都以确凿的证据证明了宏观物体也可以实现量子纠缠。在量子纠缠的状态下,物体的行为与经典物理的描述存在显著的区别。不论纠缠物体之间的空间距离有多远,它们也不能被独立描述。而这种和经典物理显著的区别,正是新型量子技术背后的关键理论支撑之一。楚一文表示:“我们并没有发现任何量子力学之外的新理论,”但是要实现这两项实验中的测量,仍然需要“令人印象深刻的技术进步”。这种技术进步带来的高度纠缠的量子系统,或许能够在未来的量子网络中充当长期网络节点。此外,研究中的高效测量方法也可能对量子通信或者量子网络节点间的纠缠交换等应用有所帮助,因为这些应用都需要对量子纠缠进行测量。而在量子力学之外,这种技术进步在需要亚原子精度测量时为科学家提供了新的选择。或许,未来的暗物质和引力波探测也将在这种技术的帮助下实现新的飞跃。
  • 科技计划管理方案将出台 政府不再直接管理科技项目
    ●改革针对所有实行公开竞争方式的中央财政科技计划,占到中央财政民口科研经费一半以上   ●新设立的国家重点研发计划,瞄准国民经济和社会发展主要领域的重大、核心、关键技术问题   ●负责科研项目具体管理的专业机构,将采取事业单位法人治理结构,并接受监督、审核和评估   由科技部、财政部共同起草的《关于深化中央财政科技计划(专项、基金等)管理改革的方案》(以下简称《方案》)已经党中央、国务院批准,即将发布实施。《方案》提出,政府不再直接管理具体项目,而是通过公开统一的国家科技管理平台宏观统筹,依托专业机构来具体管理。   科技部、财政部相关负责人就《方案》的内容、实施意义和进度安排等,进行了解读。   科技计划整合成5类,解决科技资源&ldquo 碎片化&rdquo ,更加聚焦国家目标   科技计划是国家引领和指导科技创新的重要载体,体现了国家意志、政策取向、战略布局和发展重点,对全社会的科研活动具有风向标和指挥棒的作用。   科技部科研条件与财务司司长张晓原说,目前的科技计划是改革开放以来,服务于不同发展阶段的需求先后设立的,解了燃眉之急,取得了一大批成果。但不同计划之间缺乏统筹设计、通盘考虑,科研经费多头管理,&ldquo 九龙治水&rdquo 的局面,引发项目重复申报等问题。   他认为,科技计划体系的诸多问题,突出表现在科技资源&ldquo 碎片化&rdquo 和取向聚焦国家战略目标不够两方面。这也反映我国当前科技宏观管理体制和政府部门的职能定位,与新科技革命和产业变革的要求不适应。   据介绍,《方案》将优化整合中央财政科技计划(专项、基金等)布局,建立科技资源配置的新机制,形成高效运转的治理体系。新的科技计划(专项、基金等)体系,主要包括五个方面,即:国家自然科学基金、国家科技重大专项、国家重点研发计划、技术创新引导专项(基金)和基地与人才专项。   不同科技计划将有明确的分工,比如国家自然科学基金重点支持基础研究和科学前沿探索,增强我国源头创新能力 国家科技重大专项则聚焦国家重大战略产品和重大产业化目标,在设定时限内进行集成式协同攻关。   张晓原介绍,国家重点研发计划的设立,是《方案》的亮点和重大改革举措。   当前,从&ldquo 科学&rdquo 到&ldquo 技术&rdquo 到&ldquo 市场&rdquo 的演进周期大为缩短,基础研究、应用研究、技术开发等边界日趋模糊,成果转化更加迅捷。国家重点研发计划正是为适应这一新形势而部署的。根据《方案》,新设立的国家重点研发计划将整合国务院各相关部门现有的竞争性科技计划(专项、基金等),瞄准国民经济和社会发展各主要领域的重大、核心、关键技术问题,以重点专项的方式,从基础前沿、重大共性关键技术到应用示范进行全链条设计,一体化组织实施,使其中的基础前沿研发活动具有更明确的需求导向和产业化方向。   财政部教科文司司长赵路认为,新的科技计划体系,明确了各类计划的边界,解决了重复交叉、定位不清的问题,打破多头管理、科研人员四处跑项目的局面。同时,新的科技计划管理方案,有利于提高财政资金使用效益。通过整合,激活了存量,使有限的中央财政民口科研经费更加聚焦国家战略目标,集中力量办大事,着力突破制约发展&ldquo 卡脖子&rdquo 的重大科学技术问题。   张晓原说,体制机制障碍成为制约我国科技创新的重要因素,中央把优化整合科技计划(专项、基金等)列为当前着力推进的改革任务,就是要以科技计划改革为突破口,带动科技其他方面的改革向纵深推进。   政府抓战略、规划、政策和监督,专业机构管理科研项目   按照《方案》的总体目标,本次改革要强化顶层设计,打破条块分割,建立具有中国特色的以目标和绩效为导向的科技计划(专项、基金等)管理体制。   为此,《方案》提出推进优化整合的五个原则,即转变政府科技管理职能、聚焦国家重大战略任务、促进科技与经济深度融合、明晰政府与市场的关系和坚持公开透明和社会监督。   在转变政府科技管理职能中,《方案》明确要求,政府各部门不再直接管理具体项目,不再管理资金和项目的具体分配,重点抓战略、抓规划、抓政策、抓监督。科研项目的具体管理工作由专业机构负责。   张晓原说,政府不直接管理项目,是我国科技管理方式上的重大转变,也是对政府职能转变的一项重大挑战。   赵路说,政府不直接参与项目管理,将重点放在规划、布局、管理监督上,不仅有利于杜绝&ldquo 跑部拿钱&rdquo 的现象,还能倒逼政府转变职能,为科技创新提供好的服务。他说,依托专业机构管理科技项目,是国际上主要国家的通行做法。专业机构的设置又有多种模式,有的独立于政府部门之外,有的隶属于政府部门,还有委托社会化的非营利机构管理。根据我国实际情况,当前,主要依托现有具备科研管理专长的单位进行改造,形成若干符合要求的专业机构。随着科技体制改革和事业单位分类改革的深化,将促进专业机构逐步市场化和社会化。   张晓原表示,按照《方案》,将制定统一的专业机构管理制度和标准,专业机构要接受监督、审核、评估。专业机构将采取事业单位法人治理结构,而不简单的是某一个部门的下属单位。   《方案》还要求建立公开统一的国家科技管理平台。除明确规定依托专业机构管理项目外,还提出建立联席会议制度。联席会议将负责审议科技发展战略规划、科技计划(专项、基金等)的布局与设置、战略咨询与综合评审委员会的设立、专业机构的遴选择优等事项。此外,还将设立战略咨询和综合评审委员会,统一对科技发展战略规划和科技计划(专项、基金等)提供决策咨询。   张晓原表示,联席会议由科技部牵头,财政部、发改委等相关部门参加,部门和人选都固定下来,将会经常沟通,审议科技规划、调整科技计划(专项、基金等)布局,以保证决策的科学性。   今年启动国家科技管理平台建设,2017年完成体系整合优化   值得一提的是,本次改革针对的是所有实行公开竞争方式的中央财政科技计划(专项、基金等),它们占到中央财政民口科研经费一半以上,但不包括稳定支持的项目。   张晓原说,由于本次改革涉及现有科技计划体系的调整和相关政府部门科技管理职能的转变,较为艰巨和复杂。将按照整体设计、试点先行、逐步推进的原则开展,通过撤、并、转等方式,对现有科技计划(专项、基金等)按五类进行优化整合,大幅减少科技计划(专项、基金等)数量,整合形成的科技计划(专项、基金等)按照新的组织实施方式运行。   据介绍,2014年启动公开统一的国家科技管理平台建设,对部分具备条件的科技计划(专项、基金等)进行优化整合,在重点领域先行组织部分重点专项进行试点。2015年至2016年,基本建成公开统一的国家科技管理平台,基本完成各类科技计划(专项、基金等)的优化整合,实现科技计划(专项、基金等)安排和预算配置的统筹协调。经过3年的改革过渡期,到2017年,全面按照优化整合的新科技计划(专项、基金等)体系运行。届时,现有各类科技计划经费渠道将不再保留。   张晓原说,在3年过渡期内,对已经立项的研究项目将按照原有办法管理,直至完成结项。在此改革期间设立的新项目,将遵照《方案》的新管理方式施行。   赵路表示,科技体制改革是一个全方位的过程,今年3月份,《国务院关于改进加强中央财政科研项目和资金管理的若干意见》,是对科研项目和资金管理做出的改革部署,本次主要是针对科技计划顶层设计和政府职能调整的改革。未来还将出台推进国家重大科研设备开放共享等多方面的改革,从改革中要红利,推动科技创新,服务创新驱动发展战略。
  • 赫施曼助力直接法氧化锌中氧化锌量的测定
    火法制氧化锌分为直接法与间接法两种工艺,直接法是用含锌矿料生产,应用于陶瓷、玻璃、塑料、水泥制品等行业,原材料的好坏会直接影响到成品氧化锌的质量。根据GB/T 4372.1-2014,直接法氧化锌中氧化锌量的测定方法是EDTA滴定法,其原理是试料用稀硫酸溶解,在pH值5~6的六次甲基四胺-硫酸缓冲溶液中,加入碘化钾掩蔽镉,加入亚硫酸钠掩蔽铅,以二甲酚橙为指示剂,用Na2EDTA标准溶液滴定至亮黄色为终点。实验内容如下:1.将试料(准确称取0.50000g试样,精确至0.00002g)置于300mL烧杯中,以水润湿,用赫施曼瓶口分液器加10mL硫酸(1+3),盖皿,微热至完全溶解。取下稍冷,以水洗表皿及杯壁。2.加入1滴甲基红溶液(1.0g/L),以氨水(1+1)中和至黄色,再用硫酸(1+3)经过赫施曼光能滴定器中和至红色,以水洗杯壁。3.用瓶口分液器加入20mL六次甲基四胺-硫酸缓冲溶液(pH值5~6),加入12.5mL亚硫酸钠溶液(pH值6左右,当天有效),加入20mL碘化钾溶液(200.0g/L),再加0.1g抗环血酸,加2~3滴二甲酚橙指示剂(2g/L),加一枚搅拌子,在电磁搅拌器上不断搅拌,用Na2EDTA标准溶液经过赫施曼opus电子滴定器进行滴定,当标准溶液滴至微量刻度部分时缓慢加入,至亮黄色为终点。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的酸(包括盐酸、硝酸、氢氟酸等强酸)、碱、有机试剂等的移取。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;opus电子滴定器可通过触屏来进行灌液、预滴定(先加入一定体积后再滴定)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 圣元优博奶粉现黑色不明物质 直接退款拒绝检测
    中国经济网北京10月15日讯 圣元优博奶粉中出现黑色粒状物,厂家称是奶粉遇到高温受热不均导致的焦糊颗粒,不影响身体健康,并称国家标准允许检出少量物质,但因奶粉有合格的检测报告而拒绝为消费者检测。  案件直接退款了结,并没有权威的官方声明解释该黑色粒状物到底是否为焦糊物质?而此前圣元曾卷入“性早熟”事件。中国经济网记者联系圣元客服,表示稍后回复,截止发稿前均没有收到对方回复。  圣元优博奶粉现黑色粒状物  据新快报消息,9月18日,家住广州市白云区的饶小姐在小乖乖婴儿用品商店购买了一罐价值288元的圣元优博奶粉,此前她也曾在该店买过奶粉,从未出现问题。饶小姐买回奶粉后,将一勺奶粉倒入杯中,加入热水约5分钟之后,杯子底部出现了不明黑色粒状物。饶小姐查看奶粉罐时,罐底标注的保质期为2011年12月9日至2013年的12月8日,并未过期。  随后饶小姐找到小乖乖婴儿用品商店,店主表示需要饶小姐自行检测才可进行处理,饶小姐认为不合理。圣元营养食品有限公司工作人员曾向媒体表示,会尽快与饶小姐取得联系,对出现问题的奶粉进行检测。  圣元称标准允许少量检出 不影响身体健康  新快报今日消息称,圣元营养食品有限公司已经上门处理该事件。但并未如之前报道中所述对奶粉进行检测,而是直接判断称,奶粉中的黑色粒状物是生产过程中烤焦的奶粉颗粒,并称小孩吃没有问题。  圣元营养食品有限公司负责人张女士表示,公司在9月28日接到饶小姐的电话,当时约好9月29日上门处理。张女士称,这种情况并非是奶粉质量出现问题,而是奶粉在生产过程中遇到高温,偶尔受热不均匀才会出现焦糊的状态,黑色粒状物是奶粉的焦糊粉。  “我们国家对此有限量标准,是允许极少量出现这种物质的,这也不会影响到孩子的身体健康。”张女士还表示,此次公司并没有如此前所说将奶粉拿去检测,因为圣元是专业做婴幼儿配方粉的,每批次奶粉都会进行检测,有合格的检测报告,所以出现这种正常现象公司也不会拿去检测。  “但我们还是支持和鼓励媒体及消费者在发现我们奶粉有问题时,拿我们的产品去送检,随机购买后再去送检都行”,张女士这样说道。而饶小姐正是认为需要消费者自行检测的做法不合理才将此事投诉至媒体。  事件最终直接退款了结  圣元方面曾提出赔偿一些奶粉给饶小姐,被拒之后事件最终以直接退款形式了结此事。  此前,张女士在采访中曾表示,该事件在9月底已经处理完毕,消费者对处理方式挺满意。而饶小姐家人却向记者表示,厂家的最终处理方式是将购买奶粉的款额退还后,再将“问题奶粉”直接拿回去了,既没说要检测,也没对此事再有任何回复。  “当时圣元那边说是奶粉在烤的过程中烤糊了,说小孩吃了没问题,只是生产过程中有问题,我们也不太懂,他们说是怎么样就怎么样吧。”饶小姐的丈夫表示。  对此,有消费者质疑,事件退款了结,黑色粒状物到底是不是焦糊物质,会不会危害健康?  圣元奶粉曾陷早熟门  2010年8月5日,《健康时报》报道了“武汉三名女婴性早熟”的病例,后调查发现,三名女婴的家长均称孩子曾食用过“圣元优博”奶粉,他们怀疑孩子的性早熟和圣元奶粉有关。之后,全国多个地方均发现此类病例,嫌疑直至圣元奶粉。  最早公布的病例在湖北武汉,后在安徽、北京、广东、江苏、河南、海南、云南、湖南、四川、浙江、山东等均发现类似病例。  8月7日,圣元奶粉发表声明:婴儿奶粉未添加任何激素。  8月9日,圣元奶粉称产品无问题政府职能部门已采样。圣元否认奶粉致女婴性早熟将起诉两家媒体。  8月10日,农业部向湖北提供奶粉激素检测法,是否有问题待检。卫生部责成湖北调查奶粉疑致性早熟事件。  8月11日,各地媒体又报道了数地出现多起“性早熟”婴儿。湖北组织专家对圣元“早熟门”三名女婴会诊,称是单纯乳房发育,不一定是性早熟。  8月12日,圣元2009年报显示,优博优聪奶粉原料来自新西兰恒天然,恒天然曾是三鹿第二大股东。应湖北省要求,卫生部正在直接调查婴儿性早熟个案。  8月15日,卫生部通报圣元检测结果“性早熟”与其无关联。
  • 小菲课堂|热像仪直接穿透厚厚的墙壁?有视频为证.....
    相信看过《速度与激情:特别行动》的菲粉们都知道小菲客串电影的这一幕强森通过FLIR热像仪直接看透墙后的人这样的效果是真实存在的吗?热像仪都可以穿透哪些东西呢?Q1热像仪能直接穿透墙壁吗?小菲明确告诉大家,从目前的技术来说,热像仪是不能穿透绝大多数钢筋混凝土材质墙壁的!“艺术源于生活,而高于生活”,这个电影是夸大了热像仪的穿透效果。在我们的生活中,墙壁一般是非常厚的,红外波段的透射率足以阻挡另一面的红外线辐射。如果你把一个红外热像仪指向一堵墙,它会探测到墙的热量,它后面的热量就“鞭长莫及”了。但是,如果墙里面的东西能够引起足够的温差导致的热传导,红外热像仪也是能够在墙的表面上感应到它的。比如:建筑维护专业人员经常使用热像仪来检测漏水(蒸发作用)或隔热层(热传导率变化)缺失等问题,而无需拆墙来评估问题。墙内的螺柱(垂直线)比隔热层冷,导致墙表面的温差案例指导:实地案例|FLIR红外热像仪——成功检测房屋外墙空鼓渗水Q2热像仪能穿透烟雾吗?红外热像仪是可以穿透一定程度的烟雾(固体小颗粒)探测到热量的,虽然烟雾中的烟尘颗粒有效地阻挡了可见光,但却挡不住红外线辐射,目前红外热像仪就广泛应用到消防行业。比如,FLIR K系列红外热像仪就专为消防员在工作中遇到的极端高温和浓烟环境设计,在明亮的LCD上可以显示清晰的热图像,让消防员能够轻松地穿过烟雾火灾并且做出正确决策。门口的人被烟雾遮住,肉眼看不见,却很容易被热像仪探测到当然由水汽凝结的雾,热像仪也是能穿透的。由于水滴的辐射散射,雾和雨可能会限制热像仪的拍摄范围,但在许多情况下,热像仪还是比可见光相机或人眼更能穿透雨雾,这也是汽车制造商将热像仪纳入自动驾驶汽车传感器套件的原因之一。(但值得注意的是:相比固体小颗粒,水汽造成的雾较难被红外穿透)在很多情况下,热像仪比可见光相机更清晰地探测到雾中的物体案例指导:浓烟密布让消防员“身陷险境”,FLIR红外热像仪带他们找到方向Q3热像仪能穿透玻璃吗?使用热像仪拍摄玻璃,我们会发现一个有趣的现象:玻璃就像一面反射红外辐射的镜子,如果你把热像仪对准窗户,你不会看到玻璃另一边的任何东西,但你会得到一个很好的热(镜面)反射。这是因为玻璃是一种在红外波段下高反射率材料,这意味着它能显示物体的反射温度,(而我们能看到玻璃中红外的镜像,是因为光滑玻璃的表面在发生红外波段的镜面反射)而不是让红外辐射穿透。同样的原理也适用于其他反光材料,比如抛光金属。通过数码相机能透过玻璃看到外面的树木,而热像仪看到的是摄影师反射的热量原理详情:小菲课堂|提升目标发射率,省钱又有效的方法在这里......Q4热像仪能直接穿透混凝土吗?这个问题的答案基本上与能否穿透墙壁相似,但热像仪可能探测到混凝土内部的某些东西,比如管道或辐射加热导致的与混凝土表面的温差,这样就可以被红外热像仪捕捉到!地暖管道在混凝土地板下清晰可见案例指导:实地案例|一名经验丰富的暖通工程师地暖管道泄漏的检测心得!Q5热像仪能直接穿透金属吗?在热成像领域,金属可能是一种比较棘手的材料。任何光滑或抛光的金属物体都可能会反射红外辐射,这就可能给使用热像仪检测管道或机械过热部件的人带来困难。但是氧化过的金属或被涂上冰铜材料的金属更容易精确测量。红外热像仪绝大多数情况下不可以“穿透”金属物体,但也有例外,比如用于制造热像仪镜头的金属锗材料,在红外波段的透射率就非常的高。而金属内部材料造成的温差,会反应在金属表层,这样用红外热像仪查看,同样可以达到检测效果。用热像仪很容易看到金属罐子有多满,因为里面的液体在金属表面造成温差案例指导:一款牛逼的红外成像测温仪应该具备哪些特性?Q6热像仪能直接穿透塑料吗?我们可以用红外热像仪做一个有趣的小实验:在一个温暖的物体或人面前举起一张薄薄的不透明的塑料片(如垃圾袋)。红外辐射将穿透塑料,使热像仪能够探测到塑料背后的带有温度的东西,而可见光却被阻挡。但是要说明一下,这个技巧只适用于非常薄的塑料,厚塑料就会阻挡住红外辐射(材料厚度与材料透射率成正比)。可见光大部分被塑料袋挡住,但红外辐射却能穿透案例指导:机器视觉:FLIR A615优化注塑工艺Q7热像仪能穿透黑暗吗?当然是可!以!的!热成像根本不受黑暗的影响,不需要可见光来显示热。当然热像仪和夜视仪也是有区别的,想要详细了解的小伙伴戳这里:小菲课堂 | 热像仪与夜视仪,我们该如何选择?黑暗中,热像仪能清晰扑捉到事物案例指导:动物园奇妙夜——菲力尔让您深夜与雄狮“共舞”!Q8热像仪能直接穿透树木吗?热像仪无法穿透树干探测物体,但热像仪可以帮助在森林地区发现人或动物。搜索和救援团队在大范围的荒野中进行搜索时,经常使用热像仪来发现热信号。热像仪不能穿透树木,但它可以帮助发现森林里的人或动物,因为他们的在热图像中比可见图像中更突出案例指导:FLIR热像仪提供实时监控,保障野生动植物的生命安全Q9热像仪的镜头是如何制成的?红外热像仪镜头是由锗类等物质或其他在红外光谱中吸收率和反射率低(透射率极高)的材料制成的。红外热像仪的工作方式与普通可见光相机不同。普通相机的功能或多或少与人眼相同,接收可见光谱中的辐射及反射(且我们看到的景物,绝大多数来自可见光的反射)并将其转换为图像。但是,红外热像仪是利用热量(即红外线或热辐射)而不是可见光拍摄图像,因此,红外热像仪的镜头需要用不同于普通相机的材料制成。原理详情::小菲课堂|红外热像仪镜头是由什么制成的?Q10如何挑选适合自己的红外热像仪?挑选适合自己的红外热像仪,一定要结合考虑测温范围(量程)、视场角 (FOV)、红外分辨率、热灵敏度(NETD)、焦距、光谱范围等。在确定哪种热像仪最适合您的需要时,请记住以上挑选要点。重要的是,选择热像仪时,不能只考虑一种参数,要根据您的需求综合选择。原理详情::小菲课堂 | 如何挑选心仪的红外热像仪?热像仪广泛应用在我们日常工作生活掌握它的各项原理有助于我们获得精确的检测结果如果你想要系统学习FLIR热像仪和红外热成像技术相关知识可以报名参加我们受欢迎的课程ITC红外培训在这里不仅可以学习理论知识还可以上手实操检测
  • 美新法案:无需FDA可直接对个人销售基因检测服务
    p   1392号法案,是由州众议院共和党成员Neil Parrott和Richard Metzgar提出的,其将直接面向消费者(DTC)的检测定义为一种消费者可以直接下单,并且不需要经过专业的治疗健康人士同意的消费方式。 /p p   该法案要求实验室销售的基因检测服务DTC必须有CLIA的认证。实验室还必须建议客户与他们的医生或者遗传咨询室就检测结果进行交流沟通 并告知他们关于健康数据的安全和保密的相关政策 并且说明怎样的遗传信息可能会被用于研究。如果测试公司想要分享客户的名字或者其他的识别信息,必须获得客户的书面同意。 /p p   此外,该法案还要求实验室警告消费者,测试结果可能在长期护理保险,残疾保险或生命保险时被拒绝,限制或者收取更高的费率,而这是不受到2008年反基因歧视法案的保护。实验室必须告诉客户,当申请这些类型的保险的时候,不披露这些基因检测结果可能会导致其取消或者被拒绝。 /p p   目前,马里兰州的法律只允许医生或者其他获得授权的人使用实验室检测,并限制了一般消费者检测的能力。但也有一些例外,例如,消费者可以直接购买FDA批准的用于家庭使用的基因测试。 /p p   但是最近几年,马里兰州正在努力立法,以扩大消费者的DTC基因检测。2014年那里兰州立法委员会提出了两个法案-一个在众议院,其要求当实验室满足一些条件的时候,允许其扩大提供DTC检测的能力,另一个是在参议院,即允许实验室做广告,并允许从非健康业务中获得业务。 /p p   马里兰州的卫生和心理卫生部门和前国务卿Secretary Joshua Sharfstein认为,这些法案是先进的修正案,其能够确保消费者的隐私,并要求实验室披露潜在的心理风险,并限制任何没有得到FDA批准的检测作为临床有效性的参考。 /p p   Sharfstein,目前正在约翰霍普金斯大学彭博公共卫生学院工作,其曾写过关于在FDA监管下开展所有实验室测试的文章。与此同时,美国食品和药物管理局表示,计划今年完成实验室检测的监管指导,并将专门指示DTC基因检测需要的机构审查程序。众议院1392号法案,其已经在2月12日被提交到了健康委员会和政府,但是其没有包括马里兰卫生部门在早些时候就这方面所提的一些建议。 /p p   当DTC检测公司,比如23andMe,十年前首次出现的时候,马里兰州和纽约以及加利福尼亚州对这样的服务采取了强硬的反对立场。但是自从那以后,DTC市场,基因检测技术以及联邦监管环境一直在发生变化。 /p p   23andMe在2013年由于监管困难而在全国停止销售健康类DTC,而其去年其Bloom综合征检测获得了体外检测机构的批准。随着这一决定,携带有筛查检测的这些仪器被分为了2类设备,如果实验室满足某些条件,其能够不必进行上市前审查而开始进行测试。特别是,该机构表示,这些携带有筛选测试的结果必须以消费者可以理解的方式表达,这类似于其他非处方药或者用于家庭测试的医疗目的的活动。 /p p   去年12月,23andMe发布了一个版本,指出FDA指定的个人基因组服务可以作为受限制的场外设备,允许该公司提供60多种健康,祖先,和个人健康遗传检测相关的服务,这些服务可以在纽约和马里兰州进行。 /p p   “我们感到欣慰的是,我们在纽约和马里兰州的客户,现在就可以在没有限制的情况下去探索自己的DNA,”23andMe CEO Anne Wojcicki那个时候这样说。“在这两个州的客户现在可以充分的利用我们新推出的和完全重新设计的服务,其中也包括了检测报告,这些都是符合FDA标准的。” /p p   公司的服务条款也要求通知客户关于GINA的局限性,告知他们不要认为结果将是受欢迎的或者积极的,他们可能还需啊哟就结果咨询医生或者基因顾问,尤其是在研究进展中的服务。该公司还详细告知了其研究参与和消费者同意的政策情况。 /p
  • 科学岛团队在X射线直接探测及成像研究方面取得新进展
    近期,中科院合肥物质院固体所潘旭研究员团队与中国工程物理研究院郑霄家研究员等合作在钙钛矿材料的新应用—— X射线直接探测及成像领域中取得新进展,相关研究成果发表在 ACS Nano 上。   卤化物钙钛矿材料具有优异的光电性能,在X射线直接探测方面具有很大的应用潜力,与目前商用探测器材料相比,其灵敏度和检测下限提升了多个数量级,有望大幅降低射线成像中辐射剂量率。钙钛矿晶圆相较于薄膜、单晶器件具有高度可扩展性并易于制备,使其成为X射线检测和阵列成像应用中最有前景的候选者。然而,多晶晶圆的制备过程中不可避免的会产生大量的晶界和孔隙,从而导致严重的离子迁移并进一步引起器件不稳定和电流漂移,严重限制了探测器的成像分辨率和未来的商业化应用。   鉴于此,研究人员发现一维 (1D) δ相甲脒碘化铅 (δ-FAPbI3)具有高离子迁移能垒、低杨氏模量和优异的长期稳定性,是高性能 X射线探测的理想候选材料,并且通过冷等静压工艺制备的致密晶圆器件能够实现高灵敏度和低检测限的 X射线探测。此外,研究人员进一步制作了在薄膜晶体管 (TFT)背板上集成大尺寸 δ-FAPbI3晶圆的 X射线成像仪, 实现了二维多像素 X射线成像,证明了 δ-FAPbI3晶圆探测器超稳定成像应用的可行性。   该研究为钙钛矿应用于X射线成像提供了一种新的设计思路和材料选择体系,并有望实现未来商业化应用。   该研究第一作者为固体所博士研究生汪子涵,通讯作者为潘旭研究员、叶加久博士后。该工作得到了国家重点研发计划、国家自然科学基金、安徽省杰出青年基金等项目的支持。图 . (a)14×14像素晶圆探测器; (b, c)明暗态图谱; (d) 3×3 cm δ-FAPbI3晶圆; (e) 64×64像素 TFT背板微结构; (f) X射线成像过程示意图; (g)平板 X射线成像探测器; (h) X射线成像。
  • 700万!山东大学实时直接分析-高分辨质谱仪采购项目
    项目编号:SDJDHF20220304-Z118 /SDSM2022-11304项目名称:山东大学实时直接分析-高分辨质谱仪采购项目预算金额:700.0000000 万元(人民币)采购需求:详见附件采购内容及项目要求。合同履行期限:自合同生效之日起至合同履行完毕之日。本项目( 不接受 )联合体投标。采购内容及项目要求.pdf
  • Science重磅:纳米孔直接测序蛋白质,精度高达100%,还可识别氨基酸修饰
    蛋白质是构成生物体的主要成分,同时也是生命活动的主要承担者。具有生物学功能的蛋白质往往具有特定的空间结构,而蛋白质结构在多个层级上被定义,其中一级结构,即氨基酸的种类和排列,最为重要,它可以决定蛋白质的高级结构。但一直以来,想要直接读取蛋白质的一级结构是十分困难的,在大多数情况下,科学家们会根据基因序列和氨基酸密码子表来“破译”蛋白质的氨基酸序列。然而,由于转录后修饰和翻译后修饰的存在,破译结果并非完全正确,甚至与真实的氨基酸序列有很大差异。2021年11月4日,荷兰代尔夫特理工大学的研究人员在 Science 期刊上发表了题为:Multiple rereads of single proteins at single–amino acid resolution using nanopores(利用纳米孔在单氨基酸分辨率下对单蛋白质进行多次重读)的研究论文。该研究利用纳米孔测序技术成功扫描并读取单个蛋白质的氨基酸序列:线性化的DNA-肽复合物缓慢通过一个微小的纳米孔,根据电流的变化和强度,研究人员就能读取相关的蛋白质信息内容,直接对蛋白质的氨基酸序列进行测序。蛋白质是生命活动的主要承担者。事实上,所有生物的蛋白质都是由大约20种不同的氨基酸组成的长肽链,就像项链上有不同种类的珠子一样。遗憾的是,目前的蛋白质测序方法价格昂贵,而且不能检测许多稀有蛋白质。近年来发展起来的纳米孔测序技术,已经能够直接扫描和排序单个DNA分子。如今,这篇发表在Science 上的研究表明,我们完全可以以类似于DNA纳米孔测序的方式直接读取蛋白质的氨基酸序列。本研究的通讯作者 Cees Dekker 教授表示:在过去的30年里,基于纳米孔的DNA测序已经从一个想法发展成为一个实际的工作设备,并成功开发了商业化的便携式纳米孔测序仪,服务于价值数十亿美元的基因组测序市场。在我们的论文中,我们将纳米孔的概念扩展到单个蛋白质的读取。这可能会对基础蛋白质研究和医学诊断产生重大影响。牛津纳米孔开发的纳米孔基因测序仪直接读取氨基酸序列对于如何利用纳米孔读取肽链中的单个氨基酸的特征,这篇论文的第一作者 Henry Brinkerhoff 博士打了一个形象的比喻:“想象一下,一个肽链中的氨基酸链就像一条项链,上面有不同大小的珠子。然后,你打开水龙头,慢慢地把项链送入下水道,也就是纳米孔。如果在某个时间点是一颗大珠子,它会堵塞下水道,那里面的水也就成了涓涓细流。相反,如果是一颗小珠子,那么下水道剩余的空隙就会比较大,水流也更大。”用纳米孔肽阅读器直接读取氨基酸序列因此,通过这项技术,研究人员可以非常精确地测量纳米孔的电流大小,并以此推测相应的氨基酸种类。更关键的是,这个过程并不会影响肽链的完整性,因此我们能够一次又一次地读取单个肽链,然后对所有数据进行拟合,从而以基本上100%的准确率获得肽链的序列组成。解旋酶(红色)拖动连接了多肽(紫色)的 DNA 分子(黄色),使其缓慢通过纳米孔(绿色),从而通过读取电信号(橙色高亮)表征多肽的氨基酸序列。条形码般的识别精度为了进一步验证这项技术的准确性,研究人员改变了肽链的某个氨基酸,然后能够检测到显著差异的电信号,表明该技术是极其灵敏的。事实上,这项新技术在识别单个蛋白质和绘制它们之间的细微变化方面非常强大,打个形象的比方——就像超市的收银员通过扫描条形码来识别每个产品一样。这也可能为未来的蛋白质从头测序提供新的途径。纳米孔肽阅读器可以区分单氨基酸替代的单肽Henry Brinkerhoff 博士表示:这项方法可能为未来蛋白质测序奠定基础,但就目前来说,蛋白的从头测序仍然是一个巨大的挑战。我们仍然需要大量描述来自不同序列的电信号,以便创建一个对应电信号和蛋白质序列的“密码表”。但即便如此,该研究已经能够成功分辨蛋白质序列中的单个氨基酸的改变,这无疑是一项重大进步,也将产生许多直接应用。看见生物学的“暗物质”https://www.science.org/doi/10.1126/science.abl4381
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 研究表明新冠病毒很可能直接对心脏DNA产生影响
    澳大利亚昆士兰大学日前发布消息说,一项新研究揭示了新冠病毒如何对心脏产生影响,以及其与流感病毒对心脏影响的差异,这为治疗新冠病毒感染所引起的心脏损伤提供了思路。  这项由昆士兰大学领衔的研究已发表在《免疫学》月刊上。研究报告作者之一、昆士兰大学的库拉辛哈博士说:“与2009年流感大流行相比,新冠导致了更严重和长期的心血管疾病,但在分子层面上,是什么因素导致了这样的现象尚不清楚。”  据介绍,新研究使用了从7名新冠患者、2名流感患者和6名对照组患者遗体上采集的心脏组织样本进行分析。  结果显示,研究人员在流感患者的心脏样本上发现了较强的炎症,而在新冠患者的心脏样本中则发现了与脱氧核糖核酸(DNA)损伤和修复相关的组织变化。研究人员表示,新冠病毒很可能是直接对心脏的DNA产生影响,而不仅仅是通过引发炎症带来连锁反应。  库拉辛哈说,DNA损伤和修复机制会造成基因组的不稳定,并且与糖尿病、癌症、动脉粥样硬化和神经退行性疾病等慢性疾病有关。  昆士兰大学教授约翰弗雷泽说,这项研究表明新冠病毒和流感病毒对心脏组织会带来不同的影响,这提供了更多证据证明新冠病毒并非“与流感病毒相似”。未来团队希望通过更大规模的队列研究来开展深入调查。
  • 电器大容量直接实验室在苏州诞生
    苏州电器科学研究院股份有限公司国家电器产品质量监督检验中心扩建项目第一期工程中,以新建的220KV试验网络和两台3500MVA冲击电源网络系统供电的大电流实验室,于2009年10月建成并投入试运行。在这个实验室里近日诞生了我国新的电器直接试验大电流值。   2009年12月26日至28日,中国合格评定国家认可委员会(CNAS)评审组,在对苏州电器科学研究院股份有限公司国家电器产品质量监督检验中心实验室进行监督和扩项评审中,对高低压大电流直接试验能力进行现场测试,测试结果是:低压直接霍思燕大电流为420V 406KA 高压直接试验大电流为40.5KV36KA.国内部分高低压行业资深专家在现场见证了这一事实。现场专家认为,这两组高低压电器直接试验大电流值处于国内领先水平,填补了我国高低压电器试验电流的部分空白,这大大增强了我国高低压开关电器和熔断器产品试验实力,大大提高了我国电器的检测试验能。   苏州电器科学研究院股份有限公司国家电器产品质]量监督检验中心的高低压直接大电流试验项目,评审组上报批准后,即可客户开展新产品开发研究试验工作,预计年后就可以出正式检测报告。
  • 沃特世推出LiveID软件,可直接对样品进行实时的食品分析和植物表型分析
    借助质谱技术直接进行样品分类,更快获取检测结果并制定决策 沃特世公司(纽约证券交易所代码:WAT)于近日隆重推出全新的LiveID软件。此款软件可与沃特世四极杆飞行时间质谱仪(QToF)配合使用,对肉类、作物等食品样品进行近瞬时分析和分类,从而直接获取样品信息。借助这款全新的软件,实验室研究人员可使用配备iKnife采样装置、快速蒸发电离质谱(REIMS)离子源和MassLynx质谱软件的Waters Xevo G2-XS QTof或SYNAPT G2-Si质谱仪,轻松检测食品掺假。沃特世LiveID软件现已在全球同步上市。 沃特世公司信息学产品高级总监Ronan O' Malley表示:“如果我们获取的食品样品信息脱离了最重要的时间和空间,那么这些信息不仅将失效,而且还会影响工作效率。我们开发LiveID软件的目的就是尽可能以最直观、快速、简单的方式,实时获取样品信息。” 食品掺假(即食品被贴上与本身不相符的标签进行售卖)是一个日趋严峻的恶性问题,现已成为某些有组织犯罪的资金来源。它不仅会让消费者受到蒙骗,还会损害食品生产商的声誉,同时影响食品出口领域的经济健康。 近年来,QTof质谱技术已逐渐成为一项极具前景的食品掺假检测技术。贝尔法斯特女王大学全球食品安全学院院长Chris Elliott教授率先将该技术投入了实际应用。他表示:“REIMS QTof技术平台能够同时检测多个影响食品样品完整性的问题,并且在分析速度方面具有显著优势。它有望彻底革新食品掺假分析技术,为食品行业提供强有力的支持。目前我尚未发现能与之比肩的其它技术。” 与传统技术(如免疫测定和PCR)相比,应用LiveID软件的质谱方法分析速度更快,在短短数秒内即可给出可靠结果。得益于iKnife采样装置和REIMS离子源,分析人员通常无需进行样品预处理或分离。当手持式iKnife采样装置与动植物组织或其它加工食品(如黄油)接触时,会使样品产生含有特定化合物分子的烟雾。接着这些分子将被导入REIMS离子源中进行电离,最后送入质谱仪检测。在极短的时间内,LiveID软件就能生成样品的分子谱或化学指纹图谱,将其与用户生成的参考指纹图谱数据库进行比对,然后将样品归为某一个样品类型或者某个样品组。 沃特世于2015年推出了作为QTof质谱仪辅助装置的iKnife采样装置和REIMS离子源。此后,沃特世不断改进REIMS离子源的设计,以便研究人员通过更直观、简单的方式利用质谱仪做出实时决策,从而深入挖掘这项技术的无限潜力。 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 重大仪器专项2022年度指南直接进入正式申报的项目填报正式申报书的通知
    关于“基础科研条件与重大科学仪器设备研发”重点专项2022年度指南直接进入正式申报的项目填报正式申报书的通知各有关单位:根据国家重点研发计划重点专项管理工作的总体部署和相关工作要求,中国21世纪议程管理中心已完成了“基础科研条件与重大科学仪器设备研发”重点专项2022年度项目申报指南预申报形式审查工作,已通过国家科技管理信息系统分别进行了反馈,并确定了可直接进入正式申报环节的项目,请收到我中心关于正式申报邮件通知的项目及时按要求填报项目正式申报书(含预算申报),未收到通知的其他项目请等待通知。正式申报书填报具体要求如下:1. 模板下载:请通过国家科技管理信息系统公共服务平台(https://service.most.gov.cn)相关专栏下载项目申报书模板,并按照模板准备材料。2. 填报方式:正式申报书需通过信息系统网上填报提交,请留意信息系统状态变化提示,及时开展网上填报工作。如信息系统填报模块有与申报书模板不符的情况,以信息系统填报模块要求为准。3. 正式申报与预申报的衔接要求:(1)以下内容不允许修改:项目负责人、课题负责人;项目牵头申报单位、课题承担单位、推荐单位;所属专项和申报的指南方向;项目下设课题数。(2)预算编制应结合项目申报单位及参与单位现有基础及支撑条件,根据项目(课题)任务目标的实际需要,按照“目标相关性、政策相符性和经济合理性”的原则,科学合理、实事求是地进行编制。(3)与预申报书相比发生调整的内容须遵循以下要求:考核指标不能降低,需要细化;主要研究内容不能减少和大幅调整,需要细化,如需增加研究内容,应提交说明作为附件;承诺配套条件不能降低;项目(课题)名称可根据实际情况做适当调整;项目可根据实际需求补充参加单位,但不能突破指南规定的上限,且需补充新的联合申报协议。4. 人员补充:“研究团队”部分,应在已有项目(课题/任务)负责人基础上补充其他参加人员,补充的人员须满足申报限项要求。5. 受理及网络填报时间为:2022年7月7日17:00至2022年8月5日17:00;系统技术咨询电话:010-58882999(中继线);技术咨询邮箱:program@istic.ac.cn。6. 专项咨询电话:010-58884882。中国21世纪议程管理中心2022年7月7日
  • 沃特世收购直接分析离子化技术REIMS
    2014年7月22日,沃特世宣布从MediMass公司收购快速蒸发电离质谱(REIMS)技术的所有资产,包括专利申请、软件、数据库和REIMS技术的专业知识,具体交易金额没有披露。   沃特世全球营销和信息副总裁Rohit Khanna表示,&ldquo REIMS技术显著增强了沃特世技术在生命科学市场的地位,同时也展现沃特世跨多种应用领域的承诺。这项技术的收购,以及我们最近与Prosolia签订的解吸电喷雾电离(DESI)技术在临床应用的独家代理协议是沃特世新兴健康科学计划的重要组成部分。直接从样品离子化的技术是战略性技术,我们期待它会对质谱在整个健康科学的应用产生冲击。&rdquo   REIMS技术可以实现&ldquo 智能刀(Intelligent Knife ,iKnife)&rdquo ,这种设备正处于开发阶段,其可能被用于手术中的实时诊断。沃特世致力于探索这种应用合乎所有应用法规要求的可行性。迄今为止,还没有监管部门批准此类设备用于临床。   沃特世与REIMS技术的渊源要追溯到3年前,当时,沃特世与MediMass、伦敦帝国大学合作重点发展REIMS技术。合作的目标是继续推动REIMS技术在健康科学方面的应用能力。   REIMS是一种离子化技术,其可作为质谱直接进样分析的离子源。迄今为止,REIMS技术已经显示出将常压下电离进样方式应用于真实世界的能力,如食品安全、微生物学和临床诊断应用等。   REIMS产生瞬时信号信息非常适合于沃特世飞行时间质谱仪。REIMS离子源将被商品化,以成为沃特世通用离子源平台的补充。   编者注:原位电离质谱技术(又称直接分析离子化技术)是本世纪初才兴起的一项技术。2002年,普渡大学R. Graham Cooks教授首次推出直接分析离子源DESI(解吸电喷雾离子化),随后各种原位电离质谱技术如&ldquo 雨后春笋&rdquo 般涌现出来,如DART(实时直接分析)、DBDI(介质阻挡放电离子化)、EESI(萃取电喷雾离子化)、DCBI(解析电晕束离子化)和ASAP(大气压固体分析探针)等,同时也有更多的质谱供应商加入到原位电离技术商品化产品供应的队伍中。   截至目前,商品化的直接分析离子化技术有:ionSense的DART、Prosolia的DESI、沃特世的ASAP、PerkinElmer的DSA、岛津的DCBI等。(编译:杨娟)
  • 诚邀您参加PerkinElmer公司直接进样做“米镉”现场观摩会
    PerkinElmer将于2013年6月20日、21日在国家地质测试中心(西城区百万庄大街26号)组织石墨炉AAS直接进样做&ldquo 米镉&rdquo 现场观摩活动。欢迎大家带着自家吃的大米,体验测试的全过程。当然,除了大米,你也可以带着面粉、酱油、奶粉等等,我们会抽取有代表性的样品,在活动后继续进行分析。请提供样品的同时,以照片形式提供样品的来源(购买渠道、品牌、包装)。 &ldquo 食品安全,从我做起,从身边做起&rdquo 。哪些食品是安全的?哪些食品是健康的?让我们每个人都有一双慧眼,看穿重重迷雾、包装、广告误导,去看清食品的本质。 PerkinElmer,以&ldquo 人类健康&rdquo 和&ldquo 环境健康&rdquo 为使命,以&ldquo For The Better&rdquo 为旗帜,服务超过两百万用户,产前筛查了超过三千一百万个儿童,挽救了近两万个家庭,为超过一百万的人进行过癌症筛查和诊断,为环境、食品等各种行业提供了超过二十亿次的分析测试。PerkinElmer,与您健康同行! 报名截止日期: 2013年6月18日 逾期将不再接受报名! 更多信息咨询: 张萍 134-6663-3767 郭伟 186-0027-9790 报名直接发邮件至: ping.zhang@perkinelmer.com
  • 沃爱康发布一次性囊膜和虹膜切开镜片,直接成像更安全便捷
    2015年12月10日,英国豪迈的眼科玻璃透镜品牌沃爱康光学公司发布了Volk?1一次性直接成像囊膜和虹膜切开镜片,能在激光手术中实现高分辨率成像。在Volk1镜片中,沃爱康生产的光学器件减少疾病传播,无需再次处理,兼具品质及一次性无菌镜片的安全与便捷。沃爱康最新研发的Volk1一次性直接成像囊膜和虹膜切开镜片。为了减少疾病传播,监管机构和医院组织正越来越多地要求使用一次性医疗设备(如果可用),而不是回收可重复使用的医疗设备。Volk1镜片消除了传染病交叉感染的可能性以及繁琐昂贵的再次处理程序。设备、劳动力以及妥善处置与处理可重复使用的医疗设备有关的有机溶剂消毒剂的费用超出了一次性医疗设备的费用。Volk1囊膜切开镜片的放大倍率为1.57x,激光光斑为0.63x,因此激光束可以精确地分布在囊袋中。对于激光虹膜切开手术,Volk1虹膜切开镜片可以在1.70x的放大倍率下通过周边虹膜激光光斑为0.58x的高放大倍率成像。Volk1囊膜和虹膜切开镜片以十对为一组,在盒子中进行预先消毒,然后单独密封在特维强袋中。沃爱康公司在有限时间内免费提供镜片样品包。Volk1一次性直接成像囊膜和虹膜切开镜片最先在美国的俄亥俄州曼托市投产,更多关于此镜片的信息,请索取免费样品包,或直接向沃爱康公司致电010-51261868,或发邮件至maggie.bai@halma.cn。关于沃爱康和英国豪迈:沃爱康光学公司(Volk Optical)是眼科诊断和治疗用非球面眼科镜片以及便携式诊断成像设备领域的业界领军企业。公司凭借玻璃镜头结构以及双面非球面的专利技术实现了最高分辨率成像,并为精确诊断、治疗和外科手术提供最佳立体影像。沃爱康公司的便携式电子数码显像设备为眼科、验光以及一般医学的未来奠定了基础。公司总部位于美国俄亥俄州曼托市,其代表办事处和经销商遍布全球。沃爱康是英国豪迈(Halma)的子公司,隶属于豪迈的医疗设备事业部。1894年创立的英国豪迈如今是安全、医疗、环保产业的投资集团,伦敦证交所中唯一在过去30多年股息年增长5%的上市公司。集团在全球拥有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有区域代表处,且在上海、北京、保定、深圳等地建立了多家工厂。
  • 发改委三天披露260多亿元 治水成十三五最直接投资
    8月7日、10日、11日连续披露了18份省市区的水污染治理投资计划,总投资规模达到264.889亿元,其中,下达中央预算内投资47亿元。中国环境规划院副院长王金南表示:“针对‘十三五’环境保护的投资最直接的效果是催生环保产业发展。”。     发改委三天披露260多亿元 治水成十三五最直接投资    8月11日,国家发改委再披露下达到五省重点流域水污染治理投资计划。据统计,8月7日、10日、11日连续披露了18份省市区的水污染治理投资计划,总投资规模达到264.889亿元,其中,下达中央预算内投资47亿元。    近年来,我国对环保方面投入正在进入加速通道,2013年9月份国务院印发《大气污染防治行动计划》(以下简称“大气十条”)。当年,据环保部估计,预计未来五年大气污染防治总体投资将近1.7万亿元。中国环境规划院副院长王金南表示,1.7万亿元是一个测算数据,包括政府、企业、社会的全口径投入。    今年4月份,国务院印发《水污染防治行动计划》(以下简称“水十条”),“水十条”的落实已被纳入环保部今年工作重点。去年7月份,环保部污染防治司副处长汪涛在中国环保产业高峰论坛上表示,水污染防治行动计划的投入预计达到2万亿元。    目前环保部正在加快制定环境保护“十三五”规划。8月3日,环保部发布的2015年上半年环境污染防治工作综述提到,继“大气十条”、“水十条”相继发布后,被称为“土十条”的《土壤污染防治行动计划》即将出台。    环保部副部长吴晓青日前在2015年度国家环境咨询委员会和环境保护部科学技术委员会座谈会上表示,环保部门正着力推进抓紧编制“十三五”环保规划在内的六项工作。据《国家环境保护“十三五”规划基本思路》,在“十三五”期间,建立环境质量改善和污染物总量控制的双重体系,实施大气、水、土壤污染防治计划,实现三大生态系统全要素指标管理;在既有常规污染物总量控制的基础上,新增污染物总量控制注重特定区域和行业;空气质量实行分区、分类管理。    环保部运用国际通行模型预测评估,土壤修复市场带动的投资规模将超过5.7万亿元。粗略计算,“大气十条”、“水十条”、“土十条”总计投资规模达到9.4万亿元。    另外,环保部近日表示,“十三五”节能环保市场潜力巨大,总社会投资有望达到17万亿元。业内人士表示,在国家强力推进污染治理以及着力发展节能环保产业的大背景下,大气污染防治、水污染防治、土壤污染防治将出现投资潮,节能环保行业将迎重大历史发展机遇,成为国内最具成长性的朝阳产业之一,相关上市公司将直接受益。    “针对‘十三五’环境保护的投资最直接的效果是催生环保产业发展。”王金南称。(来源:证券日报)
  • 国产质谱突围|华仪宁创:直接电离质谱焕发无限生命力
    科学仪器是人们获取物质成分、结构和状态等信息,认识和探索规律的不可缺少的有力工具,在国民经济、科学研究和军事国防中起到了至关重要的作用,属于国家战略性产业。科学仪器的进步又高度依赖核心零部件的发展,可以说“没有好的关键零部件,就没有好的仪器产品”。据调研,中国质谱市场规模已超140亿人民币。近几年来,在国家政策支持下,中国质谱产业化多点开花,四极杆、离子阱、串联四极杆、飞行时间以及电源、分子泵、气体发生器等部件附件不断有新的技术涌现。在此基础上,仪器信息网特别策划了”质谱核心部件大揭秘“的主题直播,以期洞察质谱产业链上游的技术及市场现状,以信息化助力产业发展。相关主题文章和视频将陆续更新,敬请关注。采访视频请点击下方观看:技术突破:单细胞质谱、三重四极杆串联质谱直播第一站来到了宁波华仪宁创智能科技有限公司(简称:华仪宁创)。9月6日正值中国分析与生化技术的年度盛会BCEIA召开之际,华仪宁创重磅发布了两款新产品:全国首台商业化的全自动单细胞质谱前处理系统SinCell-100、三重四极杆串联质谱系统HTQ-5610(LC-MS/MS)。发布会现场华仪宁创总经理闻路红博士自豪地表示,2017年华仪宁创与清华大学张新荣教授团队联合承担了国家基金委“国家重大科研仪器研制项目”——质谱单细胞分析系统研制,经过多年的技术攻关,团队成功研制出国际上第一台皮升级、自动化单细胞质谱分析前处理系统;该项目在2023年2月顺利通过验收,且评为“优秀”执行项目。该项目是华仪宁创在产学研合作方面的又一成功典范,其商品化产品SinCell-100全自动单细胞质谱前处理系统,基于萃取法可全自动完成单细胞的定位、萃取、电离、质谱分析,是细胞生物学和单细胞代谢组学研究的有力工具,同时该产品也是国际首款全自动皮升电喷雾单细胞质谱前处理系统。SinCell-100全自动单细胞质谱前处理系统新品揭幕此外,HTQ-5610是华仪宁创自主研制的串联质谱系统,产品可配备公司自主研发的直接电离离子源,变身为高通量筛查质谱平台;当前该仪器可满足大部分小分子目标物的高灵敏度、定性定量分析需求。华仪宁创总经理 闻路红博士单细胞质谱仪可以检测到更丰富的生物信息,与高分辨的质谱技术相结合,拥有广阔的应用前景,可用于癌症肿瘤的早期筛查、药物筛选、癌细胞机制研究等领域。同时,三重四极杆串联质谱系统作为质谱行业的典型产品之一,过去中国市场主要依赖进口产品。近年来,科技部和基金委等相关部门持续加大对高分辨和串联质谱的研发支持力度,同时顺应着”国产替代“的产业浪潮,2023年我们看到中国市场涌现出了一批三重四极杆串联质谱的国产厂商,这是一个令中国质谱人振奋的消息,但也由于常年被进口垄断,新产品的推出只是所有国产质谱企业迈向高端质谱领域的第一步,接下来如何夯实仪器稳定性、耐用性以及应用能力更为关键。国产质谱的突围:直接电离源的无限生命力在质谱检测中,从待测物离子产生到质谱获取离子信号,仅需要毫秒级的时间,然而传统质谱分析方法需要经过繁琐耗时的样品前处理过程,才能进行后续色谱分离及质谱检测,无法在较短时间内完成对样品的质谱分析。因此,离子化技术的发现及进步对质谱分析技术的发展发挥了重要的推动作用。这其中,原位/直接/敞开式电离质谱技术(Ambient Ionization Mass Spectrometry,AIMS)无需或仅需简单的样品制备,可常温常压下对样品直接采样,进行原位分析,是质谱分析领域的重大变革,也让其成为最近20年来质谱技术研究的热点和前沿之一。华仪宁创便携质谱华仪宁创是国内最早从事直接电离源技术研发、产业化的企业之一, 2015年便推出了国内首款直接电离源DBDI-100(与张新荣教授的产业化合作成果)。在此基础上,华仪宁创继续创新敞开式电离源技术,并将其应用到便携式质谱仪中。目前,其基于直接电离技术的便携式质谱仪已经发展为成熟的商业化产品,可用于现场快速精确的多目标检测,在公共安全等领域展现出巨大优势。该直接电离便携式质谱仪实现了毛发样本中超微量毒品的快速检测,达到国际领先水平,在公安部全国检测比武中获满分,作为国家“十三五”禁毒装备优秀代表参加国际警用装备展,获得专家好评。在成功应用于禁毒领域的基础上,华仪宁创继续拓展直接电离质谱技术在食品药品安全、环境监测、医学检验等领域的应用,研发多款专用质谱仪,补齐从现场到实验室的多种分析检测需求。经过多年的发展,国产质谱的种类已经从单四极杆拓展到离子阱、飞行时间质谱、杂合式高分辨质谱,类型也从实验室台式拓展到在线、车载、便携式等。在中国质谱产业浪潮到来之际,像华仪宁创这样代表着国产质谱成功“突围”的企业,让产业界以及广大分析测试用户看到了国产质谱的无限潜力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制