当前位置: 仪器信息网 > 行业主题 > >

丙烯与

仪器信息网丙烯与专题为您提供2024年最新丙烯与价格报价、厂家品牌的相关信息, 包括丙烯与参数、型号等,不管是国产,还是进口品牌的丙烯与您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙烯与相关的耗材配件、试剂标物,还有丙烯与相关的最新资讯、资料,以及丙烯与相关的解决方案。

丙烯与相关的论坛

  • 聚丙烯酰胺在石油开采领域的应用

    [font=&][size=18px]聚丙烯酰胺是一类多功能的油田化学处理剂,广泛用于石油开采的钻井、固井、完井、修井、压裂、酸化、注水、堵水调剖、三次采油作业过程中, 特别是在钻井、堵水调剖和三次采油领域。聚丙烯酰胺水溶液具有较高的粘度, 有较好的增稠、絮凝和流变调节作用, 在石油开采中用作驱油剂和钻井泥浆调节剂。在石油开采的中后期, 为提高原油采收率,我国目前主要推广聚合物驱油和三元复合驱油技术。通过注入聚丙烯酰胺水溶液, 改善油水流速比,使采出物中原油含量提高。在三次采油中加入聚丙烯酰胺, 可增加驱油能力, 避免击穿油层, 提高油床开采收率。中国石油工业是聚丙烯酰胺的最大用户, 聚丙烯酰胺的科技进步促进了中国石油工业的发展, 石油工业的需求又加速了聚丙烯酰胺的科技创新步伐与行业的发展。[/size][/font]

  • 丙烯中水分测定

    我公司用的万通库伦水分仪测定丙烯中水分,一般丙烯中水分要求是20个ppm,用钢瓶通过减压阀减压直接通入滴定池测定,用这个方法测定测定水分平行很不好,受连接气路中水分影响很大,万通预滴定时间也很长,请问能用气相TCD测定丙烯中水分500个ppm以下嘛,方法的准确性好吗?听说丙烯中水分很少有公司用TCD做,请气相版块做过丙烯中水分的来解答一下,或者有直接用TCD做丙烯中水分的专家来解答一下。谢谢。

  • 丙烯腈的作用

    丙烯腈 【名称】:丙烯腈【化学式】:CH2═CHCN三维模型【化学性质】:分子量 53.06辛辣气味的无色液体。熔点-82℃。密度0.806g/cm3。闪点-1.1℃(开杯)。自燃点48l℃。折射率1.388。溶于水、乙醚、乙醇、丙酮、苯和四氯化碳。与水形成共沸物。易挥发,有腐蚀性。有氧存在下,遇光和热能自行聚合.易燃,遇火种、高温、氧化剂有燃烧爆炸的危险,其蒸气与空气形成爆炸性混合物。极毒!不仅蒸气有毒,而且经皮肤吸入也能中毒。生气中的容许浓度为20ppm。【物理性质】:为无色液体,沸点77.3℃,属大宗基本有机化工产品,是三大合成材料——合成纤维、合成橡胶、塑料的基本且重要的原料,在有机合成工业和人民经济生活中用途广泛。【应用】:丙烯腈用来生产聚丙烯纤维(即合成纤维腈纶)、丙烯腈-丁二烯-苯乙烯塑料(ABS)、苯乙烯塑料和丙烯酰胺(丙烯腈水解产物)。另外,丙烯腈醇解可制得丙烯酸酯等。丙烯腈在引发剂(过氧甲酰)作用下可聚合成一线型高分子化合物——聚丙烯腈。聚丙烯腈制成的腈纶质地柔软,类似羊毛,俗称“人造羊毛”,它强度高,比重轻,保温性好,耐日光、耐酸和耐大多数溶剂。丙烯腈与丁二烯共聚生产的丁腈橡胶具有良好的耐油、耐寒、耐溶剂等性能,是现代工业最重要的橡胶,应用十分广泛。

  • 丙烯酸领域积累新突破

    丙烯酸领域积累新突破

    一、丙烯酸树脂的介绍及应用 丙烯酸树脂,广泛应用于胶粘剂、涂料、油墨及助剂领域,常用作胶粘剂的粘接主体、涂料的成膜树脂,也可作为油墨的连结料,还可作为各种高分子助剂使用(如流平剂、增稠剂等)。 丙烯酸树脂的性能与单体种类与含量有着密不可分的联系,溶剂型丙烯酸体系中引发剂、丙烯酸乳液中乳化剂的种类对丙烯酸树脂的性能影响也不可小觑。另外,为提高丙烯酸树脂的硬度等性能,往往需要外加固化剂,如氨基树脂。二、微谱技术丙烯酸树脂领域积累突破方向 微谱技术胶涂油事业部为了更准确有效解析丙烯酸体系,在丙烯酸酯单体定性定量(常见丙烯酸酯类均聚物的谱图库建设、自交联丙烯酸树脂的解交联方法、丙烯酸酯类功能/交联单体检出限)、丙烯酸乳液中乳化剂的定性分析、溶剂型丙烯酸体系中引发剂的逆向分析、固化剂-氨基树脂种类的鉴别等4个方面进行了积累与突破。本文将就常见丙烯酸酯类均聚物的谱图库建设进行相关阐述。[align=center][img=,690,354]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041130469060_8994_2879355_3.jpg!w690x354.jpg[/img][/align][b]三、[/b]丙烯酸酯单体定性定量分析[b]1. 常见丙烯酸酯类均聚物的谱图库建设[/b] 我们建立18种常见丙烯酸酯类均聚物的FTIR、[sup]1[/sup]H NMR、Py-GCMS标准谱图库。FTIR谱图库(图2)中不同单体的FTIR特征出峰,为各类单体定性奠定基础;[sup]1[/sup]H NMR谱图库(图3)的建设与总结,为丙烯酸树脂中共聚单体的定量提供了充分的数据支撑;此外,通过Py-GCMS谱图库向我们展示了常见丙烯酸酯类单体的离子峰、裂解片段、流出时间(表1),保证了各类单体定性结果的准确、快速、有效性,同时还向我们提供了各类丙酸酯类单体的裂解规律、同类型单体的裂解率差异,扩充了丙烯酸树脂中共聚单体定量方法。[align=center][img=,690,522]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041131391850_2130_2879355_3.jpg!w690x522.jpg[/img][/align][align=center][img=,690,522]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041132039410_7483_2879355_3.jpg!w690x522.jpg[/img][/align][align=center][img=,690,308]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041132471290_6548_2879355_3.jpg!w690x308.jpg[/img][/align][align=center]图2部分丙烯酸酯均聚物的FTIR谱图[/align] 通过FTIR红外分析可知,由(1)、(2)可知甲基丙烯酸酯与丙烯酸酯的区别在于甲基丙烯酸酯出现1380cm[sup]-1[/sup]吸收峰;由(1)、(3)、(4)可知丙烯酸烷基酯,随烷基链不同,700-900cm[sup]-1[/sup]处吸收峰具有较大差异(如图2(9)所示)。[align=center][img=,690,529]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041133338860_4144_2879355_3.jpg!w690x529.jpg[/img][/align][align=center][img=,690,532]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041134056800_2183_2879355_3.jpg!w690x532.jpg[/img][/align][align=center]图3部分丙烯酸酯均聚物的[sup]1[/sup]H NMR谱图[/align] 常规丙烯酸酯单体 (图3(1)~(4)) 特征出峰为:4.0ppm,主要为与酯基相邻亚甲基上氢化学位移,随着烷基链段不同,1-2ppm处出峰及峰面积有差异;而聚新癸酸乙烯酯、聚甲基丙烯酸缩水甘油酯、聚丙烯酸、聚丙烯酸羟乙酯有着明显不同的NMR谱图,这些特异性差异都是单体定量的基础。 [align=center]表1各单体的PGC裂解片段、特征离子峰及对应出峰时间[/align][table][tr][td] [align=center][b]树脂种类[/b][/align] [/td][td] [align=center][b]裂解碎片[/b][/align] [/td][td] [align=center][b]特征离子峰及[/b][/align] [align=center][b]出峰时间[/b][/align] [/td][/tr][tr][td] [align=center]聚丙烯酸丁酯[img=,154,39]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,53,14]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,73,14]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,67,23]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,56,14]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,91,27]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,92,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]55、73[/align] [align=center](T=4.2min)[/align] [/td][/tr][tr][td] [align=center]聚甲基丙烯酸丁酯[/align] [align=center] [/align] [/td][td] [align=center][img=,45,11]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,72,15]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,65,18]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,85,37]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]41、69、87[/align] [align=center](T=5.2min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸异辛酯[/align] [align=center][img=,153,52]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,62,30]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,55,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,76,31]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,120,49]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,115,50]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center] [/align] [align=center] [/align] [align=center] [/align] [align=center] [/align] [align=center] [/align] [/td][td] [align=center] [/align] [align=center] [/align] [align=center]55、70[/align] [align=center](T=7.6min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸乙酯[/align] [align=center][img=,122,52]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,52,16]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,76,31]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,96,34]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,85,51]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]55[/align] [align=center](T=1.9min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸羟乙酯[/align] [align=center][img=,135,50]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,79,16]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,98,30]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,110,53]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]55、73、86[/align] [align=center](T=4.6min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸[/align] [/td][td] [align=center][img=,73,34]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center]55、72[/align] [align=center](T=2.3min)[/align] [/td][/tr][tr][td=3,1] [align=center]……[/align] [/td][/tr][/table]2. 自交联丙烯酸树脂的解交联方法摸索 丙烯酸树脂中单体主要通过FTIR、Py-GCMS多谱图验证定性,再结合酸值、羟值、NMR测试联合定量,最后运用DSC测试、FOX方程进一步校正。但交联型的丙烯酸树脂和丙烯酸乳液一般较难溶解,需要开发出新方法来破坏树脂的交联,使其在某种氘代试剂中可以溶解进行NMR测试。通过数月研究,微谱技术工程师寻找出一种“新的方法”—高温氧化降解(图4),即将丙烯酸树脂中加入氧化剂,在高温高压情况下氧化降解交联型的丙烯酸树脂,使其能溶于氘代试剂,从而定量共聚单体。[align=center][img=,690,271]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041134482030_2496_2879355_3.jpg!w690x271.jpg[/img][/align][align=center]图4交联型丙烯酸树脂的解交联过程示意图[/align][b]3. 丙烯酸酯类功能/交联单体检出限摸索[/b] 功能/交联单体赋予丙烯酸树脂耐水性、附着力等特定功能,但其添加量较少,定性定量难度较高。因此,我们利用Py-GCMS检测一系列添加不同含量的的标准样品,探索功能/交联单体的最低检出限及特征裂解片段,这在很大程度上提高了功能/交联单体定性定量的准确度。我们选取的功能单体包括丙烯酸、甲基丙烯酸、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸羟丙酯等,交联单体包括丙烯酰胺、N-羟甲基丙烯酰胺、双丙酮丙烯酰胺、乙酰乙酸基甲基丙烯酸羟乙酯等。[b]四. 丙烯酸乳液中乳化剂的定性分析[/b] 丙烯酸乳液中,乳化剂起到非常重要的作用,影响乳液的稳定性、粒径大小及分布等性能,因此我们建立了常见乳化剂(磺基琥珀酸类乳化剂、烷基醇(醚)硫酸盐/磺酸酯盐、磷酸酯类、聚氧乙烯醚类、反应型乳化剂等)的FTIR、NMR、MS谱图库,同时摸索了丙烯酸乳液中乳化剂的提取方法,建立乳液中乳化剂的完整分析方法,如图5所示。[align=center][img=,690,345]http://ng1.17img.cn/bbsfiles/images/2018/07/201807041135200450_8175_2879355_3.jpg!w690x345.jpg[/img][/align][align=center]图5丙烯酸乳液中乳化剂分析过程示意图[/align][b]五. 溶剂型丙烯酸体系中引发剂的逆向分析[/b] 溶剂型丙烯酸体系中,引发剂种类不仅影响反应速率,还对树脂的分子量、分子量分布起到关键性作用。但引发剂在合成过程中已分解,无法直接分析。因此,微谱技术胶涂油事业部工程师研究了溶剂型丙烯酸体系中常见的20种引发剂的分解片段及分解规律,以便逆向推测所用引发剂种类。[align=center]表2各类引发剂分解片段[/align][table][tr][td] [align=center][b]类别[/b][/align] [/td][td] [align=center][b]举例[/b][/align] [/td][td] [align=center][b]分解片段[/b][/align] [/td][/tr][tr][td] [align=center]过氧化物类[/align] [/td][td] [align=center]二叔丁基过氧化物[/align] [/td][td][img=,49,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,89,27]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][tr][td] [align=center]过氧化氢类[/align] [/td][td] [align=center]叔丁基过氧化氢[/align] [/td][td] [align=center][img=,49,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,69,43]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][/tr][tr][td] [align=center]过氧化酯类[/align] [/td][td] [align=center]叔丁基过氧化-2-乙基己酸[/align] [/td][td] [align=center][img=,185,59]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][/tr][tr][td] [align=center]偶氮类[/align] [/td][td] [align=center]偶氮二异丁腈[/align] [/td][td] [align=center][img=,81,53]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][/tr][tr][td]二酰基过氧化物类[/td][td] [align=center]过氧化苯甲酰[/align] [/td][td] [align=center][img=,76,35]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][/tr][/table][b]六. 固化剂—氨基树脂种类的鉴别[/b] 氨基树脂是丙烯酸体系中常见的固化剂,包括甲醚化的氨基树脂、丁醚化的氨基树脂和混合醚化的氨基树脂等种类,而甲醚化的氨基树脂又分为全甲醚化、部分甲醚化和高度甲醚化的氨基树脂。不同醚化及不同醚化程度的氨基树脂对丙烯酸树脂的固化速度、烘烤固化温度、固化后漆膜的硬度等性能均产生影响。我们搜集了市场上常见15种氨基树脂,进行了FTIR、NMR、GC-MS、Py-GCMS谱图库表征,考察不同醚化程度以及不同种类醇醚化的氨基树脂的区别。以上分析积累与突破很大程度上提高了丙烯酸树脂结构解析的准确度,也获得很多国内知名丙烯酸树脂生产商的认可。 [table][tr][td] [align=center][b]树脂种类[/b][/align] [/td][td] [align=center][b]裂解碎片[/b][/align] [/td][td] [align=center][b]特征离子峰及[/b][/align] [align=center][b]出峰时间[/b][/align] [/td][/tr][tr][td] [align=center]聚丙烯酸丁酯[img=,154,39]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,53,14]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,73,14]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,67,23]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,56,14]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,91,27]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,92,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]55、73[/align] [align=center](T=4.2min)[/align] [/td][/tr][tr][td] [align=center]聚甲基丙烯酸丁酯[/align] [align=center] [/align] [/td][td] [align=center][img=,45,11]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,72,15]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,65,18]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,85,37]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]41、69、87[/align] [align=center](T=5.2min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸异辛酯[/align] [align=center][img=,153,52]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,62,30]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,55,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,76,31]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,120,49]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,115,50]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center] [/align] [align=center]55、70[/align] [align=center](T=7.6min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸乙酯[/align] [align=center][img=,122,52]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,52,16]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,76,31]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,96,34]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,85,51]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]55[/align] [align=center](T=1.9min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸羟乙酯[/align] [align=center][img=,135,50]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center][img=,79,16]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,98,30]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [align=center][img=,110,53]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center] [/align] [align=center]55、73、86[/align] [align=center](T=4.6min)[/align] [/td][/tr][tr][td] [align=center]聚丙烯酸[/align] [/td][td] [align=center][img=,73,34]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/align] [/td][td] [align=center]55、72[/align] [align=center](T=2.3min)[/align] [/td][/tr][tr][td=3,1] [align=center]……[/align] [/td][/tr][/table]

  • 【分享】冰衣保鲜剂——— 聚丙烯酸钠

    鱼、虾、肉等冷冻食品在冷库中冷藏时,因触及冷藏室内的干燥空气,冻品中的水分将蒸发,使冻品干燥。食品与空气接触加上金属离子的作用,引起蛋白质变质、脂肪酸败、生鲜味散失,风味顿减,减重损耗也随之而生,使商品价值明显降低。为了防止这些不良影响,用清水或者胶质水在鱼体表面形成一层薄冰膜,使鱼体与干燥空气脱离接触,这就是冰衣加工。但是仅用清水,冰会迅速升华,那就需要多次的进行冰衣加工,而且一遇振动,冰衣会产生龟裂,龟裂后冰衣易脱落,只要一个地方发生这样的情形,冻品内部的冰就会连续不断地从这里升华,干燥变质随之发生。羧甲基纤维素、甲基纤维素、聚乙烯醇、海藻酸钠等胶体溶液都可以弥补用清水做冰衣加工的缺点。但是它们只有使被处理物与外气遮断的作用,防变黄、褪色的效果并不理想。  聚丙烯酸钠是美国FDA、日本厚生省、中国卫生部等批准使用的食品添加剂,用于多种食品的增稠、增筋、稳定和保鲜。聚丙烯酸钠是水溶性高分子化合物,溶于水形成极粘稠的透明溶液,其黏度约为羧甲基纤维素钠(CMC)、海藻酸钠的15~20倍,对肉类表面有优良的附着力,而且对金属离子有封锁能力,如果冷冻前用聚丙烯酸钠处理,形成一层隔断空气的“冰衣”,则可大大延长鱼、虾、肉等冷冻食品的保鲜期,保鲜效果显著。  聚丙烯酸钠作为冰衣加工剂具有以下优点:能形成与清水外衣同样的玻璃状透明膜,显著提高商品价值;溶液没有起泡性,所以在浸渍或喷雾时不会发生起泡的麻烦;对金属离子有封锁作用,可防止鱼类等因金属离子的催化作用而发生变黄褪色;可增强冰衣的弹性和强度,减少因机械碰击引起的脱落现象;冰衣完全升华时,其黏性涂膜会密集的被覆在肉类表面,故短期内不必再冰衣而能继续冷冻,被膜效果可持续很久;冰衣升华较慢,可减少冰衣的工作次数,从而可节省工资降低成本;只需添加0.1%聚丙烯酸钠就可制成保鲜液,包括加工损失在内,每吨鱼虾只需聚丙烯酸钠15~45克,丙二醇100~200克,简便经济;聚丙烯酸钠是合成品,保管中绝对不会发生腐败、变质、发黄等现象;聚丙烯酸钠水溶性好,解冻时易于溶解洗去。  使用方法:将聚丙烯酸钠粉末(约占冰衣用水的0.05%~0.1%)慢慢添加入水中,边加边搅拌,得到一透明液体,将需要冷藏的鱼、虾浸渍于上述液体中数秒后取出,即可放入冷库贮藏,冰衣附着量约为鱼、虾重量的2%~3%,厚度约为2~3mm。食用时将鱼、虾取出,洒水、解冻即可得到处于新鲜状态的鱼、虾。如果先将聚丙烯酸钠粉末用3~5倍重量的丙二醇分散,再溶解于水,制得的冰衣保鲜效果更好。

  • 【求助】分析乙烯、丙烯中乙炔

    分析高纯度乙烯、丙烯中乙炔,丙烯峰可能将乙炔峰盖住,解决方法可以用一预住将乙炔峰提前,然后将C3以后吹掉。但为什么GB/T 3392-2003标准直接用Al2O3-Plot柱分析丙烯,并且乙炔也能分开,那么是否需要上述解决方案呢?

  • 丙烯腈 丙烯醛

    有人做出了hj806-2016,丙烯腈跟丙烯醛了吗?,试过很多条件不行,吹扫捕集是ATOMX,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]是赛默飞的[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303301124226787_4268_5288894_3.png[/img]

  • 红外测丙烯

    请问各位大神,为何用不分光式(NDIR)红外光谱测气体浓度的方法不能用来测量丙烯?是不是因为丙烯吸收较弱还是因为丙烯特征光谱和其他气体谱线重合?

  • 【求助】高氯酸与聚丙烯

    各位好,最近作实验需要用到高浓度的高氯酸,但实验室现在没有合适的teflon试管,问下55%的高氯酸装在聚丙烯试管中并65摄氏度水浴,()高氯酸是否会腐蚀聚丙烯试管?因为我要测有机碳同位素,如果腐蚀,腐蚀下的有机材料可定污染海洋沉积物中的有机质。(2)据说高氯酸很危险,强酸,强碱,高腐蚀性,易爆炸,那位仁兄有过?传授下使用经验和注意事项。(3)如果将浓硝酸与高氯酸混合,应该如何操作?

  • 水中丙烯醛丙烯腈的测定

    各位老师,我用GDX-502填充柱做丙烯醛丙烯腈,标准是5750,按标准方法做不出来,而且我判断不出哪个是目标峰,而且会有个很大的平头峰,请问哪位老师做过,能指点一下方法吗?

  • 【讨论】-丙烯酰胺大讨论

    开始关注丙烯酰胺:2002年4月24日,瑞典国家食品管理局(Swedish National Food Administration)举行记者招待会宣布,一些富含淀粉类的食品在进行高温加工处理后都含有一种有毒的、存在潜在致癌性的化学物质——丙烯酰胺,并向全世界公布了他们的研究结果,立即引起WHO、FAO以及世界各国食品业的广泛关注。随后,挪威、瑞士、英国、美国等各国的科学家均分别进行了试验,取得了与瑞典科学家相同的实验结果,丙烯酰胺的问题进一步引起世界范围的重视。丙烯酰胺的基本性质及其应用: 丙烯酰胺(Acrylamide),CAS的登记号为79-06-1,其分子量71.09,化学分子式CH2CHCONH2。丙烯酰胺是一种不饱和酰胺,其单体为无色透明片状结晶,沸点125℃,熔点84~85℃。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。丙烯酰胺的来源:食品中的丙烯酰胺主要源于高温烹调,饮用水中的丙烯酰胺主要源于污水净化等工业用的聚丙烯酰胺的降解。丙烯酰胺的毒性:1 丙烯酰胺的神经毒性研究丙烯酰胺是一种中等毒性的亲神经毒物,可通过未破损的皮肤、粘膜、肺和消化道吸收入人体,分布于体液中[4]。  丙烯酰胺的神经毒性已经为许多学者所公认,大量的中毒事件也多是围绕其神经毒性方面,但丙烯酰胺导致周围神经和中枢神经系统损伤的机制还不十分清楚。现场劳动卫生学研究和体格检查发现长期职业接触丙烯酰胺的工人主要表现为四肢麻木、乏力、手足多汗、头痛头晕、远端触觉减退等,累及小脑时还会出现步履蹒跚、四肢震颤觉、深反射减退等,并发现外周神经损害多表现为通向胞体的长纤维末端首先受损,逐渐向胞体方向发展,呈“返死现象”[5]。  韩漫夫等[6]发现丙烯酰胺能使脑能量代谢受到影响,脑组织供能代偿潜能损伤,并认为这种对脑能量代谢的影响是丙烯酰胺产生神经元损伤的生化基础。丙烯酰胺中毒致周围神经病时轴突首先受累,当轴突变性时,神经元胞浆中呈持续的逆行改变,故其神经元多可恢复,神经末梢可再生。周梅荣、施建俐、秦小梅等报道了职业性丙烯酰胺中毒致小脑萎缩的案例[8];褚学斌、马佩琛、任冰等报道了丙烯酰胺中毒致视野缺损的案例[9]等。  从现已报道关于丙烯酰胺中毒的案例中可以看出,丙烯酰胺的中毒不仅仅能带来一些神经性伤害,甚至还会导致人体某些脏器发生实质性病变,从而造成严重的后遗症。我国在70年代开始报道丙烯酰胺中毒的病例,并开展了对丙烯酰胺中毒的防治研究,目前已经基本明确了丙烯酰胺毒理及临床表现,并于1996年提出丙烯酰胺中毒诊断标准(GB16370-1996)。  2. 丙烯酰胺的致癌性研究  2.1 丙烯酰胺致癌性的评估状况  大量的实验动物数据证实了丙烯酰胺具有一定的致癌作用,在实验动物的饮用水中每天加入2.0mg/kg体重的丙烯酰胺的剂量,一段时间后就可以在脑部、脊髓或其他组织中发现肿瘤细胞。Bull和Robinson等以6.25,12.5,25mg/kg的丙烯酰胺剂量经口染毒A/J小鼠,发现丙烯酰胺可诱发小鼠皮肤肿瘤,促进肺腺瘤的发展[9]。Damjanov和Friedman在饮水中加丙烯酰胺,以每天0.1、0.5、2.0mg/kg的剂量对大鼠进行104周慢性染毒,发现大鼠睾丸鞘膜肿瘤发生增加,从而认为丙烯酰胺具有一定的多巴胺拮抗作用,该机制可能是导致多种组织细胞异常增生,从而引发癌症的原因之一[10]。  Richard [11]认为,虽然各国对丙烯酰胺进行了大量的研究,并对其毒性、病理变化及毒理学特性有了较好了解,并通过实验动物模型,确认了丙烯酰胺的潜在致癌性和对生殖、神经系统的损伤作用,但是应该强调的是,虽然对丙烯酰胺职业病的流行病学研究发现了它的神经毒理作用,但是并没有说明丙烯酰胺暴露的量与癌症发生之间的联系。所以我们现在应该尽可能的获得更多的关于丙烯酰胺的资料,而不是单单强调丙烯酰胺致癌这一个方面上。  2.2 食品中丙烯酰胺的致癌性研究  食品中存在的丙烯酰胺是否存在致癌作用、多大的剂量会引起癌症,各国的科学家和研究人员存在不同的看法。  评估丙烯酰胺对人体的危险是很重要的。基于一些动物实验的结果,对丙烯酰胺的NOAEL,即最大无作用剂量水平为0.1mg/kg 体重[12]。根据新西兰国家营养机构对具有代表性的西方饮食的调查,出版了关于食品中丙烯酰胺浓度的文章[13]。通过以上文献,Ian等计算了消费者食用热的油炸薯条或油炸薯片,即经常食用的可能产生丙烯酰胺最多的食品,其中每日平均食用的丙烯酰胺的剂量在0.3μg/kg体重,这一数量是NOAEL所规定0.1mg/kg 体的三分之一,这样的话,即使消费者每天食用薯条、薯片等食品致癌的危险也是很低的[14]。虽然现在对丙烯酰胺已经进行了大量的研究,但是关于它的致癌性仍然是各国争论的焦点之一,现有数据并不足以说明食品中的丙烯酰胺可以导致某种癌症,这就需要我们通过多种实验手段、先进的科学技术来进一步深入研究食品中丙烯酰胺的问题,希望在不久的将来能够彻底的解决食品中的丙烯酰胺的问题。  3.丙烯酰胺的其他不良影响  3.1 丙烯酰胺对小鼠抗氧化能力和免疫功能的影响  小鼠经口给予不同剂量(50、100、150 mg/kg)的丙烯酰胺, 5次/7d,42d后断头取血检测指标。结果显示,染毒小鼠体重明显下降,血清脂质过氧化代谢产物(MDA)含量增高(P0 01),超氧化物歧化酶(SOD)及全血谷胱甘肽氧化酶活性于150 mg/kg染毒组降低非常明显(P0 01),150 mg/kg染毒组小鼠血中胶体炭粒清除速度明显降低,胸腺相对质量明显增加[15]。说明丙烯酰胺有抑制机体抗氧化能力和降低机体网状内皮系统吞噬功能的作用。  3.2 丙烯酰胺的基因毒性及DNA损伤作用  丙烯酰胺不能诱导细菌的基因突变,但是丙烯酰胺代谢的环氧化物——环氧丙酰胺在代谢停滞时却能诱导基因突变现象。在诱导哺乳动物细胞基因突变试验中,丙烯酰胺能表现一种很不确定的、很弱的基因突变作用。丙烯酰胺在哺乳动物细胞中可以诱导染色体失常、姊妹染色体互换、染色体倍增现象、染色体非整倍体形成以及其他有丝分裂异常现象。丙烯酰胺不能在小鼠肝细胞中诱导非常规的DNA合成,环氧丙酰胺却能诱导人体乳腺细胞的非常规的DNA合成,但环氧丙酰胺在小鼠肝细胞中的作用却不明显。  关景芳,贾文英,程林等进行了丙烯酰胺单体的细胞染色体实验观察,目的是通过对不同梯度丙烯酰胺进行诱变性实验,观察丙烯酰胺对哺乳类动物细胞遗传毒性的影响。采用细胞培养染色体畸变技术进行实验观察,结果表明,丙烯酰胺单体即诱导染色体结构畸变,又能诱导非整倍体形成。这一研究结果与WHO提出的关于丙烯酰胺的基因毒性一致,同时丙烯酰胺致畸作用有剂量反应关系,高浓度诱发大量非整倍体形成及结构变异,低浓度无诱发CHL细胞染色体畸变的作用[16]。  3.3 丙烯酰胺的生殖毒性[17]  Sickes等研究认为,丙烯酰胺的生殖毒性机制与其神经毒性的机制相似。丙烯酰胺可抑制驱动蛋白样物质的活性,导致细胞有丝分裂和减数分裂障碍,从而引起生殖损伤。  有研究证据表明[18],丙烯酰胺可以影响雄性动物的生育能力。给予雄性大鼠15mg/kg体重的丙烯酰胺,连续5天,或者给予小鼠12mg/kg体重,连续28d,均可发现其生育能力受到损害,具体表现为精子计数减少和精子活动能力减弱。说明丙烯酰胺对动物的生殖系统有一定的损伤作用,但在人类却未发现有此危害

  • 世界常用聚丙烯生产技术工艺介绍

    近年来,世界上气相法和本体法工艺的聚丙烯生产装置的比例逐年增加,世界各地在建和新建的聚丙烯装置将基本上采用气相法工艺和本体法工艺。尤其是气相法工艺的快速增加正挑战居第一位的Spheripol工艺。根据NTJ公司称,1997年以来,世界范围许可聚丙烯新增能力的55%都是采用Novolen气相工艺,今后气相法工艺还将有逐步增加的趋势。除以上主要的聚丙烯生产工艺外,原Montell公司于20世纪90年代又成功开发了反应器聚丙烯合金Catalloy和Hivalloy技术。这两项技术的开发成功为聚丙烯树脂高性能化、功能化以及进入高附加值应用领域创造了条件,现均已工业化。

  • 【资料】丙烯MSDS!

    丙烯(propylene,CH2=CHCH3)常温下为无色、无臭、稍带有甜味的气体。分子量42.08,密度0.5139g/cm(20/4℃),冰点-185.3℃,沸点-47.4℃。易燃,爆炸极限为2%~11%。不溶于水,溶于有机溶剂,是一种属低毒类物质。丙烯是三大合成材料的基本原料,主要用于生产丙烯腈、异丙烯、丙酮和环氧丙烷等。

  • 【求助】丙烯氧化气分析

    有用气相色谱仪做丙烯氧化气分析的高手没,关于丙烯工业生产丙烯酸,丙烯氧化过程中各气体含量及丙烯转化率以及丙烯酸收率的计算。求指教!

  • 丙烯酰胺简介

    丙烯酰胺简介

    丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。 丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。 丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。⒈ 业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。 ⒉ 日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。 ⒊ 由于煎炸食品是我国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展我国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法。(引自中国CDC网站)附迪马丙烯酰胺检测方案链接:http://www.dikma.com.cn/search.html?keyword=丙烯酰胺http://ng1.17img.cn/bbsfiles/images/2016/05/201605111724_592991_1610895_3.jpg

  • 【原创大赛】丙烯酸的研制与生产

    【原创大赛】丙烯酸的研制与生产

    丙烯酸的研制与生产1 前言1.1 概述 丙烯酸是一种最简单的单元梭酸基型,易与其他单体发生共聚的烯键单体。作为重要的不饱和有机脂肪酸,它既可以自身均聚,又可以与其他乙烯基单体,如苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、丙烯睛、丙烯酰胺、氯乙烯等共聚。丙烯酸可以制成各种不同性能的丙烯酸类树脂或聚丙烯酸盐类等丙烯酸系列产品。这些产品广泛地应用于化纤、纺织、涂料、皮革、造纸和粘合剂等领域中1]。鉴于丙烯酸是重要的有机化工原料之一,它的合理制备就显得尤为重要。1999年美国UCC首先从英国BP公司引进技术建厂生产,此后日本触媒化学、三菱油化、BASF等公司相继建成工业装置进行生产2]。1998年全球丙烯酸生产能力和需求量分别达到了2855kt/a和2100kt/a。从1995年到2005年生产能力将从2100kt/a 增加3500kt/a,消费量也将以4.4%的速率递增。1984年我国首套引进的丙烯氧化制丙烯酸装置在北京东方化土厂建成投产,1992年和1994年吉林和上海分别引进技术建成两套工业装置,其总的计生产能力为105kt/a。目前丙烯酸的生产方法主要有丙烯两步催化氧化法(简称丙烯两步氧化法)丙烯睛水解法丙烷直接选择氧化法等其中丙烯两步氧化法在工业生产中的应用最为广泛占丙烯酸总生产能力的85%以上1]。1.2 产品情况介绍1.2.1 物化性质 中文名称:丙烯酸,英文名称:acrylic acid或propenoic acid,CAS No.:79-10-7 分子式:C[sub]3[/sub]H[sub]4[/sub]O[sub]2[/sub],结构简式:CH[sub]2[/sub]CHCOOH,分子量:72.06,主要成分:含量≥99.0%。外观与性状:无色液体,有刺激性气味,熔点:14℃,沸点:141℃,相对密度(水=1):1.05,相对蒸气密度(空气=1):2.45,饱和蒸气压(kPa):1.33(39.9℃),燃烧热(kJ/mol):1366.9,辛醇/水分配系数的对数值:0.36(计算值),闪点:50℃,引燃温度:438℃,爆炸上限%(V/V):8.0,爆炸下限%(V/V):2.4,溶解性:与水混溶,可混溶于乙醇、乙醚,稳定性:稳定;危险标记20(酸性腐蚀品)。[img=,240,139]http://ng1.17img.cn/bbsfiles/images/2016/09/201609051944_608490_3005330_3.png[/img]2 工艺设计2.1 工艺条件设计2.1.1 氧化工艺条件及设备选择 将催化剂(12升)均匀的装入一个具有10根内径为25mm和长度为3000mm钢管的管壳式反应器中,然后,将该反应器加热至335℃。另外,将上述用于第二工序的催化剂(12升)均匀的装入一个具有10根内径为25mm和长度为3000mm钢管的管壳式反应器中,然后,将反应器加热至260℃。将作为原料的含丙烯、蒸汽、和氧气的气体混合物,以16.2M3/hr(转换为标准温度及压力;此后气体的体积均被转化为标准温度及压力)的速率加热至120℃,然后送至第一工序反应器已完成反应。 第二步工序中反应器中产生的气体反应流出物通过预冷器被预冷至150℃,然后被送至一个有不锈钢制造的丙烯酸吸收塔,该塔配备了有20块塔板的泡罩架,内径为200mm。以1.7 kg/hr的速率从塔顶向该塔中加入含对苯二酚的水溶液(0.1wt%),以吸收作为丙烯酸水溶液的流出物。2.1.2 吸收工艺条件及设备选择 然后,该丙烯酸水溶液被送至一个由不锈钢制造的内部的内径为100mm、装填高度为5m的填料塔塔顶,以2.96 M3/hr的速率从塔底部向该填料塔鼓入空气,同时将该塔加热以使塔底温度达到85℃以气提丙烯醛等。丙烯酸水溶液以5.20 kg/hr的速率得到的,该溶液含有丙烯酸(70.9wt/%)、水(25.6wt/%)、乙酸(2.0wt/%)和其他组分(酸类如马来酸和丙酸,醛类如糠醛和甲醛等)(1.5wt/%)。2.1.3 蒸馏工艺条件及设备选择 随后,在共沸蒸馏塔中蒸馏所得的丙烯酸水溶液。该共沸蒸馏塔中配备有塔板数为60块且塔板间距为147mm的双流塔盘、塔顶部的蒸馏管、他中部的原料进料管和塔底部的塔底溶液排出管。共沸蒸馏是在以甲苯作为共沸剂,塔顶压力为173 ,回流比(单位时间回流的总摩尔数/单位时间流出物摩尔数)为1.35且原料加入量(速率)为8.50kg/hr的条件下完成的。 粗丙烯酸是以6.03kg/hr的速率从塔底得到的,其中含有丙烯酸(96.9wt%)、乙酸(0.06wt%)、水(0.03wt%)和丙烯酸二聚物(2.0wt%)。2.1.4 结晶工艺条件及设备选择 将蒸馏后的粗丙烯酸输送至结晶单元并通过动态结晶工序提纯三次。此外,在提纯步骤中的经过结晶的残余物则通过动态结晶工序处理三次,并通过静态结晶工序处理二次。 动态结晶是在一种结晶装置中完成的,该装置是一根长度为6m、内径为70mm的金属管,在其下部配一个存储罐。通过一种循环泵,该装置可以将存储罐中存放的液体移至金属管的上部,并使液体以降膜形式沿管的内部流动。金属管的表面部分是有一种双夹套组成的,通过自动调温器控制该夹套以使其具有恒定的温度。静态结晶是在一种结晶装置中完成的,该装置是一根长度为1m、内径为90mm的金属管,在其下部配一个派出旋塞。金属管的表面部分是由双夹套组成的,利用自动调温器控制该夹套,以使其具有恒定的温度。 动态结晶过程中将粗丙烯酸送至存储罐,通过循环泵使其以降膜形式沿管壁表面流动,将夹套温度降低至凝固点以下,以使大约60-80wt%的丙烯酸结晶。然后停止循环泵。将夹套温度升高至凝固点附近,并使大约2-5wt%的丙烯酸发汗,发汗后排出残熔体。再将将夹套温度升高至凝固点之上,使晶体熔化,然后将其排出。静态结晶过程中将粗丙烯酸送至金属管内,将夹套温度降低至凝固点以下,以使大约60-80wt%的丙烯酸结晶。然后结晶后排出残熔体,将夹套温度升高至凝固点附近,并使大约12-25wt%的丙烯酸发汗。再将夹套温度升高至凝固点之上,使晶体熔化,然后将其排出。2.1.5 二聚物分解工艺条件及设备选择 结晶之后的残余母液经五次气提后得到了浓缩,其中百分之十的残余母液被废弃,其余百分之九十则被输送至丙烯酸二聚物分解蒸馏塔,热分解是在热分解温度为140℃,在罐内的驻留时间为45小时的条件下完成的,控制薄膜蒸发器使塔底温度达到85℃,塔顶压力为330 ,回流比为0.9。丙烯酸含量为85.2wt%的丙烯酸是以0.19kg/h的速率从塔顶收集的。所收集到的丙烯酸被循环之结晶单元,从塔顶收集到的丙烯酸被循环至结晶工序的汽提步骤。2.2 工艺路线设计 丙烯酸主要用于生产丙烯酸酯,后者是纺织纤维、表面涂层材料、分散剂以及粘合剂的一种重要原料。此外,近年来丙烯酸作为原料在高水吸收体方面的应用也趋于增长,对杂质含量在几十至几百ppm(重量)的高纯丙烯酸更是急需。 本工艺提供了一种以高产率生产高纯度丙烯酸地方法。本工艺采用催化汽相氧化法氧化丙烯,随后使所得反应混合物被吸收于一种溶剂中,蒸馏所得产物以从塔底部分得到的粗丙烯酸,用动态或静态结晶供需提纯出丙烯酸,将残余母液输送至丙烯酸二聚物分解工序以收集丙烯酸,并将收集到的丙烯酸返回到选自结晶工序、蒸馏工序和吸收工序中的至少一个工序。用结晶工序提纯粗丙烯酸,可以防止丙烯酸进一步二聚、低聚或聚合,并可有效地浓缩丙烯酸的二聚物,使所得的浓缩二聚物经历二聚物分解工序,可以易于收集丙烯酸。 本工艺包括氧化、吸收、蒸馏、提纯、结晶和二聚物分解工序。2.3 工艺流程设计2.3.1 反应原理 丙烯在催化剂的催化下先被氧气氧化成丙烯醛,丙烯醛再在催化剂的催化下被氧气氧化下生成丙烯酸。其反应方程式如下:[img=,346,90]http://ng1.17img.cn/bbsfiles/images/2016/09/201609051946_608491_3005330_3.png[/img]2.3.2 工艺流程 作为目前工业上应用最广泛的制备丙烯酸的方法,丙烯两步氧化法经历了一个漫长的改进过程,尤其是丙烯氧化催化剂的改进这个工艺是B.P.公司发明的专利技术1969年UCC公司引进该项技术并加以改进成为第一个在世界上建立丙烯两步氧化法制取丙烯酸生产装置的企业。该工艺在合成过程中分两步进行:第一步,丙烯被

  • 【资料】-食品中丙烯酰胺的危险性评估

    食品中丙烯酰胺的危险性评估丙烯酰胺(CH2=CH-CONH2)是一种白色晶体物质,分子量为70.08,是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。在欧盟,丙烯酰胺年产量约为8-10万吨。2002年4月瑞典国家食品管理局(National Food Administration,NFA)和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中检出丙烯酰胺;之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。由于丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性,因此食品中丙烯酰胺的污染引起了国际社会和各国政府的高度关注。为此,2002年6月25日世界卫生组织(WHO)和联合国粮农组织(FAO)联合紧急召开了食品中丙烯酰胺污染专家咨询会议,对食品中丙烯酰胺的食用安全性进行了探讨。2005年2月,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)第64次会议根据近两年来的新资料,对食品中的丙烯酰胺进行了系统的危险性评估。1.人体接触途径人体可通过消化道、呼吸道、皮肤粘膜等多种途径接触丙烯酰胺,饮水是其中的一种重要接触途径,为此WHO将水中丙烯酰胺的含量限定为1μg /L。2002年4月斯德哥尔摩大学研究报道,炸薯条中丙烯酰胺含量较WHO推荐的饮水中允许的最大限量要高出500多倍。因此,认为食物为人类丙烯酰胺的主要来源。此外,人体还可能通过吸烟等途径接触丙烯酰胺。2. 吸收、分布及代谢丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳。经口给予大鼠 0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)。该环氧丙酰胺比丙烯酰胺更容易与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变;因此,被认为是丙烯酰胺的主要致癌活性代谢产物。研究报道,给予大小鼠丙烯酰胺后,在小鼠肝、肺、睾丸、白细胞、肾和大鼠肝、甲状腺、睾丸、乳腺、骨髓、白细胞和脑等组织中均检出了环氧丙酰胺鸟嘌呤加合物。目前,尚未见人体丙烯酰胺暴露后形成DNA加合物的报道。此外丙烯酰胺和环氧丙酰胺还可与血红蛋白形成加合物,在给予动物丙烯酰胺和摄入含有丙烯酰胺食品的人群体内均检出血红蛋白加合物,建议可用该血红蛋白加合物作为接触性生物标志物来推测人群丙烯酰胺的暴露水平。3 丙烯酰胺毒性3.1急性毒性急性毒性试验结果表明,大鼠、小鼠、豚鼠和兔的丙烯酰胺经口LD50为150-180 mg/kg,属中等毒性物质。3.2 神经毒性和生殖发育毒性 大量的动物试验研究表明丙烯酰胺主要引起神经毒性;此外,为生殖、发育毒性。神经毒性作用主要为周围神经退行性变化和脑中涉及学习、记忆和其他认知功能部位的退行性变;生殖毒性作用表现为雄性大鼠精子数目和活力下降及形态改变和生育能力下降。大鼠90天喂养试验,以神经系统形态改变为终点,最大未观察到有害作用的剂量(NOAEL)为0.2 mg/kg bw/天。大鼠生殖和发育毒性试验的NOAEL为2 mg/kg bw/天。3.3 遗传毒性丙烯酰胺在体内和体外试验均表现有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常,如微核形成、姐妹染色单体交换、多倍体、非整倍体和其他有丝分裂异常等,显性致死试验阳性。并证明丙烯酰胺的代谢产物环氧丙酰胺是其主要致突变活性物质。3.4 致癌性动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,包括乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体等。国际癌症研究机构(IARC) 1994年对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A)即人类可能致癌物,其主要依据为丙烯酰胺在动物和人体均可代谢转化为其致癌活性代谢产物环氧丙酰胺。3.5 人体资料 对接触丙烯酰胺的职业人群和因事故偶然暴露于丙烯酰胺的人群的流行病学调查,均表明丙烯酰胺具有神经毒性作用,但目前还没有充足的人群流行病学证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。4.食品中丙烯酰胺形成、含量和人体可能暴露量4.1食品中丙烯酰胺形成丙烯酰胺主要在高碳水化合物、低蛋白质的植物性食物加热(120°C 以上)烹调过程中形成。140-180℃为生成的最佳温度,而在食品加工前检测不到丙烯酰胺;在加工温度较低,如用水煮时,丙烯酰胺的水平相当低。水含量也是影响其形成的重要因素,特别是烘烤、油炸食品最后阶段水分减少、表面温度升高后,其丙烯酰胺形成量更高;但咖啡除外,在焙烤后期反而下降。丙烯酰胺的主要前体物为游离天门冬氨酸(土豆和谷类中的代表性氨基酸)与还原糖,二者发生Maillard反应生成丙烯酰胺。食品中形成的丙烯酰胺比较稳定;但咖啡除外,随着储存时间延长,丙烯酰胺含量会降低。4.2食品中丙烯酰胺含量既然丙烯酰胺的形成与加工烹调方式、温度、时间、水分等有关,因此不同食品加工方式和条件不同,其形成丙烯酰胺的量有很大不同,即使不同批次生产出的相同食品,其丙烯酰胺含量也有很大差异。在JECFA 64次会议上,从24个国家获得的2002-2004年间食品中丙烯酰胺的检测数据共6,752个,其中67.6%的数据来源于欧洲,21.9%来源于南美,8.9%的数据来源于亚洲,1.6%的数据来源于太平洋。检测的数据包含早餐谷物、土豆制品、咖啡及其类似制品、奶类、糖和蜂蜜制品、蔬菜和饮料等主要消费食品,其中含量较高的三类食品是:高温加工的土豆制品(包括薯片、薯条等),平均含量为0.477 mg/kg,最高含量为5.312 mg/kg;咖啡及其类似制品,平均含量为0.509 mg/kg,最高含量为7.3 mg/kg;早餐谷物类食品,平均含量为0.313 mg/kg,最高含量为7.834 mg/kg;其它种类食品的丙烯酰胺含量基本在0.1 mg/kg以下,结果见表1。由中国疾病预防控制中心营养与食品安全研究所提供的资料显示,在监测的100余份样品中,丙烯酰胺含量为:薯类油炸食品,平均含量为0.78 mg/kg,最高含量为3.21 mg/kg;谷物类油炸食品平均含量为0.15 mg/kg,最高含量为0.66 mg/kg;谷物类烘烤食品平均含量为0.13 mg/kg,最高含量为0.59 mg/kg;其它食品,如速溶咖啡为0.36 mg/kg、大麦茶为0.51 mg/kg、玉米茶为0.27 mg/kg。就这些少数样品的结果来看,我国的食品中的丙烯酰胺含量与其他国家的相近。

  • 水中丙烯腈

    水中丙烯腈

    做水中丙烯腈的项目,73-2001的标准。福立9790[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],5米长的GDX-502填充柱,进样口180,柱温140,检测器200。首先进了纯水空白,有两个峰不知道是否正常(第一张图),又进了水中丙烯腈的标样,和刚才进纯水的一样,没有丙烯腈的目标峰。最后进了甲醇中的丙烯腈标样,只有一个特别大的平头峰(第二张图),应该是甲醇的峰,还是没有丙烯腈的峰。不知道怎么做了,请各位明白的老师给指导一下,谢谢。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/03/202003031634175614_6218_3881965_3.png[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/03/202003031634308143_8354_3881965_3.png[/img]

  • 丙烯标准气的问题

    亲们~~~有么有做过环境空气中的丙烯的?丙烯的标准气哪家有卖的?最好是配好了的,有一定浓度的,万分感谢!!

  • 【分享】认识丙烯酰胺

    【分享】认识丙烯酰胺

    [color=#DC143C]丙烯酰胺[/color][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911171718_185078_1610969_3.jpg[/img] [color=#00008B]丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。[/color]聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。淀粉类食品在高温(120℃)烹调下容易产生丙烯酰胺。  研究表明,人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,饮水是其中的一条重要接触途径。2002年4月瑞典国家食品管理局和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片等中检出丙烯酰胺,而且含量超过饮水中允许最大限量的500多倍。之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。此外,人体还可能通过吸烟等途径接触丙烯酰胺。  丙烯酰胺进入体内又可通过多种途径被人体吸收,其中经消化道吸收最快。进入人体内的丙烯酰胺约90%被代谢,仅少量以原形经尿液排出。丙烯酰胺进入体内后,会在体内与dna上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变。  对接触丙烯酰胺的职业人群和偶然暴露于丙烯酰胺人群的调查表明,丙烯酰胺具有神经毒性作用,但目前还没有充足的证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显关系。★  根据香港消费者委员会的研究,含碳水化合物的食物在经油炸之后,都会产生丙烯酰胺。研究已知丙烯酰胺可致癌。但世界卫生组织表示,由于难以统计丙烯酰胺要到哪一个浓度才会致癌,所以难以订立安全标准。  英文名 Acrylamide   分子式 CH2=CHCONH2   分子量71.08  丙烯酰胺是一种不饱和酰胺,别名AM,其单体为无色透明片状结晶,沸点125℃(3325Pa),熔点84~85℃,密度1.122g/cm3。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中,在酸碱环境中可水解成丙烯酸。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。

  • 关于丙烯检测

    亲们~~~有么有做过环境空气中的丙烯的?丙烯的标准气哪家有卖的?最好是配好了的,有一定浓度的。

  • 丙烯腈的测定

    丙烯腈测定的时候,用国标hj/t 37-1999的方法测定,色谱柱是 sh-rtx-5的柱子,丙烯腈的标样测定,20分钟了,不出峰是什么情况?求指教

  • 【求助】丙烯腈精馏塔取样

    真空丙烯腈精馏塔塔顶丙烯腈取样,由于丙烯腈毒性较大,现场取样危险这里有哪个朋友对毒性较大的化学品现场取样有经验的,能否告诉我怎么对取样设备进行设计。现场取样如何设计,丙烯腈是否可以现场在线检测纯度??

  • 求助,水质丙烯腈

    采用顶空进样,用GC-FID测水质中的丙烯腈,高浓度的标样峰面积都很小,标准上是用水来配制标液,但丙烯腈微溶于水,合理吗?

  • 丙烯腈热分解问题

    丙烯腈热分解问题

    做包装材料中丙烯腈有害物含量,用顶空加热样品。在100-150°C加热范围内,丙烯腈含量逐渐上升,可150°C后,丙烯腈峰值下降。想问下大家:丙烯腈在高温下会不会分解或者发生其他结构变化?谢谢!丙烯腈(C3H3N)结构式:http://ng1.17img.cn/bbsfiles/images/2015/06/201506302311_552405_1849792_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制