当前位置: 仪器信息网 > 行业主题 > >

噁草醚

仪器信息网噁草醚专题为您提供2024年最新噁草醚价格报价、厂家品牌的相关信息, 包括噁草醚参数、型号等,不管是国产,还是进口品牌的噁草醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合噁草醚相关的耗材配件、试剂标物,还有噁草醚相关的最新资讯、资料,以及噁草醚相关的解决方案。

噁草醚相关的论坛

  • 关于纳米中草药

    纳米中草药是指运用纳米技术制造的、粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂,具有增加药物对血脑屏障或生物膜的穿透性等特点。纳米中草药技术(nanotechnology)是指在纳米尺度下对物质进行制备、研究和工业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性的技术体系。纳米技术作为高新技术,可广泛应用于材料学、电子学、生物学、医药学、显微学等多个领域,并起着重要的作用。 一、纳米中草药的特点 1、原药纳米化后呈现新的药效或增强原有疗效中药被制成粒径0.1~100 nm大小,其物理、化学、生物学特性可能发生深刻的变化,使活性增强和产生新的药效。如灵芝通过纳米级处理,可将孢子破壁,并采用超临界流体萃取技术萃取出灵芝孢子的脂质活性物质,从而增强抗肿瘤的功效。 2、改善难溶性药物的口服吸收。在表面活性剂、水等存在下,直接将药物粉碎成纳米混悬剂,增加了药物溶解度,适于口服、注射等途径给药,以提高生物利用度。 3、增加药物对血脑屏障或生物膜的穿透性。纳米粒能够穿透大粒子难以进入的器官组织、血脑屏障及生物膜。如阿霉素α聚氰基丙烯酸正丁酯纳米粒(NADM)可以改变阿霉素的体内分布特征,对肝、脾表现出明显的靶向性,而血、心、肺、肾中的药物分布则减少。 4、靶向作用。在研究中发现,一味普通的中药牛黄,加工到纳米级水平后,其理化性质和疗效会发生惊人的变化,甚至可以治疗某些疑难杂症,并具有极强的靶向作用。 5、使药物达到缓释、控释。借助高分子纳米粒作载体等技术手段,可实现药物的缓释、控释。如雷公藤乙酸乙酯提取物固体纳米脂质粒有良好的缓释、控释功能。二、纳米中草药的制备技术及其进展 纳米中药的制备是研究纳米中药最基础的,也是最重要的问题。将纳米技术引入中药的研究,必须考虑中药组方的多样性、成分的复杂性,例如中药单味药可分为矿物质、植类药、动物药和菌物药等,中药的有效部位和有效成分又包括无机化合物和有机化合物、水溶性成分和脂溶性成分等,因此,针对不同的药物,在进行纳米化时必须采用不同的技术路线。此外,还必需考虑中药的剂型。纳米中药与中药新制剂关系十分密切,如何在中医理论的指导下进行纳米中药新制剂的研究,将中药制成高效、速效、长效、剂量小、低毒、服用方便的现代化制剂,也是进行中药纳米化所必须考虑的问题。纳米中药是针对中药的有效成分或有效部位进行纳米技术加工处理,开发中药的新功效。聚合物纳米粒可作为药物纳米粒子和药物纳米载体。药物纳米载体系指溶解或分散有药物的各种纳米粒,药物纳米载体包括纳米脂质体、固体脂质纳米粒以及纳米囊和纳米球。而对于不同类型的纳米中药,有不同的制备方法。三、纳米中草药的加工方法。 1、纳米超微化技术是改进某些药物的难溶性或保护某些药物的特殊活性,适用于不宜工业化提取的某些中药。如矿物药、贵重药、有毒中药、有效成分易受湿热破坏的药物、有效成分不明的药物。目前比较常用的是超微粉碎技术。所谓超微粉碎是指利用机械或流体动力的途径将物质颗粒粉碎至粒径小于10 μm的过程。根据破坏物质分子间内聚力的方式不同,目前的超微粉碎设备可分为机械粉碎机、气流粉碎机、超声波粉碎机。 2、机械粉碎法是利用机械力的作用来实现粉碎目的。边可君等采用自主开发的温度可控(-30~-50℃)的惰性气氛高能球磨装置系统制备纳米石决明。将石决明置于配有深冷外套的惰性气氛球磨罐中,同时装入磨球,磨球与石决明粉比保持在15:1~5:1范围,控制高能球磨机的转速(200~400 r/min)和时间(2~60 h),获得了平均粒度不大于100 nm的石决明粉末。 3、气流粉碎法是以压缩空气或过热蒸汽通过喷嘴产生的超音速高湍流气流作用为颗粒的载体。颗粒与颗粒之间或颗粒与固定板之间发生冲击性挤压、摩擦和剪切等作用,从而达到粉碎的目的。与普通机械冲击式超微粉碎机相比,气流粉碎产品粉碎更细,粒度分布范围更窄。同时气体在喷嘴处膨胀降温,粉碎过程中不会产生很大的热量。所以粉碎温升很低。这一特性对于低融点和热敏性物料的超微粉碎特别重要。 备注: 纳米中草药的常用方法较为普遍的有两种:一是喷雾干燥法,二是高能球磨法。   中药纳米超微化技术既丰富了传统的炮制方法,又能为中药的生产和应用带来新的活力。纳米产品目前已成为中药行业新的经济增长点。将这项技术应用于中药行业可以开发具有更好疗效、更优品种的纳米中药新产品。这将对中药行业的发展带来深远的理论和现实。

  • 氟磺胺草醚

    有做氟磺胺草醚的么?想咨询下,扩项的加标水平如果加检出限,不能做出回收怎么办?

  • 20年来最成功的除草剂——苯嘧磺草胺

    20年来最成功的除草剂——苯嘧磺草胺

    上世纪60年代。当时,杜邦公司开发出了首个脲嘧啶类除草剂—除草定,正式开启了该类除草剂研发的先河。而真正掀起脲嘧啶类除草剂开发热潮的是在上世纪90年代,当时人们对于该类除草剂的作用机理有了更深入的了解,发现脲嘧啶类除草剂属于原卟啉原氧化酶(PPO)抑制剂。杜邦公司在推出除草定后,又相继推出了异草定和特草定等产品。富美实的双苯嘧草酮以及先正达的氟丙嘧草酯均属于该类除草剂。而巴斯夫于2009年推出的苯嘧磺草胺(saflufenacil)更属于该类除草剂中的佼佼者。苯嘧磺草胺能够适用于多种生产系统和非耕地,在苗后或苗前均能使用;其次,适用作物多。苯嘧磺草胺能够用于包括谷物、玉米、棉花、水稻、高粱、大豆和果树等在内的30多种作物上;再次,防除谱广。苯嘧磺草胺能够防除90余种阔叶杂草,包括一些对三嗪类、草甘膦及乙酰乳酸合成酶抑制剂存在抗性的杂草。另外,它也具有作用快、残效期长等多种特性。http://ng1.17img.cn/bbsfiles/images/2017/02/201702010042_01_1623180_3.jpg2009年,苯嘧磺草胺在南美国家尼加拉瓜、智利和阿根廷三国登记。2010年,苯嘧磺草胺与精二甲吩草胺的复配制剂Verdict在美国获得登记,用于大豆。同年,苯嘧磺草胺正式登陆中国,以70%水分散粒剂(商品名:巴佰金)的形式面世,用于柑橘园和非耕地的杂草防除,由诺普信负责在中国市场的总经销。目前,苯嘧磺草胺已在美国、加拿大、中国、尼加拉瓜、智利、阿根廷、巴西和澳大利亚等国登记。苯嘧磺草胺可替代苯氧类除草剂2,4-D和磺酰脲类除草剂与草甘膦复配,可降低防治顽固性杂草对草甘膦的使用量。2014年,苯嘧磺草胺的全球销售额达到1.4亿美元。据巴斯夫公司预测,苯嘧磺草胺可实现3亿欧元的年峰值销售额。苯嘧磺草胺目前仍处于专利保护期中,其在中国的专利为巴斯夫于2001年申请的《尿嘧啶取代的苯基氨磺酰羧酰胺》,专利号为ZL01801896.3,对苯嘧磺草胺的化合物及合成方法进行了保护,该专利将于2021年4月30日到期.

  • 【转帖】美国拟修改玉米除草剂的许可限量

    美国拟修改玉米除草剂的许可限量 2009年10月12日,美国发布通报,美环保署拟修改玉米除草剂的许可限量。 本最终法规规定以下作物内/表除草剂(Tembotrione),包括其代谢物及降解物残留许可限量为:带轴去皮甜玉米:0.01ppm;甜玉米材料:0.35ppm及甜玉米杆:0.60ppm。(信息来源:中国技术性贸易措施网)

  • 【资讯】蜂蜜标准修订草案出台

    【资讯】蜂蜜标准修订草案出台

    http://ng1.17img.cn/bbsfiles/images/2011/02/201102141500_277598_1603372_3.jpg在1月8日《蜂蜜》国家标准修订研讨会后,蜂蜜标准修订草案的第一稿,已于近期发给全国蜂产品标准化工作组成员征求意见。  据悉,与GB 18796-2005版标准比较,修订草案第一稿主要有以下改动:将蜂蜜的定义改写为:蜜蜂采集植物的花蜜或活体植物的分泌物或吸吮活体植物的昆虫的排泄物,带回巢房中储存,并加入自身分泌的特殊物质进行转化沉积,脱水致成熟的天然甜物质。  取消了产品等级的划分。  水分含量改为:荔枝蜂蜜、龙眼蜂蜜、柑橘蜂蜜、鹅掌柴蜂蜜、乌桕蜂蜜≤23%,其他品种≤20%.  安全卫生要求简化为:应符合GB 14963要求。  真实性要求简化为:不得添加或混入除蜂蜜以外的其他物质。  相应的试验方法细化为:四碳植物糖采用GB/T18932.1规定的方法,试验结果应符合该标准附录A要求。按该标准7.1.2操作,若受试样品无蛋白质析出,亦判定为掺有四碳植物糖。  淀粉糖浆采用GB/T18932.2或GB/T21533规定的方法,试验结果应为阴性。若试验结果为阳性,则判定为掺有淀粉糖浆。  β-呋喃果糖苷酶采用SN××××规定的方法,试验结果应为阴性。若试验结果为阳性,则判定为掺有淀粉糖浆。  其它添加物采用相应的标准试验方法,试验结果应为阴性。http://www.woyaoce.com/news/news.asp?id=55880

  • 【分享】日本修订三氟羧草醚等7种农兽药的最大残留限量

    2011年6月14日,日本厚生劳动省发布G/SPS/N/JPN/278号通报:修订食品卫生法项下食品和食品添加剂标准和规范,涉及以下7种农兽药的最大残留限量:农药:1. 三氟羧草醚 Acifluorfen2. 二噻农 Dithianon3. 乳氟禾草灵 Lactofen4. 二甲戊乐灵 Pendimethalin5. 氟吡草胺 Picolinafen兽药:6. 左旋咪唑 Levamisole7. 甲苯咪唑 Mebendazole该通报的评议截止期为2011年8月8日,内容详见:http://members.wto.org/crnattachments/2011/sps/JPN/11_1819_00_e.pdf

  • 请教乙羧氟草醚含量检测

    [color=#444444]乙羧氟草醚,需要检验其百分含量,请问各位大侠有具体的方法用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测?据我所知,可以用有机液(比如甲醇)溶解,然后扣除溶解峰,就是主产品含量,请问大家,这个方法可行吗?甲醇检测方法和乙羧氟草醚检测的方法(温度控制方法初温,检测温度,)相同吗?[/color]

  • 【讨论】烟草企业员工爆出惊天秘密

    谁都知道香烟是有害的,可是大多数人只是知道烟的危害只是烟草的尼古丁,其实,真正的香烟的剧毒,藏在“过滤嘴材料”上。以下我所说的,绝对是真实的:一个在烟草生产行业的朋友,最近向我透露被他们烟草行业隐瞒了十年的秘密,力劝我戒烟,他说烟真不是人吸的。我把他的谈话整理成文告诉大家,吸烟的朋友们,为了健康,我们一起戒烟吧!我朋友说:“有些话早几年就想对你说,可一直都没机会.同时我也顾忌到许多东西.比如我本人的工资.可是看到我们的产品在害着许多不知情的人,我就于心不忍。良知一直折磨着我,今天见面,我看到你还是在吸烟,心里很难受,不把实情告诉你,是我不够朋友。我把实情透露给你,信不信由你,我还是劝你,为了你的健康,为了你的家人,为了你的幸福生活,为了我们的友情,你马上把烟戒了!”我朋友面露惧色:“你们那里会知道,国内的烟草行业为了降低生产成本,把本来的过滤嘴材料更换了,由于怕改变口味,引起消费者的不适应。目前只是把低档烟改了,也有部分企业把中高档烟也改了。以前的滤嘴填充物是木质纤维做的叫做醋酸纤维,价格比较高,但对人体无害,而且过滤效果比较好。现在的滤嘴材料竟是用聚丙稀代替的〔聚丙稀:一种塑料原料〕它本身是无毒的,但是它经过化学和物理处理后拉成了纤维丝,看上去和以前一样,但是会有很多肉眼看不到的细碎纤维丝在你吸烟时被你吸进你的肺里。要知道那些细小的纤维是没法再从你的肺泡里出来了。而且为了让消费者看不出来,我们还在纤维里加了粘和剂。因为很粘没法生产,于是又加入了稀释剂。这两种都是有挥发性质的胶体,里面含有大量的苯,芳香烃类和类似油漆里面的化合物。车间里的生产工人都有头晕,恶心,呕吐的迹象。试想人吸了会怎样?企业对此则严格保密。遇到有环评,贯标等单位来检查时,都把车间大门关死,不让人进出。只给人看老滤嘴的生产过程。滤嘴在接香烟时,由于塑料容易粘刀,不好切割,我们就在刀片上涂抹硅油(又一种致癌物)其实吸烟对人体本来就有害,可是再雪上加霜就会让身体受到更大的毒害,成为有毒香烟。消费者如果得了肺癌还以为只是吸烟太多造成的呢。劝你戒烟,仅此就是足够的理由了,希望能引起你的重视。”

  • 苯醚甲环唑与草铵磷的液质联用检测

    苯醚甲环唑与草铵磷的液质联用检测GB/T20769-2008这个标准我怎么找不到这两种农药残留的检测方法啊,你们是怎么检测这两种农药的,母离子、子离子分别是多少啊

  • 求草铵膦和丁醚脲检测方法

    GB 2763-2012标准中有涉及草铵膦和丁醚脲两种农药组分,但值给出MRL和ADI值,无告知相应的检测方法可供参考。请各位色友帮忙哦。先谢了!

  • 云南白药承认含草乌称药品安全

    云南白药最近修改了药品说明书,明确配方中含“草乌”成分。草乌又称断肠草,主要作用成分为乌头碱,有剧毒。早在2013年2月,云南白药就在香港被检出含有未标注的毒性成分乌头类生物碱(草乌的主要成分),香港卫生署及澳门卫生局随即对云南白药发出禁售及回收命令。 由于云南白药被列为国家保密品种,根据国家保密法律法规有关规定,凡列入国家保密的品种,其说明书、标签可不列成分项目。因此,对于白药的配方,云南白药一直讳莫如深。而此次是云南白药首次修改药品说明书并承认含草乌的说明。 在市场议论纷纷之时,今日(4月8日)云南白药发布公告表示,根据国家药监局《关于修订含毒性中药饮片中成药品种说明书的通知》的要求,公司相关药品说明书的修改工作于2013年12月底全部完成。 同时,云南白药还出具了两份此前对于云南白药安全性的说明,在2013年2月6日,云南白药就乌头碱类物质进行了说明,并出具数据:“在2010年至2012年间,共生产销售云南白药(4g/瓶)1亿瓶、云南白药胶囊(0.25g/粒)17亿粒,公司通过主动开展不良反应监测工作,三年间共监测到涉及云南白药和云南白药胶囊的各类不良反应共计28例,主要表现为皮肤过敏、发痒等;未监测到严重不良反应,产品的有效性和安全性毋庸置疑。” 另一方面,就公众广泛关注的2013年2月香港卫生署下架部分白药药品事宜,在上市公司配合香港卫生署要求补充完善相关产品注册程序后,香港卫生署已同意恢复上架,并于2013年11月起在香港全面恢复正常销售。云南白药还重申,云南白药产品安全有效。

  • 【原创大赛】短柄草全基因组密码子用法分析分析

    【原创大赛】短柄草全基因组密码子用法分析分析

    [align=center]短柄草全基因组密码子用法分析分析[/align]摘要:本研究运用CodonW程序分析了短柄草全基因组的密码子使用特性,并且通过对应分析探讨了若干重要因子对短柄草全基因组序列密码子用法的影响。结果表明短柄草基因组存在高[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量和低[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量的基因,它们在密码子使用上差异较大。Nc-plot曲线表明基因组的密码子组成受到碱基组成的影响;对应分析显示,在DNA水平上发生的核苷酸突变可能是造成短柄草基因组密码子使用偏好的主要因素;同时,基因长度和蛋白质疏水性对密码子的使用也存在一定偏性,但影响程度不大。确定了UUC等27个以G或C碱基结尾的密码子为“最优密码子”,研究结果可为短柄草基因的鉴定、表达、结构、功能等的深入研究提供参考。关键词:同义密码子偏好性,短柄草基因组,对应分析近年来,随着分子生物学的快速发展,许多小基因组的低等生物和高等模式生物的全基因组序列均被测定,为利用生物信息学方法挖掘海量基因组数据提供了便利。密码子是生物体内遗传信息传递的基本环节,是核酸携带信息和蛋白质携带信息间对应的基本规则。在长期进化过程中,任一物种的基因都会逐渐适应宿主的基因组环境,而形成特定的且符合宿主基因组的密码子用法,因此不同生物具有不同的密码子使用模式。以生物基因组数据为基础,研究其密码子使用模式,为深入研究基因的结构、功能和基因组进化,以及指导基因转化等具有重要意义。密码子具有简并性,生物在同义密码子的使用上并不是完全随机的,而是具有一定的偏向性,对有的密码子使用频率高,有的使用频率低,甚至避免使用,这种不均衡使用密码子的现象普遍存在于原核和真核生物中。早在20世纪70年代,人们在研究基因的异源表达时,就已经意识到密码子偏性的重要性[1],随着不同生物基因组数据的获得和各种数据库的构建,更多的研究者对密码子偏性的研究产生了浓厚的兴趣,尤其在分子进化,翻译调控等研究领域,通过对不同物种的密码子使用偏性的大量研究[2~4],发现不同物种的基因在密码子使用上存在着明显的偏性。 短柄草是一种广泛分布于温带地区的禾本科植物,与小麦,大麦和燕麦同属早熟禾亚科,原产于非洲北部,欧洲南部和亚洲中部,包含约10个亚种。该植物为一年生,自花授粉,植株高度15~20cm,生育期70~80d,柄草植株较小,适应性强,不象种植水稻那样需要严格的生长条件。生育期短,籽粒产量较高,一年可以繁殖4~5代,繁殖系数达140左右。未成熟胚和成熟胚愈伤组织诱导率高,农杆菌介导和基因枪介导的转化体系已经建立,胚性愈伤组织分化率90%以上,转化效率最高可达55%左右。基因组小,染色体少,DNA重复序列低,获得突变体容易,突变性状容易显现,具备了模式植物的所有基本特征。加之短柄草基因组序列与黑草麦,小麦,大麦等早熟禾亚科植物高度相似,很多重要农艺性状与温带禾草类植物相似,如株型,穗型,粒型,抗逆性,生长习性和病原菌等,其中麦类作物白粉病菌,条锈病菌和稻类作物瘟病菌都可侵染短柄草植株,引起相应症状[7]。其籽粒不含高分子量麦谷蛋白亚基,低分子量麦谷蛋白亚基也很少,并与小麦一样具有二倍体,四倍体和六倍体,因此短柄草是小麦等基因组庞大的重要农作物理想的模式植物,借此来获得目前小麦等早熟禾类植物中尚缺少的遗传信息和基因共线区,进而对小麦等重要植物进行基因定位,克隆,突变,测序和功能等方面的研究[8]。 目前,在短柄草的生物学、细胞学和遗传学特性方面开展了大量研究,并且其全基因组测序也基本完成[9],为深入研究其密码子用法提供了便利。因此本研究将以短柄草全基因组序列为基础,分析其基因的密码子用法特性和影响密码子使用的因素等,其研究结果将对指导转基因及对基因进行特定分子改造,提高其在短柄草中的表达效率和完善基因预测软件,提高基因预测和基因组注释准确性等均具有重要的参考价值,同时也为深入开展基因结构和功能,分子进化等研究提供理论基础。1.实验材料与方法1.1材料 短柄草全基因组DNA序列来源于短柄草官方数据库(http://www.brachypodium.org/node/8),根据基因组序列的注释信息,获得蛋白编码基因序列,为了减少长度较短的基因变异带来的样本误差,根据国际惯例,去除小于300bp的基因,去除中间不表达的密码子,终止密码子。编写程序提取剩下的蛋白编码基因的CDS(coding sequence)序列。1.2方法用codonw软件计算短柄草全基因组的密码子用法相关参数,主要包括有效密码子数(Effective Number of Codon,ENC)、基因的G+C含量([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]%)、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3s%、相对同义密码子使用度(relative synonymous codon usage,RSCU)、氨基酸组分指数(平均亲水性值(gravy))、基因长度即氨基酸数(L_aa)。其中,有效密码子数(Effective Number of Codon,ENC)描述密码子使用偏离随机选择的程度,能反映密码子家族中同义密码子的非均衡性的偏好;其取值范围在20到61之间,即如果每种氨基酸只使用一种密码子则有效密码子数为20,如果各种同义密码子的使用机会完全均等,则有效密码子数为61,数值越小偏性越强。此值是以描述密码子使用偏离随机选择的程度,能反映密码子家族中同义密码子的非均衡性的偏好。基因密码子偏爱程度越大,ENC值越小。RSCU是指对于某种特定的密码子在编码对应氨基酸的同义密码子间的相对频率;[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3s%表示同义密码子第三位碱基的G+C的含量。为进一步了解该家族基因密码子使用特征和影响密码子使用的因素,对7个基因的相对同义密码子使用度进行了对应性分析(correspondence of analysis,COA)。2 结果与分析2.1 基因的碱基组成对密码子使用的影响图一 短柄草基因NC值散点图[img=,515,409]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311236371230_3093_3295053_3.png!w515x409.jpg[/img]2.2短柄草基因密码子使用特性的对应性分析[img=,690,535]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311237226440_1452_3295053_3.png!w690x535.jpg[/img][img=,690,534]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311237233450_935_3295053_3.png!w690x534.jpg[/img]2.3 确定最优密码子Phe UUU 0.05 (323) 1.23 (19733) Ser UCU 0.22 (990) 1.60 (23834) UUC* 1.95 (13527) 0.77 (12294) UCC* 2.55 (11715) 0.64 (9499) Leu UUA 0.02 ( 93) 0.83 (11755) UCA 0.14 (629) 1.52 (22651) UUG 0.16 (1003) 1.37 (19558) UCG* 1.53 (7023) 0.35 (5159) CUU 0.14 (847) 1.55 (21987) Pro CCU 0.22 (1306) 1.57 (17584) CUC* 3.38 (20676) 0.61 (8661) CCC* 1.35 (7940) 0.47 (5299) CUA 0.07 (452) 0.70 (9983) CCA 0.20 (1184) 1.62 (18078) CUG* 2.23 (13637) 0.94 (13401) CCG* 2.22 (13058) 0.34 (3792) Ile AUU 0.12 (398) 1.41 (21216) Thr ACU 0.10 (401) 1.46 (16515) AUC* 2.76 (9124) 0.70 (10557) ACC* 1.75 (7291) 0.66 (7397) AUA 0.12 (380) 0.89 (13461) ACA 0.12 (509) 1.56 (17636) Met AUG 1.00 (8512) 1.00 (20892) ACG* 2.03 (8478) 0.32 (3563) Val GUU 0.10 (693) 1.67 (23852) Ala [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]U 0.14 (1914) 1.65 (26184) GUC* 1.71 (12491) 0.63 (9025) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]C* 1.98 (27398) 0.58 (9131) GUA 0.05 (349) 0.75 (10713) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]A 0.13 (1802) 1.48 (23459) GUG* 2.14 (15605) 0.95 (13562) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]G* 1.75 (24170) 0.29 (4678) Tyr UAU 0.05 (229) 1.28 (14480) Cys UGU 0.06 (194) 1.10 (9360) UAC* 1.95 (8126) 0.72 (8075) U[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 1.94 (6645) 0.90 (7595) TER UAA 0.42 (172) 0.82 (335) TER UGA 1.63 (665) 1.30 (530) UAG 0.94 (384) 0.87 (356) Trp UGG 1.00 (4992) 1.00 (10053) His CAU 0.15 (598) 1.42 (16785) Arg CGU 0.16 (750) 0.85 (6945) CAC* 1.85 (7568) 0.58 (6825) C[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 2.75 (12565) 0.49 (4043) Gln CAA 0.15 (627) 1.05 (20215) CGA 0.11 (500) 0.64 (5273) CAG* 1.85 (7975) 0.95 (18259) CGG* 1.92 (8761) 0.55 (4527) Asn AAU 0.12 (465) 1.31 (26650) Ser AGU 0.05 (235) 1.13 (16754) AAC* 1.88 (7141) 0.69 (13985) A[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 1.52 (7002) 0.77 (11441) Lys AAA 0.11 (552) 0.98 (27077) Arg AGA 0.10 (445) 1.94 (15854) AAG* 1.89 (9406) 1.02 (28423) AGG 0.96 (4387) 1.53 (12516) Asp GAU 0.15 (1344) 1.44 (39136) Gly GGU 0.11 (882) 1.34 (18423) GAC* 1.85 (16539) 0.56 (15322) G[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 2.53 (20795) 0.71 (9826) Glu GAA 0.17 (1437) 1.13 (36292) GGA 0.19 (1522) 1.26 (17423) GAG* 1.83 (15812) 0.87 (27746) GGG* 1.18 (9700) 0.69 (9476) 注:Number of codons in high bias dataset 372333 Number of codons in low bias dataset 915109标注*的密码子是(p 0.01)3 讨论密码子使用偏好是突变偏好、自然选择和遗传漂变等共同作用的结果,与碱基组成、翻译选择压力、基因表达水平、基因长度、蛋白质氨基酸组成、碱基突变频率和模式、mRNA二级结构稳定性等很多因素有关[17]。张晓峰[18]等研究表明,单子叶植物基因组的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量在同义密码子使用偏性的产生过程中起着决定性的作用,同义密码子使用偏性强烈的基因往往偏爱使用C或G结尾的密码子,且第三位密码子突变往往是密码子偏好性发生变化的决定原因。短柄草基因密码子使用模式的调查表明其中有高含量的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],并且[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3的含量高于[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]1和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2。这表明相对于以A和T结尾的密码子而言,这些基因偏好于使用以G或C结尾的密码子。从原核生物到真核生物的基因中,密码子使用偏好是一个被广泛研究的重要进化现象。研究发现,许多因素,比如碱基组成,基因表达水平,蛋白质疏水性等影响着密码子的使用。为了解释密码子使用偏好的起因,也有许多假设被提了出来。其中被广为接受理论是“选择——突变——漂移”模型。该模型认为在对偏好密码子的选择和通过突变-漂移对非偏好密码子的保留之间,同义密码子的使用偏性存在一种平衡。本文的研究结果显示,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3s值与ENC值密切相关,并且基因也位于第一轴线,揭示了碱基组成是影响短柄草基因组中的密码子使用偏好的主要因素。碱基组成是影响短柄草基因密码子使用的主要因素,基因长度和蛋白质的疏水性在短柄草基因密码子使用中也起到了一定的作用,相似的结果在水稻、小麦中被发现[15,19]。本研究发现,在基因长度和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]之间存在很强的负相关性。这表明,高[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量的基因越短,密码子偏好就越大。可能的原因是富含AT基因的翻译效率比富含[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]基因的翻译效率更高,这种效率的差异对长的基因更为重要。通常,全基因组的基因表达值在许多多细胞真核生物中并不能得到,特别是基因表达水平在不同的组织和不同发育阶段不一样时。因此,要定量相当困难。在短柄草基因组中,目前还缺少相当数量的基因表达的准确数据。另外,我们发现[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量特别是在第三个碱基位置的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量较大的影响着密码子的偏好时,暗示着碱基突变可能是重要因素,同时,碱基突变又受控于翻译选择。所以,尽管基因表达水平影响着密码子的使用,但这影响还是远远小于核苷酸组成对密码子使用的影响。因此,我们没有进一步分析基因表达的影响。通过优化密码子,提高外源基因在微生物、植物、动物中的表达已有不少成功报道,而确定最优密码子可为合理有效进行密码子改造提供可靠信息。本文确定了UUC等27个密码子为短柄草全基因组的最优密码子。分析结果可为指导转基因及对基因进行特定分子改造,提高其在短柄草中的表达效率和完善基因预测软件,提高基因预测和基因组注释准确性等提供重要的参考价值。参考文献[1] Stanley D,Farnden K J F, MacRae E A. Plant a-amylases:Func-tions and roles in carbohydrate metabolism[J]. Biologia,Bratislava,2005.60(suppl l6):65-71[2] Smith AM. Zeeman SC, Smith S M. Starch degradation[J]. Annu Rev Plant Biol,2005,56(25):73-98[3] Asatsuma S, Sawada C, Itoh K et al. Involvement of α-amylase I-1 in starch degradation in rice chloroplasts[J]. Plant Cell Physiol,2005,4:858-869[4] Kaplan F, Guy C L. β-amylase induction and the protective role of maltose during temperature shock[J]. Plant Physiol, 2004, 1:1674-1684 [5] Kaplan F,Guy C L. RNA interference of Arabidopsis beta-amylase 8 prevents maitose accumulation upon cold shock and increases sensitivity of PSII photochem-ical efficiency to freezing stress[J]. Plant J.2005,44(13):730-743[6] Joho Mundy, Anders Brandt. Messenger RNAs from the Scutellum and Aleurone of Germinating Barley Encode (lm3,14)--D-Glucanase, a-Amylase and Carboxypeptidase[J]. Plant Physiol, 1985,79(5):867-871 [7] 言普,李桂双.高压对水稻种子细胞膜透性和淀粉酶活性的影响[J]. 浙江大学学报(农业与生命科学版),2007,33(5):174-179[8] Monica M, Sanwo and Darleen A. DeMason. Characteristics of a-Amylase during Germination of Two High-Sugar Sweet Corn Cultivars of Zea mays L[J]. Plant Physiol, 1992,99(8):1184-1192[9] Goldman N , Yang Z. A codon based model of nucleotide substitution for protein coding DNA sequences[J]. Molecular Biology and Evolution,1994,11(9):725-736[10] Schmidt W. Phylogeny reconstruction for protein sequences based on amino acid properties[J]. Mol Evol,1995,41(8) :522-530[11] 时成波, 吕安国.改造稀有密码子提高SEA蛋白表达量[J]. 生物工程学报,2002,18(4):477-480[12] Ghosh T C , Gupta S K, Majumdar S. Studies on codon usage in Entamoeba histolytica[J]. Int J Parasitol,2000,30(6): 715-722[13] Musto H, Cruveiller S. Translational selection on codon usage in Xenopus laevis[J].Molecular Biology and Evolution,2001,18(9):1703-1707[14] 廖登群,张洪亮等. 水稻(Oryza sativa L.)a-淀粉酶基因的进化及组织表达模式[J]. 中国农业大学学报,2009,14(5):1-11[15]刘汉梅,何瑞. 玉米密码子用法分析[J]. 核农学报,2008,22(2):141-147[16] Jia M, Luo L. The relation between Mrna folding and protein structure[J]. Biophys Res Commum, 2006,343(4):177-182[17] 赵耀,刘汉梅. 玉米waxy基因密码子偏好性分析[J]. 玉米科学,2008,16(2):16-21 [18] Wang H C,Hickey D A. Rapid divergence of codon usage patterns within the rice genome[J].BMC Evol Biol,2007,15(8):347-356

  • 【分享】十大危险植物:捕鼠猪笼草问鼎

    【分享】十大危险植物:捕鼠猪笼草问鼎

    经过数百万年的进化,植物已经掌握一些巧妙的“防身术”以抵御饥饿的动物,其中包括致命神经毒素、能够刺穿汽车轮胎的荆棘以及强大的消化酶。美国《大众机械》杂志对有毒植物研究专家艾米斯图尔特进行了采访,以了解世界上一些最危险的植物。  斯图尔特曾撰写过《邪恶的植物:一部有关植物暴行的著作》(Wicked Plants: A Book of Botanical Atrocities),现定居美国加利福尼亚州尤里卡。在尤里卡的一个花园内,斯图尔特栽种了30多种不同类型的有毒植物。以下就是十种危险植物:(新浪科技讯 )1.巨型猪笼草巨型猪笼草学名“Nepenthes attenboroughii”,是在菲律宾维多利亚山海拔5000英尺(约合1524米)的地区发现的。这种肉食植物能够分泌一种类似花蜜的物质,引诱没有疑心的猎物主动进入一个酶和酸的“死亡之池”。一系列充满粘性的下垂主叶脉让掉入陷阱的猎物成功逃走的想法化为泡影。  巨型猪笼草的直径达到30厘米,足以捕获倒霉的啮齿类动物,但通常情况下,它们还是主要以昆虫为食。全世界共有大约600种不同类型的猪笼草,通常生活在氮缺乏的环境,为此,它们需要从腐烂的猎物尸体中获取营养物质。[img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909180857_171661_1607864_3.jpg[/img]

  • Nat Chem Biol:古老中草药治疗的分子秘密

    http://www.bioon.com/biology/UploadFiles/201202/2012021423545689.jpg约二千年以来,中医一直用一种通常称为常山的根提取物治疗疟疾,其中常山来自一类生长在西藏和尼泊尔的八仙花属植物。最近的研究表明,常山酮(溴氯哌喹酮)也可以用来治疗许多种自身免疫性疾病,其中常山酮是一种衍生自这种提取物活性成分的化合物。现在,哈佛大学牙科医学院的研究人员已经发现这种中草药提取物粉末背后的分子秘密。已证明常山酮(HF)触发一种阻断一类有害免疫细胞发展的应激反应通路,这类有害免疫细胞称为Th 17细胞,它被牵涉入许多自身免疫性疾病中。"HF防止自体免疫反应,不完全抑制免疫力",此项新研究的通讯作者、哈佛大学牙科医学院发育生物学教授 Malcolm Whitman说,"这种化合物能激发各种自身免疫性疾病的新治疗方法"。"这项研究是一个如何解决传统草药分子机制的令人兴奋的例子,它可导致生理调节的新见解和治疗疾病的新方法",Tracy Keller说,他是Whitman实验室的一名讲师,也是此文章的第一作者。这项研究包括一个马萨诸塞州总医院和其他地方的跨学科研究小组的研究人员,其中包括一个多学科小组的研究人员在和其他地方,它将被在线发表在2月12日的Nature Chemical Biology上。以前的研究已经表明,HF减少组织内疤痕、硬皮症(一种皮肤紧缩症)、多发性硬化症、瘢痕形成甚至癌演进。"我们认为,HF必须作用于有许多下游效应的信号通路", Keller说。在2009年,Keller和同事们报道,HF在不影响其他有益的免疫细胞情况下保护免受有害的Th17免疫细胞。自2006年被识别以来,Th 17细胞是暗含在许多象炎症性肠疾病、类风湿性关节炎、多发性硬化症和牛皮癣一样的自身免疫性疾病的"糟糕反应物"。研究人员发现,小剂量HF降低小鼠模型上的多发性硬化症。照这样,它是药物的新军械库其中之一,这种药物选择性地抑制自身免疫性病理不整体性地抑制免疫系统。进一步分析表明,HF某种程度上打开一个参与新近发现的称为氨基酸反应通路(AAR)的基因。科学家们最近才理解营养AAR传感通路在免疫调节与代谢信号中的作用。也有证据表明,它延长寿命并延迟热量限制动物研究中与年龄有关的炎症性疾病。作为一位分类自然资源保护学家,AAR让细胞知道它们什么时候需要保护资源。例如,当一个细胞感觉建造蛋白质的氨基酸的有限供应,AAR将阻断促进炎症的信号,因为发炎组织需要大量的蛋白质。"想想停电期间我们如何保养小果汁我们离开我们的设备上,上述聊天支持紧急呼叫",Whitman说,"细胞利用类似的逻辑"。对当前研究来说,研究人员调查研究HF如何激活AAR通路,寻找细胞用来将一个基因DNA编码翻译成构成蛋白质的氨基酸链的最基本过程。研究人员能追击称为脯氨酸的单一氨基酸,并发现HF靶向且抑制一种特异酶(tRNA合成酶,EPRS),这种特异酶负责将脯氨酸掺入通常含有脯氨酸的蛋白质中。当这发生时,AAR响应踢掉砸开并产生HF治疗的疗效。提供补充的脯氨酸逆转HF对Th 17细胞分化的效应,而添加回其他氨基酸没有逆转作用,为脯氨酸掺入建立HF特异性。补加的脯氨酸也逆转HF的其他治疗作用,抑制它抗疟疾的效应及与疤痕组织相关的特定细胞过程。再次,补充其他氨基酸却没有这样的效果。这样固定证据清楚地表明,HF特异地作用于受限制的脯氨酸。研究人员认为,HF治疗模仿了细胞内脯氨酸丧失,这激活AAR反应,并随后冲击免疫调节。研究人员还没完全了解氨基酸限制在疾病反应中的作用或限制脯氨酸为什么抑制Th 17细胞的产生。然而,"AAR通路显然是一个有趣的药物目标,且常山酮除了其潜在的治疗用途外是一种研究AAR通路的强大工具", Whitman说

  • 除草剂:氨唑草酮 介绍

    氨唑草酮(BAY314666)是拜耳公司1988年发现的三唑啉酮类除草剂,1999年在英国布莱顿世界植保大会上推出。氨唑草酮为光合作用抑制剂,敏感植物的典型症状为褪绿、停止生长、组织枯黄直至最终死亡,与其它光合作用的抑制剂(如三嗪类除草剂)有交互抗性,主要通过根系和叶面吸收。具有内吸活性,通过抑制敏感植物的光合作用,干扰正常的电子传递。通常使用三到四周就能产生效果。http://ng1.17img.cn/bbsfiles/images/2017/04/201704222147_01_1623180_3.jpeg氨唑草酮欧洲专利EP0370293,已于2009年11月3日到期;美国专利US5194085,已于2010年5月15日到期。氨唑草酮的适用对象主要为甘蔗、玉米和草坪。它可以有效防治玉米和甘蔗上的主要一年生阔叶杂草和禾本科杂草。在玉米上,氨唑草酮对苘麻、藜、野苋、宾州苍耳和甘薯属等具有优秀防效,此外对甘蔗上的泽漆、甘薯属、车前臂形草和刺蒺藜草等也有很好的防效。甘蔗玉米在我国种植面积较大,因此氨唑草酮在我国的应用市场也比较广阔。氨唑草酮的最大优点是有抗旱和非毒性特性,应用更灵活,能降低工作量,减少整修,降低杀菌剂、杀虫剂和植物生长调节剂的使用。除草时间长,对地下水安全,对后茬作物安全,用量仅为莠去津的1/2—1/3,也因此成为了高毒农药莠去津等的最佳替代产品。与莠去津相比,氨唑草酮原药成本较高。另据业内人士透露,该产品在玉米作物中使用尚存安全性问题,因此目前国内市场上并无氨唑草酮产品的销售。

  • 日本修改异恶唑草酮、甲咪唑烟酸、丁氟消草、腈苯唑等农药部分基准值(2012年)

    下記農薬について、食品中の残留基準を設定・イソキサフルトール(Isoxaflutole,异恶唑草酮,用途:除草剤)・イマザピック(Imazamethapyr,甲基咪草烟; 甲咪唑烟酸,用途:除草剤)※・エタルフルラリン(Ethalfluraline,丁氟消草,用途:除草剤)・フェンブコナゾール(Fenbuconazole,腈苯唑,用途:殺菌剤)・フロニカミド(FLONICAMID,氟啶虫酰胺,用途:殺虫剤)・ぺノキススラム(Penoxsulam,五氟磺草胺,用途:除草剤)・マンジプロパミド(Mandipropamid,双炔酰菌胺,用途:殺菌剤)※今回基準値を設定するイマザピックはイマザピックアンモニウム塩として暫定基準が設定されていたため、イマザピックアンモニウム塩として経過措置を設定しているが、各種試験はイマザピックを用いて実施されていること、海外における基準値はイマザピックの残留量を考慮して設定されていることから、今後は告示においては、イマザピックアンモニウム塩は「イマザピック」とする。・フェンブコナゾール:かき等6食品・フロニカミド:小豆等27食品・ぺノキススラム:ぶどう等5食品・マンジプロパミド:だいこん類(ラディッシュを含む。)の葉等7食品・イソキサフルトール:米(玄米をいう。)等7食品・イマザピック:豚の筋肉等17食品・エタルフルラリン:きゅうり(ガーキンを含む。)等9食品・フロニカミド:羊の筋肉等15食品・イソキサフルトール:とうもろこし等19食品・イマザピック:牛の脂肪等9食品・フェンブコナゾール:みかん等10食品・フロニカミド:クレソン等32食品・マンジプロパミド:はくさい等20食品≪施行・適用期日≫ 平成24年6月14日 ※ただし、下記の農薬等ごとに掲げる食品に係る残留基準値については、  平成24年12月14日から適用。 ◆イソキサフルトール  米、小麦、大麦、ライ麦、とうもろこし、そば、その他の穀類、  その他のスパイス、豚の肝臓、その他の陸棲哺乳類に属する動物の肝臓、  乳、鶏の卵及びその他の家きんの卵 ◆イマザピック  豚の筋肉、豚の脂肪、豚の肝臓、豚の腎臓、豚の食用部分及び乳 ◆エタルフルラリン   きゅうり、かぼちゃ、しろうり、すいか、メロン類果実、まくわうり、  その他のうり科野菜、えだまめ及びべにばなの種子

  • 【金秋计划】木犀草素纳米混悬剂的制备及其体外肠吸收研究

    木犀草素(luteolin),别称草木犀、黄示灵等,大多以糖苷的形式广泛存在于多种中药材、天然药用植物[1]及蔬菜[2]中的一种黄酮类化合物,是一种天然色素成分,可以作为食用色素添加于食品中。木犀草素的化学名为3′,4′,5,7-四羟基黄酮(3′,4′,5,7-tetrahydroxyflavone),物理状态为淡黄色结晶状粉末,熔点为330 ℃,包含4个酚羟基,具有弱酸性,可溶于碱性溶液中,因脂溶性高而难溶于水,从而阻碍了其在体内的吸收与利用[3]。木犀草素具有抗炎和抗菌[4-5]、抗氧化[6]、抗肿瘤[7]、神经保护[8]、抑制肺纤维化[9]及肺癌[10-11]和心血管疾病[12]等多种药理作用。由于水溶性差(仅为6.0 mg/L)、生物利用度率低等原因限制了其成药性和临床应用。针对这一问题,近年来许多学者开展了增加木犀草素溶解度的研究,如微球[13]、纳米胶束[14]、金属配合物[15]、自微乳[16]、脂质体[17]等,并明显提高了其生物利用度,这表明木犀草素的肠道渗透性不是限制其生物利用度的关键因素,其属于生物药剂学系统II类药物。因此,采用制剂技术提高木犀草素的溶解性是可以改善其成药性和生物利用度的,将有利于推广其临床应用。然而上述开发的剂型仍存在诸多的缺点,如工艺复杂、载药量低、生物安全性差、成本高等,难以大范围推广应用。近年来,逐步发展成熟的纳米混悬剂[18]作为一种新剂型,与传统纳米制剂相比,它具有载药量高、溶出度高、添加剂用量少、易于放大生产等优点。因此,本实验尝试将难溶性木犀草素制备成纳米混悬剂以提高其水溶性和生物利用度,改善其成药性和临床优势。 为此,本实验首先采用微沉淀-高压匀质法制备口服木犀草素纳米混悬剂(luteolin nano-suspension,LNS),并以纳米粒的粒径、稳定性、多分散性指数(polydispersity index,PDI)、ζ电位等为考察指标,采用单因素考察法筛选LNS的稳定剂和最优药物-稳定剂比;接着,对LNS的理化性质进行考察,并分析其物理状态和体外溶出行为;最后通过大鼠外翻肠模型考察药物在肠道不同部位的吸收转运情况,探索药物在肠道内的吸收速率和最佳部位,预测纳米混悬剂可能存在的体内吸收行为,既可以用于木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供基础。 1 仪器与材料 1.1 仪器 ZNCL-BS180型恒温磁力搅拌器,北京市永光明医疗仪器有限公司;AL104-1C型精密分析天平,上海鼎科科学仪器有限公司;NS1001L型高压匀质机,意大利GEA [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o Soavi公司;Nanotrac wave II型激光粒度仪型激光粒度仪,美国麦奇克有限公司;LC3100型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],安徽皖仪科技股份有限公司;ZWY-103D型恒温振荡仪,上海智诚分析仪器制造有限公司;H1650-W型医用离心机,湖南湘仪实验室仪器开发公司;DZF-6030型真空干燥箱,上海精宏实验设备有限公司。JEOL 2010型透射电子显微镜(TEM),日本JEOL公司。 1.2 试剂 木犀草素原料药,批号JZ19021403,质量分数97.0%,南京狄格尔医药科技有限公司;木犀草素对照品,批号ps1032-0025,HPLC质量分数≥98%,成都普思生物科技有限公司;十二烷基磺酸钠(sodium dodecyl sulfonate,SDS),医药级,河南圣拓实业有限公司;泊洛沙姆188(Poloxamer 188,Pluronic,F68),医药级,西安天正药用辅料有限公司;维生素E聚乙二醇琥珀酸酯(D-α-tocopherol polyethylene glycol 1000 succinate,TPGS),医药级,上海惠诚生物科技有限公司;二甲基亚砜(dimethyl sulfoxide,DMSO),分析纯,天津市德恩试剂有限公司。 1.3 动物 SD大鼠购买于河南省实验动物中心,体质量(200±20)g,合格证号:SCXK(豫)2017-0001。所有动物实验均经过河南大学动物伦理委员会审核批准(HUSOM2019-216)。 2 方法与结果 2.1 LNS的制备 2.1.1 LNS中稳定剂的选择 将40 mg木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再取等量的稳定剂(SDS、F68、TPGS)溶解于纯水中(作为水相,或称反溶剂相);在室温下,将有机相通过注射器快速注入转速为1 800 r/min的反溶剂相中,继续搅拌10 min,得到预混悬剂;将预混悬剂转移至高压匀质机中,分别以20.0、50.0、80.0 MPa的压力循环匀质5、5、25次,得到LNS。 利用动态光散射仪分别考察LNS的粒径、多分散系数(polydispersity index,PDI)、表面电荷(ζ电位)和稳定性。本实验以不同稳定剂(SDS、F68、TPGS)制备的LNS粒径大小、PDI、ζ电位结果如表1所示。3种稳定剂所制备的粒径均在100~500 nm。以SDS为稳定剂制备的纳米混悬剂粒径最大,以F68为稳定剂制备的纳米混悬剂PDI最大,以TPGS为稳定剂制备的纳米混悬剂ζ电位最大,但是3者没有较大的差异,因此对于预测稳定性来说,上述结果难以判断哪个稳定剂制备的LNS会有良好的贮存稳定性。 因此,本实验又对各种条件的贮存稳定性进行了研究,结果见图1。以SDS、F68为稳定剂制备的纳米混悬剂在1周内粒径呈现持续增长的趋势,而以TPGS为稳定剂制备的LNS粒径未出现明显变动,由此可知,本实验中以TPGS为稳定剂制备的LNS具有较好的物理稳定性。 2.1.2 LNS中药物-稳定剂质量比的筛选 将40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再分别按照木犀草素与TPGS的质量比为1∶2、1∶1、2∶1称取TPGS,溶解于水中,得到反溶剂相;再按上述工艺制备LNS,得到不同药物-稳定剂质量比的LNS。利用动态光散射仪分别考察纳米混悬剂的粒径、分布、ζ电位和稳定性。不同药物-稳定剂比制备的LNS的理化性质研究结果见表2和图2。如表2所示,3种不同药物-稳定剂比制备的LNS的粒径分别为(289.3±6.6)、(210.7±2.0)、(34.6±3.7)nm,3种LNS的PDI接近,1∶2时ζ电位最大,2∶1时ζ电位没测到。虽然药物与稳定剂的质量比为2∶1时,其粒径与1∶2、1∶1时相差较大,但是粒径难以反映稳定性情况。因此,接下来考察了1∶2、1∶1、2∶1 3种不同比例下制备的LNS的稳定性,结果如图2所示。当药物-稳定剂比为2∶1和1∶2时,在2周内粒径变化幅度都较为明显,说明其稳定性表现均极差;而当药物-稳定剂比为1∶1时,制备的纳米混悬剂的粒径基本保持稳定,表明其稳定性较好。因此,本实验最终选用药物-稳定剂比为1∶1。 2.1.3 最优制备处方和方法的确定 依照LNS的稳定剂及药物-稳定剂比的筛选结果,初步确定LNS的最优制备处方与方法如下:将精密称取40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相;将40 mg TPGS搅动溶解于40 mL纯水中作为水相,将有机相快速注入转速为1 800 r/min的水相中,搅动10 min,得到预混悬剂;将制备的预混悬剂倒入高压匀质机的导入槽中,分别以20.0、50.0、80.0 MPa的压力,分别循环匀质5、5、25次,得到LNS。重复制备3批,以粒径、PDI和ζ电位考察制剂处方和制备工艺的稳定性。 2.2 LNS的表征 2.2.1 粒径、ζ电位及形态分析 将最优处方制备的3批LNS分别通过激光粒度分析仪测定其粒径、PDI、ζ电位,结果LNS的粒径为(209.00±3.24)nm(n=3),PDI都低于0.228±0.013(n=3),粒径分布图见图3;ζ电位值为(?16.80±0.27)mV (n=3),较小的PDI和绝对值较大的ζ电位,意味着LNS可能具有较好的长期稳定性[19]。 再取适量的LNS加蒸馏水稀释到适当倍数后,滴在覆有支持膜的铜网上,自然环境下干燥后,通过TEM观察其形态特征及大小,并成像,结果见图4。LNS呈现均匀分散的球形或椭圆形颗粒,粒径约为180 nm,比动态光散射测定结果较小,这可能是由于TEM样品为干燥品,导致粒子外层亲水部分失水而收缩[20]。 2.2.2 储存稳定性 将制备的LNS分别放在4 ℃和室温环境中,在预定的时间点取样,通过激光粒度分析仪测定其粒径和PDI,连续考察14 d,每个样品平行操作3份,结果见表3。LNS在4 ℃和室温下储存2周后,粒径和PDI稍有增加,但变化范围都较小,说明该LNS的储存稳定性较好。 2.2.3 体外胃肠环境中的稳定性 以pH 1.2和pH 6.8的缓冲溶液模拟胃液和肠液,将制备的LNS分别以1∶1与上述2种缓冲溶液混合,并于37 ℃水浴中放置,在预定的时间点0、2、4、6、8、12、24 h时取样,通过激光粒度分析仪测定其粒径,连续考察24 h,每个样品平行操作3份,结果见表4。在2种37 ℃的缓冲溶液中孵育24 h内,LNS的粒径和PDI几乎无变化,表明LNS在2种环境中能保持稳定,这表示LNS口服给药后,在经胃肠道给药时能保持良好的稳定性,这有利于木犀草素到达肠道后仍以纳米晶存在,从而有利于木犀草素的快速释放而获得较高的生物利用度。 2.2.4 纳米混悬剂的物理状态研究 本实验选用DSC来确定LNS中的木犀草素晶型是否发生了改变,测试样品有木犀草素、TPGS、木犀草素与TPGS的物理混合物和LNS。以空铝盘作为空白对照,分别精密称取3~5 mg的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS干粉放于差式扫描量热分析(differential scanning calorimetry,DSC)仪中,N2流(40 mL/min)保护下,以10 ℃/min升温速度持续升温,升温范围设置为40~600 ℃,记录差式扫描量热分析图谱,所有测试样品重复分析3批,结果见图5。木犀草素和LNS、物理混合物均是结晶,其熔融温度为339.38 ℃,稳定剂对木犀草素的熔融温度基本无影响。这表明LNS中的木犀草素仍处于结晶状态,稳定剂的存在不会改变木犀草素的晶型。在木犀草素和LNS中,在50~150 ℃出现了1个宽峰,这可能是由于药物吸收了水分造成的。 再分别称取适量的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS置于X射线粉末衍射(X-ray powder diffraction,XRPD)仪中,以步进测定方式,散射角扫描范围设为5°~60°,电压设为40 kV,电流为30 mA,结果见图6。由图6可知,木犀草素在19.12、23.20、26.32 ℃有3个衍射峰,衍射峰的峰形较为尖锐,峰值较高,表明木犀草素的晶型为结晶型。稳定剂TPGS在15.72、17.48、22.86、25.60、29.26 ℃有衍射特征峰。制备成纳米混悬剂后,虽然LNS图谱中木犀草素的特征峰有所减弱,但与木犀草素相比,在相应位置特征峰均存在,进一步证实制备成LNS后木犀草素并未显著改变晶型,说明稳定剂的加入不会影响木犀草素的晶型,这与DSC分析的结果一致。 2.3 平衡溶解度与过饱和溶出度测试 为了测定木犀草素的平衡溶解度与木犀草素纳米混悬剂的过饱和溶出度,本实验参考文献方法[21]建立了HPLC法。 2.3.1色谱条件 色谱柱为Sino Chrom ODS-BP色谱柱(250 mm×4.6 mm,5 μm);流动相为甲醇-0.3%磷酸水溶液(60∶40);柱温30 ℃;检测波长350 nm;体积流量1 mL/min;进样量10 μL。 2.3.2对照品溶液的配制 精密称取木犀草素对照品2.50 mg,放入100 mL棕色量瓶中,以适量色谱甲醇使之完全溶解,并定容至刻度线,摇匀得到质量浓度为25 μg/mL的木犀草素对照品储备液。 2.3.3 线性关系考察 采用色谱甲醇稀释成质量浓度分别为0.5、1.0、2.0、5.0、7.0、10.0 μg/mL系列的木犀草素对照品溶液,按“2.3.1”项下色谱条件进行分析,以对照品质量浓度为横坐标(X)、峰面积为纵坐标(Y)进行线性回归,得线性回归方程为Y=44 670 X-2 498.3,R2=0.999 8,结果表明木犀草素在0.5~10.0 μg/mL线性关系良好。 2.3.4 专属性、精密度和准确度考察 在建立的HPLC色谱条件下,木犀草素色谱峰不会受pH 1.2和pH 6.8的溶出介质、稳定剂TPGS、Tyrode液以及肠吸收液中所有成分的干扰(图7),表明本实验所建立的含量测定方法具有较好的专属性,能够满足体外溶出和肠吸收试验中木犀草素的含量测定要求。另外,其精密度实验的RSD为1.2%,高、中、低3个质量浓度的样品加样回收率在99.67%~101.47%,RSD均小2%,符合《中国药典》2020年版的规定。 2.3.5 平衡溶解度的测定 为了测定木犀草素在pH值为1.2、6.8缓冲溶液中的平衡溶解度,取5 mL 2种缓冲溶液各3份于西林瓶中,加入过量的木犀草素,将西林瓶置于恒温振荡箱中,在温度为37℃,转速为75 r/min条件下振荡24 h。取出各样品,3 000 r/min下离心10 min后取上清液,然后用0.2 μm滤膜滤过,取续滤液于进样瓶中,按照“2.3.1”项下色谱条件进样测定,并计算木犀草素的平衡溶解度,结果可知,木犀草素在pH值为1.2、6.8的缓冲溶液中的平衡溶解度分别为(3.83±0.23)、(7.81±0.13)μg/mL。 2.3.6 过饱和溶出度的测定 为了考察LNS体外溶出行为,参照《中国药典》2020年版中桨法进行。具体操作如下:在智能溶出仪中,以500 mL模拟胃液为溶出介质,温度为37℃,桨旋转速度为75 r/min,将30 mL LNS加入溶出介质中,以相同质量浓度的木犀草素乙醇溶液作为对照,二者均平行操作3份。以药物刚接触溶出介质开始计时,分别于5、15、30、60、120、130、150、180、240、360、480 min时取样4 mL,取完样后立即补充4 mL相应的新鲜溶出介质。另外,于120 min取样后,每个溶出杯中分别加入适量的Na3PO4溶液,调节pH值为6.8,以模拟肠液。将所取样品溶液经0.2 μm微孔滤膜滤过,取续滤液置于进样瓶中,照“2.3.1”项下色谱条件测定,计算累积溶出度,结果见图8。为了测定过饱和溶出水平,在整个实验过程中,介质中药物的质量浓度都应保持远远大于药物的饱和溶解度[22]。结果如图8所示,在pH 1.2和pH 6.8时,木犀草素-原料药的过饱和溶出始终低于对应的平衡溶解度,LNS的过饱和溶出始终高于对应的平衡溶解度,说明制剂的过饱和度高;在溶出介质的pH值调为6.8后,过饱和溶出水平明显下降,在150 min后过饱和溶出水平逐渐稳定,说明LNS能维持较高的过饱和溶出水平。 结果表明,LNS较木犀草素原料药具有明显优势,其饱和溶出度约是木犀草素原料药的15倍,过饱和度高并能维持较长时间,可以延缓药物在体内因析出晶体而沉淀的过程,从而使稳定剂在较小用量下也能保证药物分子成溶解态,提高了原料药的溶解度,有利于增加其生物利用度[23]。 2.4 小肠吸收实验 为了探索LNS对木犀草素在胃肠道的吸收部位和吸收速率的影响,采用外翻肠囊法[24]研究LNS在肠道不同肠段的吸收特征,以探究药物在肠道内的最佳吸收部位。 2.4.1 对照品溶液的制备 精密量取“2.3.1”项下相应体积的储备液,置于50 mL棕色量瓶中,用Tyrode液定容至刻度,摇匀,配制出质量浓度为1、2、4、8、16、32、40 μg/mL木犀草素对照品溶液。 2.4.2 线性关系考察 按照“2.3.1”项下色谱条件测定,以木犀草素对照品质量浓度为横坐标(X),峰面积为纵坐标(Y)进行线性回归,得到回归方程为Y=45 475 X-19 575,R2=0.999 6,结果表明木犀草素在1~40 μg/mL线性关系良好。 2.4.3 供试品溶液的制备 大鼠按实验质量浓度随机分为3组,每组4只,实验前12 h禁食,自由饮水。颈椎脱臼处死,打开腹腔,小心分离出小肠,分别截取十二指肠、空肠、回肠、结肠相应肠段各10 cm,用生理盐水冲洗至无内容物流出。将肠段放入37 ℃ Tyrode液中,冲洗,在不损伤肠管的情况下,小心剥离肠表面的脂肪及血管,取出,用滤纸吸干表面水分。 将肠管一端结扎,用光滑的玻璃棒外翻,用Tyrode液冲洗过后,向不同肠段中注入3 mL的空白Tyrode液后将另一端也进行结扎形成囊状的肠管。将肠管放入盛有Tyrode液的烧杯中,实验中始终保持37 ℃的恒温,并不断通入95% O2/5% CO2的混合气体。平衡5 min后,将烧杯中的液体倒出,分别加入不同质量浓度(0.15、0.30、0.60 mg/mL)的木犀草素及LNS药液。以肠囊和药液接触时开始计时,取样时间点分别为15、30、45、60、75、90、105、120 min,每个时间点从肠囊内取样500 μL,同时补充同温同体积的空白Tyrode液。待试验结束后,将各段肠囊置于空白Tyrode液中孵育1 h,以清除掉肠囊及肠组织中残留的药物;随后将上述用于木犀草素和LNS吸收实验的各肠段互换,再按上述操作同法重复试验,以进行自身对照交叉试验的后段实验。取上述肠吸收液,加入甲醇500 μL,超声混匀,15 898×g离心(离心半径6.32 cm)2次,每次15 min,取上清液用0.2 μm滤膜滤过,取续滤液适量即得。 按照“2.3.1”项下色谱条件测定,并计算药物在各时间点的累积吸收量(Q,μg)和药物吸收速率常数[Ka,μg/(mincm2)],结果见图9。 由公式计算不同质量浓度下木犀草素在各个时间点的累积吸收量(Q)。 Q是每个时间点木犀草素的累积吸收量,Ci是每个时间点的实际检测质量浓度,V1是加入肠囊内的空白Tyrode液,V2是每次取样的体积 由图9可知,通过对比2种制剂在各肠段中不同质量浓度的药物吸收情况,可以发现药物的同一时间点的吸收量表现出质量浓度相关性。相同质量浓度下,在各肠段中2制剂组吸收量相比,LNS组的药物累积吸收量显著大于木犀草素溶液组,表明LNS相比于木犀草素溶液能够促进药物在肠道的吸收。 根据小肠内(4个肠段)的Q值,通过线性拟合,由公式Ka=L(斜率)/A(肠管平铺面积)求得吸收速率常数(Ka)和相关系数(R2),结果见表5。2种制剂中木犀草素在肠道的不同部位中的吸收速率大小顺序均为十二指肠>空肠>回肠>结肠,这可能归因于十二指肠和空肠肠段的吸收面积较大;这一结果还表明LNS并没有改变木犀草素在肠道内的主要吸收部位和机制。对比相同质量浓度、相同肠段中2种制剂的吸收情况可以发现,LNS中木犀草素的吸收速率显著高于木犀草素溶液的情况,尤其是十二指肠和空肠中LNS和木犀草素溶液的木犀草素吸收速率差异更加明显,这表明LNS可以增加木犀草素的肠吸收,且十二指肠和空肠是主要吸收部位。 另外,还可以发现2种制剂在每一肠段中的吸收速率都存在显著的质量浓度相关性(P<0.01),但是2种制剂在同一肠段中的吸收速率随质量浓度增加而提高的程度有明显差异,即木犀草素溶液随质量浓度的增加,各肠段中吸收速率增幅增大,而LNS随质量浓度的增加,各肠段中吸收速率增幅减小,这些结果表明2种制剂在各肠段中的吸收均有质量浓度相关性,但其吸收速率与质量浓度之间均存在非线性关系,且仅在Ka<0.052时,木犀草素的肠吸收过程可能只受木犀草素溶解度限制,而不受吸收速度限制。然而,木犀草素的实际口服吸收情况是否符合上述规律以及其具体吸收机制如何,将有待于后期开展体内外吸收途径探索和体内药动学研究来进一步证实。 3 讨论 3.1 稳定剂的选择及药物-稳定剂比的确定 由于不同的稳定剂中化学基团的差异,导致稳定剂与药物微粒之间的分子间作用力以及胶粒间的作用力都有明显差异,所以稳定剂种类会影响到纳米混悬剂的稳定性[25]。因此,本实验首先以粒径和稳定性为考察指标,通过单因素筛选法优化了LNS的稳定剂种类,并确定了以TPGS作为稳定剂能达到较好的预期效果;考虑到稳定剂用量对稳定效果的影响[26],随后本实验又考察了药物-稳定剂比对纳米混悬剂的粒径、稳定性、PDI、ζ电位的影响,最终确定最佳药物-稳定剂比为1∶1。 3.2 LNS体外分析方法的建立及研究 3.2.1 波长的选择 木犀草素对照品与稳定剂TPGS在紫外波长200~800 nm扫描,结果显示木犀草素在207、254、350 nm 3处波长处有强吸收;而TPGS在219、286 nm显示出强吸收,350 nm处没有显示出强吸收。为了排除稳定剂TPGS对木犀草素测定的干扰,选用350 nm作为木犀草素的测定波长。 3.2.2 Tyrode溶液的配制 在木犀草素的肠吸收情况研究中,虽有文献报道了外翻肠囊模型和在体单向肠灌流模型[27-29],但关于木犀草素及其制剂在大鼠不同肠段中的吸收情况鲜有报道,且大多数文献对其吸收情况所提甚少。 本实验采用离体外翻肠囊法,可操作性强、重复性好;能够保留较为完整的肠道组织和黏膜特性,其实验结果与机体药物吸收水平比较接近,具有说服力;但肠外翻肠囊法也存在缺点,如长时间暴露在体外,肠管没有血管和神经的控制,肠黏膜功能和形态会失去作用。因此,本研究为解决这一问题,利用Tyrode培养液改善肠管的存在环境,具体配制方法如下:将NaCl(8.0 g/L)、KCl(0.2 g/L)、CaCl2(0.2 g/L)、NaHCO3(1 g/L)、NaH2PO4(0.05 g/L)、MgCl2(0.1 g/L)、葡萄糖(1.0 g/L),用蒸馏水定容至1 000 mL,稀盐酸调pH值为7.2~7.4,由于CaCl2不好溶解,应在其他无机盐溶解完全后再加入,葡萄糖于临用前再加入。并且在实验过程中连续通入95% O2/5% CO2,保证了在实验期间肠管上肠黏膜的活性。实验证明用该模型了解药物的离体吸收,其结果可靠。 3.3 LNS的过饱和溶出 药物在纳米混悬剂中所处的物理状态关系着其粒径和溶出稳定性,通常无定形药物微粒具有较高的饱和溶出度,但其属于热力学不稳定状态,因此物理稳定性差,容易引起纳米混悬剂粒径分布发生变化,同时溶出速率和溶出度下降;而结晶型药物具有较好的热力学稳定性,随着其粒径的减小,其饱和溶出度会明显提高[30]。根据本实验对LNS中木犀草素物理状态的研究结果可知,本实验制备的LNS中木犀草素以结晶形式存在,这表明LNS可能存在稳定的粒径和溶出度。 在过饱和溶出实验中发现,相比于木犀草素原料药,LNS具有显著的长期高过饱和溶出水平,这可归因于LNS中药物以粒径远小于原料药的状态存在,正如开尔文定律所描述的小粒径药物具有高溶解度一样[31]。药物的长期高过饱和溶出水平将有助于避免或减少口服给药后因胃肠道pH变化而引起的析晶沉淀现象,从而增加药物的吸收速度和时间,提高药物的口服生物利用度。 综上所述,本实验制备的LNS,分散性和储存稳定性良好,方法也简单易行,本实验建立的木犀草素体外分析方法,经方法学验证可知,该方法快速、可靠、准确度高,适合LNS的体外溶出和外翻肠囊吸收实验研究。 同时,外翻肠实验表面,LNS能促进药物在肠道的吸收,可作为木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供坚实基础。同时,在木犀草素肠道吸收的具体机制方面还有很大的研究空间。

  • 新型除草剂环戊恶草酮介绍

    38.3mg/l。它的除草活性 Pentoxazone从每公顷0.15-0.45公斤有效成分的浓度于苗前和苗后早期施用,对小果子一年生杂草如稗属Oryzice-la,雨久花属Vaginalis、莎草属difformis和阔叶杂草有良好的除草效果。许多多年生蓑衣杂草如荸荠属Kuroguwai;也有控制和打击作用。在苗前和苗后早期(-4+5)应用时,杂草还未长到10叶阶段施用最有效,且充分发挥本除草剂功效;当以浓度每公顷0.39-0.45公斤有效成分使用时,Pentoxazone能迅速杀灭稗属Oryzicola并残留部分一直能控制6周,它的长久持效性是由于土壤对它吸收而具有低迁移性和水中低溶解性的原故。与磺酰胺类结合使用时,pentoxazone在移植水稻前一次施入田中具有良好的控制一年生和多年生杂草的能力。 Pentoxazone有效地控制抑制在叶绿素生物合成中的则叶啉-LX氧化酶。在光作用下,由于积累的原叶啉1X产生的活性氧使它诱导氧化物酶膜破裂。这种不同于其他除草剂的作用方式使用其成为控制ALS抗抑制剂的杂草,如母草屑dubia种的Majorpennell,母草属dubia类的dubiaPenell和久雨花属的Korsakowil等的重要工具。安全性 用于老鼠的毒性研究表明pentoxazone具有很低的毒性。在老鼠和细菌身上也不存在致畸和诱变可能性。在这些毒性研究的基础上,认为Pentoxazone是普通物质,基于动态毒性方面的研究,Pentoxazone对鱼、鸟和益虫存在很低或可忽略的毒性。 Pentoxazone对老鼠经口给药的大部分在168小时之内由类中排泄掉,少量被吸收的部分也迅速在肝脏中代谢掉和在粪便中排泄掉。在常规条件下应用于稻田时,pentoxazone很少转移至稻禾顶部。甚至在成熟期使用,它在稻子植物中也很快代谢掉,且在根、茎、叶的任何部位的残留量小于0.25ppm,特别在可食部分为0.046pmm。在有水时pentoxazone在土壤中的半衰期最高是40因,但它的活性成分和代谢物向下流动性很低,已查明对地下水系统没影响。因此,使用petoxazone对健康和环境具有深远的意义。

  • 常用中草药提取物作用

    香叶香气浓郁,有较强的防腐作用,多用于酱类菜肴或汤类的调味,为西餐常用芳香调味料之一。适合在烹调肉类的时候,或者是调制肉类的沾酱加一点进去,但因它的味道很重,所以不能加太多,否则会盖住食物的原味。辛夷 辛夷又名望春花,属木兰科植物,鳞毛整齐,芳香浓郁,辛夷有散风寒的功效,用于治鼻炎、降血压,轻身明目,延年益寿,是一种名贵的香料。草果 草果是一种调味香料,为我国广大城乡人民日常生活中所不可缺少的必需品.草果具有特殊浓郁的辛辣香味,能除腥气,增进食欲,是烹调佐料中的佳品。丁香 丁香是一味古老的中药,由于其形状像钉子、有强烈的香味而得此名。丁香治牙痛,抗蜂窝组织炎,增进记忆力,消除睡意,催情。八角 八角别名大料又名大茴香,为我国特产香辛料和中药,也是居家必备调料,在食品加工业及香料工业广泛应用;同时八角具有键脾止咳功效,医药上用于治疗神经衰弱、消化不良等症。花椒 除各种肉类的腥气;促进唾液分泌,增加食欲;使血管扩张,从而起到降低血压的作用;服花椒水能去除寄生虫;有芳香健胃、温中散寒、除湿止痛、杀虫解毒、止痒解腥的功效。茴香 多年生草本,有强烈香气能除肉中臭气,使之重新添香,故曰“茴香”。有助于改善消化不良、绞痛及胀气,可镇抚呕吐与反胃,特别是由神经紧张引发者。甘草 甘草又名蜜草,以味道甜而得名,自古还有“灵草”、“国老”的美名。众药之王,性平,味甘,有解毒、祛痰、止痛、解痉以至抗癌等药理作用。胡椒 胡椒有黑白之分,不同种类适合烹调不同的菜肴。白胡椒的药用价值稍高一些,调味作用稍次。它的味道相对黑胡椒来说更为辛辣,因此散寒、健胃功能更强。筚拨 增香,味道辛辣,有特异香气,具有行气暖胃,能治腹泻呕吐,解酒的作用。白芷 性温,味辛,去风湿活血排脓,生肌止痛。主治风寒感冒、头痛、鼻炎、牙痛。赤白带下、痛疖肿毒等症,亦可作香料。 砂仁 砂仁是一种较为温和的草药。用于脾胃气滞引起的脘腹胀痛、不思饮食,多与陈皮、木香同用。滋阴补血,生津润肠。主治肝肾阴血虚亏之眩晕耳鸣,须发早白,失眠多梦。陈皮 开胃,提神,理气健脾,燥湿化痰。用于胸脘胀满,食少吐泻,咳嗽痰多。它蕴藏着丰富的营养素,是美容与减肥、冶病所不可或缺的良品。 山奈 山奈性味功效犹如生姜,故俗称沙姜,四川榨菜特殊香气的主要来源。白蔻 富含豆蔻素、樟脑、龙脑等挥发油,因此富有香气,能祛除鱼肉的腥膻异味,令人开胃、增食欲并促进消化。草寇 草豆蔻用时须研碎成末状,待主料加热后加入;豆蔻的提取物可增强机体对肿瘤的免疫功能,破坏癌细胞外围防护因子,使癌组织容易被损害。

  • SEAC通过了铅及其化合物限制提案的意见草案

    2013年12月11日消息,欧盟社会经济分析委员会(SEAC, Committee for Socio-economic Analysis )通过了铅及其化合物限制提案的意见草案。草案中的限制条件主要包含以下几点:1.物品或物品的可接触部件,供给一般公众以及能被儿童放入口中,如果其产品或者产品部件中铅(以金属计)浓度大于等于0.05%,不得投放市场。2.条款1中可被儿童放入口中的物品指,该产品某一维度、可分离部件或者突出部分的尺寸小于5cm,即被认为可被儿童放入口中。3.条款1中限制的产品或产品部件不包括:在合理可预见的使用中不会被儿童接触的。在合适的情况下也可以使用欧盟标准EN 71-1中的相关要求来判断是否可放入口中。4.作为豁免条款,条款1不适用于:I.理事会指令69/493/EEC(*)的附件I 中水晶玻璃的定义(第1,2,3 和4 类);II.非合成或再造的宝石,次等宝石(CN 代码7103,法规(EEC)2658/87 中确定的),除非他们已经用铅或其化合物或含有这些物质的混合物进行了处理;III.瓷釉,即在至少500℃的温度下,经过熔化,上釉或矿物烧结而成的可制成玻璃的混合物;IV.钥匙和锁 ,包括挂锁和乐器 ;V.由黄铜合金制成的产品,其黄铜中铅含量(以金属计)不超过0.5%;VI.书写设备的尖端VII.其他以及由欧盟法规规定了相关铅含量以及迁移量的产品。5.作为豁免,条款1不适用于第一次投放时间早于......(法规生效12个月以后)

  • 五月适宜水果——草莓 荔枝

    [b]五月适宜吃草莓、荔枝  草莓:[/b][align=center][table][tr][td][img=,middle]http://photocdn.sohu.com/20120605/Img344801475.jpg[/img][/td][/tr][tr][td] [/td][/tr][/table][/align]  草莓营养丰富,含有果糖、蔗糖、柠檬酸、苹果酸、水杨酸、氨基酸以及钙、磷、铁等矿物质。此外,它还含有多种维生素,尤其是维生素C含量非常丰富,每100克草莓中就含有维生素C60毫克。  草莓中所含的胡萝卜素是合成维生素A的重要物质,具有明目养肝作用。草莓还含有果胶和丰富的膳食纤维,可以帮助消化、通畅大便。草莓的营养成分容易被人体消化、吸收,多吃也不会受凉或上火,是老少皆宜的健康食品。  [b]注意事项:[/b]不要吃畸形草莓。正常生长的草莓外观总体上呈心形,而畸形草莓表面颜色正常,个头也大,但在局部有畸形凸起,而不呈正心形,咬开后中间有空心。这种畸形草莓往往是在种植过程中,使用了某些植物生长促进激素造成的,可能有损人体健康。特别是孕妇和儿童,不宜食用。  草莓是鞣酸含量丰富的植物,在体内可吸附和阻止致癌化学物质的吸收,具有防癌作用。  [b]荔枝:[/b]  荔枝所含丰富的糖分具有补充能量,增加营养的作用,研究证明,荔枝对大脑组织有补养作用,能明显改善失眠、健忘、神疲等症;荔枝肉含丰富的维生素C和蛋白质,有助于增强机体免疫功能,提高抗病能力;荔枝有消肿解毒、止血止痛的作用;荔枝拥有丰富的维生素,可促进微细血管的血液循环,防止雀斑的发生,令皮肤更加光滑。  [b]注意事项:[/b]不要连续大量进食荔枝,可在吃荔枝前后喝一点盐水或者凉茶,绿豆水、冬瓜水、生地汤等也有良好疗效。对孩子来说,荔枝和芒果、龙眼等水果一样,内火重的小朋友最好不要吃,而正常儿童也尽量少吃;对老人而言,有便秘现象的老人尽可能不要食用;特别是有肝病、肾病、糖尿病、胃肠病患者更应慎重。

  • 央视曝光小蜜蜂紫草膏含毒 过量使用引发肝中毒

    央视曝光小蜜蜂紫草膏含毒 过量使用引发肝中毒畅销海淘婴儿护肤品涉嫌含毒  号称“海淘妈妈第一单必备品”的小蜜蜂(Burt’s Bees)紫草膏是产自美国的一款护肤品,因其宣传的“纯天然成分、治蚊虫叮咬”,长期以来在购物网站占据母婴类产品销量榜首。然而,央视昨日曝光了该产品对婴幼儿来说并不安全,它含有一种毒性成分Comfrey,即“紫草”,不能口服,而且过量使用会引起肝中毒。  户外用品并非婴儿专用  在某知名网购平台上,美国“小蜜蜂紫草膏”有12000余个销售链接,规格多为15克盒装,价格从15元至50元不等。销量最大的一家网店一个月能卖出3000多件。  不少卖家打出的宣传用语是“可以吃的护肤品”、“可以安心用于小宝宝的万能药膏”、“100%纯天然”、“富含维生素、胡萝卜素等”、“痘印、创伤、蚊虫叮咬、肿块无所不治”等。在购买评价中,不少妈妈直呼产品有效,尤其是在修复蚊虫叮咬、缓解婴儿红屁股等方面, 一些人赋予其“万能止痒药”的称号。  然而,昨日央视的《新闻直播间》栏目以《揭秘海淘背后的风险》为题报道:“小蜜蜂紫草膏”在美国其实是作为户外用品使用,而非婴幼儿护肤品,主要用于修复蚊虫叮咬、皮肤挫伤擦伤等,作用类似于国内的“清凉油”。在“小蜜蜂紫草膏”包装盒上,清楚地标出该产品含有一种Comfrey的成分,即俗称的“紫草”,并注明使用者每天最多涂抹2次,每次只能薄薄地涂一层。  FDA:紫草禁止内服  据央视报道,早在2001年7月6日,美国药品监督管理局FDA就在其官方网站上发出警告,由于紫草这种成分会对人的健康造成危害,甚至损害肝脏,要求厂家停止销售内服的含紫草成分的营养补充剂,外用时也不能用于开放式的伤口。  此后,美国联邦贸易委员会先后起诉两家生产企业,明令要求厂商停止销售相关内服产品,而对于外用产品,也必须明显地贴出警告标志。  北京和睦家康复医院药房主任冀连梅在接受媒体采访时明确表示:紫草成分在美国市场上曾经作为口服保健食品的有效成分,但后来美国FDA早已禁止销售口服类相关产品,而在法国,就连这类外用药膏也不允许出售。  中医:外用或作复方药  昨日,上海市中医院药剂科副主任王培珍医生告诉早报记者:药理学研究表明,紫草主要功能为清热凉血、活血化瘀、解毒透疹,常用于皮肤科免疫疾病,临床上主要为外用或用作复方药物,如制成复方饮片,单以紫草成分作为药物并不常见,“医生一般会对患者个体开出复方饮片,紫草成分仅用作复合调剂使用,对于其副作用,并不会像西药那样明显,目前也未见到过多反应的案例。”  早报记者昨天了解到,截至目前,上海市不良反应监测中心数据还没有接到过相关的不良反应案例。上海市食品药品研究中心副主任高惠君同时向早报记者指出:目前,国内并无相关的针对紫草对婴幼儿有害的研究报告,“美国药品监管局的声明中也并未出示权威的研究报告,仅仅是出于一种警示,提醒人们不要过量使用。”  为此,有专家指出:没有相关专业知识的话,海淘国外产品可能带来另一种伤害。由于语言障碍,消费者无法了解国外药品的真正用途和用法。此外,网上商家缺乏监管,很难保证一些药品质量,也很难及时获得药品的不良反应信息,无法保障用药安全,国内消费者应该谨慎选择。(记者 陈斯斯)(文章来源:东方早报)

  • 【转帖】美国拟制定杀虫剂噻虫嗪、甲氧虫酰肼、嘧啶肟草醚、代森锰锌等的许可限量

    近日,美国发布通报,美环保署拟制定杀虫剂噻虫嗪的许可限量。根据这项规定,以下作物内/表噻虫嗪(Thiamethoxam)及其代谢物 (按噻虫嗪化学当量计算)的混合残留许可限量分别为:鳄梨:0.40 ppm;矮浆果亚组13-07G,越橘除外:0.30 ppm; 唐棣属植物亚组13-07B,蓝靛果及梅、矮灌木除外:0.20 ppm;蔓越霉亚组13-07A:0.35 ppm;蛋黄果:0.40 ppm;小果实、攀藤植物亚组13-07F,猕猴桃除外:0.20 ppm;芒果:0.40 ppm;番木瓜:0.40 ppm;人心果:0.40 ppm;黑柿:0.40 ppm;曼密果:0.40 ppm;星苹果: 0.40 ppm; 根茎植物亚组1A :0.05 ppm;rice,稻谷:0.02 ppm。 此外,美环保署还计划制定杀虫剂多杀菌素的许可限量,规定以下作物内或其表面上两种相关活性成分:Spinosyn A (Factor A; CAS#131929-60-7)及Spinosyn D (Factor D; CAS#131929-63-0)组成的多杀菌素(Spinosad)的残留许可限量分别为:杏壳:19 ppm;坚果树14组:0.10 ppm;开心果:0.10 ppm;酸枣:0.10 ppm及石榴:0.30 ppm。 2009年9月28日,美国发布通报,美国环保署拟制定杀虫剂甲氧虫酰肼、嘧啶肟草醚的许可限量。 本最终法规规定了以下作物内/表杀虫剂甲氧虫酰肼(Methoxyfenozide) benzoic acid, 3-methoxy-2-methyl-,2-(3,5-dimethylbenzoyl)-2-(1,1-dimethy-lethyl) hydrazide个体残留许可限量;柑橘果10组及区域注册的柑橘油:100 ppm; 干豌豆种:2.5 ppm; 石榴:0.6 ppm; 爆米花玉米豆:0.05 ppm; 及爆米花玉米杆:125 ppm。 本最终法规规定了以下植物品上的嘧啶肟草醚(Saflufenacil),包括其代谢物和降解物残留限量:植物品: 杏壳: 0.10 ppm; 轧棉副产品: 0.10 ppm; 未去纤维棉籽:0.03 ppm;柑橘果10组:0.03 ppm; 梨果11组:0.03 ppm; 核果12组:0.03 ppm; 粮谷牲畜饲料、草料及草杆16组:0.10 ppm; 粮谷15这组:0.03 ppm; 葡萄:0.03 ppm; 坚果14组:0.03 ppm;开心果:0.03 ppm; 葵花子:1.0 ppm; 豆叶类植物7组:0.10 ppm; 及豆叶类植物6组:0.03 ppm; 及畜产品:牛脂肪:0.01 ppm; 牛肝:0.80 ppm; 牛肉:0.01 ppm; 肝除外的牛肉副产品:0.02 ppm; 山羊脂肪:0.01 ppm; 山羊肝:0.80 ppm; 山羊肉:0.01 ppm; 肝除外的山羊肉副产品:0.02 ppm; 猪脂肪:0.01 ppm; 猪肝:0.80 ppm; 猪肉:0.01 ppm; 肝除外的猪肉副产品:0.02 ppm; 马脂肪:0.01 ppm; 马肝:0.80 ppm; 马肉:0.01 ppm; 肝除外的马肉副产品:0.02 ppm; 乳:0.01 ppm; 绵羊脂肪:0.01 ppm; 绵羊肝:0.80 ppm; 绵羊肉:0.01ppm; 及肝除外的绵羊肉副产品:0.02 ppm。 2009年9月24日,美国发布通报,美国环保署拟制定杀虫剂代森锰锌、代森锰、代联森及福美双的限量措施。 美国环保署拟撤消杀真菌剂代森锰锌(mancozeb)及代森锰(Maneb)的某些许可限量。另外,EPA还拟修改杀真菌剂代森锰锌(mancozeb)、代森锰(Maneb)、代联森(Metiram)及福美双(Thiram)的某些许可限量。此外,EPA拟新制定杀真菌剂代森锰锌(mancozeb)、代森锰(Maneb)及代联森(Metiram)的许可限量。通知内含一份完整的限量/商品组合成分名单。(综合国家食品安全信息中心、中国技术性贸易措施网相关信息)

  • 烟草中Amadori化合物的研究

    [font=&]【序号】:1[/font][font=&]【作者】:[url=https://www.zhangqiaokeyan.com/search.html?doctypes=4_5_6_1-0_4-0_1_2_3_7_9&sertext=%E5%88%98%E9%9B%B7%E9%9B%A8&option=202]刘雷雨 [/url][/font][font=&]【题名】:[b]烟草中Amadori化合物的研究[/b][/font][font=&]【期刊】:[font=&][color=#666666]郑州烟草研究院[/color][/font][/font][font=&]【年、卷、期、起止页码】:2017[/font][font=&]【全文链接】:https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/02031190576.html[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制