当前位置: 仪器信息网 > 行业主题 > >

五羰基

仪器信息网五羰基专题为您提供2024年最新五羰基价格报价、厂家品牌的相关信息, 包括五羰基参数、型号等,不管是国产,还是进口品牌的五羰基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五羰基相关的耗材配件、试剂标物,还有五羰基相关的最新资讯、资料,以及五羰基相关的解决方案。

五羰基相关的资讯

  • 核磁技术揭示丝光沸石分子筛孔道酸性位催化二甲醚羰基化机制
    近日,中科院大连化物所催化基础国家重点实验室催化反应化学研究组(501组)展恩胜副研究员、申文杰研究员等与中科院精密测量科学与技术创新研究院徐君研究员、邓风研究员等合作,在丝光沸石(MOR)催化二甲醚羰基化反应的活性位点鉴别和调控方面取得新进展。  MOR是二甲醚羰基化反应的重要催化剂,其活性与8-MR孔道的总酸量相关。尽管理论计算表明,T3-O9是唯一活性位点,但实验上鉴别和定量描述不同T位点酸性特征和催化机制仍面临挑战。  本工作中,科研人员首先通过分步晶化法合成了片状结构MOR,该MOR表现出优异的催化活性,醋酸甲酯收率达到0.72gMAgcat.-1h-1(473K、2MPa)。随后,科研人员利用二维固体核磁技术和DFT计算确定了骨架铝原子在T1至T4分布,发现该片状结构丝光沸石8-MR孔道的铝原子富集在T3位,动力学研究发现该酸性位的反应速率高达7.2molMAmolT3-Al-1h-1(473K、1MPa)。随后,科研人员调变不同MOR样品的T1至T4位分布,发现位于8-MR窗口的T4酸性位也具有催化作用,但其活性只有T3位的1/4,从实验上证明T3位在催化二甲醚羰基化反应中的主导作用。该工作从原子尺度定量描述了丝光沸石分子筛8-MR孔道T位的催化反应化学,也深化了对沸石分子筛催化剂活性位结构的认知。  相关研究成果以“Experimental Identification of the Active Sites over a Plate-Like Mordenite for the Carbonylation of Dimethyl Ether”为题,于近日发表在Chem上。该工作的共同第一作者是中科院大连化物所501组博士研究生熊志平和中科院精密测量科学与技术创新研究院齐国栋副研究员。上述工作得到了国家自然科学基金等项目的支持。
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • SCIEX最新推出快速生物药糖基标记与分析试剂盒
    方案为研究者提供比传统方法更快检测糖基化变化的能力 中国北京讯- SCIEX是生命科学分析技术的全球领先的公司,在2017年1月24号发布了针对于生物制药表征中大量糖基化表征的快速糖标记与分析试剂盒。传统分析中耗时的样品制备和数据分析,现在可以在SCIEX公司PA800 Plus生物分析系统上通过快速糖释放、标记和分离,进行糖基定性定量分析,从而加快研究者的工作流程。 平均一小时的样品制备,而后进行96个分离程序,快速糖分析试剂盒分析糖的速度比传统的HILIC方法快五倍。这使研究者可以快速检测糖基的变化,帮助他们监测可能影响功能变化和生物药的功效、清除效率的糖型分布。自动的糖基化定性不再需要手动而乏味的糖基数据库搜索,排除了分析过程中潜在的人为因素。SCIEX公司提供的方案使分析方法开发和QC实验室的研究者可以对生物药中的糖基进行有效的定性和定量,有助于保证治疗效果。 糖基化对生物药的疗效、免疫原性和清除效率的非常关键。对单克隆抗体(mAb)来说,它可导致抗体依赖性细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)的增加或减少。缺少高分辨的糖基化信息(如岩藻糖基化和非岩藻糖基化结构的分离)以及不可靠的结果会对患者和研究机构产生很大的风险。 使用客户定制的内标,可以直接在SCIEX公司PA800 Plus软件上计算糖单位(GU)。SCIEX公司提供了全面的糖单位参考表用于糖单位的计算,用户也可以添加自定义的特殊糖基种类。SCIEX公司快速糖分析方法中的样品处理可以在Beckman Coulter的 Biomek自动化工作站上使用,来进一步提高实验室的通量和效率。 SCIEX公司产品经理Mark Lies 说过“通常糖分析需要研究者很有耐心的花费一整天进行样品前处理。SCIEX公司提供的解决方案具有自动化鉴定糖基的特点,平均几分钟即可完成样品的制备、对糖基进行定性和定量分析,保证了整个实验室更高的工作效率”。 SCIEX公司快速糖标记与分析试剂盒最近获得了生物国际(BPI)“最佳技术应用与分析奖”,展示创新的新增功能与其它分析技术的结合。 了解更多关于新的快速糖标记与分析试剂盒 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球领导地位和世界一流的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。 伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。更多信息,请访问sciex.com.cn。 ###媒体联络: 范雪,易思闻思公关咨询Nicole@eastwestpr.com+86 10 65820018
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 质谱检测新策略助力深度解析阿尔兹海默症相关糖蛋白APP的糖基化
    阿尔兹海默症(Alzheimer’s diseases,AD)是最常见的一种神经退行性疾病,临床表现为渐进性记忆损伤,认知功能障碍,语言障碍等精神症状。我国现有1000多万AD患者,是世界上患者数量最多的国家。且随着人口老龄化,这个数字还在急剧增加,据预测到2050年中国AD患病人数将超过4000万,给我国社会经济以及患者家庭带来极大负担。阿尔兹海默症主要特点为病人脑组织中β淀粉样蛋白(Aβ)的异常产生和累积。Aβ形成的前体蛋白APP(amyloid protein precursor)是一种高度糖基化修饰的糖蛋白。蛋白质糖基化是一类重要的蛋白质翻译后修饰,参与蛋白稳定表达,蛋白加工剪切,细胞间的靶向识别及相互作用等生理过程。越来越多的研究表明糖基化对APP的加工及Aβ的产生具有关键的调控作用,精准判定APP糖基化修饰信息,对深入理解app蛋白在AD疾病发生中的作用和疾病早期诊断方法开发上具有重要意义。 近日,上海交通大学系统生物医学研究院张延课题组与严威课题组联合开发了一种基于质谱多碎裂方式组合靶向完整O-糖肽的质谱解析方法(Targeted MS combined Multi-fragment strategy,TMMF)。 该方法精准描绘出APP蛋白的O-糖基化修饰位点和糖链结构。为从蛋白质糖基化修饰水平理解app的分子功能与AD的发病机制,发现AD治疗靶点以及开发AD早期诊断策略提供了新的思路。该成果以“Comprehensive analysis of O-glycosylation of amyloid precursor protein (app) using targeted and multi-fragmentation MS strategy”为标题发表在国际著名生物化学与生物物理学期刊(BBA-General Subjects)上。(生物谷Bioon.com)
  • 十年耕耘蛋白糖基化质谱分析技术——对话北京大学分析测试中心,质谱实验室高级工程师,周文
    蛋白质的糖基化修饰是一种重要的蛋白翻译后修饰。对于蛋白糖基化修饰的深入表征将有助于加深糖基化作用机制的理解,为相关疾病药物、疫苗的研发提供理论基础,然而糖基化修饰的类型和结构非常复杂,给分析检测带来了非常大的难度。过去10年间,北京大学分析测试中心高级工程师周文和多个课题组深入合作,致力于针对不同种类的糖基化发展相应的质谱分析检测新方法。北京大学分析测试中心高级工程师周文在过去的20年里,糖基化修饰领域在仪器方面有了很多进展,如从传统的碰撞解离到现在的电子转移解离(ETD)的碎裂方式,同时还可以将不同的碎裂方式进行组合。周文形容到,ETD就像闪电一样,它的碎裂过程非常的快,更便于我们进行糖基化的分析。周文表示,希望让更多人关注分析测试领域,也给分析测试人员更多的展示自己的舞台,相信将来一定会有更多的优秀人才加入到我们当中来!
  • 北京基因组所等揭示O-GlcNAc糖基化修饰维持基因组稳定性的分子机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   DNA总是受到内源或外源环境中多种损伤因子的攻击,例如DNA复制错误、细胞代谢产物、电离辐射、紫外线照射和化疗试剂等,这些因素都会引起DNA损伤的产生。如果不能够及时有效修复DNA损伤,将导致基因组不稳定性,进而诱发多种人类疾病,如肿瘤、神经退行和出生缺陷。为维持基因组稳定性,生物体进化出一套保护机制来监控DNA损伤并及时修复,这一机制即为DNA损伤应答。 /p p   中国科学院北京基因组研究所郭彩霞研究组与中科院动物研究所唐铁山研究组合作,通过质谱技术发现跨损伤合成DNA聚合酶Polη第457位苏氨酸能发生一种新的蛋白质翻译后修饰:氧连糖基化修饰(O-GlcNAcylation)。已知在紫外线辐射或顺铂等化疗试剂暴露条件下,跨损伤合成DNA聚合酶Polη被招募到复制叉处替换高保真性DNA复制酶,在相应的损伤DNA模板对侧整合正确的核苷酸,从而促进复制叉的继续前行。但与高保真的DNA复制酶相比,Polη复制未损伤DNA模板的错误率显著升高(10 sup -2 /sup ~10 sup -3 /sup ),极易导致遗传信息不能够正确地从亲代细胞传递到子代细胞中,因此它到复制叉的招募和移除必须受到严格调控,然而关于Polη在TLS完成后如何从复制叉解离尚不清楚。研究发现,干扰Polη的氧连糖基化修饰虽不影响其被招募到受阻复制叉处及其在损伤DNA模板对侧整合核苷酸的能力,但显著削弱Polη与CRL4 sup CDT2 /sup E3泛素连接酶之间的相互作用,降低第462位赖氨酸的多泛素化修饰水平,进而抑制p97-UFD1-NPL4复合体所介导的Polη与复制叉分离的过程,导致细胞内突变率上升、细胞对紫外线和顺铂试剂敏感性增强、DNA复制叉移动速率变缓等。该项研究工作揭示了Polη 氧连糖基化修饰与泛素化修饰之间的互作关系,以及DNA复制过程中多种DNA聚合酶转换的分子机制。Polη在多种肿瘤细胞中表达显著升高,与顺铂等化疗药物的耐药性产生密切相关,也与非小细胞肺癌患者的生存期呈负相关。 /p p   该发现首次报道氧连糖基化修饰参与调控细胞跨损伤合成过程并维持基因组稳定性,从DNA损伤应答角度揭示了对营养水平敏感的氧连糖基化修饰调控基因组稳定性和肿瘤耐药性的分子机制,为解决顺铂等化疗药物的耐药性提供新的思路和策略,有望改善部分肿瘤患者的生存状况。 /p p   研究工作以 em Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis /em 为题,在线发表在 em Nature Communications /em 上。研究工作获得了国家自然科学基金委、科技部等的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171212545298381499.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/afc0a60a-899a-40ca-87bc-2c12afb7ef13.jpg" uploadpic=" W020171212545298381499.jpg" / /p p style=" text-align: center " O-GlcNAc糖基化修饰调控Polη与复制叉解离的分子机制示意图 /p
  • 食品工业用酶制剂新品种果糖基转移酶获批 7种食品添加剂扩大使用范围
    p   国家卫生计生委近期发布公告称,根据食品安全法规定,审评机构组织专家对食品工业用酶制剂新品种果糖基转移酶(又名β—果糖基转移酶)和食品添加剂单,双甘油脂肪酸酯等7种扩大使用范围的品种安全性评估材料审查并通过。 /p p    strong 果糖基转移酶(又名β—果糖基转移酶) /strong /p p   米曲霉来源的果糖基转移酶(又名β-果糖基转移酶)申请作为食品工业用酶制剂新品种。日本厚生劳动省允许其作为食品添加剂使用。 /p p   该物质作为食品工业用酶制剂,用于生产低聚果糖。其质量规格应执行《食品添加剂 食品工业用酶制剂》(GB 1886.174-2016)。 /p p    strong 单,双甘油脂肪酸酯 /strong /p p   单,双甘油脂肪酸酯作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许在各类食品中按生产需要适量使用(表A.3所列食品类别除外)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为食品添加剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量不需要限定。 /p p   该物质用于经表面处理的鲜水果(食品类别04.01.01.02)和经表面处理的新鲜蔬菜(食品类别 04.02.01.02),发挥被膜剂作用。其质量规格应执行《食品添加剂单,双甘油脂肪酸酯》(GB 1886.65-2015)。 /p p    strong dl—酒石酸 /strong /p p   dl-酒石酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于面糊、裹粉、煎炸粉、油炸面制品、固体复合调味料、果蔬汁(浆)类饮料、植物蛋白饮料、碳酸饮料、风味饮料等食品类别,本次申请其使用范围扩大到糖果(食品类别05.02)。澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为酸度调节剂用于食品。 /p p   该物质作为酸度调节剂用于糖果(食品类别05.02),调节产品的口味。其质量规格应执行《食品添加剂dl-酒石酸》(GB 1886.42-2015)。 /p p    strong 可溶性大豆多糖 /strong /p p   可溶性大豆多糖作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于脂肪类甜品、冷冻饮品、大米制品、小麦粉制品、淀粉制品、方便米面制品、冷冻米面制品、焙烤食品、饮料类等食品类别,本次申请其使用范围扩大到配制酒(食品类别15.02)。日本厚生劳动省允许其作为食品添加剂用于食品。 /p p   该物质作为增稠剂、乳化剂用于配制酒(食品类别15.02),调节产品的口感。其质量规格应执行《可溶性大豆多糖》(LS/T 3301-2005)。 /p p    strong 亮蓝 /strong /p p   亮蓝作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、果酱、凉果类、加工坚果与籽类、焙烤食品馅料及表面用挂浆、调味糖浆、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为6mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 亮蓝》(GB 1886.217-2016)。 /p p    strong 磷酸 /strong /p p   磷酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、水油状脂肪乳化制品、冷冻饮品、小麦粉及其制品、杂粮粉、食用淀粉、焙烤食品、预制肉制品、水产品罐头、调味糖浆、固体复合调味料、婴幼儿配方食品、婴幼儿辅助食品、饮料类、果冻、膨化食品等食品类别,本次申请其使用范围扩大到特殊医学用途婴儿配方食品(食品类别13.01.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为酸度调节剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的最大容许摄入量为70 mg/kg bw。 /p p   该物质作为酸度调节剂用于特殊医学用途婴儿配方食品(食品类别13.01.03),调节产品的口味。其质量规格应执行《食品添加剂 磷酸》(GB 1886.15-2015)。 /p p    strong 柠檬黄 /strong /p p   柠檬黄作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、冷冻饮品、果酱、凉果类、加工坚果与籽类、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为10 mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 柠檬黄》(GB 4481.1-2010)。 /p p    strong 乳酸链球菌素 /strong /p p   乳酸链球菌素作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、杂粮罐头、预制肉制品、熟肉制品、熟制水产品、蛋制品、醋、酱油、酱及酱制品、复合调味料、饮料类等食品类别,本次申请其使用范围扩大到腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02)。国际食品法典委员会、欧盟委员会、美国食品药品管理局、澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为防腐剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为2mg/kg bw。 /p p   该物质作为防腐剂用于腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02),起到防腐、保鲜的作用。其质量规格应执行《食品添加剂 乳酸链球菌素》(GB 1886.231-2016)。 /p p style=" text-align: right "   日期:2018-03-19 /p
  • 毛细管电泳技术在蛋白药物分析中的应用
    毛细管电泳技术在蛋白药物研发和质量控制中的发展 随着蛋白药物的开发热潮在全球兴起,毛细管电泳技术(Capillary Electrophoresis, CE)作为一种新兴的研发和质控的分析技术也越来越受到各大生物制药公司的青睐和法规机构的重视。全球大部分生物制药公司均已使用毛细管电泳系统用于蛋白药物的研发及质量控制分析。从培养基优化、克隆筛选、配方稳定性研究和纯化过程监测,到蛋白表征、相关杂质检测、蛋白结构鉴定和蛋白质药物产品的质量控制,蛋白药物的各个环节都需要使用到毛细管电泳。例如蛋白的纯度测定,已经从SDS-PAGE转变为十二烷基硫酸钠-毛细管凝胶电泳(CE-SDS)方法;蛋白质的等电点测定,毛细管等电聚焦(CIEF)比传统胶条方法更为准确;糖蛋白药物的糖基异质性表征,毛细管电泳是高分辨率分析方法之一。在各国药典中,毛细管电泳技术用于蛋白药物的检测方法也不断丰富与发展。药典中最早出现其对蛋白药物检测方法是促红细胞生成素(EPO)的糖异构体测定。糖蛋白的异构体差异小,普通的分析方法很难将EPO中的多种异构体分离定量。欧洲药典和美国药典将毛细管电泳方法确定为EPO异构体分析的标准,解决EPO产品中各种糖基化异构体的分离和定量问题。此外,生长激素的相关杂质检测标准也采用了毛细管电泳的方法。对于单克隆抗体药物的分析,在2006年,由惠氏、安进、基因技术、礼来、辉瑞、强生及加拿大卫生署等十几个实验室对“CE-SDS方法对单抗药物纯度分析”进行了联合验证。他们对方法的稳定性、可靠性、准确性等多方面进行了研究和考察。研究结果表明CE-SDS方法比传统的SDS-PAGE更适合单抗药物的表征与质量控制,其结果的稳定可靠性要远远超过SDS-PAGE,建议各生物制药公司使用CE-SDS代替原有的SDS-PAGE作为研发与质量分析的平台。随后,上述生物制药公司及机构又针对“CIEF方法进行单抗药的等电点测定及电荷异质性分析”、“CZE方法快速分析单抗药的电荷异质性”,“毛细管电泳技术进行单抗药中的糖基分析”进行了多实验室联合验证,结果展现了CE技术用于单抗药质量控制的优势及可行性。美国药典于2013年发布了利妥昔和曲拓珠等单克隆抗体药物的纯度检测、等电点/电荷异质性分析和糖基分析采用毛细管电泳方法。在中国,中国食品药品检定研究院于2012年联合国内外生物制药机构对“CE-SDS方法对单抗药物纯度分析”进行了验证,确认了CE-SDS方法在分辨率、定量准确性及自动化程度等方面的优势,并指出CE可以对单抗非糖基化重链进行准确定量。基于以上工作以及毛细管电泳技术在单抗药分析中的强大优势,中国药典2015版的第三部中增加了CE技术,明确了CE是单克隆抗体药物大小变异体、电荷变异体、鉴别与一致性和糖基化修饰分析中的重要方法。随着CE技术在生物制药领域的快速发展,以及新的蛋白质药物的不断上市,将会有更多的CE方法出现在各国药典中。毛细管电泳技术在单克隆抗体药物分析中的应用(1)单克隆抗体药物的纯度及大小异质性分析SDS-PAGE方法对单抗药物进行纯度分析,在分辨率、定量准确性和自动化程度上,已经不能满足生物制药研发和质量控制的要求。CE-SDS方法基于蛋白分子量的差异分离,用于还原和非还原单抗药物的纯度分析,免去了复杂的人工操作、定量更加准确,具有更高的分辨率,在还原模式中可对非糖基化重链进行分离和准确定量。图1. CE-SDS对还原单克隆抗体药物的纯度分析[1]选用不同的毛细管长度,可以实现高分辨率模式和快速模式的纯度分析。高分辨模式的CE-SDS方法提供最高的分辨率,快速模式的CE-SDS方法提供更短的冲洗和分离时间,提高了分析的通量。CE-SDS结合激光诱导荧光检测器(CE-SDS-LIF),通过5-Tarma或FQ染料对蛋白进行标记,可以获得更高的灵敏度,可以检测到含量在0.01%的杂质碎片。此外,LIF检测器的使用,可以最小化基线波动,使积分和定量更加准确。(2)单克隆抗体药物等电点的测定和电荷异质性的分析单抗药物在结构上会发生糖基化、脱酰胺化、异构化、氧化等翻译后修饰,造成蛋白表面电荷的改变,引起单抗的电荷异质性。每个变异体具有不同的等电点。基于等电点分离的毛细管等电聚焦技术(cIEF),可以对单抗药物的变异体进行高分辨率的分离和定量,可分离0.03个pI差异的变异体。方法使用等电点Marker制作校准曲线,对变异体的等电点进行准确的测定。是单抗药物等电点测定和电荷异质性分析的重要方法。图2. CIEF方法对单克隆抗体药物的等电点和电荷异质性分析[5]针对不同pI范围的蛋白样品,可以通过选用适当的两性电解质来实现高分辨率的分析。如对于大部分单抗,其pI值位于7-10之间,可使用pH 3-10范围的两性电解质;对于pI 在5-7范围内的蛋白样品,可使用pH 5-8的窄范围两性电解质;而对于pI 小于5的酸性蛋白,则可以使用反向聚焦和迁移模式,实现更好的分析。 (3)CZE方法对单克隆抗体药物电荷异质性的快速分析毛细管区带电泳(CZE)基于分析物电荷/体积的比进行分离,是毛细管电泳技术中最简单、快速的模式。由于单抗药物的各个变异体分子体积近乎相同,因此在CZE分离模式中,电荷变异体的分离取决于表面电荷的差异,与CIEF模式的变异体分离相一致。因此,CZE成为快速电荷异质性分析的平台方法被生物制药行业所使用。此外,由于CZE方法简单快速的特点,它也被用于单抗药的鉴别分析中。图3. 同一种CZE方法对23种单抗药物的电荷异质性分析[3](4)单克隆抗体药物的糖基异质性分析单克隆抗体等糖蛋白药物中,糖基的种类和排列顺序会导致糖基异质性。单抗药物的糖基化修饰对其安全性和药效有着很大的影响。因此对糖基异质性的质量控制十分重要。毛细管电泳方法对糖基异质性分析的流程包括糖蛋白中糖基的释放、糖基的标记和毛细管电泳分离。磁珠辅助的糖基释放和标记,使得前处理可在1小时内完成,加快了前处理的时间。采用APTS作为荧光标记物,不仅可以通过增加电荷提高分离效率, 还通过LIF检测实现了高灵敏的糖基分析。毛细管电泳技术对糖基分析的优势在于分辨率高,速度快。不但可以区分出一个糖基的差别,相同分子量的糖基异构体也可以得到分离,整个分离过程可在5-20分钟内完成。图4. CE-LIF方法对单抗药糖基分析的电泳图毛细管电泳技术在重组蛋白类药物分析中的应用重组人促红细胞生成素(rhEPO)是高度糖基化的蛋白药物。糖基化的异质性导致了多种变异体的存在。采用CZE方法可对EPO的变异体进行分离和定量,该方法已经成为欧洲药典中EPO变异体分析的标准方法。此外,CIEF方法也可以实现对EPO中各个变异体的高分辨分离,不但可以获得与CZE方法相同的变异体数目和定量信息,还可以提供每个变异体的精确的等电点数值。在对不同来源的EPO产品与参考品的比较中,可使用等电点对变异体进行鉴定。图5. CZE方法对EPO变异体的分析重组人生长激素(rhGH)的纯度及异质性分析中,CZE方法分离度高、定量准确,也已为欧洲药典所采用。图6 CZE方法对rhGH的电荷异质性分析总结在蛋白药蓬勃发展的今天,毛细管电泳技术以其分辨率高、模式多等优势,在蛋白药研发和质控的过程中起到了不可或缺的作用,被越来越多的企业和监管机构所认可,用于蛋白药的纯度、等电点及电荷异质性、糖基等分析中。随着蛋白药物、细胞/基因治疗以及新型疫苗等生物制品的不断发展,毛细管电泳技术将会具有更大的应用空间,在蛋白、核酸及病毒颗粒等分析中,发挥它的优势,提高生物制品的质量控制标准。
  • 新技术探索雾霾源头惰性化学物质研究
    雾霾已经成为影响公众健康的严重环境问题,如何消除形成雾霾的源头物质对解决雾霾污染问题非常重要。雾霾的形成物质有很多种,其中含硫化合物(羰基硫、二硫化碳等)是重要的源头之一。然而,羰基硫和二硫化碳等化合物具有很强的化学惰性,难以在室温条件下进行活化 因此,将该类化合物在室温条件下转化为无污染的其他化合物(如二氧化碳等),是一项极具挑战性的基础研究课题,也具有重要的现实意义。  日前,中国科学院大学材料科学与光电技术学院的黄辉教授与北京工业大学化学化工学院于澍燕教授共同发现利用简单的含钯金属有机化合物,在水的辅助下,能够在室温条件下将羰基硫和二硫化碳完全活化为二氧化碳,并生成相关的金属钯簇合物 通过进一步反应,能够将金属钯簇合物转化为初始的含钯金属有机化合物,从而首次成功实现了雾霾源头惰性化学物质的室温催化活化。研究者并且利用原位质谱和同位素标定等先进手段,确定其反应的中间体,并且结合密度泛函模拟计算,对反应机理进行了的深入的研究。研究结果表明,钯-钯金属双键对活化惰性碳-硫双重键具有重要的作用,能够显著降低活化位垒,从而实现碳-硫双键的室温活化。该研究工作对活化碳-杂原子强键和雾霾惰性源头物质具有重要的意义,长远而言,能够为消除雾霾污染物质奠定相关研究基础。  该研究成果于2016年10月24日在线发表在著名化学期刊《自然.化学》上(Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room temperature, Nature Chemistry, 2016, doi:10.1038/nchem.2637)。该文章的第一作者蒋选峰博士在于澍燕教授和黄辉教授共同指导下完成了该项研究工作,该研究课题还与浙江大学潘远江教授(原位质谱)、人民大学赖文珍副教授(密度泛函计算)、美国西北大学Tobin J. Marks教授(同位素标定)开展了密切合作。该研究工作得到了国家自然科学基金,北京市自然科学基金,中科院百人计划、北京市高层次人才项目等项目以及北京同步辐射装置的大力支持。  文章链接:  http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2637.html
  • 宁夏化学分析测试协会对《枸杞中维生素C和2-o-β-D-葡萄糖基-L-抗坏血酸的测定 高效液相色谱法》等7项团体标准征求意见
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《枸杞中维生素C和2-o-β-D-葡萄糖基-L-抗坏血酸的测定 高效液相色谱法》等7项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年8月21日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 关于团标征求意见函 -7.22.pdf团标表格7-专家意见表.doc1-2VC.pdf2-2枸杞中生物碱 N-反式阿魏酸酪酰胺及 N-反式阿魏酰真蛸胺的含量测定 高效液相色谱法-标准草案修改.pdf3-2枸杞原浆中类胡萝卜素的测定-标准草案-20240722.pdf4-2枸杞中18种游离氨基酸和核苷的含量测定质量标准草案-0721.pdf5-2液态枸杞产品中枸杞多糖的测定 离子色谱法-团标-20240722.pdf6-2枸杞中3种酚酸和3种黄酮化合物的测定-高效液相色谱法-团标-zyn(1).pdf7-2化妆品中芦丁.pdf
  • 超高分辨QTOF联合GlycoFiler为糖蛋白药物研发保驾护航
    过去十年间有超过100个新的生物药物获批上市,这些新上市的生物药物中大部分是利用真核生物表达系统表达的重组蛋白,而这些重组蛋白多数是糖蛋白,如单克隆抗体、融合蛋白、生长因子等。由于糖基化会影响糖蛋白药物的安全性和有效性,因此对糖基化的详细表征是糖蛋白药物质量分析和控制必不可少的,并且药品监管机构对糖基化分析法的稳定性也有严格的要求。因此建立一个能够自动化并且可靠的糖基化分析流程一直是药物研发人员面临的挑战。基于荧光标记的定量方法作为Released Glycans(游离糖苷)定量分析的金标准,已经广泛应用于单克隆抗体药物工艺开发中的质量监控和最终产品的质量控制,但这种基于保留时间的分析方法对于一些糖基化比较复杂的样本就显示出专属性不足的缺点,为此,测定糖苷的精确质量数作为补充手段来提高分析的专属性,但即使这样还不足以将复杂的样品中所有糖苷进行100%确定地注释。为了应对这个挑战,Glycotope公司和布鲁克合作开发了一个专门用于Released Glycans分析的工作流程(图1),此工作流程通过GlycoFiler软件将布鲁克高分辨QTOF获得的数据与UPLC产生的荧光色谱图结合,提供一个自动化的并且可靠的糖基化定性和定量分析流程。▲图1. GlycoFiler游离糖苷分析流程数据处理和报告生成高度自动化Released Glycans样品经过UPLC-FLR-QTOF分析完成数据采集后,GLycoFiler可以分别对荧光色谱图进行自动积分得到每个峰的峰面积,对MS/MS数据进行自动的搜库得到糖苷的结构信息,整个搜库过程只需要5 min即可完成,然后将糖苷结构与对应的荧光色谱峰相关联,即完成了糖苷的定性和相对定量分析(图2)。此工作流程的自动化报告功能(图3)也非常强大,除了能报告最终的结构鉴定和定量结果外,还可以按照糖基化的类型(如唾液酸,核心岩藻糖,高苷露糖等)分别进行统计,同时还可以做不同批次间的比较分析。▲图2. 2-AB标记糖苷分析示例▲图3. GlycoFiler报告模块糖苷结构鉴定和数据注释高度可靠目前糖基化鉴定分析多基于液相的保留时间(如GU值)和一级精确质量,对于糖基化相对比较简单的单克隆抗体样本来说可能够用,但对于一些糖基化比较复杂的样本(如整合蛋白,多糖基化位点的单克隆抗体,血因子等),鉴定结果的可靠性就大大降低,而布鲁克和GlycoTope公司联合推出的糖基化分析方案,是基于MS/MS数据进行糖苷谱图库(图4)的检索而鉴定糖苷结构。内置的糖苷谱图库包含大于750个糖苷实验质谱图(糖苷的MS和MS/MS谱图),涵盖大于15个细胞系的25种糖蛋白,支持2-AB标记和RapiFlour标记。▲图4. GlycoFiler糖苷谱图库特点加快糖蛋白药物研发的进程布鲁克和GlycoTope公司联合推出的Released Glycans分析方案,可以广泛应用于药物研发早期蛋白与配体相互作用研究,生物工艺过程中克隆筛选、细胞系的开发和发酵工艺的开发,产品的表征和质量控制,产品放行测试。此分析方案的高度自动化和高度可靠的特点,必将加快糖基化分析的速度和质量控制的可靠性,从而加速糖蛋白药物开发的进程。 如需了解更多糖基化分析相关信息请关注Bruker官网GlycoTope官网
  • 生物药岛津说-单抗药物糖型分析和质控,您学会了吗?
    治疗性单克隆抗体结构相对小分子更加复杂。不仅仅是序列影响蛋白活性,同时蛋白的翻译化修饰也会影响。常见的修饰包括脱酰胺、二硫键、末端赖氨酸丢失和糖基化修饰,糖基化修饰是相对复杂的特殊翻译后修饰,包括N糖修饰和O糖修饰,N糖基化修饰主要发生在蛋白质一级结构中的特征性序列NXT(其中X是除脯氨酸外的任意氨基酸),修饰存在一定规律,O糖修饰可以与任何含有羟基基团的氨基酸连接,丝氨酸(S)和苏氨酸(T)是最常见的修饰位点,因此更加复杂。糖型结构会显著影响治疗效果,是单抗药物质量监测的重要关键质量属性。 抗体生物类似药在面临生产和临床过程中,需要保证质量的一致性,糖基化分析是重要的关键分析流程。糖修饰异质性会间接影响药效,因此需要在多批次生产过程中,保证工艺和质量的稳定性。N糖根据不同的连接方式使得N-糖基化的五糖核心结构分为高甘露糖型、杂合型和复杂型3 种类型,FDA,EMA 等生物类似药指导原则都鼓励研发单位采用最新的分析技术手段,对生物类似药和原研药的糖基化修饰位点、程度以及寡糖的组成进行深入比较分析,例如可以利用岛津液相以及质谱等设备可进行由浅入深的糖型修饰分析,进而对产品生产过程中严格监测。岛津在糖基化分析方面有三大护法守护。下面一一道来。 岛津抗体糖型分析质控解决方案 第一护法-高分辨质谱LCMS-9030 LCMS-9030四极杆飞行时间质谱仪使高速度、高灵敏度的四极杆质谱与TOF技术的紧密结合。融合岛津先进工程技艺的DNA,打造出速度与出色性能兼备的全新一代高分辨质谱仪,以优异表现轻松胜任定性和定量分析挑战。对完整蛋白以及亚基水平的糖型进行初步分析。 第二护法-MALDI-MSMALDImini-1 MALDImini-1数字离子阱(DIT)体积极小,功能强大,可实现质谱多级的检测。针对糖肽分析、抗体化学修饰位点、未知生物分子结构分析,蛋白质、多肽、翻译后修饰肽等都有专向解决方法。 第三护法-高效液相色谱系统Nexera Bio 从完整蛋白或者亚基水平分析,利用质谱可快速的分析带有糖基化修饰蛋白分子量。可以分析简单的糖型结构,速度比较快,重现性较好,但是精细的糖型结构也不能很好的监测清楚,所以可以搭配糖肽水平和游离寡糖水平一同研究。 首先,第一步从完整蛋白水平,利用岛津LCMS-9030四极杆飞行时间质谱仪从完整分子量水平分析抗体的糖修饰情况如下表所示,鉴定并分析相关糖型的分布。 不同糖型抗体形式分子量测定结果与理论对比 第二步可以从糖肽水平分析,通常抗体通过使用蛋白酶酶切后,产生分子量大约为0. 5 ~ 5 kDa 的小肽,采用色谱或电泳分离后再进行MALDI-MS 或ESI-MS 分析。利用质谱分析糖肽序列、寡糖组成,岛津MALDI-TOF和MALDI-数字离子阱质谱可以分析相关糖肽组成分析。 例如针对血清糖蛋白,使用MALDI-离子阱质谱分析得到的衍生N-聚糖谱图,如下图所示:血清糖蛋白N-聚糖质谱解析谱图 第三步可以从游离寡糖层面分析,药典相关要求,针对游离寡糖的分析通常有三种方法: (第一法)亲水相互作用色谱法、(第二法)毛细管电泳法、(第三法)高效阴离子色谱法,通过N-糖苷酶F对单抗N糖进行酶切后,使用2-氨基苯甲酰胺( 2-AB) 或2-氨基苯甲酸( 2-AA) 对寡糖进行标记即可进行糖型分析。针对唾液酸分析,岛津超高效液相色谱结合荧光检测器建立了抗体中唾液酸Neu5Ac 和Neu5Gc 含量测定,结果如下图所示: 唾液酸液相分析定量标准曲线 单抗糖基化是作为重要的翻译化修饰,宿主细胞培养工艺过程会影响不同的修饰构成,岛津不仅可以提供糖基化质量分析质控方案,同时针对培养工艺优化以及工艺残留物监测,提供特色的培养监测在线和离线分析解决方案,为了更好地把握产品质量,力图让产品质量更加稳定和安全。虽然生物类似药与原研药批次糖基化修饰结构差异依然存在,但在生物类似药相似性评价和适应症外推的征途上还有许多路要走,岛津依旧陪伴左右。
  • 是时候来了解硫化物在线分析了
    硫成分广泛存在于许多用于烃加工的原料中。含硫成分危害很大,有强烈的气味。而且会引起酸雨,导致催化剂(昂贵)中毒,降低聚合物产量。最麻烦的硫气体是硫化氢(H 2S)、羰基硫(COS)和甲基硫醇、乙基硫醇。根据国内的标准要求,这些化合物是要在ppb水平测定。 硫气体的检测困难在于是挥发性的,也非常活泼的。痕量硫分析系统必须是非常惰性的采样设备、GC设置才能实现ppb级可重复的检测结果。 在线监测流程和原理概况: 气体样品定量被采集到在线的低温冷肼吸附填料内,两级冷肼,一级除水,一级将气体样品中的待测组分冷凝到吸附填料上。然后快速升温加热块将装有吸附填料的吸附管迅速升温,待测组分解析后由载气携带进入分析柱内,进行分离,随后进入检测器得出分析结果。 鉴于此,硫化物在线监测体系需要满足如下条件:1 样品的采集、富集、解析、分离和分析,整个过程要自动运行。2 所有样品流经途径接触到的表面都要经过惰性处理,确保美誉任何吸附。3 加热块的迅速升温。4 电子流量控制技术精准控制载气流量。 分离体系是整个体系很重要的一环,由于是在线分析体系,所以选择更加耐用、更加结实的MXT金属柱就是最好的解决方案。1987年RESTEK第一个开发了金属表面进行硅烷化惰性处理的专利技术,对不锈钢的表面进行惰性处理后,其惰性表面甚至比石英毛细柱的表面的惰性还要好。 针对硫化物分析,一个是最常使用的MXT专用填充柱Rt - XLSulfur 分析化合物:中文名称CAS分子式1 硫化氢7783-06-4H2S2 羰基硫463-58-1COS3 甲硫74-93-1CH4S4 乙硫75-08-1C2H6S5 二甲硫75-18-3C2H6S6二甲基二硫624-92-0C2H6S2 分析谱图:分析条件: 色谱柱Rt-XLSulfur, 1 m, 0.75 mm ID (cat.# 19806)浓度1 mL,50 ppbv进样六通阀切换程序升温:60 C - 230 C ,15 C/min载气He, 恒流量流速:9 mL/min检测器FID
  • 会议通知: 蛋白药物结构表征及质量设计前沿技术研讨会
    蛋白药物具有分子量相对较大,结构复杂多样性和可变性等特点,其产品质量容易受到生产过程中各种理化条件影响,如发酵或细胞培养条件改变,分离纯化工艺不同,产品质量都会有差别,因此对蛋白药物结构的表征和质量的控制必须贯穿于蛋白药物研发的整个过程中,以确保对蛋白药物产品质量属性进行全程、实时的监控。但在蛋白药物产品结构表征和质量监控中,样品前处理(如氨基酸序列分析,糖基化分析)和数据挖掘都是非常耗时的工作,如何提高蛋白质药物生产过程中质量监控效率至关重要。本次研讨会由 Bruker 和 Ludger 联合主办,为大家介绍 Bruker 特色的质谱表征方案和Ludger功能性糖链塑形(GlyShape)的质量设计理念,并通过 IgG1, EPO 和 FSH 等生物药物结构表征应用实例和临床案例分析,来诠释如何利用低成本和高效率的方法加强蛋白药物的质量监控,提高蛋白药物有安全性和有效性。竭诚欢迎您的莅临。会议日期:2017年9月15日 13:00 - 16:15会议地点:上海张江高科技园区蔡伦路720弄1号楼一楼多功能厅会议咨询:于小姐 13370119923 yiting.yu@bruker.com会议报名:邮件报名,请于2017年 9月13日前将参会信息 姓名+电话+工作单位+职位+参会人数发送至: yiting.yu@bruker.com 一.报告简介 报告 1:《布鲁克创新质谱技术助您提高蛋白药物质谱表征效率》 -- 让细节和速度能同时兼顾不再成为蛋白药物质谱表征的难题 质谱仪在蛋白质药物结构表征中的应用越来广泛,但质谱分析中耗时的样品前处理和数据挖掘大大制约了质谱仪在蛋白质药物生产中的应用,Bruker特色的质谱表征方案则致力于让质谱表征方法细节和速度同时兼顾,大幅提高蛋白药物质谱表征效率。报告 2:《功能性糖链塑形(GlyShape)的临床应用及案例分析》--加速提高生物药研发的安全性和有效性,帮助生物药公司节省研发和生产成本 Ludger专业的糖组学和糖基化分析技术,将通过IgG1, EPO 和FSH 等生物药物的临床案例分析来诠释如何用更低的成本和更快的速度提高生物药物的安全性和有效性。糖基化对蛋白的生物活性至关重要,因此,需要对多批次抗体的糖基化形式都进行表征,检测其糖基化形式的变化范围,之后证明该单抗药物的糖型结构在参照糖型的变化范围内。 基于QBD的质量控制理念与临床实践相结合,Ludger首先提出了功能性糖链塑形(GlyShape)的质量设计理念。二.讲师简介Daryl Fernandes 博士, 英国 Ludger 生物科技公司创始人和总裁。1980年获得了牛津大学糖生物学研究所生物寡糖结构分析专业的博士学位。在医学和生物技术领域利用和开发糖基化分析技术已经拥有超过三十年的经验。于1999年建立了自己的生物科技公司—Ludger。刘先明,布鲁克质谱生物制药应用与市场专员。毕业于苏州大学生物物理专业,拥有多年蛋白药物质谱表征分析经验,目前主要负责基于 ESI-Q-TOF 和 MALDI-TOF/TOF 技术平台在生物制药领域中的应用技术支持和技术推广。 三. 公司介绍Ludger 生物技术公司 Ludger 是一家专门从事糖组学和糖基化分析技术的生物科技公司,以支持生物制药的实现和药物的转变。公司成立于 1999 年,由 CEO 达里尔费尔南德斯博士创立,实验室和办公室座落在英国牛津附近的卡拉姆科技中心。Ludger 已通过 ISO9001 认证,目前拥有28位研究人员,分别从事以下科学和商业活动:合同定制研究,糖基化分析服务、研究和开发,糖技术耗材和试剂的生产等,其中也包含纯化的多糖标准品。布鲁克(北京)科技有限公司 布鲁克公司作为全球领先的分析仪器公司之一。自成立五十多年以来,我们始终坚持一个理念:针对当今的分析需求,开发最先进的技术和最全面的解决方案。今天,遍布几大洲九十多个地点的五千多名员工正在为这个信念努力工作。刀工作。作为质谱技术的领导者,布鲁克公司质谱部门为您提供各种类型的先进质谱系统,产品包括:基质辅助激光解吸电离飞行时间质谱质谱仪(MALDI-TOF和MALDI TOF/TOF)、电喷雾-离子阱质谱仪(ESI-Ion Trap)、电喷雾-飞行时间质谱仪(ESI-TOF)、电喷雾-四极杆-飞行时间串级质谱仪(ESI-Q-q-TOF)、超高分辨飞行时间质谱仪(UHR-TOF)、傅里叶变换回旋共振质谱仪(Q-q-FTMS)、气相-三重四极杆质谱仪(GC-MS/MS) 、液相-三重四极杆质谱仪(LC-MS/MS)。与此同时,我们还开发了农残筛查、毒物检测等一系列解决方案和软件产品,以最大化的满足科研、工业生产及检测等领域快速增长的需要。我们服务的客户群分布广泛,包括制药,生物科技,蛋白质组学和分子诊断等领域里的公司、学术研究单位和政府机构。公司总部设在美国,生产基地在德国,服务与销售中心遍布全球,以提供给用户最快捷和全面的服务。 Ludger 生物技术公司布鲁克(北京)科技有限公司2017年9月7日
  • 《饮料中香豆素类化合物的检测》补充检验方法解读
    一、目的和依据香豆素是主要豆香型香料之一,因具有香草气味而常用于日用香精中。香豆素属于苯丙素类化合物中的一种,是具有苯并α-吡喃酮母核结构的一类化合物的总称。毒理实验发现,香豆素对小鼠胚胎有毒性,大鼠口服急性毒性LD50为293mg/kg;小鼠口服急性毒性LD50为196mg/kg。香豆素还会转化为毒性物质双香豆素,会导致动物内脏器官受损。由于合成香豆素的毒性大,我国、欧盟、美国等都禁止香豆素作为食品添加剂使用。但各国对于香豆素类化合物的衍生物没有相关限定,为了逃避监管,不法分子可能将没有检测方法的香豆素类衍生物(如重要的香豆素衍生物7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4-甲基香豆素、环香豆素、3,3'-羰基双(7-二乙胺香豆素)、醋硝香豆素)等添加到食品中去。虽然二氢香豆素在GB 2760-2014《食品安全国家标准 食品添加剂使用标准》中规定为允许使用的食品用合成香料,但二氢香豆素可导致过敏反应,《化妆品卫生规范》中该物质在化妆品中禁止使用,因此也加到该检测方法中作为方法储备。我国目前现行标准方法中仅有针对出口食品中香豆素、6-甲基香豆素、二氢香豆素、7-甲氧基香豆素、醋硝香豆素、7-乙氧基-4-甲基香豆素含量的测定方法,且饮料(含酒精饮料)中的测定低限为0.05mg/kg,无法满足掺假打假监测要求,为了保障人民健康,急需建立饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3'-羰基双(7-二乙胺香豆素)同时测定方法,为国内食品安全和出口食品国际贸易提供技术支撑,为准确评估食品风险提供可靠的检测技术。二、在食品监管中的研究性或监测性应用《饮料中香豆素类化合物的检测》适用于各种液体饮料和固体饮料中对香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3'-羰基双(7-二乙胺香豆素)8种化合物含量的测定。该补充方法有效填补了饮料中多种香豆素类衍生物的检验标准空白,为国内食品安全和出口食品国际贸易提供技术支撑,为准确评估食品风险、打击掺杂不法行为提供可靠的检测技术,同时也有助于在香豆素类衍生物的风险监测、案件调查和应急处置等工作中,作为执法的依据和参考。三、先进性或创新性本标准采用乙腈提取样品中的香豆素8种化合物,经低温高速离心分层后用液相色谱-串联质谱仪测定,采用多反应离子监测模式(MRM),以保留时间和定性离子碎片的丰度比定性,外标法定量。样品前处理根据不同复杂基质的饮料(乳饮料、碳酸饮料、果汁等)和固体饮料样品的性质,以及香豆素类8种化合物组分的性质,对样品的前处理进行了优化,直接用乙腈进行提取,离心分层待测组分后测定,操作简便、时间短、检测成本也相对较低。该方法提取待测物后采用液相色谱-串联质谱仪测定,由于方法准确、高效,且灵敏度较高,能够确保检测结果公正准确,符合目前食品安全监测所追求的高效快速的要求。该方法适用范围广,适用于不同类型的饮料和固体饮料,也补充了饮料中香豆素及其7种衍生物检测方法标准的空白。四、操作注意事项实验操作中需要注意的要点如下:1.标准溶液的储存条件与有效期:根据方法研制过程中对标准溶液稳定性的研究,标准储备液4℃放置3个月,标准中间溶液4℃放置1个月,工作液需临时现配。2.部分植物饮料由于存在原料带入的情况,因此若出现检测结果较高时,需排除是否为内源性物质。3.由于在方法研制过程中,部分滤膜对香豆素类衍生物具有吸附的作用,因此建议所选用滤膜应采用标准溶液检验确认无吸附现象,方可使用。4.由于GB 5009.284-2021《食品安全国家标准 食品中香兰素、甲基香兰素、乙基香兰素和香豆素的测定》已经发布,因此香豆素的相关标准参照国标执行。
  • 抗体-药物偶联物自上而下质谱分析新进展
    大家好,本周为大家分享一篇文章,Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody−Drug Conjugates [1],文章的通讯作者是加州大学洛杉矶分校化学与生物化学系的Joseph A. Loo教授。  抗体-药物偶联物(Antibody - drug conjugates, ADC)是一种很有前景的治疗药物,它通过linker为抗体提供高效的细胞毒性有效载荷,以提高其抗肿瘤功效。将linker和有效载荷偶联到抗体上,给ADC带来了额外的异质性,增加了对其全面表征的挑战。自上而下的质谱(TD-MS)技术近年来在单克隆抗体的表征中得到了广泛的应用,与自下而上质谱(BU-MS)和中下质谱(MD-MS)相比,TD-MS具有最简单的样品制备流程和保留单克隆抗体内源性修饰的优势。然而,对于抗体大小的蛋白质和具有显著二硫键组成的蛋白质,TD-MS的断裂效率较低,获得的序列和药物偶联位点信息有限。  为了增加TD-MS的序列信息含量,一种策略是将不包含蛋白质序列N端和C端的内部片段纳入数据分析工作流程中,这种方法已被证明有助于二硫化完整蛋白的TD-MS表征。在这篇文章中,作者发现在TD-MS中分配内部片段将mAb序列覆盖率提高到75%以上,并允许确定链内二硫键连接和各种N-糖基化类型。对于治疗性非特异性赖氨酸连接ADC,几乎60%的假定药物偶联位点被识别。  内部片段可以在不破坏二硫键的情况下进入结构紧密、碎片化效率高度受限的区域,因此有可能大大增强完整单克隆抗体的序列信息。作者对完整的NIST单抗的5个最丰富的电荷态采用了ECD和HCD两种碎片化方法,并将每个电荷态的两种碎片化方法的TD-MS结果结合分析。内部片段的纳入提高了二硫键约束区域的序列覆盖,例如,轻链Cys133和Cys193之间的二硫约束序列几乎完全由内部片段覆盖(图2A),重链的Cys147-Cys203和Cys264-Cys324序列区也是如此(图2B),而这些区域是末端片段难以触及的。CDR的覆盖率从53%增加到60%,这表明纳入内部片段可以更深入地了解这一关键区域。总体来说,轻链的序列覆盖率从54%提高到83%,重链从28%提高到72%,合并后整个NIST单抗的序列覆盖率从36%增加到76%(图1)。重链比轻链的覆盖率提高更为显著,这表明随着蛋白质分子量增大,分配内部片段变得更有价值。  图1. 考虑(A)轻链、(B)重链和(C)全单抗内部片段前后不同序列区域的序列覆盖率,包括非二硫约束序列(Free)、二硫约束序列(SS-constrained)、全序列(Full)和CDR序列(CDR)  图2. (A)轻链和(B)重链的NIST mAb序列覆盖图谱。蛋白质骨架上的蓝色、红色和绿色切割分别代表b/y、c/z和by/cz片段。序列上方的实线表示末端片段序列覆盖率,序列下方的实线表示内部片段序列覆盖率。紫色虚线表示链内二硫键,浅灰色表示受二硫键约束的序列区域,橙色表示互补决定区域(cdr)。  HCD能够在不破坏二硫键的同时仅碎裂蛋白质主干,因此作者在完整的NIST单抗上应用HCD来生成含有完整二硫键的片段,以确定二硫键连接。在每个形成链内二硫键的半胱氨酸上应用-1H的修饰,以表明它们的完整性。对于轻链,52个末端片段和12个内部片段穿过S - S键I, 17个末端片段穿过S - S键II, 6个末端片段穿过两个二硫键,清楚地显示了这两个二硫键的连接模式(图3A)。靠近重链两端的两个二硫键,S - S键I和S - S键IV,被89个末端片段和9个内部片段穿过 而中间的两个二硫键,S−S键II和S−S键III,只有24个内部片段穿过,没有末端片段穿过(图3B,C)。这些结果证明了NIST单抗重链的链内S - S连通性,重要的是,中间的两个S - S键模式只能由内部片段确定。除了确定链内S - S连通性外,分配内部片段也有助于鉴定N糖基化。当纳入内部片段时,额外分配了25个含有G0F的片段,42个含有G1F的片段和34个含有G2F的片段,这表明分析内部片段对N-糖基化鉴定的能力。  图3. (A)轻链、(B)重链、(C)仅含完整NIST单抗内部片段的重链,在每个形成链内二硫键的半胱氨酸上施加一个氢损失后,通过HCD TD-MS生成片段位置图。  内部片段可以确定赖氨酸连接ADC的药物偶联位点。作者采用了类似的方法,将ECD和HCD应用于先前已充分表征的非特异性赖氨酸连接ADC。ADC的TDMS在轻链上仅产生8个与DM1结合的末端片段(图4A)。分配内部片段显著提高了DM1偶联位点的测定。ADC的TD-MS在轻链上产生61个1- dm1结合和15个2 - dm1结合的内部片段,定位了3个偶联位点(K106, K114, K133),并将鉴定的两个偶联位点缩小到4个赖氨酸残基(K153, K160, K170, K175)(图4A)。对于重链也观察到类似的结果。综上所述,对于完整的ADC,仅用末端片段确认了16个偶联位点,而在包含内部片段后,这一数字增加到52个,覆盖了约58%的抗体所有假定的偶联位点。  图4. 由ECD和HCD TDMS生成的完整IgG1-DM1 ADC (A)轻链和(B)重链片段位置图。黑色垂直虚线表示赖氨酸的位置。  在这项工作中,作者首次报道了在完整的NIST单抗和异质赖氨酸连接ADC的TD-MS表征中分析内部片段的好处。内部片段的包含末端片段难以达到的二硫键约束区域,显著增加了完整单克隆抗体的序列覆盖率。重要的PTM信息,包括二硫键模式和N糖基化,可以通过包含内部片段获得。最重要的是,内部片段可以帮助确定高度异质赖氨酸连接ADC的药物偶联位点。  撰稿:夏淑君  编辑:李惠琳  文章引用:Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates
  • TSKgel色谱柱在单抗药物研发中的应用实例
    与传统小分子药不同,单抗类蛋白药是非均一性的结构复杂的大分子,因此使这类原研药或仿制药的研发与质控工作难度增大。通过液相色谱-质谱联用技术(LC/MS),结合蛋白分子量的测定、异构体、氨基酸修饰、糖基化修饰以及聚集情况分析等多种检测手段,可对单抗类药物进行全面的结构表征。 在文献《Physicochemical and Functional Comparability Between the Proposed Biosimilar Rituximab GP2013 and Originator Rituximab》中提到了将利妥昔单抗与其生物类似药(GP2013)之间,针对各项物化性质和功能性指标进行了对比分析试验。 利用尺寸排阻色谱法(SEC)的分子空间结构不同的原理可对抗体的多聚体、抗体片段以及PEG蛋白等进行有效分析。在该文献中,对原研和仿制药样品的非均一性分析(抗体聚集情况分析)时使用了TSKgel G3000SWXL色谱柱(请参照该文献2.12 SEC,CE-SDS,AF4部分)。 硼酸盐亲和色谱法多用于对糖或糖蛋白等生物分子进行分离。该文献中,使用了亲和色谱柱TSKgel Boronate-5PW对GP2013样品中糖基化和未糖基化的抗体异构体进行了分离。(请参照该文献2.13 Boronate Affinity Chromatography部分) 在该文献2.14 Glycan Analysis部分中,通过N-糖苷酶F来释放单克隆抗体Fc部分上的糖链,并对游离的N-末端糖链进行2-AB荧光标记后进行糖基化分析。其中使用到了TSKgel Amide-80(2.0 mm ID X 15 cm,3 um)色谱柱用来分离2-AB标记的糖链。 TSKgel Amide-80亲水相互作用(HILIC)色谱柱适用于亲水性低分子、核酸以及糖类等化合物的分离分析。在单抗药物分析应用上,TSKgel Amide-80常用来分析结合在抗体上的糖链的结构差异性。 为了满足广大色谱工作者对抗体药高效分析的需求,东曹公司作为分离纯化产品的生产商,不断致力于开发出在色谱分离度、灵敏度以及分析速度上具有革命性提升的色谱柱产品。特别是在对抗体药物质量控制中的HPLC检测方法上可以提供完备的解决方案。
  • 沃特世携手新加坡生物工程技术研究院 开发肿瘤标志物鉴定技术
    美国马萨诸塞州米尔福德市,2016年6月28日 — 沃特世公司(纽约证券交易所代码:WAT)今日宣布与隶属于新加坡科技研究局(A*STAR)的生物工程技术研究院(Bioprocessing Technology Institute, BTI)合作开发新方法,用于新型肿瘤标志物的鉴定以及糖基化修饰通路的研究,以帮助开发新型治疗方案。  此次研究合作的一个重要内容是开发一个基于实验数据的与疾病相关的鞘糖脂(GSL)头部基团数据库,该数据库将包含GSL多糖名称、葡萄糖单位(GU)校正后的色谱保留时间[1]和碰撞截面(CCS)数值以及对应的质谱图。  GSL的结构高度复杂,其中多糖头部基团与脂肪酰基团相连。要分析这类物质的分子组成,必须解析其分子序列、端基异构性、分支结构、寡糖基的连接位置,以及脂肪酰基团的基序。GSL对细胞的生长、相互作用和信号传送非常关键,它的结构变化可能会引发疾病或促使不同类型的肿瘤发生恶化。多糖头部基团的分析一直以来都是糖科学领域的一大难题,单独使用液相色谱(LC)或质谱(MS)技术都无法轻松区分出异构体结构。  BTI的科学带头人、研究科学家Susanto Woen博士表示:“通过本次合作,BTI能够充分应用沃特世的糖组学专业知识开发新的分析方法,并建立前所未有的GSL信息数据库。这不仅有利于我们对潜在临床标志物的探索,还能帮助我们深入了解经过治疗干预之后的疾病发展与患者复原情况,从而在改善人类健康的同时解决生物制药行业的某些需求。此次合作让我们有幸成为国际糖组学研究网络中的一员,我们将致力于开拓新技术,以确定疾病或疾病状态中GSL糖基化与任何表型/基因型特征之间的潜在联系。”  沃特世公司健康科学市场总监Jose Castro-Perez博士说道:“通过进一步加强合作关系,我们将更深入地帮助BTI开发创新型分析方法,并建立以鞘糖脂为重点的肿瘤糖生物学综合实验性多糖数据库。我们希望此次合作能够开发出先进的方法,用以研究肿瘤分类和生物标志物发现过程中涉及的GSL糖基化。”  在此次合作中,沃特世将提供专业的科学知识以及Waters SYNAPT G2-S High Definition Mass Spectrometry 行波离子淌度高清质谱系统。这款仪器采用的行波离子淌度质谱技术能够对离子进行快速分离,不仅可按照离子的大小、质荷比进行分离,还能够根据离子的形状实现分离。CCS值是一项精确的化合物物理化学性质,与气态离子的大小、形状和所带电荷有关。这套系统可根据每个多糖头部基团的CCS值实现分离,深入揭示它们独有的化学结构,随后,获得的结构数据可用于更详细地描述待研究的GSL。相较于单独使用质荷比的方法,行波离子淌度能够提供更高的分析专属性。  沃特世与BTI的合作始于2014年,合作之初的主要目标是评估专为生物制药应用而开发的新型 GlycoWorks RapiFluor-MS N-糖标记分析试剂盒的性能,以及开发此试剂盒相关的糖基化分析完整工作流程,涵盖样品前处理到样品分析。  关于沃特世公司(www.waters.com)  沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。  ###  Waters、SYNAPT、High-Definition Mass Spectrometry、GlycoWorks和RapiFluor-MS是沃特世公司的商标。  [1]Albrecht, S. Vainauskas, S. Stockmann, H. McManus, C. Taron, C. H. Pauline M. Rudd, Anal. Chem. DOI:10.1021/acs.analchem.6b00259.
  • 谏《中药配方颗粒,管理办法》:万勿,重蹈“放而不开
    有关中药配方颗粒这个试点放不放开之说,老生常谈。无非是,1992年江苏天江药业率先以试点单位进入中药配方颗粒领域,此后陆续有五家企业进入该领域,至今试点15年。 在15年当中,中药配方颗粒成为医药行业名副其实的金矿,市场规模已经突破百亿元,且每年又以40%以上的速度增长,羡煞医药产业其它领域企业。但怎奈,在长达15年的时间里,有资格“掘金”者,有且仅只有6家。 其实,对于试点15年,业界质疑声一直不断。比较一直的观点是,如果试点可行,国家出台标准,企业自由竞争;如果不可行,应该有阶段性的结论,并立刻停止施行。正如行业人士调侃时说,“总理都换了好几届了,但试点仍然还是试点。” 不过,这两年在各方压力之下,试点放开一事终于迎来了些许曙光。国家食品药品监督管理总局(CFDA)2015年12月24日公布了关于征求《中药配方颗粒管理办法(征求意见稿)》,该意见稿3月1日结束向社会公开征求意见。 然而,当2月25日,前来参加中国医药企业管理协会举办的《中药配方颗粒管理办法》专题座谈会上的专家学者、企业代表看到这份征求意见稿时,多少有些不理解。因为,如果按照该意见稿执行,中药配方颗粒市场再等15年估计就是“放而不开”。 对于原因,普遍认为有三个方面,一是政府监管与市场界限不明确;二是文中提到的制定中药配方颗粒质量标准的方法缺乏实操性;第三是备案管理也缺乏科学性。政府监管与市场界限不明 征求意见稿第九条指出,“应该根据中药材质量及植物单位面积产量或动物养殖数量,确定中药配方颗粒产量。”其实,从市场角度来说,企业的产量应该由市场决定,而非监管部门进行规定。该规定多少有些越俎代庖。其中还有“应固定中药材地产地、落实具体生产地点,种植、养殖企业,合作社或农户,采集户,收购者,初加工者,仓储物流企业等。”其实GAP都已经取消了,其实此条极为不符合“经济行为市场化”的原则。更为不切实际的是,该条中还规定“应准确鉴定其中物种基原,包括:变种……还应鉴定到种以下分类单位……”这个规定企业难以做到。 其实,大部分药材均来自交易市场,而交易市场才是监管部门监管的主体。中药材种属鉴定是十分复杂和眼镜的标准制定工作的一部分,制定标准和监督检查是政府职责,让企业药材种属鉴定颇为不现实。而是企业按照政府规定渠道和标准购销,并接受监督检查即可。而第十条亦有同样的问题。该条规定“生产企业应具备饮片炮制能力”等要求,其实该条应该考虑一下《国务院关于改革药品医疗器械审评审批制度的意见》,目前制剂都开始施行“上市许可人制度试点工作”了。 其实从整个文件来看,上述出现管理办法都属于多余。因为征求意见稿明确规定,中药配方颗粒是中药饮片的补充。基于此,现行“药品管理法”及“实施条例”,以及药监部门对药品,尤其是对中药饮片的研发、生产、流通、使用全过程监督管理一系列规范性文件也适用于中药配方颗粒。如果条例重复,多头监管,其实会制造出诸多乱象。质量标准缺乏实操性 中药配方颗粒之所在国内生产销售24年,药监部门进行“管理试点”15年之久,迟迟没有试点结果,主要问题是未指定出统一的质量标准。 其实整个行业都在期盼标准出台,无论是六家试点企业已实行多年的企业标准上升为临时标准或试行标准,还是药监局制定。行业的心声就是无论是那种标准只求尽快出台。 但此次意见稿对质量标准的描述却是缺乏实操性,以至于行业人士抱怨“放而不开”。比如说第十四条规定“中药配方颗粒标准的制定,应与标准汤剂对比研究”。第一汤剂标准是怎么样的,国家从未有过定义与规定,其中涉及到时同品种全国统一标准还是企业各自制定标准的问题。 第二,中药材由于批次不同或者产地不同,标准即不同,如此“标准汤剂”如何准。该规定其实落实颇为困难。如果硬要实施,恐怕“标准汤剂”的标准制定比配方颗粒标准制定更困难。备案管理缺乏科学性 在征求意见稿第二十、二十一、二十二条中,规定“已备案的生产企业应当向备案部门提交年度报告”“并及时将变更信息告知中药配方颗粒的医院”“对于不符合本办法规定而获得备案的,由国家药监总局责令省级药监部门限期改正”等等规定,企业信息变更有国家信息系统公告,送至医院只是在一定程度上增加了企业负担而已。 而在具体的备案内容方面。征求意见稿指出,凡是在许可申请和药品注册申请中已经向药监部门申报在案的信息,药监部门内部可以信息共享,不应要求企业在备案中重复申报。 而在征求意见中,随处可见的是重复备案规定。比如说文中规定的环境保护、废渣处理要求等,其实国家环境相关规定处理就能管理得到。又比如说文中规定的“建立处方点评”“医生约谈”“医院及其负责人考核”“降低医院等级”“强化医药费用控制”等内容,均很难执行,且药监部门难以监管。 实际上,备案管理是履行告知义务,而在征求意见稿中,将备案制当作审批来规定,存在诸多的不科学性。附:关于《中药配方颗粒管理办法》(征求意见稿)的修改建议药企协函字[2016]9号国家食品药品监督管理总局: 就《中药配方颗粒管理办法》(征求意见稿)(下称《办法》)我协会组织部分会员单位、相关企业和专家的进行了学习研讨,总体上支持中药配方颗粒放开准入和规范管理。 根据党中央国务院提出的“政府行为法制化,经济行为市场化”“逐步建立权利清单制度”和简政放权的指示精神,我们提出建议如下:一、依法依规监管划清政府与市场界限 《办法》中明确,中药配方颗粒是中药饮片的补充。鉴于此,现行“药品管理法”及“实施条例”,以及药监部门对药品,尤其是对中药饮片的研发、生产、流通、使用全过程监督管理的一系列规范性文件也适用于中药配方颗粒。本文中不需再详细地赘述。没有新的授权也不应突破上位法。1、关于第九条 我们认为:企业应当执行法律法规明确的中药溯源的有关规定。但是目前溯源的规则尚不明确,体系尚未建立,相关技术未经评估验证和发布,企业如何执行? 文中规定“应根据中药材质量及植物单位面积产量或动物养殖数量,确定中药配方颗粒的产量。”这是一个越俎代庖的错误规定。因为企业产量应该由市场导向,不能药监部门做出规定。文中规定“应固定中药材地产地、落实具体生产地点,种植、养殖企业,合作社或农户,采集户,收购者,初加工者,仓储物流企业等。”这条规定既不符合当前全国的实际情况,又不符合中央关于“经济行为市场化”的原则。 文中规定“应准确鉴定其中物种基原,包括:变种……还应鉴定到种以下分类单位……”。这个规定生产企业难以做到。实际上大量的药材来自交易市场,药监部门应加强市场监督。中药材种属鉴定是十分复杂和严谨的标准制定工作的一部分,制定鉴定标准和监督检查是政府职责,如果药监部门较长时间都搞不清楚山银花与金银花的区别,让企业药材种属鉴定是不现实的。企业按政府规定渠道和标准购销,并接受政府的监督检查。2、关于第十条 文中规定“不得采用其他精制方法”规定不妥。既然规定可以“提取、滤过或离心等固液分离、浓缩、干燥等步骤的方法,”为什么不得采用其他方法呢?况且上述四方法也是在传统汤剂煎煮的基础上不断技术创新发展出来的,为什么要禁止其他技术创新呢? 文中规定“生产企业应具备饮片炮制能力”等要求,应考虑与《国务院关于改革药品医疗器械审评审批制度的意见》相衔接,与“上市许可人制度试点工作”相衔接。3、关于第二十七条 文中规定“医院使用的中药配方颗粒应由已备案的生产企业直接配送,”这是不妥当的,不现实、不可能也缺乏法律依据的。为什么不允许流通企业从事配方颗粒配送业务?这是设定市场准入的禁止条款,有何法律依据?二、建立中药配方颗粒质量标准是当务之急1、尽快颁布标准 中药配方颗粒国外已使用多年,国内有产品销售已有24年,药监部门进行“管理试点”也有15年之久,迟迟没有试点结果,核心问题是未制定出统一的质量标准。 我们建议尽快颁布中药配方颗粒产品质量标准,如果药监部门暂时拿不出合适的质量标准,建议先以目前六家试点企业已实行多年的企业标准为临时或试行标准。经15年的实践中药配方颗粒产品标准已初步成熟,制定标准工作不能再拖延了。2、关于第十四条 文中规定“中药配方颗粒标准的制定,应与标准汤剂对比研究,”什么是标准汤剂呢?国家从未有过定义和规定。是同品种全国统一标准还是企业各自做标准?由于同品种不同批次的药材不可能完全相同,那么“标准汤剂”还是标准吗?等等这些实际问题没有得到确切回答之前,“与标准汤剂做对比研究”的要求是难以落实的。三、科学地进行备案管理备案管理是履行告知义务。绝不能将备案作为新的审批。1、第二十一条 文中规定“省级食品药品监督管理部门发给备案凭证,”这条凭证是不必要的。这个凭证是许可生产的证明吗?有法律约束力吗?有上位法授权吗?如果不是或没有,建议勿发为好。2、第二十、二十一、二十二条 文中规定“已备案的生产企业应当向备案部门提交年度报告”“并及时将变更信息告知中药配方颗粒的医院”“对于不符合本办法规定而获得备案的,由国家药监总局责令省级药监部门限期改正”等等,上述三条均不是企业法定责任与义务。不要增加企业负担。企业信息变更有国家药监部门信息系统公告,为什么要企业送医院呢?对于不符合备案而获得备案,这仅仅是渎职行为之一,本文不宜在此单列。3、简化备案内容 凡是在许可证申请和药品注册申请中已经向药监部门申报在案的信息,药监部门内部完全可以信息共享。不应要求企业在备案材料中重复申报。 非必要内容要简化或取消。如“年度资源评估情况”等三个情况,“药材来源和产销量匹配情况”等四个分析报告,“完成质量溯源的年度汇总”等四个汇总等等。本来是一项很简单的备案工作,备案内容设计如此复杂,无谓加重了企业负担,也不符合简政原则。 文中规定的环境保护、废渣处理要强调按国家环境相关规定处理即可,勿需另行规定。文中规定“企业内控成品检验标准应高于统一标准”含义不明确,什么是“高于”,应有具体内容。 文中规定的“建立处方点评”“医师约谈”“医院及其负责人考核”“降低医院等级”“强化医药费用控制”等等内容均空泛,且药监部门难以执行。 另外,如同化学原料药、化学药品制剂、中成药、生物生化药等并不需要单独制定管理办法一样,配方颗粒管理并没有非常特殊的内容,因此也不需单独制定管理办法,有关具体事项发通知即可。以上三个方面建议供参考。二〇一六年二月二十九日
  • 武汉物数所一氧化碳转化反应机理的核磁共振研究获进展
    近日,中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室邓风研究组,在一氧化碳直接与苯烷基化生成甲苯的研究方面取得新进展,相关研究结果在《化学通讯》(Chemical Communications)上在线发表。   CO既是有毒有害气体,也是一种常见的C1化学资源,具有广泛的工业应用价值,其转化一直是多相催化中的热点问题。工业化上一般通过费托合成过程直接将CO和H2(合成气)转化为甲醇。烷基芳香烃类是一种非常重要的化学品,广泛应用于化工、农业、医药、香料等领域,它可通过甲醇等在酸性催化剂作用下烷基化芳香烃类来制备。如果能省去费托合成甲醇的这一间接高能耗过程,用CO与芳香烃类通过烷基化反应直接合成,将为CO的转化利用以及烷基芳香烃类的制备提供新的思路。   在该项工作中,徐君副研究员及王秀梅博士等通过调控锌元素改性ZSM-5沸石分子筛的氧化性及表面酸性,实现了CO与苯催化生成甲苯的反应。原位固体核磁共振研究发现,CO可以作为一种烷基化试剂与苯发生烷基化反应,反应过程中,CO通过甲氧基中间体提供了甲苯中甲基上的碳原子,苯提供了甲苯的苯环。以往的研究通常认为CO只能作为羰基化试剂在多种催化过程提供羰基基团,该工作报道的CO可作为烷基化试剂参与目标有机物制备的研究结果,丰富了CO作为C1原料的用途,也为高附加值化学品的合成提供新途径。   在前期工作中,该研究组利用原位核磁共振技术结合其他多种谱学技术,揭示了沸石分子筛催化剂上甲烷、一氧化碳活化与转化的反应机理(Angew. Chem. Int. Ed. 2012, 51, 3850 Chem. Sci. 2012, 3, 2932 J. Am. Chem. Soc. 2013, 135, 6762 J. Phys. Chem. C, 2013, 117, 4018)。   该工作得到了国家自然科学基金委、中国科学院以及武汉市晨光计划的支持。    Zn/H-ZSM-5上CO直接与苯烷基化生成甲苯反应历程图
  • 国家同步辐射实验室在碳氢化合物低温氧化研究中取得突破性进展
    国家同步辐射实验室齐飞教授研究小组与法国Nancy大学Battin-Leclerc教授研究小组合作,将同步辐射真空紫外光电离质谱技术与射流搅拌反应器(Jet Stirred Reactor)结合,模拟发动机的点火过程,在丁烷低温氧化过程中探测到了多种过氧化物(烷基过氧化物和羰基过氧化物),如过氧化甲烷、过氧化乙烷、过氧化丁烷、C4羰基过氧化物等,首次在实验上验证了碳氢化合物低温氧化机理中广泛应用20余年的重要假定。该研究成果已于近期发表在国际著名期刊《德国应用化学》上(Angew. Chem. Int. Ed. 2010, 49, 3169-3172)。      汽车发动机与生活中随处可见的塑料和化纤制品之间似乎风马牛不相及,但它们却都与一种奇妙的化学现象──碳氢化合物的自燃(autoignition)密切相关。自燃是指可燃物质在没有外部火花、火焰等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧,是一种受低温氧化机理控制的过程。它是内燃机的主要点火方式之一,也是威胁石油化工中氧化过程安全的罪魁祸首。因此对碳氢化合物低温氧化机理的认识可以帮助我们扬长避短地利用自燃现象,对于内燃机设计和石油化工安全等实用领域意义重大。在低于自燃温度时,碳氢化合物低温氧化还会出现“冷火焰(cool flame)”(550 K左右出现的温度跳动,量级在数十K,伴随由甲醛发出的蓝光,形似火焰)和“负温度系数区”(650 K左右出现的反应活性随温度上升而下降的区域)等奇妙特性。射流搅拌反应器可以模拟自燃温度前后的工况,是研究碳氢化合物低温氧化的最佳实验平台之一。同步辐射真空紫外光电离质谱技术在射流搅拌反应器中的成功应用是揭示过氧化物存在及其浓度随温度变化趋势的关键,将从根本上推动碳氢化合物低温氧化机理的研究,揭开“星星之火,可以燎原”的秘密,为实用领域提供更加详细、精确的理论指导。   该工作得到国家杰出青年基金、中国科学院和科技部的支持。
  • 沃特世携手新加坡生物工程技术研究院合作开发肿瘤标志物鉴定和肿瘤生物学研究的新策略
    此次合作旨在促进分析方法的开发,建立以鞘糖脂为重点的癌症糖生物学多糖数据库沃特世公司(纽约证券交易所代码:WAT)今日宣布与隶属于新加坡科技研究局(A*STAR)的生物工程技术研究院(Bioprocessing Technology Institute, BTI)合作开发新方法,用于新型肿瘤标志物鉴定以及研究糖基化修饰通路以帮助开发新型治疗方案。此次研究合作的一个重要内容是开发一个基于实验数据的与疾病相关的鞘糖脂(GSL)头部基团数据库,该数据库将包含GSL多糖名称、葡萄糖单位(GU)校正后的色谱保留时间1和碰撞截面(CCS)数值以及对应的质谱图。GSL的结构高度复杂,其中多糖头部基团与脂肪酰基团相连。要分析这类物质的分子组成,必须解析其分子序列、端基异构性、分支结构、寡糖基的连接位置,以及脂肪酰基团的基序。GSL对细胞的生长、相互作用和信号传送非常关键,它的结构变化可能会引发疾病或促使不同类型的肿瘤发生恶化。多糖头部基团的分析一直以来都是糖科学领域的一大难题,单独使用液相色谱(LC)或质谱(MS)技术都无法轻松区分出异构体结构。BTI的科学带头人、研究科学家Susanto Woen博士表示:“通过本次合作,BTI能够充分应用沃特世的糖组学专业知识开发新的分析方法,并建立前所未有的GSL信息数据库。这不仅有助于我们探索潜在的临床标志物,还能深入了解经过治疗干预之后的疾病发展和患者复原情况。希望我们的研究能够在改善人类健康的同时解决生物制药行业的某些需求。此次合作让我们有幸成为国际糖组学研究网络中的一员,我们将致力于开拓新技术,用以确定疾病或疾病状态中GSL糖基化与任何表型/基因型特征之间的潜在联系。”沃特世公司健康科学市场总监Jose Castro-Perez博士说道:“通过进一步加强合作关系,我们将更深入地帮助BTI开发创新型分析方法,并建立以鞘糖脂为重点的肿瘤糖生物学综合实验性多糖数据库。我们希望此次合作能够开发出先进的方法,用以研究肿瘤分类和生物标志物发现过程中涉及的GSL糖基化。”在此次合作中,沃特世将提供专业的科学知识和Waters SYNAPT G2-S High Definition Mass Spectrometry行波离子淌度高清质谱系统。这款仪器采用的行波离子淌度质谱技术能够对离子进行快速分离,不仅可按照离子的大小、质荷比进行分离,还可根据离子的形状实现分离。CCS值是一项精确的化合物物理化学性质,与气态离子的大小、形状和所带电荷有关。这套系统可根据每个多糖头部基团的CCS值实现分离,深入揭示它们独有的化学结构,随后,获得的结构数据可用于更详细地描述待研究的GSL。相较于单独使用质荷比的方法,行波离子淌度能够提供更高的分析专属性。沃特世与BTI的合作始于2014年,合作之初的主要目标是评估专为生物制药应用而开发的新型 GlycoWorks RapiFluor-MS N-糖标记分析试剂盒的性能,以及开发此试剂盒相关的糖基化分析完整工作流程,涵盖样品前处理到样品分析。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司已开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。###Albrecht, S. Vainauskas, S. Stockmann, H. McManus, C. Taron, C. H. Pauline M. Rudd, Anal. Chem. DOI:10.1021/acs.analchem.6b00259.Waters、SYNAPT、High-Definition Mass Spectrometry、GlycoWorks和RapiFluor-MS是沃特世公司的商标。
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 安捷伦公司参与并支持“多肽及蛋白药物研发与技术创新发展研讨会”
    安捷伦公司参与并支持&ldquo 多肽及蛋白药物研发与技术创新发展研讨会&rdquo 蛋白质药物作为一种新型生物技术候选药物,分为多肽和基因工程药物、单克隆抗体和基因工程抗体、重组疫苗。与以往的小分子药物相比,具有高活性、特异性强、低毒性、生物功能明确、有利于临床应用的特点,因此成为医药产品中的重要组成部分。2011年10月29-30日,&ldquo 多肽及蛋白质药物研发与技术创新发展研讨会&rdquo 在北京新悦宏大酒店成功召开。 会议的主旨为:大力发展以蛋白质药物为主体的生物医药产业,提高多肽及蛋白质药物研发创新和技术发展水平,交流探讨多肽及蛋白质药物研究领域学术热点、难点问题,加强技术合作,展现多肽及蛋白质药物研究领域的最新研究成果和新药发现,促进国内蛋白质药物产业的可持续发展等。 作为世界领先的生物医药行业分析解决方案供应商,安捷伦致力于帮助生物医药领域用户开发专业、安全、高质、高效的药物治疗产品,并且帮助用户以更快的速度,更低的成本将产品推向市场,经过近年来的先进技术及行业经验的不断积累,安捷伦目前可为广大生物医药领域用户提供广泛的完整应用方案,包括: 生理化学性质表征 完整新生物成分(NBE)分析 糖基化与磷酸化蛋白分析 氨基酸分析 肽谱分析 产物相关的杂质分析 工艺流程相关的污染物检测 蛋白和抗体的质量保证/质量控制 稳定性和剂型测试 蛋白治疗药物的生产工艺优化等 10月29日上午的大会报告中,安捷伦液质联用系统应用工程师陶定银博士进行了题为&ldquo 利用安捷伦HPLC、 Chip-cube HPLC 及Q-TOF等仪器针对抗体药物的表征策略&rdquo 的精彩报告。单克隆抗体药物与抗原存在很强的相互作用且具有高特异性,目前在科研以及各种疾病治疗中备受关注。抗体药物在应用之前,需要进行一系列的表征,比如抗体药物的氨基酸序列、完整蛋白质、甲硫氨酸氧化、二硫键、以及糖基化等翻译后修饰。本次报告介绍了采用安捷伦的HPLC、 Chip-cube HPLC 及Q-TOF等仪器实现抗体药物的一系列表征。安捷伦开发的糖分析芯片,可以快速高效的分析抗体药物的糖基化修饰,结果与LC-FLD方法相当,同时具备传统方法不能实现的优点,如数十倍分析速度与分析通量的提高,高度集成化系统带来的自动化、简便的分析流程,以及最佳的结果重复性。此外,安捷伦Bioconfirm蛋白药物分析软件以及糖分析数据库等强大的软件及数据处理工具能够进一步帮助用户有效进行蛋白药物相关研究。 更多安捷伦生物制药解决方案,请参考: http://www.chem.agilent.com/zh-cn/solutions/biopharma/pages/default.aspx 更多安捷伦生物制药分析解决方案在线讲座视频及应用材料,敬请联系我们:yunxia_shi3@non.agilent.com 订阅Access Agilent电子刊物,请登录: www.agilent.com/chem/accessagilent:cn 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500 名员工为 100 多个国家的客户提供服务。在 2010 财政年度,安捷伦的业务净收入为 54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 第五届科学仪器原创大赛本周精品推荐
    第五届科学仪器网络原创大赛(后简称:大赛,活动网址:http://2012yc.instrument.com.cn)自8月1日开赛以来,已经进行152天,来自全国各地的网友积极响应,征集到900余篇参赛作品。大赛设有12个分赛区,分别为:色谱、质谱、光谱、X射线仪器、材料表征、食品检测、药品检测、环境监测、样品前处理、生命科学、实验室建设与采购、综合类;征文类型将涉及行业综述、分析方法开发与应用、新技术发展、仪器维护维修、仪器操作使用经验、实验室管理方法与建设、仪器选型、采购交流等多个方面。大赛征文已经进入倒计时,在此感谢各位坛友对活动的积极支持与关注,感谢各专区的负责人、专家评审团成员及论坛版主和专家对活动的积极响应,欢迎更多的网友们加入进来,分享您的经验与心得。 参赛方法:进入活动专题网站点击 按照提示操作即可,或者直接将参赛内容以帖子形式发表在相应版面,标题格式采用:【第五届原创】+ 标题内容;即可参赛。 本月部分精彩作品推荐: 赛区 作品名称 作者 色谱赛区 电源故障三:安捷伦1260电源故障的维修 lii33 菜鸟第一次对HPLC_ELSD进行的维修 michelle_jiang 气相色谱柱中流动相的分布状态小议 byron1111 岛津GC2014 FID放大板的一次更换 xianshijiyi 质谱赛区 香精样品中的反应物(续1)-酸和醇的酯化反应 jimzhu 羰基合成醋酐中某杂质的定性分析 yaofei 白酒中塑化剂的快速检测 sdlzkw007 光谱赛区 燃烧头清洗过程的图解 anping 便携式拉曼产品简要介绍 happylove 由小小增压阀谈把握细节的重要性 xurunjiao5339 X射线仪器赛区 浅谈EDXRF的辐射危害 susi100 实验室空调滤尘中铅的测定 albert800922 样品前处理赛区 一种固相萃取废液收集装置 icetrob IKA T25分散机在农残检测中的使用与维护 mcds 药物分析赛区 微流控芯片电泳-脉冲电流电化学方法快速分离和检测四种瘦肉精 flysky97 HPLC-ELSD法测定清开灵含片中猪去氧胆酸和胆酸的含量 tangtang 食品检测赛区 应用四种前处理方式检测乳制品之重金属铅 铬的方案 yqfxy 一波三折-咸菜中亚硝酸盐的测定 zyl3367898 ELISA法检测兽残的数据处理-教你半对数作图 yxh1026 环境监测赛区 基于HACH的水中镍快速分析方法浅析 54943110 牙刷+醋+替代电池 修好Y09-301型激光尘埃粒子计数器 sc360xp 材料表征赛区 关于压铸铝合金YL112力学性能的试验 lgt228 氧化法做低合金钢奥氏体晶粒度的操作步骤 lylsg555 扫描新手的入门照片--FEI QUANTA 450+QUORUM PP3000T kutoku 生命科学赛区 浅谈发酵设备——从实验室走向工业化大生产 gl19860312 实验室小故事——凝胶成像 nkwinter 实验室建设与采购 心随我动-----记我的检验室建设过程 huaibeijiayuan 重磅来袭 七年之痒----我的实验室成长经历 huojuncai 有机实验室建设历程 jxyan 综合赛区 FP640火焰光度计的维修与保养 dyann 不可忽视缓冲溶液的PH值---体验篇 yuxiaofeng862ml色谱进样瓶快速洗涤盒的使用过程的不足 wonshee 12月参赛作品网上投票将于2013年1月1日正式开始,欢迎前来为你喜爱的作品投上宝贵的一票,予人玫瑰手留余香,大赛对每次参与投票的用户给予2个积分奖励! 投票地址:http://www.instrument.com.cn/activity/2012yc/vote.aspx 仪器信息网第五届科学仪器网络原创文章大奖赛活动介绍:   为促进分析人员的技术交流,提高行业的仪器应用水平,自2008年仪器信息网开始举办“科学仪器网络原创文章大奖赛”,至今已成功举办四届。2012年8月1日,仪器信息网“第五届科学仪器网络原创作品大奖赛” 正式拉开帷幕,此次大赛将征集参赛作品5个月,年度评审2个月,设有12个分赛区,分别为:色谱、质谱、光谱、X射线仪器、材料表征、食品检测、药品检测、环境监测、生命科学、样品前处理、实验室建设及采购和综合类,征集作品将涉及分析方法开发与应用、新技术发展、仪器维护维修、实验室管理与建设、仪器选型等用户关注的多个方面。本次大赛礼品总价值超过100000元,是仪器信息网论坛2012年度最重要的网上活动!   活动网址:http://2012yc.instrument.com.cn   第五届科学仪器网络原创大赛大赛由以下公司赞助举办,特此感谢(排名不分先后):   色谱赛区、综合赛区由安捷伦科技有限公司独家赞助   光谱、生命科学赛区由赛默飞世尔科技(中国)有限公司独家赞助   质谱赛区由AB SCIEX公司独家赞助   X射线衍射仪器赛区由荷兰帕纳科公司独家赞助   样品前处理赛区由广州仪科实验室技术有限公司独家赞助   材料表征赛区由英国马尔文仪器有限公司独家赞助   海洋光学公司赞助“原创1+1”同期活动   大赛期间组建原创团队的公司有:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制