当前位置: 仪器信息网 > 行业主题 > >

十八烯

仪器信息网十八烯专题为您提供2024年最新十八烯价格报价、厂家品牌的相关信息, 包括十八烯参数、型号等,不管是国产,还是进口品牌的十八烯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合十八烯相关的耗材配件、试剂标物,还有十八烯相关的最新资讯、资料,以及十八烯相关的解决方案。

十八烯相关的方案

  • 用LC-MSMS法研究沉积物中十八烷基三甲基溴化铵及其盐的分析方法及其多年来浓度的变化
    使用格哈特公司全自动快速索氏萃取系统 SOXTHERM索克斯做为样品前处理,用LC-MSMS法研究沉积物中十八烷基三甲基溴化铵及其盐的分析方法及其多年来浓度的变化
  • GC-MS/MS测定牡蛎中的正十八烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的异十八烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正二十八烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC法测定土壤中石油烃类物质正十八烷
    国内分析监测领域普遍采用红外法测定土壤中的石油烃,此法不能反映石油烃的成分信息、容易出现假阳性结果,且萃取剂四氯化碳具有强致癌性。因此建立快捷实用对环境污染小的土壤中石油烃类物质分析方法具有重要意义。本方法采用正己烷/二氯甲烷作萃取剂,C10-C40的正构烷烃作校准溶液同时可以监测土壤中正十八烷等石油烃组成特征。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十八酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 石化应用方案十八:工业用甲基叔丁醚的纯度分析
    甲基叔丁醚(MTBE)具有较高的辛烷值,是车用汽油的理想调和组分。本方案符合标准 SH/T 1550 要求,测定工业用甲基叔丁基醚(MTBE)纯度及杂质。
  • 日本药典第一增补第十八次修订拟新收载药物阿那曲唑的分析
    本文使用高效液相色谱仪NexeraXR根据拟新收载入日本药典的阿那曲唑系统适用性试验进行了分析。结果证实,检测确认、系统性能及系统重现性均符合日本药典的标准。
  • 用人工气候培养箱培育夕雾花
    夕雾花喜冷凉一些的环境。具体来说,最适宜它的温度在十八度左右,既不能太高,也不能太低可以放入人工气候培养箱内。冬季别低于十度。而夏季的任务则是降温,多喷雾、通风等等。
  • 东西分析GC-MS法分析蓝莓香精组成成分
    气质联用技术是香精组成成分析最有效的分析手段,本文利用国产仪器GC-MS3100分析了蓝莓香精的组成,共鉴定出32种物质,其中主要成分有乙基香兰素,香兰素,丁酸乙酯,十八烯酸,麦芽醇,棕榈酸,乙酸苄酯,辛酸,香茅醇等;绝大部分组分相似度大于85%。该方法简单、快速而准确,完全满足此方面的分析测试要求。
  • 大连依利特:Elite-AAA氨基酸分析系统及应用
    Elite-AAA氨基酸分析系统采用色谱工作站精确控制高精度二元梯度高效液相色谱系统,提供精确的流路和流动相组分控制,采用专用ODS固定相使十八种氨基酸得到了很好的分离,采用紫外检测器完成氨基酸的检测。特点: DNFB柱前衍生与梯度程序结合能够很好地分离十八种氨基酸,达到理想的分辨率; 极好的定性和定量稳定性; 极高的方法灵敏度; 仪器成本低:柱前衍生与HPLC系统常规紫外检测器检测,不需附加设备,降低了成本; 一机多用:氨基酸该分析系统能够作为常规HPLC系统使用; 运行成本低:缓冲溶液和有机溶剂作流动相,不需要特殊试剂,使得分析成本非常低; 有力的技术支持:公司的色谱仪器专家和分析化学家为用户提供技术保证。
  • 日本药典第一增补第十八次修订拟新收载※药物替莫唑胺的分析
    本文使用i-Series LC-2050一体化机型色谱仪,根据拟新收载入日本药典的替莫唑胺系统适用性试验方法进行上机了分析。结果表明,检测确认、系统性能及系统重现性均符合日本药典的标准。
  • 日本药典第一增补第十八次修订拟新收载※药物盐酸奥昔布宁的分析
    本文使用Nexera XR高效液相色谱仪,根据拟新收载入日本药典的盐酸奥昔布宁的系统适用性试验进行了上机分析。结果表明,检测确认、系统性能及系统重现性均符合日本药典的标准。
  • 基于无火焰原子吸收法的河水标准物质及自来水中镉的分析
    根据日本「关于部分修改水质标准相关省令等的省令」(厚生劳动省令第十八号)(2010年2月17日),自来水中镉的标准从0.01 mg/L以下修改为0.003 mg/L以下。新标准已从2010年4月1日开始实施。在新标准中,从过去的4种分析方法中删除了火焰原子吸收法,采用的3种分析方法,1. 无火焰原子吸收法,2. ICP发射光谱分析法,3. ICP质谱分析法。本文介绍对于由日本分析化学会提供的作为认证标准物质的JAC0302河水标准物质(添加),以及在自来水中添加浓度相当于标准值1/10的镉所制成的样品,以无火焰原子吸收法进行分析的实例,并介绍简便的自动稀释再次测定功能。
  • 参照2020版《中国药典》中高效液相色谱法分析吡拉西坦
    2020版《中国药典》二部中,采用十八烷基硅烷键合硅胶为填充剂的色谱柱来测定吡拉西坦含量,并规定理论塔板数按吡拉西坦峰计算应不低于2000 。使用东曹的C18色谱柱TSKgel ODS-100V参照上述分析方法,柱效可达10000以上,远高于药典标准的分离要求。
  • GC法测定水中正十八烷
    目前,环保行业中石油烃的检测方法为红外分光光度法,前处理过程中使用的萃取剂为四氯化碳,四氯化碳属于消耗臭氧层物质(ODS),被蒙特利尔公约列为禁用物质,本方法中引用二氯甲烷替代。
  • 北京谱朋:气相色谱柱DB-23,DB-WAX和HP-88对顺-9-十八烯酸甲酯的分离
    衬管分流衬管(部件号5183-4647)1,色谱柱30 m x 0.25 mm ID,0.25 μ m DB-Wax(J&W 122-7032)试验条件GC-FID进样口温度250 ° C进样体积1 μ L分流比1/50载气氢气柱头压力53 kPa 恒压(在50 ° C,36 cm/s)柱箱温度50 ° C,1 min,25 ° C/min 到200 ° C,3 ° C/min 到230 ° C,18 min。检测器温度280 ° C检测器气体氢气: 40 mL/min 空气450 mL/min 氦做尾吹气: 30 mL/min。2,色谱柱60 m x 0.25 mm ID,0.15 μ m DB-23(J&W 122-2361)试验条件GC-FID进样口温度250 ° C进样体积1 μ L分流比1/50载气氦气柱头压力230 kPa 恒压(在50 ° C,33 cm/s)柱箱温度50 ° C,1 min,25 ° C/min 到175 ° C,4 ° C/min 到230 ° C,5 min。检测器温度280 ° C检测器气体氢气: 40 mL/min 空气450 mL/min 氦做尾吹气: 30 mL/min。3,色谱柱A 100 m x 0.25 mm ID,0.2 μ m HP-88(J&W 112-88A7)色谱柱B 60 m x 0.25 mm ID,0.2 μ m HP-88(J&W 122-8867)试验条件GC-FID进样口温度250 ° C进样体积1 μ L分流比1/50载气A 氢气载气B 氦气柱头压力恒流,2 mL/min柱箱温度A 120 ° C,1 min,10 ° C/min 到175 ° C, 10 min,5 ° C/min 到210 ° C,5 min5 ° C/min 到230 ° C,5 min柱箱温度B 175° C,10min,3° C/min,220° C, 5min检测器温度280° C检测器气体氢气: 40mL/min 空气450mL/min 氦做尾吹气: 30 mL/min。
  • GC-MS/MS测定牡蛎中的正十九烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正十一烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正十六烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的植烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正三十二烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正二十烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正二十四烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的正三十烷
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • GC-MS/MS测定牡蛎中的多环芳烃(PAHs)和脂肪烃
    对样品结果的仔细解析可以有力地证明牡蛎受到墨西哥湾原油的脂肪烃污染和PAH污染。牡蛎样品分析得到的脂肪烃和PAH谱图与墨西哥湾原油分析得到的谱图相匹配,表4列举出墨西哥湾原油的组成成分,特征物正十六烷、正十七烷和异十八烷的含量相对较高,异十八烷/C-17含量比为0.7,植烷/C-18含量比为0.35。单个脂肪烃的任意组合的相对含量的测定值与墨西哥湾原油的组成相匹配。列举了直接测定墨西哥湾原油的结果,以及牡蛎样品净化后的测定结果。需要指出的是,油的组成会随着时间发生变化,因此被牡蛎吸收部分的色谱图与原油的色谱图是有区别的,其它原油样品的谱图也证明了这种区别。列举了原油中的PAHs的测定结果,特征性的Ant、Phe、Flu和Chr的浓度比B(a)P的浓度高100倍。为了对PAHs进行准确定性,方法提供了高质量数PAHs的半定量测定结果,作为判断牡蛎样品中PAHs的含量是否超过安全限值的有力依据。要得到准确可靠的结果,必须采取更加精细的净化步骤。
  • 高效液相色谱法检测棉籽粕中的氨基酸
    采用柱前衍生反相高效液相色谱法分析棉籽粕中十八中氨基酸,衍生试剂为优选的某专用试剂,流动相为醋酸盐缓冲溶液、乙腈、水,二元梯度洗脱,色谱柱为AAK 氨基酸专用柱,紫外检测。该方法使用LC-5500 液相色谱仪,定性重复性好,定量准确。
  • 气相柱 DB-23 检测乳制品中的脂肪酸全顺-9,12-十八碳二烯酸
    色谱柱: DB–23:60m× 0.25mm× 0.25um(122-2362)进样口设置: 温度:250℃ 进样量:1.0ul载气:氮气1ml/min 分流比: 30:1柱箱升温程序: 50℃维持1min,以25℃/min 升温到175℃,维持0min ,以4℃/min 升温到230℃,维持4min检测器 FID 设置: 温度:300℃氢气流速:40ml/min 空气流速:400ml/min补偿气流速:25ml/min
  • 气相柱 DB-23 检测乳制品中的脂肪酸顺-9-十八烯酸
    色谱柱: DB–23:60m× 0.25mm× 0.25um(122-2362)进样口设置: 温度:250℃ 进样量:1.0ul载气:氮气1ml/min 分流比: 30:1柱箱升温程序: 50℃维持1min,以25℃/min 升温到175℃,维持0min ,以4℃/min 升温到230℃,维持4min检测器 FID 设置: 温度:300℃氢气流速:40ml/min 空气流速:400ml/min补偿气流速:25ml/min
  • 北京谱朋:气相色谱柱DB-23,DB-WAX和HP-88对反-9-十八烯酸甲酯的分离
    衬管分流衬管(部件号5183-4647)1,色谱柱30 m x 0.25 mm ID,0.25 μ m DB-Wax(J&W 122-7032)试验条件GC-FID进样口温度250 ° C进样体积1 μ L分流比1/50载气氢气柱头压力53 kPa 恒压(在50 ° C,36 cm/s)柱箱温度50 ° C,1 min,25 ° C/min 到200 ° C,3 ° C/min 到230 ° C,18 min。检测器温度280 ° C检测器气体氢气: 40 mL/min 空气450 mL/min 氦做尾吹气: 30 mL/min。2,色谱柱60 m x 0.25 mm ID,0.15 μ m DB-23(J&W 122-2361)试验条件GC-FID进样口温度250 ° C进样体积1 μ L分流比1/50载气氦气柱头压力230 kPa 恒压(在50 ° C,33 cm/s)柱箱温度50 ° C,1 min,25 ° C/min 到175 ° C,4 ° C/min 到230 ° C,5 min。检测器温度280 ° C检测器气体氢气: 40 mL/min 空气450 mL/min 氦做尾吹气: 30 mL/min。3,色谱柱A 100 m x 0.25 mm ID,0.2 μ m HP-88(J&W 112-88A7)色谱柱B 60 m x 0.25 mm ID,0.2 μ m HP-88(J&W 122-8867)试验条件GC-FID进样口温度250 ° C进样体积1 μ L分流比1/50载气A 氢气载气B 氦气柱头压力恒流,2 mL/min柱箱温度A 120 ° C,1 min,10 ° C/min 到175 ° C, 10 min,5 ° C/min 到210 ° C,5 min5 ° C/min 到230 ° C,5 min柱箱温度B 175° C,10min,3° C/min,220° C, 5min检测器温度280° C检测器气体氢气: 40mL/min 空气450mL/min 氦做尾吹气: 30 mL/min。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制