当前位置: 仪器信息网 > 行业主题 > >

桉树素

仪器信息网桉树素专题为您提供2024年最新桉树素价格报价、厂家品牌的相关信息, 包括桉树素参数、型号等,不管是国产,还是进口品牌的桉树素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合桉树素相关的耗材配件、试剂标物,还有桉树素相关的最新资讯、资料,以及桉树素相关的解决方案。

桉树素相关的论坛

  • 参加桉树会议归来有感

    嘿嘿,参加的不是仪器的会议,但是写了东西习惯上来和大家分享一下,就当给大家放松一下吧。第五届第二次桉树会议于9月15日-16日在广州华泰宾馆隆重召开,本人有幸作为企业代表参会,特此记述。先讲一下会议地点,华泰宾馆位于广州越秀区,靠近地铁淘金站,毗邻白云宾馆、花园酒店等知名酒店,是一家始建于1950年的三星级宾馆,普通房间房价280元/天,停车另行收费,我们的车停了两天共收费81元。进得房间,陈设给人一种很有历史的感觉。到了洗澡睡觉的时候,发现宾馆非常人性化,第一,没有吹风机,客人洗完头不能吹头发,节省了能源,低碳环保;第二,灯非常多,每个灯有各自的开关控制,不太好找,利于客人智商的提高;最高之处在于对客人的动手解决问题能力要求高,举例:挂衣服的柜子里面也有灯,灯光可以从百叶窗透出,我们好久找不到灯的开关,又两人睡觉都怕灯,同行美女钻研发现,此柜设计极为巧妙,应该是关上柜门,灯自动关闭。然而因历史原因,簧不好使了,门关上了,灯没关,当然这个遗憾与“人死了,钱没花完”不能相提并论。发现问题是解决问题的第一步,美女继续发挥,找来一张硬纸片,折叠好,夹在门缝里,权且“修好”了开关,灯关上了,一夜安睡。报到时秩序井井有条,每位代表获赠一个精美的电脑包,内装资料十分厚实,有巨著两本,赞助单位的宣传资料若干。附此次桉树会议的赞助标准:承办单位,6万元,可免6位代表注册费;协办单位,3万元,可免3位代表注册费,主办方统一派发宣传资料。15日,会议正式开始,会场布置十分大气,主席台上是长达十米的背景“第五届第二次桉树论坛”,会场后方是各赞助单位的展板及资料。参会代表有来自全国十几个省、自治区、直辖市的代表400多位,另有澳大利亚专家数位,可谓人才济济。宣布开始之后,各位专家便开始了学术报告,作报告的专家有来自桉树中心的、澳大利亚塔斯马尼亚公司的、国内高校的、研究所的,覆盖了桉树行业的整个产业链。每个人的报告时间有严格限定,听众不能提问,不得copy报告ppt。15日下午,几场报告完后,是中国桉树先驱祁述雄先生八十寿辰纪念活动,祈老先生的几位好友几学生分别做了热情洋溢的发言,高度肯定了祈老先生对中国桉树事业的贡献,临近结束主持人给现场观众一点时间,向祈老表达心意。有几位带了礼物到现场的,登台献礼,将会议气氛推向高潮。因为我公司的礼物不方便带到会场,未能抓住此机会送上,然而此次未抓住机会,让我们后悔莫及。最后,祈老先生也做了简短的讲话。15日会议结束,晚宴。大家纷纷向祈老及其夫人杨珉女士敬酒祝寿,各参会代表自由交流,是整场会议中气氛最活跃的一节。16日上午仍然是主题报告,下午是分组专题报告,本人有幸代表公司做了“**”专题报告,与参会同行共同切磋。注:拿到会议议程表时心里十分忐忑不安,因为排在我前面的一位代表报告题目为“****研究”,我深恐他的报告内容与我的有重叠,待他做完报告方才放心,因为严格意义上,他讲的并不是“几种”,而是一种研究。专题报告结束后,我们领取了合照的照片,通讯录,便赶回了深圳,未参加会议总结及论文颁奖,不加评论。两天的感想十分丰富。一,桉树会议在全国各单位的学术交流上,起到了十分重要的作用;因为控制了听众的提问,使听众可以全神贯注的倾听报告者的演讲;二,桉树会议对参会企业,尤其是赞助企业,起到了良好的宣传作用,除了代发宣传资料和展板之外,还在部分主题报告和专题报告上,对其产品和工艺进行了详尽的讲解;三,桉树会议对举办地的宾馆业务起到了良好的促进作用,参会人员住宿是不打折的,价格明显高于市场价。综合以上,我认为,桉树会议这样的学术盛会,一年只举办一次,频次太低了,应该改为半年一次,或者每季度一次;另外,祝愿以后的桉树会议得到更多承办单位、协办单位的支持;祝愿会务组找到价性比更高的酒店。

  • 适合桉树生长的土壤环境

    请教各位高手,有谁知道种植桉树所需要的土壤要去检测的话,检测那些项,影响最大的一些因素是那些?多谢多谢

  • 桉树对环境的影响!

    桉树由于其生长得快,经济价值高,得意广泛种植!有人说其生长会消耗大量的水分而影响环境!是真的吗?

  • 你知道的天然纤维和再生纤维素纤维还有哪些?

    人类使用天然纤维用于纺织已有悠久的历史。纺织纤维原料要兼顾可再生、可循环的生物质资源,并充分全面利用。动物纤维主要除了绵羊毛、山羊绒、骆驼绒、牦牛绒、长毛种兔毛、羊驼毛、骆马毛、原驼毛之外,貂绒、貉绒、狐狸绒都可以充分利用。天然植物纤维除蚕丝,棉、亚麻、苎麻、黄麻、槿麻、剑麻、蕉麻外,汉麻、木棉、再生纤维素纤维(用木材、麻秆芯、桉树皮、棉秆、甘蔗渣等制造)、聚左旋乳酸纤维、甲壳素纤维和壳聚糖纤维、海藻酸钠纤维,粘纤,莫代尔,莱赛尔,我们知道的天然纤维和再生纤维素纤维还有那些,欢迎添加!共同学习!

  • 【分享】保健功能食品的种类及主要素材

    1.增强免疫功能食品素材 主要有小球藻、螺旋藻等藻类;乳酸菌、双歧杆菌等细菌类;蘑菇多糖、担子菌等食用真菌类;黄绿色蔬菜和水果、大豆肽、芦荟等植物成分;甲壳素、蜂王浆、蜂蜡、牡蛎肉等动物成分;人参、灵芝、刺五加、虫草等传统中草药类;还有褪黑素、核酸等合成物质等。 以上这些成分按其作用机制大体可分为两大类:第一类是以p—蘑菇多糖为代表,有刺激白细胞表面膜的作用,使细胞活素生成能力增强;另一类以蔬菜中含硫化合物为代表,对白细胞内代谢有调节作用。 2.抗氧化草药及植物成分 氧化应激是癌、心脑血管病和衰老的主要原因。植物多酚是近年来国外研究最多的天然抗氧化功能食品素材。植物多酚种类繁多,主要有酚酸、原花色素、单宁、黄酮类等。目前,国外主要从以下植物成分提取多酚类物质:茶、紫苏籽和叶、芝麻、葡萄籽和叶、未熟苹果、月见草籽皮、越橘皮、大豆、桉树叶、生姜、桑叶等。 多酚类物质具有抗氧化、抗癌、抗过敏、消炎、降血脂、降血糖、抑制动脉硬化、抗衰老等多种功效。在欧洲,葡萄籽多酚早在30多年前就作为药物使用,它具有降血脂、抗氧化等多种功效,对动脉硬化、癌、糖尿病及其合并症、运动应激引起的肌肉疲劳和脂质过氧化反应均有预防效果,还可以改善肠内环境,减轻肠道排泄物的臭味。

  • 【求助】帮忙翻译一下句子

    [color=#DC143C]微波提取桉树叶中有机酸的工艺研究 摘要:筛选出微波提取桉树叶中有机酸最佳工艺。采用正交设计优化微波提取工艺,对肇庆、广州、广西、云南四种不同产地的桉树叶有机酸进行提取,比较研究了微波提取与常用提取法(回流提取法、浸提法)对有机酸的提取,并用高效毛细管电泳法测定五种有机酸的含量。微波提取五种有机酸的优化工艺:溶剂为无水乙醚,微波功率为中功率,提取时间为4分钟,溶剂用量为300 mL,在此条件下,有机酸的平均回收率大于90%,RSD≤1.24。结果表明,用微波提取法提取肇庆桉树叶五种有机酸具有含量高、省时的特点,值得在中药提取中推广应用。关键词:有机酸;微波旋转提取;毛细管电泳[/color]以下为了便于大家翻译,找了一下例子微波提取 Microwave-Assisted Extraction微波提取水溶性大豆多糖工艺研究MICROWAVE EXTRACTION TECHNOLOGY OF SOLUABLE SOYBEAN POLYSACCHARIDES有机酸 Organic Acids摘要Abstract 筛选出回流提取南五味子中木脂素的最佳工艺 To optimize the best extraction conditions of total lignans in south Schizandra ehinensis Baill.正交设计优化orthogonal design optimization例 并采用正交设计优化提取条件 By means of orthogonal design, optimum parameters回流提取法 reflux extraction 浸提法 the extract method高效毛细管电泳法测定兽用注射用青霉素钾的含量Determination of Penicillin Potassium Salt Injection for Veterinaries by High Performance Capillary Electrophoresis高效毛细管电泳High Performance Capillary Electrophoresis优化工艺optimized process 或者optimized process微波提取茶叶黄酮的最佳工艺为微波功率600w,提取时间2min,料液比为1:20The optimal microwave conditions were available in flavonoid extraction of tea leaves as follows: the microwave power was 600 W, the extracted time was 2 min and the feed-liquid rate was 1:20 无水乙醚diethyl etherThe average recovery was 98.90% with RSD 0.6%. 平均回收率为98.90%,RSD为0.67%。 大家认真地帮我一下,翻译红色那些,谢谢,急用

  • 【分享】警惕外来植被对土壤肥力影响

    《科学日报》消息,在过去一个世纪里,人类活动对全球环境的影响不断加剧。人口规模的增大、耕地面积的扩大以及全球变暖带来的气候变化(长时间的干旱,不规律的雨季模式),使得沙漠化更加严重。  据世界土壤信息中心的数据显示:过去的50年内,1280万平方公里的土壤的肥力不断降低。为改善一些地区土壤贫瘠的现状,尤其是在亚热带和地中海地带,自1970年代中期开始,政府开展了一系列的重新造林项目,采用的树种主要是生长迅速的植物,比如桉树、澳洲阿拉伯树胶。这些树种本身具有的细菌使得它们能很好的适应贫瘠的,缺乏矿物质的土壤。虽然毫无疑问这些树种能在艰苦的土壤环境中快速地繁殖,并且是很好的防风林从而减少土壤流失,但目前科学家并不太了解这些树种对土壤微生物中的基因和功能多样性的潜在影响。  自2005年以来,西非塞内加尔和布基纳法索的一个研究团队开展了相关调查,收集了外来植物如何改变真菌群落和细菌群落的结构和生物多样性的资料。在布基纳法索,实验室的观察表明在全世界很多地方大量种植的桉树,会降低当地菌根真菌群落的多样性,而这种多样性对生态平衡至关重要,当然桉树并不会对其原产地产生这种影响。  科学家发现在塞内加尔,高原植物绢毛相思(Acacia holosericea)的种植也对当地土壤带来了这种负面影响,当这种树被引进来不久,当地土壤的微生物特征发生了惊人的变化。这些快速生长的树种能有效地选择菌根真菌和根瘤菌细菌种类,最后大大减少当地共生群落的种类多样性。从高原植物绢毛相思种植地区周边获得土壤样品显示出当地的菌根真菌群落处于平衡分布状态,然而种植园里土壤则是某一种种类真菌占据主导,从而使得菌根真菌群落极度不平衡。  人们认识到,树木生态系统的生产力与土壤菌根真菌的多样性有着密切的联系。然而,澳洲阿拉伯树胶可能会产生一个新的生态系统,这个生态系统的物理、化学和生物特征并不一定会适合当地的本土植物。这个研究同时也发现这些生态环境由于微生物活动的减少将不再是植被发展的绝佳基地。  然而,这个在塞内加尔的研究是在一个特定的环境中进行的,不能就此给热带地域的土壤都下一个同样的结论。事实上,在布基纳法索的另一个对高原植物绢毛相思的研究发现,其具有促进微生物的功能多样性的效果。  这些不一致的研究结果告诉我们,自然资源管理机构,在引进外来植物的时候,不仅要考虑植物带来的潜在影响,同时也要考虑土壤的变化。虽然引进外来植物这一措施在有些情况下能收到很好的成效,可以增加一些环境严重受损的地区的生物多样性,比如废旧的采矿地区,但这也有可能会扰乱该地区微生物群落的结构,而这些群落是维持土壤肥力的重要因素。

  • 杉树同位素标准物

    北京晨蕾科技开发有限公司可提供杉树同位素元素标准物,如有需求,可随时与我站短联系!

  • 【讨论】进口气相设备的中文说明书的问题!

    某进口仪器中文说明书中有这样一段话:关掉电源,等待直至柱温箱,进样口和检测器冷却到50度以下。打开电源,等待约1分钟。按照咱们的理解没有什么问题,可是结合上下文,根据 逻辑分析一下,并不是咱们理解的意思。中文说明书到底是水翻译的?是中国人还是外国人?不谙熟中西方语言文化差别,在这一点上还真能引起误会,这个问题倒是小事,可是如果一些关键问题上出现问题就麻烦了呀!所以,好多稍微有些外语底子的人 都会直接选择外文说明书来看,这样才不至于出现问题。

  • 古村古树 ?朴素民风

    古村古树?朴素民风[img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307280836389585_1728_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307280836390272_8258_1642069_3.png[/img]

  • 【分享】各种显色剂及其配制方法

    碘: 不饱和或者芳香族化合物 配制方法 在100ml广口瓶中,放入一张滤纸,少许碘粒。 或者在瓶中,加入10g碘粒,30g硅胶 紫外灯 含共厄基团的化合物,芳香化合物 硫酸铈: 生物碱 配制方法 10%硫酸铈(IV)+15%硫酸的水溶液 氯化铁 苯酚类化合物 配制方法 1% FeCl3 + 50% 乙醇水溶液. 桑色素(羟基黄酮) 广谱, 有荧光活性 配制方法 0.1% 桑色素+甲醇 茚三酮 氨基酸 配制方法 1.5g 茚三酮 + 100mL of 正丁醇+ 3.0mL 醋酸 二硝基苯肼(DNP) 醛和酮 配制方法 12g二硝基苯肼+ 60mL 浓硫酸 + 80mL 水 + 200mL 乙醇 香草醛(香兰素) 广谱 配制方法 15g 香草醛 + 250mL 乙醇 +2.5mL 浓硫酸 高锰酸钾 含还原性基团化合物,比如羟基,氨基,醛 配制方法 1.5g KMnO4 + 10g K2CO3 + 1.25mL 10% NaOH + 200mL 水. 使用期3个月 溴甲酚绿 羧酸,pKa=5.0 配制方法 在100ml乙醇中,加入0.04g溴甲酚绿,缓慢滴加0.1M的NaOH水溶液,刚好出现蓝色即至。 钼酸铈 广谱 配制方法 235 mL 水 + 12 g 钼酸氨 + 0.5 g 钼酸铈氨 + 15 mL 浓硫酸 茴香醛(对甲氧基苯甲醛)1 广谱 配制方法 135 乙醇 + 5 mL 浓硫酸 + 1.5 mL of 冰醋酸 + 3.7 mL 茴香醛,剧烈搅拌,使混合均匀. 茴香醛(对甲氧基苯甲醛)2 萜烯,桉树脑(cineoles), withanolides, 出油柑碱(acronycine) 配制方法 茴香醛:HClO4:丙酮:水 (1:10:20:80) 磷钼酸(PMA) 广谱 配制方法 10 g of 磷钼酸+100 mL 乙醇 中国心[em0815]

  • “激素”豆浆与早熟?

    “激素”豆浆与早熟?

    “激素”豆浆与早熟?谣言:小孩喝豆浆会早熟  大家都知道大豆中含有大豆异黄酮,被称为“植物雌激素”,一提到“激素”这个字眼,大家往往都很敏感,尤其担心孩子喝了豆浆,会不会性早熟?解答:不会。http://ng1.17img.cn/bbsfiles/images/2015/11/201511281917_575405_1751239_3.png因为植物雌激素在人体内的作用微乎其微,大约只有雌激素的千分之一,至今极少有儿童因为喝豆浆引起性早熟。而且豆浆中大豆异黄酮的含量极低,大约为100ug/100ml,每天一杯200毫升,也就200微克。而目前婴幼儿、儿童大豆异黄酮的推荐量为每日25毫克。所以说适量进食豆浆,是绝对不会引起孩子性早熟的。很多性早熟的孩子,深究起来,大部分孩子是饮食不合理、营养过剩、能量过剩、乱吃补品有关。  所以要真的担心孩子性早熟,还不如来点实际的:  1.避免孩子在生活中接触超越其心理年龄的内容;  2.尽量不给孩子吃营养保健品(包括牛初乳);  3.不要让孩子吃过多油炸、膨化食品,尽量不喝饮料,避免能量摄入过多;  4.减少塑料制品使用;  5.避免让孩子接触到含性激素的药物、化妆品。讨论:这些谣言您是怎么理解的?请结合您的专业知识和检测技能,谈谈您的观点,发挥您的想象力,参与互动,赢取积分奖励

  • 【转帖】蔬菜也有天然毒素

    蔬菜也有天然毒素 出处: 中国食品产业网 作者:         春节后,各种新鲜的蔬果纷纷上市,但由此引发的食物中毒事件也频频发生。有些蔬菜和水果本身含有天然毒素,应小心食用。  1.豆类,如四季豆、红腰豆、白腰豆等  毒素:植物血球凝集素病发时间:进食后1—3小时内。  症状:恶心呕吐、腹泻等。红腰豆所含的植物血球凝集素会刺激消化道黏膜,并破坏消化道细胞,降低其吸收养分的能力。如果毒素进入血液,还会破坏红血球及其凝血作用,导致过敏反应。研究发现,煮至80℃未全熟的豆类毒素反而更高,因此必须煮熟煮透后再吃。  2.竹笋  毒素:生氰葡萄糖苷  病发时间:可在数分钟内出现。  症状:喉道收紧、恶心、呕吐、头痛等,严重者甚至死亡。食用时应将竹笋切成薄片,彻底煮熟。  3.苹果、杏、梨、樱桃、桃、梅子等水果的种子及果核  毒素:生氰葡萄糖苷 病发时间:可在数分钟内出现。  症状:与竹笋相同。此类水果的果肉都没有毒性,果核或种子却含有毒素,儿童最易受影响,吞下后可能中毒,给他们食用时最好去核。  4.鲜金针  毒素:秋水仙碱 病发时间:一小时内出现。  症状:肠胃不适、腹痛、呕吐、腹泻等。秋水仙碱可破坏细胞核及细胞分裂的能力,令细胞死亡。经过食品厂加工处理的金针或干金针都无毒,如以新鲜金针入菜,则要彻底煮熟。  5.青色、发芽、腐烂的马铃薯  毒素:茄碱 病发时间:一小时内出现。  症状:口腔有灼热感、胃痛、恶心、呕吐。  马铃薯发芽或腐烂时,茄碱含量会大大增加,带苦味,而大部分毒素正存在于青色的部分以及薯皮和薯皮下。茄碱进入体内,会干扰神经细胞之间的传递,并刺激肠胃道黏膜、引发肠胃出血。  另外还需注意:  鲜蚕豆:有的人体内缺少某种酶,食用鲜蚕豆后会引起过敏性溶血综合征,即全身乏力、贫血、黄疸、肝肿大、呕吐、发热等,若不及时抢救,会因极度贫血死亡;  鲜木耳:含有一种光感物质,人食用后会随血液循环分布到人体表皮细胞中,受太阳照射后,会引发日光性皮炎。这种有毒光感物质还易于被咽喉黏膜吸收,导致咽喉水肿;  腐烂变质的白木耳:它会产生大量的酵米面黄杆菌,食用后胃部会感到不适,严重者可出现中毒性休克。  未成熟的青西红柿:它含有生物碱,人食用后也会导致中毒。

  • “激素蔬菜”现身市场

    中国食品饮料网(www.40777.cn)讯 肯德基“速成鸡”事件将药物激素鸡暴露在人们眼前。近日,激素蔬菜又被曝光。 据了解,近日,神奇蔬菜频出:广州某市民从菜市场买回几根黄瓜,拿出一根咬了几口后放进冰箱。没想到几天后,那根被咬过的黄瓜竟然长长了一截。中国食品饮料网(www.40777.cn)荔湾区的周先生也遇买了两根苦瓜,第二天全部变黄并开始腐烂。 这些蔬菜如此“神奇”的原因就源自于一种叫920的农药。这种农药催熟蔬菜,使其蔬菜长得大,卖相好,不仅能增产,还能提前上市。而在菜农、菜贩眼中,这已是公开的“秘密”。 专家表示,920属于植物生长调节剂的一种,人们常吃的无籽西瓜、无籽葡萄、无籽橘子,大多数都是在920的作用下变成无籽。植物生长调节剂种类有很多种,有用于增长的“助长剂”,用于矮化的“矮壮素”,促进成熟的“催熟剂”,还有促使落叶的“脱叶剂”等。 而这些植物生长调节剂的结构和功能不同于动物激素,对人体的生长发育没有副作用。 众所周知,短期没有副作用,但如果长期大量食用激素农药又是否安全呢?中国食品饮料网(www.40777.cn)科学技术的迅速发展,使得肉鸡“速成”,蔬菜速成不再是梦,但由此而带来的不可预测的隐患又该如何解决?我们强烈呼吁有关行业回归原来的养殖、种植规律,勿用人工手段助长动植物。

  • 某些元素特殊问题?

    大家在测试一些重金属元素时候,是否发现一些元素稀释前后变化很大,比如某个涂层样品含Zn,结果是1000ppm,浓度超出了工作曲线最高点,按比例稀释到工作曲线范围内,结果变化很大,提高好几百个PPm,明显不是成比列,或者更大倍数,针对这些元素,你是如何确定结果的?

  • 迪马产品应用有奖问答07.27(已完结)——精油类物质(薄荷油)

    迪马产品应用有奖问答07.27(已完结)——精油类物质(薄荷油)

    10,抽取5个版友);中奖名单:玲儿响叮当(注册ID:jshbhh)大川之子,纵横四海(注册ID:chuangu120)999youran(注册ID:999youran)莫名其妙(注册ID:moyueqiu)dahua1981(注册ID:dahua1981)http://ng1.17img.cn/bbsfiles/images/2016/07/201607271459_602178_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607271459_602179_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================精油类物质(薄荷油)方法:GC基质:蜂制品应用编号:101198化合物:α- 蒎烯; β- 蒎烯; 桧烯; 月桂烯; α- 松油烯; 正柠檬烯; 1,8- 桉树脑; 顺式- 罗勒烯; γ- 松油烯; ρ- 对异丙基甲苯; 异松油烯; 3- 辛醇; 1-Octen-3-ol; 1- 薄荷酮; 反式- 桧类水化合物; 薄荷呋喃; d- 异薄荷酮; β-borubonene; 沉香醇; 乙酸甲酯; 新薄菏醇; β- 石竹烯; terpinene-4-ol; 1- 薄菏醇; 甜薄菏萜, 长叶薄菏酮; α- 松油醇; germacrene; 薄菏酮; virdiflorol固定相:DM-WAX色谱柱/前处理小柱:DM-WAX 30m x 0.25mm x 0.25um色谱条件:柱温:75 ℃ ( 4 min ) - 240 ℃ , 4 ℃ /min 载气:H2, 40 cm/sec, 75 ℃ 进样方式:分流, 1.0 μL, 50:1, 250 ℃ 样品:薄荷油, 1.0 μL 检测:FID, 16 x 10-11 AFS, 250 ℃ 文章出处:CFR00141关键字:精油,薄荷油,香味成分,GC,DM-Wax, α- 蒎烯; β- 蒎烯; 桧烯; 月桂烯; α- 松油烯; 正柠檬烯; 1,8- 桉树脑; 顺式- 罗勒烯; γ- 松油烯; ρ- 对异丙基甲苯; 异松油烯; 3- 辛醇; 1-Octen-3-ol; 1- 薄荷酮; 反式- 桧类水化合物; 薄荷呋喃; d- 异薄荷酮; β-borubonene; 沉香醇; 乙酸甲酯; 新薄菏醇; β- 石竹烯; terpinene-4-ol; 1- 薄菏醇; 甜薄菏萜, 长叶薄菏酮; α- 松油醇; germacrene;谱图:http://www.dikma.com.cn/Public/Uploads/images/CFR00141.png图例:1. α- 蒎烯;2. β- 蒎烯;3. 桧烯;4. 月桂烯;5. α- 松油烯;6. 正柠檬烯;7. 1,8- 桉树脑;8. 顺式- 罗勒烯;9. γ- 松油烯;10. ρ- 对异丙基甲苯;11. 异松油烯;12. 3- 辛醇;13. 1-Octen-3-ol;14. 1- 薄荷酮;15. 反式- 桧类水化合物;16. 薄荷呋喃;17. d- 异薄荷酮;18. β-borubonene;19. 沉香醇;20. 乙酸甲酯;21. 新薄菏醇;22. β- 石竹烯;23. terpinene-4-ol;24. 1- 薄菏醇;25. 甜薄菏萜, 长叶薄菏酮;26. α- 松油醇;27. germacrene;28. 薄菏酮;29. virdiflorol

  • 【求助】怎样抗生素分离纯化上树脂

    大家好:我现在在做一个化学药物的合成,是抗生素的,酰化反应,反应完全后,有2个副产物,根据液相,用ph8的缓冲液:乙腈=95:5时,底物在5分钟出峰,产物在4分钟出峰,副产物在2.5分钟出峰,不懂怎么样分离纯化,这个物质可能是成了盐了,因为在这过程中我加入碳酸氢钠来做酰化反应的缚酸剂,产物和副产物易溶于水、乙醇、甲醇少量不溶解,真不懂该怎么办,我想上树脂,上了一下硅胶柱,氯仿:甲醇=5:5时,好像都出来了,真不懂该怎么办啊,如果上树脂的话,还有什么树脂可以选择的啊?请高手指点一下!!!不胜感激!

  • 【转帖】吸附树脂分离纯化柚核中的柠檬苦素

    柠檬苦素及其类似物属于三萜类物质,是植物次生代谢的产物,它们主要存在于芸香科和楝科的多种植物中,迄今为止已发现300多种柠檬苦素类似物。虽然很早以前含有柠檬苦素的中草药已用于中医治疗,如含柠檬苦素及其降解产物的狭叶白藓皮的根,在中医上认为有清热除湿、祛风止痒的作用,但人们并不知道起作用的成份是哪些物质。近年来的研究发现,柠檬苦素及其类似物具有抗癌、镇痛、除虫和杀虫、调节体内胆固醇水平,防止动脉粥样化等方面作用,因此也越来越受到人们的重视。柠檬苦素广泛地存在于柑桔属的多种植物中,在果实中的含量因品种、发育阶段等不同而有差别,而在果实中的不同部位的柠檬苦素类化合物含量以种子最高,其中又以柠檬苦素含量最高我国的柑桔种植面积和产量都居世界前列,每年产生的柑桔皮渣等废弃物造成的环境污染也不容忽视,从这些废渣废弃物中提取一些生物活性物质,并加以利用,是提高柑桔产业效益,减少柑桔皮渣废弃物污染的重要途径。目前对柠檬苦素的提取纯化方法局限于溶剂法提取,然后结晶出产品或者用硅胶层析的方法。这些方法仅适用于小试,而要大规模生产或者大量处理柑桔产业的废弃物,成本太高。本实验采用大孔吸附树脂来分离纯化柠檬苦素,具有成本低、效率高、能循环利用等优点。

  • 【转帖】生物化学中各种常用显色剂及其配制方法!

    碘: 适用于不饱和或者芳香族化合物 配制方法:在100ml广口瓶中,放入一张滤纸,少许碘粒。 或者在瓶中,加入10g碘粒,30g硅胶高锰酸钾适用于含还原性基团化合物,比如羟基,氨基,醛 配制方法 :1.5g KMnO4 + 10g K2CO3 + 1.25mL 10% NaOH + 200mL 水. 使用期3个月磷钼酸(PMA) 广谱 配制方法 :10 g of 磷钼酸+100 mL 乙醇紫外灯 适用于含共轭基团的化合物,芳香化合物硫酸铈生物碱 配制方法:10%硫酸铈(IV)+15%硫酸的水溶液氯化铁 苯酚类化合物 配制方法:1% FeCl3 + 50% 乙醇水溶液.桑色素(羟基黄酮) 广谱, 有荧光活性 配制方法:0.1% 桑色素+甲醇茚三酮 适用于氨基酸 配制方法:1.5g 茚三酮 + 100mL of 正丁醇+ 3.0mL 醋酸二硝基苯肼(DNP) 适用于醛和酮 配制方法:12g二硝基苯肼+ 60mL 浓硫酸 + 80mL 水 + 200mL 乙醇香草醛(香兰素) 广谱 配制方法:15g 香草醛 + 250mL 乙醇 +2.5mL 浓硫酸溴甲酚绿适用于羧酸,pKa=5.0 配制方法 :在100ml乙醇中,加入0.04g溴甲酚绿,缓慢滴加0.1M的NaOH水溶液,刚好出现蓝色即至。钼酸铈广谱配制方法:235 mL 水 + 12 g 钼酸氨 + 0.5 g 钼酸铈氨 + 15 mL 浓硫酸茴香醛(对甲氧基苯甲醛)1 广谱 配制方法:135 乙醇 + 5 mL 浓硫酸 + 1.5 mL of 冰醋酸 + 3.7 mL 茴香醛,剧烈搅拌,使混合均匀.茴香醛(对甲氧基苯甲醛)2 适用于萜烯,桉树脑(cineoles), withanolides, 出油柑碱(acronycine) 配制方法:茴香醛:HClO4:丙酮:水 (1:10:20:80)

  • 葡萄酒的香气和风味物质

    葡萄酒的香气和风味物质这类物质虽然含量只占葡萄酒体积的不到0.2%,却多达数百种,是最为复杂的一类物质。也正是它们共同赋予了葡萄酒芬芳多变的香气和风味。葡萄酒中香气和风味物质的来源有以下4个:(1)葡萄果实在来自葡萄果实的香气和风味物质中,比较常见的有甲氧基吡嗪(Methoxypyrazines)和莎草薁酮(Rotundone),前者可以给长相思(Sauvignon?Blanc)和赤霞珠(Cabernet?Sauvignon)等品种带来青草、青椒的香气,后者可给西拉(Syrah)和绿维特利纳(Gruner?Veltliner)带来胡椒香气。(2)香气前体物质经发酵后形成葡萄汁中的一些化合物被称为香气的前体物质(Precursors),它们本身没有香气,但经过发酵之后就会散发出香气。比如有的前体物质会和葡萄汁中的糖结合,只有在发酵结束、糖分被消耗后才产生出香气。硫醇类(Thiols)和萜烯类(Terpenes)化合物就是这样两类由前体形成的香气物质。为长相思带来黄杨木风味(也被形容为黑醋栗芽孢、番茄叶等风味)的就是一种名为4MMP(4-mercapto-4-methylpentant-2-one)的硫醇类物质;萜烯类物质广泛存在于葡萄酒中,赋予葡萄酒果香和花香,比如麝香(Muscat)的葡萄香气就是由芳樟醇(Linalool)和香叶醇(Geraniol)带来的。(3)来自发酵或其副产物有的香气和风味物质并不直接来自于葡萄,而是由葡萄酒的发酵过程或发酵的副产物(如酒泥)产生的。酯类(Esters)是由葡萄酒中的酸类和醇类物质反应而生成的,大多数来自发酵过程中的酵母活动。酯类物质可以带来新鲜的水果香气,对于年轻的葡萄酒,尤其是白葡萄酒来说十分重要。最常见的酯类物质是乙酸异戊酯(Isoamyl Acetate),若含量较高可以赋予博若莱新酒(Beaujolais Nouveau)等葡萄酒香蕉的香气;其他酯类物质也可以产生苹果、菠萝以及其他水果的香气。大多数酯类物质都不稳定,在发酵后的几个月就会分解。乙醛(Acetaldehyde)来自乙醇的氧化,它会掩盖新鲜的水果香气,散发出一种略显陈旧的气味。这种气味在大多数酒款中被认为是一种缺陷,但却是西班牙著名的菲诺(Fino)雪莉酒(Sherry)中的典型风味。二乙酰(Diacetyl)主要产自苹果酸-乳酸发酵,是葡萄酒中黄油风味的主要来源。在某些条件下,酵母也可能在发酵或酒泥陈酿的过程中产生还原性的硫化物,给葡萄酒带来类似点燃的火柴等气味。(4)其他来源除了上述来源之外,有的香气和风味物质还可以通过其他途径进入葡萄酒。比如赋予葡萄酒香草香气的香草醛(Vanillin)就来自新橡木桶;在有的产区,桉树中的桉叶油素(Eucalyptol)会挥发并被附近种植的葡萄果皮上的蜡质层吸收,从而为葡萄酒带来桉树叶的香气。酚类物质酚类物质(Phenolics)是一类主要来自葡萄的果皮、果梗和种子的物质,约占葡萄酒体积的不到0.4%,包括花青素(Anthocyanins)和单宁(Tannins)。其中,花青素是赋予红葡萄酒和桃红葡萄酒颜色的关键物质;单宁则在红葡萄酒的平衡与结构中扮演着极为重要的角色。单宁可以和口腔中的蛋白质相结合,从而带来干涩、收敛的口感。葡萄酒中的其他物质也可以影响人们对于单宁的感知,比如少量的糖分可以让单宁尝起来更柔顺,而高酸的干型葡萄酒则会使单宁略显苦涩。

  • 塑料、树脂缩写代号

    英文简称 英文全称 中文全称 ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物 ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物 AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物 AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物 ARP Aromatic polyester 聚芳香酯 AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂 ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物 CA Cellulose acetate 醋酸纤维塑料 CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料 CAP Cellulose acetate propionate 醋酸-丙酸纤维素 CE Cellulose plastics, general" 通用纤维素塑料 CF Cresol-formaldehyde 甲酚-甲醛树脂 CMC Carboxymethyl cellulose 羧甲基纤维素 CN Cellulose nitrate 硝酸纤维素 CP Cellulose propionate 丙酸纤维素 CPE Chlorinated polyethylene 氯化聚乙烯 CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯 CS Casein 酪蛋白 CTA Cellulose triacetate 三醋酸纤维素 EC Ethyl cellulose 乙烷纤维素 EEA Ethylene/ethyl acrylate 乙烯/丙烯酸乙酯共聚物 EMA Ethylene/methacrylic acid 乙烯/甲基丙烯酸共聚物 EP "Epoxy, epoxide" 环氧树脂 EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物 EPM Ethylene-propylene polymer 乙烯-丙烯共聚物 EPS Expanded polystyrene 发泡聚苯乙烯 ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物 EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物 EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物 FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料 FF Furan formaldehyde 呋喃甲醛 HDPE High-density polyethylene plastics 高密度聚乙烯塑料 HIPS High impact polystyrene 高冲聚苯乙烯 IPS Impact-resistant polystyre ne 耐冲击聚苯乙烯 LCP Liquid crystal polymer 液晶聚合物 LDPE Low-density polyethylene plastics 低密度聚乙烯塑料 LLDPE Linear low-density polyethylene 线性低密聚乙烯 LMDPE Linear medium-density polyethylene 线性中密聚乙烯

  • 熟吃会损失多少维生素

    每当人们说起加热食物,总是会说“这样会损失维生素”。尤其是那些提倡生食的人,避免因为加热损失维生素更是一个最常见的理由。更有“养生大师”语出惊人:超过40度维生素就要分解,所以要生着吃才有用。历史发展到今天,人类是唯一会把食物做熟了吃的生物。蔬菜熟吃,到底会损失多少维生素呢?  首先需要说明的一点,维生素不是一种物质,而是一大类物质。每一种维生素的特性各不相同,面对各种条件的稳定性也不一样。维生素C很容易溶于水,一些B族维生素例如叶酸、B6、B12等也溶于水,那么用水煮的话就比较容易失去。从保留水溶性维生素的角度来说,蒸是比煮更好的方式。这几种不稳定的维生素和维生素E、K在光照的条件下也会损失。此外,它们所处的环境,比如酸碱性也会影响它们的稳定性。而某些金属,比如铁和钴,能导致维生素E和B12失去活性。严格说来,维生素“失去活性”也并不是“生”和“死”两种状态,而是损失了多少的问题。  加热对于不同维生素的影响不一样,各种食物“加热”的温度和时间也不一样,所以“熟吃会损失多少维生素”并不是一个容易回答的问题。美国农业部的数据库里有 常见食物的各种维生素含量。有人统计了各种食物在“生”和“熟”状态下的数据,剔除含水量变化的影响,得出了各种维生素经过加热之后的损失比例。虽然这些数字不一定非常准确,但是足够我们得到一个有意义的印象:维生素A和E受温度影响不大,做熟之后损失10%左右,维生素C损失16%的样子,而维生素B1最不稳定,损失26%,其他的维生素也基本上在这个范围之内。总体而言,把食物做熟,维生素的损失大致在10-25%之间。  但是加热对维生素也有积极意义。有些食物中含有所谓的“反维生素物质”,它们能与维生素结合,而加热会破坏这些物质,从而增加维生素的吸收率。b-胡萝卜素是另一个例子,它存在于多种蔬菜中,比如胡萝卜、菠菜、红薯、西兰花等等。到了人体内它能转化成维生素A,是素食者获得这种维生素的主要途径。但是生的蔬菜中b-胡罗卜素的吸收率很低,而加热就可以使它的吸收率大大增加。有趣的是,超高温长时间加热的话,它会从有生物活性的反式结构转化成没有活性的顺式结构,所以这些蔬菜做成罐头之后b-胡罗卜素的损失就会比较大。不过,通常的蒸煮达不到那个温度,所以日常烹饪也就不用担心了。  加热损失的10-25%,不算很多,也不算少。不过,考虑到生吃蔬菜可能带来的问题,比如致病细菌,以及一些需要加热破坏的毒素,很难简单地说蔬菜应该生吃还是熟吃。其实对于维生 素来说,与其过多地关注“损失”,不如把注意力集中在来源上。不同的食物所富含的维生素不同,如果所吃的食物比较多样化,那么各种卫生素的总量就可能都会 比较多,损失一点也就没有什么关系了。毕竟,我们的身体需要的是各种维生素都达到某个需求量,而不是某一两种越多越好。baoanbaikang.soxsok.com/ zhongpengyi.soxsok.com/ whhaicheng.soxsok.com/ cmipma.soxsok.com/

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制