当前位置: 仪器信息网 > 行业主题 > >

阿尔法

仪器信息网阿尔法专题为您提供2024年最新阿尔法价格报价、厂家品牌的相关信息, 包括阿尔法参数、型号等,不管是国产,还是进口品牌的阿尔法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阿尔法相关的耗材配件、试剂标物,还有阿尔法相关的最新资讯、资料,以及阿尔法相关的解决方案。

阿尔法相关的资讯

  • 探索暗物质 阿尔法磁谱仪核心部件中国造
    美籍华人物理学家丁肇中领导的暗物质研究小组昨天发布重大研究成果,根据国际空间站上阿尔法磁谱仪的首批观测数据,科研人员已经找到了可以证明暗物质存在的6个证据中的5个。 暗物质是现有宇宙构成理论中最关键的假设之一,能够解决宇宙大爆炸理论的不自洽问题。为寻找暗物质,丁肇中于1995年提出了建造阿尔法磁谱仪的国际合作项目,中科院、上海交大、山东大学等中国科研机构都参与了磁谱仪核心部件的建造。2011年5月,阿尔法磁谱仪被送入太空,开始执行为期3年的暗物质探索任务。 距发现暗物质只剩最后一步 当地时间18日晚间,诺贝尔奖得主、美籍华人物理学家丁肇中领导的阿尔法磁谱仪项目,在欧洲核子研究中心公布了最新研究成果,进一步显示暗物质可能存在。这一成果发表在最新一期美国《物理评论快报》上。 据参与该项目的山东大学科学家程林教授介绍,目前阿尔法磁谱仪已发现了1090亿个电子与反电子,在业已完成的观测中,暗物质的6个特征已有5个得到确认。这一研究结果将人类对暗物质的探索向前推进一大步。 到底什么是暗物质呢?上世纪二十年代,物理学家们提出了宇宙大爆炸的学说。根据这一学说,宇宙在大爆炸以前处于真空状态,大爆炸以后才形成了物质世界,据此推断就应该有反物质存在。此后,物理学家们开始了寻找反物质或称暗物质的努力。 &ldquo 暗物质是一种人眼看不到的物质,想要证明它的存在可不容易。&rdquo 国家天文台宇宙暗物质暗能量组首席研究员陈学雷介绍说,1930年左右,科学家发现有一些星系团中的物质,产生的引力要比其他可以看到的星系多一些,但是这些物质不发光,所以就起名为暗物质。 现有物理学假设认为,人类目前所认知的物质世界大概只占宇宙的4%。在这之外,那些不发光不发热的暗物质,则占了宇宙的23%,还有73%是暗能量。 410亿数据将改变人类知识 寻找暗物质主要有3种途径。一种是利用粒子对撞产生直接暗物质;另一种是利用引力场间接探测。暗物质不发光,但是可以产生引力,因此可以通过对引力场变化的测量来寻找暗物质。中国主导的&ldquo 熊猫计划&rdquo (PandaX)就是后一种方法的实践。 阿尔法磁谱仪项目代表了第三种途径。从理论上讲,暗物质相互碰撞会产生过量正电子(所带电荷量与我们常见的带负电的电子恰好相反),因此可以通过探测正电子来寻找暗物质。 自从2011年5月16日被安置到国际空间站迄今,阿尔法磁谱仪已运行四十多个月,共搜集了540亿个宇宙射线数据。刚刚公布的研究成果,是基于对最先收集到的410亿个数据的分析。在这些数据中,科学家观测到约1000万个电子与正电子,这是半世纪来检测到的正电子分率的最大值。 根据丁肇中研究小组此次在美国《物理评论快报》上发布的结果,已发现的宇宙射线中过量正电子的5个特征分别为:正电子比例上升是从8吉电子伏特(1吉等于10亿)的能量开始;在速率方面,正电子占电子与正电子总数的比例快速增加;在275吉电子伏特左右停止增长;比例上升的过程较为均衡,没有明显的峰值;还有正电子似乎来源于宇宙空间的各个方向,而不是某个特定方向。 据丁肇中介绍,证明暗物质所需的最后1个特征就是正电子的产生率会不会突然下降,&ldquo 这个要花很多的时间,&rdquo 丁肇中说,&ldquo 很快下降一定是暗物质跟暗物质对撞产生正电子,因为暗物质能量有限,到一定能量以后就不可能再产生正电子,所以会突然下降。&rdquo 对于这一批数据的意义,丁肇中说:&ldquo 到现在为止我们所得到的结果,没有一个和过去100年所收集的结果是一样,所以也可以这么说,就是所有的结果慢慢改变人类对于这些的了解。&rdquo 中国研制阿尔法磁谱仪核心部件 由丁肇中教授领导阿尔法磁谱仪(AMS)项目是目前世界上规模最大的科学项目之一。阿尔法磁谱仪的结构很复杂,任务很艰巨,但它工作的基本原理却是高中物理中带电粒子在磁场中运动的知识。 说白了,阿尔法磁谱仪就是一个带电粒子探测器,其核心部件是由中国科学家和工程师经 4 年努力研制的永磁体,可以产生一个很强的磁场。当宇宙中的带电粒子穿过这个磁场时,磁场就对它施加洛仑兹力使之发生偏转,这时,记录有关数据,再用电子计算机进行数据处理,就可以从中区分出正电子等各种带电粒子。 丁肇中于1995年提出了阿尔法磁谱仪的设想,并主持其相关的国际合作计划。这计划是一个国际合作项目,动员了来自15个国家31所大学院校的上百名科研人员。 中国科学家为磁谱仪倾注了大量心血,参加阿尔法磁谱仪国际合作的中国单位还包括中国科学院电工研究所、上海交通大学、东南大学、山东大学、中山大学,以及中国台湾的&ldquo 中央研究院&rdquo 物理研究所、&ldquo 中央大学&rdquo 、中山科学研究院等。 阿尔法磁谱仪最关键的永磁体系统是由中国科学院电工研究所、中国科学院高能物理研究所和中国运载火箭技术研究院联合研制,211厂生产制造。 2011年5月16日,美国&ldquo 奋进号&rdquo 航天飞机将阿尔法磁谱仪送入太空,安放在国际空间站上。
  • 中科院电工所和高能所参与研制阿尔法磁谱仪核心部件
    5月16日,高精度粒子探测器“阿尔法磁谱仪2”搭乘美国“奋进号”航天飞机驶入寰宇。   5月16日,几经推迟之后,高精度粒子探测器——“阿尔法磁谱仪2(AMS–02)”搭乘美国“奋进号”航天飞机的“绝唱之旅”,驶入寰宇。未来10年或更长时间里,它将在国际空间站运行,寻找反物质和暗物质,探索宇宙的起源及其构成。   “鲜为人知的是,它体内有一颗强大的‘中国心’——一块‘MADE IN CHINA’、内径约1.2米、重约2.6吨、中心磁场强度1370高斯的环形巨大永磁铁。”中科院高能物理研究所所长、中科院院士陈和生接受新华社记者专访时说。   “阿尔法磁谱仪”实验是一个大型国际合作科学实验项目。由诺贝尔物理学奖得主、华裔美国科学家丁肇中教授领导,美国、中国、德国等16个国家和地区的数百名研究人员参与其中。陈和生是这个团队首批科学家和主要成员之一。   反物质和暗物质是两种“神秘”物质。从理论上讲,它们应当存在,但现实中还没有找到证明它们存在的真凭实据。“宇宙是最终的实验室。”丁肇中在4月底发表的公报中表示。   “要分辨物质与反物质,就得想办法测量粒子带正电还是负电。这就需要把一个巨大的磁铁送到太空中去。如果使用常规磁铁,到处弥漫磁场根本无法在太空中运行。”陈和生说。   1998年6月,“阿尔法磁谱仪1(AMS–01)”搭载美国“发现号”航天飞机首次进入太空,成为人类送入宇宙空间的第一个大型磁谱仪。当时,陈和生在佛罗里达州肯尼迪航天中心亲历了那次为期10天的实验。   “这10天里,中国永磁体经受住了考验,工作正常。时隔13年后的今天,它再次‘披甲上阵’,到国际空间站做长期实验,帮助AMS–02‘捕捉’神秘的反物质和暗物质。”谈起AMS–02最核心部件——中国造永磁体,陈和生无比自豪。   丁肇中曾多次坦言,磁谱仪项目是他40多年科研生涯中遇到的“难度最大”的实验,甚至比当初为他赢得诺奖的J粒子实验还要“困难得多”。   “最大的挑战就是要将大型磁铁放入太空。”丁肇中说。美国国家航空航天局(NASA)对磁铁的负载安全要求极高。一是要降低漏磁,避免干扰航天飞机和空间站其他仪器的工作。二是磁二极矩必须极小,以免磁谱仪在地球磁场作用下产生转动。   按照惯例,NASA对搭载大型设备需做三次安全评估,而中国制造的钕铁硼磁铁只做了两次就顺利“闯关”。业内人士说,这在NASA检验史上还是第一次。   这块强大的“中国心”到底神奇在哪里?   “中科院电工研究所、高能所和中国运载火箭技术研究院的科学家们通力合作,选择新型高磁能积钕铁硼材料,采用独特的‘魔环’结构磁路设计,64个磁化方向连续变化的永磁条安装其中。这种结构使永磁体磁场约束在AMS磁体内部,漏磁和磁二极矩比NASA的要求小了一个数量级。”陈和生说。   不久前,AMS–02曾进行模拟空间测试。科学家根据测试结果决定,沿用曾服役AMS–01的中国永磁体,它可以使磁谱仪使用寿命长达18到20年。   此外,AMS-02在AMS-01的基础上增加了若干新的子探测器。其中,中科院高能物理研究所与中国航天科技集团公司的专家和意大利、法国同行共同研制出作为探测器关键部分的电磁量能器。   “电磁量能器能精确测量光子和电子的能量,并排除宇宙线质子的本底,对探测的暗物质粒子十分关键。”陈和生说。   参加AMS02国际合作的国内单位还有东南大学、中山大学、山东大学、上海交通大学和北京航空航天大学。
  • 阿尔法磁谱仪将传回首批数据 或发现暗物质证据
    阿尔法磁谱仪(又译反物质太空磁谱仪,简称AMS)于2011年被放置到国际空间站(ISS)   穿越辐射探测器(Transition Radiation Detector)能检测高能粒子的速度 硅追踪器(Silicon Trackers)用于追踪粒子的运动轨迹,轨迹的弯曲程度显示了粒子的电荷 永磁铁(Permanent Magnet)是阿尔法磁谱仪的核心部件,能令粒子轨迹弯曲 飞行时间计算器(Time-of-flight Counters)能计算低能粒子的速度 星体追踪器(Star Trackers)能扫描星域,以确定阿尔法磁谱仪在太空中的朝向 切伦科夫探测器(Cerenkov Detector)可精确计算快速通过的粒子速度 电磁量能器(Electromagnetic Calorimeter)用于计算影响粒子运行所需的能量 反符合计数器(Anti-coincidence Counter)可将干扰粒子过滤出去。   在宇宙的遥远天体之间,引力的作用并不能解释天文学家看到的一切,如果只有这些天体的引力,那各个星系应该处于分崩离析的状态,因此在各个星系之间,还存在把它们联接在一起的物质。天体物理学家将这种理论中的物质称为“暗物质”,我们看不见它们,但它们确实在星系间起着作用。在最大的距离尺度上,宇宙正在加速扩张。因此我们更需要关注与引力作用截然不同的暗物质。目前的理论估计,宇宙的73%为暗能量,23%为暗物质,而只有4%是我们已知的物质。   北京时间2月20日消息,据国外媒体报道,作为人类在太空中进行的最为昂贵的实验,阿尔法磁谱仪(简称AMS)项目即将向地球发送回首批观测数据。这个大型的实验装置被放置在国际空间站上,用于探测宇宙射线及高能粒子。   诺贝尔物理学奖获得者丁肇中称,将于未来几周内发表涉及暗物质的研究论文。阿尔法磁谱仪项目最初便是由丁肇中提议开始。在宇宙中,正是那些我们看不见的暗物质将各个星系联接在一起。研究者并不了解这些谜一般的宇宙物质如何构成,但有理论提出,大质量弱相互作用粒子(简称WIMP)是暗物质最有希望的候选者,这是一种尚处于理论阶段的粒子。   虽然天文望远镜无法探测到大质量弱相互作用粒子,但阿尔法磁谱仪很有希望通过间接的方法来确认其存在,并描述它的性质。即将刊出的研究论文(发表期刊还未确定)将对这项研究的进展作详细阐述。   丁肇中在麻省理工学院任物理学教授,他在20世纪90年代中期提出的这个项目如今到了一个重要的里程碑时刻。“我们等待了18个月来写这篇论文,如今到了最后审视的阶段,”丁教授在波士顿的一次美国科学促进会(AAAS)的年会上发言道,“我预计在未来两到三周内,我们就能发布研究成果。我们一共有六个分析小组对相同的数据结果进行分析。如你所知,每个物理学家都有他们自己的见解,我们现在要保证每个人都能同意彼此的观点。这项工作现在已经完成得差不多了。”   20亿美元的仪器:“探索未知”   2011年,造价20亿美元的阿尔法磁谱仪搭载奋进号航天飞机前往国际空间站,这也是奋进号的最后一次任务。阿尔法磁谱仪重达7吨,拥有一个巨大的特制超导磁铁,能使落在它上面的粒子轨迹发生弯曲。   粒子的弯曲轨迹显示了它的电荷,再通过一系列的探测器对粒子的质量、速度和能量等进行分析,科学家便能准确知道捕获的是什么粒子。据丁肇中教授称,在阿尔法磁谱仪运行的最初18个月中,已经探测了250亿次粒子事件。   暗物质和暗能量之谜   在这些粒子事件中,有近80亿次是快速运动的电子及与其对应的反物质——正电子。理论上,大质量弱相互作用粒子的碰撞和湮灭会产生大量电子和正电子。通过测定二者的比例,以及在能量谱上的行为变化,科学家或许能找到研究暗物质问题的途径。   “在对正电子和电子的观测中,如果发现二者比例突然上升然后急剧下降,那就是星系中暗物质湮灭的关键标志,”芝加哥大学卡弗里宇宙学研究所的迈克尔特纳(Michael Turner)教授说,“在能量体系中也要考虑,是否具有各向异性?正电子是从固定的某个方向还是从所有方向出现?”   特纳教授并未参与阿尔法磁谱仪的合作项目。他继续说道:“暗物质应该无所不在。因此如果我们发现正电子从某个特定的方向发出,就意味着该信号是来自像脉冲星(一种中子星)一类的天体,而不是暗物质。”据悉,此次阿尔法磁谱仪的数据涉及的是0.5至350GeV(10亿电子伏特)质量范围内的正电子—电子比例。这一范围已经是其他实验中,科学家认为可能发现暗物质的上限。   特纳教授说,科学家已经逐渐接近了目标。他预测未来数年将会被铭记为“大质量弱相互作用粒子(WIMP)的十年”,而且通过一系列的研究,包括利用大型强子对撞机制造WIMP等,暗物质的性质将逐渐呈现在我们面前。   “理论上,这种粒子的质量大约在质子质量的30、40和300倍之间,即在30至大约1000GeV之间,”特纳教授说,“大型强子对撞机能够制造这样质量的粒子,丁肇中的阿尔法磁谱仪能探测到这样质量的粒子湮灭,而位于深地底的探测器对这样质量的粒子也非常敏感。如果非常幸运的话,我们能同时获得有关暗物质的三个特征信号,分别是通过观测粒子湮灭、直接探测粒子以及用大型强子对撞机制造粒子,这三种方法在同样的质量范围内都很灵敏。”
  • 阿尔法莫斯在Pittcon2011上推出“视觉分析仪”
    近日,阿尔法莫斯宣布将在Pittcon2011上推出了“IRIS视觉分析仪”。 已经是气味和味道数字化专家的阿尔法莫斯再次创新:利用新的仪器和电子眼推出视觉分析仪,使得公司扩大了感官分析工具的范围。   新开发的IRIS视觉分析仪旨在分析复杂的食品和包装产品(例如萨饼、饼干、现成的饭菜、谷类混合物等)。仪器的特点是以类似于人类视觉感知的方式进行工作:首先检测系统(实际是一个CCD相机)分析样品的颜色和形状,再将这些信息送给计算系统,再与标准进行分析比较。   该分析仪可以用于产品研发和在线质量控制:   (1)适口性评估复杂的食品或包装产品;   (2)监测产品的稳定性和保质期(成熟,鲜度);   (3)过程监控(烹饪、烘焙、混合等);   (4)质量控制和常规批量一致性测试;   (5)表面均匀性分析;   (6)分析消费者的视觉喜好。
  • “阿尔法磁谱仪探测器升级和物理研究”项目启动会在京召开
    4月25日下午,国家重点研发计划“大科学装置前沿研究”重点专项“阿尔法磁谱仪探测器升级和物理研究”项目启动会在中国科学院高能物理研究所召开。中科院前沿科学与教育局、中科院高能物理研究所、清华大学、北京大学、中国科学院大学、山东大学、浙江大学、山东高等技术研究院、西北工业大学等单位的领导、专家及项目参研人员代表40余人,通过现场与视频相结合的方式参加了启动会。会议由项目专家组组长陈和生院士主持,中科院前沿科学与教育局物理与化学处,高能所科研业务处、粒子天体物理中心和粒子天体物理重点实验室的相关负责人分别致辞。   中科院高能所是项目牵头单位,山东大学、浙江大学、山东高等技术研究院、西北工业大学为参与单位。项目负责人李祖豪研究员汇报了AMS探测器升级和物理分析项目的总体实施方案,课题负责人高能所董静高级工程师、唐志成副研究员和山东大学许伟伟教授分别汇报了课题的组织管理和课题任务实施计划。课题一阿尔法磁谱仪升级,通过承担显示度高的硅探测器模块研制并参与探测器的集成和测试,全面掌握空间大型硅探测器的研制技术,将为我国未来自主开展的HERD等空间实验提供技术积累。课题二和课题三侧重物理分析工作,涵盖了AMS实验的重要物理研究方向,包括暗物质和反物质寻找及宇宙线原子核能谱的精确测量。通过项目的实施,可以进一步提升项目组在AMS国际合作组的显示度,进而提升我国在相关领域的国际显示度。   与会专家对项目实施方案进行了讨论,认为研究内容和预期指标满足任务书的要求,实施方案目标明确,技术路线合理,计划可行;并针对硬件升级课题进一步加强与国内相关单位的合作提升国内对大规模空间硅探测器的研发能力,以及物理分析课题进一步加强与理论结合,组织召开国际国内相关物理议题研讨会等事宜进行了深入讨论。
  • 东大参与研制美国“奋进”号所携磁谱仪
    美国“奋进”号航天飞机当地时间16日从肯尼迪航天中心发射升空,前往国际空间站。这是“奋进”号最后一次升空,主要任务是运送名为“阿尔法磁谱仪2”的太空粒子探测器。记者昨获悉,在研制阿尔法磁谱仪的过程中,东南大学承担了重要任务。   专家介绍,宇宙大爆炸产生了正物质,理论上,还应当存在反物质和暗物质,但现实中又苦于找不到它们存在的真凭实据。在诺贝尔奖获得者、美籍华人丁肇中的领导下,16个国家和地区的研究人员开始了寻找这两种神秘物质的征程。他们的主要工具就是阿尔法磁谱仪。   1998年,美国“发现”号航天飞机搭载第一代阿尔法磁谱仪升空,但由于种种原因,实验受挫,仪器被毁。此后,科学家开始研制第二代阿尔法磁谱仪。   “阿尔法磁谱仪就像人类派往太空的神探。”东南大学计算机学院院长罗军舟教授介绍,它的主要本领是能够探测到太空中“流窜”的粒子,这基于磁谱仪强大而特殊的磁场。因为带电粒子进入磁场后其轨迹会发生变化,不同带电粒子的轨迹变化也不同,而不带电的粒子其轨迹则不会发生变化,因而观测粒子进入这一磁场后轨迹是否变化、变化程度有什么不同,就可以推知这是何种粒子。   在第二代磁谱仪的研发中,东南大学承担的主要任务包括:建立磁谱仪模拟实验系统、反物质探测系统、数据处理和海量数据存储系统。其中,磁谱仪模拟实验系统能够模拟仪器上出现的任何问题,反物质探测系统是磁谱仪上若干层探测器的重要组成部分,而数据处理和海量数据存储系统将为科学家将来寻找反物质提供数据。   “磁谱仪在空间站运行过程中,会产生大量的数据,传输到美国国家航空航天局(NASA),再由NASA传输到丁肇中负责的、位于日内瓦的欧洲核子研究中心。”   罗军舟说,研究中心会把数据传输到东南大学,进行分析。磁谱仪产生的数据量将达到420个T,相当于21个国家图书馆的藏书量。数据分析过程中,东南大学还将搭建一个数据平台,供参与这一项目的各国物理学家调取研究,反物质和暗物质到底能否发现,都将取决于这个数据分析平台。   据悉,第一代阿尔法磁谱仪的原型系统目前也陈列在东南大学的AMS01实验室内,供国内学者研究。
  • “夸父一号”发布首批太阳观测科学图像
    12月13日上午,我国综合性太阳探测卫星“夸父一号”卫星发布首批科学图像。  “夸父一号”自2022年10月9日成功发射以来,三台有效载荷已在轨运行两个月。此次公布的首批图像正是两个月间获取的若干对太阳的科学观测图像。  两个月来,“夸父一号”已经实现多项国内外首次,在轨验证了“夸父一号”三台有效载荷的观测能力和先进性。  在轨两月工作状态正常  “夸父一号”全称为“先进天基太阳天文台”(ASO-S),是中国科学院空间科学二期先导专项研制发射的又一颗空间科学卫星,共有三台有效载荷,分别是全日面矢量磁像仪(FMG)、太阳硬X射线成像仪(HXI)、莱曼阿尔法太阳望远镜(LST)。  “夸父一号”卫星系统总师、中科院微小卫星创新研究院诸成介绍,截至目前,除莱曼阿尔法太阳望远镜的子载荷莱曼阿尔法日冕仪(SCI)还未开机,其他设备均开机工作,工作状态正常。  此外,诸成表示,卫星平台和各载荷功能性能满足设计要求,建立了高精度稳定姿态指向、稳定工作温度环境、可靠星地测控和数据传输链路,并获取稳定能源,有力保障了卫星在轨开展工作。  在轨测试期间观测已实现多项首次  “在轨两个月期间,‘夸父一号’按照既定计划,开展了大量对太阳的在轨测试和观测,实现了多项国内外首次。”甘为群说。  全日面矢量磁像仪实现了我国首次在空间开展太阳磁场观测,已获得的太阳局部纵向磁图的质量达到国际先进水平,为聚焦“一磁两暴”科学目标,实现高时间分辨、高精度的太阳磁场观测奠定了良好的基础。  FMG在轨观测的局部单色像和磁图(右边)与怀柔地面全日面磁场望远镜对同一时间同一日面区域观测的结果(左边)对比。  FMG观测到的2022年11月6日00:50:15UT局部纵向磁图(右边)与同一时间美国太阳动力学天文台(SDO)的日震磁像仪(HMI)观测结果(左边)的对比。  “结果显示,FMG的观测效果远远好于地面望远镜;在反映局部纵向磁场细节上,FMG与国际上最先进的HMI/SDO几乎完全一致。”甘为群说。  太阳硬X射线成像仪实现了我国首次太阳硬X射线成像,提供了地球视角目前唯一的太阳硬X射线图像,图像总体质量达到国际一流水平,为实现对太阳耀斑展开非热辐射空间分布、时间结构、能谱特征观测奠定了坚实的基础。  HXI在2022年11月11日“双11”观测到的一个C级耀斑硬X射线成像与太阳动力学天文台(SDO)的大气成像仪(AIA)紫外1700图像的比较。  HXI在11月11日观测到的“双11”系列耀斑的光变、硬X射线成像及与AIA/SDO的极紫外/紫外图像的合成图。  “从图中可以清楚看到,硬X射线源的位置与紫外亮结构的位置在高空间分辨率下完美重合,特别值得注意的是,HXI具有对复杂源的成像能力,成像的可靠性得到了充分确认。”甘为群说。  莱曼阿尔法太阳望远镜共有三个子载荷,其中,太阳日面成像仪(SDI)国际首次在卫星平台上获得了莱曼阿尔法波段全日面像,对日珥的演化图像清晰完整;另一个子载荷——太阳白光望远镜(WST)观测到太阳边缘上2个罕见的“白光耀斑”,莱曼阿尔法波段的观测能力得到了验证。  SDI/LST在2022年11月25日观测到的爆发日珥。  WST/LST在11月7日观测到1个白光耀斑,右边红色等值线为连续谱增强位置相对黑子的位置。  “这些结果表明LST上已开机的两个载荷已经具备了科学观测的能力,所得结果为随后详细研究日珥莱曼阿尔法波段演化及多波段诊断白光耀斑特征提供了宝贵的资料。”甘为群说。  他表示,随着子载荷莱曼阿尔法太阳日冕仪开机对日冕物质抛射开展观测,莱曼阿尔法太阳望远镜将在日冕物质抛射的日面形成和近日冕传播观测方面发挥不可替代的作用。  将实时共享观测数据  按计划“夸父一号”在轨测试共需4-6个月时间。甘为群介绍,“夸父一号”将继续按照既定计划开展并完成在轨测试,早日转入在轨科学运行阶段。  “在进入科学运行阶段后,‘夸父一号’的数据连同数据分析软件,将尽快对国内外同行实时开放。希望国内外同行能用这些数据实现共同的科学目标。”甘为群说。  他表示,目前,“夸父一号”数据中心正在建设过程中,最晚会在卫星发射半年后对外开放。按照科学卫星的国际惯例,“夸父一号”科学观测运行团队将在数据中心开放之前,在国际范围组织召开数据使用培训会,向国际同行解释卫星的工作原理与数据构成等情况。  中科院空间科学二期先导专项负责人、中科院国家空间科学中心主任王赤表示,目前,我国太阳物理学界与相关工程部门正在开展未来太阳空间物理的发展规划论证,拟分步实施太阳极轨探测,太阳黄道面探测(环日,L5/L4),太阳抵近探测“三步走”计划,将从不同视角和距离观测太阳,以解决诸如太阳磁场产生和演化及其与太阳活动的关系、太阳爆发的物理机制及其对空间天气的影响这类重大科学和应用问题。  “夸父一号”卫星的科学目标瞄准“一磁两暴”,即同时观测太阳磁场和太阳上两类最剧烈的爆发现象——耀斑和日冕物质抛射,研究它们的形成、演化、相互作用和彼此关联,同时为空间天气预报提供支持。  甘为群表示,“夸父一号”将充分发挥三台有效载荷组合观测的特色,加强国内外合作和数据开放共享工作,早日实现 “一磁两暴”科学目标,为太阳活动第25周峰年观测和研究做出有显示度的中国贡献。
  • 检测眼泪中蛋白质有助于提早发现帕金森病
    p style=" text-align: left text-indent: 2em " 论文作者、美国加利福尼亚南部大学凯克医学院的马克· 卢及其研究团队指出,眼泪中存在泪腺分泌细胞产生的多种蛋白质,正是神经促使了这些蛋白质的产生,而帕金森病可以影响神经系统的功能。 /p p style=" text-indent: 2em " 研究团队将55名帕金森病患者的泪样与27名健康人的泪样进行比对,发现两组人群中的阿尔法-突触核蛋白和低聚阿尔法-突触核蛋白水平有所不同。其中,帕金森病患者的阿尔法-突触核蛋白水平降低,但低聚阿尔法-突触核蛋白水平升高。 /p p style=" text-indent: 2em " 卢说:“帕金森病进程可能在症状出现前数年或数十年就已经发生,眼泪这种生物学标记有助于提早诊断甚至治疗这一疾病。” /p p style=" text-indent: 2em " 帕金森病是一种常见于中老年人的神经退行性疾病,平均发病年龄60岁左右。阿尔法-突触核蛋白是一种在中枢神经系统突触前及核周表达的可溶性蛋白质,与帕金森病的发病机制和相关功能障碍相关。 /p p style=" text-indent: 2em " 研究人员认为,这一研究首次显示眼泪可以成为一种可靠、便宜、非侵入性的帕金森病生物学标记。不过,他们还需对更多人群进行测试,以确定在帕金森病症状出现前的最早阶段,能否检测到这些蛋白质发生了变化。 /p
  • 高校实验室,其实没那么神秘
    南京各大高校,实验室数不胜数,研究的领域涉及天文、地理、航天航空……在外人眼中,这些鲜为人知的实验室都蒙上了一层神秘的面纱。   那些,教授和学生都在里面捣鼓些什么呢?实验室里都有些什么好玩的东西呢?记者近日特地探访了南京多家高校的神秘实验室。   南京大学声学实验室   站在消声室内,仿佛置身一个魔法空间。房间很开阔,但不管你多大声说话,都不会产生一点回音,声音会立刻消失得无影无踪。   声学博士卢国潮介绍说,消声室占据了三层楼一半的空间,所有墙壁包括地面像都安装了尖坯和吸声材料,这里的门是立体的,门的背后也布满了“机关”,里面也布置了尖坯和吸声材料。“周边都是消声材料,加上一些特殊材料,只要你一出声,声音立刻就被吸收走了。它就像是声音黑洞,不管什么声音,都被吸走了。”   不同的材料对音频的吸收也不太一样。比如:横竖交叉式的结构对低频声音敏感,吸收强,而另外一些材料,则对高频吸收效果好。   离开消声室,来到混响室。一开口说话,感觉一个声音立刻变成了多个,如果多人说话,感觉简直就是在很多机器同时运转的大工厂内。   混响室很像“工厂”内的操作间,墙壁上嵌了一些钢筋结构。“墙壁上的结构看起来简单,其实它们像玻璃镜面一样,把声音从多角度反射,这样,可以让声音很快充满整个空间。”这个速度有多快?卢国潮说,毫秒之间就可以。声音通过反射,瞬间达到混响。卢国潮说,生活中,坚硬光滑的设备,玻璃、办公桌、瓷砖等,看起来平平常常,却是很好的混声材料。   隔声室则是专门用来拦截声音的。推开一道门,里面是一个长条型的空间,再往里走,又是一扇门,最里间才是真正的隔声室。虽然两人只有几米远,但隔着两道门,根本就听不见两人的说话。博士介绍说,“隔声最好的办法就是采用三明治结构。”   河海大学人工降雨实验室   一说到实验室,多数人就会联想到房间里摆放着各种精密仪器。如果你走进河海大学的一个实验室,这一猜想将被彻底颠覆。   河海大学的实验大厅面积达7000多平方米,其中波浪池就有数百平方米。工作人员介绍说,建水坝是一项系统工程,河水流量、含沙程度、河道地形等许多因素需要综合考虑,所以在实施工程前必须在实验室里进行模拟。   众所周知,天气对河流的影响很大。一旦降雨,雨水会冲刷河流两岸的护坡,土质不同,产生的水流与含沙量也不同。但天气情况又相当复杂,护坡的“产流产沙”量如何估算?河海大学的“人工降雨实验室”就让这一切变成了可能。   这个实验室的屋顶布满水管,水管上有许多大小不一的筛孔。根据需要,这个屋顶可以模拟强度不同的降雨,无论狂风暴雨还是绵绵细雨,都能如实呈现。实验人员只要按比例缩小,做出河道的模型,再经“雨水”冲刷,就能快捷地获得数据,供工程设计师参考。   类似的还有泥沙实验室、航道实验室、工程水动力实验室等。实验室用到的不少仪器都是世界最先进的,比如有的可以用激光测量水流速度,大大提高了实验的科学价值。   每研究一个大型水电项目,河海的教授、研究生们都要在实验室里进行各种模拟。通过实验室检验的“产品”才能投放到实际工程中去。   东南大学AMS01实验室   美国“奋进”号航天飞机当地时间16日从肯尼迪航天中心发射升空,前往国际空间站。这是“奋进”号最后一次升空,主要任务是运送名为“阿尔法磁谱仪2”的太空粒子探测器。而在研制阿尔法磁谱仪的过程中,东南大学承担了重要任务。   宇宙大爆炸产生了正物质,理论上,还应当存在反物质和暗物质,但现实中又苦于找不到它们存在的真凭实据。在诺贝尔奖获得者、美籍华人丁肇中的领导下,16个国家和地区的研究人员开始了寻找这两种神秘物质的征程,主要工具就是“阿尔法磁谱仪”。   早在1998年,美国“发现”号航天飞机搭载东南大学承担了研发任务的第一代阿尔法磁谱仪升空,但由于种种原因,实验受挫。此后,科学家开始研制第二代阿尔法磁谱仪。第一代阿尔法磁谱仪的原型系统目前陈列在东南大学的AMS01实验室内。   “阿尔法磁谱仪就像人类派往太空的神探。”东南大学计算机学院院长罗军舟教授介绍,它的主要本领是能够探测到太空中“流窜”的粒子,这基于磁谱仪强大而特殊的磁场。因为带电粒子进入磁场后其轨迹会发生变化,不同带电粒子的轨迹变化也不同,而不带电的粒子其轨迹则不会发生变化,因而观测粒子进入这一磁场后轨迹是否变化、变化程度有什么不同,就可以推知这是何种粒子。
  • 中山大学参与研制仪器搭美国航天机飞天
    正在组装中的“阿尔法磁谱仪2”太空粒子探测器。   “奋进”号昨晚踏上最后太空之旅   美国“奋进”号航天飞机16日从美国佛罗里达州肯尼迪航天中心发射升空,服役近20年的“奋进”号由此踏上了自己的“绝唱”之旅。这是其第25次也是最后一次升空,主要任务是为国际空间站运送名为“阿尔法磁谱仪2”的太空粒子探测器。   粒子探测器阿尔法磁谱仪(AMS)用于探测宇宙中的反物质和暗物质,探索宇宙的起源与未知。AMS计划是由诺贝尔奖获奖者丁肇中教授领导的、由全球16个国家和地区的56个研究机构合作承担的国际性大型科研项目,超过1500名科研人员参与其中。中山大学参与研制的“硅微条轨迹探测器热控系统”将为AMS的硅微条探测器提供高度稳定和均匀的温度环境,中大也成为AMS中唯一研制用于太空实验装置的中国高校。
  • 《科学》公布2021年度十大科学突破!
    北京时间17日,《科学》网站公布了2021年度十大科学突破评选结果。让我们一起来看看今年科学界都有哪些重大成果。1人工智能预测蛋白质结构今年7月,世界知名人工智能团队深度思维宣布,已经利用AI智能软件程序——阿尔法折叠预测了人类表达的几乎所有蛋白质的结构,以及其他20种生物几乎完整的蛋白质组。AI预测蛋白质结构将实现广泛应用,提供对基础生物学的见解并揭示潜在的药物靶点。8月,中国研究人员使用阿尔法折叠2绘制了近200种与DNA结合的蛋白质结构图。11月,德国和美国的研究人员利用阿尔法折叠2和冷冻电镜绘制了核孔复合物的结构图。现在,科学家正使用阿尔法折叠2来模拟奥密克戎变体刺突蛋白突变的影响。通过在蛋白质中插入更大的氨基酸,突变改变了它的形状——也许足以阻止抗体与其结合并中和病毒。人工智能预测了两种蛋白质如何形成参与酵母DNA修复的复合体。2解锁古老泥土DNA宝库最近,科学家们从洞穴地面的土壤中解锁了一个更大的古代DNA宝库。研究人员使用这种“泥土DNA”来重建世界各地穴居人的身份。在西班牙的Estatuas洞穴,核DNA揭示了8万至11.3万年前生活在那里的人类的遗传特征和性别,并表明尼安德特人的一个谱系在10万年前结束的冰川期之后取代了其他几个谱系。在美国佐治亚州Satsurblia洞穴有2.5万年历史的土壤中,科学家们发现了来自以前未知的尼安德特人系的女性人类基因组,以及野牛和现已灭绝的狼的遗传痕迹。通过将墨西哥奇基维特洞穴中1.2万年前的黑熊DNA与现代熊DNA进行比较,科学家们发现,在最后一个冰河时代之后,洞中黑熊的后代向北迁徙至阿拉斯加。一名研究人员记录了墨西哥奇基维特洞穴中沉积物样本的位置。3实现历史性核聚变突破8月,美国国家点火装置 (NIF) 产生了一种聚变反应,这种反应产生的能量比点燃它所需的激光能量更多。NIF使用来自世界上最高能量激光的脉冲来压缩胡椒粒大小的氢同位素氘和氚胶囊。这种方法每次发射产生170千焦的聚变能量——远低于1.9兆焦的激光输入。但在8月8日记录显示,该能量飙升至1.35兆焦耳。研究人员认为这是燃烧等离子体的结果,这意味着聚变反应产生了足够的热量,可以像火焰一样通过压缩燃料传播。为了产生美国国家点火装置(NIF)的聚变反应,192束激光束会聚在一个微小的燃料芯块周围。4抗新冠强效药出现数据显示,美国默克公司的抗病毒药物莫奈拉韦可将未接种疫苗的高危人群的住院或死亡风险降低30%;而辉瑞公司的抗病毒药物PF-07321332,如果在出现症状的3天内开始服用,则可使住院率降低89%。科学家们强调,抗病毒药物不能取代疫苗接种,但它们仍然至关重要。如果新的奥密克戎变体导致突破性感染激增,它们的重要性将更加突出。美国默克制药公司的莫奈拉韦将未接种新冠疫苗的高危人群因病住院或死亡的风险降低了30%。5“摇头丸”可治疗创伤后应激障碍6单克隆抗体治疗传染性疾病今年单克隆抗体 (mAb)开始在对抗新冠病毒和其他威胁生命的病原体,包括呼吸道合胞病毒 (RSV
  • 《科学》杂志预测2010年科研热点
    最新一期的美国《科学》杂志对2010年的科研热点进行了预测,包括癌细胞代谢、细胞染色体外显子测序与疾病、多功能干细胞研究、阿尔法磁谱仪,以及人类太空飞行的未来等领域。   多功能干细胞。位于2008年《科学》杂志十大科学进展之首的细胞重编程能把成人皮肤细胞重新编程为诱导多能干(iPS)细胞,而iPS细胞可以被诱导发育为各种成熟细胞类型。研究人员利用这些方法在个体患者身上造出新的细胞,进而检查这些细胞是否有生理和遗传异常,或用它们来试验可能的治疗方法。科学家已经从I型糖尿病、帕金森氏症和另外至少十几种疾病的患者身上造出了iPS细胞。随着越来越多的研究人员加入这个领域并且取得新发现,2010年还会有更多种疾病的iPS细胞制造出来。   阿尔法磁谱仪。作为一个创新性的太空粒子物理试验设备,阿尔法磁谱仪(AMS)将在2010年7月交付国际空间站使用。AMS的研制开发工作由诺贝尔奖得主物理学家丁肇中领导的国际小组负责,它将通过探测宇宙射线来寻找反物质、暗物质和奇异微子存在的证据。AMS最初计划在2003年发射升空,因“哥伦比亚”号航天飞机坠毁而停止。但在2008年,美国国会通过了一项法案,授令美国宇航局(NASA)发射这个价值20亿美元的设备。   外显子组研究。2010年,科学家将对数千个人类基因组中编码蛋白质的脱氧核糖核酸(DNA)进行测序,希望找到与人类疾病有关的新基因。这些被称为“外显子组(exome)测序”的研究已经揭示了神秘的遗传性疾病的遗传原因,并有望填补所谓的全基因组关联研究的空白。全基因组关联研究用DNA芯片技术扫描基因组以期发现可能引起疾病的风险标记。虽然这些研究在近几年很流行,但没能解释常见疾病和性状的遗传性能。有些研究人员认为通过测序发现的更罕见的变异将揭开这些遗传“暗物质”的面纱。   用生物化学战胜癌症。科学家在上世纪20年代首次发现的癌细胞的怪异代谢行为是否会最终带来新的治疗方法?为了分解葡萄糖,肿瘤细胞经常从普通的需氧通道转到另一种被称为糖酵解的不需要氧的代谢方式。干扰细胞的这个异常新陈代谢已成为很多研究的主题。   人类太空飞行。美国的航天飞机在服役近30年后,预定将于2010年9月退役,奥巴马总统必须为NASA挑选出下一个能够载人的运载火箭。他可以采用“阿瑞斯”运载火箭目前的设计,或是要求对现有一次性运载火箭进行改进,或是让商业公司提供一个费用更低的选择。奥巴马还将决定是否在未来10年内实现重返月球,以及飞往某颗小行星或是火星的某颗卫星。
  • 参与研制我国首台全日面矢量磁像仪,西安光机所助力“夸父逐日”
    2022年10月9日7时43分,我国在酒泉卫星发射中心采用长征二号丁型运载火箭,成功将先进天基太阳天文台“夸父一号”发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。先进天基太阳天文台(Advanced Space-based Solar Observatory,简称ASO-S),是由中国太阳物理学家自主提出的综合性太阳探测专用卫星,是中国科学院空间科学先导专项继“悟空”“墨子号”“慧眼”“实践十号”“太极一号”“怀柔一号”之后,研制发射的又一颗空间科学卫星,实现了我国天基太阳探测卫星跨越式突破。先进天基太阳天文台以“一磁两暴”为科学目标,将利用太阳活动第25周峰年的契机,对太阳上两类最剧烈的爆发现象——太阳耀斑和日冕物质抛射,以及全日面矢量磁场开展同时观测,研究“一磁”即太阳磁场,“两暴”即耀斑和日冕物质抛射的形成、相互作用及彼此关联,为影响人类航天、通讯、导航等高科技活动的空间灾害性天气预报提供支持。先进天基太阳天文台搭载了全日面矢量磁像仪、莱曼阿尔法太阳望远镜和太阳硬X射线成像仪三台有效载荷,三台载荷相互配合,将首次在一颗近地卫星平台上实现对太阳磁场、太阳耀斑非热辐射、日冕物质抛射日面形成和近日面传波的同时观测。借助莱曼阿尔法太阳望远镜,将首次在莱曼阿尔法波段实现全日面和近日冕的同时观测。“夸父一号”是中国科学院瞄准太阳空间探测前沿,自主部署并集聚院内相关优势科研力量协同攻关完成的重大深空探测项目。2007年嫦娥一号成功奔月,标志着西安光机所顺利开启在我国深空探测领域建功立业的新篇章,历经探月工程和天问探火的实战历练,西安光机所已成长为深空探测成像设备研制方面一支重要科研力量,形成了西光特色、打出了西光声誉。在本次任务中,西安光机所也是唯一一家同时参与三项有效载荷研制的单位,其中在全日面矢量磁像仪子项目上还担任了这台载荷的工程总体。追逐太阳的征途给西安光机所带来了机遇也带来了严峻的考验:以往我们研制的深空探测成像设备最小的不足500g,此次系统功能复杂,集成度高,经过轻量化设计后重量仍然在100kg以上,零部件数量和集成难度可想而知;以往是为月球及其他行星拍照,此次是对太阳“拍照”获得太阳磁场、耀斑及日冕物质抛射的科学数据;以往是间断式工作,此次是不停机连续工作四年。而且此次光学载荷运行在约720公里的太阳同步晨昏轨道,工作环境更为极端、更为复杂。2017年项目正式立项,由研究所的月球与深空探测技术研究室牵头抓总,空间光学技术研究室、热控技术研究室、先进制造部通力配合,他们始终坚持发扬航天精神、西光精神,五年时间里接连攻克了系统设计、光机电加工、总装集成方面的多项难题:参与全日面矢量磁像仪(简称FMG)研制方面,创新采用了单色成像、磁场成像及光学定标多重工作模式,最终实现优于5高斯的磁场探测精度;突破了双层楔形防辐射窗设计,闭环控制稳像机构,极窄带宽(0.011nm)滤光机构,定标及调焦机构设计,内部恒温等关键技术,成功解决了对日观测过程中目标温度极高、空间辐射剧烈、卫星平台抖动、内外温差巨大等对磁场探测产生不利因素的干扰。参与全日面矢量磁像仪(简称FMG)研制参与太阳硬X射线成像仪(简称HXI)研制方面,准直器与指向镜携带了91组光栅对,成功突破了光栅层叠胶接、前后光栅远近距离对准、准直器稳定性关键技术,在近1.2米的距离将光栅狭缝平移达到微米级,旋转优于10″的精度实现对准,具备了光子透过率调制功能。除此之外,该载荷的太阳指向与形变监测光学测量系统,具备在轨高精度形变测量及太阳指向功能。 参与太阳硬X射线成像仪(简称HXI)研制(图片均由西安光机所提供)参与莱曼阿尔法太阳望远镜(简称LST)研制方面,在WST、SDI两个关键焦面组件上首次采用大面阵CMOS探测器,突破其高动态,低噪声关键技术,实现了高灵敏度对太阳的内日冕进行高空间、高分辨率的成像观测及白光偏振度观测,全天候监测太阳并对太阳耀斑和CME等活动现象进行观测,对研究耀斑和日冕物质抛射的形成和演化,特别是研究日冕物质的抛射的早期形成和演化起着关键作用。此次任务中,西安光机所成功研制了基于国产CPU的自主控制系统,提高了研究所的核心竞争力,也将相关载荷的电控系统的核心技术牢牢掌握在自己手中。参与“夸父逐日”,既是对西安光机所科技创新能力的再次检验,也是西安光机所“集中力量办大事”科研组织模式作用发挥凝聚力量、促进协同的又一次例证。
  • 西安光机所助力“夸父逐日”
    2022年10月9日7时43分,我国在酒泉卫星发射中心采用长征二号丁型运载火箭,成功将先进天基太阳天文台“夸父一号”发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。   先进天基太阳天文台(Advanced Space-based Solar Observatory,简称ASO-S),是由中国太阳物理学家自主提出的综合性太阳探测专用卫星,是中国科学院空间科学先导专项继“悟空”“墨子号”“慧眼”“实践十号”“太极一号”“怀柔一号”之后,研制发射的又一颗空间科学卫星,实现了我国天基太阳探测卫星跨越式突破。先进天基太阳天文台以“一磁两暴”为科学目标,将利用太阳活动第25周峰年的契机,对太阳上两类最剧烈的爆发现象——太阳耀斑和日冕物质抛射,以及全日面矢量磁场开展同时观测,研究“一磁”即太阳磁场,“两暴”即耀斑和日冕物质抛射的形成、相互作用及彼此关联,为影响人类航天、通讯、导航等高科技活动的空间灾害性天气预报提供支持。   先进天基太阳天文台搭载了全日面矢量磁像仪、莱曼阿尔法太阳望远镜和太阳硬X射线成像仪三台有效载荷,三台载荷相互配合,将首次在一颗近地卫星平台上实现对太阳磁场、太阳耀斑非热辐射、日冕物质抛射日面形成和近日面传播的同时观测。借助莱曼阿尔法太阳望远镜,将首次在莱曼阿尔法波段实现全日面和近日冕的同时观测。   “夸父一号”是中国科学院瞄准太阳空间探测前沿,自主部署并集聚院内相关优势科研力量协同攻关完成的重大深空探测项目。2007年嫦娥一号成功奔月,标志着西安光机所顺利开启在我国深空探测领域建功立业的新篇章,历经探月工程和天问探火的实战历练,西安光机所已成长为深空探测成像设备研制方面一支重要科研力量,形成了西光特色、打出了西光声誉。在本次任务中,西安光机所也是唯一一家同时参与三项有效载荷研制的单位,其中在全日面矢量磁像仪子项目上还担任了这台载荷的工程总体。   追逐太阳的征途给西安光机所带来了机遇也带来了严峻的考验:以往我们研制的深空探测成像设备最小的不足500g,此次系统功能复杂,集成度高,经过轻量化设计后重量仍然在100kg以上,零部件数量和集成难度可想而知;以往是为月球及其他行星拍照,此次是对太阳“拍照”获得太阳磁场、耀斑及日冕物质抛射的科学数据;以往是间断式工作,此次是不停机连续工作四年。而且此次光学载荷运行在约720公里的太阳同步晨昏轨道,工作环境更为极端、更为复杂。2017年项目正式立项,由研究所的月球与深空探测技术研究室牵头抓总,空间光学技术研究室、热控技术研究室、先进制造部通力配合,他们始终坚持发扬航天精神、西光精神,五年时间里接连攻克了系统设计、光机电加工、总装集成方面的多项难题:   参与全日面矢量磁像仪(简称FMG)研制方面,创新采用了单色成像、磁场成像及光学定标多重工作模式,最终实现优于5高斯的磁场探测精度;突破了双层楔形防辐射窗设计,闭环控制稳像机构,极窄带宽(0.011nm)滤光机构,定标及调焦机构设计,内部恒温等关键技术,成功解决了对日观测过程中目标温度极高、空间辐射剧烈、卫星平台抖动、内外温差巨大等对磁场探测产生不利因素的干扰。   参与太阳硬X射线成像仪(简称HXI)研制方面,准直器与指向镜携带了91组光栅对,成功突破了光栅层叠胶接、前后光栅远近距离对准、准直器稳定性关键技术,在近1.2米的距离将光栅狭缝平移达到微米级,旋转优于10″的精度实现对准,具备了光子透过率调制功能。除此之外,该载荷的太阳指向与形变监测光学测量系统,具备在轨高精度形变测量及太阳指向功能。   参与莱曼阿尔法太阳望远镜(简称LST)研制方面,在WST、SDI两个关键焦面组件上首次采用大面阵CMOS探测器,突破其高动态,低噪声关键技术,实现了高灵敏度对太阳的内日冕进行高时间、高分辨率的成像观测及白光偏振度观测,全天候监测太阳并对太阳耀斑和CME等活动现象进行观测,对研究耀斑和日冕物质抛射的形成和演化,特别是研究日冕物质的抛射的早期形成和演化起着关键作用。   2015年领导人视察西安光机所时就前瞻性指出:核心技术靠化缘是要不来的,必须靠自力更生。西光人牢记领导人的殷殷嘱托,始终重视科研自主化,本次任务中,西安光机所成功研制了基于国产CPU的自主控制系统,提高了研究所的核心竞争力,也将相关载荷的电控系统的核心技术牢牢掌握在自己手中。   参与“夸父逐日”,既是对西安光机所科技创新能力的再次检验,也是西安光机所“集中力量办大事”科研组织模式发挥凝聚力量、促进协同作用的又一次例证。在党的二十大即将隆重召开之际,西光人用科研人的方式献出了这样一份特别的礼物,我们衷心祝福祖国繁荣昌盛。
  • 福岛核电站发现钚泄漏 不及时处理后患无穷
    日本东京电力公司28日晚间宣布,在福岛第一核电站区域内的5处地点采集的土壤样本中检测出了放射性钚(拼音:bù)。该公司认为,这有可能来自核电站发生事故的反应堆。   据日本时事社29日报道,这些土壤样本采集于本月21日和22日,东京电力公司委托外部专门机构进行了检测,并从中检测出微量的钚-238、钚-239和钚-240。   在日本福岛第一核电站,并非所有机组都使用同类的核燃料。在大地震发生时反应堆仍在运作的3个机组当中,1号及2号机组使用的是浓缩铀,而3号机组则藏有危险性比浓缩铀高出200万倍、由钚元素与铀元素混合而成的非常规核燃料,这种燃料一旦外泄,将会对环境构成长远影响;人体吸入后,将不断曝露于辐射当中,患癌机会大增。   3号机组内的核燃料,包括88吨由钚元素及铀元素混合而成的核燃料,由于其放射性元素浓度更高,能够升到更高的温度,关闭核电站,就要冷却更多的剩余热量。这种混合燃料由退役核武制成,全球各国目前至少有20多家核电站正在使用。而一般轻水反应堆所产生的核废料中也含有钚。   据了解,钚-238的半衰期是87.7年,钚-239是24000年,钚-240半衰期为6560年,钚-244达8千万年;其中最稳定的是钚-244,半衰期八千万年,而现在使用最多的、容易裂变钚239,一旦释出自然环境,半衰期长达2.4万年,换句话说,要经历2.4万年,放射性才会减半。   钚元素毒性很强,特别是从呼吸道被人体吸入,原因是肺部对辐射特别敏感。若被食用,钚元素造成的伤害将会较低,但仍可到达各个器官,永久留在体内,令人体组织曝露于可致癌的辐射当中。   钚会在人体内释出带有高能量的阿尔法粒子,当阿尔法粒子撞击人体组织,就足以损害细胞的脱氧核糖核酸,从而引起致癌的突变。进入人体后,钚元素被排出的速度非常慢,在人体内的半衰期仍然长达200年。
  • 山大教授获美宇航局嘉奖 研制仪器随奋进号升空
    日前,美国最能代表其科技实力的机构———美国宇航局特别嘉奖了一位中国科学家———山东大学空间热科学研究中心主任程林。11日,山东大学宣布了这一消息。   11日,山东大学召开新闻发布会宣布,因为在国际重大科学计划———阿尔法磁谱仪(AMS)项目中作出基础性贡献,该项目热系统首席科学家、山大教授程林获得了美国宇航局的特别嘉奖。美国宇航局将一块在太空中随奋进号航天飞机飞行了16天的AMS标识作为珍贵的纪念品赠送给了程林。   据介绍,美国宇航局对此嘉奖证书的官方介绍为:兹授予政府和非政府人士,以表彰其对美国宇航局太空计划所作出的重要贡献和取得的杰出成就。   程林教授向记者展示了美国宇航局颁发证书的电子版。证书上还有6名奋进号航天飞机宇航员的签名。   据了解,AMS项目汇集了来自16个国家和地区的600位相关领域的顶尖科学家和工程师,其科学使命是在宇宙中探测反物质和暗物质的存在,以及宇宙起源等。5月16日,阿尔法磁谱仪(AMS)随奋进号的“绝唱之旅”顺利升空。   山大团队先后有23人参与该项目,负责为AMS研制热系统。程林比喻说,这相当于给AMS提供“空调”。AMS有六个非常精密的粒子探测器和650个微处理机,“没事的时候都想不起来开‘空调’,而在太空环境下,过冷或过热都会导致探测器无法工作,因此AMS的整体寿命取决于热系统的寿命。”   据介绍,山大作为AMS的全球三个数据中心之一,将对国际空间站传输的海量数据进行存储和分析,继续承担AMS的后续研究工作。
  • 研究指出感染新冠病毒10个月后体内仍有抗体
    英国科学家在最新一期《自然微生物学》杂志上发表论文指出,他们的最新研究发现,感染新冠病毒10个月后,体内仍然存在抗体。  在该研究中,他们观察了圣托马斯医院38名患者和医护人员接种疫苗前体内的抗体情况,这些人在第一波新冠疫情暴发时受到感染。研究表明,尽管感染新冠病毒后抗体水平有所下降,但结果显示,大多数人在感染10个月后,体内仍保持可检测到的抗体水平。  研究人员解释说,抗体通过与新冠病毒结合来阻止病毒感染细胞,从而有助于对抗新冠病毒。最新研究结果显示了抗体可以在体内停留多长时间来对抗未来的感染。  由伦敦国王学院免疫学和微生物科学学院的凯蒂多尔斯博士领导的这项研究还测试了针对新冠病毒特定变异毒株而产生的抗体对其他变异毒株的反应。他们研究了新冠病毒原始毒株、阿尔法变异毒株、贝塔变异毒株和德尔塔变异毒株。  研究结果表明,虽然感染新冠病毒特定变异毒株而产生的抗体能对该变异毒株产生强烈的免疫反应,但在应对其他不同变异毒株时效果较差。  抗体会与新冠病毒上的刺突蛋白结合,刺突蛋白是病毒进入并感染人类细胞的关键。新冠疫苗的作用机理是让人体的免疫系统产生针对新冠病毒抗原的中和抗体和细胞免疫反应。接种疫苗后,如果病毒此后感染人体,疫苗会引发免疫系统攻击病毒。  新冠病毒出现的新变异让人们担忧,针对新冠病毒原始毒株开发的疫苗能否有效对抗新变异,以及是否应针对这些新变异毒株设计新疫苗。最新结果表明,新冠病毒阿尔法、贝塔、德尔塔变异毒株的刺突蛋白存在差异,这意味着围绕其中一种变异毒株设计的疫苗可能对其他变异毒株的效果较差。  研究结果还表明,科学家们目前针对新冠病毒原始毒株设计的疫苗提供了对所有变异毒株的最佳保护,应用于疫苗接种计划。
  • ASO-S:中国人的“探日”天眼
    太阳发射出大量带电高能粒子对地球电磁环境造成严重破坏,其中尤以太阳黑子、太阳耀斑和日冕物质抛射对地球电磁环境影响最为显著。图片来源:中国科学院紫金山天文台 我们的ASO-S卫星将携带3台仪器,一个叫全日面矢量磁像仪,专门观测太阳磁场 一个叫硬X射线成像仪,专门观测太阳耀斑;一个叫莱曼阿尔法太阳望远镜,专门观测日冕物质抛射。  ——甘为群 ASO-S卫星工程首席科学家、中国科学院紫金山天文台研究员  在距离地球1.5亿公里的太空中,有一颗时时刻刻都在发光发热的巨大恒星,它散发着的耀眼光芒,穿透大气,为蔚蓝的地球带来了光明与热量,它便是太阳。  太阳,是与人类关系最密切的恒星,也是唯一一颗人类当前可以详细研究的恒星,通过对太阳的详细研究,我们能更深层次地了解太阳磁场、太阳耀斑和日冕物质抛射(一磁两暴)。  “目前,我国第一颗综合性太阳探测卫星——先进天基太阳天文台(ASO-S),即将进入正样研制阶段。”ASO-S卫星工程首席科学家、中国科学院紫金山天文台研究员甘为群告诉科技日报记者。  这意味着,卫星的工程样机研制已经接近完成,再经过1年左右的正样研制,ASO-S有望于2022年发射升空,届时将详细记录第二十五个太阳活动周的“太阳风暴”,并及时预报太阳爆发对地球的可能影响。  太阳一“发威”后果很严重  大约46亿年前,在距离银河系中心约2.6万光年之处的螺旋臂上,一团分子云开始在自身的引力作用下坍缩,并逐渐形成了今天我们所熟悉的太阳。  从古至今,太阳引发了人类太多的思考,我们对这颗耀眼的恒星充满了好奇。不过,人们最为关心的问题总是绕不开太阳对地球造成的影响。  尽管太阳与地球平均距离达1.5亿公里,但一旦太阳“发威”,就会给地球带来不可估量的后果。  2003年10月31日,太阳爆发了一次强磁暴,使欧美的GOES、ACE、SOHO、WIND等一系列科学卫星都遭受了不同程度损害,导致全球卫星通讯受到干扰,GPS全球定位系统受到影响,定位精度出现了偏差,致使地面和空间一些需要即时通讯和定位的交通系统出现不同程度的瘫痪。  究其原因,就是太阳发射出大量带电高能粒子,对地球电磁环境造成严重破坏,其中尤以太阳黑子、耀斑和日冕物质抛射对地球电磁环境影响最为显著。  太阳黑子存在于太阳光球表面,是磁场的聚集之处,借助现代科技,科学家们观测到太阳黑子的数量和位置每隔11年就会出现周期性的变化。  太阳耀斑则是一种强烈的辐射爆炸,是太阳系中最激烈的局地爆炸事件,它所辐射出的光的波长横跨整个电磁波谱。  日冕物质抛射则是太阳释放能量的另一种形式,一次巨大的日冕物质抛射可让数十亿吨的物质短时间内离开太阳。  “从自然科学的角度来说,太阳是一个非常好的天然物理实验室,除了太阳内部物理过程,对于太阳的表面、大气、磁场、结构、波动、全波段辐射、等离子体、流体的规律等我们都可以进行观测研究。”甘为群说道。  据计算,一旦发生日冕物质抛射等爆发活动,科学家可以在它影响地球前至少40个小时以内得到信息,从而及时做出防护,避免可能的破坏。  为天文学研究贡献中国力量  自上世纪60年代以来,世界各国已经先后发射了70多颗太阳探测卫星。  2018年,备受瞩目的美国帕克太阳探测器发射升空,它以前所未有的近距离对太阳进行观测,并已经获取了相当的成果。  为什么要在空间进行太阳探测甘为群解释说,由于地球存在大气层,在地面只能观测到太阳可见光和有限的射电辐射,它们在宽广的太阳辐射波谱中只占很小的一部分。而更多波段辐射,比如大部分紫外和红外线、X射线和伽马射线等高能辐射,在到达地面前就被地球大气吸收掉了。  去年7月,我国首次火星探测任务“天问一号”探测器成功发射,时隔多月,嫦娥五号返回器在众盼之下携带月球样品安全着陆… … 近年来,我国“探月”“探火”工程逐步推进,不断取得重大突破,我国“探日”工程也提上日程。  2016年4月28日,中国科学院空间科学战略性先导科技专项背景型号项目“先进天基太阳天文台(ASO-S)”通过了由中国科学院国家空间科学中心组织的项目结题评审。之后经过1年多的深化研究和综合论证,ASO-S在2017年底终于获得中国科学院批复工程立项。  早在1976年,我国就尝试提出和实施太阳空间探测卫星计划,数十年过去,迄今我国仍没有发射过一颗太阳探测专用卫星。因此,中国第一颗综合性太阳探测卫星ASO-S受到了人们的密切关注。  “打造这颗卫星的想法在上世纪90年代就已形成,之后经过不断修正完善,直到2011年中国科学院启动空间科学先导专项,ASO-S才得以走上正轨,经历了空间科学卫星项目的一套标准程序。”甘为群表示,ASO-S预估在2022年完成发射任务,随后按照计划进入720公里高的太阳同步轨道开始肩负起探索太阳的重任。  “在国际天文学中,我国的太阳物理研究论文总数已经位居世界第二,但这些论文所使用的数据大都来自国外卫星的观测,我们缺少原创性贡献。ASO-S上天后不仅可以拥有第一手数据,也将为国际天文学研究贡献中国力量。”甘为群说。  中国“探日”卫星携带3件“法宝”  与国际上之前的70多颗太阳探测卫星相比,ASO-S卫星最大的特点是要实现 “一磁两暴”的科学目标,即在一个卫星平台上同时观测太阳磁场、太阳耀斑和日冕抛射,研究它们三者之间的关系。  为了观测“一磁两暴”,ASO-S将搭载3台不同功能的太阳探测望远镜,它们的有机组合,是ASO-S的又一个大特色。  “我们的ASO-S卫星将携带3台仪器,一个叫全日面矢量磁像仪,专门观测太阳磁场 一个叫硬X射线成像仪,专门观测太阳耀斑 一个叫莱曼阿尔法太阳望远镜,专门观测日冕物质抛射。”甘为群说,除了3台仪器的组合特色外,3台仪器又各有一些自己的特色。比如全日面矢量磁像仪,其时间分辨率相对较高 硬X射线成像仪比国际同类仪器探头数目要多,有99个探测器 莱曼阿尔法太阳望远镜则不仅能进行内日冕观测,同时莱曼阿尔法谱线本身又是一个新的观测波段窗口。  在此之前,我国的“探日”卫星属于空白,没有多少经验可循,关键技术的攻坚克难可谓“难比登天”。就拿硬X射线成像仪来说,需要攻克3项关键技术。以光栅的加工为例,硬X射线成像仪的99个探头相当于一个个的小眼睛,这些小眼睛前面是由硬金属加工的光栅构成的,X射线光子需要穿过光栅中的缝隙,而最窄的缝隙只有18微米,比头发丝还要细。甘为群把制作过程比作加工一本书,首先要生产出带有狭缝的“纸”,再严格控制好纸与纸之间的距离,黏成一本缝隙均匀的厚“书”。此外,还要综合考虑热胀冷缩、空间环境恶劣、经历发射过程等因素。  2021—2022年正处于第二十五个太阳活动周期的开始阶段,太阳黑子将越来越多,太阳磁场也会越来越强,太阳的爆发会增加,预期在2025年前后达到峰值,ASO-S卫星2022年发射应该是一个非常好的时机,能够观测到一个较为完整的太阳周期。  升空后,ASO-S卫星将在距离地表720公里的太阳同步轨道运行,该轨道穿过地球的南极和北极,倾角在98度,这个角度能够确保卫星24小时连续不断地观测到太阳。ASO-S卫星的预期在轨运行时间将不少于4年。
  • 中国首颗太阳探测卫星拟2022年发射,搭载三台探测仪器设备
    据新华社1月21日消息,我国第一颗综合性太阳探测卫星——先进天基太阳天文台(ASO-S)计划于2022年上半年发射升空。这颗卫星的发射,将标志我国进入“探日”时代。“先进天基太阳天文台(ASO-S)”,2016年4月底通过了中国科学院组织的背景型号阶段结题验收。中国科学家团队正全力以赴推进太阳探测卫星计划。他们希望赶在下一个太阳活动峰年的前夕(即2021年),将其射入轨道,以完整记录太阳活动第25周的“太阳风暴”。2018年1月4日,ASO-S(先进天基太阳天文台)科学准备项目暨ASO-S科学应用系统启动会在中国科学院紫金山天文台仙林新园区召开。同年7月4日,中国科学院重大任务局在中国科学院国家空间科学中心主持召开了“空间科学(二期)”战略性先导科技专项启动会暨EP、ASO-S卫星工程启动会。根据ASO-S卫星工程立项批复文件和空间科学(二期)先导专项实施方案,ASO-S卫星将在2021年底完成工程研制任务,并于2022年上半年择机发射。据悉,先进天基太阳天文台(ASO-S)是我国首颗空间太阳专用观测卫星,将揭示太阳磁场、太阳耀斑和日冕物质抛射(一磁两暴)的形成及相互关系。 为实现这一目标,ASO-S上将搭载3个主要载荷:全日面太阳矢量磁像仪(FMG)、莱曼阿尔法太阳望远镜(LST)、太阳硬X射线成像仪(HXI),它们将分别用来观测太阳磁场、耀斑和日冕物质抛射。全日面矢量磁像仪是ASO-S卫星的主载荷之一,将以高分辨率和高灵敏度测量太阳磁场,通过连续稳定的观测,研究太阳磁场的发生,发展,相互作用,以及作用的后果,从而深入研究耀斑和日冕物质抛射过程中的能量积累,触发,释放和传输机制,并为空间天气事件预报提供观测基础,为我国空间环境的安全提供保障。空间光学系统在进行天文观测时,彻底摆脱了大气影响,背景噪声的降低极大的提高了观测分辨率。莱曼阿尔法太阳望远镜(LST)是先进天基太阳天文台(ASO-S)卫星的载荷之一,它包括白光太阳望远镜(WST),全日面太阳成像仪(SDI)和日冕仪(SCI)等仪器。1991年Kuhn,Lin和Loranz提出的方法(简称KLL方法)是WST和SDI在轨平场定标的方法之一。硬X射线成像仪(HXI)作为该卫星3个科学载荷之一, 实现了高时间分辨率和空间分辨 率的太阳硬X射线成像观测,其量能器由99套溴化镧闪烁晶体-光电倍增管探测单元和读出电子学板构成,实现了30–200 keV的硬X射线光子能谱测量。
  • 火星上存在生命吗?这个飞行器的分光计推翻了好奇号的发现
    p   火星上的甲烷已经消失了?十几年前,科学家首次在这颗红色行星的大气层中发现了这种气体的踪迹,后者是地球生命存在的一个关键信号。然而如今,研究人员报告说一颗欧洲卫星并没有在火星上发现一缕甲烷。这一发现让科学家的梦想变得更加复杂——他们曾推测,火星微生物可能正在地下喷发着这种气体。 /p p   2004年火星快车轨道飞行器首次在火星大气中探测到甲烷的存在。但一些科学家认为轨道飞行器上的仪器不够敏感,因此探测到的甲烷数值不够可靠。10年后,美国宇航局的“好奇”号火星车在其位于盖尔环形山的基地附近发现了一个7ppb(十亿分之一)的甲烷峰值,并持续了几个月的时间,并在之后又发现了一个微小的甲烷季节循环,这种气体的含量在北半球夏末达到了0.7ppb的峰值。 /p p   2016年抵达火星的欧洲空间局的微量气体轨道飞行器(TGO)也于今年开始扫描大气中的甲烷。TGO上装载的两个分光计——比利时的NOMAD和俄罗斯的ACS——被设计用来探测极低浓度的甲烷。该研究小组的初步结果显示,在低至每分钟50万亿分之一(ppt)的水平仍然没有发现甲烷,而观测几乎一路下降到火星表面。负责“好奇”号火星车上甲烷探测仪器运行的加利福尼亚州帕萨迪纳市喷气推进实验室行星科学家Chris Webster表示这个结果令人吃惊,他预计TGO会接收到至少0.2ppb的甲烷信号。但Webster仍然乐观——他的团队花了6个月才探测到甲烷峰值,花了数年才确认甲烷循环的季节性背景。“我相信,随着时间的推移,这两个数据集将会保持一致。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/54c8536e-9188-4768-a19c-07a6358dba61.jpg" title=" 135696992.jpg" alt=" 135696992.jpg" / /p p style=" text-align: center " strong 微量气体轨道飞行器(TGO) /strong /p p   火星被认为是太阳系中最有可能存在地外生命的行星。目前,有关火星甲烷的谜团正在进一步加深。TGO将持续运行到2022年,这使它足够观测至少两个火星年。其间,它的数据将更加精确,同时检测极限也会下降。也许那时,科学家就会知道火星上微生物正在喷涌甲烷的梦想是否已经破灭。 /p p   TGO是火星快车项目的一部分,该项目是ESA与俄罗斯航天局的合作项目。TGO于2016年3月发射升空,当年10月到达火星轨道。这是第一个专门用来研究火星气体的飞行器,火星气体在这颗行星寒冷而干燥的大气中所占比例不到1%,其中包括甲烷、水蒸气和臭氧。 /p p   “好奇号”火星车搭载的科学仪器,包括桅杆相机,火星手持透镜成像仪,火星降落成像仪,火星样本分析仪,化学与矿物学分析仪,化学与摄像机仪器,阿尔法粒子X射线分光计,中子反照率动态探测器,辐射评估探测器,火星车环境检测站等。其中,激光诱导击穿光谱仪,阿尔法粒子X射线分光计和由质谱仪、气相色谱仪和激光光谱仪组成的火星样品分析系统(SAM)主要负责火星环境的检测与分析工作。 /p
  • 德州仪器不做仪器 但也能卡国产仪器的脖子
    为什么说仪器行业离不开德州仪器?以示波器为例。现在的示波器基本上是数字示波器,模拟示波器没有完全绝迹,但已经没有曾经的辉煌。数字示波器与模拟示波器最大的区别就是将输入信号通过ADC芯片(模数转换),对信号进行采样和数字化处理后存入高速缓存,再通过信号处理电路将数据读取出来。采样是ADC的工作,数字处理就要用到DSP了。德州仪器恰好都有这两类芯片,特别是DSP,不是一般的强。数字示波器按照功能,通常将硬件部分分为信号前端放大(FET输入放大器)及调理模块(可变增益放大器)、高速模数转换模块(ADC驱动器、ADC)、FPGA逻辑控制模块、时钟分配、高速比较器、单片机控制模块(DSP)、数据通讯模块、液晶显示、触摸屏控制、电源和电池管理和键盘控制等。下图是一个双通道数字示波器示意图,在这个结构中,决定示波器性能的核心元器件有ADC、DSP和FPGA。话说在输入端,输入信号经前置放大及增益可调电路转换后才能成为符合ADC要求的输入电压,经ADC转换后成为数字信号,放大器PA同样非常重要。双通道数字滤波器结构示意图,公开资料整理,阿尔法经济研究DSP芯片是微处理器的一种,内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,可以用来快速的实现各种数字信号处理算法,可以实时处理数据,也因此成为通信、计算机、军事航天和仪表仪器等领域的基础器件。在仪表仪器中,测量精度和速度是一项重要指标,DSP的快速实时处理的特性刚好也就复合仪表仪器对精度和速度的要求。为什么要选择德州仪器的DSP呢?因为它的响应时间足够低,功耗足够低,性能足够高。德州仪器DSP芯片特性,公司官网,阿尔法经济研究国内开发DSP的企业不多,代表性企业就是华为海思。除此之外,中科昊芯于2021年9月推出了一款基于RISC-V架构的DSP,有了一定的突破。ADC是示波器中的核心元器件,转化过程主要包括采样和量化,其中采样的速率是衡量采样水平的标准,代表ADC可以转换多大带宽的模拟信号,带宽越大对应的模拟信号频谱的频率越大。ADC第二步量化就是转换精度,要求模拟信号转换出的数字信号与原信号差距越小越好,精度以bit衡量,要求是bit越大越好,位数、精度、采样率等指标成为衡量示波器性能的重要指标。当然采样率与精度是相对立的,采样率越高,意味着精度越差,反之亦然。所以在仪器中,怎么选择合适的ADC,还是要根据需求而定。上述提到的核心元器件,ADC厂商就是德州仪器以及更厉害的ADI,DSP有更厉害的德州仪器、稍次的ADI以及因手机业务拉胯而成为笑谈的摩托罗拉。上海汉芯一号的主角就是摩托罗拉的DSP。至于FPGA,目前已被AMD收购的赛灵思一家独大,占据一半以上的市场,英特尔(Altera)与Lattice分居二三位。鉴于Lattice主要精力放在低功耗领域,其他厂商更加弱小,FPGA市场也是AMD(赛灵思)与英特尔(Altera)的二人转。上述芯片,国内发展水平仍然较低,与国外的差距也非常明显,当然也毫无意外地被卡了脖子。仪器厂商普源精电招股书和第一轮问询反馈中均提到有一款DAC产品被列入美国商业管制清单,进口时需要取得许可。普源精电提到,公司已获得可采购3600片的采购许可,有效期至2023年。另一家仪器厂商鼎阳科技也提到,其采购的ADC、FPGA、DSP等均来自美国厂商,德州仪器的四款ADC和一款DAC属于管制清单产品,需要获得BIS的出口许可。综上所述,德州仪器本身不生产仪器,但其芯片却是仪器必不可少的核心元器件。德州仪器卡了ADC、DSP的脖子,也就间接卡了国内仪器的脖子。
  • 气味指纹烟草分析论文获2005年烟草化学学术研讨会优秀论文奖
    2005年中国烟草学会工业专业委员烟草化学学术研讨会于2005年11月29~12月2日在海口市隆重召开.由常德卷烟厂技术中心,澳华达香精香料有限公司和法国阿尔法莫斯仪器公司合作的论文" 气味指纹分析技术在烟草工业分析中的应用研究" 应邀在大会上宣读,并荣获优秀论文奖.
  • 重磅!央视公布2021年度国内、国际十大科技新闻
    中央广播电视总台近日发布2021年度国内十大科技新闻和国际十大科技新闻。国内十大科技新闻包括:1,中国“人造太阳”创亿度百秒世界新纪录2021年5月28日,中科院合肥物质科学研究院有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)创造新的世界纪录,成功实现可重复的1.2亿摄氏度101秒和1.6亿摄氏度20秒等离子体运行,将1亿摄氏度20秒的原纪录延长了5倍。科研人员称新纪录进一步证明核聚变能源的可行性,也为迈向商用奠定物理和工程基础。2,中国空间站开启有人长期驻留时代神舟十三号载人飞船16日在长征二号F遥十三运载火箭的托举下点火升空,开始我国迄今为止时间最长的载人飞行,航天员翟志刚、王亚平、叶光富成功入驻天和核心舱,中国空间站有人长期驻留时代到来。3,“天问一号”成功实现火星着陆科研团队根据“祝融号”火星车发回遥测信号确认,5月15日7时18分,天问一号着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区,我国首次火星探测任务着陆火星取得圆满成功。4,中国新冠灭活疫苗三期临床试验结果在全球首次发表5月26日,国际医学期刊《美国医学会杂志》刊登了国药集团中国生物发表的《两种新型冠状病毒灭活疫苗对成人新冠肺炎感染的保护效力评价》。这是全球首个正式发表的新冠灭活疫苗Ⅲ期临床试验结果,也是中国新冠疫苗Ⅲ期临床试验结果的首次发表。5,中国首次实现淀粉的全人工合成二氧化碳能合成淀粉吗?对这个貌似天方夜谭的问题,中国科学家历时6年多科研攻关给出肯定和详细的答案。继上世纪60年代在世界上首次完成人工合成结晶牛胰岛素之后,中国科学家又在人工合成淀粉方面取得重大颠覆性、原创性突破——国际上首次在实验室实现二氧化碳到淀粉的从头合成。6,我国首个超导量子计算机原型“祖冲之号”问世继“九章”量子计算机原型机发布后,我国首个可操纵的超导量子计算机体系“祖冲之号”问世。该成果将为促进中国在超导量子系统上实现量子优越性奠定了技术基础,也为后续具有重大实用价值的通用量子计算的研发提供支持。7,“深海一号”能源站正式投产6月25日, “深海一号”正式投产,这标志着我国深海油气勘探开发从水深300米到1500米的迈进取得了重大进展。目前各环节进入最后的冲刺阶段。8,我国科学家观测到迄今宇宙中能量最高光子5月17日,中国科学院高能物理研究所公布,国家重大科技基础设施“高海拔宇宙线观测站(LHAASO)”记录到1.4PeV电子伏伽马光子。这是人类迄今观测到的最高能量光子,有助于进一步解开宇宙线的奥秘。9,“嫦娥五号”月球样品揭示月球演化奥秘10月19日,中国科学院发布了嫦娥五号月球科研样品最新研究成果,报道了围绕这些重要科学问题取得的突破性进展。10,“海斗一号”无人潜水器跨入万米科考应用新阶段在10月结束的我国马里亚纳海沟深渊科学考察中,由中国科学院沈阳自动化研究所主持研制的“海斗一号”全海深自主遥控潜水器首次实现了对“挑战者深渊”西部凹陷区的大范围全覆盖声学巡航探测,标志着我国全海深无人潜水器正式跨入万米科考应用新阶段。国际十大科技新闻包括:1,联合国生物多样性大会通过“昆明宣言”联合国《生物多样性公约》第十五次缔约方大会第一阶段会议10月13日通过《昆明宣言》。《宣言》承诺加快并加强制定、更新本国生物多样性保护战略与行动计划;优化和建立有效的保护地体系;积极完善全球环境法律框架;增加为发展中国家提供实施“2020年后全球生物多样性框架”所需的资金、技术和能力建设支持。2,人工智能算法“阿尔法折叠”实现蛋白质三维结构的精准预测谷歌旗下深度思维公司研发的“阿尔法折叠2”系统(AlphaFold2),实现了人工智能预测蛋白质结构的突破。如今,复旦大学在人工智能预测蛋白质三维结构的精度上,超越了“阿尔法折叠2”。3,科学家联合公布史上最详细的三维宇宙图以探测宇宙加速膨胀机理为目的的暗能量巡天(DES)项目在《皇家天文学会月报》等期刊网站在线发表了一张三维宇宙地图可以提供宇宙历史的最详细的记录。2013~2019年间,DES团队利用位于智利托洛洛山美洲际天文台的维克托M布兰科望远镜调查了南天球1/4的天空,其曝光范围包括3亿个星系。这项在同类研究中规模最大的对南天球星空的调查,重建了质量是如何在空间和时间上传播的。4,中俄将合作建设国际月球科研站中国国家航天局和俄罗斯国家航天集团公司联合主办的国际月球科研站宣介会在南京召开。俄罗斯国家航天集团公司第一副总经理乌里奇奇致辞并代表俄中双方发布《中国国家航天局和俄罗斯国家航天集团公司关于合作建设国际月球科研站的联合声明》。5,“中国天眼”FAST正式对全球科学界开放中国科学院国家天文台称,被誉为“中国天眼”的500米口径球面射电望远镜,简称FAST,向全世界天文学家发出邀约,征集观测申请。本次征集项目的评审结果将于2021年7月20日对外公布,观测时间将从2021年8月1日开始。6,美国“毅力号”成功降落火星美国东部时间2月18日下午3点55分,美国“毅力号”火星探测器成功着陆火星。美国国家航空航天局(NASA)随后公布了“毅力号”降落在火星上的杰泽罗陨石坑的第一张照片。据悉,“毅力号”是美国国家航空航天局(NASA)耗资22亿美元打造的最新火星探测器,而此次它在火星将首次进行挖土返回作业,但返回时间却定在6年之后。7,中国新冠抗体药物JS016安全有效性获世界认可中国科学院微生物研究所称,一款具有我国自主知识产权的新冠肺炎治疗性抗体新药JS016已完成国际多中心Ⅱ期临床试验,正在积极推进Ⅲ期临床试验。8,中国构建天地一体化广域量子通信网1月7日,我国科研团队宣布成功实现了跨越4600公里的星地量子密钥分发,标志着我国已构建出天地一体化广域量子通信网雏形。9,德国科学家研发出迄今最小的生物超级电容器德国著名物理学家奥利弗施密特教授领导的国际团队成功研发出迄今为止最小的生物超级电容器,这种生物相容性储能系统为下一代生物医学的血管内植入物和微型机器人系统的应用开辟了可能性。10,中外科学家对首个恒星级黑洞做出精准预测来自澳大利亚、美国和中国的三个科研团队分别对历史上发现的第一个恒星级黑洞——天鹅座X1(Cygnus X-1)的距离、质量、自旋及其演化作出最为精确的测量和限制,发现该X射线黑洞双星系统包含一个21倍太阳质量的黑洞,且自转速度极接近光速。这是科学家迄今发现并确认的唯一一个黑洞质量超过20倍太阳质量、且自转如此之快的X射线双星系统。参考资料:https://news.cctv.com/2021/12/20/ARTI1EdwdegVKLqd8AUhZqWa211220.shtml
  • “上天的仪器,不能出现任何故障”
    宋克非在调试设备。受访者供图20多年前,有个小女孩在学校门口等妈妈来接自己,从白天等到天黑。女孩在看到妈妈的那一刻,立即笑着跑到跟前说:“妈妈,我哪儿都没去就在这儿等你。”20多年后,小女孩即将获得吉林大学白求恩医学院博士学位,而她的妈妈一直投身于自己热爱的航天事业,作为项目主任或副主任设计师先后参加了中国载人航天工程、探月工程、中国科学院战略性先导科技专项等多个国家航天工程任务的研制工作。今天的故事主角就是女孩的妈妈。她叫宋克非,是中国科学院长春光学精密机械与物理研究所(以下简称长春光机所)研究员。最近,她又获得了一项荣誉——中国科学院优秀共产党员。这些年来,宋克非先后获得国家科技进步奖二等奖、中国科学院科技进步奖三等奖、吉林省科技进步奖一等奖……荣誉的背后蕴藏着她对航天事业的执着和热爱。“上天的仪器,不能出现任何故障。”宋克非在接受《中国科学报》采访时多次提到。从“零”开始学习软件研制“就拿航天遥感光学仪器来说,可靠性要求非常高,满足性能指标的同时还要满足发射过程中的抗力学环境和空间环境要求,不能出现任何故障。”宋克非举例道。这里的航天遥感光学仪器是指安装在神舟三号飞船上的太阳紫外光谱监视器,是长春光机所承担的首批航天产品研制项目之一。“那时,我参加工作没多久,第一次参与航天项目研制,不仅自己没有工作经验,也没有找到多少可借鉴的经验。”宋克非回忆道。在产品研制第一阶段开始做整机模拟力学试验时,问题出现了——随机振动后加电测试无输出信号,产品出现了异常,一时间宋克非不知道问题出在了哪里。转眼间3个月就过去了,眼看交付的日子要到了,难道就这样放弃吗?“山重水复疑无路,柳暗花明又一村。”在一次次试验、一次次复现问题后,宋克非最终找到了原因。“我们通过改进元器件的固封工艺,解决了遥感仪器对力学环境的适应性问题。在此后的整机模拟力学环境试验中,这类问题再也没有出现过。”宋克非说,该元器件的固封工艺一直沿用到现在,在多个航天项目的成功研制中发挥了重要作用。“相比硬件,软件在仪器中起着类似人类大脑的作用,没了软件的仪器就像是没了灵魂的躯体。”宋克非认为,航天产品的软件对可靠性有着更高的要求。由于太阳紫外光谱监视器研制是长春光机所的第一批航天项目,缺少软件编程人员,多数软件的编程工作都由宋克非一个人负责。为了能够圆满完成研制任务,保证仪器在轨可靠运行,宋克非从“零”开始学习软件研制的管理要求,率先在长春光机所内部实现了软件的工程化设计。宋克非对自己的要求是做到需求、设计、测试阶段明确且可追溯,而这也为长春光机所后续的软件工程化的实施打下了坚实基础。“有缺憾的人生才是完美的人生”航天事业有其特殊性,不仅需要高难度的创新性,还需要高质量、高效率,需要每一位航天人都具有奉献精神。事业占用了太多的精力,家庭和孩子可投入的精力自然就少了。参与神舟三号任务时,由于可以参考的设计资料非常少,宋克非必须一遍遍地试验摸索,常常无暇顾及家里。“1999年,女儿刚上小学。有一次,我爱人出差前叮嘱我去班车站点接放学的孩子,但我因为编写程序忘记了时间,等想起要接孩子的时候,天已经黑了。”宋克非骑着自行车赶到车站时,远远地看到一个“小黑点”蹲在路边,然后就有了文章开头的那一幕。看到孩子高兴的样子,宋克非的双眼却湿润了,耳边响起不远处收废品老大爷的数落:“你怎么才来?你怎么当妈妈的?孩子在这儿等了好几个小时。孩子说你工作忙,但也不能把孩子丢下不管啊……”神舟三号进发射基地后又遇到了一些问题,需要撤场解决后再进发射基地。为了这个项目,宋克非在发射基地待了3个月,一年中有半年的时间不在家,更无法陪伴孩子。“有缺憾的人生才是完美的人生。”宋克非经常把这句话挂在嘴边,但她绝不允许自己参与的项目出现任何细微的缺憾。在参与风云三号气象卫星紫外臭氧垂直探测仪研制项目时,产品的探测灵敏度要求非常高,单一的技术方案无法满足要求。为此,宋克非经过大量的分析和试验,通过不断的设计、验证,实现了空间太阳/大气后向散射紫外光谱高精度探测。2010年,紫外臭氧垂直探测仪转入业务运行。该仪器与国际其他仪器同期探测到了南极和北极出现的臭氧洞及其迁移状态。“这个仪器的研制在当时填补了我国星载紫外-真空紫外光谱及臭氧垂直分布探测的空白,标志着我国在该领域获得了话语权。”宋克非说。“您工作忙的时候让我来分担”这些年,虽然宋克非错过了很多陪伴女儿成长的时间,但女儿没有抱怨过半句。她看到了妈妈对航天事业的热爱、对科学问题的严谨求真、对产品质量的精益求精,因此特别愿意跟妈妈分享自己的学习和生活。作为一名共产党员,宋克非对自己要求非常严格,比如,在科研中坚持实事求是,严肃认真地进行原理设计、严格准确地处理试验数据、严密慎重地给出试验结果,踏踏实实地对待科研中的每一个环节。莱曼阿尔法太阳望远镜是中国科学院战略性先导科技专项 “夸父一号”卫星上的3个载荷之一。作为先导专项莱曼阿尔法太阳望远镜项目的质量师,宋克非在研制过程中严格把关,制定并细化研制流程,使各分系统之间接口明确,研制衔接顺畅,为项目的顺利开展提供了保障。莱曼阿尔法太阳望远镜的研制经历了疫情的考验。宋克非还记得那时自己和团队在所里封闭工作了45天,承受了很大的压力和考验。宋克非发挥党员先锋模范作用,带领大家顺利完成任务。“最后的联机调试阶段是最紧张的时候,因为疫情原因研究人员不能回家,项目组每天晚上8点准时开会布置工作,人员轮流上岗。为了让大家能够适当活动一下,我们组建了微信线上有奖活动群,开展系列‘随手拍’等小活动。奖品则是隔离期间非常稀缺的洗发水、洗澡巾之类的生活用品。”宋克非告诉记者,“到所里隔离的人员都是临时接到的通知,没有特意准备日用品。这样的小活动不仅调动了大家的积极性、缓解了压力,也能让大家更好地投入工作。”航天项目的每个任务都需要各个系统密切配合,需要每个人无条件支持,需要参与者具有顾全大局、服从大局的协作精神。宋克非介绍,每台单机的研制又分“光、机、电、热、软及定标”等子系统。各子系统之间的接口协调、试验配合、装配流程都要一丝不苟地完成。“航天项目99分就意味着失败。”为此,宋克非倾注了很多心血,度过了无数个不眠夜、无数个加班的节假日,放弃了与家人团聚,坚守在岗位上。“您工作忙的时候让我来分担。”不知从什么时候开始,女儿经常对宋克非这样说。“不知不觉中女儿就长大了,但她一直都在我身边,现在还能帮我分担很多事情。”宋克非发现自己这个不太称职的妈妈在女儿心中的分量很重,对此她感到很欣慰。
  • 我国首家科技视频网站正式上线
    我国首家科技视频网站——北京科技视频网日前正式上线,其基本定位为“三纯”:纯公益、纯科普、纯视频。该网站由北京市科委支持、北京市可持续发展促进会主办,目前拥有各类科技视频节目8000余条,已从美、英、德、日、韩等国独家引进、译制首播科技大片200多小时。   视频网现开设10个栏目,如《科技资讯》、《科学纪事》、《科坛百家》、《科幻之旅》等,近期还将开设《科学军事》栏目和《有问必答》互动性栏目。   据悉,该视频网正在筹划摄制一组反映国内外最新重大科技成果和事件的科普专题片,包括应邀赴日内瓦拍摄《丁肇中教授和阿尔法磁谱仪》、跟踪报道2012中国力学年和世界力学家大会、大亚湾中微子研究新成果等。
  • Nature Communication:在有丝分裂中整合素减少对细胞外基质的粘附而加强对相邻细胞的
    为了进入有丝分裂,大多数粘附的动物细胞减少粘附,随后细胞变圆。有丝分裂细胞如何调节与邻近细胞和细胞外基质(ECM)蛋白的粘附目前学界尚不清楚。尽管在有丝分裂之前、之中和之后的粘附调节的重要性已经被很好地证明,但是对于有丝分裂细胞如何调节细胞ECM和细胞-细胞粘附的启动的见解还是有限的。此外,整合素和钙粘蛋白介导的粘附在有丝分裂进入和进展过程中的相互作用还不清楚。 为此苏黎世联邦理工学院生物系和德国马汀里德马克斯普朗克生物化学研究所分子医学部的研究人员在基因工程细胞系中使用基于原子力显微镜(AFM)的单细胞力谱(SCFS)方法来定量测量细胞-ECM和细胞-细胞间粘附力的大小,以了解细胞与ECM和邻近细胞的粘附力的启动和加强是如何被不同地调节的。实验显示,在有丝分裂细胞中,整合素没有通过踝蛋白和纽蛋白与细胞骨架连接,导致了细胞与ECM粘附增强作用减弱,而β1整合素和不同的粘附蛋白,包括纽蛋白、黏着斑蛋白和踝蛋白,增加了有丝分裂钙粘蛋白介导的细胞-细胞粘附。研究人员结合单细胞力谱和荧光显微镜来定量HeLa细胞的细胞周期依赖性粘附力。将表达MYH9-GFP和H2B-mCherry的单个圆形间期或有丝分裂HeLa细胞连接到伴刀豆球蛋白A (ConA)包被的AFM的悬臂上,使它们接近基质胶或牛血清白蛋白(BSA)包被的底物,并允许它们启动和加强粘附5-360秒的时间,然后将它们从基底上脱离以定量测量粘附力的大小(补充图1a)。作者通过共聚焦的方法观察到间期HeLa细胞使粘附位点成熟并稳定增加其铺展面积(图1b-e)。图1. 有丝分裂细胞显著降低了对ECM的粘附增强,并增加了对邻近细胞的粘附。a在给定的接触时间后,间期(左)或有丝分裂(右)HeLa细胞与基质或牛血清白蛋白的粘附力。点表示单个细胞的粘附力,红条表示中位数,n(细胞)表示至少三次独立实验中测试的独立细胞的数量。as值将附着力增强率表示为所有接触时间内通过附着力线性拟合的斜率(±SE),并将as值与参考数据集进行比较的p值(补充图2a)。间期HeLa细胞对Matrigel的粘附力以灰色表示,与有丝分裂细胞比较。b,c在SCFS期间,表达paxillin- gfp的间期(b)或有丝分裂的stc (c) HeLa细胞(n = 7)粘附在Matrigel上的共聚焦显微镜图像的代表性时间序列。箭头显示paxillin-GFP簇。比例尺,20µ m。d表达paxillin- gfp的间期和有丝分裂stc HeLa细胞的接触时间依赖性和归一化扩散面积(±SEM) (n = 7个独立实验)。灰色区域表示间期和有丝分裂的stc HeLa细胞扩散面积有显著差异(P值补充表1)。e有丝分裂的stc HeLa细胞60min后对Matrigel的粘附力,360s后对Matrigel的粘附力作为灰色参考。描述的数据表示。 f接触时间120s时,间期(左)或有丝分裂stc(右)HeLa细胞与纯化ECM蛋白的粘附力。数据表示如a.间期HeLa细胞对各自ECM蛋白的粘附力以灰色参考给出。g在给定接触时间,两个间期(左)、间期和有丝分裂stc(中)或两个有丝分裂stc(右)HeLa细胞之间的粘附力。P值比较显示数据集和参考数据集的as值(补充图4a)。两个间期HeLa细胞之间的粘附力以灰色表示。数据表示如a.“MitoticSTC”所示,表明有丝分裂细胞通过STC富集(“方法”)。采用双尾Mann-Whitney检验计算给定数据与参考数据(a, d-g)比较的P值,采用双尾额外平方和f检验计算比较as值的P值。接下来为了测试有丝分裂HeLa细胞对ECM的粘附增强是否是由整合素细胞表面表达量的变化引起的,研究人员通过流式细胞术比较了间期和有丝分裂HeLa细胞表面的阿尔法V、贝塔1、阿尔法6和贝塔4整合素含量水平,有丝分裂的HeLa细胞显示出所有整合素的较高表达水平(图2a)。然后,研究人员还研究了钙粘蛋白表面表达的特征,发现与间期细胞相比,有丝分裂的HeLa细胞也表现出表面N-钙粘蛋白水平升高(图2d).接下来为了测试有丝分裂HeLa细胞对ECM的粘附增强是否是由整合素细胞表面表达量的变化引起的,研究人员通过流式细胞术比较了间期和有丝分裂HeLa细胞表面的阿尔法V、贝塔1、阿尔法6和贝塔4整合素含量水平,有丝分裂的HeLa细胞显示出所有整合素的较高表达水平(图2a)。然后,研究人员还研究了钙粘蛋白表面表达的特征,发现与间期细胞相比,有丝分裂的HeLa细胞也表现出表面N-钙粘蛋白水平升高(图2d).图2:a对间期和有丝分裂stc HeLa细胞进行整合素亚基荧光标记,并用流式细胞术进行分析。点表示每个样品分析的2万个细胞的中位荧光强度归一化到间期HeLa细胞样品中位荧光强度的平均值,条表示所有中位的平均值,误差条表示扫描电镜。N(样本)表示测试的生物独立样本的数量。b间期和有丝分裂stc HeLa细胞的流式细胞术,标记了扩展构象的整合素(克隆9EG7)。间期和有丝分裂stc HeLa细胞与Matrigel结合概率的数据表示。圆点表示单个HeLa细胞的结合概率,红条表示所有被测细胞的中位数结合概率,误差条表示扫描电镜。n(cells)表示探测HeLa细胞的数量,并采样每种情况下记录的力-距离的数量。d对间期和有丝分裂的stc HeLa细胞进行n -钙粘蛋白标记,并用流式细胞术进行分析。数据表示如a. e所述,间期或有丝分裂stc HeLa细胞与散布在底物上的单个间期细胞的结合概率。整个的研究实验数据揭示了整合素在有丝分裂细胞中的双重作用:刚结合配体的整合素不与肌动蛋白偶联,因此很难增强与ECM的粘附,而贝塔1整合素增强了有丝分裂细胞与邻近细胞的粘附,间期细胞利用黏着斑蛋白、踝蛋白和纽蛋白快速启动和加强整合素介导的细胞-ECM粘附。有丝分裂细胞增加了它们对邻近细胞的粘附力。这部分是由于钙粘蛋白的细胞表面含量水平增加了约20%以及钙粘蛋白结合率增加了两倍。有趣的是,我们还发现贝塔1整合素促进了与相邻间期或有丝分裂细胞的粘附的启动和加强。在实验中,没有在间期细胞或有丝分裂细胞的细胞表面检测到胶原、层粘连蛋白或纤连蛋白,这表明参与有丝分裂细胞的细胞间粘附的整合素不太可能与其他间期细胞或有丝分裂细胞的细胞表面上的ECM蛋白结合。然而,不能完全排除ECM蛋白参与有丝分裂细胞-细胞粘附实验。是否贝塔1整合素的贡献是通过直接结合E-和/或N-钙粘蛋白来实现的,如报道的胶原结合整合素,还有待探索。Mn2+或抗体对贝塔1整合素的外源性激活不会增加有丝分裂细胞间的粘附,这可能表明贝塔1整合素的功能与构象无关,或者整合素的激活不会增加其结合动力学。尽管在最初的360秒内,贝塔1整合素并不促进两个间期细胞间的粘附形成,但在融合的MDCK细胞单层中,无论细胞周期状态如何,贝塔1整合素都定位于细胞间的接触。总之,细胞在有丝分裂开始时减少细胞ECM粘附,导致细胞变圆,对整合素和粘附素蛋白的需求有限。与此同时,有丝分裂细胞通过激活钙粘蛋白和利用细胞间粘附位点增强与邻近细胞的粘附。这种细胞ECM和细胞-细胞粘附位点的复杂重塑确保了有丝分裂细胞的圆形化和组织完整性的维持。 该工作使用了Bruker旗下的JPK Nanowizard4三轴分立的闭环、全针尖扫描的生物型原子力显微镜。最新的JPK Nanowizard V系统还配备了Bruker专利技术的PeakForce Tapping可以不用考虑针尖的动力学而非常轻易的成像。且还有专门针尖细胞成像的定量成像模式(QI)可以同时得到样品的表面形貌和机械性能的Mapping图。文章信息如下,感兴趣的朋友可以自行下载阅读。论文链接:https://www.nature.com/articles/s41467-023-37760-x Bruker NanoWizard® V 简介:https://www.bruker.com/de/products-and-solutions/microscopes/bioafm/jpk-nanowizard-v-bioscience.html
  • 青岛科大牵手世界顶级生产商共建橡胶实验室
    继全球最大的合成橡胶材料生产厂商德国朗盛将该公司亚洲最大的研发中心落户青岛科技大学之后,日前世界顶级橡胶加工分析仪器生产商美国阿尔法(Alpha)公司也向青岛科技大学伸出橄榄枝,将与该校橡塑材料与工程教育部重点实验室携手共建橡胶测试示范实验室。   Alpha公司座落于世界橡胶科学研究及技术研发的重要基地美国阿克隆(Akron)市,是世界顶级的橡胶加工分析仪器生产商。橡塑材料与工程教育部重点实验室是教育部在国内高校中设立的唯一一个橡塑领域的专业实验室。根据协议,Alpha公司将在橡塑材料与工程教育部重点实验室设置示范实验室,室内将免费放置Alpha公司主打产品橡胶硫化仪、门尼粘度仪、毛细管流变仪以及炭黑分散度测定仪等价值百余万元的国际顶级测试仪器,并负责议器的维护和软件升级 重点实验室将依托这些世界顶级仪器开展橡胶测试技术的示范推广工作,为国内橡胶企业提供更精准的测试数据,提高中国橡胶企业的国际竞争力。
  • 印度“月船”搭载光谱仪获俄协助 分析月球表面化学成分
    据spacedaily2017年2月17日报道,印度航天研究组织(ISRO)已经开始为月球表面软着陆器进行一系列传感器和作动器性能的地面测试。  ISRO选择俄罗斯JSC公司为其提供放射性同位素锔-244(Cm-244),用于确定任何岩石和土壤的化学成分。由JSC公司提供的同位素源将安装在阿尔法质子X射线光谱仪(APXS)上,旨在“月船”2号任务中分析月球表面化学成分。  类似的俄罗斯同位素源已经提供给美国NASA的3个探索任务:“火星探路者”(1997年)、“机遇”号(2004年)、“好奇”号(2012年),致力于探索火星上的岩石化学成分。Cm-244的生产目前只有俄罗斯和美国开展。  “月船”2号由轨道器、着陆器和巡视器组成。到达月球轨道100千米后,携带巡视器的着陆器将从轨道器上分离。受控下降后,着陆器将软着陆在月球表面的指定地点并释放巡视器,巡视器上的仪器将收集数据以分析月球土壤。目前已经开展了着陆器传感器性能测试,月球地形试验设施也为着陆器跌落试验和巡视器机动试验做好准备。“月船”2号计划2018年第一季度发射,任务成本预计为9100万美元。
  • 3064万!兰州大学射线式分析仪器类设备采购项目(第2批)
    项目编号:LZU-2022-434-HW-GK项目名称:兰州大学射线式分析仪器类设备采购项目(第2批)预算金额:3064.0000000 万元(人民币)采购需求:标段号标的名称计量单位数量预算金额(万元)是否进口第一标段飞行时间二次离子质谱仪套1650是第二标段电子探针显微分析仪套1500是第三标段多功能电子能谱仪套1450是第四标段X射线单晶衍射仪套1380是第五标段X射线光电子能谱仪套1500是第六标段超低本底液闪计数器套1145是第七标段低本底高纯锗γ谱仪套1110是第八标段阿尔法谱仪套1139是第九标段全谱直读型ICP-OES套190是第十标段碘化钠γ谱仪套5100是详见采购文件第三章项目采购需求合同履行期限:一标段:合同生效后12个月内供货二标段:合同生效后9个月内供货三标段:合同生效后180个日历日内供货四标段:合同生效后120个日历日内供货五标段:合同生效后120个日历日内供货六标段:合同生效后90个日历日内供货七标段:合同生效后90个日历日内供货八标段:合同生效后90个日历日内供货九标段:合同生效后60个日历日内供货十标段:合同生效后120个日历日内供货本项目( 不接受 )联合体投标。
  • 德国候选新冠疫苗Ⅰ期试验结果乐观
    英国《自然》杂志23日发表了一项免疫学研究报告,德国研究团队发表的Ⅰ期临床试验中,一种称为CoVac-1的肽基候选疫苗可诱导对新冠病毒的免疫应答。该候选疫苗诱导T细胞免疫,这是控制病毒的一种重要响应,或可帮助有免疫缺陷的人群。  T细胞通过攻击受感染细胞或促进B细胞生产保护性抗体,在对抗病毒等病原体中发挥重要作用。T细胞免疫对B细胞缺陷患者(例如癌症患者等)尤为重要。CoVac-1单次注射,目标是诱导长期存在的、近似于自然感染所获得的新冠病毒T细胞免疫。  在对CoVac-1的首次临床评估中,德国图宾根大学附属医院研究人员朱莉娅娜华尔兹及其同事,此次招募了36名参与者,年龄在18—80岁之间,接种一剂肽疫苗。接种28天后,在所有参与者身上都观察到了新冠病毒特异性T细胞应答,效果至少持续3个月。研究团队发现,疫苗诱导的T细胞应答优于自然感染新冠病毒所诱导的应答。与此同时,目前受关注的各新冠病毒变异株(阿尔法、贝塔、伽马、德尔塔)不改变疫苗诱导的T细胞应答。  研究团队总结,该疫苗在所有试验参与者中具有良好安全性,并诱导了T细胞应答,这支持了在Ⅱ期试验中对该疫苗继续进行评估。