当前位置: 仪器信息网 > 行业主题 > >

碲化锰

仪器信息网碲化锰专题为您提供2024年最新碲化锰价格报价、厂家品牌的相关信息, 包括碲化锰参数、型号等,不管是国产,还是进口品牌的碲化锰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碲化锰相关的耗材配件、试剂标物,还有碲化锰相关的最新资讯、资料,以及碲化锰相关的解决方案。

碲化锰相关的资讯

  • OPTON的微观世界|第22期 SEM技术在Li电池中的应用(上)
    前 言随着全球能源与环境问题不断凸显,发展新能源汽车已成为世界各国的共识,欧洲多个国家已经制定了燃油汽车限售的时间表,同时据人民网消息,我国工信部表示我国已启动研究传统燃油车的退出时间表,这一消息使得新能源汽车与锂电池产业站在了资本的风口,那么作为新能源汽车的重要一个方面的锂电池产业又将呈现更广泛的应用潜力。那么今天小编就将简单介绍一下Li电池的基本原理与其组成的正负极材料。一、锂电池概述首先,我们来介绍一下锂电池的概念。“锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。锂电池大致可以分为两类:锂金属电池和锂离子电池。其中锂金属电池最早于1912年由Gilbert N.Lewis提出并研究。20世纪70年代时,M.S.Whittingham首先采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂金属电池。由但由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,其安全隐患备受关注,所以,锂金属电池长期没有得到应用。1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。1991年索尼公司发布了首个商用锂离子电池,锂离子电池革新了消费电子产品的面貌。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。随着锂离子电池正极材料的发展,多种类型的锂离子电池被研发出来,锂离子电池由于其电压高、电容量高、低消耗、无记忆效应、无公害、体积小、内阻小、自放电小循环次数多,广泛应用在移动电子设备等民用军用设备中。二、锂电池工作原理锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。放电反应:Li+MnO2=LiMnO2锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。如图1显示了锂离子电池的示意图。图1.锂离子电池示意图以LiCoO2为例子充电正极上发生的反应为LiCoO2=Li(1-x)CoO2+XLi+Xe-充电负极上发生的反应为6C+XLi+ Xe-=LixC6充电电池总反应LiCoO2+6C=Li(1-x)CoO2+LixC6三、Li电池正极材料一般可选的正极材料有很多,例如:钴酸锂、锰酸锂、磷酸铁锂、镍酸锂、三元、富锂相、硅酸铁锂、磷酸锰锂、硫酸氟铁锂。不同的正极材料对应不同的平均输出电压于能量密度:
  • 349项国家标准公开征求意见
    349项推荐性国家标准(征求意见稿)序号计划号项目名称制修订截止日期120202567-T-607精油 产品标签标识通则制订2022/2/8220202659-T-607玫瑰精油(大马士革)制订2022/2/8320203837-T-607日用香精修订2022/2/8420200694-T-605锰铁、锰硅合金、氮化锰铁和金属锰 锰含量的测定 电位滴定法、硝酸铵氧化滴定法及高氯酸氧化滴定法修订2022/2/7520200693-T-605锰铁、锰硅合金、氮化锰铁和金属锰 硫含量的测定 红外线吸收法和燃烧中和滴定法修订2022/2/7620190733-T-605锰铁、锰硅合金、氮化锰铁和金属锰 磷含量的测定 钼蓝分光光度法和铋磷钼蓝分光光度法修订2022/2/7720211117-T-312疑似毒品中甲基苯丙胺检验 气相色谱、气相色谱-质谱、液相色谱和液相色谱-质谱法修订2022/2/7820180749-T-604用户端能源管理系统 第3-2部分:子系统接口网关 数据配置制订2022/2/6920193073-T-604用户端能源管理系统 第4部分:主站与网关信息交互规范制订2022/2/61020210900-T-469热交换器及传热元件性能测试方法 第1部分:通用要求修订2022/2/61120204897-T-469板式热交换器机组修订2022/2/61220204035-T-306科技资源核心元数据修订2022/2/61320210901-T-469热交换器及传热元件性能测试方法 第2部分:热交换器修订2022/2/61420210899-T-469热交换器及传热元件性能测试方法 第4部分:空冷器噪声测定修订2022/2/61520210902-T-469热交换器及传热元件性能测试方法 第3部分:传热元件修订2022/2/61620193187-T-469基于工业云平台的个性化定制实施规范制订2022/2/51720192136-T-469信息技术 云计算 云资源管理系统性能测试指标和度量方法制订2022/2/51820201805-T-348挖泥船离心式泥泵制订2022/2/51920201472-T-604小型熔断器 第8部分:带有特殊过电流保护的熔断电阻制订2022/2/52020201550-T-801载人航天术语制订2022/2/52120204924-T-469工业云服务 知识库接入与管理要求制订2022/2/52220204926-T-469工业云服务 资源配置要求制订2022/2/52320210944-T-469国际贸易单证样式 第1部分:纸质单证修订2022/2/52420194234-T-469政府网站网页电子文件管理系统建设规范制订2022/2/52520203870-T-604数控机床远程运维 第1部分:通用要求制订2022/2/52620213055-T-604智能工厂 面向柔性制造的自动化系统 通用要求制订包装容器 金属方桶修订2022/2/5
  • 葛老师话说实验室第十九期:玻璃仪器洗涤液的配制2
    大家好,欢迎来到葛老师话说实验室。之前我们讲到了玻璃仪器的常规清洗,那么本期就大致介绍下实验室洗涤液的配制。洗涤,简称洗液,多用于不便于用刷子洗刷的仪器,如滴定管、移液管、容量瓶、蒸馏瓶等特殊形状的仪器,也用于洗涤长久不用的杯皿器具和刷子刷不下的结垢。洗液洗涤仪器的原理是,利用洗液本身与污物起化学反应,然后将污物去除,因此,在洗涤仪器时,需将仪器浸泡在洗液中一定时间,以便于充分作用。根据不同的实验要求,有各种不同的洗液,较常用的有一下几种。1、铬酸洗液铬酸洗液,又称强酸氧化剂洗液,是用重铬酸甲(K2Cr2O7)和浓硫酸(H2SO4)配成。K2Cr2O7在酸性溶液中,有很强的氧化能力,对玻璃仪器又极少有侵蚀作用,所以这种洗液在实验室内使用最广泛。铬有致癌作用,因此配制和使用洗液时要极为小心,常用两种配制方法如下:(1)取100mL工业浓硫酸置于烧杯内,小心加热,然后慢慢加入5g重铬酸钾粉末,边加边搅拌,待全部溶解并缓慢冷却后,贮存在磨口玻璃塞的细口瓶内。(2)称取5g重铬酸钾粉末,置于250mL 烧杯中,加5mL 水使其溶解,然后慢慢入100mL 浓硫酸,边倒边用玻璃棒搅拌,并注意不要溅出,混合均匀,待冷却后,待其冷却后贮存于磨口细玻璃瓶内。配好的溶液,应贴好标签,注明溶液名称、配制人、配制时间。新配制的洗液为红褐色,氧化能力很强。当洗液用久后变为黑绿色,即说明洗液无氧化洗涤力。这种洗液在使用时切忌注意不能溅到身上,以防“烧”破衣服和损伤皮肤。洗液倒入要洗的仪器中时,应使仪器周壁全浸洗后稍停一会再倒回洗液瓶。第一次用少量水冲洗刚浸洗过的仪器后,废水不要倒在水池里和下水道里,防止长久会腐蚀水池和下水道,应倒在废液缸中,如果无废液缸,倒入水池时,要边倒边用大量的水冲洗。2、碱性洗液碱性洗液用于洗涤有油污物的仪器,用此洗液是采用长时间(24小时以上)浸泡法,或者浸煮法。从碱洗液中捞取仪器时,要戴乳胶手套,以免烧伤皮肤。常用的碱洗液有:碳酸钠液(Na2CO3,即纯碱),碳酸氢钠(NaHCO3,小苏打),磷酸钠(Na3PO4,磷酸三钠)液,磷酸氢二钠(Na2HPO4)液等。3、碱性高锰酸钾洗液用碱性高锰酸钾作洗液,作用缓慢,适合用于洗涤有油污的器皿,其二氧化锰残渣可用浓硫酸或亚硫酸钠溶液洗掉。配法:取高锰酸钾(KMnO4)4克,加少量水溶解后,再加入10%氢氧化钠(NaOH)100mL。4、纯酸纯碱洗液根据器皿污垢的性质,直接用浓硫酸(HCl)或浓硫酸(H2SO4)、浓硝酸(HNO3)浸泡或浸煮器皿(温度不宜太高,否者浓酸挥发刺激性强)。纯碱洗液多采用10%以上的浓烧碱(NaOH)、氢氧化钾(KOH) 或碳酸钠(Na2CO3)液浸泡或浸煮器皿(可以煮沸)。5、有机溶剂带有脂肪性污物的器皿,可以用汽油、甲苯、二甲苯、丙酮、酒精、三氯甲烷、乙醚等有机溶剂擦洗或浸泡。但用有机溶剂作为洗液浪费较大,能用刷子洗刷的大件仪器尽量采用碱性洗液。只有无法使用刷子的小件或特殊形状的仪器才使用有机溶剂洗涤,如活塞内孔、移液管尖头、滴定管尖头、滴定管活塞孔、滴管、小瓶等。6、洗消液检验致癌性化学物质的器皿,为了防止对人体的侵害,在洗刷之前应使用对这些致癌性物质有破坏分解作用的洗消液进行浸泡,然后再进行洗涤。在食品检验中经常使用的洗消液有:1%或5%次氯酸钠(NaOCl) 溶液、20%HNO3和2% KMnO4溶液。1%或5%NaOCl溶液对黄曲霉素有破坏作用。用1%NaOCl溶液对污染的玻璃仪器浸泡半天或用5%NaOCl溶液浸泡片刻后,即可达到破坏黄曲霉毒素的作用。配法:取漂白粉100克,加水500mL,搅拌均匀,另将工业用Na2CO3 80克溶于温水500mL中,再将两液混合,搅拌,澄清后过滤,此滤液含NaOCl为2.5%;若用漂粉精配制,则Na2CO3 的重量应加倍,所得溶液浓度约为5%。如需要1%NaOCl溶液,可将上述溶液按比例进行稀释。20% HNO3溶液和2%KMnO4溶液对苯并(a)芘有破坏作用,被苯并(a)芘污染的玻璃仪器可用20%HNO3浸泡24小时,取出后用自来水冲去残存酸液,再进行洗涤。被苯并(a)芘污染的乳胶手套及微量注射器等可用2%KMnO4溶液浸泡2小时后,再进行洗涤。以上就是本期人和《葛老师话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 又一批行业标准报批公示 这些有变化
    p   7月23日,工信部发布行业标准修改单报批公示,此次涉及电子、化工、冶金、有色、纺织、石化领域。 /p p   具体来说包括:《品牌培育管理体系实施指南 电子信息行业》等6项电子行业标准、《合成氨行业绿色工厂评价导则》等3项化工行业标准、《钢渣集料混合料路面基层施工技术规程》等13项冶金行业标准、《岩土工程勘察报告编制规程》等11项有色行业标准、《涂层织物 低温耐折性能试验方法》等48项纺织行业标准和《石油化工钢制管法兰》1项石化行业标准修改单。 /p p   其中,有多项涉及检测: /p p & nbsp /p table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" uetable=" null" tbody tr class=" firstRow" td width=" 83" p style=" TEXT-ALIGN: center" strong 标准编号 /strong /p /td td width=" 104" p style=" TEXT-ALIGN: center" strong 标准名称 /strong /p /td td width=" 258" p style=" TEXT-ALIGN: center" strong 标准主要内容 /strong /p /td td width=" 75" p style=" TEXT-ALIGN: center" strong 代替标准 /strong /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4708-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了火焰原子吸收光谱法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4709-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 高碘酸钾(钠) 分光光度法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了高碘酸钾(钠)分光光度法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4710-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化亚铁含量的测定& nbsp 重铬酸钾滴定法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了重铬酸钾滴定法测定氧化亚铁含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化亚铁含量的测定,测定范围(质量分数):2.00%~20.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4711-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了采用火焰原子吸收光谱法测定氧化钾和氧化钠含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化钾和氧化钠含量的测定,测定范围:氧化钾0.02%~0.10%。(质量分数);氧化钠0.02%~0.10%(质量分数)。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4716-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 轧钢铁鳞& nbsp 含水量和含油量的测定 热重法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了热重法测定轧钢铁磷含水量和含油量的原理、仪器和设备、取样、分析步骤、分析结果的计算等。 br/ & nbsp & nbsp & nbsp 本标准适用于轧钢铁鳞含水量和含油量的测定。含水量测定范围(质量分数):0.50%~45.00%;干基含油量测定范围(质量分数):0.10%~30.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center"   /p /td /tr /tbody /table p & nbsp /p p   附件: /p p   a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269672.doc" target=" _blank"  1.81项行业标准主要内容.doc /a /p p    a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269673.doc" target=" _blank" 2.1项石化行业标准修改单.doc /a /p p & nbsp /p
  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 16px " strong span style=" color: rgb(0, 112, 192) font-size: 16px text-indent: 2em " 看——把烟囱“搬”进显微镜 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿” /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " img style=" max-width: 100% max-height: 100% width: 450px height: 393px " src=" https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width=" 450" height=" 393" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 算——“白马”“黑马”最佳配比 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。” /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 334px " src=" https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title=" 理论计算理解位阻效应.png" alt=" 理论计算理解位阻效应.png" width=" 450" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 理论计算理解位阻效应 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。” /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 测 /span /strong /span span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " —— /span span style=" text-indent: 2em " 1000小时耐力测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title=" 持续稳定的抗中毒性能.png" alt=" 持续稳定的抗中毒性能.png" width=" 450" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 持续稳定的抗中毒性能 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。” /span /p
  • 中国科大提出纳米胶束电解质新思路并用于高性能水系锌锰二次电池
    近日,中国科学技术大学闫立峰教授课题组通过利用两亲性甲基脲分子,设计了一种新型结构的水基纳米胶束电解质。这一工作打破了以往对于电解质连续溶剂相的认识,通过纳米胶束结构包裹了自由移动的离子,建立了局部/界面相互作用网络,通过金属离子的控制释放,有效地维持了离子的三维扩散形式和有利的界面成核反应,实现了金属枝晶和电极副反应的有效抑制。相关研究成果率先在锌-锰电池体系中得到了证实,并发表于化学专业知名期刊《美国化学会志》(Journal of the American Chemical Society)。   锌离子电池由于锌阳极的高理论比容量(820 mA h g-1)、高储量、成本低、氧化还原电位低(-0.762 V vs. SHE)等优势,被认为是下一代清洁能源存储的有前途的候选者。然而,锌离子电池的寿命受到锌阳极不可逆电化学反应的严重限制,如析氢反应(HER)、“死锌”的持续积累以及不受控制的枝晶生长等。同时,以二氧化锰为正极材料代表的一系列锌离子电池普遍具有低的工作电压(1.5 V)和难以匹配锌阳极的电极容量。如何通过电解质的设计优化来调控锌电池的电化学性能是至关重要的问题。   该文提出了一种独特的纳米胶束电解质设计思路,由ZnSO4、MnSO4和高浓度甲基脲(Mu)分子通过自组装策略构建,水溶剂环境被划分为亲水区和疏水区,阳离子和阴离子则被封装到纳米域中(图1)。纳米胶束阻断了连续的水基体相,打破了水分子之间氢键网络并在胶束内部和胶束/水界面上重构了局部氢键。此外,Mu分子参与了Zn2+/Mn2+离子的溶剂鞘结构,排斥了溶剂化水分子,降低了脱溶剂化能垒,抑制了水分解反应。更重要的是,Zn2+/Mn2+离子可以可控地从胶束团簇中释放出来,以三维扩散方式扩散并在电极表面均匀沉积。此外,在锌阳极表面一种新的固体电解质界面(SEI)保护层Znx(Mu)ySO4∙nH2O得以原位生成,以避免水分子持续渗入造成的锌腐蚀。 图1.胶束电解质的自组装示意图   动态光散射结果表明电解质A3Mu中存在约14nm左右的纳米胶束,核磁结果证实了胶束内部的多重氢键相互作用,DFT计算结果也表明Zn2+/Mn2+和Mu分子上的羰基和具有更强的结合能力,进而有利于进入到胶束内核中,减少溶剂鞘结构中的水分子数(图2)。此外,红外,拉曼光谱结果也识别到了SO42-阴离子扭曲的正四面体结构,可能是由于胶束内部拥挤的空间和电荷-偶极相互作用造成的,这些结果表明了胶束电解质的成功构建。 图2.胶束电解质的核磁,红外,拉曼以及结合能计算表征   得益于胶束电解质内部氢键的重构,电解质和碳布正极界面接触角降低,MnO2/Mn2+成核电位降低,同时由于Mn2+的控制释放特性,生成了反应可逆性更高,结构更加疏松的二氧化锰颗粒。在不同SOC状态下,非原位SEM,XPS,Raman, XRD等测试方法核实了高度可逆的二电子转化反应。利用二电子反应的锌锰电池显示出前所未有的高能量密度800.4 Wh kg-1(基于正极活性材料)以及高达1.87 V的放电电压(图3)。 图3.Zn||Mn 电池的电化学性能   中国科学技术大学化学与材料科学学院博士生邓永琦为该文章的第一作者,闫立峰教授为通讯作者。该研究得到了科技部、国家自然科学基金和中国科学技术大学的经费资助。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 部分扣式电池进出口将实施汞含量专项检测
    进出口锌-氧化银、锌-空气、锌-二氧化锰扣式电池(下称扣式电池)将于7月1日起实施汞含量专项检测。   此前,进出口扣式电池尚无汞含量限值国家标准,因此暂不实施汞含量检测,但必须办理备案手续。2009年9月30日,国家质检总局和国家标准委联合发布《锌-氧化银、锌-空气、锌-二氧化锰扣式电池中汞含量的限制要求》,该标准将于2010年7月1日实施,含汞量小于等于0.005毫克每克属于无汞电池,含汞量小于等于20毫克每克属于含汞电池,超出此标准限值属于不合格电池。   根据《进出口电池产品汞含量检验管理办法》规定:检验检疫机构对进出口电池产品实行备案和汞含量专项检测制度,未经备案或汞含量检测不合格的电池产品,不准进口或出口。
  • 苏泊尔承认炊具锰含量超2%
    其一款样品的锰含量达到了7.92% 但锰含量2%是否“硬指标”尚有争议   昨日,记者从苏泊尔公司了解到,苏泊尔在“问题锅”危机出现之后,已连发5篇文章自证清白。不过记者从苏泊尔的检测报告中发现,苏泊尔一款样品的化学成分中,锰含量达到了7.92%,超过了2%的标准。苏泊尔相关负责人在接受本报记者采访时回应指出,国家就不锈钢材质尚未制定强制性标准,目前同时存在的都是两个推荐性标准,即GB/T3280和GB/T20878,“既然是推荐性标准,2%是硬指标一说就不成立,并且这两个标准对锰含量规定的上限均不是2%。”苏泊尔强调。   苏泊尔“问题锅”发展到现在,双方纠结在一个问题,那就是炊具的锰含量是否可以超过2%。以中国特钢协会不锈钢分会为代表的一派坚持认为,不锈钢材料中锰含量不能高于2%,“不锈钢加入高比例的锰之后,容易导致点蚀,成为腐蚀源,这种腐蚀源会让硫化锰进入容器中的食品或液体中”,而硫化锰是一种有毒物质。这种说法在媒体中得到了广泛的报道。   而在苏泊尔最新挂出的“自证清白”的10份检测报告中,记者留意到,其中一份样品规格为“ST22K1/ST16K1”的检测报告,该报告不仅对铬、镍、锰的特殊迁移量进行检测,还对样品化学成分进行分析。其中成分分析中,锰含量7.92%、铬含量15.37%、镍含量3.97%。   这是苏泊尔首次对自家产品的锰含量进行披露。苏泊尔有如此“胆量”主动亮出自己的锰含量,在于其对“2%是硬指标”的不同看法。苏泊尔相关负责人昨日对本报记者指出,锰含量上限为2%的依据是GB/T3280,这个标准是国家推荐的行业标准。苏泊尔方面强调关于不锈钢炊具产品应当使用何种成分的钢材,卫生部在2011年12月21日前后采用了不同的强制性标准,苏泊尔相关产品均符合国家强制标准。   苏泊尔还指出,“不锈钢材质中锰含量与锰析出量是两个截然不同的概念,两者之间不存在简单的正比关系” “目前我国未对不锈钢制品锰迁移量作出限定”。   锰的毒性仅是砒霜的九百分之一   锰含量过高是否意味着不安全?为此,记者采访了国际第三方检测认证机构SGS通标公司轻工产品实验室技术专家朱慧君,他表示,锰含量成分比例需符合国家相关标准,但国家并没有一个明确的锰迁移量安全指标。   他还指出,在钢材成分要求上,国内标准与国外是基本一致的。   但朱慧君也说,不锈钢锰含量过高,未必等于锰迁移量过高,也不能下结论说产品不安全。国家也明确锰迁移量限值,国外也只有意大利对锰迁移量做出限制。朱慧君进一步指出,锰的急性毒性很低,仅是砒霜的九百分之一。直接暴露(比如采矿)带来的急性危害主要是头痛、头晕等。而锰的迁移则会带来积累性危害,国际机构将锰列为“可疑致癌物”,说明积累到一定程度会可能致癌,但积累的程度是多少则还没有数据。
  • 大连化物所傅强和慕仁涛团队在表面氢溢流原子可视化研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组研究员傅强和慕仁涛团队在表面氢溢流原子可视化研究中取得进展,发现氧化物表面结构对氢溢流的有效调控,利用表面晶格限域效应提升氢溢流速率。氢活化和氢溢流是诸多涉氢反应的重要基元过程,对其进行有效调控是提高涉氢催化反应性能的关键。该团队在前期研究中通过构筑氧化物表界面活性中心调控H2活化(ACS Catal. ),利用氢溢流形成的表面氢物种提升反应选择性和催化剂稳定性(Angew. Chem. Int. Ed. 、ACS Catal. 、J. Phys. Chem. Lett. ),并通过氢溢流再生“Ni-O路易斯酸碱对”活性中心实现H2O的有效活化(J. Phys. Chem. Lett. )。本工作在Pt(111)衬底表面构建MnO(001)和Mn3O4(001)单层结构。近常压扫描隧道显微镜(NAP-STM)原位成像显示,在MnO(001)表面氢物种沿着晶格条纹一维扩散,而在Mn3O4(001)表面上呈现出二维扩散特征,且在MnO(001)上的扩散速率是Mn3O4(001)上的4倍。理论研究表明,氧化锰表面晶格中合适的O-O间距利于氢扩散,而存在低配位表面O原子则抑制氢扩散。该研究揭示了氧化物表面晶格限域效应对氢溢流的促进作用。相关研究成果以Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院碳中和光子科学中心等的支持。大连化物所表面氢溢流原子可视化研究获进展
  • 煤中碳氢氮含量检测标准方法比对
    目前,市场上关于煤中煤中碳氢氮含量检测的标准方法,主要采用《GBT476-2008 煤中碳和氢的测定方法》和《GBT30733---2014煤中碳氢氮的测定仪器法》,二者分别有何优劣,今天就让小编来给大家做一个全面的比对。1.测试原理《GBT476-2008 煤中碳和氢的测定方法》:采用俗称的二节炉或三节炉,通过吸收剂将煤中碳元素燃烧产生的二氧化碳吸收、氢元素燃烧产生的水蒸气吸收,由吸收剂的增量来确定煤中碳元素的含量。《GBT30733---2014 煤中碳氢氮的测定仪器法》:采用红外光谱法和热导法,煤样完全燃烧后,煤中碳元素转化为二氧化碳、氢元素转化为水蒸气、氮元素转化为氮氧化物,燃烧后的气体根据朗伯-比尔定律(不同气体在红外区有不同的吸收波段,而在特定波段,气体吸收红外光强与其浓度成一定的函数关系),计算得到被测煤样的碳氢元素含量。取一定量的气体进行还原后,进入热导池测试得到氮元素含量。2.自动化程度《GBT476-2008 煤中碳和氢的测定方法》:仪器主要包括净化系统、燃烧系统、吸收系统三大部分,每个系统均需在使用前填充试剂或其他材料,操作繁琐,若试剂或材料填充不好,将直接影响测试结果。测试结束后,需仔细、小心进行U型吸收管表面的干燥、擦拭及称量操作,稍有不慎,则会导致测试结果异常。从空白样测试(空白试验不成功则无法进行测试样的测定)、气体收集、冷却、称量到计算均需人工操作,过程繁琐、难度大,且测试结果的准确度无法保证。《GBT30733---2014 煤中碳氢氮的测定仪器法》:每次测试前开启计算机及仪器,点击升温后仪器自动恒温、控温,操作人员只需将当天需测试的所有煤样一次性称量好后放入放样盘即可(预留空白样测试孔位),录入空白样及测试样信息后,点击开始实验,仪器将自动完成所有样品的测试。3.主要试剂及材料《GBT476-2008 煤中碳和氢的测定方法》:铬酸铅(需用蒸馏水调成糊状,挤压成型,放入高温炉中,在850℃下灼烧2h,取出冷却备用)、银丝卷、高锰酸银、二氧化锰、无水高氯酸镁、铜丝卷、氧化铜、氧气、三氧化钨、碱石棉、真空硅脂、硫酸等。三节炉:需用铬酸铅和银丝卷消除硫和氯对碳测定的影响;二节炉:需用高锰酸银热解产物消除硫和氯对碳测定的影响;三节炉/二节炉:需用粒状二氧化锰消除氮对碳的测定的影响。《GBT30733---2014 煤中碳氢氮的测定仪器法》:氧气、氮气、氦气、氧化钙、无水高氯酸镁、碱石棉、线状铜、铜线、氮催化剂。4.测试时间《GBT476-2008 煤中碳和氢的测定方法》: 约30min/个《GBT30733---2014 煤中碳氢氮的测定仪器法》:约5min/个5.测试示意图《GBT476-2008 煤中碳和氢的测定方法》: 三节炉和二节炉碳氢测定示意图《GBT30733---2014 煤中碳氢氮的测定仪器法》:三德科技SDCHN536碳氢氮元素分析仪测试气路示意图结论《GBT30733---2014煤中碳氢氮的测定仪器法》与《GBT476-2008 煤中碳和氢的测定方法》相比,具备以下显著优势:01自动化程度高,操作步骤简单;02所需试剂及材料种类少;03测试速度快。《GBT30733---2014煤中碳氢氮的测定仪器法》是煤中碳元素测定的优选方法。
  • “紫砂门”:美的出尔反尔 设置退款条件限制
    近日,美的“紫砂门”事件备受关注,而其出尔反尔,对退款条件的限制再次引发消费者的强烈质疑。 5月30日,美的客服人员仍声称自己的产品“无毒害”,纯属“宣传不当”,并对退货附加了“购买一年之内才能退货”的新条件。   据了解,自美的紫砂煲被央视曝出内胆用普通陶土,添加铁红粉、二氧化锰等化学原料增色,而非真正的紫砂做成后,广东美的生活电器制造有限公司承诺,设立咨询电话接受消费者退货。不过,美的紫砂煲却被曝出,退货要收折旧费,也没有具体退换货细则。   紧接着,美的生活电器总裁通过央视新闻频道承诺,无条件退换货,且“无发票也能退货”。令消费者大跌眼镜的是,美的方面又发生变卦表示“无发票不能退货”。   然而,5月30日,美的客服人员却表示,购买美的紫砂煲的消费者如果要退货,应保证购买日期在一年之内,并需要带上正规发票或电脑小票和身份证,拿到经销商或者所购买的门店办理退货。如果不符合上述要求,可将紫砂煲送到该公司的维修部门。该人员还表示,在对美的紫砂煲的宣传中,外界一些“不当”的报道将“普通砂煲”说成“天然紫砂”,给消费者造成误解。但当记者表示其锅上明明写的就是紫砂时,该人员含糊其辞,没有作答。   为此,吴冬律师表示,美的宣称产品是“纯正紫砂烧制”的,已属于虚假宣传,并且造假售假,侵犯了消费者的合法权益,消费者不但可以要求退货,还有权要求全额退款。根据《消费者权益保护法》第49条,生产厂家应对产品进行退货处理,并对消费者进行双倍赔偿。即“假一赔双”。而根据第35条和第38条的规定,如果只是产品质量问题,消费者只能以违约为由起诉销售者,不能起诉生产厂家;如果因为产品存在缺陷损害了消费者以及其他任何人的人身、财产,则可以以侵权为由起诉销售者或者生产厂家。   “从某个角度看,这类现象的发生也反映出监管的缺失。”吴冬律师说,餐具的质量安全比食品更容易把控,相关部门应建立一套完整的检测指标,完善相关的行业制度,加强监管,避免造成更严重的后果。
  • 紫砂门鉴定 行业协会模糊处理 官方失语
    被央视多次曝光的“紫砂门”事件在经过了一个多月之后,终于有了第三方的声音。也正是由中国家用电器协会联合中国陶瓷协会发布的这份鉴定结果,使人们再次将目光聚集到“紫砂门”。   尽管对于这份结果,使一直处于焦急状态的紫砂产品生产企业表现得十分欣喜,但值得关注的是这份鉴定结果对矛盾的焦点“是不是紫砂”回答得十分模糊,而最应该发出“权威”声音的质检部门和卫生部门却始终沉默,这也让人们对鉴定事   件本身产生了更多的联想。   鉴定结果出炉的背后   沉寂了一个多月之后,“紫砂煲”再次出现在公众的视野中。但与上次不同,引发此轮关注的是一份中国家用电器协会和中国陶瓷协会发布的鉴定结果。   6月21日,中国家用电器协会突如其来地在其官方网站上公布了其联合中国陶瓷协会对紫砂煲生产企业的产品的抽检结果和专家论证鉴定结果。   鉴定结果称,根据广东美的生活电器制造有限公司、九阳股份有限公司、简氏依立电器有限公司、浙江苏泊尔家电制造有限公司四家家电企业和潮州市金航陶瓷实业有限公司的申请,中国陶瓷工业协会和中国家用电器协会委托国家陶瓷产品质量监督检验中心(江西)对其家电用陶瓷内胆产品进行了抽检,产品质量符合 QB/T2580-2002《精细陶瓷烹调器》标准要求。   据记者了解,在5月23日央视曝光美的紫砂煲造假后,许多紫砂煲生产企业主动要求相关部门进行检测,这其中包括是否含有紫砂成分和是否有毒有害等。   一位不愿具名的生产商对记者表示,紫砂煲事件后其当时联系了多个检测部门,但基本都遭到了拒绝。   而作为企业的娘家,中国家用电器协会和中国陶瓷协会最后顺理成章成为了急于验明正身的企业的“救命稻草”。   据该协会的一位负责人对记者透露,这项结果是6月17日和18日两天召开的“家电用陶瓷内胆生产应用情况研讨会”上专家意见的结论和总结。参会者包括部分高校、陶瓷科研院所、国家陶瓷质量检测机构、企业等专家。   不难看出,该鉴定结果中上述申请企业的“家电用陶瓷内胆均符合安全质量标准”实际上为企业产品进行了底线认定,即该类产品不会危害人的身体健康。   而且,结果还特别提出了“适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格的产品不会危害人体健康”。这也从一个侧面回应了央视针对紫砂煲内胆的生产添加氧化锰是否对人体有害的质疑。   是不是紫砂仍无定论   尽管鉴定结果的出炉让企业松了一口气,但同时一些矛盾和争辩的问题也暴露了出来。值得关注的是,对于这些“家电用陶瓷内胆”是否为紫砂陶器,鉴定结果则未直接提及,只称:“从陶瓷科学的角度,利用宜兴产区以外的粘土原料,通过配方的调整,同样可以制作出符合GB/T10816-2008《紫砂陶器》标准的产品。其他产区(宜兴之外)的紫砂器产品虽然在化学成分上、烧结后的矿物组成上与宜兴紫砂陶接近,如果产品胎体不呈赤褐色,仅利用化妆土装饰而称为‘紫砂’是不恰当的。”   对此,有业内人士向本报记者表示,两个协会对抽检产品是否为紫砂产品未直接界定,而且阐述的也较为模糊,其实是对央视曝光的造假问题的“含蓄肯定”,即把上釉的普通陶器宣传为紫砂类产品是“造假”行为。   “之所以对其没有界定是因为当前只有对紫砂的定义而没有相关的工艺标准和规范,所以在鉴定结果上并没有直接给予产品紫砂陶器与非紫砂陶器的认定。”上述家电协会的负责人对本报记者表示。   根据GB/T5000-85《日用陶瓷名词术语》的定义,紫砂陶器是指用质地细腻、含铁量较高的特种粘土制成的,颜色以赤褐为主,质地较坚硬的无釉制品。   “简单来说,富含铁的、不带釉的、赤褐色就可以认为是紫砂陶器。”上述协会负责人表示,“但仅仅通过定义是不能直接对上述抽检产品进行认定的,这还要对生产的技术和工艺过程进行规范,目前还没有针对工艺过程的相关标准出台。”   记者了解,国家在1989年颁布了《紫砂陶器》标准,对产品的技术要求做出规范,2008年又做了修订,修改后的新标准于去年6月1日实施。   新标准主要对铅、镉溶出量进行了修改,而且对注浆、机械成型及上釉紫砂陶器进行了排斥,技术标准也多处细化。   但新标准对于工艺过程却没有过多规范,相关工艺过程的标准一直处于“真空”状态。   谁最应该鉴定?  虽然行业协会作为第三方对“紫砂门”事件作出了一个回应,但显然,如果“无毒无害”的鉴定由卫生部门出具可能更加权威,而有关质量等相关问题则要看质检部门了。然而,“紫砂门”事件后,包括质检总局、工商总局和卫生部等相关部门始终噤声。   记者日前致电质检总局和工商总局,前者并未给予任何置评,而后者则表示,工商部门的职责范围是根据质检部门的检测结果检查和监督卖场撤架。   不仅是质检和工商部门沉默,对于紫砂产品的底线问题——是否有毒有害也没有相关部门发布任何公告。   此前,广东省质监局的有关人士曾在接受媒体采访时表示,质检部门的职责是紫砂煲有没有按照国家的生产规范标准去生产,而对于紫砂成分则很难通过检测鉴定,至于对人体有没有毒、有没有害,要通过卫生部门的毒性检测才能确定。   一位不愿透露姓名的专家对本报记者表示,官方的重视和表态无论对企业还是消费者个人,都会起到以正视听和引导行业健康发展的作用,但遗憾的是,企业很焦急,消费者很期盼,行业很受伤。   记者走访了几个大型卖场和超市,紫砂产品确实都已经下架。   据一位卖场负责人介绍,恢复上架还没有时间表。“虽然家电协会的鉴定结果出来了,但还要看权威部门的检测结果和有关通知才能决定是否上架。”而对于紫砂煲等紫砂类产品的销售情况,该负责人表示,其销售只占该卖场小家电销售量的很小一部分。   据记者了解,受紫砂门事件影响,已有生产企业出现规模罢工、停工事件,更有消息称,有5万紫砂行业工人面临下岗失业。“行业出现问题可以规范和引导,如果坐视不管和一棒子打死都会对整个行业产生巨大影响。”上述专家表示。   看来,这份行业协会出具的鉴定结果,要想拯救现在处于水深火热中的紫砂行业还很难。
  • 石化、冶金、化工等87项行业标准报批,涉及ICP-OES、分光光度计等多种方法
    近日,工业和信息化部科技司发布87项行业标准及1项行业标准修改单,其中,化工行业标准12项、石化行业标准4项、冶金行业标准40项、有色行业标准19项、黄金行业标准2项、建材行业标准3项、稀土行业标准7项以及石化行业标准的修改工作1项。其中涉及ICP-OES、分光光度计等多种分析方法。87项行业标准及1项行业标准修改单报批公示根据行业标准制修订计划,相关标准化技术组织已完成《黄磷行业绿色工厂评价要求》等12项化工行业标准、《石油化工企业职业安全卫生设计规范》等4项石化行业标准、《含铁尘泥 二氧化钛含量的测定 二安替吡啉甲烷分光光度法》等40项冶金行业标准、《电解铝行业节能监察技术规范》等19项有色行业标准、《金矿充填料力学性能测定方法》等2项黄金行业标准、《建筑材料生产企业固体废物综合利用规范》等3项建材行业标准、《稀土采选冶行业绿色工厂评价导则》等7项稀土行业标准的制修订工作,《石油化工设备和管道涂料防腐蚀设计标准》1项石化行业标准的修改工作。在以上87项行业标准及1项行业标准修改单批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2021年2月26日。以上标准及标准修改单报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2021年1月26日—2021年2月26日附件:1.87项行业标准名称及主要内容.doc2.1项石化行业标准修改单.doc工业和信息化部科技司2021年1月26日附件1:87项行业标准名称及主要内容化工行业1 HG/T 5900-2021黄磷行业绿色工厂评价要求本标准规定了黄磷行业绿色工厂评价的评价原则、评价指标体系、一般程序等综合内容。本标准适用于黄磷生产企业的绿色工厂评价。 2 HG/T 5901-2021合成氨行业节能监察技术规范本标准给出了合成氨企业节能监察的内容、方法、程序等内容。本标准适用于对以优质无烟块煤、非优质无烟块煤、型煤、粉煤(包括无烟煤、烟煤)、天然气为原料生产合成氨产品的企业实施节能监察。对其它原料生产合成氨产品的企业实施节能监察可参照执行。 3 HG/T 5902-2021化学制药行业绿色工厂评价要求本标准规定了化学制药行业绿色工厂评价的总则、指标及要求、方法、程序、报告格式等。本标准适用于化学药品原料药制造和化学药品制剂制造的绿色工厂评价工作。 4 HG/T 5903-2021电石行业节能监察技术规范本标准规定了电石行业生产企业节能监察的内容、方法、程序等内容。本标准适用于对所有类型的电石生产企业实施节能监察,对电石和其他产品联合生产企业实施节能监察可参照执行。 5 HG/T 5904-2021氯碱行业节能监察技术规范本标准给出了氯碱生产企业节能监察的内容、方法、程序等内容。本标准适用于对氯碱生产企业实施节能监察。对氯碱和其他产品联合生产企业实施节能监察可参照执行。 6 HG/T 5905-2021石油和化工行业绿色供应链管理 导则本标准规定了石油和化工行业绿色供应链管理的目的、范围、总体要求以及产品生命周期绿色供应链的策划、实施与控制要求。本标准适用于石油和化工行业绿色供应链的建立、管理。 7 HG/T 5906-2021绿色化工园区评价导则本标准规定了绿色化工园区评价的基本要求、评价指标体系、评价实施方法与指标计算方法。本标准适用于各类化工园区开展绿色发展评价。 8 HG/T 5907-2021染料副产硫酸铵本标准规定了染料和染料中间体副产硫酸铵的要求、试验方法、检验规则和标志、包装、运输和贮存。本标准适用于染料和染料中间体生产过程中产生的含硫酸废水经净化、氨中和、浓缩、结晶、过滤等过程制备的副产硫酸铵产品。产品主要用作复混肥生产的原料和染料助染剂、稀土提炼等工业用途。不得直接施肥或用于食品、饲料等领域。 9 HG/T 5908-2021异氰酸酯行业绿色工厂评价要求本标准规定了异氰酸酯行业绿色工厂评价的总则、评价指标体系及要求、评价程序。本标准适用于异氰酸酯生产企业绿色工厂的评价工作。 10 HG/T 21637-2021化工管道过滤器系列本标准规定了化工管道过滤器的基本技术要求,包括公称尺寸、公称压力、材料、密封面尺寸、公差及标记等。本标准适用于化工行业管道过滤器的选用。HG/T 21637-199111 HG/T 20534-2021化工固体原、燃料制备设计规范本标准规定了化工固体原、燃料制备的设计要求。本标准适用于新建、改建和扩建化工企业物料的破碎、筛分、磨粉和干燥等固体原、燃料制备系统的工程设计。HG/T 20534-199312 HG/T 20721-2021浓盐水蒸发塘设计规范本标准规定了浓盐水蒸发塘的设计要求,主要技术内容包括总则、术语、选址、总体设计、系统设计、封场设计等。本标准适用于新建、改建、扩建化工企业生产过程中或化工工业园区产生的浓盐水用蒸发塘处置的规划、设计。 石化行业13 SH/T 3047-2021石油化工企业职业安全卫生设计规范本标准规定了石油化工企业职业安全卫生设计需要分析和评估的危险和有害因素,给出工厂布置、职业安全、职业卫生、个人防护装备、应急救援、气体防护站等工程设计技术要求。本标准适用于以石油、煤或天然气为原料制取燃料和化工品的生产、储运工程建设的职业安全卫生设计。SH 3047-199314 SH/T 3152-2021石油化工粉粒物料输送设计规范本标准规定了石油化工粉粒物料输送的系统设计、工艺布置、设备选型、安全卫生与环境保护等方面的设计要求。本标准适用于石油化工新建、改建、扩建工程中粉粒物料的输送设计。SH/T 3152-200715 SH/T 3153-2021石油化工电信设计规范本标准规定了石油化工电信系统的设计内容、系统构成、设计原则与技术要求。本标准适用于石油化工及天然气化工企业、以煤为原料经过煤气化或煤液化过程制取燃料和化工产品的企业、液化天然气接收站、石油储备库、特级石油库、一级石油库的新建、扩建和改建工程的电信系统设计。SH/T 3153-2007 SH/T 3028-200716 SH/T 3552-2021石油化工电气工程施工及验收规范本标准规定了石油化工电气工程施工及验收的技术要求。本标准适用于石油化工和煤化工新建、改建和扩建工程项目中电压等级为220kV及以下的电气工程施工及验收。SH 3552-2013冶金行业17 YB/T 4726.3-2021含铁尘泥 二氧化钛含量的测定 二安替吡啉甲烷分光光度法本标准规定了用二安替吡啉甲烷分光光度法测定含铁尘泥中二氧化钛含量的方法。本标准适用于含铁尘泥中二氧化钛含量的测定,测定范围(质量分数):0.02%~1.0%。 18 YB/T 4726.4-2021含铁尘泥 硅含量的测定 硫酸亚铁铵还原-硅钼蓝分光光度法本标准规定了用硫酸亚铁铵还原-硅钼蓝分光光度法测定含铁尘泥中硅含量的方法。本标准适用于含铁尘泥中硅含量的测定,测定范围(质量分数):0.10%~5.0%。 19 YB/T 4726.8-2021含铁尘泥 碳含量的测定 红外线吸收法本标准规定了用红外线吸收法测定含铁尘泥中碳含量的方法。本标准适用于含铁尘泥中碳含量的测定。测定范围(质量分数):0.1%~30.0%。 20 YB/T 4726.10-2021含铁尘泥 氧化铝含量的测定 EDTA滴定法本标准规定了用EDTA滴定法测定含铁尘泥中氧化铝含量的方法。本标准适用于含铁尘泥中氧化铝含量的测定。测定范围(质量分数):0.2%~3.0%。 21 YB/T 4726.11-2021含铁尘泥 氧化亚铁含量测定 重铬酸钾滴定法本标准规定了用重铬酸钾滴定法测定含铁尘泥中氧化亚铁含量的方法。本标准适用于含铁尘泥中氧化亚铁含量的测定,测定范围(质量分数):4.0%~80.0%。 22YB/T 4726.12-2021含铁尘泥 氧化锰含量的测定 高碘酸钾(钠)分光光度法本标准规定了用高碘酸钾(钠)分光光度法测定含铁尘泥中氧化锰含量的方法。本标准适用于含铁尘泥中氧化锰含量的测定,测定范围(质量分数):0.03%~7.00%。 23 YB/T 4939-2021绿色设计产品评价技术规范 冷镦用线材本标准规定了冷镦用线材绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于冷镦用线材绿色设计产品评价。 24 YB/T 4940-2021绿色设计产品评价技术规范 桥梁缆索用盘条本标准规定了桥梁缆索用盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于桥梁缆索用盘条绿色设计产品评价。 25 YB/T 4941-2021绿色设计产品评价技术规范 钢帘线用热轧盘条本标准规定了钢帘线用热轧盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于钢帘线用热轧盘条绿色设计产品评价。 26 YB/T 4942-2021绿色设计产品评价技术规范 焊接用钢盘条本标准规定了焊接用钢盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于焊接用钢盘条绿色设计产品评价。 27 YB/T 4943-2021绿色设计产品评价技术规范 胎圈钢丝用盘条本标准规定了胎圈钢丝用盘条绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于胎圈钢丝用盘条绿色设计产品评价。 28 YB/T 4944-2021绿色设计产品评价技术规范 轨道扣件用弹簧钢本标准规定了轨道扣件用弹簧钢绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于轨道扣件用弹簧钢绿色设计产品评价。 29 YB/T 4945-2021绿色设计产品评价技术规范 机械用易切削钢本标准规定了机械用易切削钢绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于机械用易切削钢绿色设计产品评价。 30 YB/T 4946-2021绿色设计产品评价技术规范 汽车用非调质钢棒材本标准规定了汽车用非调质钢棒材绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于汽车用非调质钢棒材绿色设计产品评价。 31 YB/T 4947-2021绿色设计产品评价技术规范 汽车用轴承钢本标准规定了汽车用轴承钢绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于汽车用轴承钢绿色设计产品评价。 32 YB/T 4948-2021绿色设计产品评价技术规范 塑料模具用预硬型合金钢板本标准规定了塑料模具用预硬型合金钢板绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于塑料模具用预硬型合金钢板绿色设计产品评价。 33 YB/T 4949-2021绿色设计产品评价技术规范 船舶及海洋工程用钢板和钢带本标准规定了船舶及海洋工程用钢板和钢带绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用高炉炼铁、炼钢、热轧等工序生产的船舶及海洋工程用钢板和钢带绿色设计产品评价。 34 YB/T 4950-2021绿色设计产品评价技术规范 石化行业用铬钼钢板本标准规定了石化行业用铬钼钢板绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用高炉炼铁、炼钢、热轧等工序生产的石化行业用铬钼钢板绿色设计产品评价。其他行业也可参考使用。 35 YB/T 4951-2021绿色设计产品评价技术规范 食品包装用镀锡(铬)板本标准规定了食品包镀锡(铬)板绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用冷轧基板生产的食品包装用电镀锡(铬)钢板绿色设计产品评价。 36 YB/T 4952-2021绿色设计产品评价技术规范 饮用水管用不锈钢钢板和钢带本标准规定了饮用水管用不锈钢钢板和钢带绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于饮用水管用不锈钢钢板和钢带绿色设计产品评价。 37 YB/T 4953-2021绿色设计产品评价技术规范 超超临界火电机组用不锈钢无缝钢管本标准规定了超超临界火电机组用不锈钢无缝钢管绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于超超临界火电机组用不锈钢无缝钢管绿色设计产品评价。 38YB/T 4954-2021绿色设计产品评价技术规范 油气开采用套管和油管本标准规定了油气开采用套管和油管绿色产品评价的术语和定义、评价原则和方法、评价要求和生命周期评价报告编制方法。本标准适用于油气开采用套管和油管绿色设计产品评价。 39 YB/T 4955-2021绿色设计产品评价技术规范 建筑结构用方矩形钢管本标准规定了建筑结构用方矩形钢管绿色设计产品评价的术语和定义、评价原则和方法、评价要求和生命周期评价报告编制方法。本标准适用于建筑结构用热轧无缝、焊接方矩形钢管绿色设计产品评价。 40 YB/T 4956-2021转底炉法粗锌粉 铁、铅、银、铜和镉含量的测定 电感耦合等离子体发射光谱法本标准规定了用电感耦合等离子体发射光谱法测定铁、铅、银、铜和镉含量的方法。本标准适用于转底炉法粗锌粉中铁、铅、银、铜和镉含量的测定。 41 YB/T 4957-2021耐磨混凝土用钢渣砂本标准规定了耐磨混凝土用钢渣砂的术语和定义、技术要求、试验方法、检验规则、标志、贮存和运输。本标准适用于公路工程水泥混凝土细集料用钢渣。 42 YB/T 4958-2021机制砂用含钛高炉渣本标准规定了机制砂用含钛高炉渣的术语和定义、技术要求、试验方法、检验规则、包装、标志、储存和运输等。本标准适用于用作机制砂生产的含钛高炉渣。 43 YB/T 4959-2021冶金矿山尾矿胶结充填技术规范本标准规定了冶金矿山尾矿胶结的术语和定义、充填系统、充填料浆、充填采场、自动化控制。本标准适用于冶金矿山尾矿胶结充填开采、设计、运行等。 44YB/T 4960-2021冶金企业污染场地地下水抽提技术规范本标准规定了冶金企业污染场地地下水抽提技术的术语和定义、抽提井的布设、抽提井的结构设计、施工与运行、过程监测等内容。本标准适用于在产及停产冶金企业污染场地开展地下水抽提,包括建井和地下水抽出,不包括抽出后地下水的处理。 45 YB/T 4961-2021钢铁行业地下水监测技术规范本标准规定了钢铁行业地下水监测过程中的术语和定义、监测点网布设、监测项目及方法、样品采集及管理、资料整编及数据库建立等内容。本标准适用于钢铁企业开展地下水自行监测工作。 46 YB/T 4962-2021高炉循环冷却水系统能耗限额与能效等级本标准规定了钢铁企业高炉循环冷却水系统能耗限额与能效等级的术语和定义、能效指标与能效等级划分、提高高炉循环冷却水系统能效等级方法等。本标准适用于高炉循环冷却水系统的能耗测定与计算、能效比计算与能效等级评定,也可作为现有高炉循环冷却水系统是否需要改造的判断依据、改造方案的选择依据。 47 YB/T 4963-2021钢铁行业富氧燃烧节能技术规范本标准规定了富氧燃烧节能技术的术语和定义、原理与流程、应用分类与适用条件、技术要求和评价指标。本标准适用于钢铁行业高炉、热风炉、加热炉和锅炉等工业炉窑,铁包、钢包、中间包等烘烤设备可参照执行,其他行业也可参照执行。 48  60 YS/T 1421-2021铝用炭素焙烧能耗测试方法本标准规定了铝用炭素焙烧燃料能耗的测试方法。本标准适用于铝用炭素焙烧工序。 
  • 紫砂煲产业出台国家标准成当务之急
    一场“紫砂门”事件,对紫砂煲产业造成了沉重打击。如今事情过去两月有余,紫砂煲目前销售情况如何?   据业内人士透露,在这次“紫砂门”事件中,依立、九阳等一批紫砂品牌虽然未出问题,但是也受到波及。目前,这些企业正积极引导行业走出低谷,通过行业协会与主管部门沟通,争取各种渠道向广大消费者公布自家原料检测报告、原料基地情况,重新取得消费者的认可。同时,一面恢复国内市场,一面积极拓展国际市场,并联合业内人士呼吁:需尽快出台国家标准,促进产业良性有序的发展。   据了解,作为紫砂煲的创始者,依立占据了国内50%以上的市场份额,是紫砂煲行业的第一品牌。在这次“紫砂门”事件中,依立虽然未出问题,但是也受到波及。有消息灵通人士透露,近日中国陶瓷工业协会与中国家用电器协会邀请全国产业界、学术界以及国家陶瓷质量检测机构、企业等单位召开了家电用陶瓷内胆生产应用情况研讨会,并发布联合声明表示:依立等5家企业生产的紫砂煲产品是安全无毒害的。依立电器董事长简广认为:“紫砂是我国的物质文化财产,不能因为极少数企业的非良性竞争而全盘否定整个紫砂煲行业。为了保障紫砂行业的良性发展,这个行业需要制定国家标准。”   “从紫砂电器产品诞生近20年的历史来看,还未发现1例由于消费者使用紫砂产品引发的食品安全事故。”中国陶瓷工业协会高级工程师樊瑞新介绍,这更进一步证明该产品是健康安全的。专家认为,作为无机非金属材料,陶瓷与金属材料和其他有机材料制品相比,用于饮食器具更卫生、安全。因为陶瓷的形成依赖于高温烧成,经过一系列的物理、化学变化,各类原料形成更稳定的物质。而适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格产品不会危害人体健康。   据了解,紫砂产品在欧美等海外市场深受欢迎,依立紫砂产品长期大量出口海外,且经受住了欧美严格的相关安全检测。依立先后获得了国家级重点新产品荣誉、欧盟CE品质认证、德国GS认证、香港安全标志认证、加拿大CSA认证、美国UL认证等食品安全认证,获得了通往全球的“通行证”。依立至今已有30多项国家专利,此前出台的国家非金属陶瓷电饭煲的标准也由依立参与起草完成。目前,依立正积极与有关部门沟通,推动政府尽快制定紫砂容器电炊具的国家标准,规范市场引领行业健康发展。   广东省家电商会秘书长谢德盛表示:“近年来,加入紫砂电器行业的厂家越来越多,这本来是件好事,但浮躁的风气却大大伤害了大有前途的紫砂行业,相应国家标准的缺乏是造成紫砂煲产品市场鱼龙混杂的重要原因。”   据悉,由国家质检总局和国家标准委联合发布的《紫砂陶器国家标准》,并未对紫砂陶成分有明确界定,而只是对紫砂陶器的技术要求作了说明。“如果紫砂没有一个判定标准,那就是标准的缺失。”标准化方面的专家赵祖明指出,目前很多行业都存在标准缺失的问题,但国家有关部门正在不断地完善之中,这需要有一个过程。
  • 电厂汞监测:数百万元的高价仪器未必好用
    仪器信息网讯 电力行业是国家的支柱产业,也是环保工作中的重点行业,在污染防治工作中有着具足轻重的作用。根据《火电厂大气污染物排放标准》,火电厂将从2015年1月1日起执行汞及化合物污染物排放限值,基于我国火电机组的巨大基数和汞排放量,其汞污染防控是个很大的市场,如何监测和控制火电厂的汞污染排放,你准备好了吗? 中国环境监测总站齐文启研究员分析汞监测技术   2014年4月18日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站齐文启研究员应邀就《燃煤电厂排放汞的控制与监测》做了报告,就我国及世界火电行业的汞排放现状、汞的减排技术、汞在电厂三废中的分布、国内外烟尘烟气中汞的检测技术、汞监测仪器性能比对、汞监测中的一些技术难点和注意事项做了全面的阐述,引发参会业内人士的高度关注。   据介绍,我国为产煤耗煤大国,年耗煤20亿吨以上,汞含量平均为300微克/千克,年排放汞约600吨,远超过美国的41吨和日本的1.5吨,但限于我国经济发展需求,我国的汞排放标准与控制仍是远比欧美日宽松。   齐文启表示,无论是汞的在线分析还是实验室分析,采样均为关键,目前国际上主要有湿法、干法,湿法又包括EPA29方法、安大略法(OHM)、BS EN13211方法等,美、日、英等国家主要采用用湿法,其方法准确度高、精度好、复杂 我国使用较多的干法主要采用活性炭、二氧化锰、高锰酸钾捕集柱等进行消解分析,成本低、简单,但只用于净化后烟气,只能测气态汞 而在线监测仪器通常备有形态转换模块,其响应快,但价格比较贵而且复杂。而分析方法主要有CVAAS、CVAFS、ZAAS、AES、UV等。   对目前市面上的仪器,齐文启直言不讳,对一些高价仪器提出了质疑:&ldquo 目前美、德、加、日、俄等国都已研发生产出烟气汞在线监测仪器,但这些进口仪器普遍价格非常高,如Tekran、Lumex、MI等均为150-200万的价格。&rdquo 而不仅如此,这些仪器往往还使用专利技术的一次性配件,使得其运行费用也很高,一台150万元的仪器甚至年运行费用也要约150万元,需要日均投入数千元。   如此高价的仪器却不一定好用。齐文启说,2009年北美对36家运行此类仪器的电厂调查显示,运行3个月内仅6家未出现故障,光源、探头堵塞、腐蚀、系统故障灯等多方面出现问题。对六家厂商的仪器进行7天的比对后,仅一家合格。而环境监测总站也使用手工采样分析与某些进口仪器进行了比对,发现其数据上相差较大,用于环境监测执法是有问题的。   齐文启表示,不建议在汞监测中购买如此高价的进口仪器。他给大家算了一笔账,如果购买原子荧光仪器,再配两名检测人员,也可以完成相关工作,哪怕为两位检测人员各开出20万元高薪,仪器及消解设备等的费用加上人员开支,每年也不过80万元左右,远低于某些高价仪器。齐文启认为,这方面国内的仪器研发应该跟上,而在2013年,我国也的确启动了相关课题,并在重大仪器专项研发中投入约1800万元。
  • 东西分析应对《水泥化学分析方法》国标
    水泥是一种良好的建筑材料,在建筑行业中具有广泛的使用范围。近些年来,我国经济水平在不断地提高,建筑行业也有了很大地发展。如果要保证建筑的质量,就必须保证所使用水泥的质量,因此对于水泥的化学分析变显得十分重要。本文通过对GB/T176-2017《水泥化学分析方法》的研读,整理出一套东西分析应对水泥化学分析的解决方案,希望对水泥生产厂商、建筑施工方及第三方检测分析检测人员提供便利。国标检测对象本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本标准的其它水泥和材料。国标涵盖内容本标准规定了水泥化学分析方法、X射线荧光分析方法和电感耦合等离子体发射光谱法对烧矢量(LOI)、SO3、不溶物(IR)、SiO2、Fe2O3、Al2O3、CaO、MgO、TiO2、Cl-、K2O、Na2O、S2-、MnO、P2O5、CO2、ZnO、F-、游离氧化钙(CaO)、SrO的测定。水泥化学分析方法又分为基准法和代用法,如果同一成分列了多种测定方法,当有争议时以基准法为准。东西分析应对方案(基准法)原子吸收分光光度法(AAS法)水泥中MgO(氧化镁)成分测定 AAS法水泥中 ZnO(氧化锌)成分测定 AAS法AA-7050原子吸收分光光度计三十年来,东西分析一直致力于原子吸收光谱仪器和分析技术发展,共研发出五代原子吸收分光光度计,继续领跑国产原子吸收新技术。AA-7050型原子吸收分光光度计,一款全功能、全自动仪器,使客户在工作中可以更加便捷、直观和高效,简化客户分析过程。示例:紫外-可见分光光度法(UV法)水泥中Fe2O3 (三氧化二铁)成分分析 UV法 水泥中TiO2(二氧化钛)成分分析 UV法水泥中MnO(氧化锰)成分分析 UV法Cintra 系列紫外-可见光分光光度计 双光束光学系统,具有长时间稳定性、准确性;配合Cintral 软件,能够进行波长扫描、时间扫描和固定波长测量,还具有定量分析和系统性能验证等应用特性;采用Czerny-Turner单色器,标配1.5nm固定狭缝宽度,可升级成1.0nm-3.0nm范围内狭缝连续可调。附录:水泥中全部检测成分及方法关于我们北京东西分析仪器有限公司,拥有三十年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 力合科技新品LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪
    01OC/EC监测的背景意义碳质气溶胶是大气气溶胶中的重要含碳组分,主要由有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)组成,OC是一种具有光散射性,含有上百种有机物的混合气溶胶,来源复杂,既包括由排放源直接排放的一次有机碳(POC),又包括一些大气中气态前体物(如VOCs等)经过光化学反应、二次凝结凝聚及吸湿增长后生成的二次有机气溶胶(SOC)。碳质气溶胶是我国大气气溶胶的重要组成部分,约占我国城市大气气溶胶的20%~50%,随着我国大气气溶胶治理工作的深入,大量学者对气溶胶中含碳组分进行了研究。02产品介绍LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪采用国际上使用最广泛、公认较成熟的分析方法-热光法,可用于对碳质气溶胶的持续监测,广泛应用于全国各大重点城市颗粒物组分站中,实现环境空气颗粒物中OC和EC浓度的准确测量,探究污染成因、开展来源解析工作。在恒定流速下,激光照射在采集颗粒物样品的石英滤膜上,首先,在氦气的非氧化环境中样品逐级升温,有机碳被加热挥发;此后,在氦气/氧气混和气环境中样品再次逐级升温,元素碳被氧化分解为气态氧化物,两个过程中产生的分解产物经过二氧化锰氧化炉被转化为CO2后,由NDIR探测器定量检测。通过判断激光的强度找到有机碳/元素碳的分割点,分割点前的为有机碳,此后的为元素碳。03产品优势独创石英膜固定方式。采用独创的石英膜固定方式,滤膜安装、更换方便,数据可信度更高;两种方法同时测量。热光透射法(TOT)和热光反射法(TOR)同时测量,满足不同的标准要求;短路径设计。解析炉-氧化炉短路径设计,提高响应的同时避免了有机物的传输损耗,测量误差小;高性能温控。炉丝采用高性能合金丝结合精密的温控算法,升温快速,升温准确,炉丝使用寿命长;自动零点核查。每日自动零点核查,提高数据的可靠性,可自定义升温程序,方便用户自由选择;维护安装方便。光路上光学元器件的精简和可拆卸设计,维护清洗方便,采样独特的结构设计,滤膜安装、更换方便。04应用领域LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪在湖南、四川、新疆等全国多个省市颗粒物组分站中得到应用,可用于评估区域碳质气溶胶排放水平,分析PM2.5来源及组分特征、污染成因及规律、重污染天气污染源成分等,提高颗粒物精细化管理水平,为精准防控提供科学依据。
  • Nature Materials | 李殿中研究员团队在低氧稀土钢研究领域取得进展
    在国家自然科学基金项目(批准号:52031013、U1708252、51725103)等资助下,中国科学院金属研究所李殿中研究员率领其团队与所内相关课题组合作,在低氧稀土钢研究领域取得进展。相关研究成果以“低氧稀土钢(Low-oxygen rare earth steels)”为题,于2022年9月8日在《自然材料》(Nature Materials)上在线发表。论文链接:https://www.nature.com/articles/s41563-022-01352-9。国内外大量研究表明,在钢中添加微量的稀土即可显著提高钢的韧塑性、耐磨、耐热、耐蚀等性能。然而,由于稀土金属极为活泼,在其电解制备时容易形成大尺寸稀土氧化物,这些稀土氧化物随稀土金属或合金加入到钢液中,带入的大尺寸稀土夹杂物难以上浮去除,从而导致稀土钢性能波动并与耐火材料反应堵塞浇口。该工作利用自主发明的夹杂物萃取三维表征技术,分析了稀土GCr15轴承钢和进口某轴承钢中的夹杂物形貌,发现在三维尺度上进口轴承钢中以氧化铝和大尺寸硫化锰夹杂物为主(图1a),而稀土轴承钢中夹杂物主要是细小的球状稀土氧硫化物(图1b)。与氧化铝夹杂物相比,稀土氧硫化物在疲劳加载过程中可以发生塑性变形,引发夹杂物周围应力集中显著减小,有效延缓疲劳裂纹的萌生。基于上述发现,研究人员阐明了氧的关键作用,开发了钢液低氧和稀土金属低氧的控制技术(“双低氧稀土钢”技术),有效解决了稀土钢工业应用中的瓶颈问题。研究表明,在高纯净度的GCr15轴承钢中应用后,与不加稀土的轴承钢相比,稀土轴承钢±800MPa拉压疲劳寿命提升了40倍,滚动接触疲劳寿命提升了40%,而添加现有商业稀土金属(稀土金属中氧含量为270ppm)的对比样品疲劳寿命出现明显波动(图2)。同时研究人员利用计算和表征证实了钢中存在一定数量的固溶稀土,固溶的稀土能够显著降低钢中碳的扩散系数,为通过调控碳扩散优化钢的显微组织和力学性能提供了新途径。图1 某进口轴承钢(a)与双低氧稀土轴承钢(b)中的夹杂物对比图2 稀土轴承钢与不加稀土的轴承钢、添加商业稀土的轴承钢的拉压疲劳和滚动接触疲劳寿命对比该工作揭示了稀土在钢中的关键作用机制,即控制夹杂物和稀土固溶,制备出性能优越、稳定的低氧稀土钢,吨钢只需添加百余克的镧铈轻稀土,即可在成本基本不增加、工艺流程基本不变的条件下显著提升钢的性能,对于发挥我国稀土资源优势,平衡稀土资源利用,提升优特钢的品质具有重要意义。
  • 关于水质分析不得不说的秘密
    近年来,伴随着工业自动化程度的不断提高;人力资源成本的不断攀升;国家十二五规划对饮用水安全、重点流域水污染防治等一系列因素都将在不同程度上推动中国水质分析仪表以较快速度发展。未来几年,对于中国的水质分析仪器产业而言,随着国家食品、药品安全以及环保政策的落实推动,全民不断提高的环保意识以及不断攀升的备件、耗材、服务需求,水质分析仪表依旧会有较快增长。 回顾中国水处理行业的发展历史,从上世纪五、六十年代就有一批国有、军工、科研院所背景的企业开始从事水处理工程以及水质分析仪表的生产制造。直到1995年,整个中国水处理行业市场容量仅仅只有5000万人民币左右。从1995年至今,伴随着中国经济的飞速发展,2013年,中国整个水处理行业规模快速发展至约600亿元人民币。 溶氧(DO)是溶解氧(Dissolved Oxygen)的简称,溶解于水中的分子态氧,天然水中的溶解氧含量取决于水体与大气中氧的平衡。溶解氧是水生生物生存和水质的重要指标。水中溶解氧的饱和含量和空气中氧的分压、大气压力、水温、水中含盐量等有密切关系。清洁地面水中溶解氧一般接近饱和,20℃清洁水中饱和溶解氧含量约为9mg/L。水体受有机、无机还原性物质污染,会使溶解氧降低,当水中溶解氧低于2mg/L时,水体即产生恶臭。目前,测定DO的方法有多种:如化学Winkler法、电化学法、光学法等。 滴定碘量法应用历史最为悠久,该法由文科勒(Winkler)教授于1888年首次提出,其基本操作过程为:向一定量的样品中加入硫酸锰和碱性碘化钾然后生成氢氧化锰Mn(OH)2。 由于Mn2+ 不稳定,在加入硫酸酸化时,Mn2+和水中的氧发生反应生成Mn4+,然后Mn4+和KI发生反应,将碘离子氧化成游离碘,游离碘的量与水样中的溶解氧的量成比。接着,再采用硫代硫酸钠对溶液进行滴定,选择淀粉作为滴定终点指示剂,最后根据硫代硫酸钠的消耗量来计算水中的溶解氧含量。碘量法的所有反应步骤如下:MnSO4+2NaOH= Mn(OH)2↓+Na2SO42Mn(OH)2+O2 = 2H2MnO3↓2H2MnO3+2H2SO4 = 2Mn(SO4)2↓+3H2O2KI+ Mn(SO4)2 = Mn(SO4)2+K2SO4+I22Na2S2O3+I2 = Na2S4O6+4NaI 该滴定法用于测量水中的溶解氧,尽管在100多年的实际应用过程中,该方法经过不断修正,但是由于受限于取样过程、试剂配制、滴定操作、周围环境以及分析样品存在的诸如亚铁离子、亚硝酸盐、有机物、不稳定性易氧化物等多种干扰物质的影响,碘量滴定法在测量溶解氧时存在一定局限性,该方法不适宜进行ppb级的低氧测量。滴定法测量水中溶解氧的方法适用于市政污水、工业废水、养殖、天然水源等溶解氧含量水平较高的水处理应用场合。 那么大家对于滴定碘量法是否有了更加深入的了解了呢?随着技术不断地革新,更为先进的溶氧测量技术已经被投放使用在水质分析中,小编将在下期为您继续介绍现代水质分析三大处理方法。
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 盘点! 2024年63项光谱新标准已正式实施
    7月1日,作为全国标准发布实施的重要节点,仪器信息网特地对2024年正式实施的光谱国家标准、行业标准及地方标准进行梳理,共63项。这些标准覆盖了近红外光谱、拉曼光谱、电感耦合等离子体原子发射光谱、X射线荧光光谱法、原子吸收光谱、傅立叶变换红外光谱、红外吸收光谱、原子荧光光谱法等等分析方法。这些标准的实施,旨在提升我国光谱分析技术的准确性和可靠性,进一步保障和促进社会各领域的发展。并且他们的应用范围极为广泛,涉及食品、环境、材料、石油、制造业、农业、林业、牧业、渔业、水利、公共设施管理、科学研究和技术服务业等重要领域。具体新实施的标准整理如下:近红外光谱相关标准标准号标准名称实施日期NY/T 4427-2023饲料近红外光谱测定应用指南2024-05-01DB37/T 4708—2024沉积物中有机碳含量的测定 可见-近红外光谱法2024-05-11FZ/T 01057.10-2023纺织纤维鉴别试验方法 第10部分:近红外光谱法2024-07-01DB15/T 3461—2024毛绒纤维回潮率试验方法 近红外光谱法2024-07-14拉曼光谱相关标准标准号标准名称实施日期SN/T 5643.2-2023出口食品中化学污染物的快速检测方法 第2部分:碱性嫩黄O的测定 拉曼光谱法2024-05-01SN/T 5643.3-2023出口食品中化学污染物的快速检测方法 第3部分:苋菜红的测定 拉曼光谱法2024-05-01SN/T 5643.4-2023出口食品中化学污染物的快速检测方法 第4部分:西布曲明的测定 拉曼光谱法2024-05-01GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-01SN/T 5644.1-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则2024-07-01SN/T 5644.2-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫2024-07-01SN/T 5644.3-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星2024-07-01SN/T 5644.4-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵2024-07-01SN/T 5644.5-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵2024-07-01SN/T 5644.6-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑2024-07-01SN/T 5644.7-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱2024-07-01SN/T 5644.8-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷2024-07-01SN/T 5644.9-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷2024-07-01SN/T 5644.10-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷2024-07-01原子发射光谱法相关标准标准号标准名称实施日期DZ/T 0452.1-2023稀土矿石化学分析方法 第1部分:二氧化硅、三氧化二铝、三氧化二铁、氧化钙、氧化镁、氧化钾、氧化钠、二氧化钛、氧化锰、五氧化二磷、锶和钡含量的测定 偏硼酸锂熔融—电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0452.2-2023稀土矿石化学分析方法 第2部分:铝、铁、钙、镁、钾、钠、钛、锰、磷及15个稀土元素含量测定 混合酸分解―电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.1-2023铌钽矿石化学分析方法 第1部分:铌、钽和钨含量的测定 封闭酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.3-2023铌钽矿石化学分析方法 第3部分:铌、钽、铁、锰和钨含量的测定 酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0454.3-2023钛铁矿化学分析方法 第3部分:铝、钙、镁、钾、钠、钛、锰、铬、锶、钒和锌含量的测定 混合酸分解-电感耦合等离子体原子发射光谱法2024-01-01GB/T 11064.16-2023碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第16部分:钙、镁、铜、铅、锌、镍、锰、镉、铝、铁、硫酸根含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 6730.84-2023铁矿石 稀土总量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42906-2023石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 3884.18-2023铜精矿化学分析方法 第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化铝、氧化镁、氧化钙含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42794-2023镍铁 碳、硫、硅、磷、镍、钴、铬和铜含量的测定 火花源原子发射光谱法2024-03-01GB/T 43861-2024微波等离子体原子发射光谱方法通则2024-04-25GB/T 3260.11-2023锡化学分析方法 第11部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-01GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法2024-06-01YB/T 6157.1-2023铌铁分析方法 第1部分:钽、磷、铝和钛含量的测定 电感耦合等离子体原子发射光谱法2024-07-01YB/T 4174.2-2023硅钙合金分析方法 第2部分:磷含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43607-2023钯锭分析方法 银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法2024-07-01GB/T 43603.1-2023镍铂靶材合金化学分析方法 第1部分:铂含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43574-2023化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法2024-07-01X射线荧光光谱相关标准标准号标准名称实施日期GB/T 6730.87-2023铁矿石 全铁及其他多元素含量的测定 波长色散X射线荧光光谱法(钴内标法)2024-03-01SN/T 5643.1-2023出口食品中化学污染物的快速检测方法 第1部分:砷、镉、汞、铅含量的测定 X射线荧光光谱法2024-05-01NY/T 4435-2023土壤中铜、锌、铅、铬和砷含量的测定 能量色散X射线荧光光谱法2024-05-01GB/T 43309-2023玻璃纤维及原料化学元素的测定 X射线荧光光谱法2024-06-01GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2024-06-01DB36/T 1919-2023水质 无机元素的现场快速测定 便携式单波长激发-能量色散X射线荧光光谱法2024-07-01HG/T 6227-2023催化裂化催化剂化学成分分析方法 X射线荧光光谱法2024-07-01原子吸收光谱相关标准标准号标准名称实施日期GB/T 8151.26-2023锌精矿化学分析方法 第 26 部分:银含量的测定 酸溶解-火焰原子吸收光谱法2024-03-01GB/T 6150.10-2023钨精矿化学分析方法 第10部分:铅含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01GB/T 6150.15-2023钨精矿化学分析方法 第15部分:铋含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01NY/T 4433-2023农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法2024-05-01NY/T 4434-2023土壤调理剂中汞的测定 催化热解-金汞齐富集原子吸收光谱法2024-05-01GB/T 3286.12-2023石灰石及白云石化学分析方法 第12部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-01GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-01GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01其他光谱相关标准标准号标准名称实施日期DB42/T 2120-2023土壤中氨氮、亚硝酸盐氮和硝酸盐氮的测定 气相分子吸收光谱法2024-01-29GB/T 20150-2023红斑基准作用光谱及标准红斑剂量2024-03-01GB/T 35306-2023硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法2024-03-01GB/T 29057-2023用区熔拉晶法和光谱分析法评价多晶硅棒的规程2024-03-01YY/T 1896-2023光谱辐射治疗设备波长范围界定方法2024-05-01GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1部分:红外吸收光谱法2024-06-01GB/T23947.3-2023无机化工产品中砷测定的通用方法 第3部分:原子荧光光谱法2024-06-01GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-01GB/T 19502-2023表面化学分析 辉光放电发射光谱方法通则2024-07-01为了展现最新的光谱仪器技术及相关的应用,促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2024年7月16-19日举办“第十三届光谱网络会议, 简称iCS2024)”。点击报名》》》报名后,再成功邀请3人报名,即可领取纸质书《光电光谱分析技术与应用》一本或《近红外光谱实战宝典》一本,数量仅限20本,每人仅限参加一次,先到先得!(领取方式:联系助教微信13260310733)福利活动时间:6月25日-7月15日24:00会议地址:https://www.instrument.com.cn/webinar/meetings/ics2024/
  • 黑臭水体治理重在制定长效管理方案和引入群众监督
    p   全国认定的黑臭水体数量在2100个左右。黑臭水体的污染源主要可以分为内源、外源和其他,其中外源包括点源和面源。在促成水体黑臭的环境因素不可控情况下,控制污染源成为黑臭水体预防和治理的主要手段。住建部和环保部发布的《城市黑臭水体整治工作指南》对黑臭水体的定义、成因及治理流程进行了介绍。黑臭水体的治理不能一蹴而就,制定行之有效的长效管理方案是保障治理和维护顺利进行的重要保障。与此同时,住建部和环保部依据各地的建设成果评出了20个黑臭水体治理示范城市,并建立了“全国城市黑臭水体整治监管平台”,加大群众的监督力度。 /p p   黑臭水体治理涉及面广,制定长效管理方案是保障黑臭水体治理顺利进行的重要保障。 /p p   城市黑臭水体是指城市建成区内,呈现令人不悦的颜色和(或)散发令人不适气味的水体的统称。目前全国认定的黑臭水体数量在2100个左右。黑臭水体的污染源主要可以分为内源、外源和其他,其中外源包括点源和面源。 /p p   普遍认为有机物污染是导致黑臭的直接原因(第一要因)。水体中有机污染物含量过高时,在好氧微生物的作用下,水体中的铁、锰等金属离子与水中的硫离子形成硫化亚铁、硫化锰等化合物,悬浮颗粒吸附硫化亚铁、硫化锰等,致使水体变黑 而有机物分解会大量消耗水中的氧气,使水体转化成缺氧或厌氧状态。在缺氧或厌氧状态下,有机物腐败、分解,产生氨、硫化氢、硫酸、硫醚、有机胺和有机酸等恶臭物质,致使水体变臭。 /p p   除了污染源外,致使水体黑臭的原因还包括温度等其他非认为可控条件。在其他影响因素不可控的情况下,尽可能的控制污染源成为了主要的预防和治理手段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/769d7120-5ef3-49df-98b0-c5569cc86487.jpg" title=" 图1.png" alt=" 图1.png" / /p p   受污染时间、污染源规模、污染物含量加上温度条件不同的综合作用下,黑臭水体黑臭的程度也有所不同,住房城乡建设部和环境保护部发布的《城市黑臭水体整治工作指南》,依据黑臭程度的不同,可将黑臭水体细分为“轻度黑臭”和“重度黑臭”两级。显然,重度黑臭的治理难度和投入高于轻度黑臭。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/bcae25ab-97ef-4e91-88a7-9a7f8c30cf92.jpg" title=" 图2.png" alt=" 图2.png" / /p p   对黑臭水体的级别进行判定,只是黑臭水体治理的其中一个小环节。事实上,黑臭水体的治理是一个长期的过程,前提需要对黑臭水体进行排查识别,并依据实际情况制定对症下药的方案,接下来是工程实施及监测评估,而已治理好的水体同样面临着被再次污染的可能,因此需要制定长效管理方案,除了对水土进行日常的污染物打捞和养护外,还需要借助地方政府和人民群众的力量,共同的监督和反馈。住建部《城市黑臭水体整治工作指南》中对黑臭水体的治理流程和要求做出了明确的引导和规范。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/325299ab-c88d-4950-b737-c34c62e14401.jpg" title=" 图3.png" alt=" 图3.png" / /p p   20省市被确定为2018年黑臭水体治理示范城市,整治监管平台的发布是长效管理的重要环节。 /p p   对各地黑臭水体的治理进行评审并公布当年的黑臭水体治理示范城市,是住建部和生态环境部监督和鼓励各地积极治理黑臭水体的重要举措。2018年10月24日,这两大部门依据此前发布的《财政部办公厅住房城乡建设部办公厅生态环境部办公厅关于组织申报2018年城市黑臭水体治理示范城市的通知》对30个城市进行了现场答辩评审并确定将得分排在前20名的城市评为“2018年城市黑臭水体治理示范城市”,主要包括九江、沈阳、长春、马鞍山等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/ad063bd2-7083-451f-9547-a84c2f070a58.jpg" title=" 图4.png" alt=" 图4.png" / /p p   作为长效管理方案中的一个重要环节,住建部会同环保部建立了“全国城市黑臭水体整治监管平台”,并同步开通“城市水环境公众参与”微信号。2016开通以来,住建部每个季度都将公布各地黑臭水体整治名单和完成情况,并将对完不成整治任务的地方进行约谈。 /p p   该平台公布的最新数据显示,截至2019年01月27日(自微信公众号发布以来),该平台累计收到了11751条监督举报信息,其中11605条已经办结,逾期未回复的信息125条。治理不易,维护更难,黑臭水体的治理和维护既需要政府的监督、管理以及各大环保企业的积极参与,同时也需要广大人民群众的监督和反馈。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/fbf2a52a-069f-405f-baaa-913ded368d4d.jpg" title=" 图5.png" alt=" 图5.png" / /p
  • 有毒难退货 美的紫砂煲“霸王条款”何时了
    央视每周质量报告继续曝光“紫砂真相”,重金属溶出量异常,而深陷“紫砂门”事件的美的却设定种种障碍拒绝给消费者退货,引起消费者不满。   近日,央视曝光美的紫砂煲黑幕,立即在消费者群中引起了极大反响,许多有健康意识的消费者本以为可以利用此煲养生降脂、获得更多矿物质,但现在却换来“铁红粉”、“二氧化锰”等对身体有致癌作用的化学物质。   当天下午,事件主角美的对外表示,已将该公司相关负责人停职,并接受消费者退货。同时,美的公司还出示了一份《国家陶瓷及水暖卫浴产品质量检验中心》检测报告的证据。宣称该中心检测报告显示,美的紫砂煲内胆、紫砂盖,无毒无害,请消费者不要恐慌。   但仔细对照央视等权威媒体曝光的“美的紫砂煲黑幕”细节和美的公司事后发表的公开申明,不难发现:美的被迫道歉是真,道歉内容是假 知错不改是真,改错方法是假。   马桶生产标准=紫砂煲生产标准?   在常识里,马桶和紫砂煲内胆是两个毫不相干的东西,但据媒体调查发现,为美的生产紫砂煲内胆的厂家,同时也是一家生产马桶的作坊工厂。试问,用来生产“方便”马桶的质量技术安全标准怎么可用来生产解决“一日三餐”的紫砂煲内胆?   卫浴产品质检标准=厨房电器质量安检标准?   假紫砂煲骗局刚被曝光,美的公司就忙不迭地亮出“国家陶瓷及水暖卫浴产品质量检验中心”的牌,声称称该中心检测报告显示,美的紫砂煲内胆、紫砂盖,无毒无害,请消费者不要恐慌。   但据记者调查了解,“国家陶瓷及水暖卫浴产品质量检验中心”就位于美的总部所在的佛山,该检验中心的检验范围主要覆盖建筑陶瓷、卫生陶瓷、日用陶瓷、水龙头、阀门、卫浴电器等产品及原材料等领域。作为一个主要负责陶瓷产品物理性能检验的机构,是否有资格出具厨房电器食品安全方面的检测报告?   为此,记者致电国家陶瓷及水暖卫浴产品质量检验中心进行求证。问及是否该中心给美的公司出具过紫砂煲无毒无害证明时,该中心人士表示不清楚,没有查到过这份报告。随后记者拨通美的生活电器制造有限公司新闻发言人的电话,该发言人拒绝回答。   关于假紫砂煲是否有毒,岂能企业自己说了算?   美的紫砂锅黑幕曝光后,至今没有看到权威监管部门的有关产品查封声明。而按照正常程序,问题产品应该第一时间被撤出市场,库存产品也要在第一时间被查封。关于问题产品有毒与否,也应该是由国家权威技监部门从封存产品中抽样检测,而不能由肇事者自己说了算。   作为“造假”事件的主角,美的绕开国家质量监督检验等权威部门,绕开广大消费者的知情渠道,单方面沟通送检机构,无论结果如何,显然不具备公信力。而且面对美的以往一连串的造假行为,消费者完全有理由质疑其悔改的真实性。   央视曝光:紫砂壶有毒,紫砂煲无毒?   央视每周质量报告继续曝光“紫砂真相”:13个紫砂壶样品重金属溶出量异常   第二期的质量报告中中央视记者随机购买了15件紫砂壶和紫砂杯送到上海材料研究所检测中心进行检测。检测项目主要针对记者调查时发现人为添加的钡、锰、钴、铬等几种重金属元素。经过检测,15件紫砂茶具,除了两件原矿紫砂茶具之外,其余13件样品重金属溶出量都出现了异常。这些重金属熔点较高,在紫砂陶器的煅烧过程中很难挥发,最终还是会残留在烧制好的茶具里面,在使用时可能会产生不同程度的溶出量。保健专家指出,长期摄入钡、锰、钴、铬等金属离子,就会危及人体健康。   随着事件的深入,美的仍不承认造假事实,也没给受害者相应赔偿,而且又拉上了九阳、伊立等同行垫背,甚至在媒体上为自己道歉、退货的举动进行自我歌颂。试问,如果央视没有曝光其造假行为,美的会主动承认造假事实吗?如果央视没有曝光其造假行为,美的还要欺骗中国消费者多久?
  • 544项推荐性国家标准公布 涉ICP、气相、离子色谱法等
    近日,中国国家标准化管理委员会公布《2022年第21号中国国家标准公告》,共544项推荐性国家标准和4项国家标准修改单。本次公布的中国国家标准涉及化工、材料、临床检测、化学、化工、环境、植物、食品等各个领域,检测方法涉及滴定法、红外吸收法、等离子体原子发射光谱法、γ能谱分析、辉光放电质谱法、气相色谱法、细胞计数法、透射电镜、二次离子质谱法、离子色谱法等。以下是部分与科学仪器及分析检测相关的标准:  纺织品 定量化学分析 第4部分:某些蛋白质纤维与某些其他纤维的混合物(次氯酸盐法),  炭黑 第29部分:溶剂可萃取物的测定,  锰铁、锰硅合金、氮化锰铁和金属锰 硫含量的测定 红外线吸收法和燃烧中和滴定法,  饲料中粗纤维的含量测定,  金精矿化学分析方法 第7部分:铁量的测定,  金精矿化学分析方法 第8部分:铁量的测定,  稀土金属及其氧化物中非稀土杂质化学分析方法 第1部分:碳、硫量的测定 高频-红外吸收法,  表面活性剂 工业烷烃磺酸盐 总烷烃磺酸盐含量的测定,  锆及锆合金化学分析方法 第26部分:合金及杂质元素的测定 电感耦合等离子体原子发射光谱法,  环境及生物样品中放射性核素的γ能谱分析方法,  塑料 差示扫描量热法(DSC) 第5部分: 特征反应曲线温度、时间,  反应焓和转化率的测定,  金矿石化学分析方法 第7部分:铁量的测定,  金矿石化学分析方法 第8部分:硫量的测定,  皮革和毛皮 化学试验 游离脂肪酸的测定,  纺织品 非织造布试验方法 第102部分:拉伸弹性的测定,  稀土铁合金化学分析方法 第1部分:稀土总量的测定,  稀土铁合金化学分析方法 第2部分:稀土杂质含量的测定 电感耦合等离子体发射光谱法,  稀土铁合金化学分析方法 第3部分:钙、镁、铝、镍、锰量的测 定 电感耦合等离子体发射光谱法,  稀土铁合金化学分析方法 第4部分:铁量的测定 重铬酸钾滴定法,  稀土铁合金化学分析方法 第5部分:氧含量的测定 脉冲-红外吸收法,  塑料 动态力学性能的测定 第11部分: 玻璃化转变温度,  金属锗化学分析方法 第3部分:痕量杂质元素的测定 辉光放电质谱法,  直接还原铁 金属铁含量的测定 溴-甲醇滴定法,  硫化橡胶或热塑性橡胶 硬度的测定 第7部分:邵氏硬度法测定胶辊的表观硬度,  硫化橡胶或热塑性橡胶 硬度的测定 第8部分:赵氏硬度(P&J)法测定胶辊的表观硬度,  塑料 环氧树脂 差示扫描量热法(DSC)测定交联环氧树脂交联度,  橡胶中镁含量的测定 原子吸收光谱法  生胶和硫化胶 用电感耦合等离子体发射光谱仪(ICP-OES)测定金属含量  橡胶 全硫含量的测定 离子色谱法  颗粒 激光粒度分析仪 技术要求  色漆和清漆 涂料中水分含量的测定 气相色谱法  摄影 冲洗废液 氨态氮含量的测定 (微扩散法)  摄影 冲洗废液 氨态氮总含量的测定 (微扩散凯氏氮法)  生物技术 细胞计数 第1部分:细胞计数方法通则  生物技术 核酸靶序列定量方法的性能评价要求 qPCR法和dPCR法  分子体外诊断检验 冷冻组织检验前过程的规范 第1部分:分离RNA  分子体外诊断检验 冷冻组织检验前过程的规范 第2部分:分离蛋白质  农产品中生氰糖苷的测定 液相色谱-串联质谱法  木薯叶片中黄酮醇的测定 高效液相色谱法  生橡胶 毛细管气相色谱测定残留单体和其他挥发性低分子量化合物 热脱附(动态顶空)法  皮革 化学试验 热老化条件下六价铬含量的测定  皮革 色牢度试验 耐汗渍色牢度  海洋石油勘探开发钻井泥浆和钻屑中铜、铅、锌、镉、铬的测定 微波消解-电感耦合等离子体质谱法  纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第1部分:分离RNA  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第2部分:分离蛋白质  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第3部分:分离DNA  纺织品 色牢度试验 耐摩擦色牢度 Gakushin法  表面活性剂 环氧丙烷聚合型表面活性剂中游离环氧丙烷的测定 气相色谱法  纳米技术 石墨烯粉体中金属杂质的测定 电感耦合等离子体质谱法  纳米技术 [60]/[70]富勒烯纯度的测定 高效液相色谱法  土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法  铬铒共掺钇钪镓石榴石晶体光学及激光性能测量方法  金属及其他无机覆盖层 热障涂层耐热循环与热冲击性能测试方法  金属及其他无机覆盖层 温度梯度下热障涂层热循环试验方法  锆化合物化学分析方法 钙、铪、钛、钠、铁、铬、镉、锌、锰、铜、镍、铅含量的测定 电感耦合等离子体原子发射光谱法  氮化铝材料中痕量元素(镁、镓)含量及分布的测定 二次离子质谱法  硬质合金 总碳量的测定 高频燃烧红外吸收法/热导法  氮化硅粉体中氟离子和氯离子含量的测定 离子色谱法  硫化橡胶 热拉伸应力的测定
  • 220项拟立项国标征求意见 涉及多种仪器分析方法
    日前,国家标准委决定对《无焊连接 第7部分:弹性夹连接 一般要求、试验方法和实用指南》等220项拟立项推荐性国家标准项目公开征求意见,征求意见截止时间为2021年6月1日。有关单位和相关人员可登录全国标准信息公共服务平台的拟立项标准公示网页,查询项目信息和反馈意见建议。218项拟立项国家标准项目中,有数项涉及仪器检测方法,包括液相色谱串联质谱法、火焰原子吸收光谱法、气相色谱法、原子力显微镜法、氮吸附法等。部分摘录如下:序号项目中文名称制修订截止日期1化妆品中限用组分月桂醇聚醚-9的测定 液相色谱串联质谱法制订2021/6/12化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法制订2021/6/13无损检测 纤维增强聚合物的声发射检测方法和评价准则制订2021/6/14纳米技术 拉曼光谱法测量二硫化钼薄片的层数制订2021/6/15钢渣 氧化钠和氧化钾含量测定 火焰原子吸收光谱法制订2021/6/16钢渣 硫含量的测定 高频燃烧红外吸收法制订2021/6/17纺织品 禁限用染料的测定 液相色谱-高分辨质谱法制订2021/6/18贵金属合金电镀废水化学分析方法 第4部分:氯离子含量的测定   氯化银浊度法制订2021/6/19镍铂靶材合金化学分析方法 第1部分:铂含量的测定   电感耦合等离子体原子发射光谱法制订2021/6/110钯锭分析方法   银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法制订2021/6/111工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定   气相色谱法修订2021/6/112贵金属合金电镀废水化学分析方法   第2部分:锌、锰、铬、镉、铅、铁、铝、镍、铜、铍含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/113镍铂靶材合金化学分析方法   第2部分:镁、铝、钛、钒、铬、锰、铁、钴、铜、锌、锆、银、钯、锡、钐、铅、硅含量的测定 电感耦合等离子体质谱法制订2021/6/114贵金属合金电镀废水化学分析方法   第1部分:金、银、铂、钯、铱含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/115镍铂靶材合金化学分析方法 第3部分:碳含量的测定   高频红外检测法制订2021/6/116工业用丙烯中烃类杂质的测定 气相色谱法修订2021/6/117钢中纳米级第二相定量测试-原子力显微镜法制订2021/6/118钢渣 氧化锰含量的测定 火焰原子吸收光谱法制订2021/6/119纳米制造 关键控制特性 纳米储能   第6部分:纳米电极材料中的碳含量测定 红外吸收法制订2021/6/120钢渣 磷含量的测定 铋磷钼蓝分光光度法制订2021/6/121纺织品 纤维定量分析 显微镜智能识别法制订2021/6/122铜精矿化学分析方法 第12部分:氟和氯含量的测定   离子色谱法和电位滴定法修订2021/6/123无损检测 声发射检测 混凝土声发射信号的测量方法制订2021/6/124无损检测 声发射检测 混凝土结构活动裂缝分类的检测方法制订2021/6/125钢产品无损检测 孔类构件残余应力分布状态超声检测方法制订2021/6/126铁矿石 钍含量的测定 偶氮胂Ⅲ分光光度法制订2021/6/127氧化铝化学分析和物理性能测定方法第27部分:粒度分析 筛分法修订2021/6/128氧化铝化学分析和物理性能测定方法第35部分:比表面积的测定   氮吸附法修订2021/6/129钴酸锂电化学性能测试 首次放电比容量及首次充放电效率测试方法修订2021/6/130铜精矿化学分析方法   第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化镁、氧化钙、氧化铝含量的测定 电感耦合等离子体原子发射光谱法修订2021/6/131无损检测 声发射检测 钢筋混凝土梁损伤评定的检测方法制订2021/6/132变形铝、镁合金产品超声波检验方法修订2021/6/133硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法修订2021/6/134染料 在有机溶剂中溶解度的测定 重量法和光度法制订2021/6/135钢轨超声检测方法制订2021/6/136无机化工产品中铝测定的通用方法 铬天青S分光光度法修订2021/6/137圆钢涡流检测方法修订2021/6/138锡化学分析方法   第12部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍、钴含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/139镓基液态金属化学分析方法 第1部分:铅、镉、汞、砷含量的测定   电感耦合等离子体质谱法制订2021/6/140变形铝及铝合金制品组织检验方法 第1部分:显微组织检验方法修订2021/6/141钢产品无损检测 轴类构件扭转残余应力分布状态超声检测方法制订2021/6/1
  • 细胞外囊泡又双叒叕大显身手!
    “学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化。同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题。”--中国科学院院刊 细胞外囊泡(EVs)作为递送载体,已被广泛应用于生化工程学、生物医学工程学、纳米材料学、分子影像学等交叉学科中。通过交叉学科的火花碰撞,利用前沿新技术,提高疾病治疗效果,造福广大病患。本文与您分享EV递送纳米抗氧化剂等应用案例,拓展您的课题研究思路。巨噬细胞EV参与“免疫调控-化学动力-乏氧激活 ”多级联动 2022年3月,深圳市第二人民医院李维平团队联合中国科学院大学化学工程学院魏炜团队共同发表题为“Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects”于《Signal Transduction and Targeted Therapy》期刊(IF:18.19)。 被称为“终结者”的胶质母细胞瘤(GBM)是颅内神经系统最常见的恶性肿瘤。临床治疗GBM以外科手术为主,辅助放化疗,但效果收效甚微。难以穿透的血脑屏障 (BBB) 阻止药物进入中枢神经系统,使得治疗难度雪上加霜。因此,亟需更为有效的药物递送策略。 研究人员利用M1型巨噬细胞来源细胞外囊泡(M1EVs),使其膜被两种疏水剂功能化:化学激发源CPPO(C)和光敏剂Ce6(C),并装载亲水缺氧激活原药AQ4N(A),构成的CCA-M1EVs可穿过BBB,并可趋化富集在GBM部位,通过调控巨噬细胞表型实现GBM微环境免疫调控,增加过氧化氢(H2O2)水平。H2O2和CPPO之间可进行反应,产生的化学能量进一步激活Ce6,产生大量活性氧,实现化学激发的光动力疗法(CDT)。由于该反应消耗氧气,肿瘤缺氧的加剧也导致无毒的 AQ4N 转化为有毒的 AQ4 用于化疗。因此,CCA-M1EVs在GBM中实现了免疫调控-化学动力-乏氧激活的多级联动协同作用,发挥了强大的治疗效果。 研究人员利用全自动Digital Western检测M1巨噬细胞和M1EV中CD9、CD81、ALIX、TSG101、iNOS、F4/80和GAPDH的蛋白水平(如上图b所示)。EV递送纳米抗氧化剂 2021年来自中科院过程所魏炜团队,联合上海交大医学院附属同仁医院等多家单位,共同发表题为“In situ growth of nano-antioxidants on cellular vesicles for efficient reactive oxygen species elimination in acute inflammatory diseases”于《Nano Today》期刊(IF:20.72)。 临床上常见的急性炎症疾病,有急性肠炎和急性肝损伤等等。病情严重的患者,会出现脏器功能紊乱甚至器官衰竭。急性炎症过程中,会产生大量的活性氧自由基(ROS)。ROS会引起细胞膜脂质过氧化,导致细胞膜通透性改变和进一步DNA损伤,进而引起器官功能障碍。ROS大量产生是体内炎症发生发展过程中的一个重要环节,因此需要高效手段,将药物富集在炎症部位,然后消灭ROS。 纳米抗氧化剂,例如氧化铈、氧化钼和氧化锰,可借助其催化活性清除ROS,以此减少ROS引发的组织损伤,并控制疾病进展。然而,这些纳米抗氧化剂在炎症组织中的蓄积量较低。研究人员利用红细胞囊泡递送纳米抗氧化剂,效果显著。该项研究的另一亮点是研究人员将具有组织修复功能的干细胞外泌体融合(ReMeV),并在此基础上原位生长氧化铈(shi)纳米晶体(Ce-ReMeV),用于重症急性肠炎和急性肝损伤的治疗,在有效清除ROS同时,还能修复受损组织和器官,在小鼠模型上取得了满意的效果。 研究人员利用全自动Digital Western检测外泌体 Marker(CD9)、外泌体和红细胞Marker(TSG101、HSP70)以及MSC生长因子(HGF)(如上图c所示)。每个样品仅需3μL。全自动Digital Western,为何备受大家的喜爱? 传统Western Blot(WB)属于劳动密集型技术,时间长、步骤冗长、人为操作引入过多误差,最终导致数据质量低......最重要的是实在太影响心情!图片取材于网络 全自动Digital Western技术平台的横空出世,一扫传统Western带给广大科研工作者的阴霾,每一天都是做WB的良辰吉日,让您从此享受WB!节省出大量宝贵时间去专注于阅读、思考、交流、仰望天空、参与社团、思考人性、(校园恋爱)等更有价值的事务。全自动Digital Western检测全流程(上样后,剩下的一切都交给她,一顿晚饭的功夫拿到结果) 全自动数字式Western,带给您的仅仅是3 μL超微量的上样量?3小时出结果?全程自动化标准化?更重要的是真正数字化的高质量数据和全膜结果,让您的数据不被质疑!撤稿?不存在的!扫码索取全自动Digital Western产品资料解放双手,从此爱上WB,告别实验Emo!
  • 500多项国家标准征求意见 多项涉及分析仪器
    近日,国家标准委对《淀粉术语》等517项拟立项推荐性国家标准项目开始公开征求意见,其中包括《合格评定 过程认证方案指南与示例》。征求意见截止时间为2021年1月29日。其中涉及仪器类的标准有34项,涉及到的仪器品类包括气相色谱仪、电感耦合等离子体发射光谱法、分光光度计、液相色谱-质谱仪、离子色谱仪等多个品类。具体情况如下:序号项目中文名称制修订截止日期1天然气 含硫化合物的测定 第12部分:用激光吸收光谱法测定硫化氢含量修订2021/1/292表面化学分析 原子力显微术 用于纳米结构测量的原子力显微镜探针柄轮廓原位表征程序制订2021/1/293疑似毒品中甲基苯丙胺检验 气相色谱、气相色谱-质谱、液相色谱和液相色谱-质谱法修订2021/1/294蜂蜜中17-三十五烯含量的测定 气相色谱质谱法制订2021/1/295锰铁、锰硅合金、氮化锰铁和金属锰 碳含量的测定 红外线吸收法、气体容量法、重量法和库仑法修订2021/1/296表面抗菌不锈钢 第1部分:电化学法修订2021/1/297微束分析 分析电子显微术 线状晶体表观生长方向的透射电子显微术测定方法制订2021/1/298化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法制订2021/1/299硅铁 磷含量的测定 铋磷钼蓝分光光度法修订2021/1/2910化学试剂 试验方法中所用制剂及制品的制备修订2021/1/2911环境试验设备检验方法 第21部分:振动(随机)试验用液压式振动系统修订2021/1/2912环境试验设备检验方法 第14部分:振动(正弦)试验用电动式振动系统修订2021/1/2913色漆和清漆 涂料中水分含量的测定 气相色谱法制订2021/1/2914表面化学分析 水的全反射X射线荧光光谱分析制订2021/1/2915表面化学分析 二次离子质谱 静态二次离子质谱相对强度标的重复性和一致性制订2021/1/2916油菜蜂蜜中丁香酸甲酯的测定 反相高效液相色谱法制订2021/1/2917表面化学分析 扫描探针显微术 采用扫描探针显微镜测定几何量:测量系统校准制订2021/1/2918电子电气产品中PBBs、PBDEs、BBP、DBP、DEHP、DIBP的同时测定 气相色谱-质谱法制订2021/1/2919法庭科学 微量物证的理化检验 第1部分:红外吸收光谱法修订2021/1/2920橡胶 全硫含量的测定 离子色谱法制订2021/1/2921染料产品中砷、汞、锑、硒的测定 原子荧光光谱法制订2021/1/2922毛发中55种滥用药物及代谢物检验 液相色谱-质谱法制订2021/1/2923硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法制订2021/1/2924表面化学分析 扫描探针显微术 用于二维掺杂物成像等用途的电扫描探针显微镜(ESPM,如SSRM和SCM)空间分辨的定义和校准制订2021/1/2925血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验 顶空-气相色谱法制订2021/1/2926镍铁 砷、锡、锑、铅和铋含量 电感耦合等离子体质谱法(ICP-MS)制订2021/1/2927皮革和毛皮 阻燃剂的测定 第1部分:气相色谱-质谱联用法制订2021/1/2928表面化学分析 辉光放电质谱 钼铌合金中痕量元素分析制订2021/1/2929肥料和土壤调理剂 尿素基肥料中缩二脲含量的测定 高效液相色谱法制订2021/1/2930废弃化学品中铜、锌、镉、铅、铬等12种元素形态分布的测定 连续提取法制订2021/1/2931法庭科学 一氧化二氮检验 气相色谱-质谱法制订2021/1/2932表面化学分析 X射线光电子能谱 X射线光电子能谱仪日常性能的评估方法制订2021/1/2933生胶和硫化胶 用电感耦合等离子体发射光谱仪测定金属含量 (ICP-OES)制订2021/1/2934天然气 含硫化合物的测定 第x部分:紫外吸收法测定硫化氢含量制订2021/1/29
  • 国标委发布47项检测方法国家标准
    国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 GB/T 208-2014 水泥密度测定方法 GB/T 208-1994 2014-12-01 GB/T 3286.5-2014 石灰石及白云石化学分析方法 第5部分:氧化锰含量的测定 高碘酸盐氧化分光光度法 GB/T 3286.5-1998 2015-01-01 GB/T 3286.8-2014 石灰石及白云石化学分析方法 第8部分:灼烧减量的测定 重量法 GB/T 3286.8-1998 2015-01-01 GB/T 3286.9-2014 石灰石及白云石化学分析方法 第9部分:二氧化碳含量的测定 烧碱石棉吸收重量法 GB/T 3286.9-1998 2015-01-01 GB/T 3558-2014 煤中氯的测定方法 GB/T 3558-1996 2014-10-01 GB/T 4633-2014 煤中氟的测定方法 GB/T 4633-1997 2014-10-01 GB/T 5059.1-2014 钼铁 钼含量的测定 钼酸铅重量法、偏钒酸铵滴定法和8-羟基喹啉重量法 GB/T 5059.1-1985 2015-01-01 GB/T 5059.2-2014 钼铁 锑含量的测定 孔雀绿分光光度法 GB/T 5059.2-1985 2015-01-01 GB/T 5059.3-2014 钼铁 铜含量的测定 火焰原子吸收光谱法 GB/T 5059.3-1985 2015-01-01 GB/T 5059.5-2014 钼铁 硅含量的测定 硫酸脱水重量法和硅钼蓝分光光度法 GB/T 5059.5-1986 2015-01-01 GB/T 5059.7-2014 钼铁 碳含量的测定 红外线吸收法 GB/T 5059.7-1988 2015-01-01 GB/T 5161-2014 金属粉末 有效密度的测定 液体浸透法 GB/T 5161-1985 2014-12-01 GB/T 5447-2014 烟煤黏结指数测定方法 GB/T 5447-1997 2014-10-01 GB/T 5448-2014 烟煤坩埚膨胀序数的测定 电加热法 GB/T 5448-1997 2014-10-01 GB/T 5450-2014 烟煤奥阿膨胀计试验 GB/T 5450-1997 2014-10-01 GB/T 6730.71-2014 铁矿石 酸溶亚铁含量的测定 滴定法 2015-01-01 GB/T 8358-2014 钢丝绳 实际破断拉力测定方法 GB/T 8358-2006 2015-01-01 GB/T 13480-2014 建筑用绝热制品 压缩性能的测定 GB/T 13480-1992 2014-12-01 GB/T 30592-2014 透光围护结构太阳得热系数检测方法 2014-12-01 GB/T 30594-2014 双层玻璃幕墙热性能检测 示踪气体法 2014-12-01 GB/T 30701-2014 表面化学分析 硅片工作标准样品表面元素的化学收集方法和全反射X射线荧光光谱法(TXRF)测定 2014-12-01 GB/T 30702-2014 表面化学分析 俄歇电子能谱和X射线光电子能谱 实验测定的相对灵敏度因子在均匀材料定量分析中的使用指南 2014-12-01 GB/T 30703-2014 微束分析 电子背散射衍射取向分析方法导则 2014-12-01 GB/T 30704-2014 表面化学分析 X射线光电子能谱 分析指南 2014-12-01 GB/T 30705-2014 微束分析 电子探针显微分析 波谱法实验参数测定导则 2014-12-01 GB/T 30706-2014 可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价 2014-12-01 GB/T 30707-2014 精细陶瓷涂层结合力试验方法 划痕法 2014-12-01 GB/T 30709-2014 层压复合垫片材料压缩率和回弹率试验方法 2014-12-01 GB/T 30710-2014 层压复合垫片材料蠕变松弛率试验方法 2014-12-01 GB/T 30711-2014 摩擦材料热分解温度测定方法 2014-12-01 GB/T 30713-2014 砚石 显微鉴定方法 2014-10-01 GB/T 30714-2014 电感耦合等离子体质谱法测定砚石中的稀土元素 2014-10-01 GB/T 30725-2014 固体生物质燃料灰成分测定方法 2014-10-01 GB/T 30726-2014 固体生物质燃料灰熔融性的测定方法 2014-10-01 GB/T 30727-2014 固体生物质燃料发热量测定方法 2014-10-01 GB/T 30728-2014 固体生物质燃料中氮的测定方法 2014-10-01 GB/T 30729-2014 固体生物质燃料中氯的测定方法 2014-10-01 GB/T 30732-2014 煤的工业分析方法 仪器法 2014-10-01 GB/T 30733-2014 煤中碳氢氮的测定 仪器法 2014-10-01 GB/T 30735-2014 屋顶及屋顶覆盖制品外部对火反应试验方法 2014-10-01 GB/T 30737-2014 海洋微微型光合浮游生物的测定 流式细胞测定法 2014-10-01 GB/T 30738-2014 海洋沉积物中放射性核素的测定 &gamma 能谱法 2014-10-01 GB/T 30739-2014 海洋沉积物中正构烷烃的测定 气相色谱-质谱法 2014-10-01 GB/T 30740-2014 海洋沉积物中总有机碳的测定 非色散红外吸收法 2014-10-01 GB/T 30741-2014 海洋大气干沉降物中总硫的测定 非色散红外吸收法 2014-10-01 GB/T 30742-2014 海洋大气干沉降物中总碳的测定 非色散红外吸收法 2014-10-01 GB/T 30749-2014 矿物药材及其煅制品视密度测定方法 2015-01-01
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制