当前位置: 仪器信息网 > 行业主题 > >

碘化钴

仪器信息网碘化钴专题为您提供2024年最新碘化钴价格报价、厂家品牌的相关信息, 包括碘化钴参数、型号等,不管是国产,还是进口品牌的碘化钴您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘化钴相关的耗材配件、试剂标物,还有碘化钴相关的最新资讯、资料,以及碘化钴相关的解决方案。

碘化钴相关的资讯

  • Gamry电化学公司参加第十八届全国固态离子学学术会议 暨国际电化学储能技术论坛
    第18届全国固态离子学学术会议于2016年11月3日~11月7日在广西壮族自治区桂林市举行。此次会议由中国硅酸盐学会固态离子学分会主办,广西师范大学承办。这是中国固态离子界学者的一次盛会,反映了我国在固态离子学领域基础研究和应用研究方面的最新进展与成果,探讨相关学科的最新发展趋势。内容包括固态离子材料及器件的最新成果,涵盖储能材料与器件、电化学传感器等研究领域。 美国Gamry电化学仪器公司和其合作伙伴广州普凡科学仪器有限公司作为本次会议的主要赞助商参加了本次会议,与参会代表就新型储能电池技术、能源材料与技术、离子导体及传感器体系中的离子输运等方面的新技术和新进展展开了广泛的讨论。美国Gamry电化学仪器公司目前在上海设有技术支持总部。 在本次会议上,Gamry向各位电化学储能技术方面的同行展示了适用于能源领域使用的多通道电化学工作站系统。Gamry通过引进接口电源集线器(IPH)改变了关于多通道恒电位仪的传统思维。IPH将台单独仪器,甚至是不同型号的仪器组合起来。每台仪器可单独使用也可作为一个整体来控制,这样既灵活方便,又降低了传统插板式多通道电化学工作站的固有高本体噪声。 此外,Gamry新推出Interface 5000系列电化学工作站也受到了广大与会人员的关注。Interface 5000系列电化学工作站具有测试电流大,抗噪声性能好等特点,最大电流达到5A,更适合于功率略大的能量转换体系测试使用。 Gamry也推出21电极的大电流工作站Reference 3000 AE, 多台联用可以扩展进行100A以上的电池测试需求,同时又保持低阻抗微欧数量级的准确测量。为了更好表征能源系统的电化学过程, GAMRY也提供系列旋转圆盘电极系统,石英晶体微天平系统,能源测试系统,温控系统和电化学动力学解析软件DigiElch软件。刚瑞(上海)商务信息咨询有限公司上海市杨浦区逸仙路25号同济晶度310室 200437电话: 021-65686006 传真:021-65688389微信公众号:Gamry电化学
  • 巩固电化学 瑞士万通收购DropSens大部分股份
    p   基于双方在丝网印刷电极和便携式电化学仪器仪表开发方面的长时间合作,瑞士万通近日宣布收购DropSens S.L.的大部分股份。 /p p   通过收购DropSens,瑞士万通将获得微型化学电化学技术领先企业的专业知识及资源,能够将公司解决方案产品组合扩展到下一代电化学传感器和便携式恒电位仪/恒电池。 /p p   虽然公司名称“DropSens”将随着收购而变更为“Metrohm DropSens”,西班牙公司将继续在阿斯图里亚斯(西班牙)设计、开发和生产电化学技术,并将成为万通电化学业务的一部分。 /p p   万通是化学分析仪器的领先制造商。万通为所有种类的离子分析(电位和卡尔费休滴定、伏安法、离子色谱、pH、离子、电导率和稳定性测量)提供解决方案。此外,万通产品组合还包括完整的NIR和拉曼光谱、软件、计量系统和实验室自动化解决方案。万通公司由瑞士万通基金所拥有100%,分别由其子公司或独家经销商在80个国家/地区代理。 /p p   DropSens是提供丝网印刷电极和便携式恒电位仪/恒电池的小型电化学领域的领先公司。 DropSens设计、开发和制造电化学发光的仪器和设备,处理连字的UV / VIS,NIR和拉曼光谱电化学技术。 DropSens是“医疗器械传感器制造”的ISO9001和ISO13485认证公司。 /p
  • “晒电话”让科研机构不做创新“孤岛”
    p   最近,中国科学院沈阳分院做出一个“大胆”的举动——将该分院系统单位100个专家团队的信息、介绍、典型项目案例公布在网上,科学家或课题组联络人员的手机号码、电子邮箱等联系方式也被“晒”了出来。这在中科院系统内部是第一个,其目的就是试着“破除”致使科技成果束之高阁的信息不对称问题。 /p p   沈阳分院的这种“晒”法并不多见。通常,科研机构在推动科技成果转化工作时,大多是坐等政府、企业来访,参加成果对接会,或是在本机构网站简单地介绍成果内容。敢于把100多个专家团队的具体信息,包括个人电话全部“晒”出来的,的确屈指可数。 /p p   大多数科研机构之所以不这么“晒”,多是因为以下三个原因:一是一些科研人员早已习惯“深居闺中”,缺少主动“走出去”的意识。这些科研人员中,有的长期在实验室,专注科学研究和技术研发,有的习惯于计划经济时代式的科研工作,认为科研成果转化与己无关。二是一些已经有了“走出去”意识的科研人员,虽然会愿意“晒”科研成果,却因为担心干扰科研工作和生活而不愿意将个人信息“晒”出来。国内很多科研机构虽然公开了科研人员的邮箱,但邮件及时回复率并不高,可是,如果将手机号码公布出来,科研人员就可以被随时联系到。三是即便科研人员愿意以开放的心态接受垂询,但却缺少有这样开放功能的平台,因为国内不少科研院所大多没有专门用于信息公开和交流的科技成果转化网站。 /p p   对于处于科研水平金字塔顶尖、具有不可替代性的科研成果来说,酒香不怕巷子深。但是,对于大多数处在金字塔上层、中层的科研成果来说,巷子太深、意识太弱、顾虑太多、平台太少,势必导致科研成果无人问津。 /p p   当前,科技发展的国际化和市场化趋势愈发明显,科研成果要想被企业和社会采用,面临着国内和国际同行业的双重竞争压力。随着国家对推动科技与经济结合的重视程度越来越高,科研机构也面临着科技成果转化率的考核压力。与此同时,促进科技成果转化的相关政策也为科研人员提供了更优渥的报酬,科研人员参与科技成果转化的热情有所提升。这些都逼迫着科研机构在科技成果转化方面动脑筋、想办法。 /p p   在创新无处不在的时代,科技成果转化工作同样需要创新。当类似于“晒电话”的开放理念和创新实践成为常态时,科研机构作为科技创新体系中的重要环节、要素、区域也就不再闭塞,科技创新的“孤岛”也就真正有望连成线、铺成面,并最终成为科技创新的强大基石。 /p
  • 监测核辐射危害!生态环境部发布关于公开征求国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》意见的通知
    近日,生态环境部办公厅发布关于公开征求国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》意见的通知。为贯彻落实《中华人民共和国环境保护法》《中华人民共和国放射性污染防治法》《中华人民共和国核安全法》,规范辐射环境监测工作,我部组织编制了国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》,现公开征求意见。标准相关资料可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。本标准分为 11 个部分,包括前言、适用范围、规范性引用文件、术语和定义、测量系统、空气吸收剂量率测量、放射性核素测量、测量要求、数据报送、质量控制、附录和参考文献。前言部分明确了编制目的,阐述了内容;第 1 章规定了标准适用的范围;第 2 章列出了本标准所引用的标准或文献资料;第 3 章阐述了相关术语和定义;第 4 章描述了碘化钠γ谱仪测量系统的组成和功能,提出了技术指标要求;第 5 章 提出了用于空气吸收剂量率测量时的要求;第 6 章提出了用于放射性核素测量时 的要求;第 7 章规定了其他测量要求;第 8 章提出了数据报送要求;第 9 章提出 了仪器校准、期间核查等质量控制要求;附录部分给出了常用γ放射性核素数据 表、剥谱法参考资料、数据报送格式(详情见附件)。附件征求意见单位名单.pdf《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》编制说明.pdf固定式碘化钠γ谱仪连续监测技术规范(征求意见稿).pdf
  • 生态环境部公开征求国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》意见
    为贯彻落实《中华人民共和国环境保护法》《中华人民共和国放射性污染防治法》《中华人民共和国核安全法》,规范辐射环境监测工作,我部组织编制了国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》,现公开征求意见。标准相关资料可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年11月10日前将书面意见反馈我部,意见电子版请发送至联系人邮箱。  联系人:生态环境部核设施安全监管司李飒、马磊  电话:(010)65646036、65646035  传真:(010)65646904  邮箱:lisa@chinansc.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)  3.《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》编制说明  生态环境部办公厅  2023年9月28日  (此件社会公开)  抄送:生态环境部辐射环境监测技术中心。
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 通知:上海台雄开通400电话了
    尊敬的客户及广大经销商朋友们: 您们好!为了进一步提高公司服务质量,从而更好的服务于各位客户及广大经销商朋友们,公司已于2013年6月14日正式开通了400服务热线电话,电话号码为:400-638-0616(固定电话及手机均可以拨打)。 固定电话号码不变:021-34120616 34120618 传真:021-34120568 希望此举能给您带来更加便捷的沟通渠道及更好的服务,感谢您们一直以来对我司各项工作的大力支持与配合,我们将做得更好!顺祝:生意兴隆,阖家幸福! 上海台雄工程配套设备有限公司 2013年7月14日
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 天美中国总部电话总机公告
    尊敬的客户、合作伙伴及所有相关单位、人员:  由于中国联通公司在北京市朝阳区天畅园施工,导致该园区电话线路无法接通,并告知无法预计接通时间。天美(中国)科学仪器有限公司的总机010-64010651近期也将无法正常使用。大家可通过以下几种途径与我们取得联系:1、客户服务热线400-810-7898和800-810-78902、传真:010-640602023、公司邮箱:techcomp@techcomp.cn4、您熟悉的天美员工的手机号码5、除北京总部外的其它全国13个分公司电话运转正常。6、天美公司官方微信公众号(天美中国)留言。 因此给客户、合作伙伴及相关单位工作带来不便,敬请谅解。公司总机恢复正常后,会再次公告通知。感谢您一直以来对天美公司的支持与认可。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 直播预告|院士专家加持,电化学仪器选型“Easy”
    作为中国历史最悠久的科学仪器品牌之一,雷磁是中国pH计和玻璃电极的诞生地,也是国内分析仪器的重要发源地;作为国产仪器国家队的突出代表,雷磁在电化学分析仪和传感器方面深耕细作、用实际行动不断擦亮着“雷磁”品牌,在“国产替代”的道路上做出了突出的贡献。经过80多年的创新和积累,“雷磁”一如既往,将仪器和技术“做优、做精、做强”! 本期直播聚焦“电化学仪器品类”,将邀请行业专家畅谈电化学分析仪器的最新发展及趋势,不仅如此,雷磁产品负责人及应用工程师还将分享仪器选型和行业应用经验,更有小课堂答题有礼活动邀您参与!点击报名》》》南京大学 陈洪渊院士陈洪渊院士,分析化学家,南京大学化学化工学院教授、学术委员会主任、分析科学和化学生物学研究所所长,兼任教育部科技委化学化工学部主任。2001年当选为中国科学院院士。中国仪器仪表行业协会分析仪器分会秘书长 曾伟曾伟,中国仪器仪表行业协会分析仪器分会秘书长,高级工程师,北京工业设计促进会理事、全国光电测量标准化技术委员会(SAC/TC487)副主任委员、军工国产化替代进口的评审专家组成员、中国仪器仪表学会科学仪器学术工作委员会委员。上海仪电科学仪器股份有限公司副总经理 金建余金建余副总经理,毕业于北京大学,分析化学博士,上海仪电科学仪器股份有限公司副总经理。长期从事电化学传感器及电化学仪器、水质分析相关技术、产品的研发和应用研究工作,积极推动电化学分析技术、水质分析技术的产品化和产业化。上海仪电科学仪器股份有限公司产品应用及技术支持工程师 李新颖李新颖工程师 毕业于东华大学,环境工程博士,上海仪电科学仪器股份有限公司产品应用及技术支持工程师。熟悉实验室各类仪器的检测标准、相关应用及操作,致力于实验室仪器的应用方法和解决方案的开发。会议日程:日期日程报告人14:00-14:05致辞陈洪渊 院士14:05-14:35电化学分析仪器的最新发展及趋势曾伟 秘书长14:35-14:40用户互动,抽奖主持人14:40-15:10电化学仪器及传感器的选型金建余 博士15:10-15:15“雷磁”用户之声VCR视频15:15-15:20用户互动,抽奖主持人15:20-15:50雷磁电化学仪器的行业应用李新颖 博士15:50-16:00用户互动,抽奖主持人报名链接:https://www.instrument.com.cn/webinar/meetings/inesa2023/欢迎各位提前锁定直播间,更多精美礼品等你来拿!咱们12月15日下午2点温暖相遇!
  • 古老而又年轻的技术——电化学发展趋势展望
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 供稿:上海仪电科学仪器股份有限公司 /span /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 一、我国电化学发展历程 /strong /span /p p   电化学分析技术是一项古老而又年轻的技术,起源于1791年意大利医学教授发现金属可使蛙腿肌肉抽缩的“动物电”现象,1800年伏特制成第一个实用电池,开启了电化学研究的新时代。经过2个多世纪的发展,电化学技术取得的成就举世瞩目,极大地推动了科学的进步和社会的发展。中国改革开放40多年来,电化学技术快速发展,逐渐成为化学、生命、材料、物理、能源、交通、环境和信息等领域的广泛分析工具,对国民经济、国防建设、科学研究等有着至关重要的意义。 /p p   在20世纪80年代中期以前,我国的电化学分析基础方法已经建立起来,电化学仪表主要采用静电计管作为输入级,以指针式显示测量值的电化学仪表,如酸度计、自动电位仪、方波极谱仪、伏安和循环伏安仪等,制造厂商有上海雷磁、延边无线电厂等。从20世纪80年代中期到90年代初期,随着电子技术的发展和计算机的普及,我国开始研究电化学仪器的计算机控制技术和数据处理技术,如“雷磁”研制的电化学仪器开始采用计算机技术,电站水质分析仪系列荣获“国家推荐产品”称号,并圆满完成了国家“95”攻关项目电站水质分析仪系列产品计算机系统项目。90年代中期,我国的研究者在电化学分析化学理论和实验方法及测试技术方面进行了深入研究,我国的电化学仪器技术进一步发展,在专用和常用仪器方面,出现了一批我国自主研发生产的仪器,标志着我国电化学分析仪器工业已经具有一定规模的研究、开发和生产能力。到90年代末期,电化学工作站的研制,标志着我国已经完全掌握了电化学仪器技术。从90年代末期到21世纪,随着嵌入式微型计算机和网络技术的发展,电化学分析仪器逐渐向智能化、信息化、微型化、集成式发展,电化学和电分析的技术和方法也更成熟,国内很多企业和研究机构进行了相关电化学仪器的研制和试制,特别是芯片技术、超微电极、多通道技术、联用技术等均得到了深入的发展,标志着我国电化学技术达到国际水准。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 二、我国电化学分析技术和产品发展历程和特点 /strong /span /p p   与典型化学分析方法相比,电化学分析法具有高灵敏度、高准确度、宽测量范围、易操作、高自动化程度、低误差等特点。我国的电化学基本仪器(PH计、离子计、电导率和溶氧仪),大致经历了以下4个发展阶段: /p p   第1代电化学仪表:采用静电计管作为输入级,用指针式电表显示测量值的电化学仪表。 /p p   第2代电化学仪表:采用运算放大器和A/D转换集成电路,用电位器调节进行校准的电化学仪表。 /p p   第3代电化学仪表:在第2代基础上,将一些标准数据储存在芯片中,采用软件技术进行自动校准,具备一些智能化功能的电化学仪表。 /p p   第4代电化学仪表:以多参数仪表为设计对象,硬件材料和操作模式更人性化和简单化,配套操作软件和配件,组成单参数、双参数或多参数的系列多功能多模块的电化学仪表,典型代表为雷磁DZS-708L多参数分析仪。仪器多以集成式、功能化、微型化和便携式为主要特点,如雷磁DZB-718L便携式多参数分析仪。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/fb176247-9ca8-434a-b820-e18763c3472a.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图1 我国电化学发展阶段(以雷磁产品为例) /span /strong /p p   目前,虽然我国的电化学仪器很多技术和仪器可以达到国际水平,但是也有一些问题亟待解决。例如部分电化学仪器的一些基础部件和设备,在国内根本很难找到合格的加工企业,只能引进国外的设备和材料,导致生产成本较高 我国的电化学中低端产品生产线比较全面和丰富,但是高端产品线还需完善和改进。除此之外,若要成为电化学技术专家,做这个行业的国际标杆,国内企业的管理水平和创新水平,均有待于提高。 /p p style=" margin-bottom: 10px margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong   三、未来电化学技术与产品的发展趋势 /strong /span /p p   21世纪是高新技术和网络信息化的时代,我国电化学技术的发展重点将围绕科研、生产、人类环境三大领域需求,向综合、联用、信息网络化发展,同时更趋微型化、集成化、自动化和智能化。重点开发的产品以技术含量高的中高端产品为主,用于水质检测、食品和药品检测、质量控制、人类健康和环境检测等多领域。快速、准确、稳定、安全、环保、便携、简单等将成为电化学产品的设计宗旨。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 四、“雷磁”发展历程和代表性电化学产品 /strong /span /p p   “雷磁”作为上海仪电科学仪器股份有限公司的自主品牌,创立于1940年,作为中国第一台pH计和第一支玻璃电极的诞生地,在科学仪器发展的道路上,已逐渐成长为电化学分析仪器领域的领军企业。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d7170f16-1aed-4cd2-a094-f54e48e75024.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图2 中国科学仪器行业泰斗朱良漪先生为“雷磁”题词 /span /strong /p p   1940年,荣仁本先生在永嘉路229弄8号设立雷磁电化研究室,从事于小型电化研究工作,制造涂料电阻,并开始电化学仪器的研制。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7242930f-a420-4ddd-bfcf-135248c8db77.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图3 电化学研究--电阻算尺和第一台pH计 /span /strong /p p   1953年,改名为雷磁电化仪器工业社,迁至威海路12弄14号,生产玻璃电极、酸度计。 /p p   1956年,雷磁电化仪器工业社在大合营高潮中被批准为公私合营,公私合营成立雷磁仪器厂。 /p p   1966年,改名为上海第二分析仪器厂。 /p p   1981年,在工商正式注册“雷磁”商标。 /p p   1983年,恢复“上海雷磁仪器厂“厂名。 /p p   2001年,按上海精密科学仪器公司实体化工作要求,变更为上海精密科学仪器有限公司雷磁仪器厂。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2ae3b077-5560-4560-bb4c-c4cc82d1a0ee.jpg" title=" 4_副本.jpg" alt=" 4_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图4 2011年新公司成立,仪电控股领导和嘉定区领导为新公司揭牌 /span /strong /p p   2011年,经上海国资委批准,上海仪电控股公司决定,雷磁仪器等资产,经市场评估后注入上海仪电控股(集团)公司旗下上海仪电电子(集团)有限公司,转制成立“上海仪电科学仪器股份有限公司”。 /p p   2015年,按照仪电集团转型发展战略,作为优质资产被纳入上海仪电(集团)有限公司旗下的上市公司云赛智联股份有限公司(股票代码600602),成为智慧城市建设中检测感知业务的主体之一。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/bf0830f6-203d-4f74-a478-e99a434037a2.jpg" title=" 5_副本.png" alt=" 5_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图5 雷磁代表性电化学产品:台式引领版系列 /span /strong /p p   产品是核心竞争力,雷磁通过不断技术突破和产品的更新换代,在电化学分析仪器产品线上不断进步,引领国内电化学技术不断发展,逐渐形成围绕水质分析的一个完整的产线结构。其中,电化学最具代表性产品为引领版系列,包括实验室单数数和多参数引领版产品、便携式单数数和多参数引领版产品。引领版系列产品由于功能齐全、技术领先、操作方便,成为电化学高端主流产品之一。美观流行的彩色触摸屏设计、合理的操作界面布局、强大的智能操作系统和高精度级别的技术参数成为引领版系列产品的突出优势。除此之外,引领版系列中的多参数仪表,可同时支持四个模块(pH计、电导率仪、溶解氧仪、离子计),实现四通道测量,该技术国际领先,促进了我国电化学产品一体化、智能化和功能化的发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/dd3dfc68-c95c-4a2f-aa99-e003b4f11424.jpg" title=" 6_副本.png" alt=" 6_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图6 雷磁代表性电化学产品:便携式引领版系列 /span /strong /p p   雷磁另一代表性电化学产品为ZDJ-5B系列自动电位滴定仪,该产品具有以下技术优势:1)通过柔性自适应技术进行模块化组合实现不同种类的滴定分析 2)可同时控制并支持多种滴定应用模块,进行电位滴定、光度滴定、电导滴定、永停滴定和温度滴定等,通过电位变化、电导电极、温度电极、氧化还原电极和光度电极实时检测溶液检测参数的变化,自动控制滴定过程和判断滴定终点 3)自动样品切换,可进行多样品的自动滴定分析 4)滴定过程可编程,用户可研究针对各种滴定分析的分析模式 5)支持多种辅助设备如打印机、自动进样器等,形成全自动滴定分子的计算机软件工作站 6)电极精度高、重复性好、性能稳定等优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/dbe53eed-f351-4417-b177-41396f437c1f.jpg" title=" 7_副本.png" alt=" 7_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图7 雷磁代表性电化学产品:ZDJ-5B自动电位滴定仪系列 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 五、雷磁电化学产品应用领域及其优势 /strong /span /p p   雷磁电化学产品,包括PH计、电导率仪、离子计、溶解氧测定仪、多参数水质测定仪和滴定仪等,最具优势的应用领域为实验室常规分析和环境检测。 /p p   在实验室常规分析中,雷磁的电化学分析仪器,在食品安全、生物医药、能源化工、环境保护等各大分析实验室的定性分析和定量分析中有着广泛的应用。一方面,相比于其他分析方法如ICP-MS、HPLC、AAS、LC、GC等,电化学分析方法无需样品前处理,对样品无特殊要求,只需将仪器和配套电极连接后即可测试,测试过程操作简单、响应速度快、测试周期短、实时性好、灵敏度高、应用范围广、实验成本低等一系列优势。例如雷磁的DWS-296型氨氮分析仪(荣获“CISILE自主创新金奖”),在测试过程中,单次测量最短只需几分钟,而且测量范围广、抗干扰能力强、试剂成本低、测试电极寿命长等显著优势。该产品的检出限可达到离子色谱水平,但没有离子色谱操作那么繁琐费时,而且技术人员容易上手,人力成本和测量成本更合理。另一方面,在实验室分析过程中,一般需要控制实验的环境如酸碱度、溶液的离子浓度和导电性等参数,因此,PH计、离子计和电导率仪常被各实验室列为通用性和辅助性设备进行样品检测和实验过程分析。雷磁的PHS-3C型酸度计,作为一款基础耐用型仪器,具有性价比高、实用性强、操作简便等优势,已经写入众多教材和标准当中,成为各大高校、研究所和第三方检测机构等实验室电化学仪器的首要选择,被评为“科学仪器行业最受关注仪器”和“国产好仪器”。除PHS-3C型酸度计外,还有DDSJ-308F电导率仪荣获“国产好仪器”称号、PXSJ-226型离子计荣获“CISILE自主创新银奖”、DZS-708L型多参数分析仪和ZDJ-5B型滴定仪等产品荣获“CISILE自主创新金奖”,获得国家高度认可,并且市场反响热烈,客户好评如潮。 /p p   环境检测,特别是水处理领域,雷磁具有很好的市场竞争力和影响力。雷磁聚焦水质分析将近70多年,作为水质处理的应用专家,主持和参与制定30份国家标准和行业标准,其中17份为第一起草人。相继承担了包括国家科技部“振兴国产仪器重大专项”在内的各类政府科研项目共50余项,申报了发明专利数十项,专利总数累计200余项。雷磁的环境检测设备主要为现场便携箱设备和在线监测设备。这些设备均运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及雷磁的专用分析软件和通讯网络,即时检测水质。雷磁的在线产品不仅测量时间短,还可以实时连续监测,准确快速地获得测量数据,及时反映污染变化状况等,满足政府和企业进行有效水环境管理的需求。除此之外,雷磁电化学产品在水处理应用上还获得了一系列荣誉称号:电站水质分析仪系列荣获“国家推荐产品”称号,DZB-715原位水质监测仪、COD-580型在线COD监测仪、COD-582在线COD监测仪、DWG-8002A型在线氨氮自动监测仪等产品荣获“CISILE自主创新金奖”。 /p p style=" margin-top: 10px margin-bottom: 10px " span style=" color: rgb(255, 0, 0) " strong   六、雷磁电化学产品布局规划 /strong /span /p p   雷磁将围绕“领先的科学仪器制造商、检测溯源系统解决方案与运行服务提供商”的战略目标,重点发展现代分析仪器,研究智能化和信息化先进分析仪器技术和电化学传感器技术,突破环境保护监测、食品药品等重大应用领域的检测应用方案和系统集成技术,打造智能检测仪器互联的管理系统和溯源协同平台。 /p p br/ /p
  • 汪尔康院士荣获中国化学会电化学委员会最高学术奖励第三届中国电化学成就奖
    “中国电化学成就奖”是电化学委员会颁发的最高学术奖励。每两年评选一次,奖励在电化学科学与技术研究中做出原创性成果,并对中国电化学事业的发展做出重大贡献的中国电化学工作者。2011年,厦门大学田昭武院士、武汉大学查全性院士荣获第一届中国电化学成就奖。2015年中国科学院长春应用化学研究所董绍俊院士(TWAS)获第二届中国电化学成就奖。2017年12月2日,中国化学会电化学委员会在第十九次全国电化学大会上公布了第三届中国电化学成就奖名单,中国科学院长春应用化学研究所汪尔康院士喜获殊荣。 p   汪尔康院士曾任中科院长春应化所所长,1952年上海沪江大学毕业,1959年在捷克获博士学位(导师诺贝尔奖获得者J.海洛夫斯基院士),1991年当选中科院院士,1993年当选第三世界科学院院士,2006年当选日本分析化学学会荣誉会员。汪尔康院士长期从事电化学与电分析化学,分析化学及环境与生命科学分析研究,“七五”开始至“十二五”国家自然科学基金委分析和电分析化学方面重大、重点项目以及国家攻关863和973项目和现国家重大项目的参加人和负责人,按国家及科技发展需要,均很好地完成任务。获国家(自然科学奖4项)和省部级奖11项及吉林省首届科技进步特殊贡献奖,国际奖2项,发明专利40多项。已发表论文900多篇,SCI收录800多篇,总引31,000多次。h指数91。国际大会报告和专题报告100多次,在27个国家和地区作学术报告200多次。涉及分析化学,电化学与电分析化学,环境与生命科学分析。主编《21世纪的分析化学》(1999)、《生命分析化学》(2006)和《分析化学手册》(第三版,2016)及《20世纪中国知名科学家学术成就概览:化学卷》编委副主编。在美、法、日和香港的5所大学聘为客座教授。为九种国际化学杂志编委,国际顾问委员会委员 曾长期担任“分析化学”主编。他热心国际学术交流:作为中方负责人创办中日分析化学会议四届(1983-1991),后扩展为亚州分析化学会议第一届(1991),至今已第16届(2016),再扩展为IUPAC国际分析科学会议第一届(1991),至今第6届(2017) 创办中法生物电分析化学会议第一届(2001),至今己第八届(2012) 创办国际电分析化学会议(ISEAC),会议一直在长春召开,每两年一次,自1987年开始至今已16届 创办北京分析测试学术报告会暨展览会(BCEIA),每两年一次,自1985年开始至今已17届。培养博士和硕士研究生100多名。其中,3人获全国百篇优秀博士学位论文奖 4人获中科院优秀博士学位论文奖 5人获中科院院长奖学金特别奖,9人获优秀奖 10多人获中科院各类冠名奖 4人获国外引进青年千人创新人才 博士后15名(1人获全国优秀博士后奖)。他本人多次获优秀导师称号。2017年(2005-2015),2016年(2004-2014),2015年(2003-2013)和2014年(2002-2012)连续获选Web of Science公布的全球高被引科学家。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/4e5fa6ae-8a54-4b87-be28-acf3f72c5b3c.jpg" title=" 111.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/46fb3b52-3ff6-406f-aa01-fdff01de37fb.jpg" title=" 112.jpg" / /p p    /p p    /p p br/ /p
  • 锂离子电池电化学测量方法概述
    p   锂离子电池电极过程一般经历复杂的多步骤电化学反应,并伴随化学反应,电极是非均相多孔粉末电极。为了获得可重现的、能反映材料与电池热力学及动力学特征的信息,需要对锂离子电池电极过程本身有清楚的认识。 /p p   电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空间电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。这些过程有些同时进行,有些先后发生。 /p p   电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。影响电极过程热力学的因素包括理想电极材料的电化学势,受电极材料形貌、结晶度、结晶取向、表面官能团影响的缺陷能,温度等因素。影响电极过程动力学的因素包括电化学与化学反应活化能,极化电流与电势,电极与电解质相电位匹配性,电极材料离子、电子输运特性,参与电化学反应的活性位密度、真实面积,离子扩散距离,电极与电解质浸润程度与接触面积,界面结构与界面副反应,温度等。 /p p   为了理解复杂的电极过程,一般电化学测量要结合稳态和暂态方法,通常包括3个基本步骤,如图1所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a9afc2e6-64ea-4948-82ad-3215bccf8bd5.jpg" title=" 001.jpg.png" alt=" 001.jpg.png" / /p p    strong 1 电化学测量概述 /strong /p p   1.1测量的基本内容 /p p   电化学测量主要研究电池或电极的电流、电势在稳态和暂态的激励信号下随外界条件变化的规律,测量反映动力学特性的参数。 /p p   1.2测量电池的分类及特点电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。 /p p   1.2.1两电极电池如图2所示,蓝色虚线框所示是一个典型的两电极电池的测量示意图,其中W表示研究电极,亦称之为工作电极(workingelectrode),C是辅助电极(auxiliaryelectrode),亦称之为对电极(counterelectrode)。锂电池的研究中多数为两电极电池,两电极电池测量的电压(voltage)是正极电势(potential)与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42e77e09-6d49-4696-a71d-981ad1f27239.jpg" title=" 002.jpg.png" alt=" 002.jpg.png" / /p p   1.2.2三电极电池与电极电势以及极化电流的测量图2是一个三电极电池示意图,W和C分别是工作电极和对电极(同上),R是参比电极(referenceelectrode)。W和C之间通过极化电流,实现电极的极化。W和R之间通过极小的电流,用于测量工作电极的电势。通过三电极电池,可以专门研究工作电极的电极过程动力学。 /p p   由于在锂离子电池中,正极和负极的电化学响应存在较大差异,近年来通过测量两电极电池电压电流曲线,对曲线进行dQ/dV处理,结合熵的原位测量,也能大致判断电池的电流或电压响应主要是与负极还是与正极反应有关。 /p p   1.3参比电极的特性及门类参比电极的性能直接影响电极电势的准确测量,通常参比电极应具备以下基本特征:①参比电极应为可逆电极 ②不易被极化,以保证电极电势比较标准和恒定 ③具有较好的恢复特性,不发生严重的滞后现象 ④具有较好的稳定性和重现性 ⑤快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性 ⑥不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。 /p p   常用的水溶液体系参比电极有可逆氢电极、甘汞电极、汞-氧化汞电极、汞-硫酸亚汞电极等 常用的非水溶液体系参比电极有银-氯化银电极、Pt电极以及金属锂、钠等电极。此外,也可以用银丝、铂丝做准参比电极,或者采用电化学反应电位稳定的溶解于电解液的二茂铁氧化还原电对。关于准参比电极细节可参考A.J.Bard编著的《ElectrochemicalMethods》。 /p p   1.4研究电极的门类及特性电化学测量中常用的研究电极主要有固体电极、超微电极和单晶电极。一般电化学研究所指的的固体电极主要有Pt电极和碳电极。其中碳电极包括热解石墨、高定向热解石墨(HOPG)、多晶石墨、玻璃化碳、碳纤维等。固体电极在使用时需要对其表面进行特殊处理,以期达到较好的重复性。常规的处理步骤为:①浸泡有机溶剂,除去表面吸附有机物 ②机械抛光,初步获取较高的表面光洁度 ③电化学抛光,除去电极表面氧化层及残留吸附物质 ④溶液净化,保证溶液的纯度,消除溶液中的杂质对测量结果的影响。 /p p   此外,超微电极和单晶电极以其独特的性质,近些年来也得到了较广泛的应用。前者可以快速获得动力学参数,且对待测材料的量要求很低,可以避免黏结剂、导电添加剂的干扰。后者可以精确获得溶剂吸脱附、表面结构、结晶取向等对电极过程动力学的影响。 /p p   在锂离子电池的研究中,固体电极包括含有活性物质的多孔粉末电极、多晶薄膜电极、外延膜薄膜电极、单颗粒微电极以及单晶电极等,多数测量时采用多孔粉末电极。 /p p   1.5电极过程电极过程一般情况下包括下列基本过程或步骤:①电化学反应过程:在电极/溶液界面上得到或失去电子生成反应产物的过程,即电荷转移过程 ②传质过程:反应物向电极表面或内部传递或反应产物自电极内部或表面向溶液中或向电极内部的传递过程(扩散和迁移) ③电极界面处靠近电解液一侧的双电层以及靠近电极内一侧的空间电荷层的充放电过程 ④溶液中离子的电迁移或电子导体、电极内电子的导电过程。 /p p   此外,伴随电化学反应,还有溶剂、阴阳离子、电化学反应产物的吸附/脱附过程,新相生长过程以及其它化学反应等。 /p p   锂离子电池作为一种复杂的电化学体系,其电极过程同样具备上述几个基本步骤。其工作原理如图3所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/93c5e038-8fe5-45b8-95cf-7a848c79c7c2.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p   针对不同的电极材料及电极体系,上述基本过程可简化为锂离子电池中离子和电子的传输及存储过程。所涉及的电化学过程有电子、离子在材料的体相、两相界面和(solidelectrolyteinterphase,SEI)的形成等过程。典型的电极过程及动力学参数有:①离子在电解质中的迁移电阻(Rsol) ②离子在电极表面的吸附电阻和电容(Rad,Cad) ③电化学双电层电容(Cdl) ④空间电荷层电容(Csc) ⑤离子在电极电解质界面的传输电阻(Rincorporation) ⑥离子在表面膜中的输运电阻和电容(Rfilm,Cfilm) ⑦电荷转移(Rct) ⑧电解质中离子的扩散电阻(Zdiffusion) ⑨电极中离子的扩散(Zdiffusion)——体相扩散(Rb)和晶粒晶界中的扩散(Rgb) ⑩宿主晶格中外来原子/离子的存储电容(Cchem) 相转变反应电容(Cchem) 电子的输运(Re)。 /p p   上述基本动力学参数涉及不同的电极基本过程,因而具有不同的时间常数。典型的电池中的电极过程及时间常数如图4所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/15e1c68c-99dc-4dd3-baf5-27e2c29a2754.jpg" title=" 004.jpg.png" alt=" 004.jpg.png" / /p p   1.6电化学极化的类型及其特征1.6.1极化的类型及其特征在施加了外来电场后,电池或电极逐渐偏离平衡电势的状态,称之为极化。在不具有流动相的电池中,存在着3种类型的极化:①电化学极化——与电荷转移过程有关的极化,极化的驱动力是电场梯度 ②浓差极化——与参与电化学反应的反应物和产物的扩散过程有关的极化,极化的驱动力为浓度梯度 ③欧姆极化——与载流子在电池中各相输运有关的极化,驱动力是电场梯度。 /p p   若还存在其它基本电极过程,如匀相或多相化学反应过程,则可能存在化学反应极化。 /p p   极化电势与平衡电势的差值的大小被称之为过电势。 /p p   1.6.2极化的影响因素各类极化的影响因素如下。(1)电化学极化的大小是由电化学反应速率决定的,电化学极化电阻(Rct)的大小与交换电流密度(io)直接相关。受多种因素影响,包括电极电位、电极电位与电解质电化学势差、反应物与产物的活度、参与电化学反应的电极的真实表面积、结晶取向、有序度、表面电导、反应温度、催化剂催化特性、电化学反应的可逆性等。 /p p   电化学极化的电流与电势在一定的电流电压范围内一般符合Tafel关系,log(i)与过电势成正比。 /p p   (2)浓差极化与传质粒子的扩散系数有关。电池中的扩散过程可以发生在电极材料内部,多孔电极的孔隙中,以及电解质相中,参与扩散的可以是多种带电或中性粒子。涉及扩散的粒子流的流量一般符合菲克扩散定律,与扩散系数及浓度梯度有关。由于电池是非均相体系,扩散系数与浓度梯度是空间位置的函数,在电化学反应的过程中,会随时间变化。传质的快慢与传质距离的平方成正比。 /p p   浓差极化过电势hcon与电流i,极限电流il的关系符合对数关系,hcon=RT/nF´ ln[(il-i)/il]。在过电势较小时,hcon=-RTi/nFil。 /p p   (3)欧姆极化的大小是由电池内部涉及到电迁移的各类电阻之和,即欧姆电阻决定的。欧姆极化过电势与极化电流密度成正比。 /p p    strong 2 小结与展望 /strong /p p   电化学表征技术在锂离子电池中有着非常广泛的应用,而电化学表征方法也非常之丰富,除了文中介绍的几种方法外,还有诸如 PSCA、CPR、CITT、RPG 等。随着实际应用的需要,新的电化学表征方法,特别是与其它表征技术结合形成的各类原位测量技术,正在迅速发展。 /p p   电极过程动力学研究的目的是获得能反映电极材料本征动力学特性的参数值,例如电荷转移电阻、扩散系数、交换电流密度,膜电阻等,并掌握该参数值随不同充放电深度(嵌脱锂量)以及温度的变化,从而能够理解、模拟、预测各类工况下及充电过程中电池极化电阻、电容的变化规律。而实验室在基础研究时往往采用粉末电极,导致在不同材料之间可靠的比较动力学参数基本不可能非常精确,除非材料的尺寸、粒度分布、表面官能团、导电添加剂、粘接剂、分散度、电极厚度、压实密度、体积容量得到了精确的控制和能实现高度的一致性。 /p p   相对于手工制作的电极,自动化设备制作的电极往往具有较好的一致性,更适合用来研究电极过程动力学。在基础研究时最好采用薄膜电极、微电极或单晶电极。 /p p   对于批量生产的电池,通过比较充放电曲线,分析直流极化电阻、固定频率的交流阻抗,开路电压等,可以获得表观的动力学参数,采用这些参数通过电化学模拟软件,可以将为准确的预测电池各类工况下的荷电态、极化电阻、输出功率,成为电源管理系统软件的核心内容 。 /p p   事实上,锂离子电池涉及的电化学为嵌入电极电化学,有别于传统的电极不发生结构演化,电化学反应主要发生在电极表面的溶液电化学。电化学双电层(EDL)与空间电荷层(SCL)共存,在充放电过程中,离子将穿过 EDL 与 SCL,电荷转移往往发生在电极内部而非表面,电极为混合离子导体,电化学反应伴随着相变和内部传质,这与一般教科书上描述的的电化学反应体系、研究方法、数学模型存在显著差异,需要发展新的理论与实验方法。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所) /i /span /p
  • 电化学科学与技术前沿国际学术会议成功举办
    由我校与和厦门大学联合承办的“第60届国际电化学学会卫星会议——电化学科学与技术前沿国际学术会议”在启夏苑隆重举行。本次会议得到了国际电化学会、中国电化学会、国家自然科学基金委、我校和厦门大学的资助。100多位来自18个国家和地区的著名大学、科研机构的代表参加了本次会议,其中外国专家80余名,有现任国际电化学学会现任主席和前两任主席、现任副主席4人、以及各国电化学领域的领军人物,国内专家20余名。   开幕式由厦门大学固体表面物理化学国家重点实验室主任田中群院士主持,我校校长房喻教授致欢迎词,国际电化学会主席Robert Hillman教授致开幕词,组委会主席、我校化学与材料科学科学院长张成孝教授汇报了会议的组织情况。开幕式后,全体与会代表在图书馆前合影留念。   本次会议共收到学术论文81篇,其中1个大会报告、24个邀请报告、26个口头报告和30个墙报,分别就“电分析化学” 、“生物电化学” 、“电化学能源转换和储存” 、“电化学材料科学” 、 “电化学工程与技术” 、“分子电化学” 、“物理电化学” 、“电化学科学和技术的挑战和前景”进行研讨。
  • 探索砷(III)电化学检测影响机制中的进展
    近期,中国科学院合肥物质科学研究院智能机械研究所仿生功能材料与传感器件研究中心&ldquo 973&rdquo 首席科学家刘锦淮研究员和中科院&ldquo 引进海外杰出人才&rdquo 黄行九研究员领导的课题组研究人员在探索砷(III)电化学检测影响机制上实现新突破。   长期以来,实现复杂环境中砷(III)稳定高效的电化学检测是困难且重要的问题。因其他离子如汞(II)、铜(II)和天然有机物等产生的干扰,一直是研究人员特别关注的问题。而此前的诸多报道对干扰的影响机制研究甚少,缺乏理论及实验依据。   合肥研究院智能所研究人员从实际应用的角度出发,依托内蒙古托 克托县兴旺庄村地下水为背景,借助于光谱法深入研究了腐植酸和铁(III)对砷(III)的电化学信号的影响。研究结果表明,腐植酸可以和水中砷 (III)发生络合,从而影响到检测信号;而铁 (III)的存在可以更强的作用力与腐殖酸结合,消除腐植酸与金电极或者As(III)的结合,从而实现砷(III)稳定高效的电化学检测。研究论文发表 在环境类期刊《危险材料》上(J. Hazard. Mater. 2014, 267, 153)。评审人认为&ldquo 相对于砷(III)的检测,该工作对干扰物对电化学信号的影响提出了比较深刻的理解&rdquo ;&ldquo 该工作具有新颖性,并且对消除这些对砷分 析产生影响的腐植酸的新的可能性带来一种思路&rdquo 。   近几年来,该课题组研究人员一直致力于探索纳米材料在电分析行为与吸附性能的相关性。 对此,他们利用氨基功能化氧化石墨烯和多孔双金属氧化物(氧化铈-氧化锆)纳米微球探究了水中重金属如砷(III)、砷(V)、钴(II)的吸附性能。相 关研究深入论证了表面官能团对去除重金属的重要作用。该研究成果也以全文发表在《危险材料》上(J. Hazard. Mater. 2013, 260, 498;J. Hazard. Mater. 2014, 270, 1)。   以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及合肥物质科学技术中心方向项目等的支持。
  • 电化学合成与科研创新
    科研的核心精神是什么?创新、创新、创新!!! 如何创新?这是一个重大课题。不如看看Phil. S Baran的现身说法。1 Phil.S Baran,他是谁? ? 美国斯克利普斯研究所(Scripps)教授? 美国科学院院院士,2017年? 麦克阿瑟天才奖得主,2013年(MacArthur Fellowship)? 主页:http://baranlab.org/? 研究方向:有机合成? 发表文章130多篇,其中11篇Nature,7篇Science2 Phil.S Baran为什么尝试电化学合成? 套用Phil. S Baran的原话,主流合成化学领域中尝试做电化学都是出于一种原因:绝望。譬如:单体之间的N-N键结成二聚合分子,只能用电化学方法合成烯丙位氧化,CH弱键可以被氧化,但是所用催化剂量大,昂贵,不环保产率低如何突破传统合成的瓶颈?传统合成的研究从1840年发展到现在,要创新谈何容易?!那是否可以在方法创新?!电化学合成方法进入他的视线了。3 Phil. S Baran用电化学合成法同时上Nature和Science 1. 《Nature》上发表的文章为:电化学方法氧化烯丙位碳氢键(C-H键)。(Scalable and sustainable electrochemical allylic C–H oxidation. Nature, DOI: 10.1038/nature17431)2. 《Science》上发表的文章为:烷基-烷基交叉偶联的电化学方法(A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, DOI: 10.1126/science.aaf61234 电化学方法氧化烯丙位碳氢键(C-H键)框架解读1. Nature文章电化学方法氧化烯丙位碳氢键的背景:烯丙基的氧化是有机合成中的经典反应,传统方法需要借助高毒性的氧化试剂,如铬和硒;还有很昂贵的催化剂,如钯和铑,难以放大工业级别的合成,如下图1-a、b所示。这篇文章改用电化学氧化的方法,结果到底如何呢? 电化学烯丙位的氧化早在1968年就有报道,电化学氧化α-蒎烯(1),如下图1-C(2)所示,直到1985年才有个重大的提升,可以直接实现氧化,如图1-C(3),只是产率比较低,都在13%-24%之间。图片来源:Nature, DOI: 10.1038/nature174312.Phil. S Baran实验室对电化学合成条件做的优化、扩展。第一步:选择合适的电极Phil. S Baran实验室未采用昂贵的金/铂电话,改而采用比较经济的,惰性也非常好的石墨电极和网状玻碳电极(RVC电极)。但是石墨电极有一定的吸附作用,回收率偏低。而RVC电极表现出更稳定的反应性能。第二步:筛选最佳的反应媒介和共氧化物,如Fig.2所示 图片来源:Nature, DOI: 10.1038/nature17431第三步:从朱栾倍半萜烯丙位的氧化扩展到烯丙位的氧化的通用电化学合成方法 图片来源:Nature, DOI: 10.1038/nature17431 第四步产量升级:100g规模的合成 图片来源:Nature, DOI: 10.1038/nature174315 从“电化学方法氧化烯丙位碳氢键(C-H键)”中看到的社会价值 1. 更经济、环保:从昂贵、有毒金属催化剂到经济、环保“电”催化的转变2. C-H氧化批量生产药物/化学品:从不可能变成可能3. 电化学合成方式或可创造一个全新的合成世界!这还不是尾声,Phil. S Baran还有更大壮举:虽然发表了Nature,也带来了巨大的社会价值,但是实验中还有小小遗憾。当时做C-H氧化电化学合成设备,全部都是自行搭建,恒电位仪、电极、反应管、电极固定夹、数据分析和记录器等等10多项产品,即便专业人员也需要耗费超40min的时间才可以完成搭建,且合成反应的重现性很差。他能否弥补这份遗憾? 2017年8月22日,美国秋季化学会上,Phil. S Baran带给大家更多的惊喜:一份对电化学合成不一样的解读 + 一个全球标准化的电化学合成仪“ElectraSyn 2.0”。点击视频,了解更多关于美国秋季发布会现场情况。Phil.S Baran 发布会现场
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 美国Gamry电化学参加 2016全国腐蚀电化学及测试方法学术交流会
    主题为“面向石油、天然气和海洋工程的腐蚀电化学”的2016全国腐蚀电化学及测试方法学术交流会于7月13日~7月15日在中国青岛顺利举行。本次会议由腐蚀与防护学会腐蚀电化学及测试方法专业委员会主办、中国石油大学(华东)协办,来自全国的腐蚀研究者共聚青岛,交流和展示最新成果,讨论腐蚀电化学学科的前沿和发展方向,探索如何进一步推动和拓展腐蚀电化学科学和技术在我国石油工程、天然气工程、海洋工程和水处理中的应用与发展。 美国Gamry电化学仪器公司是电化学专业仪器生产厂商。目前在中国的上海与北京有专门的技术人员与支持中心, 维修中心。 本次大会, 产品经理司国春与技术支持工程师谈天与到会的新、老客户进行了交流和互动。 针对腐蚀领域,Gamry将具有优异测试性能的Ref 600升级至Ref 600 Plus。升级后的Ref 600 Plus频率范围扩展至10μHz~5MHz,电流范围13个量程(600fA~600mA),仪器本身噪声低至μV,具有超高的阻抗测试范围和精度μΩ~TΩ(参考阻抗精度图),集恒电位计、恒电流计、ZRA为一身,可运行完整的直流技术、交流阻抗和电化学噪声测试。优异的浮地性能,轻松应用于石油、天然气管道在线监测,高温高压反应釜等领域。 Interface 1000是另一种最佳选择,包含应用腐蚀领域的各种直流、交流、噪声等测试方法,并可组成多通道,提高测试效率。Gamry多通道系统比较灵活,同型号或不同型号均可组成多通道,各个通道之间相互独立, 也可同时进行测试。 为了更好的让新、老客户了解和熟悉使用Gamry电化学工作站,Gamry计划提供系列培训方式,包括定期上海、北京培训,安装现场培训,网络在线培训以及阻抗/腐蚀专场培训(美国),各种培训详情请参考以下链接:http://cn.gamry.com/training-info.pdf 。诚挚欢迎新、老客户前来参加。
  • 天津检出一批不合格工业用碘化钾 过量服用可致中毒
    p   近日,天津空港检验检疫局工作人员在对辖区内一家电子企业进口的工业用碘化钾进行检验时,发现商品外包装未印明“仅用于工业用途”相关字样,并且企业无法提供标明该商品实际用途的证明,不符合相关法规规定。 /p p   国家质检总局(2007年第70号公告)明确规定对申报仅用于工业用途,不用于人类食品和动物饲料添加剂及原料的产品,企业须提交贸易合同及非用于人类食品和动物饲料添加剂及原料产品用途的证明。对此,该局第一时间通知企业保持货物和包装原状,未经许可不得擅自使用和销售。 /p p   碘化钾是列入《出入境检验检疫机构实施检验检疫的进出境商品目录》的124种人类食品和动物饲料添加剂及原料产品之一,允许用于特殊膳食用食品的营养强化和食用盐中碘的使用。食品用添加剂有效物质含量高,有害物质含量在规定的范围内,对人体不构成危害 工业用添加剂有效物质含量低,杂质(包括有害杂质)多,不可用于饲料、食品、化妆品等。工业用途的碘化钾对人体有害,可引起皮肤红斑、关节疼痛淋巴结肿大等症状,长期服用可出现口腔、咽喉部烧灼感等碘中毒症状,过量碘化物对胎儿及孕妇也有毒副作用。工业用添加剂流入食品环节,不仅会对人体造成伤害,也会引起社会恐慌。 /p p   检验检疫人员提醒广大进出口企业:要及时了解国家对工业用和食品用添加剂的相关政策,针对工业用添加剂,企业在报检时要提供贸易合同及非用于人类食品和动物饲料添加剂及原料产品用途的证明,并要求发货方在商品外包装印明“仅用于工业用途”字样,避免因不合格情况而影响企业的正常生产。 /p p br/ /p
  • 上海精科电化学产品部举办乔迁庆典仪式
    上海精科电化学产品部在新厂房举办乔迁庆典仪式   10月28日,金秋送爽、桂花飘香,新近搬迁到上海嘉定安亭工业园区园大路5号新厂房的我公司电化学产品部,隆重举行了乔迁庆典仪式。仪电集团副总裁邵礼群、总裁助理曹光明、人力资源部总经理秦伟芳、制造事业部常务副总经理陶亚华一行,安亭镇党委书记张黎平、副镇长孙亚明、嘉定区环保局局长桑健民、副局长顾勇国,中国仪器仪表协会副理事长兼秘书长李耀光,中国仪器仪表学会分析仪器分会理事长、长三角清华园科学仪器联盟理事长闫成德,中国分析测试协会副理事长王顺昌,中国仪器仪表学会副秘书长张彤,上海市场科委特聘专家、电化学专业委员会名誉主任方禹之,电化学专业委员会秘书长、长江学者鞠煜先,飞乐公司董事长樊志强、副董事长陈国良、总经理刘家雄、党委副书记高月华、副总经理刘仁仁及有关部室经理,全国各地重点经销商,精科公司总经理汤志东、副总经理项敏、陆利新、袁为立、总工程师殷传新,电化学产品部党政领导和全体员工,参加了庆典仪式。   庆典仪式上,燃放了喜庆鞭炮。在国歌声中,中华人民共和国国旗、上海仪电和飞乐股份旗帜升起并迎风飘扬。汤志东同志首先致欢迎词,对各位来宾参加电化学产品部搬迁庆典表示热烈欢迎。他指出,电化学产品部在各级领导的关怀下,在各地经销商的支持下,在全体员工的努力下,走过了50多年的持续发展历程,打造了“雷磁”品牌,在国内电化学分析制造行业独占鳌头。当前,在上海仪电加快发展科学仪器的东风吹拂下,电化学产品部在新址一定会在大家一如既往的支持下,优化经营理念,提升企业文化,走产学研合作之路,打造自主创新品牌,加快国际化进程,推动上海精科的发展。   客户代表、行业领导、安亭镇领导、公司领导刘家雄同志和仪电集团领导邵礼群同志在庆典上先后发表了热情洋溢的讲话。行业领导、仪电集团领导和飞乐公司领导在讲话中对电化学产品部做到搬迁、经营两不误和在激烈的市场竞争中做到努力开发新产品、坚持自主创新品牌,走上持续发展之路表示肯定和赞赏,并祝精科公司电化学事业不断发展,更上一层楼。   庆典仪式后,来宾们在汤志东同志的陪同下参观了电化学产品部产品展示厅。 图一为仪电集团、安亭镇、行业学会、飞乐股份等领导为精科公司电化学产品部乔迁新厂房暨正式开工剪彩 图二为中国仪器仪表协会副理事长兼秘书长李耀光发表热情洋溢讲话
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 大连大特气体400电话售后服务现已开通
    尊敬的客户朋友们:您们好!为进一步提高我司售后服务质量,更好的服务于各位客户及朋友们,大连大特气体售后服务全面升级,正式开通400售后服务电话,号码为:400-811-8107,您可通过固定电话及手机拨打。电话接听时间:北京时间周一至周五8:00-17:00,法定节假日除外。 大特气体的售后服务团队全部由资深技术专家组成,继2020年荣获五星级售后服务认证后再次扩大团队阵容。我们将全天候在线支持您关于我司产品使用过程中的任何问题,并同步实现线上技术指导,第一时间组织协调支持。我们始终把提高产品质量、优化客户服务、完善专业技术放在企业发展的最重要位置。希望此举能为您带来更加便捷的沟通及更优质的服务。 感谢您们一直以来对我司各项工作的大力支持与配合,我们将不断努力并竭诚为您服务!‍
  • 电化学仪器用于环保领域,前景十分看好
    “100家国产仪器厂商”专题: 访上海精密科学仪器有限公司雷磁电化学仪器事业部   为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动了“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了上海精科雷磁电化学仪器事业部。   上海精科由原上海分析仪器总厂、上海天平仪器厂、上海雷磁仪器厂、上海物理光学仪器厂等国内科学仪器行业内著名企业组成,是目前国内最大的科学仪器制造集团之一,也是我国第一台分光光度计、第一台天平、第一台PH计以及第一台旋光仪的诞生地。上海精科目前拥有“上分”、“棱光”、“上平”、“双圈”、“雷磁”、“申光”等多个著名品牌。   上海精科率先通过了ISO9001质量管理体系认证和ISO14001环境管理体系认证,旗下多个品牌多次被评为“上海名牌”。2009年上海精科被中国仪器仪表学会授予“中国分析仪器发展贡献奖”。   pH计是实验室和生产过程中普及程度最为广泛、不可或缺的基本仪器之一,此次访问的是以pH计等电化学仪器为主打产品的“上海精科雷磁电化学仪器事业部”(简称“雷磁事业部”)。   上海精科常务副总经理兼雷磁电化学仪器事业部总经理汤志东先生、上海精科营销部经理叶鸿美女士热情地接待了我们一行,雷磁电化学仪器事业部常务副总经理姚元忠先生、总工程师殷传新先生带领我们参观了雷磁事业部生产车间,并为我们介绍了雷磁事业部近几年的发展情况。     雷磁品牌,创建于1953年   一、 历史悠久、不断发展   上海精密科学仪器有限公司雷磁仪器厂即原上海雷磁仪器厂,由荣仁本先生(全国政协委员)于1953年创建。作为我国第一家分析仪器专业生产企业,经过五十多年的不懈努力,从最初只有十几名员工的私营工厂发展成为今天员工人数近二百人、年产电化学仪器超过2万台、产值近亿元的国有企业,是目前国内规模最大、产品品种最齐全的电化学分析仪器及传感器生产厂。“雷磁”品牌享誉全国。   长期以来,雷磁不断重视新品开发和市场开拓,主要产品除PH计、电导率仪等实验室仪器外,通过引进消化吸收后,在在线水质分析仪器等方面也有了较大的突破,产品的应用领域也不断地拓展。通过市场细化和产品结构调整,形成了十大系列百余个品种的仪器及其相配套的传感器 近年的销售收入和利润增长幅度保持在10%,市场占有率名列前茅。   2003年12月,在雷磁50周年庆典之计,朱良漪先生为雷磁题词:“历经沧桑跌宕起伏半世纪,秉承专长努力拓宽创新,无愧为中国分析仪器企业第一家”。2009年10月,精科公司电化学产品部搬入了宽敞明亮的新厂房 中国仪器仪表行业协会秘书长李跃光先生在庆典仪式上致辞并预祝雷磁“创百年老字号,树中华名牌。”     2007年起,“雷磁”电化学仪器连续获得了上海市名牌称号   通过严格贯标、抓产品质量、抓诚信服务,“雷磁”牌连续两次获得“上海名牌”等荣誉称号,雷磁事业部2007年11月被评为“上海市装备制造与高新技术产业自主创新品牌”单位、2009年被中国水网誉为“水业用户满意设备品牌”。   二、 注重自主创新,确定重点战略目标,取得长足进步   “以自主创新不断推出新产品来取胜”,是精科公司常务副总经理兼雷磁电化学仪器事业部总经理汤志东先生多年的口头禅 每个员工都熟谙这句口头禅的含义:一个企业,如果没有自主创新的能力,很难在市场上立足,甚至被市场抛弃 所以,雷磁事业部从领导到生产员工都不敢松懈自己的工作,注重工作创新。   雷磁事业部通过深入了解市场、用户的需求,制定科学的发展战略,并且深入宣传发展战略,努力增强员工的责任感、使命感。十年前,雷磁事业部提出了“做优实验室仪器、做强在线监测仪表、做精电化学传感器”的战略目标 其后新品开发速度不断加快,每年有10多个项目的立项,同时抽出技术力量对所有传统产品进行技术革新,保持产品的竞争力。   近年来,雷磁事业部在注重自主创新、制定科学的发展战略、保护自主知识产权和提高核心竞争力方面取得了不俗的成绩并成功推出了一系列非常有市场竞争力的产品,如:DWG-8002A型氨氮自动监测仪获得“2008年度优秀产品奖” ZDJ—5自动电位滴定仪等产品获得自主创新奖 PXSJ—226离子计、COD—580型COD在线检测仪等新品投放到市场便受到用户的青睐,销售量逐年上升。上述产品代表了“雷磁”牌电化学仪器的技术水平和智能化程度,保持了国内行业的领先地位,有的接近或达到国际先进水平。   雷磁电化学仪器事业部常务副总经理姚元忠(左一)、总工程师殷传新(左二) 介绍雷磁产品发展情况   三、 技术先进、门类齐全、形成电化学实验室仪器龙头   在自主创新的同时,雷磁积极跟踪、分析国际电化学仪器发展趋势,结合开发团队具备的电子、机械、软件、化学分析等方面的综合能力,制订了新产品发展目标,提出了以同行美国哈希公司和德国E+H公司为标杆,用坚持自主创新来实现雷磁事业部“做优、做强、做精”战略目标,打破国内高档电化学分析仪器市场和环保仪器市场被进口仪器“主宰”的格局。雷磁电化学仪器全面向智能化、信息化、模块化、系统化、和网络化方向发展。主要产品系列涉及PH计、电导率仪、自动滴定仪、离子计、溶氧仪、浊度仪等,产品不但满足国内用户的需求,还远销东亚、西亚、东欧、南美、北美等地区。     中国的第一支PH玻璃电极诞生于雷磁,经过雷磁几十年的努力,目前形成传感器的种类有PH复合电极、参比电极、离子电极、金属电极、溶解氧电极等多个品种,由传感器分公司专业制造。   PHSJ-5型实验室pH计,采用了高精度A/D转化芯片,配置了精密级pH电极、参比电极和温度传感器,确保了仪器具有0.001级pH的测量精度。该仪器可自动识别五种标准溶液、自动温度补偿、自动校准、自动计算电极百分理论斜率     DZS-708多参数水质分析仪,可同时测量mV、pH/pX、离子浓度、电导率、TDS、盐度、溶解氧、饱和度、温度,随机提供了多种常用的离子模式如:H+、Ag+、Na+、K+、NH4+、Cl-、F-、NO3-、BF4-、CN-、Cu2+、Pb2+、Ca2+等。有三种测量模式:连续测量模式、定时测量模式和平衡测量模式     ZDJ-520在线自动滴定仪具备自动判断滴定终点,能够进行pH、ORP、沉淀和络合滴定分析,可以自动温度补偿、自动标定和自动添加调节试剂,自动清洗及补液以及故障自诊功能。该仪器获得了“2008年度科学仪器优秀新产品”奖   四、 关注环境健康,发挥自身优势,大力发展在线自动监测仪器   如今,“低碳经济”已经是国内和国际发展的主流意识,环境健康、人类健康受到了前所未有的重视 雷磁未雨绸缪,积极调整方向,大力发展在线自动监测仪器。主要产品有在线COD环保监测仪、在线多参数水质监测仪、氨氮监测仪、污水溶解氧监测仪、工业PH/ORP计等产品。除了雷磁环保工程分公司运营环保仪器外,2010年雷磁又专门成立了在线仪器销售科,力推在线仪器的销售,为用户提供绿色仪器,满足顾客需求。     COD580在线水质监测仪,采用电化学氧化(羟基电极法)测量水中的COD值,仪器使用硫酸钠和葡萄糖溶液,无需重铬酸钾及浓硫酸等危险、有害的化学物质,通过信号输入同时可显示COD、温度、pH、流量,非常适合在线快速测量,以及远程控制  SJG-203A型溶解氧分析仪主要用于自来水厂源监测、水产养殖、城市污水处理厂等     DWG-8002A型氨氮自动监测仪,仪器采用氨气敏电极法在线监测水中的氨氮浓度,能广泛应用于对工业废水、生活污水、地表水等的监控。试剂消耗量少,运行成本低    对于新推出环保仪器的销售情况,雷磁一线装配工人称目前“销售等着要,我们需要加班加点来完成”,今年四、五月份,雷磁生产的COD-580在线水质监测仪和DWG-8002A型氨氮自动监测仪订单比去年同期增加了一倍多。   五、 愿景   面临新的市场需求,雷磁将继续发奋努力,抓住机遇,面对挑战,以公司“诚实、责任、顾客、团队、进取”的核心价值观和雷磁“务实、创新、求精、致远”的企业宗旨,“为提高人们的生活质量,提供高科技产品和优质服务”,实现企业稳定、健康、有效、持续的发展,进一步提升国产电化学仪器的水平。   本专题将对上海精科其他仪器部门的报道也会陆续推出,敬请期待。   附录:上海精密科学仪器有限公司   http://spsic.instrument.com.cn   http://www.spsic.com/
  • 锂离子电池电化学测量方法分类介绍
    p    strong 1 稳态测量 /strong /p p   1.1 稳态过程与稳态系统的特征 /p p   一个电化学系统,如果在某一时间段内,描述电化学系统的参量,如电极电势、电流密度、界面层中的粒子浓度及界面状态等不发生变化或者变化非常微小,则称这种状态为电化学稳态。 /p p   稳态不等同于平衡态,平衡态是稳态的一个特例。同时,绝对的稳态是不存在的,稳态和暂态也是相对的。稳态和暂态的分界线在于某一时间段内电化学系统中各参量的变化是否显著。 /p p   1.2 稳态极化曲线的测量方法 /p p   稳态极化曲线的测量按照控制的自变量可分为控制电流法和控制电势法。 /p p   控制电流法亦称之为恒电流法,恒定施加电流测量相应电势。控制电势法亦称之为恒电位法,控制研究电极的电势测量响应电流。 /p p   本质上恒电流法和恒电势法在极化曲线的测量方面具有相同的功能,如果电化学体系中存在电流极大值时选择恒电势法,存在电势极大值时选择恒电流法。 /p p   1.3 稳态测量方法的应用 /p p   稳态极化曲线是研究电极过程动力学最基本的方法,在电化学基础研究方面有着广泛的应用。可根据极化曲线判断反应的机理和控制步骤 可以测量体系可能发生的电极反应的最大反应速率 可以测量电化学过程中的动力学参数,如交换电流密度、传递系数、标准速率常数和扩散系数等 可以测定Tafel 斜率,推算反应级数,进而获取反应进程信息 此外,还可以利用极化曲线研究多步骤的复杂反应,研究吸附和表面覆盖等过程。 /p p    strong 2 暂态测量 /strong /p p   2.1 暂态过程与暂态系统的特征 /p p   暂态是相对稳态而言的,随着电极极化条件的改变,电极会从一个稳态向另一个稳态转变,在此期间所经历的不稳定的、电化学参量显著变化的过程称之为暂态过程。 /p p   暂态过程具有如下基本特征:①存在暂态电流——该电流由双电层充电电流和电化学反应电流组成,前者又称之为非法拉第电流或电容电流,后者常常称之为法拉第电流 ②界面处存在反应物与产物粒子的浓度梯度——即电极/溶液界面处反应物与产物的粒子浓度,如前所述,不仅是空间位置的函数,同时也是时间的函数。 /p p   2.2 暂态过程中的等效电路分析及其简化 /p p   由于暂态过程中的各参量是随时间变化的,与稳态过程比较,更为复杂。为便于分析和讨论,将各电极过程以电路元件组成的等效电路的形式来描述电极过程,等效电路施加电流后的电压响应,应与电极过程的电流电压响应一致。典型的两电极测量体系等效电路如图 5 所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a705964b-ec79-49be-86a2-0967442f14c9.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 5 两电极体系电解池的等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.5 Equivalent circuit of two electrode system /span /p p   图 5 中,A 和 B 分别代表研究电极和辅助电极(两电极体系),R A 和 R B 分别表示研究电极和辅助电极的欧姆电阻,C AB 表示两电极之间的电容,R u表示两电极之间的溶液电阻,C d 和 C d & #39 分别表示研究电极和辅助电极的界面双电层电容,Z r 和 Z r & #39 分别表示研究电极和辅助电极的法拉第阻抗。 /p p   若 A、B 均为金属电极,则 R A 和 R B 很小,可忽略 由于两电极之间的距离远大于界面双电层的厚度,故 C AB 比双电层电容 C d 和 C d & #39 小得多,当溶液电阻 R u 不是很大时,由 C AB 带来的容抗远大于 R u ,故C AB 支路相当于断路,可忽略 此外,若辅助电极面积远大于研究电极面积,则 C d & #39 远大于 C d ,此时,C d & #39 容抗很小,相当于短路,故等效电路(图 5)最终可简化为如图 6 所示。这相当于在电池中一个电极的电阻很小时的情况,如采用金属锂负极的两电极电池。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/29358b29-15c6-41d9-a13a-a6df8af6f153.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 6 两电极体系电解池的简化电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.6 Simplified circuit of two electrode system /span /p p   由于电极过程的多步骤和复杂性,不同速率控制步骤下,电极体系的等效电路不尽相同,有时可以进一步简化,常见的有如下三种情形。 /p p   (1)传荷过程控制下的等效电路 /p p   暂态过程中由于暂态电流的作用使得电极溶液界面处存在双电层充电电流,该双电层类似于平行板电容器,可用 C d 表示,相应的充电电流的大小用i c 来表示。此外,界面处还存在着电荷的传递过程,电荷的传递过程可用法拉第电流来描述,由于电荷传递过程的迟缓性,导致法拉第电流引起了电化学极化过电势,该电流-电势的关系类似于纯电阻上的电流-电势关系,因而电荷传递过程可以等效为一个纯电阻响应,用 R ct 表示。由于传荷电阻两端的电压是通过双电层荷电状态的改变而建立起来的,因而,一般认为 R ct 与 C d 在电路中应属于并联关系,传荷过程控制下的简化等效电路如图 7 所示。需要指出的是,这一简化模型基于传统电化学体系,锂离子电池中,电极在多数状态下。大量电荷存储在电极内,造成电容效应,可以称之为化学电容 C chem ,与C dl 应该是串联关系。在实验上与 R ct 并联显示在阻抗谱半圆上的到底应该是电双层电容还是化学电容还是两种电容之和取决于哪一个电容值更低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/4da71da6-e74d-48c7-baa1-c8b81d1d0072.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 7 传荷过程控制下的界面等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.7 Equivalent circuit of interface under the conditionof charge transfer /span /p p   (2)浓差极化不可忽略时的等效电路 /p p   暂态过程中,对于惰性电极,由于电极/溶液界面处存在暂态电流,因此开始有电化学反应的发生,界面处不断发生反应物消耗和产物积累,开始出现反应物产物浓度差。随着反应的进行,浓度差不断增大,扩散传质过程进入对流区,电极进入稳态扩散过程,建立起稳定的浓差极化过电势,由于浓差极化过电势滞后于电流,因此电流-电势之间的关系类似于一个电容响应。可以用一个纯电阻 R w 串联电容 C w 表示。该串联电路可用半无限扩散模型来模拟,如图 8 所示。这种情况在电池中也会经常出现。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/963f9efd-7c04-4fb1-853d-a76ccf60a7c3.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 8 半无限扩散阻抗等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.8 Impedance equivalent circuit of semi-infinitidiffusion /span /p p   上述 R w 和 C w 的串联结构可用一个复数阻抗 Z w来表示,Z w 可理解为半无限扩散阻抗。由于扩散传质过程和电荷传递过程同时进行,因而两者具有相同的电化学速率,在电路中应属于串联关系。一般在阻抗谱上表现为 45 o 的斜线。在锂离子电池中,取决于电极材料颗粒尺寸的大小和孔隙率的大小,锂离子在电极材料内部的扩散或者在电极层颗粒之间的孔隙或者含孔颗粒内电解质相的扩散成为控制步骤。由于存在边界条件约束,往往显示出有限边界条件下的扩散。在浓差极化不可忽略的情形下,可以如图 9 所示。有限边界条件下扩散的等效电路元件只是将 Z w 换为相应的等效电路扩散元件。 /p p   (3)溶液电阻不可忽略时的界面等效电路 /p p   当溶液电阻不可忽略时,由于极化电流同时流经界面和溶液,因而溶液电阻与界面电阻应属于串联关系,典型的浓差极化不可忽略、溶液电阻不可忽略时的等效电路如图 10 所示。在锂离子电池中,由于是多孔粉末电极,有时电极的欧姆电阻也不可忽略,与电解质电阻是串联关系,一般合并在一项中。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0ae51846-5fa6-44f0-a26d-d5dd6b3603ba.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 9 浓差极化不可忽略时的界面等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.9 Equivalent circuit of interface under the conditionof concentration polarization /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/ac8e06da-7dd5-42e8-a1de-5cbca2510e05.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span br/ /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 10 包含 4 个电极基本过程的等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.10 Equivalent circuit including four basic electrodeprocess /span /p p   2.3 暂态测量方法的分类及其特点 /p p   暂态过程测量方法按照自变量的控制方式可分为控制电流法和控制电势法 按照自变量的给定方式可分为阶跃法、方波法、线性扫描法和交流阻抗法。用暂态测量能比稳态测量给出更多的电化学参量信息。一般来说,暂态测量法具有如下特点:①暂态法可以同时测量双电层电容 C d 和溶液电阻 R u ②暂态法能够测量电荷传递电阻 R ct 。因此,能够间接测量电化学过程中标准速率常数和交换电流的大小 ③暂态法可研究快速电化学反应,通过缩短极化时间,如以旋转圆盘电极代替普通电极,并加快旋转速度,可以降低浓差极化的影响,当测量时间小于 10 ?5 s 时,暂态电流密度可高达 10 A/cm 2 ④暂态法可用于研究表面快速变化的体系,而在稳态过程中,由于反应产物会不断积累,电极表面在反应时不断受到破坏,因而类似于电沉积和阳极溶解过程,很难用稳态法进行测量 ⑤暂态法有利于研究电极表面的吸脱附结构和电极的界面结构,由于暂态测量的时间非常短,液相中的杂质粒子来不及扩散到电极表面,因而暂态法可用于研究电极反应的中间产物和复杂的电极过程。 /p p   以上两小节介绍的内容主要适用于传统的电化学体系,氧化还原反应发生在电极表面,电极为惰性电极,电解质为稀浓度电解质,更详细准确的描述参见电化学的教科书。锂电池与传统电化学测量体系显著不同之处是氧化还原反应发生在电极内部而非电极表面,离子的扩散、电荷转移,相变可以发生在电极内部。锂电池的电极一般是非均相多孔粉末电极,孔隙之中存在着电解液,电解液中离子的浓度达到 1 mol/L 甚至更高, 这些不同导致获得可靠的锂离子电池电极过程动力学参数非常困难。而锂空气电池的研究涉及到多种中间产物的分析,圆盘电极和环盘电极等暂态测量被广泛应用。 /p p span style=" color: rgb(127, 127, 127) " i   文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所) /i /span /p
  • 德国ZAHNER电化学助力第十九次全国电化学大会顺利召开
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会于2017年12月1-4日在上海市举行。此次会议上我们展出了德国Zahner公司电化学工作站 Zennium E、Zennium、Zennium Pro 、Zennium X,CIMPS光电化学测试系统、CIMPS-fit瞬态光电响应测试模块、CIMPS-IPCE/QE光电转换效率测试系统等。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 锂电池界面电化学过程原位研究获进展
    p span style=" font-family: 微软雅黑, Microsoft YaHei "   由于化学电源的电化学性能与电极/电解质的界面过程密切相关,涉及电荷转移、离子输运、相的生成和转化等步骤,在纳米尺度上深入理解界面过程对于器件设计和材料优化具有重要意义。然而能源体系的运行环境非常复杂,涉及无水无氧环境、有机/离子液体电解质体系、多相界面、多电子反应过程等,因此,针对性发展复杂体系下电化学界面高分辨原位成像方法,从而实现电化学反应过程的实时追踪和原位分析,也是电分析化学的挑战和难点之一。 br/ /span /p p br/ span style=" font-family: 微软雅黑, Microsoft YaHei "   中国科学院化学研究所分子纳米结构与纳米技术院重点实验室文锐课题组致力于锂电池界面电化学过程的原位研究并取得系列进展。在前期工作中,他们利用氩气环境下的原位原子力显微镜(AFM),在以[BMP] sup + /sup [FSI] sup - /sup 为代表的离子液体中,捕获纳米尺度上锂离子电池中高定向热解石墨(HOPG)表面固态电解质界面膜(SEI)的初始成核、逐步生长及成膜的系列演化过程,并揭示了不同离子液体中SEI膜的界面性质及与电池性能相关性。相关成果发表在& nbsp ACS Applied Materials & amp Interfaces& nbsp 上。 br/ br/   进一步,研究人员开展了具有高理论能量密度(2600 Wh/kg)锂硫电池中界面电化学反应的系列研究。利用电化学 AFM 及谱学分析表征,实现了在锂硫充放电过程中还原产物硫化锂和过硫化锂在界面形貌演变及生长/溶解过程的原位监测(图1),并提出过硫化锂在循环过程中不可逆反应产生的界面聚集是导致电极钝化及电池性能衰减的原因之一。恒电流控制下的原位成像研究表明,电流密度大小影响界面形貌及沉积物种类,直观揭示了结构-性能关联性。相关成果发表在& nbsp Angewandte Chemie International Edition& nbsp 上。 br/ br/   近日,科研人员利用电化学 AFM 进一步探究了在高温条件下锂硫电池在LiFSI基电解液中的界面行为与反应机制(图2)。研究发现,在高温60℃时,阴极/电解质界面在放电过程中会原位形成一层由LiF纳米颗粒构成的功能性界面膜,并通过物理尺寸效应及化学吸附作用捕获电解液中的长链多硫化锂。此过程有利于抑制多硫化物穿梭效应及副反应的发生,并增强界面电化学反应的可逆性。该研究通过原位表征与分析为高温电化学行为在纳米尺度提供了直接的界面机理解释,也为锂硫电池的电解液设计及性能提升提供了思路和指导。相关成果发表在& nbsp Angewandte Chemie International Edition& nbsp 上。 br/ br/   研究工作得到了科技部、国家自然科学基金委和中科院的支持。 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/0a9eee39-49a2-4c61-9964-34c61b6891a0.jpg" title=" 1.jpg" / /p p span style=" font-family: 微软雅黑, Microsoft YaHei " strong 图1.原位AFM电化学池示意图(左)及放电中锂硫界面反应过程的原位AFM图像(右) /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f9c7499b-e1eb-4d46-8f9d-0cdc07b1cc1b.jpg" title=" 2.jpg" style=" width: 500px height: 252px " width=" 500" vspace=" 0" hspace=" 0" height=" 252" border=" 0" / /p p span style=" font-family: 微软雅黑, Microsoft YaHei " strong 图2.高温60℃下锂硫电池中阴极/电解质界面过程示意图 /strong /span /p
  • 日立高新助力第19届全国电化学会议圆满成功
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会将于2017年12月1-4日在上海市举行。全国电化学大会是国内规模最大、范围最广的电化学学术盛会和高水平的学术交流平台。本届大会主题是“电化学与可持续发展”,将围绕电化学科学和技术发展中的基础、应用和前沿问题,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料等重要领域的应用,实现社会的可持续发展。日立高新倾情赞助本次会议,热忱欢迎国内外从事电化学及其相关领域的基础研究与应用开发以及产业界的学者、专家及同行莅临日立三楼11号展位。届时,我们将现场展示多款热分析产品及荧光新品F-7100,并举办丰富多彩的惊喜活动。欢迎您前来参观与交流!热分析产品:http://www.instrument.com.cn/netshow/SH100718/Product-C0602-0-0-1.htm 2017荧光新品F-7100:http://www.instrument.com.cn/netshow/C277846.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 2010年上半年上市仪器新产品:电化学仪器类
    电化学分析是现代仪器分析中的一个重要组成部分,由于电化学分析法具有快速、灵敏、准确、所用仪器结构简单及使用方便等一系列特点,因而在科学研究、现代化学工业、生物与药物分析、环境监测等领域发挥着重要作用。   电化学分析仪器可以直接或间接地测量由化学传感器(电极)将化学量转换成的电信号,如电流、电压、电位、电导、电量等各种物理量,从而来研究、确定参与化学反应的物质的量。电化学的研究和技术发展,在一定程度上和电化学仪器的发展密切相关,它们是相互促进,不可分割的有机整体。以下将就2010年上半年上市的电化学新品做一简单介绍。   法国 Bio-logic公司最新推出的 SP-200便携式电化学工作站改变了以前对电化学工作站放置位置的限制,可以在条件比较恶劣的环境中进行电化学测试。   美国阿美特克新推出的电化学综合测试系统应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。   赛默飞世尔科技新推出的Orion Star LogR pH测量仪,无需另外的温度电极,即可进行pH温度补偿。   上海精科推出的PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度。   上海纳锘仪器推出的全新系列绿色pH电极采用了绿色环保材料完全符合RoHS指令规定。   英国Uniscan公司3100型多通道恒电位仪功率放大器使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。   美国哈希公司推出的MP测定仪是一款不需要使用探头的电化学测定仪,能够快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。   法国 Bio-logic SP-200便携式电化学工作站    SP-200便携式电化学工作站   SP-200是一台便携式的电化学工作站,其可以在条件比较恶劣的环境中进行电化学测试,允许此设备用于接地池、高压设备和手套室设备、现场腐蚀实验也可以应用,弥补了以前对电化学工作站放置位置的限制。   美国阿美特克电化学综合测试系统    Solartron Modulab(电化学综合测试系统)   Solartron Modulab最灵活方便的模块化电化学综合测试系统,仪器虽然小型化但是仍然能广泛的应用于电化学测试的各个领域。   Solartron Modulab的恒电位仪和恒电流仪中应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。采用目前最高效的频率响应分析仪,其频率响应范围从10μHz -1 MHz,保证测量过程的精度和准确度。   Solartron Modulab采用Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。这个特别适用于低频分析和测量随时间变化的不稳定的电池。   赛默飞世尔科技Orion Star LogR pH测量仪 Orion Star LogR pH测量仪   新型Orion Star LogR 测量系列仪表采用独特的LogR 技术,配合专门的pH电极,通过电极膜电阻测量样品温度,提供了一种新的电极测量方法。测量仪将显示膜电阻值,用于电极故障判断,节省故障排除时间。使用Orion Star LogR 测量仪,无需另外的温度电极,即可进行pH温度补偿。   Orion Star LogR 测量仪目前有两种型号:一种用于pH 测量,另一种用于pH 和离子浓度测量。两种型号均可测量毫伏,温度和电阻(LogR 功能开启时)。   Orion Star LogR 测量仪将替代目前的Thermo Scientific Orion PerpHecT® LogR™ 测量仪320, 350和370系列。Orion Star LogR系列测量仪改进了LogR校正程序,具有更多的优势和pH校正点,并能够显示膜电阻。   上海精科PHSJ-5型实验室pH计    PHSJ-5型实验室pH计   PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度,能满足用户精密测量水溶液的pH值和电位mV值。该仪器主要有五个特点:   一是触摸式大屏幕液晶显示屏,全中文操作界面,使用方便   二是可选择多种pH标准缓冲溶液标定仪器,利于用户建立自己的标液组   三是具有自动识别五种标准溶液功能   四是自动和手动温度补偿、自动校准、自动计算电极百分理论斜率   五是能储存、删除、打印、查阅,最多可储存200套测量数据,并有RS-232通讯功能。   上海纳锘仪器全新系列绿色pH电极    GS9106BNWP绿色pH电极   Orion推出全新电极—— 完全符合RoHS指令的全新系列pH电极。并采用了更环保的包装材料,堪称是真正的“绿色电极”。   英国Uniscan公司3100型恒电位仪功率放大器    3100型恒电位仪功率放大器   3100型多通道恒电位仪功率放大器是一款新一代的多通道高电流仪器,使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。   3100 型多通道恒电位仪功率放大器具有完全的直流性能。理想应用于宽广范围的电化学应用,其多通道性能允许多种测试速率和比传统设计更高的工作通量。   3100的创新的外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。   美国哈希公司MP测定仪    MP测定仪   不需要使用探头的电化学测定仪,快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。操作极其简便,只需两步即可完成测量:1. 灌满采样量杯、2. 按键读数。无需频繁校准,两周一次到每个月一次,并且校准简单,只需按一个按键,然后将仪器调节为标准值即可。高防护等级,IP67,防水防尘,可漂浮,浸没在水下1米处也完全可以操作。 了解更多电化学仪器请访问仪器信息网电化学仪器专场   了解更多新品请访问仪器信息网新品栏目
  • 中国电化学界痛失巨匠
    p & nbsp & nbsp 8月1日,武汉大学发布讣告,中国科学院院士、武汉大学化学与分子科学学院教授查全性先生,因病医治无效,在武汉大学人民医院不幸逝世,享年94岁。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/351ab981-d9af-4105-b463-5819a663451e.jpg" title=" timg_meitu_1.jpg" alt=" timg_meitu_1.jpg" / /p p & nbsp & nbsp 查全性先生是我国著名的电化学家,毕生从事电化学相关的科研和人才培养工作。上世纪五十年代末,查全性先生从苏联进修回国,在条件十分艰苦的环境下,克服重重困难,以极大的热情开始了他在武汉大学的电化学研究和人才培养工作,使武汉大学成为当时全国现代电化学研究的重要基地之一。其研究领域包括“电极/溶液”界面上的吸附、多孔电极极化理论、电化学催化与光电化学催化、粉末微电极、多种电化学材料,及其在化学电源、金属表面处理与防腐、电化学分析与传感器方面的应用等。 /p p & nbsp & nbsp 2011年,查全性院士和厦门大学田昭武院士一起荣获第一届中国电化学成就奖。 /p p & nbsp & nbsp “中国电化学成就奖”是中国化学会电化学委员会颁发的最高学术奖励。每两年评选一次,奖励在电化学科学与技术研究中做出原创性成果,并对中国电化学事业的发展做出重大贡献的中国电化学工作者。第二届中国电化学成就奖获得者为中科院长春应化所董绍俊院士。第三届中国电化学成就奖获得者为中科院长春应化所汪尔康院士。 /p p & nbsp & nbsp 作为院士,查全性学术成果自是丰硕。而查院士的真言直谏,则改变了中国高等教育的发展方向,让无数青年人的命运改写。查院士在1977年的全国教育会议上首倡恢复高考并被采纳,让千百万寒门学子通过知识改变了命运! /p p & nbsp & nbsp & nbsp 停止了11年的高考恢复后,查全性事了拂衣去,深藏功与名,又回到了自己热爱的实验室。作为我国著名的电化学家、我国现代电化学重要奠基人之一,默默耕耘、甘当人梯,穷一生从事电化学相关的科研和人才培养工作,是查先生对自己毕生的定位。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/91790372-756a-48f7-be99-aa608a0146ed.jpg" title=" bc7a3a05-d302-4011-a07f-65d03c610af3.jpg" alt=" bc7a3a05-d302-4011-a07f-65d03c610af3.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多业内重大消息! /span /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制