当前位置: 仪器信息网 > 行业主题 > >

碘化钬

仪器信息网碘化钬专题为您提供2024年最新碘化钬价格报价、厂家品牌的相关信息, 包括碘化钬参数、型号等,不管是国产,还是进口品牌的碘化钬您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘化钬相关的耗材配件、试剂标物,还有碘化钬相关的最新资讯、资料,以及碘化钬相关的解决方案。

碘化钬相关的资讯

  • 锂电池界面电化学过程原位研究获进展
    p span style=" font-family: 微软雅黑, Microsoft YaHei "   由于化学电源的电化学性能与电极/电解质的界面过程密切相关,涉及电荷转移、离子输运、相的生成和转化等步骤,在纳米尺度上深入理解界面过程对于器件设计和材料优化具有重要意义。然而能源体系的运行环境非常复杂,涉及无水无氧环境、有机/离子液体电解质体系、多相界面、多电子反应过程等,因此,针对性发展复杂体系下电化学界面高分辨原位成像方法,从而实现电化学反应过程的实时追踪和原位分析,也是电分析化学的挑战和难点之一。 br/ /span /p p br/ span style=" font-family: 微软雅黑, Microsoft YaHei "   中国科学院化学研究所分子纳米结构与纳米技术院重点实验室文锐课题组致力于锂电池界面电化学过程的原位研究并取得系列进展。在前期工作中,他们利用氩气环境下的原位原子力显微镜(AFM),在以[BMP] sup + /sup [FSI] sup - /sup 为代表的离子液体中,捕获纳米尺度上锂离子电池中高定向热解石墨(HOPG)表面固态电解质界面膜(SEI)的初始成核、逐步生长及成膜的系列演化过程,并揭示了不同离子液体中SEI膜的界面性质及与电池性能相关性。相关成果发表在& nbsp ACS Applied Materials & amp Interfaces& nbsp 上。 br/ br/   进一步,研究人员开展了具有高理论能量密度(2600 Wh/kg)锂硫电池中界面电化学反应的系列研究。利用电化学 AFM 及谱学分析表征,实现了在锂硫充放电过程中还原产物硫化锂和过硫化锂在界面形貌演变及生长/溶解过程的原位监测(图1),并提出过硫化锂在循环过程中不可逆反应产生的界面聚集是导致电极钝化及电池性能衰减的原因之一。恒电流控制下的原位成像研究表明,电流密度大小影响界面形貌及沉积物种类,直观揭示了结构-性能关联性。相关成果发表在& nbsp Angewandte Chemie International Edition& nbsp 上。 br/ br/   近日,科研人员利用电化学 AFM 进一步探究了在高温条件下锂硫电池在LiFSI基电解液中的界面行为与反应机制(图2)。研究发现,在高温60℃时,阴极/电解质界面在放电过程中会原位形成一层由LiF纳米颗粒构成的功能性界面膜,并通过物理尺寸效应及化学吸附作用捕获电解液中的长链多硫化锂。此过程有利于抑制多硫化物穿梭效应及副反应的发生,并增强界面电化学反应的可逆性。该研究通过原位表征与分析为高温电化学行为在纳米尺度提供了直接的界面机理解释,也为锂硫电池的电解液设计及性能提升提供了思路和指导。相关成果发表在& nbsp Angewandte Chemie International Edition& nbsp 上。 br/ br/   研究工作得到了科技部、国家自然科学基金委和中科院的支持。 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/0a9eee39-49a2-4c61-9964-34c61b6891a0.jpg" title=" 1.jpg" / /p p span style=" font-family: 微软雅黑, Microsoft YaHei " strong 图1.原位AFM电化学池示意图(左)及放电中锂硫界面反应过程的原位AFM图像(右) /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f9c7499b-e1eb-4d46-8f9d-0cdc07b1cc1b.jpg" title=" 2.jpg" style=" width: 500px height: 252px " width=" 500" vspace=" 0" hspace=" 0" height=" 252" border=" 0" / /p p span style=" font-family: 微软雅黑, Microsoft YaHei " strong 图2.高温60℃下锂硫电池中阴极/电解质界面过程示意图 /strong /span /p
  • 汪尔康院士荣获中国化学会电化学委员会最高学术奖励第三届中国电化学成就奖
    “中国电化学成就奖”是电化学委员会颁发的最高学术奖励。每两年评选一次,奖励在电化学科学与技术研究中做出原创性成果,并对中国电化学事业的发展做出重大贡献的中国电化学工作者。2011年,厦门大学田昭武院士、武汉大学查全性院士荣获第一届中国电化学成就奖。2015年中国科学院长春应用化学研究所董绍俊院士(TWAS)获第二届中国电化学成就奖。2017年12月2日,中国化学会电化学委员会在第十九次全国电化学大会上公布了第三届中国电化学成就奖名单,中国科学院长春应用化学研究所汪尔康院士喜获殊荣。 p   汪尔康院士曾任中科院长春应化所所长,1952年上海沪江大学毕业,1959年在捷克获博士学位(导师诺贝尔奖获得者J.海洛夫斯基院士),1991年当选中科院院士,1993年当选第三世界科学院院士,2006年当选日本分析化学学会荣誉会员。汪尔康院士长期从事电化学与电分析化学,分析化学及环境与生命科学分析研究,“七五”开始至“十二五”国家自然科学基金委分析和电分析化学方面重大、重点项目以及国家攻关863和973项目和现国家重大项目的参加人和负责人,按国家及科技发展需要,均很好地完成任务。获国家(自然科学奖4项)和省部级奖11项及吉林省首届科技进步特殊贡献奖,国际奖2项,发明专利40多项。已发表论文900多篇,SCI收录800多篇,总引31,000多次。h指数91。国际大会报告和专题报告100多次,在27个国家和地区作学术报告200多次。涉及分析化学,电化学与电分析化学,环境与生命科学分析。主编《21世纪的分析化学》(1999)、《生命分析化学》(2006)和《分析化学手册》(第三版,2016)及《20世纪中国知名科学家学术成就概览:化学卷》编委副主编。在美、法、日和香港的5所大学聘为客座教授。为九种国际化学杂志编委,国际顾问委员会委员 曾长期担任“分析化学”主编。他热心国际学术交流:作为中方负责人创办中日分析化学会议四届(1983-1991),后扩展为亚州分析化学会议第一届(1991),至今已第16届(2016),再扩展为IUPAC国际分析科学会议第一届(1991),至今第6届(2017) 创办中法生物电分析化学会议第一届(2001),至今己第八届(2012) 创办国际电分析化学会议(ISEAC),会议一直在长春召开,每两年一次,自1987年开始至今已16届 创办北京分析测试学术报告会暨展览会(BCEIA),每两年一次,自1985年开始至今已17届。培养博士和硕士研究生100多名。其中,3人获全国百篇优秀博士学位论文奖 4人获中科院优秀博士学位论文奖 5人获中科院院长奖学金特别奖,9人获优秀奖 10多人获中科院各类冠名奖 4人获国外引进青年千人创新人才 博士后15名(1人获全国优秀博士后奖)。他本人多次获优秀导师称号。2017年(2005-2015),2016年(2004-2014),2015年(2003-2013)和2014年(2002-2012)连续获选Web of Science公布的全球高被引科学家。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/4e5fa6ae-8a54-4b87-be28-acf3f72c5b3c.jpg" title=" 111.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/46fb3b52-3ff6-406f-aa01-fdff01de37fb.jpg" title=" 112.jpg" / /p p    /p p    /p p br/ /p
  • 第十八次全国电化学大会召开 董绍俊获成就奖
    p   8月7日-10日,由中国化学会电化学委员会主办,哈尔滨工业大学承办、黑龙江大学协办的第十八次全国电化学大会在哈尔滨工业大学召开。副校长韩杰才出席大会。 /p p style=" text-align: center " img style=" width: 550px height: 364px " title=" 01.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/a31fe64d-bf14-4261-9e24-e1ea6d211a16.jpg" width=" 550" height=" 364" / /p p   本次大会以“支撑未来能源发展的电化学”为主题,旨在围绕电化学科学和技术发展中的基础、应用和前沿问题开展广泛的学术交流和研讨,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,加强科研合作和技术转化,推动中国电化学学科的发展,促进电化学在新材料、新能源、环境、生命等领域的应用。 /p p style=" text-align: center " img style=" width: 550px height: 187px " title=" 02.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/7f10471a-394a-43d3-97eb-f63e20b57e3d.jpg" width=" 550" height=" 187" / /p p   作为国内电化学界规模最大、涉及领域最广、学术水平最高的学术盛会,此次会议共有来自全国高等院校、科研院所、企事业单位共计110余家机构的近2000名代表出席。会议还邀请了日本、法国、美国、英国等7个国家和地区的大学及研究机构的专家参会。 /p p   本次大会得到全国电化学同仁的积极响应,共收到会议论文1796篇。大会设立了基础电化学,化学电源(含锂离子电池、燃料电池、下一代储能电池、超级电容器与其它化学电源),有机、环境与工业电化学,纳米与材料电化学,光电化学与新型太阳能电池,电分析与生物电化学等12个分会开展了交流讨论。大会共安排6个大会报告、57个主题报告、102个邀请报告、150个口头报告、282个青年报告、1198个墙报。这些论文反映了我国在电化学和相关领域取得的进展和成果,体现了我国电化学学科近年来的科学技术水平。 /p p style=" text-align: center " img style=" width: 550px height: 399px " title=" 03.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/da7a0626-2c36-4993-80f4-d0f07c02e1cf.jpg" width=" 550" height=" 399" / /p p style=" text-align: center " strong 董绍俊院士获第二届中国电化学成就奖 /strong /p p   本次大会颁发了中国电化学成就奖、中国电化学贡献奖、中国电化学青年奖、《电化学》期刊优秀论文奖、第十八次全国电化学大会组织奖、电化学企业赞助奖及中聚奖学金。会议共评出40篇优秀论文奖,其中优秀口头报告奖20名,优秀墙报奖20名。与会嘉宾和领导为获奖人员颁奖。 /p p style=" text-align: center " img style=" width: 550px height: 333px " title=" 20158141767442.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/e20eb076-ed84-4aac-88b1-647e4492bc1e.jpg" width=" 550" height=" 333" / /p p   为满足广大青年学者和学生的需求,本次大会继续举办了电化学技术专题讲座,聘请4位在电化学理论、方法和材料结构解析方面有较深造诣的专家授课,共有近300人参加了培训。会议期间还举办了3天国际电化学相关设备展览以及技术发布会。 /p p   据悉,第十九次全国电化学大会将于2017年落户上海,由上海电力学院和复旦大学共同承办。 /p
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 任斌教授获美国化学会分析化学分会2022年度电化学奖
    近日,美国化学会分析化学分会公布了2022年度电化学奖, 厦门大学固体表面物理化学国家重点实验室副主任任斌教授因在高时空分辨电化学光谱仪器方法方面的贡献成为该年度获奖人,这也是该奖项首次授给亚洲国家学者。任斌教授任斌教授,厦门大学化学化工学院副院长,固体表面物理化学国家重点实验室副主任,国家杰出青年科学基金获得者,国家高层次人才计划获得者,国务院政府特殊津贴获得者。主持包括国家自然科学基金创新研究群体,科学仪器项目,重点项目,重大项目课题,国际合作交流项目以及国家重点研发计划课题等。长期致力于电化学针尖增强拉曼光谱和表面增强拉曼光谱方法发展和仪器研制,提升电化学原位光谱方法的空间分辨率、时间分辨率和检测灵敏度。迄今已发表 SCI论文300余篇,包括Nat. Nanotechnol.、Nat. Rev. Phys.、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem.等期刊上的学术论文,总被他引24000余次,h-index为76(SCI)。现任美国化学会Anal. Chem. 副主编,J. Phys. Chem.、J. Chem. Phys.、《物理化学学报》、《中国化学》、《电化学》、《光散射学报》等学术刊物(顾问)编委;曾任中国物理学会光散射专业委员会主任,现任中国化学会电化学委员会物理电化学分会主席、国际电化学会物理电化学分会副主席,2021年入选国际电化学会会士。作为负责人主办多届“厦门大学电化学暑期学校”。曾获中国化学会青年化学奖、首届中国电化学青年奖、国家自然科学奖二等奖(第二完成人)等奖项。关于美国化学会分析化学分会电化学奖美国化学会分析化学分会电化学奖从1988年设立,以表彰对电化学领域做出以下突出贡献的学者:提出并实现独特和重要仪器方法,解释重要电化学现象和过程,出版有重要影响的研究论文或书籍。该奖项每年评出一位获奖人,迄今共有34位优秀的电化学家获得该奖项,国际著名的电化学家Allen Bard、Fred Anson等也曾是该奖项的获奖者。据悉,本届颁奖仪式将于2022年8月在美国芝加哥举行的ACS秋季会议上举行,获奖者将获邀在分析化学分会上做获奖报告。
  • “参与调研,赢取话费”电话调研获奖名单公布,共93人获得话费奖励~~
    p   为了更好地了解目前市场上凯氏定氮仪、近红外分析仪及索氏提取仪的使用情况,仪器信息网特组织此次“参与调研、赢取话费”活动,以便给更多的凯氏定氮仪、近红外分析仪及索氏提取仪用户在使用和选购仪器过程中做出指导。目前累计已有320余人获得我们送出的话费奖励。 /p p   迄今为止,参与电话调研,获得双重奖励的用户名单也已新鲜出炉!据统计,获得第二重话费奖励的用户共计93人,现将获奖者名单公布如下,快看看是不是有你吧! /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201701/insimg/51047700-aad5-4b20-a8c2-4ba65290e997.jpg" / /p
  • “参与微波消解仪调研,赢取话费”电话调研获奖名单公布
    p span style=" color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px "   为了更好地了解目前市场上微波消解仪的使用情况,仪器信息网特组织此次“参与微波消解仪调研、赢取话费”活动,以便给更多的微波消解仪用户在使用和选购仪器过程中做出指导。目前累计近300余人参与此次调研活动。 /span /p p style=" text-align: center " img src=" /admincms/ueditor1/themes/default/images/spacer.gif" word_img=" file:///C:\Users\guoxd\AppData\Roaming\Tencent\Users\2850501189\QQEIM\WinTemp\RichOle\QH{R_41UDNDIX~3[@0SU~7T.png" style=" background:url(/admincms/ueditor1/lang/zh-cn/images/localimage.png) no-repeat center center border:1px solid #ddd" / img src=" http://img1.17img.cn/17img/images/201712/insimg/2c4da726-07b4-4a17-9322-eb6681b33253.jpg" title=" 75.jpg" / /p p style=" text-align: left " span style=" color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px " & nbsp & nbsp 迄今为止,参与电话调研,获得电话奖励的用户名单也已新鲜出炉!据统计,获得此次话费奖励的用户共计100人,现将获奖者名单公布如下,快看看是不是有你吧! /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/a17996c7-0f77-46c5-8ef0-2a1b4c35a720.jpg" title=" QQ.png" / /p p   注:以上名单中包含参与“参与微波消解仪调研,赢取话费”网络调研首次未充值成功者12人。 /p p style=" text-align: center " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px text-align: center white-space: normal " 本活动由仪器信息网【产业研究部】发起,活动100%属实 /strong /p p style=" text-align: center " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px text-align: center white-space: normal " img src=" http://img1.17img.cn/17img/images/201712/insimg/de1a5878-72df-4eb2-8eed-4fb79bff2143.jpg" title=" 34.jpg" width=" 310" height=" 331" style=" width: 310px height: 331px " / /strong /p p strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px text-align: center white-space: normal " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " 另外部分获奖用户充值失败,请尽快与我们联系!!! /strong /strong /p p 发送手机号 & nbsp & nbsp 状态 & nbsp & nbsp /p p 151****5825 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 135****5702 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 178****6065 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 135****4039 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 187****4581 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 187****2356 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 183****5721 & nbsp & nbsp 发送失败 & nbsp & nbsp /p
  • 上海三信喜获2012年度最受关注电化学仪器奖
    4月19日,第七届&ldquo 中国科学仪器发展年会ACCSI(Annual Conference of China Scientific Instruments 2013,ACCSI 2013)&rdquo 在北京隆重召开。会议由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网联合主办。800余位业界专家学者、实验室负责人、仪器企业负责人、相关政府部门及相关学会协会领导和投资机构负责人等嘉宾出席本届会议。 上海三信仪表厂作为国内知名的分析测试仪器厂商,在本届年会中,上海三信赢得&ldquo 2012年度电化学类最受关注国产仪器&rdquo 大奖。该奖项是从国内众多厂商中,通过用户对厂家的关注程度,厂家对行业事件的响应程度,综合数据分析后得出的结果,可谓实至名归。 MP511型实验室pH计 关于上海三信 -------------------------------------------------- 上海三信仪表厂成立于1991年,位于上海市漕河泾工业开发区,工厂面积1260平方,是集研发、生产、销售为一体的专业的电化学仪表和电极制造商。主要产品包括pH,ORP,电导率,离子浓度,溶解氧,水质硬度,酸碱浓度等,产品质量上乘,外观精美,在国内外享有很高的声誉。我们拥有ISO9001:2008质量管理体系认证,产品具有CMC和CE 证书,我们期望为国内外用户提供最好的产品和服务。制造优秀的科学仪器,提升中国电化学仪表在国际市场上的竞争力是我们的目标,我们将为此不懈奋斗。欲了解更多信息,请浏览公司官方网站 www.shsan-xin.com 媒体联络人: 市场部: 王文昌先生 电话:021-63362480
  • 某县电化教学仪器站原站长因受贿获刑
    近日,经江西省泰和县人民检察院提起公诉,该县法院判处被告人郭某某有期徒刑九个月,并处罚金11万元。  郭某某自2000年8月至案发担任泰和县电化教学仪器工作站站长,负责该站全面工作。2010年7月至2015年4月间,被告人郭某某利用其职务便利,为多媒体供应商王某(另案处理)在供应的设备顺利验收及收受业务款顺利结算等方面提供帮助和关照,先后10次收受王某贿赂款9万余元。  法院经审理认为,被告人郭某某身为国家工作人员,利用职务上的便利,非法收受他人现金9万余元,为他人谋取利益,数额较大,其行为构成受贿罪,依法对其予以惩处,鉴于被告人郭某某案发后如实供述其受贿事实,且已全部退赃,法院遂依法作出上述判决。
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 荷兰Palmsens便携式电化学分析仪寻合作伙伴
    荷兰Palmsens便携式电化学分析仪用途广泛,电流分辨率可以达到1 pA,通过连接印刷电极,广泛用于生物传感器领域,如酶活和动力学研究。而通过连接磁力搅拌,通过控制富集和溶出时间,可以分析痕量的重金属,如铅、镉、铜等。便携式的手提箱设计,PDA或笔记本提供软件控制,非常适合在野外快速检测使用。 Palmsens进入市场巨大的中国,现寻求高校、研究机构、企业单位等开展广泛合作,共同为广大消费者提供优质高效的服务!
  • Versa SCAN原位局部扫描电化学测试技术获新研究进展
    p style=" text-align: center " span style=" font-size: 18px " strong Versa SCAN 原位局部扫描电化学测试技术 /strong /span /p p style=" text-align: center " span style=" font-size: 14px " 阿美特克集团科学仪器部 黄建书博士 /span /p p   传统的宏观电化学测试技术,如恒电位、恒电流、循环伏安和交流阻抗等测量的是样品整体响应,整个电极/电解液界面的平均响应信号。由于样品很少为均相,所以样品通常由钝化/活化自然属性的局部区域,或者阴极/阳极特性的局部区域组成,并且样品的性质变化往往由于局部反应和变化所导致,如腐蚀过程通常是由点腐蚀和缝隙腐蚀开始,催化剂表面并非所有位置都有催化活性,表面仅有部分活性点有催化效果等等。因此,宏观测试技术在研究中受到局限性,可以通过探针/微电极在样品表面扫描,监测电流、电压和阻抗等电信号的变化来区分局部反应发生的程度、位置和区域大小。 /p p   根据应用不同,可分为以下九种技术 /p p 1. 扫描电化学显微镜(SECM) /p p 2.等距离扫描-柔性探针技术 (Stylus SECM) /p p 3.无氧化还原介质SECM技术(AC-SECM) /p p 4. 扫描振动电极测量系统(SVET,SVP) /p p 5. 微区电化学阻抗系统(LEIS) /p p 6. 扫描开尔文探针系统(SKP) /p p 7. 扫描微液滴系统(SDC) /p p 8. 非接触式光学微区形貌探测系统(OSP) /p p 9. 表面离子浓度成像系统(ISP) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/fd19b840-e0e1-4684-a9f0-53056f228a73.jpg" title=" 1.png" style=" width: 622px height: 358px " width=" 622" vspace=" 0" hspace=" 0" height=" 358" border=" 0" / /p p style=" text-align: center " strong Fig 1 Versa SCAN 系统概图 /strong /p p & nbsp /p p   由于成像机理是电化学,所以SECM, SVET和LEIS等技术的应用就如同电化学反应本身的应用一样多种多样。在某些关键的领域,如腐蚀机理研究,能源材料,生物传感器,反应动力学,多孔膜,燃料电池催化剂等方面发挥巨大作用。 /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/67c712bb-3ff7-4c62-8f9e-01eff8da18f8.jpg" title=" 2.png" style=" width: 590px height: 295px " width=" 590" vspace=" 0" hspace=" 0" height=" 295" border=" 0" / /p p style=" text-align: center " strong Fig 2 基体7075 Al表面涂层耐腐性评价,相同区域面扫描, pH 3(左),pH 8 (右)和pH 6.85 (中), /strong /p p style=" text-align: center " strong 电解液为0.1 M磷酸缓冲溶液 /strong /p p style=" text-align: center " strong ECS Transactions, 66 (30) 65-71 (2015) /strong /p p & nbsp /p p   微区探针扫描有两种模式,等高扫描和等距离扫描。等高扫描适合于样品非常平整的表面或者粗糙度比较小的样品,但对于部分应用的样品无法抛光或确保非常小的粗糙度范围,比如腐蚀涂层,表面修饰电极,生物样品等,如果按照等高度进行扫描,由于样品的高度发生变化,所以探针移动的每个位置和样品表面的距离会发生变化,这会从而导致最终结果中的信号变化,很可能来自于探针和样品的距离变化而非样品表面真实的性质变化,因此等高模式扫描对于样品表面粗糙度比较大的样品测试具有很大局限性。 /p p   为了克服样品粗糙度较大对于测试结果的影响,需要使用等距离扫描模式,即探针尖端到样品的距离保持恒定,如何实现等距离扫描呢? /p p   Ametek 科学仪器部与瑞士洛桑理工Hubert H. Girault教授团队合作开发了Versa SCAN-Stylus Probe柔性探针测试系统,该系统所采用的探针构造如下,中心为柔性碳纤维,碳纤维外层覆盖厚度均匀的聚合物涂层,在扫描过程中探针与样品表面成一定角度,探针到样品的距离保持恒定,即探针外侧涂层的厚度决定了探针到样品的距离,如涂层的厚度为10um,则探针到样品的距离为10um。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/8cc578e9-4048-430b-96ab-d17847b99e26.jpg" title=" 3.png" style=" width: 460px height: 283px " width=" 460" vspace=" 0" hspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center " strong Fig 3 柔性探针扫描示意图 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/029522ea-bb4d-4f82-b2a7-8ff90563f824.jpg" title=" 4.png" / /p p style=" text-align: center " strong Fig 4 柔性探针扫描过程 /strong /p p   柔性探针技术优势如下:适用于倾斜的,褶皱的和粗糙的样品。与样品软接触:接触力为硬探针接触的1/1000,所以柔性探针技术成为研究生物样品的理想选择。 /p p 1.& nbsp 低成本:无需额外硬件的特殊反馈和电子控制用于控制探针和样品表面的垂直距离 /p p 2.& nbsp 快速测量: SECM扫描前无需样品表面形貌测量 /p p 3.& nbsp 柔性和稳定性探针: 定位和扫描时探针和样品不会被损坏,如肿瘤细胞组织和测试 /p p 4.& nbsp 小的尖端:探针样品距离易于控制可提高成像的对比度和分辨率 /p p 5.& nbsp 电极易于制备: 使用后电极的尖端可以切除确保表面干净。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3847eed9-5600-42bc-ad7c-616afa070d79.jpg" title=" 5.png" / /p p style=" text-align: center " strong Fig 5 左边:三期黑色素瘤(异相分布并且络氨酸浓度较低) 右边:二期黑色素瘤 /strong /p p style=" text-align: center " strong (均相分布并且谷氨酸浓度较高) /strong /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3938b4ee-d070-4227-9faa-d1254096d28b.jpg" title=" 5.1.png" style=" width: 519px height: 290px " width=" 519" vspace=" 0" hspace=" 0" height=" 290" border=" 0" / /p p style=" text-align: center " strong Fig 5 PVDF膜上的香蕉液污点,由样品发生-探针收集模式使用多巴氨检测谷氨酸酶 /strong /p p   近来,在燃料电池催化剂表面活性位表征,锂离子电池金属锂负极枝晶的行成机制,正极材料的溶解导致的性能下降和充放电过程中材料表面电阻变化与容量之间的关系等研究展现出广阔前景。 /p p img src=" http://img1.17img.cn/17img/images/201712/insimg/adc2bcf1-3311-47c6-98c5-5ab3e70817e7.jpg" title=" 6.1.png" style=" width: 261px height: 360px " width=" 261" vspace=" 0" hspace=" 0" height=" 360" border=" 0" / & nbsp img src=" http://img1.17img.cn/17img/images/201712/insimg/d38d101e-0a84-489d-8ba0-e9753ba6c835.jpg" title=" 6.2.png" style=" width: 311px height: 234px " width=" 311" height=" 234" / & nbsp & nbsp /p p style=" text-align: center " strong Fig 6& nbsp 锂离子电池原位测试池,LEIS用于检测锂离子电池正极材料 /strong /p p strong br/ /strong /p p br/ /p p 销售热线& nbsp 400 1100 281 br/ 服务热线& nbsp 400 1100 282 br/ 联系邮箱& nbsp amt.si.china@ametek.com /p
  • 雷磁“电化学分析仪器”标准获评2021年“上海标准”——先进标准引领科学仪器新发展
    按照国内领|先、国际先进的要求,2021年“上海标准”日前发布。2021年10月22日下午,“上海市2021年世界标准日主题活动暨2021年‘上海标准’发布仪式”在上海世贸商城金色大厅举办。11个标准项目获评“上海标准”,上海仪电(集团)旗下上海仪电科学仪器股份有限公司的《实验室 L 系列电化学分析仪器》成功入选。发布会上,上海市人民政府副市长陈通为2021年“上海标准”获评单位颁发了证书。 “上海标准”是上海市围绕“四大品牌”强化“五个中心”建设、城市数字化转型、“3+6”产业发展、人民城市建设等全市重大战略任务的重要举措。“上海标准”评价关注标准先进性、创新性,关注标准实施成效。今年是“上海标准”标识制度实施的第二年,历时6个月,最终从众多候选项目中评选出代表行业先进的标准项目。 上海仪电科学仪器股份有限公司(简称上海仪电科仪股份)是国内最有影响力的科学仪器制造企业之一,科学仪器行业领|军企业,其自主品牌“雷磁”,创建于1940年,是中国第|一台pH计和第|一支玻璃电极的诞生地,是中国分析仪器的重要发源地。历经八十余年发展,从中国第|一台PH计到全自动电化学分析系统,从智能水质系列分析仪器到系统解决方案,“雷磁”始终坚持以技术领|先、质量稳定、标准引领、市场拓展、文化提升、服务优化、管理精细来提高产品核心竞争力,提升品牌美誉度,提升市场影响力,从而提高企业的综合竞争力,积极响应政府高端科学仪器制造的国产替代,助力科学仪器细分领域解决“卡脖子”问题。相继推出国内领|先、国际先进的电化学分析仪器和电化学传感器,在高精度pH计和全量程测量电导率仪、自动光度滴定仪和自动温度滴定仪等方面填补了国内空白,在国内电化学分析仪器行业独占鳌头,赶超国际一|流。雷磁以高性价比的产品、卓越的品质和优质的服务,赢得了用户的信任和青睐。先后于2007年荣获“上海名牌”,2014年荣获“上海市著|名商标”,L系列电化学分析仪器于2019年通过“上海品牌”认证,2021年获评“上海标准”、百年上海市民最喜爱的十个品牌(工业类)、国|家级专精特新“小巨人”企业和国|家级重点支持的专精特新“小巨人”企业。连续多年被评为中国科学仪器行业最|具影响力企业、中国科学仪器行业领军企业。
  • 源景泰科首次获数千万元投资 用于微流控PCR胶条、电化学检测设备等生产
    近日,微流控和电化学检测平台企业源景泰科正式完成由元生创投独家投资的数千万元preA轮融资,这是该公司首次接受外部投资。本轮融资将用于微流控PCR胶条示范产线升级改造,微流控PCR设备及试剂的注册报证,基层核酸检测的小规模试点,第一代电化学检测设备及通用检测试剂/耗材中试规模的量产。微流控PCR胶条检测系统成立三年多来,源景泰科除了进行传统荧光PCR试剂的研发外,还将精力投入到分子诊断相关核心部件、关键耗材及试剂的研发,已建立微流控PCR胶条和微流控电化学两大技术平台,用于开发高效、低成本的分子诊断系列产品。源景泰科的微流控PCR仪及新冠病毒微流控PCR胶条试剂盒在2021年5月获得CE认证,已销往东南亚、中东、非洲的多个国家,国内试剂注册报证也在进行中。此外,该公司在今年年初还完成了第一代电化学检测设备及通用检测试剂/耗材的研发,是目前中国电化学检测技术平台产业化进度处于第一阵营的企业。电化学检测设备在2020 年初,源景泰科总经理朱坤带领研发团队在极短的时间内就完成了样本采集、保存、核酸提取、新冠病毒多重荧光PCR检测、胶体金检测全系产品的研发,并获得了一类医疗器械备案、CE认证、FDA 510K豁免,同时成为北京市疫情保障单位,为疫情防控做出了重要贡献。源景泰科试剂产品系列在此基础上,该公司团队还敏锐地发现空气气溶胶传播是新冠病毒疫情防控的一个薄弱环节,陆续推出了全自动空气气溶胶采集器、微流控PCR检测系统、雾化消毒机器人、等离子UV-C消杀系统,已形成对空气中的病毒采集、现场快速检测、人机共存、实时消除、针对性消杀、消杀效果评价的业务闭环。据悉,源景泰科是目前国内领先形成闭环方案的企业,该系列产品已被用于医院、疾控、海关、动物养殖等多个场景,并出口到非洲、东南亚等十多个国家。空气气溶胶病毒探测清除一体化解决方案我国的基层医疗市场是未来体外诊断的一个巨大蓝海市场,而且无实验室化的核酸检测系统在很多无法规模化搭建PCR实验室的国家也颇受欢迎。源景泰科自主研发的核酸检测背包实验室,具有方便、快速、准确、便宜的特点,使用者无需专业培训即可得到精准的检测结果。此外该公司还非常贴心的为客户准备了源景学社app.,提供详细的产品操作培训视频,让大家使用无忧。基于该平台,源景泰科将开发多种病原体核酸检测产品,例如新冠病毒、流感病毒、结核等呼吸道病原,轮状病毒、艰难梭菌等致泻病原的检测,方便实现社区首诊。核酸检测背包实验室+源景学社APP对于本次融资成功,源景泰科董事长朱坤表示:检验的未来在于我国的基层医疗以及相对落后国家的检验普及化,源景泰科的目标是通过创新驱动满足人民日益增长的对于健康生活的需求。源景泰科在成立之初就坚持做高性价比、以客户需求为导向的分子POCT产品,检测用到的核心部件、关键耗材及试剂全部自主研发,起初确实很难,没有太多可参照的东西,现在看起来这个思路是对的,避免了产品的同质化,而且只有适合中国市场价格体系的产品才有它的生命力。我们的产品刚推出,尚在注册申报阶段就获得了国家行政学院、国家卫健委基层司及行业专家的高度评价,并受到了基层医生的极大关注,让我们有信心在此基础上研发更多适合基层首诊的产品,为中国乡村医疗振兴做出自己的一点贡献。同时我们希望通过技术平台创新、产品创新改变目前全球医疗资源分布不均的现状,让那些相对落后的国家也能享受到优质的检测服务。感谢元生创投和源景泰科各位现有股东的认可和支持!我们将继续深耕微流控和电化学技术平台,为体外诊断行业提供迭代的解决方案。源景泰科持续开展乡村医疗振兴项目活动元生创投管理合伙人林艺博士表示,元生创投专注中国生物医疗大健康领域的股权投资,布局了超过四十家诊断及精准医疗领域的企业,源景泰科以朱坤为核心的管理团队在分子诊断领域深耕近二十年,从底层技术到市场需求,都有全面且深刻的掌握和理解,很有幸元生创投这次有机会投资支持源景泰科团队,期待源景泰科更高效、低成本的分子诊断产品能更大范围地普及,特别是电化学分子诊断产品能带来革命性的技术突破。
  • 天津检出一批不合格工业用碘化钾 过量服用可致中毒
    p   近日,天津空港检验检疫局工作人员在对辖区内一家电子企业进口的工业用碘化钾进行检验时,发现商品外包装未印明“仅用于工业用途”相关字样,并且企业无法提供标明该商品实际用途的证明,不符合相关法规规定。 /p p   国家质检总局(2007年第70号公告)明确规定对申报仅用于工业用途,不用于人类食品和动物饲料添加剂及原料的产品,企业须提交贸易合同及非用于人类食品和动物饲料添加剂及原料产品用途的证明。对此,该局第一时间通知企业保持货物和包装原状,未经许可不得擅自使用和销售。 /p p   碘化钾是列入《出入境检验检疫机构实施检验检疫的进出境商品目录》的124种人类食品和动物饲料添加剂及原料产品之一,允许用于特殊膳食用食品的营养强化和食用盐中碘的使用。食品用添加剂有效物质含量高,有害物质含量在规定的范围内,对人体不构成危害 工业用添加剂有效物质含量低,杂质(包括有害杂质)多,不可用于饲料、食品、化妆品等。工业用途的碘化钾对人体有害,可引起皮肤红斑、关节疼痛淋巴结肿大等症状,长期服用可出现口腔、咽喉部烧灼感等碘中毒症状,过量碘化物对胎儿及孕妇也有毒副作用。工业用添加剂流入食品环节,不仅会对人体造成伤害,也会引起社会恐慌。 /p p   检验检疫人员提醒广大进出口企业:要及时了解国家对工业用和食品用添加剂的相关政策,针对工业用添加剂,企业在报检时要提供贸易合同及非用于人类食品和动物饲料添加剂及原料产品用途的证明,并要求发货方在商品外包装印明“仅用于工业用途”字样,避免因不合格情况而影响企业的正常生产。 /p p br/ /p
  • 智能所饮用水重金属离子去除和电化学检测机理研究获进展
    饮用水中重金属离子的去除与检测,是21世纪人类面临的重大研究课题。重金属离子以多种形态存在于饮用水中,只要微量浓度即产生毒性效应,且具有持续性和放大作用。因而,发展高效去除和检测饮用水中的重金属离子的技术至关重要。   近期,中科院合肥物质科学研究院智能所仿生功能材料与传感器件研究中心973首席科学家刘锦淮研究员和中科院“引进海外杰出人才”黄行九研究员率领的课题组首次制备了具有蛋形水母状的γ-AlOOH(勃姆石)@SiO2/Fe3O4空心磁性微球,该磁性微球能够高效地去除水中的Pb2+,Cu2+,Hg2+,Cd2+,Zn2+等二价重金属离子,且能够通过磁性分离解决常规吸附剂难以回收利用的难题。同时,课题组科研人员采用蛋形水母状的γ-AlOOH(勃姆石)@SiO2/Fe3O4空心磁性微球修饰电化学电极,能实现对痕量Pb2+,Cu2+,Hg2+,Cd2+,Zn2+五种重金属离子实现高灵敏同时的电化学检测,且具有非常好的选择性和检测下限。课题组科研人员经过一系列论证表明,修饰电极的电化学行为和修饰材料的优异吸附性能之间具有相关性,并在此基础上提出了吸附-电化学还原-溶出的重金属离子检测模型,模型对于揭示纳米材料修饰电极的电化学行为具有极其重要的科学意义。   以上研究工作得到了国家重点基础研究发展计划(973项目)“应用纳米技术去除饮用水中微污染物的基础研究”、“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础研究”、国家自然科学基金委重大研究计划“纳米制造的基础研究”、中科院“引进海外杰出人才”百人计划等项目的支持。相关研究结果已分别发表在英国皇家化学学会(RSC)的国际知名学术期刊《材料化学期刊》(J. Mater. Chem., 2011, 21, 16550-16557)和《化学通讯》(Chem. Commun., 2011, 47, 11062-11064)上。    蛋形水母状的γ-AlOOH(勃姆石)@SiO2Fe3O4空心磁性微球去除水中Pb2+的吸附容量曲线    蛋形水母状的γ-AlOOH(勃姆石)@SiO2Fe3O4空心磁性微球修饰电极实现对水中Pb2+,Cu2+,Hg2+,Cd2+,Zn2+五种重金属离子实现高灵敏同时检测
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 热烈祝贺我司核心技术成果(电化学表面增强拉曼光谱学研究)荣获国家科技科学奖!
    1月10日上午中共中央、国务院在北京隆重举行国家科学技术奖励大会。习近平、李克强、王沪宁、韩正等党和国家领导人出席大会并为获奖代表颁奖。习近平总书记为最高奖获得者颁奖。  由我司首席科学家田中群院士领衔,厦门大学任斌教授、李剑锋教授、吴德印教授,及我司技术总监刘国坤副教授等专家共同研究的“电化学表面增强拉曼光谱学研究”项目获国家自然科学二等奖。任斌、刘国坤作为获奖代表参加奖励大会。    表面增强拉曼光谱(SERS)是基于表面等离激元共振(SPR)效应且具超高表面检测灵敏度的分子光谱。21 世纪前,学术界主流观点认为仅有金、银等少数金属的粗糙表面和纳米粒子体系具有SERS效应,因而该技术无法被广泛应用,这导致SERS 研究一度陷入低潮。  项目团队迎难而上,系统发展非传统SERS 和电化学拉曼光谱实验和理论方法,显著拓展SERS 方法普适性,推进其应用和产业化,取得如下国际领先水平的创新成果:  1、从实验和理论上系统证实过渡金属体系存在SERS 效应。在具有重大(电)催化应用背景的一系列铂族和铁族等过渡金属体系实现了SERS 效应,证明电磁场增强(特别是避雷针效应)为主要增强机理 发现了紫外光激发的SERS 效应 首次利用EC-SERS 深入研究与电催化过程密切关联的氢等弱拉曼信号分子体系的吸附行为 发展以金为内核、铂等过渡金属为壳层的核壳纳米粒子,实现了更具挑战性的过渡金属电极界面水结构的表征。奠定了我国在国际EC-SERS 领域的长期领先优势,并于2002 年获中国高校科学技术一等奖。  2、发明壳层隔绝纳米粒子增强拉曼光谱(SHINERS)新技术,全面突破长期限制SERS 发展的材料和形貌普适性差的瓶颈。应用领域涉及电化学、催化、能源、材料、生命科学等。该技术被国际同行誉为“下一代先进谱学技术”,“开辟了光谱分析的新方向”。该“借力”策略和相关实验技术可被进一步拓展至表面增强荧光和非线性光学等谱学技术。自主研发以SERS 为核心技术的便携式拉曼光谱快检系统,成功实现其在食品和公共安全等领域的实际应用,为2017年厦门金砖会晤等国家级重大事件的食品安全工作提供重要技术支撑。  普识纳米研发团队将会继续在拉曼领域努力探索,积极研究,贡献出自己的一份力量!  延伸阅读  国家自然科学奖是由中华人民共和国国务院设立,由国家科学技术奖励委员会负责的奖项,是中国五个国家科学技术奖之一,授予在基础研究和应用基础研究中,阐明自然现象、特征和规律、做出重大科学发现的公民。
  • 中国电化学界痛失巨匠
    p & nbsp & nbsp 8月1日,武汉大学发布讣告,中国科学院院士、武汉大学化学与分子科学学院教授查全性先生,因病医治无效,在武汉大学人民医院不幸逝世,享年94岁。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/351ab981-d9af-4105-b463-5819a663451e.jpg" title=" timg_meitu_1.jpg" alt=" timg_meitu_1.jpg" / /p p & nbsp & nbsp 查全性先生是我国著名的电化学家,毕生从事电化学相关的科研和人才培养工作。上世纪五十年代末,查全性先生从苏联进修回国,在条件十分艰苦的环境下,克服重重困难,以极大的热情开始了他在武汉大学的电化学研究和人才培养工作,使武汉大学成为当时全国现代电化学研究的重要基地之一。其研究领域包括“电极/溶液”界面上的吸附、多孔电极极化理论、电化学催化与光电化学催化、粉末微电极、多种电化学材料,及其在化学电源、金属表面处理与防腐、电化学分析与传感器方面的应用等。 /p p & nbsp & nbsp 2011年,查全性院士和厦门大学田昭武院士一起荣获第一届中国电化学成就奖。 /p p & nbsp & nbsp “中国电化学成就奖”是中国化学会电化学委员会颁发的最高学术奖励。每两年评选一次,奖励在电化学科学与技术研究中做出原创性成果,并对中国电化学事业的发展做出重大贡献的中国电化学工作者。第二届中国电化学成就奖获得者为中科院长春应化所董绍俊院士。第三届中国电化学成就奖获得者为中科院长春应化所汪尔康院士。 /p p & nbsp & nbsp 作为院士,查全性学术成果自是丰硕。而查院士的真言直谏,则改变了中国高等教育的发展方向,让无数青年人的命运改写。查院士在1977年的全国教育会议上首倡恢复高考并被采纳,让千百万寒门学子通过知识改变了命运! /p p & nbsp & nbsp & nbsp 停止了11年的高考恢复后,查全性事了拂衣去,深藏功与名,又回到了自己热爱的实验室。作为我国著名的电化学家、我国现代电化学重要奠基人之一,默默耕耘、甘当人梯,穷一生从事电化学相关的科研和人才培养工作,是查先生对自己毕生的定位。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/91790372-756a-48f7-be99-aa608a0146ed.jpg" title=" bc7a3a05-d302-4011-a07f-65d03c610af3.jpg" alt=" bc7a3a05-d302-4011-a07f-65d03c610af3.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多业内重大消息! /span /p
  • “雷磁”DZS-708TP全自动电化学分析系统荣获CISILE 2024自主创新金奖
    5月29日,第二十一届中国国际科学仪器及实验室装备展览会(CISILE2024)在中国国际展览中心盛大开幕。“雷磁”携全系列电化学仪器、自动滴定仪、卡式水分仪、浊度计和水质分析仪系列产品亮相本次盛会,吸引国内外客户驻足洽谈。展会期间,主办方正式揭晓了“CISILE 2024自主创新金奖”。上海仪电科学仪器股份有限公司自主研发的DZS-708TP全自动电化学分析系统荣获“CISILE 2024年度自主创新金奖”。29号上午,中国仪器仪表行业协会评审专家团来到上海仪电科仪展位对入围产品进行最终评审。现场工作人员为专家团详细介绍了申报产品的技术指标、性能和应用领域。产品简介DZS-708TP全自动电化学分析系统由DZS-708TP型多参数分析仪和SCH-02B型自动样品进样器构成,可实现电极的自动标定和自动清洗,以及水溶液中pH值、ORP、电导率值、溶解氧含量、常见离子浓度、温度等参数的全自动批量检测。【高集成化】DZS-708TP型多参数分析仪是一款集高精度的pH计、电导率仪、溶解氧仪、离子计为一体的多功能电化学仪器,可精准检测13个电化学参数。【网络化、信息全过程追溯】DZS-708TP多参数分析仪创新提供pH、电导率、溶解氧的标样核查和强制核查功能,进行全面数据质量管理;内置WI-FI和WLAN接口,可通过无线和有线方式搭载雷磁云,实现网络直连和数据云端管理,通过Web管理端、Web应用端、APP应用端,实现数据共享、统计、分析、备份存储等功能,极大满足当下物联网智能实验室的趋势需求。同时仪器内置GMP模式,极大满足生物医药、化妆品等行业的生产质量管理规范要求。【自动化、批量化】DZS-708TP多参数分析仪具有丰富的外设功能,搭载SCH-02B型自动样品进样器,在DZS-708TP主机上设置好批量检测参数,放入待检测样品、标定液、清洗液,即可完成自动标定、自动清洗和自动测量,可实现pH值、电导率值、溶解氧含量、离子浓度的批量检测,性价比高。
  • 华洋科仪携Bio-Logic电化学产品参加第十九次全国电化学大会
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会于2017年12月1-4日在上海国际会议中心举行。全国电化学大会是国内规模最大、范围最广的电化学学术盛会和高水平的学术交流平台。本届大会主题是“电化学与可持续发展”,围绕电化学科学和技术发展中的基础、应用和前沿问题,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料等重要领域的应用,实现社会的可持续发展。 大会由南开大学、电化学会主席陈军院士致开幕词,大会主席上海电力学院校长李和兴致欢迎词。开幕式现场 华洋科仪作为电化学专业委员会委员,一直倾情支持和赞助全国电化学大会。已连续六届作为主要的赞助商之一参会。本届由华洋科仪赞助的大会最佳组织奖由厦门大学、南开大学和上海电力学院获得。 华洋科仪在三层展厅向电化学科学家们展示了可广泛用于电池,超级电容器,燃料电池,基础电化学,电分析,腐蚀科学等领域的法国Bio-Logic的高性能电化学工作站、电池测试系统、微区扫描电化学工作站、阻抗分析仪等电化学测量仪器,不但获得了新老客户的赞赏,也获得了众多科研工作者的关注。 为活跃会场气氛我司的幸运大转盘抽奖活动,吸引了众多与会人员参加。华洋科仪的暖心举动,让参会人员倍感温暖!颁奖仪式一瞥 展位一角李永舫院士莅临华洋科仪Bio-Logic展台 大会开幕式主持人徐群杰教授参观我司展位 幸运一等奖留念 给力的华洋科仪参会代表团 华洋科仪市场部 2017年12月6日
  • 美国Gamry电化学新品发布-Interface™ 1010系列电化学工作站
    —— Gamry不断追求在电化学领域的技术创新! 美国Gamry 电化学仪器公司(Gamry Instruments,Inc.)是世界电化学工作站的领先制造者,从单通道到多通道电化学工作站,在全球都已得到广泛应用。 Gamry不断追求在电化学领域的技术创新,最新推出的Interface™ 1010系列电化学工作站,是Gamry电化学专家与仪器专家共同开发的成果。这是一款研究级、通用型电化学工作站,最终模数分辨率达到23位,频率分辨率(采样时间的倒数)达到1/232。 Interface™ 1010是电化学领域最精密制造的电子产品,采用表面贴装电子元件方式,机箱内无电缆、线束、互联;所选用的变速风扇、低噪音电源、专门设计的底盘等,充分保证了仪器更低的漂移,更高的精度、准确度及稳定性。 Interface™ 1010可自由组合成为多通道电化学工作站,并且通道之间达到完美隔离,互不影响。 Interface™ 1010具有多种细分型号(Interface™ 1010E、1010B、1010T),满足用户不同方面的需求。 下面将详细阐述Interface™ 1010系列电化学工作站的技术特点: 最佳分辨率:为了获得最佳模数分辨率,Gamry以16位A/D转换器为设计基础,然后增加了噪声滤波器,以消除通道中的任何噪声。最后,通过放大器进一步对信号进行可控放大,增益高达×100,几乎为27倍,即提高7位分辨率。当增益添加到A/D转换器时,得到的最终分辨率为23位,是几乎没有噪声条件下的分辨率!上图是电化学工作站InterfaceTM 1010采用Framework™ 软件,针对200 Ω电阻的实际噪声数据(电位0.0 vs参考值; IE范围1μA满量程;滤波器:1 kHz;CA速度正常)。峰值电流为41.1 nA。使用这种200Ω电阻,我们可以从欧姆定律计算峰峰值电压仅为8.2μV。请注意,没有电源(60 Hz)信号引起的噪声! 频率分辨率在电子学中,频率分辨率 ?f 可以定义为采样时间的倒数。对于Gamry仪器,采用32位直接数字合成时钟为信号发生源,拥有1/232的频率分辨率。(有关频率分辨率的更多信息,请参见我们的技术报告“波形生成和频率分辨率”)。 微调电位器微调电位器会引来系列系统误差和费时矫正。 Interface™ 1010采取软硬件的完美结合,在相关硬件里结合相应软件,不采用微调电位器来实现微调性能。几乎所有的调整都是通过软件自动执行,很少需要手动校准。一般来说,微调电位器极易受到机械冲击和温度变化的影响,而使电化学测量结果失真。因此,Interface™ 1010的设计,不需要更多手动,使校准更容易。InterfaceTM 1010内部的印刷电路板请注意组件的平面分布:左上角的变速冷却风扇远离敏感的电子设备,来避免信号中的噪音。 只在表面安装元器件Gamry仪器在印刷电路板中只使用表面贴装电子元件。表面安装的组件意味着体积更小,温度波动更小,当您获取数据时,可以减少漂移并获得更精确的信号。 没有电缆、线束或互连Interface™ 1010在其机箱里面不包含电缆,线束或互连。这意味着Interface™ 1010具有优越的机械可靠性(无连接变松),较少的杂散电磁干扰,以及更少的触点而导致内部腐蚀。降低金属间接触,可以保证我们的仪器具有更低的漂移,更好的稳定性。 低噪声电源Gamry制造的系列电化学工作站,都使用低噪声开关电源。这种电源消除了电磁干扰。它是有效率的,意味着产生的热量较少,而使环境更加环保。 专门设计的底盘Gamry制造的系列电化学工作站中的底盘,保证优化除热和保持恒温。底盘有一个特殊的引导气流设计,可以更快地冷却电子设备。专门设计的底盘,保证Interface™ 1010电位器的低漂移,高精度和稳定的测量! 变速风扇设计电化学工作站机箱内的电脑控制的变频风扇,可以有效冷却内部电子元件,风扇设计用于保持恒温。电动马达驱动的风扇会产生少量的电气噪音,风扇远离敏感元件,有效避免风扇信号引起的噪音。另外,变速风扇更安静,这在繁忙的实验室环境中很重要。 通道间的完美隔离电化学测量中的信号测量或者施加来自不同电极或者不同通道。这些信号对应的每一个通道,理想地说,不应该影响另外一个通道的信号。也就是说,通道之间要彼此隔离。Gamry 采取特制组件与导电栅栏,大大降低了任何电磁干扰与通道之间的影响。绿色制造为了保护环境,所有Gamry电化学工作站均符合中国RoHS标准,因此您可以确保Interface™ 1010几乎无铅,无汞,无镉。 Gamry电化学工作站也采取可回收利用的铝制底盘。 了解更详细的产品信息,请登陆Gamry官网。
  • 阿美特克参展第十六届全国电化学会议
    全国电化学会议由中国化学会电化学委员会组织,每两年召开一次,为电化学研究领域的盛会,代表了国内电化学会议的最高规模和水平。第十六届全国电化学会议于2011年10月14日至16日在重庆大学胜利召开。 开幕式 来自全国高校、研究机构以及各行业从事电化学和相关研究、开发、应用工作的海内外华人专家、学者等200多个单位、1280位代表参加了会议,共有7位院士来到了本会,其中有中科院长春应用化学研究所汪尔康院士、中科学大连化物所的衣宝廉院士、厦门大学田中群院士、中科院化学所万立骏院士和防化研究院杨裕生院士等。更为难得的是,我们电化学研究领域的两位80多岁高龄学术泰斗,著名化学家厦门大学田昭武院士、武汉大学查全性院士也亲临开幕式并获得本届电化学杰出成就奖。 厦门大学田昭武院士、武汉大学查全性院士荣获电化学杰出成就奖 本次会议得到众多电化学同仁的支持和热烈响应,7位院士,13位境外专家,100余名国内外电化学领域的著名科学家和近年来取得突出成果的优秀中青年学者参与学术交流。大会共计400个报告,其中大会报告10个、主题报告42个、邀请和口头报告348个,设置会议墙报894个,共收到论文1060余篇,内容涉及电化学基础、电化学分析、锂离子电池、燃料电池、超级电容器与其他电池、工业与有机电化学、材料电化学等7个专题。集中反映了我国电化学领域近年来所取得的具有创新性的研发成果,展示了电化学学科前沿研究热点和最新进展。会议现场 作为本次会议的特约赞助商美国阿美特克公司,在会议期间设设立了最大展台,展示刚刚推出市场一周的普林斯顿最高研究级ParStat4000电化学工作站。(普林斯顿Princeton Applied Research为阿美特克Ametek集团旗下的电化学工作站品牌)。厦门大学田中群院士,新任电化学委员会主任厦门大学孙世刚教授,副主任南开大学陈军教授,厦门大学夏永姚教授等近百名专家学者参观了阿美特克展台。 ParStat4000电化学工作站首次亮相 厦门大学副校长孙世刚教授参观展台 美国阿美特克公司还连续多年赞助电化学会议“普林斯顿及输力强 优秀论文奖”20名,在闭幕式上由新任电化学委员会主任厦门大学孙世刚教授代表电化学委员会宣布了20篇优秀论文奖获奖名单,并由中科院化学所万立骏院士向获奖者颁发了获奖证书、奖杯、奖金。 “普林斯顿及输力强”优秀论文奖颁发
  • 第十七次全国电化学大会在苏州大学举行
    第十七次全国电化学大会在苏州大学于11月16日隆重开幕,本届大会主席、电化学委员会主任万立骏院士,苏州大学朱秀林校长以及美国电化学会主席Prof. 分别致辞,开幕式上颁发了本届中国电化学杰出贡献奖、青年奖和团队参会组织奖。   华洋科仪冠名的参会组织奖由厦门大学、苏州大学和武汉大学获得,中国化学会电化学委员会主任万立骏院士,苏州大学校长朱秀林先生和华洋科仪董事长齐爱华女士分别为获奖单位颁发了奖牌和证书。 开幕式现场 获奖单位与颁奖嘉宾合影   本次会议以&ldquo 新能源和低碳经济中的电化学&rdquo 为主题,围绕电化学基础、应用及相关领域开展深入交流,对促进我国电化学科学和技术的发展,将起到重要而积极的作用。会议共收到论文1800余篇,总参会人数达2500余人,其中与会院士11名。参加人员涵盖全国所有的具有一定影响力的大学和重要的科研机构 会议还邀请了美国、加拿大以及港、澳、台地区从事电化学基础研究、应用研究、仪器开发以及产业界同仁,交流和展示最新成果,讨论电化学学科的前沿和基础问题,探索如何进一步推动电化学科学和技术在国民经济发展中的应用。   电化学大会创办至今有30余年,会议每两年召开一次,是国内规模最大、涉及领域最广和学术水平最高的电化学界的学术盛会,在促进学术交流、学科交叉与融合及科学创新方面做出了重要贡献。
  • Gamry电化学公司参加第十八届全国固态离子学学术会议 暨国际电化学储能技术论坛
    第18届全国固态离子学学术会议于2016年11月3日~11月7日在广西壮族自治区桂林市举行。此次会议由中国硅酸盐学会固态离子学分会主办,广西师范大学承办。这是中国固态离子界学者的一次盛会,反映了我国在固态离子学领域基础研究和应用研究方面的最新进展与成果,探讨相关学科的最新发展趋势。内容包括固态离子材料及器件的最新成果,涵盖储能材料与器件、电化学传感器等研究领域。 美国Gamry电化学仪器公司和其合作伙伴广州普凡科学仪器有限公司作为本次会议的主要赞助商参加了本次会议,与参会代表就新型储能电池技术、能源材料与技术、离子导体及传感器体系中的离子输运等方面的新技术和新进展展开了广泛的讨论。美国Gamry电化学仪器公司目前在上海设有技术支持总部。 在本次会议上,Gamry向各位电化学储能技术方面的同行展示了适用于能源领域使用的多通道电化学工作站系统。Gamry通过引进接口电源集线器(IPH)改变了关于多通道恒电位仪的传统思维。IPH将台单独仪器,甚至是不同型号的仪器组合起来。每台仪器可单独使用也可作为一个整体来控制,这样既灵活方便,又降低了传统插板式多通道电化学工作站的固有高本体噪声。 此外,Gamry新推出Interface 5000系列电化学工作站也受到了广大与会人员的关注。Interface 5000系列电化学工作站具有测试电流大,抗噪声性能好等特点,最大电流达到5A,更适合于功率略大的能量转换体系测试使用。 Gamry也推出21电极的大电流工作站Reference 3000 AE, 多台联用可以扩展进行100A以上的电池测试需求,同时又保持低阻抗微欧数量级的准确测量。为了更好表征能源系统的电化学过程, GAMRY也提供系列旋转圆盘电极系统,石英晶体微天平系统,能源测试系统,温控系统和电化学动力学解析软件DigiElch软件。刚瑞(上海)商务信息咨询有限公司上海市杨浦区逸仙路25号同济晶度310室 200437电话: 021-65686006 传真:021-65688389微信公众号:Gamry电化学
  • 古老而又年轻的技术——电化学发展趋势展望
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 供稿:上海仪电科学仪器股份有限公司 /span /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 一、我国电化学发展历程 /strong /span /p p   电化学分析技术是一项古老而又年轻的技术,起源于1791年意大利医学教授发现金属可使蛙腿肌肉抽缩的“动物电”现象,1800年伏特制成第一个实用电池,开启了电化学研究的新时代。经过2个多世纪的发展,电化学技术取得的成就举世瞩目,极大地推动了科学的进步和社会的发展。中国改革开放40多年来,电化学技术快速发展,逐渐成为化学、生命、材料、物理、能源、交通、环境和信息等领域的广泛分析工具,对国民经济、国防建设、科学研究等有着至关重要的意义。 /p p   在20世纪80年代中期以前,我国的电化学分析基础方法已经建立起来,电化学仪表主要采用静电计管作为输入级,以指针式显示测量值的电化学仪表,如酸度计、自动电位仪、方波极谱仪、伏安和循环伏安仪等,制造厂商有上海雷磁、延边无线电厂等。从20世纪80年代中期到90年代初期,随着电子技术的发展和计算机的普及,我国开始研究电化学仪器的计算机控制技术和数据处理技术,如“雷磁”研制的电化学仪器开始采用计算机技术,电站水质分析仪系列荣获“国家推荐产品”称号,并圆满完成了国家“95”攻关项目电站水质分析仪系列产品计算机系统项目。90年代中期,我国的研究者在电化学分析化学理论和实验方法及测试技术方面进行了深入研究,我国的电化学仪器技术进一步发展,在专用和常用仪器方面,出现了一批我国自主研发生产的仪器,标志着我国电化学分析仪器工业已经具有一定规模的研究、开发和生产能力。到90年代末期,电化学工作站的研制,标志着我国已经完全掌握了电化学仪器技术。从90年代末期到21世纪,随着嵌入式微型计算机和网络技术的发展,电化学分析仪器逐渐向智能化、信息化、微型化、集成式发展,电化学和电分析的技术和方法也更成熟,国内很多企业和研究机构进行了相关电化学仪器的研制和试制,特别是芯片技术、超微电极、多通道技术、联用技术等均得到了深入的发展,标志着我国电化学技术达到国际水准。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 二、我国电化学分析技术和产品发展历程和特点 /strong /span /p p   与典型化学分析方法相比,电化学分析法具有高灵敏度、高准确度、宽测量范围、易操作、高自动化程度、低误差等特点。我国的电化学基本仪器(PH计、离子计、电导率和溶氧仪),大致经历了以下4个发展阶段: /p p   第1代电化学仪表:采用静电计管作为输入级,用指针式电表显示测量值的电化学仪表。 /p p   第2代电化学仪表:采用运算放大器和A/D转换集成电路,用电位器调节进行校准的电化学仪表。 /p p   第3代电化学仪表:在第2代基础上,将一些标准数据储存在芯片中,采用软件技术进行自动校准,具备一些智能化功能的电化学仪表。 /p p   第4代电化学仪表:以多参数仪表为设计对象,硬件材料和操作模式更人性化和简单化,配套操作软件和配件,组成单参数、双参数或多参数的系列多功能多模块的电化学仪表,典型代表为雷磁DZS-708L多参数分析仪。仪器多以集成式、功能化、微型化和便携式为主要特点,如雷磁DZB-718L便携式多参数分析仪。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/fb176247-9ca8-434a-b820-e18763c3472a.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图1 我国电化学发展阶段(以雷磁产品为例) /span /strong /p p   目前,虽然我国的电化学仪器很多技术和仪器可以达到国际水平,但是也有一些问题亟待解决。例如部分电化学仪器的一些基础部件和设备,在国内根本很难找到合格的加工企业,只能引进国外的设备和材料,导致生产成本较高 我国的电化学中低端产品生产线比较全面和丰富,但是高端产品线还需完善和改进。除此之外,若要成为电化学技术专家,做这个行业的国际标杆,国内企业的管理水平和创新水平,均有待于提高。 /p p style=" margin-bottom: 10px margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong   三、未来电化学技术与产品的发展趋势 /strong /span /p p   21世纪是高新技术和网络信息化的时代,我国电化学技术的发展重点将围绕科研、生产、人类环境三大领域需求,向综合、联用、信息网络化发展,同时更趋微型化、集成化、自动化和智能化。重点开发的产品以技术含量高的中高端产品为主,用于水质检测、食品和药品检测、质量控制、人类健康和环境检测等多领域。快速、准确、稳定、安全、环保、便携、简单等将成为电化学产品的设计宗旨。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 四、“雷磁”发展历程和代表性电化学产品 /strong /span /p p   “雷磁”作为上海仪电科学仪器股份有限公司的自主品牌,创立于1940年,作为中国第一台pH计和第一支玻璃电极的诞生地,在科学仪器发展的道路上,已逐渐成长为电化学分析仪器领域的领军企业。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d7170f16-1aed-4cd2-a094-f54e48e75024.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图2 中国科学仪器行业泰斗朱良漪先生为“雷磁”题词 /span /strong /p p   1940年,荣仁本先生在永嘉路229弄8号设立雷磁电化研究室,从事于小型电化研究工作,制造涂料电阻,并开始电化学仪器的研制。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7242930f-a420-4ddd-bfcf-135248c8db77.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图3 电化学研究--电阻算尺和第一台pH计 /span /strong /p p   1953年,改名为雷磁电化仪器工业社,迁至威海路12弄14号,生产玻璃电极、酸度计。 /p p   1956年,雷磁电化仪器工业社在大合营高潮中被批准为公私合营,公私合营成立雷磁仪器厂。 /p p   1966年,改名为上海第二分析仪器厂。 /p p   1981年,在工商正式注册“雷磁”商标。 /p p   1983年,恢复“上海雷磁仪器厂“厂名。 /p p   2001年,按上海精密科学仪器公司实体化工作要求,变更为上海精密科学仪器有限公司雷磁仪器厂。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2ae3b077-5560-4560-bb4c-c4cc82d1a0ee.jpg" title=" 4_副本.jpg" alt=" 4_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图4 2011年新公司成立,仪电控股领导和嘉定区领导为新公司揭牌 /span /strong /p p   2011年,经上海国资委批准,上海仪电控股公司决定,雷磁仪器等资产,经市场评估后注入上海仪电控股(集团)公司旗下上海仪电电子(集团)有限公司,转制成立“上海仪电科学仪器股份有限公司”。 /p p   2015年,按照仪电集团转型发展战略,作为优质资产被纳入上海仪电(集团)有限公司旗下的上市公司云赛智联股份有限公司(股票代码600602),成为智慧城市建设中检测感知业务的主体之一。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/bf0830f6-203d-4f74-a478-e99a434037a2.jpg" title=" 5_副本.png" alt=" 5_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图5 雷磁代表性电化学产品:台式引领版系列 /span /strong /p p   产品是核心竞争力,雷磁通过不断技术突破和产品的更新换代,在电化学分析仪器产品线上不断进步,引领国内电化学技术不断发展,逐渐形成围绕水质分析的一个完整的产线结构。其中,电化学最具代表性产品为引领版系列,包括实验室单数数和多参数引领版产品、便携式单数数和多参数引领版产品。引领版系列产品由于功能齐全、技术领先、操作方便,成为电化学高端主流产品之一。美观流行的彩色触摸屏设计、合理的操作界面布局、强大的智能操作系统和高精度级别的技术参数成为引领版系列产品的突出优势。除此之外,引领版系列中的多参数仪表,可同时支持四个模块(pH计、电导率仪、溶解氧仪、离子计),实现四通道测量,该技术国际领先,促进了我国电化学产品一体化、智能化和功能化的发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/dd3dfc68-c95c-4a2f-aa99-e003b4f11424.jpg" title=" 6_副本.png" alt=" 6_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图6 雷磁代表性电化学产品:便携式引领版系列 /span /strong /p p   雷磁另一代表性电化学产品为ZDJ-5B系列自动电位滴定仪,该产品具有以下技术优势:1)通过柔性自适应技术进行模块化组合实现不同种类的滴定分析 2)可同时控制并支持多种滴定应用模块,进行电位滴定、光度滴定、电导滴定、永停滴定和温度滴定等,通过电位变化、电导电极、温度电极、氧化还原电极和光度电极实时检测溶液检测参数的变化,自动控制滴定过程和判断滴定终点 3)自动样品切换,可进行多样品的自动滴定分析 4)滴定过程可编程,用户可研究针对各种滴定分析的分析模式 5)支持多种辅助设备如打印机、自动进样器等,形成全自动滴定分子的计算机软件工作站 6)电极精度高、重复性好、性能稳定等优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/dbe53eed-f351-4417-b177-41396f437c1f.jpg" title=" 7_副本.png" alt=" 7_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图7 雷磁代表性电化学产品:ZDJ-5B自动电位滴定仪系列 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 五、雷磁电化学产品应用领域及其优势 /strong /span /p p   雷磁电化学产品,包括PH计、电导率仪、离子计、溶解氧测定仪、多参数水质测定仪和滴定仪等,最具优势的应用领域为实验室常规分析和环境检测。 /p p   在实验室常规分析中,雷磁的电化学分析仪器,在食品安全、生物医药、能源化工、环境保护等各大分析实验室的定性分析和定量分析中有着广泛的应用。一方面,相比于其他分析方法如ICP-MS、HPLC、AAS、LC、GC等,电化学分析方法无需样品前处理,对样品无特殊要求,只需将仪器和配套电极连接后即可测试,测试过程操作简单、响应速度快、测试周期短、实时性好、灵敏度高、应用范围广、实验成本低等一系列优势。例如雷磁的DWS-296型氨氮分析仪(荣获“CISILE自主创新金奖”),在测试过程中,单次测量最短只需几分钟,而且测量范围广、抗干扰能力强、试剂成本低、测试电极寿命长等显著优势。该产品的检出限可达到离子色谱水平,但没有离子色谱操作那么繁琐费时,而且技术人员容易上手,人力成本和测量成本更合理。另一方面,在实验室分析过程中,一般需要控制实验的环境如酸碱度、溶液的离子浓度和导电性等参数,因此,PH计、离子计和电导率仪常被各实验室列为通用性和辅助性设备进行样品检测和实验过程分析。雷磁的PHS-3C型酸度计,作为一款基础耐用型仪器,具有性价比高、实用性强、操作简便等优势,已经写入众多教材和标准当中,成为各大高校、研究所和第三方检测机构等实验室电化学仪器的首要选择,被评为“科学仪器行业最受关注仪器”和“国产好仪器”。除PHS-3C型酸度计外,还有DDSJ-308F电导率仪荣获“国产好仪器”称号、PXSJ-226型离子计荣获“CISILE自主创新银奖”、DZS-708L型多参数分析仪和ZDJ-5B型滴定仪等产品荣获“CISILE自主创新金奖”,获得国家高度认可,并且市场反响热烈,客户好评如潮。 /p p   环境检测,特别是水处理领域,雷磁具有很好的市场竞争力和影响力。雷磁聚焦水质分析将近70多年,作为水质处理的应用专家,主持和参与制定30份国家标准和行业标准,其中17份为第一起草人。相继承担了包括国家科技部“振兴国产仪器重大专项”在内的各类政府科研项目共50余项,申报了发明专利数十项,专利总数累计200余项。雷磁的环境检测设备主要为现场便携箱设备和在线监测设备。这些设备均运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及雷磁的专用分析软件和通讯网络,即时检测水质。雷磁的在线产品不仅测量时间短,还可以实时连续监测,准确快速地获得测量数据,及时反映污染变化状况等,满足政府和企业进行有效水环境管理的需求。除此之外,雷磁电化学产品在水处理应用上还获得了一系列荣誉称号:电站水质分析仪系列荣获“国家推荐产品”称号,DZB-715原位水质监测仪、COD-580型在线COD监测仪、COD-582在线COD监测仪、DWG-8002A型在线氨氮自动监测仪等产品荣获“CISILE自主创新金奖”。 /p p style=" margin-top: 10px margin-bottom: 10px " span style=" color: rgb(255, 0, 0) " strong   六、雷磁电化学产品布局规划 /strong /span /p p   雷磁将围绕“领先的科学仪器制造商、检测溯源系统解决方案与运行服务提供商”的战略目标,重点发展现代分析仪器,研究智能化和信息化先进分析仪器技术和电化学传感器技术,突破环境保护监测、食品药品等重大应用领域的检测应用方案和系统集成技术,打造智能检测仪器互联的管理系统和溯源协同平台。 /p p br/ /p
  • 锂离子电池电化学测量方法概述
    p   锂离子电池电极过程一般经历复杂的多步骤电化学反应,并伴随化学反应,电极是非均相多孔粉末电极。为了获得可重现的、能反映材料与电池热力学及动力学特征的信息,需要对锂离子电池电极过程本身有清楚的认识。 /p p   电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空间电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。这些过程有些同时进行,有些先后发生。 /p p   电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。影响电极过程热力学的因素包括理想电极材料的电化学势,受电极材料形貌、结晶度、结晶取向、表面官能团影响的缺陷能,温度等因素。影响电极过程动力学的因素包括电化学与化学反应活化能,极化电流与电势,电极与电解质相电位匹配性,电极材料离子、电子输运特性,参与电化学反应的活性位密度、真实面积,离子扩散距离,电极与电解质浸润程度与接触面积,界面结构与界面副反应,温度等。 /p p   为了理解复杂的电极过程,一般电化学测量要结合稳态和暂态方法,通常包括3个基本步骤,如图1所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a9afc2e6-64ea-4948-82ad-3215bccf8bd5.jpg" title=" 001.jpg.png" alt=" 001.jpg.png" / /p p    strong 1 电化学测量概述 /strong /p p   1.1测量的基本内容 /p p   电化学测量主要研究电池或电极的电流、电势在稳态和暂态的激励信号下随外界条件变化的规律,测量反映动力学特性的参数。 /p p   1.2测量电池的分类及特点电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。 /p p   1.2.1两电极电池如图2所示,蓝色虚线框所示是一个典型的两电极电池的测量示意图,其中W表示研究电极,亦称之为工作电极(workingelectrode),C是辅助电极(auxiliaryelectrode),亦称之为对电极(counterelectrode)。锂电池的研究中多数为两电极电池,两电极电池测量的电压(voltage)是正极电势(potential)与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42e77e09-6d49-4696-a71d-981ad1f27239.jpg" title=" 002.jpg.png" alt=" 002.jpg.png" / /p p   1.2.2三电极电池与电极电势以及极化电流的测量图2是一个三电极电池示意图,W和C分别是工作电极和对电极(同上),R是参比电极(referenceelectrode)。W和C之间通过极化电流,实现电极的极化。W和R之间通过极小的电流,用于测量工作电极的电势。通过三电极电池,可以专门研究工作电极的电极过程动力学。 /p p   由于在锂离子电池中,正极和负极的电化学响应存在较大差异,近年来通过测量两电极电池电压电流曲线,对曲线进行dQ/dV处理,结合熵的原位测量,也能大致判断电池的电流或电压响应主要是与负极还是与正极反应有关。 /p p   1.3参比电极的特性及门类参比电极的性能直接影响电极电势的准确测量,通常参比电极应具备以下基本特征:①参比电极应为可逆电极 ②不易被极化,以保证电极电势比较标准和恒定 ③具有较好的恢复特性,不发生严重的滞后现象 ④具有较好的稳定性和重现性 ⑤快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性 ⑥不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。 /p p   常用的水溶液体系参比电极有可逆氢电极、甘汞电极、汞-氧化汞电极、汞-硫酸亚汞电极等 常用的非水溶液体系参比电极有银-氯化银电极、Pt电极以及金属锂、钠等电极。此外,也可以用银丝、铂丝做准参比电极,或者采用电化学反应电位稳定的溶解于电解液的二茂铁氧化还原电对。关于准参比电极细节可参考A.J.Bard编著的《ElectrochemicalMethods》。 /p p   1.4研究电极的门类及特性电化学测量中常用的研究电极主要有固体电极、超微电极和单晶电极。一般电化学研究所指的的固体电极主要有Pt电极和碳电极。其中碳电极包括热解石墨、高定向热解石墨(HOPG)、多晶石墨、玻璃化碳、碳纤维等。固体电极在使用时需要对其表面进行特殊处理,以期达到较好的重复性。常规的处理步骤为:①浸泡有机溶剂,除去表面吸附有机物 ②机械抛光,初步获取较高的表面光洁度 ③电化学抛光,除去电极表面氧化层及残留吸附物质 ④溶液净化,保证溶液的纯度,消除溶液中的杂质对测量结果的影响。 /p p   此外,超微电极和单晶电极以其独特的性质,近些年来也得到了较广泛的应用。前者可以快速获得动力学参数,且对待测材料的量要求很低,可以避免黏结剂、导电添加剂的干扰。后者可以精确获得溶剂吸脱附、表面结构、结晶取向等对电极过程动力学的影响。 /p p   在锂离子电池的研究中,固体电极包括含有活性物质的多孔粉末电极、多晶薄膜电极、外延膜薄膜电极、单颗粒微电极以及单晶电极等,多数测量时采用多孔粉末电极。 /p p   1.5电极过程电极过程一般情况下包括下列基本过程或步骤:①电化学反应过程:在电极/溶液界面上得到或失去电子生成反应产物的过程,即电荷转移过程 ②传质过程:反应物向电极表面或内部传递或反应产物自电极内部或表面向溶液中或向电极内部的传递过程(扩散和迁移) ③电极界面处靠近电解液一侧的双电层以及靠近电极内一侧的空间电荷层的充放电过程 ④溶液中离子的电迁移或电子导体、电极内电子的导电过程。 /p p   此外,伴随电化学反应,还有溶剂、阴阳离子、电化学反应产物的吸附/脱附过程,新相生长过程以及其它化学反应等。 /p p   锂离子电池作为一种复杂的电化学体系,其电极过程同样具备上述几个基本步骤。其工作原理如图3所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/93c5e038-8fe5-45b8-95cf-7a848c79c7c2.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p   针对不同的电极材料及电极体系,上述基本过程可简化为锂离子电池中离子和电子的传输及存储过程。所涉及的电化学过程有电子、离子在材料的体相、两相界面和(solidelectrolyteinterphase,SEI)的形成等过程。典型的电极过程及动力学参数有:①离子在电解质中的迁移电阻(Rsol) ②离子在电极表面的吸附电阻和电容(Rad,Cad) ③电化学双电层电容(Cdl) ④空间电荷层电容(Csc) ⑤离子在电极电解质界面的传输电阻(Rincorporation) ⑥离子在表面膜中的输运电阻和电容(Rfilm,Cfilm) ⑦电荷转移(Rct) ⑧电解质中离子的扩散电阻(Zdiffusion) ⑨电极中离子的扩散(Zdiffusion)——体相扩散(Rb)和晶粒晶界中的扩散(Rgb) ⑩宿主晶格中外来原子/离子的存储电容(Cchem) 相转变反应电容(Cchem) 电子的输运(Re)。 /p p   上述基本动力学参数涉及不同的电极基本过程,因而具有不同的时间常数。典型的电池中的电极过程及时间常数如图4所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/15e1c68c-99dc-4dd3-baf5-27e2c29a2754.jpg" title=" 004.jpg.png" alt=" 004.jpg.png" / /p p   1.6电化学极化的类型及其特征1.6.1极化的类型及其特征在施加了外来电场后,电池或电极逐渐偏离平衡电势的状态,称之为极化。在不具有流动相的电池中,存在着3种类型的极化:①电化学极化——与电荷转移过程有关的极化,极化的驱动力是电场梯度 ②浓差极化——与参与电化学反应的反应物和产物的扩散过程有关的极化,极化的驱动力为浓度梯度 ③欧姆极化——与载流子在电池中各相输运有关的极化,驱动力是电场梯度。 /p p   若还存在其它基本电极过程,如匀相或多相化学反应过程,则可能存在化学反应极化。 /p p   极化电势与平衡电势的差值的大小被称之为过电势。 /p p   1.6.2极化的影响因素各类极化的影响因素如下。(1)电化学极化的大小是由电化学反应速率决定的,电化学极化电阻(Rct)的大小与交换电流密度(io)直接相关。受多种因素影响,包括电极电位、电极电位与电解质电化学势差、反应物与产物的活度、参与电化学反应的电极的真实表面积、结晶取向、有序度、表面电导、反应温度、催化剂催化特性、电化学反应的可逆性等。 /p p   电化学极化的电流与电势在一定的电流电压范围内一般符合Tafel关系,log(i)与过电势成正比。 /p p   (2)浓差极化与传质粒子的扩散系数有关。电池中的扩散过程可以发生在电极材料内部,多孔电极的孔隙中,以及电解质相中,参与扩散的可以是多种带电或中性粒子。涉及扩散的粒子流的流量一般符合菲克扩散定律,与扩散系数及浓度梯度有关。由于电池是非均相体系,扩散系数与浓度梯度是空间位置的函数,在电化学反应的过程中,会随时间变化。传质的快慢与传质距离的平方成正比。 /p p   浓差极化过电势hcon与电流i,极限电流il的关系符合对数关系,hcon=RT/nF´ ln[(il-i)/il]。在过电势较小时,hcon=-RTi/nFil。 /p p   (3)欧姆极化的大小是由电池内部涉及到电迁移的各类电阻之和,即欧姆电阻决定的。欧姆极化过电势与极化电流密度成正比。 /p p    strong 2 小结与展望 /strong /p p   电化学表征技术在锂离子电池中有着非常广泛的应用,而电化学表征方法也非常之丰富,除了文中介绍的几种方法外,还有诸如 PSCA、CPR、CITT、RPG 等。随着实际应用的需要,新的电化学表征方法,特别是与其它表征技术结合形成的各类原位测量技术,正在迅速发展。 /p p   电极过程动力学研究的目的是获得能反映电极材料本征动力学特性的参数值,例如电荷转移电阻、扩散系数、交换电流密度,膜电阻等,并掌握该参数值随不同充放电深度(嵌脱锂量)以及温度的变化,从而能够理解、模拟、预测各类工况下及充电过程中电池极化电阻、电容的变化规律。而实验室在基础研究时往往采用粉末电极,导致在不同材料之间可靠的比较动力学参数基本不可能非常精确,除非材料的尺寸、粒度分布、表面官能团、导电添加剂、粘接剂、分散度、电极厚度、压实密度、体积容量得到了精确的控制和能实现高度的一致性。 /p p   相对于手工制作的电极,自动化设备制作的电极往往具有较好的一致性,更适合用来研究电极过程动力学。在基础研究时最好采用薄膜电极、微电极或单晶电极。 /p p   对于批量生产的电池,通过比较充放电曲线,分析直流极化电阻、固定频率的交流阻抗,开路电压等,可以获得表观的动力学参数,采用这些参数通过电化学模拟软件,可以将为准确的预测电池各类工况下的荷电态、极化电阻、输出功率,成为电源管理系统软件的核心内容 。 /p p   事实上,锂离子电池涉及的电化学为嵌入电极电化学,有别于传统的电极不发生结构演化,电化学反应主要发生在电极表面的溶液电化学。电化学双电层(EDL)与空间电荷层(SCL)共存,在充放电过程中,离子将穿过 EDL 与 SCL,电荷转移往往发生在电极内部而非表面,电极为混合离子导体,电化学反应伴随着相变和内部传质,这与一般教科书上描述的的电化学反应体系、研究方法、数学模型存在显著差异,需要发展新的理论与实验方法。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所) /i /span /p
  • “感”知世界——创造独特的电化学传感器
    瑞士万通DropSens,电化学传感器定制和生产的理想合作伙伴。现在,电化学传感器进入市场的机会近在眼前。 瑞士万通DropSens生产的定制化电化学传感器具有可扩展、低成本的制造工艺,并且可应对大规模生产。 一个想法、一个应用或是一个初期研究设想都可以变成一个理想的,经过权威认证的,可立即投入市场使用的解决方案。该解决方案可以满足各种需求,无论您处于哪个领域。 瑞士万通DropSens具有设计和定制化电化学解决方案的能力,且可以应对大批量生产,为开发小型传感器和生物传感器创造了巨大的机遇。专业制造能力可以确保较低生产成本,高水平的产品质量和稳定性以及无缺货风险的交付能力,为许多潜在的项目和研究拓宽视野。 由于传感器的可定制性,因此可以进行多种修改和选择,例如空间分布、形状、面积、基材或多种材料的使用。这种多功能性使该传感器适合于各种应用,以测量各种参数。 其中包括人类健康、污染、食品和饮料信息、环境分析、水污染、非法药物检测、病毒、农业和畜牧业等。 电化学传感器的定制和大批量生产能力是进入市场,响应新的分析范式并获得强大而准确结果的有力保障,同时也是各个行业所迫切寻找的。从小规模的原型制作到大规模的传感器生产,瑞士万通DropSens将在全过程中提供支持:概念化、原型设计和具有高质量标准的结果,另外还有服务于全球,可靠和专业的技术团队。
  • 天美中国总部电话总机公告
    尊敬的客户、合作伙伴及所有相关单位、人员:  由于中国联通公司在北京市朝阳区天畅园施工,导致该园区电话线路无法接通,并告知无法预计接通时间。天美(中国)科学仪器有限公司的总机010-64010651近期也将无法正常使用。大家可通过以下几种途径与我们取得联系:1、客户服务热线400-810-7898和800-810-78902、传真:010-640602023、公司邮箱:techcomp@techcomp.cn4、您熟悉的天美员工的手机号码5、除北京总部外的其它全国13个分公司电话运转正常。6、天美公司官方微信公众号(天美中国)留言。 因此给客户、合作伙伴及相关单位工作带来不便,敬请谅解。公司总机恢复正常后,会再次公告通知。感谢您一直以来对天美公司的支持与认可。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制