当前位置: 仪器信息网 > 行业主题 > >

碘化铒

仪器信息网碘化铒专题为您提供2024年最新碘化铒价格报价、厂家品牌的相关信息, 包括碘化铒参数、型号等,不管是国产,还是进口品牌的碘化铒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘化铒相关的耗材配件、试剂标物,还有碘化铒相关的最新资讯、资料,以及碘化铒相关的解决方案。

碘化铒相关的资讯

  • PerkinElmer将于2012年4月26日举办盈利电话会议
    PerkinElmer将于2012年4月26日举办盈利电话会议 马萨诸塞州沃尔瑟姆--(商业资讯)&mdash &mdash 致力于改善人类及环境健康和安全的领军企业PerkinElmer公司(NYSE:PKI)于当日宣布,在2012年4月26日(星期四)收市后,公司将发布2012年第一季度的业绩。公司还将在东部时间2012年4月26日下午5点召开电话会议进行相关讨论。董事长兼首席执行官Robert F. Friel以及高级副总裁兼首席财务官Andy Wilson将主持电话会议。 如果希望参加该会议,请在既定的电话会议时间之前致电(617) 213 &ndash 8856,听提供接入代码90431696。东部时间2012年4月26日(星期四)下午7点将回放电话会议。回放的电话号码是(617) 801-6888,接入代码为76741664. 届时公司官网(www.perkinelmer.com)的&ldquo 投资者&rdquo 页面还将对此次电话会议进行现场音频直播。 关于Perkin Elmer PerkinElmer(珀金埃尔默)公司是致力于改善人类及环境健康和安全的全球领导者。据报道,该公司2011年的收入约为19亿美元,拥有约7,000名员工,服务于全球超过150个国家和地区的客户,同时公司也是标准普尔500指数的成员。 更多信息请致电1-877-PKI-NYSE或登录我们的网站:www.perkinelmer.com. 投资者关系部: PerkinElmer, Inc. David C. Francisco, 781-663-5677 dave.francisco@perkinelmer.com 或 媒体联系: PerkinElmer, Inc. Stephanie R. Wasco, 781-663-5701 stephanie.wasco@perkinelmer.com
  • 汪尔康院士荣获中国化学会电化学委员会最高学术奖励第三届中国电化学成就奖
    “中国电化学成就奖”是电化学委员会颁发的最高学术奖励。每两年评选一次,奖励在电化学科学与技术研究中做出原创性成果,并对中国电化学事业的发展做出重大贡献的中国电化学工作者。2011年,厦门大学田昭武院士、武汉大学查全性院士荣获第一届中国电化学成就奖。2015年中国科学院长春应用化学研究所董绍俊院士(TWAS)获第二届中国电化学成就奖。2017年12月2日,中国化学会电化学委员会在第十九次全国电化学大会上公布了第三届中国电化学成就奖名单,中国科学院长春应用化学研究所汪尔康院士喜获殊荣。 p   汪尔康院士曾任中科院长春应化所所长,1952年上海沪江大学毕业,1959年在捷克获博士学位(导师诺贝尔奖获得者J.海洛夫斯基院士),1991年当选中科院院士,1993年当选第三世界科学院院士,2006年当选日本分析化学学会荣誉会员。汪尔康院士长期从事电化学与电分析化学,分析化学及环境与生命科学分析研究,“七五”开始至“十二五”国家自然科学基金委分析和电分析化学方面重大、重点项目以及国家攻关863和973项目和现国家重大项目的参加人和负责人,按国家及科技发展需要,均很好地完成任务。获国家(自然科学奖4项)和省部级奖11项及吉林省首届科技进步特殊贡献奖,国际奖2项,发明专利40多项。已发表论文900多篇,SCI收录800多篇,总引31,000多次。h指数91。国际大会报告和专题报告100多次,在27个国家和地区作学术报告200多次。涉及分析化学,电化学与电分析化学,环境与生命科学分析。主编《21世纪的分析化学》(1999)、《生命分析化学》(2006)和《分析化学手册》(第三版,2016)及《20世纪中国知名科学家学术成就概览:化学卷》编委副主编。在美、法、日和香港的5所大学聘为客座教授。为九种国际化学杂志编委,国际顾问委员会委员 曾长期担任“分析化学”主编。他热心国际学术交流:作为中方负责人创办中日分析化学会议四届(1983-1991),后扩展为亚州分析化学会议第一届(1991),至今已第16届(2016),再扩展为IUPAC国际分析科学会议第一届(1991),至今第6届(2017) 创办中法生物电分析化学会议第一届(2001),至今己第八届(2012) 创办国际电分析化学会议(ISEAC),会议一直在长春召开,每两年一次,自1987年开始至今已16届 创办北京分析测试学术报告会暨展览会(BCEIA),每两年一次,自1985年开始至今已17届。培养博士和硕士研究生100多名。其中,3人获全国百篇优秀博士学位论文奖 4人获中科院优秀博士学位论文奖 5人获中科院院长奖学金特别奖,9人获优秀奖 10多人获中科院各类冠名奖 4人获国外引进青年千人创新人才 博士后15名(1人获全国优秀博士后奖)。他本人多次获优秀导师称号。2017年(2005-2015),2016年(2004-2014),2015年(2003-2013)和2014年(2002-2012)连续获选Web of Science公布的全球高被引科学家。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/4e5fa6ae-8a54-4b87-be28-acf3f72c5b3c.jpg" title=" 111.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/46fb3b52-3ff6-406f-aa01-fdff01de37fb.jpg" title=" 112.jpg" / /p p    /p p    /p p br/ /p
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 珀金埃尔默中国技术中心电话变更通知
    珀金埃尔默(仪器)上海有限公司上海办事处及中国技术中心的电话号码自2007年6月29日起变更为86-21-38769510。从2007年6月29日至7月15日,原号码86-21-50791330与新号码86-21-38769510将并存一段时间。2007年7月16日起,原号码50791330失效。
  • 普林斯顿发布VersaSCAN微区电化学柔性探针新技术
    2016年6月14日,阿美特克集团科学仪器部在北京分公司召开“VersaSCAN微区电化学技术交流会”,并在此交流会上发布新技术——扫描电化学显微镜(SECM)柔性探针技术,仪器信息网作为特邀媒体参加了此次交流会。 John Harper 博士为与会者详细介绍了此次发布的新技术。此次发布的扫描电化学显微镜柔性探针技术专用于“普林斯顿应用研究VersaScan”产品的柔性接触和等距测试,是由瑞士洛桑联邦理工学院的物理和电分析化学实验室(LEPA-EPFL)Hubert Girault教授课题组经数十年的研究而实现的。阿美特克科学仪器部与该实验室签署了独家合作协议,集成并销售其柔性探针技术。柔性探针使得广大研究者可同时进行等距离和等高模式的SECM测试,可分离3D表面电化学活性响应图中表面物理形貌和电化学响应的贡献。 与市场上常用的硬性探针相比,柔性探针具有以下优势:1)柔性探针等距SECM无需额外增加昂贵的控制与测量硬件 2)测量时无需为达到控制距离而预先测试样品表面的地形地貌 3)探针设计为与样品进行柔性接触,当与样品表面接触时,探针会发生柔性弯曲,避免探针自身被划伤以及探针对样品表面的损害 4)常规技术中硬性探针和样品直接接触会导致表面易损样品被损坏,如人体组织等。而柔性探针技术接触样品的接触力仅为常规硬接触探针的千分之一。 未来,阿美特克集团科学仪器部与LEPA-EPFL还将共同致力于实现其它探针材料与技术的商业化,希望SECM柔性探针技术能帮助SECM成为标准电化学测试利器。 为鼓励更多的用户致力于微区电化学的研究,此次交流会特设“普林斯顿应用研究微区电化学优秀论文奖”。本次奖项颁发给了浙江大学刘艳华博士,以表彰其使用VersaScan微区电化学测试系统在涂装材料研究方面所作出的贡献,由阿美特克公司科学仪器部亚洲区经理杨琦女士为其颁奖。 随后的技术交流过程中,John Harper 博士、刘艳华博士和厦门大学林昌健教授针对微区电化学的技术和应用为大家进行了分享。VersaScan微区电化学测试系统是一个模块化配置的系统,可实现现今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试,包括扫描电化学显微镜、扫描振动电极测试、扫描开尔文探针测试、微区电化学阻抗测试、扫描电解液微滴测试、非触式光学微区形貌测试等。此次发布的柔性探针技术主要针对扫描电化学显微镜,目前阿美特克可提供有效直径15um的柔性碳探针。John Harper 博士还重点介绍了柔性探针技术的应用案例,包括癌细胞成像和黑色素瘤的分期变化(如皮肤癌)、电子应用-电沉积和成像、电催化等。 刘艳华博士介绍了扫描振动电极测试技术在涂层金属腐蚀研究中的应用。刘博士主要介绍了两项工作:一是采用电沉积技术合成了负载缓蚀剂的超疏水二氧化硅薄膜 二是构建了基于硅烷修饰的E-Sio2薄膜和环氧树脂的新型防护体系。在此两项工作中均利用了扫描振动电极测试技术来表征其微区耐腐蚀性能,与其它表征手段结果均有较好的吻合度。 林昌健教授自1979年开始研究微区电化学技术,至今已有37年。林教授认为微区电化学之所以能发展到今天的水平,一是科研需求,越来越多的科研人员应用此技术使其成为热门研究领域 二是科技发展,科技水平的发展也使微区电化学技术有了显著的进步。未来,微区电化学技术发展很重要的一方面就是探针技术的发展。林教授重点介绍了其团队开发的新型探针。林教授发现,在空间分辨率足够高的情况下,除电流、电压信号外, pH值和氯离子浓度也可以很好的表征局部腐蚀程度,故其团队开发了可测量pH值和氯离子浓度的探针。未来此探针有望集成到VersaScan微区电化学测试系统上。
  • 在线电化学方法实现免疫球蛋白链间/链内二硫键的还原
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins1。该文章的通讯作者是来自荷兰伊拉斯姆斯大学医学院的Martijn M. Vanduijn研究员。许多蛋白质中都包含着二硫键,二硫键是指连接不同肽链或同一肽链中两个不同半胱氨酸残基的巯基组成的化学键(-S-S-)。在蛋白质分子中,二硫键起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界影响的能力就越大。维持二硫键的完整有利于蛋白质的液相色谱分离,但却给后端的质谱分析带来了挑战。常规的方法是在质谱分析前期对蛋白质进行变性、还原、烷基化处理,这些前处理过程可以有效的减少二硫键对后续酶切或二级碎裂(MS/MS)的干扰,但却非常繁琐耗时,除了会产生副反应以外,蛋白样品也可能在前处理过程中发生丢失。一个有效的替代方法是采用电化学还原。一个配备金属电极的流通池,仅需要施加适当电压于电极上,流通池中蛋白分子上的二硫键就可以被还原。目前,这种微型电化学反应池已实现商业化,可在线连接至质谱前端,蛋白样品经电化学还原,离子源活化,二级碎裂后可直接进行基于MS/MS谱图的序列匹配。尽管如此,电化学反应池在设计、电极材料组成、流通池的大小以及施加的电势等方面仍在不断的提高与创新。免疫球蛋白(抗体)包含有多个链间/链内二硫键。Simone Nicolardi等人曾在2014年将电化学反应器与FTICR质谱联用用于单克隆抗体的分析,从MS1谱图中可以明显地观察到单克隆抗体由于链间二硫键还原后生成的重链和轻链。然而,由于还原不完全,导致重链/轻链上的链内二硫键仅部分打开。类似的不完全还原在Kasper D. Rand组中电化学还原与氢氘交换质谱联用中也能观察到。这种不完全还原会影响蛋白中肽链的精准测量(一对二硫键引起2 Da的质量偏差),同时,关闭的二硫键也会干扰其跨度区域的二级碎裂,碎裂产物也较难通过计算软件进行预测或分析。本文介绍了一种改进的在线电化学还原方法可以实现单克隆抗体链间/链内的完全还原。装置如图1所示,蛋白样品注入系统后在1μL/min的流速下进行色谱分离,色谱柱后流出液与19 μL/min的补充液(1%甲酸,50%乙腈)在T型管中混合,随后以20 μL/min的流速经过电化学反应池(电化学反应池固有体积为19 μL),最终还原后的反应液进入质谱进行检测。值得注意的是,补充液中的50%乙腈有利于蛋白变性,而1%甲酸则为还原反应提供氢原子,促进还原反应的进行。图1. 在线电化学反应池耦联质谱装置示意图为了考察整个方法的可行性及普遍适用性,作者利用该装置对一系列的单克隆抗体进行了电化学还原和质谱检测。如图2A为贝伐珠单抗在800 mV还原电势下色谱分离的总离子流图(TIC),图2B为图2A中色谱峰所对应的一级质谱图(MS1)。从MS1可以看出有两组电荷态分布分别对应重链和轻链,说明在800 mV电势下,贝伐珠单抗链间二硫键发生了还原,由于还原发生在色谱分离之后,所以重链和轻链产生了共流出,仅在TIC图中观察到一个色谱峰。相比较柱前还原,这种色谱柱后二硫键还原会导致肽链的共流出,质荷比接近的肽链则会产生重叠的电荷分布进而干扰谱图的解析。但这种方法在分析复杂的蛋白样本具有明显有优势,可以将还原后生成的肽链与蛋白母体相关联,方便溯源。图2C则为贝伐珠单抗在不同电势下的还原情况,随着电势的逐渐增加,MS1去卷积谱图上逐渐观察到部分还原生成的重链、轻链或重轻链组合,当电势达到1000 mV时,几乎所有的链间二硫键都实现了还原。对于链内的二硫键,由于还原产生的质量改变较小(轻链包含两个二硫键,还原后质量增加4.032 Da),且存在未还原、部分还原以及完全还原肽链间的信号干扰,所以不太容易从MS1谱图确认链内二硫键的还原情况。但轻重链朝高电荷态偏移(图2D)间接说明链内二硫键在打开,肽链更加舒展,更容易质子化。图2. 在线还原系统分析贝伐珠单抗:A)贝伐珠单抗总离子流图;B)对应色谱峰的一级质谱图;C)在不同还原电势下的一级质谱图(去卷积);D)重链在不同还原电势下电荷态的偏移。为了更加准确地评估链内二硫键的还原情况,作者模拟了不同氧化还原态的贝伐珠单抗轻链19+电荷态的同位素分布情况。如图3A,从上到下分别是模拟的完全还原(4 x SH)、部分还原(SS + 2 x SH)以及未还原(2 x SS)同位素分布。将实验测得同位素分布与模拟的同位素分布进行比对,计算每种氧化还原形式对总信号的贡献占比(图3B)。经过比对发现在1000 mV的电化学还原下是可以实现链内二硫键的完全还原的。因此,最终电化学还原设置为1000 mV。链内二硫键的完全还原可以极大的提高肽链的碎裂效率,获得更加丰富的MS/MS数据用于序列匹配。如图4所示,贝伐珠单抗以及西妥昔单抗的轻链19+电荷态被分离并碎裂。可以看到当施加1000 mV还原电势在质谱分析的前端时,轻链的二级碎片明显增加,特别是横跨链内二硫键的区域(图4,黄色阴影)。此外,在质量匹配的过程中也可以观察到二硫键处于还原状态,考虑还原氢引起的质量增加可以实现更多二级碎片的匹配。图3. A)不同氧化还原态的贝伐珠单抗轻链19+电荷态的同位素分布模拟;B)不同实验条件下的二硫键还原情况图4. MS/MS数据评估链内二硫键的还原情况总之,本文开发了一种在线电化学还原方法能够实现免疫球蛋白链间/链内二硫键的完全还原。该方法能够简化蛋白样品的前处理过程,方便后续的质谱测定。与之前的电化学反应器相比,该系统能实现链内二硫键还原的主要原因可能有以下几点:1、电化学流通池所用的表面材料,之前是全钛的设计,现在是表面镀铂。2、之前是三电极配置(工作电极,参比电极,辅助电极),而现在的设计减少至两个电极,驱动还原的电势适用于这种调整后电极配置。3、补充液的条件(50%乙腈和1%甲酸)对还原有利。此外,该电化学系统仍有需要改进的地方,例如:电化学反应池的体积过大、还原电势过高会影响质谱检测的信噪比等。该方法具有广阔的应用前景,无论是在蛋白质组学还是在结构质谱分析中。撰稿:刘蕊洁编辑:李惠琳原文:Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins参考文献1.Vanduijn MM, Brouwer HJ, Sanz de la Torre P, Chervet JP, Luider TM. Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins. Anal Chem. 2022, 94(7): 3120-3125. 2.Nicolardi S, Deelder AM, Palmblad M, van der Burgt YE. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014, 86(11): 5376-5382.3.Trabjerg E, Jakobsen RU, Mysling S, Christensen S, Jørgensen TJ, Rand KD. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem. 2015, 87(17): 8880-8888.
  • Versa SCAN原位局部扫描电化学测试技术获新研究进展
    p style=" text-align: center " span style=" font-size: 18px " strong Versa SCAN 原位局部扫描电化学测试技术 /strong /span /p p style=" text-align: center " span style=" font-size: 14px " 阿美特克集团科学仪器部 黄建书博士 /span /p p   传统的宏观电化学测试技术,如恒电位、恒电流、循环伏安和交流阻抗等测量的是样品整体响应,整个电极/电解液界面的平均响应信号。由于样品很少为均相,所以样品通常由钝化/活化自然属性的局部区域,或者阴极/阳极特性的局部区域组成,并且样品的性质变化往往由于局部反应和变化所导致,如腐蚀过程通常是由点腐蚀和缝隙腐蚀开始,催化剂表面并非所有位置都有催化活性,表面仅有部分活性点有催化效果等等。因此,宏观测试技术在研究中受到局限性,可以通过探针/微电极在样品表面扫描,监测电流、电压和阻抗等电信号的变化来区分局部反应发生的程度、位置和区域大小。 /p p   根据应用不同,可分为以下九种技术 /p p 1. 扫描电化学显微镜(SECM) /p p 2.等距离扫描-柔性探针技术 (Stylus SECM) /p p 3.无氧化还原介质SECM技术(AC-SECM) /p p 4. 扫描振动电极测量系统(SVET,SVP) /p p 5. 微区电化学阻抗系统(LEIS) /p p 6. 扫描开尔文探针系统(SKP) /p p 7. 扫描微液滴系统(SDC) /p p 8. 非接触式光学微区形貌探测系统(OSP) /p p 9. 表面离子浓度成像系统(ISP) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/fd19b840-e0e1-4684-a9f0-53056f228a73.jpg" title=" 1.png" style=" width: 622px height: 358px " width=" 622" vspace=" 0" hspace=" 0" height=" 358" border=" 0" / /p p style=" text-align: center " strong Fig 1 Versa SCAN 系统概图 /strong /p p & nbsp /p p   由于成像机理是电化学,所以SECM, SVET和LEIS等技术的应用就如同电化学反应本身的应用一样多种多样。在某些关键的领域,如腐蚀机理研究,能源材料,生物传感器,反应动力学,多孔膜,燃料电池催化剂等方面发挥巨大作用。 /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/67c712bb-3ff7-4c62-8f9e-01eff8da18f8.jpg" title=" 2.png" style=" width: 590px height: 295px " width=" 590" vspace=" 0" hspace=" 0" height=" 295" border=" 0" / /p p style=" text-align: center " strong Fig 2 基体7075 Al表面涂层耐腐性评价,相同区域面扫描, pH 3(左),pH 8 (右)和pH 6.85 (中), /strong /p p style=" text-align: center " strong 电解液为0.1 M磷酸缓冲溶液 /strong /p p style=" text-align: center " strong ECS Transactions, 66 (30) 65-71 (2015) /strong /p p & nbsp /p p   微区探针扫描有两种模式,等高扫描和等距离扫描。等高扫描适合于样品非常平整的表面或者粗糙度比较小的样品,但对于部分应用的样品无法抛光或确保非常小的粗糙度范围,比如腐蚀涂层,表面修饰电极,生物样品等,如果按照等高度进行扫描,由于样品的高度发生变化,所以探针移动的每个位置和样品表面的距离会发生变化,这会从而导致最终结果中的信号变化,很可能来自于探针和样品的距离变化而非样品表面真实的性质变化,因此等高模式扫描对于样品表面粗糙度比较大的样品测试具有很大局限性。 /p p   为了克服样品粗糙度较大对于测试结果的影响,需要使用等距离扫描模式,即探针尖端到样品的距离保持恒定,如何实现等距离扫描呢? /p p   Ametek 科学仪器部与瑞士洛桑理工Hubert H. Girault教授团队合作开发了Versa SCAN-Stylus Probe柔性探针测试系统,该系统所采用的探针构造如下,中心为柔性碳纤维,碳纤维外层覆盖厚度均匀的聚合物涂层,在扫描过程中探针与样品表面成一定角度,探针到样品的距离保持恒定,即探针外侧涂层的厚度决定了探针到样品的距离,如涂层的厚度为10um,则探针到样品的距离为10um。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/8cc578e9-4048-430b-96ab-d17847b99e26.jpg" title=" 3.png" style=" width: 460px height: 283px " width=" 460" vspace=" 0" hspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center " strong Fig 3 柔性探针扫描示意图 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/029522ea-bb4d-4f82-b2a7-8ff90563f824.jpg" title=" 4.png" / /p p style=" text-align: center " strong Fig 4 柔性探针扫描过程 /strong /p p   柔性探针技术优势如下:适用于倾斜的,褶皱的和粗糙的样品。与样品软接触:接触力为硬探针接触的1/1000,所以柔性探针技术成为研究生物样品的理想选择。 /p p 1.& nbsp 低成本:无需额外硬件的特殊反馈和电子控制用于控制探针和样品表面的垂直距离 /p p 2.& nbsp 快速测量: SECM扫描前无需样品表面形貌测量 /p p 3.& nbsp 柔性和稳定性探针: 定位和扫描时探针和样品不会被损坏,如肿瘤细胞组织和测试 /p p 4.& nbsp 小的尖端:探针样品距离易于控制可提高成像的对比度和分辨率 /p p 5.& nbsp 电极易于制备: 使用后电极的尖端可以切除确保表面干净。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3847eed9-5600-42bc-ad7c-616afa070d79.jpg" title=" 5.png" / /p p style=" text-align: center " strong Fig 5 左边:三期黑色素瘤(异相分布并且络氨酸浓度较低) 右边:二期黑色素瘤 /strong /p p style=" text-align: center " strong (均相分布并且谷氨酸浓度较高) /strong /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3938b4ee-d070-4227-9faa-d1254096d28b.jpg" title=" 5.1.png" style=" width: 519px height: 290px " width=" 519" vspace=" 0" hspace=" 0" height=" 290" border=" 0" / /p p style=" text-align: center " strong Fig 5 PVDF膜上的香蕉液污点,由样品发生-探针收集模式使用多巴氨检测谷氨酸酶 /strong /p p   近来,在燃料电池催化剂表面活性位表征,锂离子电池金属锂负极枝晶的行成机制,正极材料的溶解导致的性能下降和充放电过程中材料表面电阻变化与容量之间的关系等研究展现出广阔前景。 /p p img src=" http://img1.17img.cn/17img/images/201712/insimg/adc2bcf1-3311-47c6-98c5-5ab3e70817e7.jpg" title=" 6.1.png" style=" width: 261px height: 360px " width=" 261" vspace=" 0" hspace=" 0" height=" 360" border=" 0" / & nbsp img src=" http://img1.17img.cn/17img/images/201712/insimg/d38d101e-0a84-489d-8ba0-e9753ba6c835.jpg" title=" 6.2.png" style=" width: 311px height: 234px " width=" 311" height=" 234" / & nbsp & nbsp /p p style=" text-align: center " strong Fig 6& nbsp 锂离子电池原位测试池,LEIS用于检测锂离子电池正极材料 /strong /p p strong br/ /strong /p p br/ /p p 销售热线& nbsp 400 1100 281 br/ 服务热线& nbsp 400 1100 282 br/ 联系邮箱& nbsp amt.si.china@ametek.com /p
  • 2017年Bio-Logic电化学培训上海站二轮通知
    尊敬的Bio-Logic用户:您好! 欢迎您参加2017年Bio-Logic电化学培训——上海站一.培训时间 2017年9月15日周五,上午9:00~11:00;下午13:00~15:00二.培训地点 上海徐汇区肇嘉浜路366号29F三.培训内容 1.Bio-Logic电化学工作站的功能与使用方法; 2.EC-LAB软件的操作与使用技巧; 3.实验数据的处理和分析; 4.使用答疑与用户交流。 如果您需要培训证明等资料,请提前告知,谢谢! 联系人:王小姐,E-mail: service@dhsi.com.cn;Tel:+86-411-82364123 我们真诚期待您的来临! 比奥罗杰中国有限公司售后服务部 2017年9月8日
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 宁波材料所在二硫化钼电化学行为研究方面取得新进展
    二硫化钼(MoS2)在固体润滑、光电子器件、电化学催化等领域具有广泛的应用,而镧系元素(Ln)掺杂可以对其各类物理化学性质起到不同的调控作用。Ln-MoS2基功能材料、涂层和器件在实际使役环境中的性能和寿命在很多时候与其表面的氧还原反应(ORR)密切相关。比如,表面ORR会增加Ln-MoS2基纳米器件和涂层周围金属部件的电偶腐蚀风险,而与此同时,Ln-MoS2基催化剂在燃料电池领域的应用潜力极大依赖于其阴极反应(即ORR)的活性。系统预测Ln-MoS2表面ORR活性规律并清晰揭示其背后的微观量子化学机理,可以给各类Ln-MoS2体系的实际应用设计、精准性能调控和有效防护提供重要指导。   近期,中国科学院海洋新材料与应用技术重点实验室和中国科学院宁波材料技术与工程研究所前沿交叉科学研究中心的研究人员利用第一性原理计算方法,探索了所有15种Ln-MoS2(Ln = La~Lu)体系的ORR活性,不仅发现了Ln杂质对MoS2表面ORR活性的极大促进作用,还观察到ORR活性与Ln杂质原子序数存在一种双周期的依赖关系。本研究工作中,研究人员也通过热力学统计的方法精确模拟了疏松固/液界面上的水环境效应,然后通过构建动力学反应方程组,成功发展了一种电流-电势极化曲线的模拟方法,所得到的极化电流曲线不仅可定量揭示ORR活性,也可以直接对比/指导实验测量。深入的机理分析表明,Ln-MoS2表面ORR活性的增强来源于一种特殊的缺陷电子态配对机制,它会选择性地增强两种ORR中间产物吸附(OH和OOH吸附基团),从而显著减小ORR能垒;而双周期规律则来源于Ln元素中4f-5d6s轨道杂化程度和Ln—S原子成键能力上类似的双周期规律。在此分析基础上,研究人员也为Ln-MoS2体系提出了一种普适的轨道化学机理,对各类电子结构、杂质稳定性、吸附物稳定性和电化学活性中同时出现的双周期规律进行了统一阐述。   相关成果发表于《自然—通讯》(Nat. Commun. 2023, 14, 3256)。该研究得到国家自然科学基金、中国工程物理研究院表面物理与化学重点实验室学科发展基金和国家重点研发项目的资助。镧系元素掺杂二硫化钼对氧还原反应的增强效应(图中显示了模拟所得的电流电势极化曲线以及半波电势所表现出的双周期趋势)
  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 天津检出一批不合格工业用碘化钾 过量服用可致中毒
    p   近日,天津空港检验检疫局工作人员在对辖区内一家电子企业进口的工业用碘化钾进行检验时,发现商品外包装未印明“仅用于工业用途”相关字样,并且企业无法提供标明该商品实际用途的证明,不符合相关法规规定。 /p p   国家质检总局(2007年第70号公告)明确规定对申报仅用于工业用途,不用于人类食品和动物饲料添加剂及原料的产品,企业须提交贸易合同及非用于人类食品和动物饲料添加剂及原料产品用途的证明。对此,该局第一时间通知企业保持货物和包装原状,未经许可不得擅自使用和销售。 /p p   碘化钾是列入《出入境检验检疫机构实施检验检疫的进出境商品目录》的124种人类食品和动物饲料添加剂及原料产品之一,允许用于特殊膳食用食品的营养强化和食用盐中碘的使用。食品用添加剂有效物质含量高,有害物质含量在规定的范围内,对人体不构成危害 工业用添加剂有效物质含量低,杂质(包括有害杂质)多,不可用于饲料、食品、化妆品等。工业用途的碘化钾对人体有害,可引起皮肤红斑、关节疼痛淋巴结肿大等症状,长期服用可出现口腔、咽喉部烧灼感等碘中毒症状,过量碘化物对胎儿及孕妇也有毒副作用。工业用添加剂流入食品环节,不仅会对人体造成伤害,也会引起社会恐慌。 /p p   检验检疫人员提醒广大进出口企业:要及时了解国家对工业用和食品用添加剂的相关政策,针对工业用添加剂,企业在报检时要提供贸易合同及非用于人类食品和动物饲料添加剂及原料产品用途的证明,并要求发货方在商品外包装印明“仅用于工业用途”字样,避免因不合格情况而影响企业的正常生产。 /p p br/ /p
  • 相约长春,理化(香港)有限公司邀您参加中国化学会第二届电化学能量转换研讨会
    2024年7月19-21日,“中国化学会第二届电化学能量转换研讨会”将在吉林省长春市华天大酒店召开,本次大会由中国化学会电化学专业委员会和中国科学院长春应用化学研究所联合主办,为从事相关领域前沿研究的科研工作者提供一个展示最新成果的平台作为大会展商,理化(香港)公司将携DSR数字型旋转圆盘电极、980燃料电池测试系统、780电解水制氢测试系统、电极旋涂仪、电极磨抛仪、美国pine旋转圆盘电极MSR经典款等多款电化学仪器亮相,展示在电化学领域的仪器特色和服务理念,助力中国电化学发展。能源是大国竞争的核心资源,世界主要经济体都在大力开发持续清洁能源,电催化技术发挥着重要作用。大会以“电催化助力‘双碳’进程”为主题,汇聚权威院士、知名专家和科研工作者集聚一堂,共同探讨电化学能量转换领域的热点问题、科技前沿、政策规划、产业发展。在大会上,理化(香港)有限公司以“燃料电池测试专家“的品牌定位,打造“覆盖从催化剂→电堆的测试”仪器主题展览,涉及“催化剂制备、催化剂评价、电堆/膜电极评价、电解槽评价”等领域,展示近年来电催化技术应用成果,欢迎老师同学们届时参观体验。展品抢先看Part 1 DSR 数字型旋圆盘电极DSR数字型旋转圆盘电极装置是电化学实验常用仪器,具有“数字化、更精准、‘狠’稳定”的技术特点,在电催化剂评估与研究领域,有着重要的应用。Part 2 980 燃料电池测试系统 980燃料电池系统应用于质子交换膜(PEM)燃料电池技术验证,具有“0V启动、自动背压、0-100%气体配比、240A大电流”特性,满足高性能电堆/膜电极测试。Part 3 780 电解水制氢测试系统780电解水制氢测试系统兼容PEM/AEM制氢技术,具备“8机联动”优势,降低用户测试成本,桌面式设计,满足多样化电解槽性能评价。Part 4 电极旋涂仪通过电极旋涂仪进行旋涂操作,可获得“密度较大、厚度均匀”的电催化剂,且在短时间完成多个电极上的催化剂薄膜制备,让实验数据更精准。Part 5 电极磨抛仪通过电极磨抛仪,实现自动化打磨,电极抛光效果好,老师同学们再也不用进行繁琐的电极手工打磨,大大节省宝贵的科研时间。Part 6 美国pine旋转圆盘电极MSR经典款早在2007年,理化(香港)有限公司就代理销售美国pine旋转圆盘电极。17年间,累计服务用户100000+,本次大会展示美国pine旋转圆盘电极MSR经典款,一如既往地为用户提供专业周到的服务。诚挚邀请,相约长春1、会议时间:2024年7月19-21日(18日报到)2、会议地点:中国长春华天大酒店(吉林省长春市绿园区景阳大道2288号)
  • 中国电化学界痛失巨匠
    p & nbsp & nbsp 8月1日,武汉大学发布讣告,中国科学院院士、武汉大学化学与分子科学学院教授查全性先生,因病医治无效,在武汉大学人民医院不幸逝世,享年94岁。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/351ab981-d9af-4105-b463-5819a663451e.jpg" title=" timg_meitu_1.jpg" alt=" timg_meitu_1.jpg" / /p p & nbsp & nbsp 查全性先生是我国著名的电化学家,毕生从事电化学相关的科研和人才培养工作。上世纪五十年代末,查全性先生从苏联进修回国,在条件十分艰苦的环境下,克服重重困难,以极大的热情开始了他在武汉大学的电化学研究和人才培养工作,使武汉大学成为当时全国现代电化学研究的重要基地之一。其研究领域包括“电极/溶液”界面上的吸附、多孔电极极化理论、电化学催化与光电化学催化、粉末微电极、多种电化学材料,及其在化学电源、金属表面处理与防腐、电化学分析与传感器方面的应用等。 /p p & nbsp & nbsp 2011年,查全性院士和厦门大学田昭武院士一起荣获第一届中国电化学成就奖。 /p p & nbsp & nbsp “中国电化学成就奖”是中国化学会电化学委员会颁发的最高学术奖励。每两年评选一次,奖励在电化学科学与技术研究中做出原创性成果,并对中国电化学事业的发展做出重大贡献的中国电化学工作者。第二届中国电化学成就奖获得者为中科院长春应化所董绍俊院士。第三届中国电化学成就奖获得者为中科院长春应化所汪尔康院士。 /p p & nbsp & nbsp 作为院士,查全性学术成果自是丰硕。而查院士的真言直谏,则改变了中国高等教育的发展方向,让无数青年人的命运改写。查院士在1977年的全国教育会议上首倡恢复高考并被采纳,让千百万寒门学子通过知识改变了命运! /p p & nbsp & nbsp & nbsp 停止了11年的高考恢复后,查全性事了拂衣去,深藏功与名,又回到了自己热爱的实验室。作为我国著名的电化学家、我国现代电化学重要奠基人之一,默默耕耘、甘当人梯,穷一生从事电化学相关的科研和人才培养工作,是查先生对自己毕生的定位。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/91790372-756a-48f7-be99-aa608a0146ed.jpg" title=" bc7a3a05-d302-4011-a07f-65d03c610af3.jpg" alt=" bc7a3a05-d302-4011-a07f-65d03c610af3.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多业内重大消息! /span /p
  • Gamry电化学公司参加第十八届全国固态离子学学术会议 暨国际电化学储能技术论坛
    第18届全国固态离子学学术会议于2016年11月3日~11月7日在广西壮族自治区桂林市举行。此次会议由中国硅酸盐学会固态离子学分会主办,广西师范大学承办。这是中国固态离子界学者的一次盛会,反映了我国在固态离子学领域基础研究和应用研究方面的最新进展与成果,探讨相关学科的最新发展趋势。内容包括固态离子材料及器件的最新成果,涵盖储能材料与器件、电化学传感器等研究领域。 美国Gamry电化学仪器公司和其合作伙伴广州普凡科学仪器有限公司作为本次会议的主要赞助商参加了本次会议,与参会代表就新型储能电池技术、能源材料与技术、离子导体及传感器体系中的离子输运等方面的新技术和新进展展开了广泛的讨论。美国Gamry电化学仪器公司目前在上海设有技术支持总部。 在本次会议上,Gamry向各位电化学储能技术方面的同行展示了适用于能源领域使用的多通道电化学工作站系统。Gamry通过引进接口电源集线器(IPH)改变了关于多通道恒电位仪的传统思维。IPH将台单独仪器,甚至是不同型号的仪器组合起来。每台仪器可单独使用也可作为一个整体来控制,这样既灵活方便,又降低了传统插板式多通道电化学工作站的固有高本体噪声。 此外,Gamry新推出Interface 5000系列电化学工作站也受到了广大与会人员的关注。Interface 5000系列电化学工作站具有测试电流大,抗噪声性能好等特点,最大电流达到5A,更适合于功率略大的能量转换体系测试使用。 Gamry也推出21电极的大电流工作站Reference 3000 AE, 多台联用可以扩展进行100A以上的电池测试需求,同时又保持低阻抗微欧数量级的准确测量。为了更好表征能源系统的电化学过程, GAMRY也提供系列旋转圆盘电极系统,石英晶体微天平系统,能源测试系统,温控系统和电化学动力学解析软件DigiElch软件。刚瑞(上海)商务信息咨询有限公司上海市杨浦区逸仙路25号同济晶度310室 200437电话: 021-65686006 传真:021-65688389微信公众号:Gamry电化学
  • 美国Gamry电化学参加“2017中国材料大会”
    中国材料领域的盛会 —— “中国材料大会”于2017年7月9日-11日在宁夏银川隆重举办。本次会议由中国材料研究学会发起并主办,主题是“新材料、新技术、新发展”。会议包含36个国内分会场与2个国际材料论坛,涵盖能源材料、环境材料、先进结构材料、功能材料、材料基础研究等材料领域,来自海内外各高校研究所大约5000人参加了此次交流。大会开幕式 大会开幕式由李元元院士主持并致辞,国际材联主席Soo-Wohn Lee、宁夏回族自治区副主席姚爱兴等分别致辞。 开幕式结束后,中国科学院金属研究所/清华-伯克利深圳学院成会明院士、英国剑桥大学T.W.Clyne教授、德国Matthias Scheffler教授以及美国麻省理工学院李巨教授分别带来了精彩的大会报告。能量转换与储存材料分论坛 美国Gamry电化学仪器公司是世界电化学工作站的领先制造者,从单通道到多通道电化学工作站,在全球都已得到广泛应用。从线路板的设计、元器件的选择、信号的处理,甚至到智能导线,Gamry一致都追求电化学仪器的最佳性能。 本次会议,Gamry展出了大电流、高性能的Reference3000AE,专为电池测试打造的大电流、超低阻抗测试系统Interface 5000电化学工作站,用于光电研究的IMPS/IMVS 太阳能电池测试系统,以及Gamry独有的兼容1-10MHz晶片的电化学石英晶体微天平eQCM等设备,并同与会人员在材料表征、电池测试、光催化、腐蚀等领域进行了广泛的交流。 Gamry工作人员与参会人员交流 关于Gamry产品 Reference 3000AE电化学工作站: 21 电极最大施加电位32V仪器输入阻抗高达100TΩ优越超前的准确性、精度及速度最低电流分辨率100aA(1X10-16A)仪器噪声80dB(100kHz)(*CMRR:该值越大,表示噪声和相互干扰越小)准确测量超低阻抗(微欧级) 半电池阻抗测试电池阴阳极同步阻抗测试单电池与电池堆同步阻抗测量 Interface 5000电化学工作站: 专为电池研究打造高达5A的大电流设计超低阻抗测量,低至微欧同步跟踪阴阳极电压及阻抗 IMPS/IMVS 太阳能电池测试系统 专为电池研究打造高达5A的大电流设计超低阻抗测量,低至微欧同步跟踪阴阳极电压及阻抗 IMPS/IMVS 太阳能电池测试系统 为太阳能电池研究量身定制的有力工具IMPS/IMVS测试兼容各种LED光源准确测量超低光电流光学屏蔽箱,既可以作为法拉第笼屏蔽周围电磁干扰,又可以消除环境光线的干扰。 Reference 600+电化学工作站: 无需添加任何硬件,准确测量超低电流!测量频率范围10μHz-5MHz准确测量高达1TΩ的电化学体系阻抗 eQCM 10M电化学石英晶体微天平: 兼容1-10MHz的晶体可以检测出 ng/cm2级的质量变化检测膜的刚性温控电解池阻尼特别高的粘稠溶液体系也可以测试 了解更多产品信息,请登录Gamry官网-产品中心 美国Gamry电化学刚瑞(上海)商务信息咨询有限公司地址:上海市杨浦区逸仙路25号同济晶度310室 200437电话: 021-65686006微信公众号:Gamry电化学
  • 电化学合成与科研创新
    科研的核心精神是什么?创新、创新、创新!!! 如何创新?这是一个重大课题。不如看看Phil. S Baran的现身说法。1 Phil.S Baran,他是谁? ? 美国斯克利普斯研究所(Scripps)教授? 美国科学院院院士,2017年? 麦克阿瑟天才奖得主,2013年(MacArthur Fellowship)? 主页:http://baranlab.org/? 研究方向:有机合成? 发表文章130多篇,其中11篇Nature,7篇Science2 Phil.S Baran为什么尝试电化学合成? 套用Phil. S Baran的原话,主流合成化学领域中尝试做电化学都是出于一种原因:绝望。譬如:单体之间的N-N键结成二聚合分子,只能用电化学方法合成烯丙位氧化,CH弱键可以被氧化,但是所用催化剂量大,昂贵,不环保产率低如何突破传统合成的瓶颈?传统合成的研究从1840年发展到现在,要创新谈何容易?!那是否可以在方法创新?!电化学合成方法进入他的视线了。3 Phil. S Baran用电化学合成法同时上Nature和Science 1. 《Nature》上发表的文章为:电化学方法氧化烯丙位碳氢键(C-H键)。(Scalable and sustainable electrochemical allylic C–H oxidation. Nature, DOI: 10.1038/nature17431)2. 《Science》上发表的文章为:烷基-烷基交叉偶联的电化学方法(A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, DOI: 10.1126/science.aaf61234 电化学方法氧化烯丙位碳氢键(C-H键)框架解读1. Nature文章电化学方法氧化烯丙位碳氢键的背景:烯丙基的氧化是有机合成中的经典反应,传统方法需要借助高毒性的氧化试剂,如铬和硒;还有很昂贵的催化剂,如钯和铑,难以放大工业级别的合成,如下图1-a、b所示。这篇文章改用电化学氧化的方法,结果到底如何呢? 电化学烯丙位的氧化早在1968年就有报道,电化学氧化α-蒎烯(1),如下图1-C(2)所示,直到1985年才有个重大的提升,可以直接实现氧化,如图1-C(3),只是产率比较低,都在13%-24%之间。图片来源:Nature, DOI: 10.1038/nature174312.Phil. S Baran实验室对电化学合成条件做的优化、扩展。第一步:选择合适的电极Phil. S Baran实验室未采用昂贵的金/铂电话,改而采用比较经济的,惰性也非常好的石墨电极和网状玻碳电极(RVC电极)。但是石墨电极有一定的吸附作用,回收率偏低。而RVC电极表现出更稳定的反应性能。第二步:筛选最佳的反应媒介和共氧化物,如Fig.2所示 图片来源:Nature, DOI: 10.1038/nature17431第三步:从朱栾倍半萜烯丙位的氧化扩展到烯丙位的氧化的通用电化学合成方法 图片来源:Nature, DOI: 10.1038/nature17431 第四步产量升级:100g规模的合成 图片来源:Nature, DOI: 10.1038/nature174315 从“电化学方法氧化烯丙位碳氢键(C-H键)”中看到的社会价值 1. 更经济、环保:从昂贵、有毒金属催化剂到经济、环保“电”催化的转变2. C-H氧化批量生产药物/化学品:从不可能变成可能3. 电化学合成方式或可创造一个全新的合成世界!这还不是尾声,Phil. S Baran还有更大壮举:虽然发表了Nature,也带来了巨大的社会价值,但是实验中还有小小遗憾。当时做C-H氧化电化学合成设备,全部都是自行搭建,恒电位仪、电极、反应管、电极固定夹、数据分析和记录器等等10多项产品,即便专业人员也需要耗费超40min的时间才可以完成搭建,且合成反应的重现性很差。他能否弥补这份遗憾? 2017年8月22日,美国秋季化学会上,Phil. S Baran带给大家更多的惊喜:一份对电化学合成不一样的解读 + 一个全球标准化的电化学合成仪“ElectraSyn 2.0”。点击视频,了解更多关于美国秋季发布会现场情况。Phil.S Baran 发布会现场
  • 嘉盛科技亮相“中国化学会第二届电化学能量转换研讨会”,展示德国高端设备
    7月19-21日,嘉盛科技携德国Balticfuelcells公司的燃料电池夹具QCF 25/100及Delico公司的电流密度分布测试系统于7月19-21日在长春展出,受到广泛关注。嘉盛科技作为高端实验室设备的领先供应商,此次展览展示的设备在电解水和燃料电池领域具有广泛应用。QCF 25/100夹具能够高效地测试和分析燃料电池的性能,为研究人员提供准确的数据支持。而Delico公司的电流密度分布测试系统则为电池性能评估提供了精确的电流分布图,帮助科研人员深入理解电化学反应过程。此次研讨会围绕“电催化助力‘双碳’进程”主题展开,汇聚了来自全国的专家、学者和行业代表,讨论电化学能量转换的最新研究成果和发展趋势。嘉盛科技的展品不仅展示了公司在电化学领域的技术实力,也为与会者提供了交流和合作的机会。在当前全球能源转型的背景下,电化学能量转换技术在实现“双碳”目标中扮演着关键角色。嘉盛科技的展品涵盖锂电池、钠电池、氢电转换系统及相关电极和电催化材料等领域,致力于推动中国电化学技术的创新与发展。我们期待通过此次研讨会,与各界专家共同探讨电化学领域的前沿技术,携手推动绿色低碳发展的未来。更多咨询,请与我们联系。
  • AMETEK两大电化学品牌走进武汉大学
    “江城多山,珞珈独秀;山上有黉,武汉大学”! 武汉大学这所具有百年历史的高等学府,一直是众多芸芸学子梦寐以求的求知殿堂。而作为国家“985工程”和“211工程”重点建设高校,其科研水平一直处于国内同行前茅。其中化工化学与分子科学学院是我国建立最早的化学院、系之一,该学院曾有多位中国科学院院士,工程院院士以及广大具有突出贡献的青年科技工作者。著名电化学家查全性院士亦是其中一名,作为我国国内电化学学术领域的学术泰斗,其编著的《电极过程动力学导论》是我国电化学界影响最广泛的学术著作和研究生教材之一。 五月八日,美国AMETEK公司携旗下两大电化学领域著名品牌——“普林斯顿应用研究”及“输力强分析”来到武汉大学,带着对查老先生的深深敬意在这里举办了一场新产品交流。希望我们的新产品能给广大电化学研究工作者带来更加方便有效的新型测试技术,能与广大科研工作者碰撞出更加灿烂的科研灵感! 新产品交流会现场 本次会议由美国AMETEK公司科学仪器部销售工程师鲍传好先生主持,会议首先由科学仪器部中国区经理杨琦女士致欢迎词;随后就腐蚀应用专题,由毕业于上海交通大学的应用工程师黄建书博士就新产品P4000电化学工作站在腐蚀上的应用;北京科技大学博士生导师王新东教授对微区扫描电化学在腐蚀上的应用进行介绍,并结合VersaScan微区电化学工作站的构造进行详解; 北京科技大学王新东教授介绍微区电化学腐蚀应用 就电池研究应用专题,黄建书博士专门介绍了Modulab综合电化学测试系统在这方面应用的特色以及汇报了所做的工作;最后,在讲座现场,P4000及Modulab电化学工作站进行了实际操作与软件功能演示,获得参会人员一致好评。 仪器实际操作与软件功能演示 此次交流会,邀请了武汉及周边区域80多位电化学研究领域的科研工作者参加,参会人员对我公司的新产品P4000,Modulab以及VersaScan表现了极大兴趣,会后纷纷要求进一步详细了解,此次交流会在热烈的气氛中落下帷幕。 参会人员积极问询 下一站我们将于5月24日在上海交通大学徐汇校区教师活动中心举行新一轮产品交流会,期待您的光临!
  • 扫描电镜? NO! 电化学工作站? NO!
    重磅产品出炉——德国HEKA扫描电化学显微镜,看到名字大家可能比较陌生但是又似曾相识,如果你认为这款仪器是扫描电镜和电化学工作站的简单叠加,那么你就OUT了!HEKA ElProscan是一台扫描电化学显微镜,用于研究样品的电化学活性表面。它属于扫描探针显微镜(AFM, STM, SECM)家族的一员。由德国弗莱堡Albert-Ludwig大学材料研究中心的Dr.Jurgen Heinze(教授)合作开发了ElProscan仪器。2005年HEKA公司创立了ElProscan品牌,它包括传统的SECM实验方法及扩展功能。整个系统包括三个主要部分,定位系统,双恒电位仪,数据采集系统。定位系统控制微电极在溶液中电化学活性样品表面上进行三维扫描,因此ElProscan可用作传统的SECM仪器并且具有更多的功能。ElProscan与传统的SECM不同之处在于它不仅仅记录针尖的电流信号,而且在针尖上可实现任何电化学实验方法的应用(用可编程脉冲发生协议Programmable Pulse Protocol来完成)。在脉冲发生协议运行过程中,在样品上应用独立的电化学实验方法并同时在针尖上应用不同的方法。因此ElProscan还具有电化学活性表面修饰的功能。 图1、典型的实验配置图 超微电极(UME)在溶液中接近样品表面上方扫描,在电极表面由于氧化还原反应所溶解的物质形成法拉第电流 随着针尖向样品表面逼近,可测出电流的变化。电化学惰性表面抑制针尖表面的氧化还原物质扩散并导致针尖电流逐渐减小(正反馈) 图2、ELProscan反馈模式 当样品是电化学活性表面,针尖电流逐渐增大。这是因为在样品表面再生了反应后的氧化还原物质,并在针尖再次进行反应(正反馈)。 反射光成像透射光成像 图3、透射和反射光成像重叠成像 图4、表面形态(左)电化学活性表面(右)图5、仪器本尊ElProscan系统具有多重应用领域如:表面分析功能、金属沉积、导电聚合物沉积、酶活性成像、催化材料表面活性等,就像扫描电镜一样,我们能罗列的仅仅是其中的少数应用。后续会持续更新其在各领域的具体应用。
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 电化学科学与技术前沿国际学术会议成功举办
    由我校与和厦门大学联合承办的“第60届国际电化学学会卫星会议——电化学科学与技术前沿国际学术会议”在启夏苑隆重举行。本次会议得到了国际电化学会、中国电化学会、国家自然科学基金委、我校和厦门大学的资助。100多位来自18个国家和地区的著名大学、科研机构的代表参加了本次会议,其中外国专家80余名,有现任国际电化学学会现任主席和前两任主席、现任副主席4人、以及各国电化学领域的领军人物,国内专家20余名。   开幕式由厦门大学固体表面物理化学国家重点实验室主任田中群院士主持,我校校长房喻教授致欢迎词,国际电化学会主席Robert Hillman教授致开幕词,组委会主席、我校化学与材料科学科学院长张成孝教授汇报了会议的组织情况。开幕式后,全体与会代表在图书馆前合影留念。   本次会议共收到学术论文81篇,其中1个大会报告、24个邀请报告、26个口头报告和30个墙报,分别就“电分析化学” 、“生物电化学” 、“电化学能源转换和储存” 、“电化学材料科学” 、 “电化学工程与技术” 、“分子电化学” 、“物理电化学” 、“电化学科学和技术的挑战和前景”进行研讨。
  • 第19次全国电化学大会在沪召开
    p class=" no-margin-top" /p   近日,由中国化学会电化学专业委员会主办、国家自然科学基金委员会支持、上海电力学院承办、复旦大学协办的第十九次全国电化学大会在上海国际会议中心召开。本届大会以“电化学与可持续发展”为主题。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、李永舫、孙世刚、陈军等出席,来自全国500多家高校、科研院所的2700余名代表参会。同时,大会与国际电化学协会(TheElectrochemicalSociety)共同举办“能源与环境国际电化学论坛”,邀请了46位国内外知名专家做专题报告。 p   全国电化学大会是国内规模最大、范围最广的电化学学术盛会和高水平的学术交流平台,每两年举办一次。本次大会聚焦“电化学与可持续发展”,围绕电化学科学和技术发展中的基础、应用和前沿问题,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料、生命等重要领域的应用,实现社会的可持续发展。 /p p   会议共收到论文1899篇,围绕纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等议题设置14个分会场,安排了550多场报告和讨论。近两年来,电化学基础研究如电催化、电分析、光谱电化学、纳米电化学、电池、光电等领域的发展成果丰硕。同时,电化学技术也一直服务于社会,支撑我国清洁化工、新能源电动汽车、储能等产业的快速发展。本次电化学大会的召开对于推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系具有重要的意义,对电化学与相关学科的融合发展具有重要的推动作用。 /p
  • 美国Gamry电化学参加 2016全国腐蚀电化学及测试方法学术交流会
    主题为“面向石油、天然气和海洋工程的腐蚀电化学”的2016全国腐蚀电化学及测试方法学术交流会于7月13日~7月15日在中国青岛顺利举行。本次会议由腐蚀与防护学会腐蚀电化学及测试方法专业委员会主办、中国石油大学(华东)协办,来自全国的腐蚀研究者共聚青岛,交流和展示最新成果,讨论腐蚀电化学学科的前沿和发展方向,探索如何进一步推动和拓展腐蚀电化学科学和技术在我国石油工程、天然气工程、海洋工程和水处理中的应用与发展。 美国Gamry电化学仪器公司是电化学专业仪器生产厂商。目前在中国的上海与北京有专门的技术人员与支持中心, 维修中心。 本次大会, 产品经理司国春与技术支持工程师谈天与到会的新、老客户进行了交流和互动。 针对腐蚀领域,Gamry将具有优异测试性能的Ref 600升级至Ref 600 Plus。升级后的Ref 600 Plus频率范围扩展至10μHz~5MHz,电流范围13个量程(600fA~600mA),仪器本身噪声低至μV,具有超高的阻抗测试范围和精度μΩ~TΩ(参考阻抗精度图),集恒电位计、恒电流计、ZRA为一身,可运行完整的直流技术、交流阻抗和电化学噪声测试。优异的浮地性能,轻松应用于石油、天然气管道在线监测,高温高压反应釜等领域。 Interface 1000是另一种最佳选择,包含应用腐蚀领域的各种直流、交流、噪声等测试方法,并可组成多通道,提高测试效率。Gamry多通道系统比较灵活,同型号或不同型号均可组成多通道,各个通道之间相互独立, 也可同时进行测试。 为了更好的让新、老客户了解和熟悉使用Gamry电化学工作站,Gamry计划提供系列培训方式,包括定期上海、北京培训,安装现场培训,网络在线培训以及阻抗/腐蚀专场培训(美国),各种培训详情请参考以下链接:http://cn.gamry.com/training-info.pdf 。诚挚欢迎新、老客户前来参加。
  • 上海三信的电化学新产品亮相ACHEMA 2015
    2015年6月15日-19日,第31届国际化学工程、环境保护和生物技术展览会(ACHEMA 2015)在德国法兰克福会展中心举行。 ACHEMA展会三年一届,是世界著名的工业展会之一,本届展会面积13.3万平方米,有来自世界56个国家的3813家企业参展, 近100 个国家的 16.7 万名参观者,展团数位居前二名的国家是德国和中国,众多电化学行业领域的国外企业和中国公司也都参加了这次展会。 上海三信与欧洲经销商再次联合参展,展位面积100平方米,上海三信为欧洲生产的电化学产品全面亮相,占据了展位前排主要位置,吸引了众多观众,取得了巨大成功。目前,我们的欧洲经销商已在欧洲地区建立起完善的分销渠道,展会期间,我们与这些分销商进行了愉快的交流,也亲耳听到了他们对三信产品的评价和赞誉,展会结束后,我们的欧洲经销商信心满满的表示,在下一个ACHEMA 展会上,三信的电化学产品一定会成为全欧洲销量第一的产品。此外,我们在4号展馆也看到了三信产品在其它展台上的展出:包括法国、迪拜、印度、德国和瑞士的展商,有些是老朋友,有些是新朋友,能在异国相见,沟通交流,合影留念,彼此感到分外高兴,我们为中国产品在世界一流展会上取得的成功感到自豪。 ACHEMA 2015展会正门 100平方米的展台汇集了多个品牌和系列的产品,上海三信的电化学系列产品占据了前排首要位置。 上海三信的电化学产品受到好评和欢迎,客户络绎不绝,参观洽谈。 与迪拜客户合影
  • 阿美特克参展第十六届全国电化学会议
    全国电化学会议由中国化学会电化学委员会组织,每两年召开一次,为电化学研究领域的盛会,代表了国内电化学会议的最高规模和水平。第十六届全国电化学会议于2011年10月14日至16日在重庆大学胜利召开。 开幕式 来自全国高校、研究机构以及各行业从事电化学和相关研究、开发、应用工作的海内外华人专家、学者等200多个单位、1280位代表参加了会议,共有7位院士来到了本会,其中有中科院长春应用化学研究所汪尔康院士、中科学大连化物所的衣宝廉院士、厦门大学田中群院士、中科院化学所万立骏院士和防化研究院杨裕生院士等。更为难得的是,我们电化学研究领域的两位80多岁高龄学术泰斗,著名化学家厦门大学田昭武院士、武汉大学查全性院士也亲临开幕式并获得本届电化学杰出成就奖。 厦门大学田昭武院士、武汉大学查全性院士荣获电化学杰出成就奖 本次会议得到众多电化学同仁的支持和热烈响应,7位院士,13位境外专家,100余名国内外电化学领域的著名科学家和近年来取得突出成果的优秀中青年学者参与学术交流。大会共计400个报告,其中大会报告10个、主题报告42个、邀请和口头报告348个,设置会议墙报894个,共收到论文1060余篇,内容涉及电化学基础、电化学分析、锂离子电池、燃料电池、超级电容器与其他电池、工业与有机电化学、材料电化学等7个专题。集中反映了我国电化学领域近年来所取得的具有创新性的研发成果,展示了电化学学科前沿研究热点和最新进展。会议现场 作为本次会议的特约赞助商美国阿美特克公司,在会议期间设设立了最大展台,展示刚刚推出市场一周的普林斯顿最高研究级ParStat4000电化学工作站。(普林斯顿Princeton Applied Research为阿美特克Ametek集团旗下的电化学工作站品牌)。厦门大学田中群院士,新任电化学委员会主任厦门大学孙世刚教授,副主任南开大学陈军教授,厦门大学夏永姚教授等近百名专家学者参观了阿美特克展台。 ParStat4000电化学工作站首次亮相 厦门大学副校长孙世刚教授参观展台 美国阿美特克公司还连续多年赞助电化学会议“普林斯顿及输力强 优秀论文奖”20名,在闭幕式上由新任电化学委员会主任厦门大学孙世刚教授代表电化学委员会宣布了20篇优秀论文奖获奖名单,并由中科院化学所万立骏院士向获奖者颁发了获奖证书、奖杯、奖金。 “普林斯顿及输力强”优秀论文奖颁发
  • 上海精密科学仪器有限公司服务热线电话
    因电话线路调整,原上海精密科学仪器有限公司服务热线电话号码021-64755223取消,为了更好地为用户服务,保证服务热线的畅通,现将另外二门营销管理部电话也增开通服务电话。 调整后上海精密科学仪器有限公司服务热线电话号码为: 021-54481993 021-64515445 021-64379467 特此公告!由此给大家带来的麻烦,敬请谅解! 上海精密科学仪器有限公司营销管理部 2009.12.18
  • 色谱行业销售:如何让客户不挂你电话?
    作为一个打了6年电话的色谱耗材销售,从开始几个月被挂次数数也数不清,到现在给客户打电话成功率达95%以上。怎么样才能让客户不挂你的电话?(就如这篇文章,我写到这里,有的朋友已经点了手机屏幕左上角关闭,帅哥mei女会选择继续看下去。)最重要的便是:在电话刚接通开始的10秒钟和你说的前三句话,决定了客户是否挂你电话。首先,想想你之前挂的一些营销电话,他们有什么共同特征?一听就知道是推销的!说了一大堆不知道说啥 ~自己说自己的,不管我在干嘛......所以第一步我们要避开这种情况。而通常这种推销电话都是电脑自动拨打的,一天打几百个,一般是电信、移动、或保险推销业务用到。我们作为耗材电话销售,打电话之前一定是要做好准备。1. 调整自己的语气、语调、音量,可以让同事帮忙听听,不求让人听起来舒服,起码不能有明显的营销味道;2. 明确自己打电话给客户的目的,是需要了解客户的什么信息(仪器情况?耗材品牌?色谱柱用量?实验情况?),当我们电话达到设定的目的后,就可以舒适的结束通话。3. 电话销售,最重要的是沟通,而沟通是需要双方的表达和倾听的。双方都能得到想要的信息,这样客户才有兴趣和你聊下去。做好以上思想准备后,第二步,知己知彼。知己:了解自家的产品线,产品特点,应用等等。当然,作为一个新的销售,首先要求的是需要大概知道,太过深入的一些问题可以让客户以qq或者邮件形式沟通。后面,工作的同时需要不断学习提高,了解产品知识,做到拿手捻来。例如大家所经常挂的推销电话(电信或者移动推销业务的),他们电话销售对自己要推销的产品是非常的了解清楚的,可以扬长避短的介绍。色谱耗材销售也是同理,对自己的产品需要非常的了解,优点、缺点都是需要知道,同时需要和客户去沟通的。知彼:对于客户的单位,我们需要了解他们是做哪个方面的,主要做哪些产品?销售哪些产品?内销还是外销?这些都是非常重要的,这是决定客户是否挂你电话一个非常重要的点。知己知彼后,你就可以有针对性的跟客户进行沟通。例如针对客户做的是中药还是西药,再根据自己的产品,沟通他们可能会出现的问题:中药柱子损耗大、碱性物质容易拖尾等等;或者他们做的产品你公司其他客户也有在做,可以类比举例;如果内销基本都是按照中国药典的标准,外销一般就是usp、ep、bp等。通过这几个方面去与客户沟通,就可以促进和客户的进一步了解。好不容易做好了这些笔记和思想准备后,要拿起电话来打了,却发现自己还是瑟瑟发抖,大脑空白。不要慌,问题不大!我们可以再设计一下开场白,也就是这前10秒我们要说什么能够马上说到客户的兴趣点,让对话继续。对于色谱耗材销售来说,没有万金油的开场白,没有一个客户是完全一样的,最多就是同类型、类似而已。所以前两部分的了解和准备就非常的必要了。它们决定了你的开场白是从哪方面开始的。如果客户是实验室使用者,那我们得从他做的实验、产品说起;客户是采购,我们得从品牌,折扣说起;客户做中药,我们从前处理,杂质,色谱柱寿命说起;客户做西药,我们从拖尾,峰型说起;客户按国标或者中国药典,我们要去了解他的标准要求;客户做仿制药,我们要从usp、ep说起;等等...我们色谱耗材电话销售需要做的就是了解客户,说出客户潜在或者目前存在的问题,和他沟通讨论。被挂电话了,就证明我们双方还需要更加深入的了解。沟通技巧不是最重要的。最重要的是要专业,真诚,在能够解决客户问题的情况下,顺便赚点钱。 至此,希望可以帮到新入行的电话销售新人。关于电话销售的沟通技巧,一两篇肯定是说不完的,未完待续。
  • 快速检测三聚氰胺新招:电化学法
    西北工业大学副教授赵廷凯和该校教授李铁虎等人对采用电化学方法简单快速检测三聚氰胺进行了深入研究,为三聚氰胺的快速准确检测提供了新思路。研究成果近日发表于国际期刊《电化学会志》。   赵廷凯向《中国科学报》记者介绍说,目前三聚氰胺的检测主要采用色谱法、质谱法和荧光法。这些方法在一定条件下可以检测三聚氰胺,但存在灵敏度低、前期处理复杂、耗时长等问题。而电化学方法具有简单快速、灵敏度高、准确等特点。同时,使用碳纳米管与壳聚糖纳米复合材料作为电极材料来检测三聚氰胺,具有实际应用前景。   据悉,近年来,李铁虎团队对碳纳米管及复合材料的制备工艺进行了系统研究,为其进一步在电化学、生物医药、航空航天领域的实际应用打下了基础。   研究人员结合碳纳米管的巨大比表面积和壳聚糖的高溶解性及吸附活性,制备出了碳纳米管与壳聚糖的纳米复合材料。用涂覆在玻碳电极上的该纳米复合材料检测三聚氰胺,检测极限达到3×10-9摩尔/升,比目前使用的传统检测方法提高了近一个数量级。同时,该方法简单环保,无需前期处理且速度快,检测仅需2分钟,为在乳制品或食品中三聚氰胺的简单快速检测提供了试验依据。   事实上,赵廷凯等人在最近的实验中已得到接近10-10摩尔/升的三聚氰胺检测极限。赵廷凯表示,利用该研究制备出的碳纳米管复合材料作为涂层,在普通电化学测试仪器上即可进行三聚氰胺检测,检测成本低。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制