当前位置: 仪器信息网 > 行业主题 > >

氮化钽

仪器信息网氮化钽专题为您提供2024年最新氮化钽价格报价、厂家品牌的相关信息, 包括氮化钽参数、型号等,不管是国产,还是进口品牌的氮化钽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮化钽相关的耗材配件、试剂标物,还有氮化钽相关的最新资讯、资料,以及氮化钽相关的解决方案。

氮化钽相关的论坛

  • 氮化碳的红外光谱

    氮化碳的红外光谱

    [color=#444444]求问!我做氮化碳的红外分析和氮化碳和碳化物的复合物的分析中,在2200到2400之间出来一个峰,但我做过背景扣除了,会不会还是二氧化碳的峰?还是其他官能团的峰?求大神瞅瞅嗷嗷[/color][color=#444444][img=,331,900]https://ng1.17img.cn/bbsfiles/images/2019/08/201908221518103377_9564_1849104_3.jpg!w331x900.jpg[/img][/color]

  • 【求助】氮化硅支持膜与碳支持膜的不同应用

    大家新年好。求教各位大虾,平时在用各类电镜或者其他相关仪器的时候,你们是怎么选择支持膜的呢?据了解TEM一般都是选用铜网碳支持膜的,但是铜网碳支持膜的性质原因,温度超过100℃就不能用的。哪些情况下会选用氮化硅支持膜呢?氮化硅支持膜与碳支持膜的异同点和优缺点各是怎样的?欢迎各位大虾来教导。非常感谢。

  • 【讨论】低碳低合金钢中碳氮化物成分分析

    【讨论】低碳低合金钢中碳氮化物成分分析

    [img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907092150_159322_1716979_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907092151_159323_1716979_3.jpg[/img]这是低碳低合金钢(碳0.25,Cr0.5,Mo0.7,V0.03,Nb0.03)调质处理后的碳氮化物夹杂成分分析,在C峰位前面明显有个峰,寻峰可能是B,也可能是Nb的M系峰位,主要是Nb Mo,还含有少量的V Ti各位老师有什么好办法能确定是不是B吗?B是铁合金中代入的微量元素,化学光谱分析为0.0008左右。还有个问题,就是Nb本来是微合金化元素,但是至少一部分形成了夹杂物,连铸坯中就有碳氮化铌,怎样能让铌起到应有的作用?谢谢各位老师!

  • 【分享】重氮化反应

    概述 芳香族伯胺和亚硝酸作用生成重氮盐的反应标为重氮化,芳伯胺常称重氮组分,亚硝酸为重氮化剂,因为亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸使反应时生成的亚硝酸立即与芳伯胺反应,避免亚硝酸的分解,重氮化反应后生成重氮盐。 重氮化反应可用反应式表示为: Ar-NH2 + 2HX + NaNO2--—Ar-N2X + NaX + 2H20重氮化反应进行时要考虑下列三个因素:一、酸的用量 从反应式可知酸的理论用量为2mol,在反应中无机酸的作用是,首先使芳胺溶解,其次与亚硝酸销生成亚硝酸,最后生成重氮盐。重氮盐一般是容易分解的,只有在过量的酸液中才比较稳定,所以重氮化时实际上用酸量过量很多,常达3mol,反应完毕时介质应呈强酸性(pH值为3),对刚果红试纸呈蓝色.重氮过程中经常检查介质的pH值是十分必要的。 反应时若酸用量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮氨基化合物: Ar-N2Cl + ArNH2——Ar-N=N—NHAr + HCl 这是一种自我偶合反应,是不可逆的, 一旦重氮氨基物生成,即使补加酸液也无法使重氮氨基物转变为重氮盐,因此使重氮盐的质量变坏,产率降低。在酸量不足的情况下,重氮盐容易分解,温度越高,分解越快。二、亚硝酸的用量 重氮化反应进行时自始至终必须保持亚硝酸稍过量,否则也会引起自我偶合反应。重氮化反应速度是由加入亚硝酸钠溶液加速度来控制的,必须保持一定的加料速度,过慢则来不及作用的芳胺会和重氮盐作用生成自我偶合反应。亚硝酸钠溶液常配成30%的浓度使用.因为在这种浓度下即使在-15℃也不会结冰。 反应时检定亚硝酸过量的方法是用碘化钾淀粉试纸试验,一滴过量亚硝酸液的存在可使碘化钾淀粉试纸变蓝色。由于空气在酸性条件下也可位碘化钾淀粉试纸氧化变色,所以试验的时间以0.5-2s内显色为准。 亚硝酸过量对下一步偶合反应不利,所以过量的亚硝酸常加入尿素或氨基磺酸以消耗过量亚硝酸。 亚硝酸过量时,也可以加入少量原料芳伯胺,使和过量的亚础酸作用而除去。三、反应温度 重氯化反应一般在0-5℃进行,这是因为大部分重氮盐在低温下较稳定,在较高温度下重氮盐分解速度加快的结果。另外亚硝酸在较高温度下也容易分解。重氮化反应温度常取决于重氮盐的稳定性,对-氨基苯磺酸重氮盐稳定性高,重氮化温度可在10-15℃进行;1-氨基萘-4-磺酸重氮盐稳定性更高,重氮化温度可在35℃进行。重氮化反应一般在较低温度下进行这一原则不是绝对的,在间歇反应锅中重氮反应时间长,保持较低的反应温度是正确的,但在管道中进行重氮化时,反应中生成的重氮盐会很快转化,因此重氮化反应可在较高温度下进行。

  • 了解氮化硅性质!

    化学式Si3N4,,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。化学式Si3N4。白色粉状晶体;熔点1900℃,密度3.44克/厘米3(20℃);有两种变体:α型为六方密堆积结构;β型为似晶石结构。氮化硅有杂质或过量硅时呈灰色。   氮化硅与水几乎不发生作用;在浓强酸溶液中缓慢水解生成铵盐和二氧化硅;易溶于氢氟酸,与稀酸不起作用。浓强碱溶液能缓慢腐蚀氮化硅,熔融的强碱能很快使氮化硅转变为硅酸盐和氨。氮化硅在 600℃以上能使过渡金属氧化物、氧化铅、氧化锌和二氧化锡等还原,并放出氧化氮和二氧化氮。

  • 氮化硅薄膜窗口免费试样

    Hi,各位大侠好。我们提供各种规格的氮化硅薄膜窗口产品,主要应用于:软X射线显微术、透射电镜、微加工、SEM、UV等等,具有良好的透光性、平整性、耐高温、耐化学腐蚀、亲水性、实用性、稳定性。因为有一批产品工艺摸索更新,目前有价值500元的免费氮化硅薄膜窗口试样可以提供。也正是因为工艺摸索阶段的产品,所以希望拿到免费试样的大侠,能够在短期能给予回复,评论产品的优缺点,以便我们进行工艺改进,生产出更好的产品。免费试样领取名额有限,原则上限定前20名联系人,特殊情况,适当放宽。其他参与者,有机会另外获得AFM/STM 探针免费赠送鼓励。领取条件:1、提供单位名称、联系方式(包括电话、邮箱);2、研究/工作方向,希望用氮化硅薄膜窗口主要应用于什么方向;3、最好能够在收到试样一个月内回复使用情况的;附件是氮化硅薄膜窗口的一些资料,及部分应用成果。站内联系,留下联系方式,前20名,我们会很快联系您,并将免费试样寄给您。(来信请注明:氮化硅薄膜窗口试样免费领取)寄语版主:版主大虾,您好……鉴于我们也是出于为产品质量考虑,借用下群众雪亮的眼睛,在贵宝地求证,还望多多照顾。不要以广告论处!谢谢您的谅解!如果您也支持的话,不妨偶尔将帖子置顶下,谢谢啦。

  • 氮化硅锰中氮的测定方法

    各位专家,有没有氮化硅锰中氮的化学分析方法,氮化硅锰含硅30-50%左右,含锰30-40%,含氮大约在10-20%间,有分析方法的请给予解答。谢谢!

  • 【讨论】氮化硅粉体 表征

    表征氮化硅微粉体个人有些地方有些迷惑,不知道选用什么方法和设备1、粒度方法:光散射法、沉降法、电导法?还有其他不清楚个人想选用 激光粒度仪,理由是检测快速,效率高,精度?2、比表面积这个不太了解,用什么方法和设备比较合适,xdjm帮忙推荐下3、元素分析主要分析金属元素Fe、Al、Ca等,氧、氮、游离硅含量、二氧化硅、氮化硅含量这个好像很复杂,选用什么方法测这些呢,我个人想法是ICP-AES(OES)测量金属元素,氧氮含量怎么测呢?红外氧氮分析仪?游离硅这么测呢,氮化硅含量怎么测量啊?4、堆积密度、堆积角?大家讨论讨论,陶瓷粉体表征有经验的xdjm给指导下

  • 【求助】氮化硼中硼酸的测定

    请教各位达人: 最近有一批氮化硼粉末,要测其中的硼酸含量。硼酸的含量0.1%.有做过这方面工作的老师给点指点吧,谢谢!

  • 【求助】有关氮化硅样品溶解的方法

    本人想进行氮化硼的定量分析,不知道熔样条件?请个位大师指点呀!熔剂,配比,熔样温度。谢谢了呀!要测试的样品为氮化硅和氧化镁、氧化铁等金属氧化物的混合物,请大家在片方法上多多指导!

  • 关于叠氮化钠的用途介绍

    叠氮化钠为照相乳剂的一种防腐剂。可加入乳剂中,或加到中间层及保护层中,不影响乳剂照相性能,具有优良的防腐杀菌性能。配制叠氮化钠血液培养基。分析化学上用于分析硫化物及硫氰酸盐的试剂。有机合成。制造氢叠氮酸、叠氮铅、除草剂。用于汽车的安全气囊中,当发生车祸时迅速分解放出氮气,使安全气囊充气。  用作医药原料,由叠氮化钠制备四唑类化合物,进一步合成抗生素头孢菌素药物,而四唑类化合物还是彩色摄影用药剂。  用作耐热性特殊雷管的起爆剂叠氮化铅的原料。合成树脂发泡剂。用作吸收及除去真空管内残余气体。用作有机合成原料、农药原料、分析试剂。  用作药品和炸药,也用来制叠氮酸、叠氮酸酯、叠氮化铅和纯的金属钠。  用作有机合成原料、农药原料、分析试剂。用作药品和炸药,也用来制叠氮酸、叠氮酸酯、叠氮化铅和纯的金属钠。  用作汽车司机安全防护袋的气源,紧急刹车时,立即自动充气。

  • 【求助】TEM氮化硅窗口

    各位大虾,你们用的TEM氮化硅窗口的规格是怎么样的呢?我这边拿到10片9窗口的氮化硅窗口,规格如下:框架3mm*3mm,窗口是0.5mm*0.5mm,3*3阵列,膜厚是50nm,单价170这么小的东西,还有个薄膜,我应该用怎样规格的镊子去夹呢?各位大虾,你们用的是什么样的镊子比较好夹,又安全呢?不会夹碎窗口的……介绍下镊子型号、哪里购买的,价格什么的……

  • 【求助】用过叠氮化钠吗?

    我在测定溶解氧的时候有可能要用到叠氮化钠,请问有没有人用过这个试剂,好象容易爆炸,大家有没有用过这个试剂的?很可怕吗?

  • 【讨论】TEM氮化硅窗口

    各位大虾,你们用的TEM氮化硅窗口的规格是怎么样的呢?我这边拿到10片9窗口的氮化硅窗口,规格如下:框架3mm*3mm,窗口是0.5mm*0.5mm,3*3阵列,膜厚是50nm这么小的东西,还有个薄膜,我应该用怎样规格的镊子去夹呢?各位大虾,你们用的是什么样的镊子比较好夹,又安全呢?不会夹碎窗口的……介绍下镊子型号、哪里购买的,价格什么的……各位大虾能够出来分享下TEM衬底耗材的使用心得和经验吗?分享格式如下:1、衬底名称、型号2、衬底材质、规格3、使用效果4、遇到的问题5、个人看法谢谢大家的热心分享,我是新鸟,我学会加分的时候,给参与者加分。另外有机会获得惊喜奖励!

  • 【分享】含氮化合物(氨氮、TN、TKN、NOX-N)的区别

    含氮化合物(氨氮、TN、TKN、NOX-N)有机氮: 主要指蛋白质和尿素;氨氮: 有机氮化合物的分解,或直接来自含氮工业废水;总氮TN: 一切含氮化合物以N计量的总称;凯式氮TKN:TN中的有机氮和氨氮,不包括亚硝酸盐氮、硝酸盐氮;NOx-N: 亚硝酸盐氮和硝酸盐氮。 氮是有机物中除碳以外的一种主要元素,也是微生物生长的重要元素。污水中氮有四种:有机氮、氨氮、亚硝酸盐氮、硝酸盐氮,四者之间通过生物化学作用可以相互转化,测定各种形态含氮化合物,有助于评价水体被污染和自净状况。水中的氨氮是指以游离氨(或称非离子氨,NH4+)和离子氨(NH)形式存在的氮,两者的组成比决定于水的pH值。对地面水,常要求测定非离子氨。水中氨氮主要来源于生活污水中含氮有机物受微生物作用的分解产物,焦化、合成氨等工业废水,以及农田排水等。氨氮含量较高时,消耗水体中溶解氧,促进藻类等浮游生物的繁殖,形成水花、赤潮,引起鱼类死亡,水质迅速恶化。 测定水中氨氮的方法有纳氏试剂分光光度法、水杨酸一次氯酸盐分光光度法、电极法和容量法,水样有色或浑浊及含其他干扰物质影响测定,需进行预处理。对较清洁的水。可采用絮凝沉淀法消除干扰;对污染严重的水或废水应采用蒸馏法。

  • 时间分辨荧光光谱测定不同氮化碳纳米结构的光催化性能研究

    时间分辨荧光光谱测定不同氮化碳纳米结构的光催化性能研究

    [align=center][b][font=黑体]时间分辨荧光光谱测定不同氮化碳纳米结构的光催化性能研究[/font][/b][/align][align=center][font=宋体]刘传德,束[/font][font=宋体]爽,魏[/font][font=宋体]巍[/font]*[/align][align=center][font=宋体]江苏大学[/font][font=宋体]分析测试中心[/font], [font=宋体]江苏[/font] [font=宋体]镇江[/font] 212013[/align][b][font=黑体]摘[/font][font=黑体]要[/font]: [/b][font=宋体]本文系统地研究了不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构(块体[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和纳米线)光催化降解亚甲基蓝的活性及其在纳米尺度下的时间分辨荧光光谱。主要研究目的是阐明不同氮化碳纳米结构对光活性影响的因素。时间分辨荧光光谱表明,氮化碳纳米线形成了低的价导带和稳定的发光缺陷态,进而增长了其荧光寿命。研究进一步表明,氮化碳纳米线的界面发生的电子转移受氮化碳结构缺陷的影响。此外,光催化实验结果表明,与块体[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比所制备的纳米线具有更高的催化活性。[/font][b][font=黑体]关键词[/font]: [/b][font=宋体]氮化碳[/font][font=楷体_GB2312];[/font][font=宋体]纳米线;时间分辨荧光光谱;光催化活性[/font][align=center][b]Study on photocatalytic properties of different carbonnitride nanostructures determined by time-resolved fluorescence spectroscopy[/b][/align][align=center] LIU Chuan-de, SHU Shuang, WEI Wei *[/align][align=center]Analysis &Testing Center, Jiangsu University,Zhenjiang 212013, China[/align][b]Abstract:[/b]The time-resolved photoluminescence(PL) in the nanosecond time scale of different g-C[sub]3[/sub]N[sub]4[/sub]nanostructures (bulk g-C[sub]3[/sub]N[sub]4 [/sub]and nanowires) has beensystematically investigated in relation to their photocatalytic degradation ofMethylene blue (MB). The main aim of the study is to elucidate the origin ofthe effects in photoactivity produced by different g-C[sub]3[/sub]N[sub]4[/sub]nanostructures. Time-resolved PL analysis indicates carbon nitride nanowiresintroduce new stabilized luminescent defective trap states below the conductionband revealed by long-living PL components. While analysis indicates that theelectron transfer occurring at the carbon nitride nanowires interface is affectedby the defective structure of carbon nitride. Furthermore, the photocatalyticexperimental results indicated that the as-prepared nanowires showed enhancedactivities compared with bulk g-C[sub]3[/sub]N[sub]4[/sub].[b]Key words:[/b]carbon nitride nanowires time-resolvedphotoluminescence photocatalytic activity[font=宋体]石墨相氮化碳([/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体])是由[/font]N[font=宋体]桥连七嗪环([/font]C[sub]6[/sub]N[sub]7[/sub][font=宋体])结构单元构成的二维层状材料,它具有可见光响应、化学稳定性好、热稳定性高及成本低廉等突出优点[/font][sup][1, 2][/sup][font=宋体],在可见光催化水分解制氢[/font][sup][3][/sup][font=宋体]、二氧化碳还原[/font][sup][4][/sup][font=宋体]及环境治理[/font][sup][5][/sup][font=宋体]等领域得到了广泛应用,是近年备受研究人员关注的一种聚合物光催化材料。块体氮化碳([/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体])存在比表面积低、光生载流子易复合和光吸收有限等缺点[/font][sup][6][/sup][font=宋体],限制了石墨相氮化碳的实际应用前景。[/font][font=宋体]研究工作者通过调控[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的形貌来改善其催化活性[/font][sup][7][/sup][font=宋体],近年来,各种形态的纳米结构不断出现,已经报道的超薄纳米片、三维多孔等结构[/font][sup][3-5][/sup][font=宋体],此类结构都有这优异的特性,备受工作者青睐。[/font][font=宋体]时间分辨荧光光谱也叫瞬态荧光光谱,能够表征样品由基态受激发到激发态后,再由激发单重态回到基态辐射光子的过程,能够直接获得荧光衰减曲线,从而获得瞬态相关的物理机制,可以进一步研究光催化过程的光诱导电荷分离及其转移过程。[/font][font=宋体]我们利用高级稳态瞬态荧光测试系统,以可调谐皮秒激光器为激发光源,对制备的不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构(块体[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和纳米线)进行荧光性能检测。考察不同形貌[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的瞬态寿命,辅以[/font]X[font=宋体]射线衍射仪、透射电子显微镜、傅里叶变换红外光谱仪和比表面分析仪器等相应的检测手段,研究不同结构[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的相应性能,从而总结时间分辨荧光光谱寿命对催化性能的影响。[/font][b]1[/b][font=宋体]实验[/font][b]1.1[/b][font=黑体]材料与仪器[/font][font=宋体]三聚氰胺、三聚氰酸、无水乙醇、乙腈、亚甲基蓝均为分析纯,购自国药集团化学试剂公司;实验用水采用二次蒸馏水。[/font]X[font=宋体]射线衍射分析仪[/font]([font=宋体]德国[/font]Bruker [font=宋体]公司,[/font]D8 Advance)[font=宋体],扫描电子显微镜[/font]([font=宋体]日本[/font]JEOL[font=宋体]公司,[/font]JSM-7001F)[font=宋体],透射电子显微镜[/font]([font=宋体]日本[/font]JEOL[font=宋体]公司,[/font]JEM-1200EX)[font=宋体],傅里叶红外光谱仪[/font]([font=宋体]美国赛默飞世尔科技有限公司,[/font]Nicolet 50)[font=宋体],紫外可见分光光度计[/font]([font=宋体]日本岛津公司,[/font]UV-2450)[font=宋体],全自动比表面和孔隙分析仪[/font]([font=宋体]美国康塔公司,[/font]NOVA4200E)[font=宋体]、高级稳态瞬态荧光测试系统[/font]([font=宋体]美国[/font]Photon Technology International[font=宋体]公司,[/font]QM4m)[font=宋体]。[/font][b]1.2[font=黑体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=黑体]纳米结构的制备[/font][/b][font=宋体]首先,称取等摩尔比的三聚氰胺和三聚氰酸,直接溶解于[/font]60 mL[font=宋体]的乙腈中,充分搅拌[/font]12h[font=宋体],待搅拌结束后,用乙腈清洗数遍后,在[/font]80[font=宋体]℃下干燥[/font]12h[font=宋体],获得白色粉末。将白色粉末分散于[/font]80 mL[font=宋体]的乙腈中,放入[/font]100mL[font=宋体]的内衬为聚四氟乙烯的不锈钢反应釜中,密封在[/font]180[font=宋体]℃下反应[/font]24h[font=宋体],反应结束后,离心洗涤多次,在[/font]80[font=宋体]℃下干燥[/font]12h[font=宋体]获得前驱体。将前驱体放入坩埚中于管式炉中在氮气保护[/font]500[font=宋体]℃下煅烧[/font]2h[font=宋体],待管式炉自然冷却至室温,取样品袋备用,标记为[/font]CNWs[font=宋体]。作为参比,根据之前的报道直接热解三聚氰胺获得样品,标记为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][sup][3, 6][/sup][font=宋体]。[/font][b]1.3[font=黑体]光催化活性测试[/font][/b][font=宋体]取[/font]0.1g[font=宋体]催化剂加入到[/font]100mL 10 mg/L[font=宋体]亚甲基蓝溶液,暗反应[/font]30min[font=宋体]以保证吸附[/font]-[font=宋体]脱附达到平衡,然后打开光源([/font]350 W[font=宋体]氙灯)照射在每隔[/font]30min[font=宋体]取出约[/font]3mL[font=宋体]液体,离心分离,利用采用紫外可见分光光度计测定溶液的吸光度。亚甲基蓝溶液的脱色率用以下公式计算:[/font][font=宋体]降解率[img=,433,65]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630259980_5308_5248244_3.png!w433x65.jpg[/img][/font][font=宋体]式中:[/font][i]C[sub]0[/sub][/i]—[font=宋体]原溶液中亚甲基蓝的初始质量浓度;[/font][i]C[sub]e[/sub][/i]—[font=宋体]亚甲基蓝溶液降解后的质量浓度;[/font][i]A[sub]0[/sub][/i]—[font=宋体]原溶液中亚甲基蓝的初始吸光度;[/font][i]A[sub]e[/sub][/i]—[font=宋体]亚甲基蓝溶液降解后的吸光度。[/font][b] 2 [/b][font=宋体]结果与分析[/font][b]2.1[font=黑体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=黑体]纳米结构的表征[/font][/b][align=center][img=,690,265]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091629425631_5031_5248244_3.png!w690x265.jpg[/img][/align][align=center][font=宋体]图[/font]1 [font=宋体]所制备的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的[/font]XRD[font=宋体]谱图[/font](a)[font=宋体]和红外光谱图[/font](b)[/align][align=center] Fig. 1 XRD patterns (a) and FT-IR spectra (b)for the as-prepared samples: bulk g-C[sub]3[/sub]N[sub]4[/sub] and CNWs.[/align][b]2.1.1[/b][font=楷体_GB2312]样品的晶相分析[/font][font=宋体]图[/font]1(a)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的[/font]XRD[font=宋体]谱图。在[/font]12.8[font=宋体]°和[/font] 27.3[font=宋体]°处出现石墨相氮化碳的特征衍射峰,与标准[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的晶面相相吻合[/font][font=宋体],分别对应于[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的[/font](100)[font=宋体]和[/font](002)[font=宋体]晶面,[/font][font=宋体]且未观测到其它特征峰,表明采用超分子自组装法能够制备[/font]g-C[sub]3[/sub]N[sub]4[/sub][sup] [6][/sup][font=宋体]。[/font]12.8[font=宋体]°处的衍射峰归属于[/font]melon[font=宋体]类物质的特征峰,由体系内缩聚的三嗪单元的有序排列引起;[/font]27.3[font=宋体]°处的衍射峰归属于典型层间堆积的共轭芳香体系,表明[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]具有类石墨的层状结构[/font][sup][4][/sup][font=宋体]。[/font][align=center][font=宋体][img=,690,297]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630100029_8764_5248244_3.png!w690x297.jpg[/img]图[/font]2[font=宋体]所制备的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]样品的[/font]TEM[font=宋体]图:[/font](a) bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font](b) CNWs[/align][align=center]Fig. 2 RepresentativeTEM micrographs of (a) bulk g-C[sub]3[/sub]N[sub]4[/sub] and (b) CNWs.[/align][font=宋体]此外,与[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比,[/font]CNWs[font=宋体]处于[/font]27.2[font=宋体]°处的峰出现偏移,说明该材料的晶面间距增大,表明层状结构被破坏,且强度变弱,说明采用超分子自组装法合成的[/font]CNWs[font=宋体]具有更高的缺陷率[/font][sup][8][/sup][font=宋体]。图[/font]1(b)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的红外光谱图。[/font]CNWs[font=宋体]的红外吸收峰位与[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]基本一致,均表现出典型的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]特征振动模型,说明两种纳米结构的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]表观官能团结构相似,[/font]810 cm[sup]-1[/sup][font=宋体]处的吸收峰归属于三嗪结构单元典型的弯曲振动模式[/font][sup][4][/sup][font=宋体],[/font]890 cm[sup]-1[/sup][font=宋体]处的吸收峰归属于[/font]N-H[font=宋体]键的弯曲变形,[/font]1240~1640 cm[sup]-1[/sup][font=宋体]处的吸收峰是典型的芳香型碳氮杂环([/font]C–N(–C)–C [font=宋体]或[/font] C–NH–C[font=宋体])的伸缩振动峰[/font][sup][9][/sup][font=宋体]。同时,与[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比,[/font]CNWs[font=宋体]在[/font]3000 cm[sup]-1[/sup][font=宋体]处有更强的吸收峰([/font]N-H[font=宋体]的弯曲振动峰),表明[/font]CNWs[font=宋体]中有较多的氨基基团。[/font][b]2.1.2[/b][font=楷体_GB2312]样品的形貌分析[/font][font=宋体]图[/font]2[font=宋体]为[/font][font=宋体]所制备的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]样品的[/font]TEM[font=宋体]图。由图可见,与直接热解三聚氰胺得到的层状堆叠结构的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比,[/font]CNWs[font=宋体]形成了纳米线结构。这种特殊形貌的形成是因为非共价键(氢键和卤键)在超分子自组装过程中的引导作用[/font][sup][9][/sup][font=宋体],使得三聚氰胺和三聚氰酸分子出现定向排布,最终形成纳米线构型。[/font][b]2.1.3[/b][font=楷体_GB2312]样品的紫外光谱及比表面积分析[/font][align=center][font=宋体][img=,690,261]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630395450_9441_5248244_3.png!w690x261.jpg[/img]图[/font]3[font=宋体]所制备的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的[/font]Uv-vis[font=宋体]谱图[/font](a)[font=宋体]和氮气吸附[/font]/[font=宋体]脱附等温曲线[/font](b)[/align][align=center]Fig. 3 (a)Uv-vis diffuse reflectance spectra of bulk g-C[sub]3[/sub]N[sub]4[/sub] andCNWs (b) Nitrogen adsorption/desorption isotherm curves of bulk g-C[sub]3[/sub]N[sub]4[/sub]and CNWs[/align][font=宋体]光吸收性能是影响样品的光催化活性的重要因素。图[/font]3(a)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的紫外可见漫反射光谱图。从图中可以发现,制备的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的最大吸收边为[/font]465 nm[font=宋体],而具有纳米线形貌的[/font]CNWs[font=宋体]的最大吸收边发生了明显的红移,大大增强了其对可见光的响应。相比[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体],超分子自组装法制备的纳米线在光吸收能力上显著增强,提高了其对可见光的利用率。根据[/font]Tauc plot[font=宋体]公式计算[/font][sup][3][/sup][font=宋体],[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]禁带宽度为[/font]2.62 eV[font=宋体],而氮化碳纳米线的禁带宽度为[/font]1.52 eV[font=宋体],形成了较低的价导带,表明了光吸收性能得到了有效的改善,可能由于入射光在纳米线堆中多次反射后增大了光吸收的有效光程所致[/font][sup][10][/sup][font=宋体]。图[/font]3(b)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的的[/font][font=宋体]氮气吸附[/font]/[font=宋体]脱附等温曲线。经吸附脱附等温线测试得分析[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]表现出典型的第Ⅳ类等温线特征,其比表面积为[/font]74.25 m[sup]2[/sup]g[sup]-1[/sup][font=宋体]和[/font]60.16 m[sup]2[/sup]g[sup]-1[/sup][font=宋体]。[/font]CNWs[font=宋体]在[/font]p/p[sub]0[/sub] = 0.8- 1.0 [font=宋体]质检出现滞后环,表明其内部结构介孔较多,且孔径较大,纳米线结构有利于分子的穿插和吸附,增强了反应分子的传质效率[/font][sup][5,11][/sup][font=宋体]。[/font][align=center][img=,690,269]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630514303_7222_5248244_3.png!w690x269.jpg[/img][/align][align=center][font=宋体]图[/font]4 (a) bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的荧光光谱图[/font] (b)bulkg-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的时间分辨荧光光谱寿命图[/font][/align][align=center]Fig.4 (a) Photoluminescence spectra of bulk g-C[sub]3[/sub]N[sub]4 [/sub]and CNWs (b) Time-resolvedfluorescence decay spectra of bulk g-C[sub]3[/sub]N[sub]4 [/sub]and CNWs[/align][b]2.1.4 [/b][font=楷体_GB2312]样品的光学性质分析[/font][font=宋体]光致发光光谱中荧光强度越弱表明光生电子空穴复合作用越弱,光量子效率越高,说明光催化性能越好。荧光光谱的强度是反应半导体中光致电子空穴分离和复合效率的重要手段,其峰值强度越大往往代表着较低的电子空穴复合速率以及较高的光催化活性[/font][sup][3][/sup][font=宋体]。图[/font]4(a)[font=宋体]显示的是在[/font]350 nm[font=宋体]处激发的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的荧光光谱图。[/font]bulkg-C[sub]3[/sub]N[sub]4[/sub][font=宋体]在[/font]469 nm[font=宋体]处有一个强度较高的发射峰,然而[/font]CNWs[font=宋体]的发射峰强度比[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的强度急剧下降,说明[/font]CNWs[font=宋体]拥有相对较低的电子空穴复合速率。从中推测[/font]CNWs[font=宋体]的纳米线结构形成有效的界面电子转移,从而大幅抑制光生载荷子的复合[/font][sup][8][/sup][font=宋体],实现[/font]TiO[sub]2[/sub][font=宋体]光催化活性的提高,这与上述[/font]Uv-vis[font=宋体]分析结果一致。[/font][font=宋体]为了进一步研究不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的光生载流子的光物理性质,采用时间分辨荧光光谱定量测定样品的荧光寿命,以高级稳态瞬态荧光测试系统可调谐皮秒激光器为激发光源,激发光波长为[/font]337 nm[font=宋体],检测荧光发射信号在样品荧光发射峰[/font]469 nm[font=宋体]位置。图[/font]4(b)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的时间分辨荧光光谱寿命图。采用单指数衰减方程[/font][sup][4][/sup][font=宋体]来拟合相应的荧光衰减曲线,经拟合计算[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的平均荧光寿命分别为[/font]2.36 ns[font=宋体]和[/font]3.29 ns[font=宋体]。可见,[/font]CNWs[font=宋体]的光生载流子复合率较低,可能与的二维线性结构和改变的电子能带有关[/font][sup][10][/sup][font=宋体]。时间分辨荧光光谱寿命进一步表明,[/font]CNWs[font=宋体]体系中的光生电子具有较长的荧光寿命。由此,利用二维纳米线结构,促进材料间的光生电荷快速迁移,使催化剂的光生电子与空穴能够有效分离与传输,并保持较强的氧化还原能力[/font][sup][11][/sup][font=宋体]。[/font][b]2.2[font=宋体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构的光催化性能[/font][/b][font=宋体]图[/font]5 [font=宋体]为制备的不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构样品随光照时间的变化降解亚甲基蓝([/font]MB[font=宋体])的降解率曲线及降解有机染料[/font]MB[font=宋体],对比两种不同形貌[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的光催化活性。[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]对[/font]MB[font=宋体]的降解率分别为[/font]71.08%[font=宋体]和[/font]98.52%[font=宋体],纳米线具有更大比表面积的纳米线结构有利于[/font]MB[font=宋体]吸附,提供了更多的反应位点;其二维结构促进了电荷转移传输,增大了光生载流子的转移效率和存活时间,使得催化效率得到了进一步提高[/font][sup][5, 8,12][/sup][font=宋体]。[/font][align=center][img=,690,272]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091631019684_8928_5248244_3.png!w690x272.jpg[/img][/align][align=center][font=宋体]图[/font]5 [font=宋体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]样品对亚甲基蓝的降解率[/font] (a) [font=宋体]和降解动力学曲线[/font] (b) [/align][align=center]Fig. 5 (a) Degradation of MB by differentsamples and (b) degradation kinetics curve of different samples.[/align][b] 3[font=宋体]结[/font][font=宋体]论[/font][/b][font=宋体]二维线性结构的氮化碳纳米线结构形成有效的界面电子转移,大幅抑制光生载荷子的复合,使得光催化活性明显高于块体氮化碳。借助时间分辨荧光光谱寿命研究了不同氮化碳的荧光性能,进一步证明了纳米线具有更长的荧光寿命,表明氮化碳纳米线的界面发生的电子转移受氮化碳结构缺陷的影响,提高了氮化碳的光催化性能。[/font][font=黑体]参考文献:[/font][1] Wang, Y., Wang, X., & Antonietti, M. (2012).Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: fromphotochemistry to multipurpose catalysis to sustainable chemistry. [i]AngewandteChemie International Edition[/i], [i]51[/i](1), 68-89.[2] Wang, X., Blechert, S., & Antonietti, M.(2012). Polymeric graphitic carbon nitride for heterogeneousphotocatalysis. [i]Acs Catalysis[/i], [i]2[/i](8), 1596-1606.[3] Cao, S., Low, J., Yu, J., & Jaroniec, M.(2015). Polymeric photocatalysts based on graphitic carbon nitride. [i]AdvancedMaterials[/i], [i]27[/i](13), 2150-2176.[4] Zhao, Z., Sun, Y., & Dong, F. (2015). Graphiticcarbon nitride based nanocomposites: a review. [i]Nanoscale[/i], [i]7[/i](1),15-37.[5] Zheng, Y., Lin, L., Wang, B., & Wang, X.(2015). Graphitic carbon nitride polymers toward sustainable photoredoxcatalysis. [i]Angewandte Chemie International Edition[/i], [i]54[/i](44),12868-12884.[6] Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S.Z. (2016). Interacting carbon nitride and titanium carbide nanosheets for high[font=宋体]-[/font]performance oxygen Evolution. [i]AngewandteChemie International Edition[/i], [i]55[/i](3), 1138-1142.[7] Xia, P., Zhu, B., Yu, J., Cao, S., & Jaroniec,M. (2017). Ultra-thin nanosheet assemblies of graphitic carbon nitride forenhanced photocatalytic CO[sub]2[/sub] reduction. [i]Journal of MaterialsChemistry A[/i], [i]5[/i](7), 3230-3238.[8] Cui, Q., Xu, J., Wang, X., Li, L., Antonietti, M.,& Shalom, M. (2016). Phenyl[font=宋体]-[/font]modified carbon nitride quantum dots with distinct photoluminescenceBehavior. [i]Angewandte Chemie International Edition[/i], [i]55[/i](11),3672-3676.[9] Zhou, C., Lai, C., Huang, D., Zeng, G., Zhang, C.,Cheng, M., ... & Wen, X. (2018). Highly porous carbon nitride bysupramolecular preassembly of monomers for photocatalytic removal ofsulfamethazine under visible light driven. [i]Applied Catalysis B:Environmental[/i], [i]220[/i], 202-210.[10] Niu, P., Qiao, M., Li, Y., Huang, L., & Zhai,T. (2018). Distinctive defects engineering in graphitic carbon nitride forgreatly extended visible light photocatalytic hydrogen evolution. [i]NanoEnergy[/i], [i]44[/i], 73-81.[11] Xia, P., Antonietti, M., Zhu, B., Heil, T., Yu,J., & Cao, S. (2019). Designing defective crystalline carbon nitride to enableselective CO[sub]2[/sub] photoreduction in the gas phase. [i]AdvancedFunctional Materials[/i], 1900093.[12] Zhang, G., Li, G., Heil, T., Zafeiratos, S., Lai,F., Savateev, A., ... & Wang, X. (2019). Tailoring the grain boundary chemistryof polymeric carbon nitride for enhanced solar hydrogen production and CO[sub]2[/sub]reduction. [i]Angewandte Chemie International Edition[/i], [i]131[/i](11),3471-3475.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制