当前位置: 仪器信息网 > 行业主题 > >

碘化铂

仪器信息网碘化铂专题为您提供2024年最新碘化铂价格报价、厂家品牌的相关信息, 包括碘化铂参数、型号等,不管是国产,还是进口品牌的碘化铂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘化铂相关的耗材配件、试剂标物,还有碘化铂相关的最新资讯、资料,以及碘化铂相关的解决方案。

碘化铂相关的资讯

  • 直播预告|院士专家加持,电化学仪器选型“Easy”
    作为中国历史最悠久的科学仪器品牌之一,雷磁是中国pH计和玻璃电极的诞生地,也是国内分析仪器的重要发源地;作为国产仪器国家队的突出代表,雷磁在电化学分析仪和传感器方面深耕细作、用实际行动不断擦亮着“雷磁”品牌,在“国产替代”的道路上做出了突出的贡献。经过80多年的创新和积累,“雷磁”一如既往,将仪器和技术“做优、做精、做强”! 本期直播聚焦“电化学仪器品类”,将邀请行业专家畅谈电化学分析仪器的最新发展及趋势,不仅如此,雷磁产品负责人及应用工程师还将分享仪器选型和行业应用经验,更有小课堂答题有礼活动邀您参与!点击报名》》》南京大学 陈洪渊院士陈洪渊院士,分析化学家,南京大学化学化工学院教授、学术委员会主任、分析科学和化学生物学研究所所长,兼任教育部科技委化学化工学部主任。2001年当选为中国科学院院士。中国仪器仪表行业协会分析仪器分会秘书长 曾伟曾伟,中国仪器仪表行业协会分析仪器分会秘书长,高级工程师,北京工业设计促进会理事、全国光电测量标准化技术委员会(SAC/TC487)副主任委员、军工国产化替代进口的评审专家组成员、中国仪器仪表学会科学仪器学术工作委员会委员。上海仪电科学仪器股份有限公司副总经理 金建余金建余副总经理,毕业于北京大学,分析化学博士,上海仪电科学仪器股份有限公司副总经理。长期从事电化学传感器及电化学仪器、水质分析相关技术、产品的研发和应用研究工作,积极推动电化学分析技术、水质分析技术的产品化和产业化。上海仪电科学仪器股份有限公司产品应用及技术支持工程师 李新颖李新颖工程师 毕业于东华大学,环境工程博士,上海仪电科学仪器股份有限公司产品应用及技术支持工程师。熟悉实验室各类仪器的检测标准、相关应用及操作,致力于实验室仪器的应用方法和解决方案的开发。会议日程:日期日程报告人14:00-14:05致辞陈洪渊 院士14:05-14:35电化学分析仪器的最新发展及趋势曾伟 秘书长14:35-14:40用户互动,抽奖主持人14:40-15:10电化学仪器及传感器的选型金建余 博士15:10-15:15“雷磁”用户之声VCR视频15:15-15:20用户互动,抽奖主持人15:20-15:50雷磁电化学仪器的行业应用李新颖 博士15:50-16:00用户互动,抽奖主持人报名链接:https://www.instrument.com.cn/webinar/meetings/inesa2023/欢迎各位提前锁定直播间,更多精美礼品等你来拿!咱们12月15日下午2点温暖相遇!
  • 本周开播!两大知名电化学厂商的最新产品,想你想不到
    电分析化学是仪器分析的一个重要的分支,它是以测量某一化学体系或试样的电响应为基础建立起来的一类分析方法。近年来,该分析方法广泛地服务于生物、能源、环境、安全等多个领域。而作为一项系统设备相对简单,占地面积小,设备操作维护成本低,能有效避免环境污染的“环境友好型”分析方法,利用电分析化学技术的相关仪器设备在实际应用中同样有着无可替代的地位。在工业自动化的发展过程中,这项技术被广大优秀厂商应用并发展,在各大工业领域切实发挥着作用。2022年12月21日-22日(本周三周四),仪器信息网与广州大学联合举办,西湾国家重大仪器科学园(中山)协办的“第三届电分析化学”主题网络研讨会将于线上隆重开幕!本次网络研讨会将采用线上直播的形式,针对当下电分析化学前沿研究及应用热点进行探讨,为电分析化学相关从业人员搭建沟通和交流的平台,促进我国电分析化学及相关仪器技术与应用的发展。会议邀请广州大学分析科学技术研究中心主任,国家杰出青年科学基金获得者,广州大学牛利教授进行开场致辞,2位来自赛莱默与刚瑞的专家、14位来自各大高校、研究所的大咖进行最新的技术分析与最新结果科研成果的分享。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022赛莱默Xylem,全球领先的水技术公司之一。赛莱默致力于开发创新的技术解决方案,以应对全球严苛的水资源挑战。赛莱默的产品和服务专注于市政、工业、民用和商用建筑等领域的水输送、水处理、水测试、水监测和水回用。那么,分析过程敏捷高效的电分析化学在水质检测领域又有什么“大展拳脚”的机会?据了解,电极法余氯总氯分析仪是其中一个广泛的应用。其原理是运用先进的恒电压原理,利用在极化电极和参比电极之间施加一个稳定的点位势,不同的被测成分在该点位势下产生不同的电流强度,仪表通过对电流信号的采集和分析计算出被测成分的浓度。相对于DPD比色法,电极法余氯总氯分析仪具有无需试剂、连续测试等优势,广泛应用于饮用水行业。纪宗媛 赛莱默 应用工程师《余氯/总氯电极在自来水监测中的应用》纪宗媛,女,应用工程师,就职于赛莱默分析仪器有限公司。毕业于北京化工大学,环境科学与工程专业硕士。长期从事水质分析仪表的技术支持、产品培训和应用问题解决等工作,在水质监测领域具有丰富经验。本次网络研讨会,纪宗媛将介绍一款维护量极低的电极法余氯/总氯分析仪的应用及特点。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022除此以外,作为电分析化学领域的另一优秀厂商,刚瑞GAMRY三十年专注于电化学测试及相关产品的研制,致力于电化学分析最佳性能的研发,其产品在电化学测试领域被广泛应用着。刚瑞产品涵盖各类电化学工作站、电化学阻抗谱仪、电化学石英晶体微天平以及电化学工作站与各种光谱联用装置等。刚瑞目前在上海已设立分公司以服务全国,并致力为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务。王凤平 辽宁师范大学化学化工学院 教授《电分析化学的关键测试技术与实验教学》王凤平,男,东北师范大学理学硕士,中国科学院金属研究所工学博士,北京科技大学博士后,日本北海道大学高级访问学者;现为辽宁师范大学化学化工学院教授,辽宁省科技奖励评审专家,辽宁省表面工程协会专家,辽宁省高校“分子与功能材料”重点实验室成员,辽宁省高等学校创新团队成员;大连市安全生产专家,大连市金属腐蚀防护学会理事,大连市化学化工学会理事;王凤平长期从事腐蚀电化学方面教学与研究,主持国家自然科学基金、辽宁省科技厅、辽宁省教育厅及各类企业合作项目11项;已在国际、国内核心期刊发表研究论文110余篇,出版学术专著8部,获辽宁省自然科学学术成果奖。本次网络研讨会,王凤平主要从三个方面介绍刚瑞的仪器特点,以及在电分析领域的应用:1.低电流准确表征及其应用:刚瑞的仪器擅长测量微小的电流,最低可以达到pA级别;2.全范围阻抗测试技术:刚瑞的阻抗技术一直非常全面,低阻抗准确测量至纳欧级样品,高阻抗准确测量至T欧(1.0E+12Ω)级样品,不导电涂层等,包括常规的样品;3.电化学光谱联用技术:刚瑞的电化学工作站可以直接与IMPS/IMVS光谱电化学系统、以及紫外-可见光谱、红外光谱、拉曼等第三方设备联用,尤其软件方面可以实现严格同步。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022
  • 普瑞邦发布Pribolab® 光电化学柱后衍生系统新品
    Pribolab® 光电化学柱后衍生系统Pribolab® 光电化学柱后衍生系统将电化学试剂衍生和和光化学衍生放应集成于一体,采用双流路通道,可以自主实现切换检测流路,实现电化学试剂衍生与光衍生的快速转换和使用,有效提高检测效率,使分析工作变得简洁、高效。光电化学柱后衍生系统配套高效液相色谱仪使用,有效拓展色谱系统的分析功能范围,可对多种物质衍生化后进行检测,广泛适用于环境、临床、药物、食品和饲料工业等。检测范围包括:氨基甲酸酯、草甘膦除草剂、胍基类化合物、百草枯和杀草快、牛磺酸、聚醚类抗生素、磺胺类药物、致人瘫痪或麻痹的甲壳类或贝类水生动物毒素、黄曲霉毒素B1、G1、伏马毒素、单端孢霉烯族毒素、维生素B1、B6等,以及巴比妥酸盐、氨基酸、多肽、磺胺类药物等分析。尤其可以增强磺胺类药物的荧光强度,灵敏度达到10ppb左右。产品特点:1、工作环境:温度0-60℃,湿度:20-80%;2、池温范围:环境温度-150℃,重现性±0.1℃,准确性:±0.5℃,温度稳定时间小于25分钟;3、可以兼容联接所有品牌液相系统,使得HPLC 功能使用性增大; 4、连接简便,一端接色谱柱出口,一端接检测器入口;5、采用平流泵;6、自动活塞清洗和可编程的系统冲洗,保护系统和延长系统寿命;7、模块式设计,方便维护,可选1个或2个衍生剂泵和反应池;8、内置匀速器,大大降低了流速脉冲造成的影响。9、可以设置压力上下限,温度限及系统待机延时;10、模块式反应器,只需2个连接头即可更换反应体积和反应器;11、可丢弃式的反应器设计;新型设计的反应器,大大降低了峰的扩散;12、全PEEK惰性流路,没有金属污染,延长系统寿命;可选PEEK,SUS泵及管路;13、良好的系统兼容性和安全的保障措施,兼容所有模拟检测器:UV、荧光、ELSD产品优点:1、优良的人机交互界面,电脑控制和平板控制两种方式可选,快速且易于设置 ;2、将试剂衍生装置和光衍生装置集于一体,采用双流路通道,可以随意切换检测流路,实现试剂衍生和光衍生的转换;3、整机采用PEEK材质配件和管路,耐酸耐碱耐有机,寿命延长;4、自动活塞清洗和可编程的系统冲洗,可保护系统和延长系统寿命;5、完备的安全保障措施:柱后防回流系统:管内单向阀,当HPLC压力降低时,防止试剂回流至色谱柱过压保护系统:当压力超过500 psi时,过压保护阀会自动泄压,防止柱后反应管道断裂;过温保护系统:反应池温度不能超过150 ℃,防止反应池过热损坏;加压试剂瓶:惰性环境,流路管线为氧气不能透过的莎纶SARAN管道-防止氧气进入试剂瓶与衍生化试剂发生反应;漏液保护:管路异常漏液,系统自动停机;6、在线对黄曲霉毒素B1、G1进行衍生,重现性好,最低检测限小于0.5ppb;不 需要任何化学衍生试剂,减少了液相系统的清洗工作,延长了其使用寿命。 分析项目 应用行业氨基酸分析(氨基酸,牛磺酸)杀虫剂类农药残留检测(氨基甲酸酯类) 环境水质残留监测除草剂残留检测(草甘瞵,百草枯,敌草快等 饲料工业营养分析与毒物及残留物监测各种毒素(黄曲霉毒素,呕吐毒素,贝类毒素等) 食品工业营养分析与毒物及残留物监测氨基苷类,聚醚类抗生素 临床诊断监测与产前筛查药物分析(伏格列波糖,红霉素等) 医药化工产品含量分析和残留监测苯丙酮尿/槭糖尿检测与筛查其他如生物胺,溴酸盐,甲醛,铬VI,胍类主要技术参数:项目参数流速范围0.001~9.999 mL/min输液泵结构双柱塞串联式往复泵流量精度0.5%流速重现0.2%压力范围0-40MPa压力脉动0.05MPa光衍生光源双波长254和352nm,衍生光源功率9W光源寿命8000小时流动池最大耐压1000Bar/15000psi电源220V±10%,50-60Hz整机尺寸520x410x460(h× w × d)整机重量26kg创新点:Pribolab® 多功能光电衍生系统 (以下简称 MDS )是由普瑞邦仪器研发团队经过无数次测试与比对,在大量数据支持下推出的新一代衍生仪器。在满足高性能、高灵敏度的基础上,普瑞邦首次将光衍生与化学衍生装置集于一体,采用的双流路通道可实现碘衍生和光衍生自动切换;管内采用单向阀,防止HPLC压力降低时试剂回流到色谱柱;采取过温保护系统,将反应池温度控制在150℃以下,防止反应池过热损坏;
  • “参与微波消解仪调研,赢取话费”电话调研获奖名单公布
    p span style=" color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px "   为了更好地了解目前市场上微波消解仪的使用情况,仪器信息网特组织此次“参与微波消解仪调研、赢取话费”活动,以便给更多的微波消解仪用户在使用和选购仪器过程中做出指导。目前累计近300余人参与此次调研活动。 /span /p p style=" text-align: center " img src=" /admincms/ueditor1/themes/default/images/spacer.gif" word_img=" file:///C:\Users\guoxd\AppData\Roaming\Tencent\Users\2850501189\QQEIM\WinTemp\RichOle\QH{R_41UDNDIX~3[@0SU~7T.png" style=" background:url(/admincms/ueditor1/lang/zh-cn/images/localimage.png) no-repeat center center border:1px solid #ddd" / img src=" http://img1.17img.cn/17img/images/201712/insimg/2c4da726-07b4-4a17-9322-eb6681b33253.jpg" title=" 75.jpg" / /p p style=" text-align: left " span style=" color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px " & nbsp & nbsp 迄今为止,参与电话调研,获得电话奖励的用户名单也已新鲜出炉!据统计,获得此次话费奖励的用户共计100人,现将获奖者名单公布如下,快看看是不是有你吧! /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/a17996c7-0f77-46c5-8ef0-2a1b4c35a720.jpg" title=" QQ.png" / /p p   注:以上名单中包含参与“参与微波消解仪调研,赢取话费”网络调研首次未充值成功者12人。 /p p style=" text-align: center " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px text-align: center white-space: normal " 本活动由仪器信息网【产业研究部】发起,活动100%属实 /strong /p p style=" text-align: center " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px text-align: center white-space: normal " img src=" http://img1.17img.cn/17img/images/201712/insimg/de1a5878-72df-4eb2-8eed-4fb79bff2143.jpg" title=" 34.jpg" width=" 310" height=" 331" style=" width: 310px height: 331px " / /strong /p p strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px text-align: center white-space: normal " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " 另外部分获奖用户充值失败,请尽快与我们联系!!! /strong /strong /p p 发送手机号 & nbsp & nbsp 状态 & nbsp & nbsp /p p 151****5825 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 135****5702 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 178****6065 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 135****4039 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 187****4581 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 187****2356 & nbsp & nbsp 发送失败 & nbsp & nbsp /p p 183****5721 & nbsp & nbsp 发送失败 & nbsp & nbsp /p
  • 宁波材料所在二硫化钼电化学行为研究方面取得新进展
    二硫化钼(MoS2)在固体润滑、光电子器件、电化学催化等领域具有广泛的应用,而镧系元素(Ln)掺杂可以对其各类物理化学性质起到不同的调控作用。Ln-MoS2基功能材料、涂层和器件在实际使役环境中的性能和寿命在很多时候与其表面的氧还原反应(ORR)密切相关。比如,表面ORR会增加Ln-MoS2基纳米器件和涂层周围金属部件的电偶腐蚀风险,而与此同时,Ln-MoS2基催化剂在燃料电池领域的应用潜力极大依赖于其阴极反应(即ORR)的活性。系统预测Ln-MoS2表面ORR活性规律并清晰揭示其背后的微观量子化学机理,可以给各类Ln-MoS2体系的实际应用设计、精准性能调控和有效防护提供重要指导。   近期,中国科学院海洋新材料与应用技术重点实验室和中国科学院宁波材料技术与工程研究所前沿交叉科学研究中心的研究人员利用第一性原理计算方法,探索了所有15种Ln-MoS2(Ln = La~Lu)体系的ORR活性,不仅发现了Ln杂质对MoS2表面ORR活性的极大促进作用,还观察到ORR活性与Ln杂质原子序数存在一种双周期的依赖关系。本研究工作中,研究人员也通过热力学统计的方法精确模拟了疏松固/液界面上的水环境效应,然后通过构建动力学反应方程组,成功发展了一种电流-电势极化曲线的模拟方法,所得到的极化电流曲线不仅可定量揭示ORR活性,也可以直接对比/指导实验测量。深入的机理分析表明,Ln-MoS2表面ORR活性的增强来源于一种特殊的缺陷电子态配对机制,它会选择性地增强两种ORR中间产物吸附(OH和OOH吸附基团),从而显著减小ORR能垒;而双周期规律则来源于Ln元素中4f-5d6s轨道杂化程度和Ln—S原子成键能力上类似的双周期规律。在此分析基础上,研究人员也为Ln-MoS2体系提出了一种普适的轨道化学机理,对各类电子结构、杂质稳定性、吸附物稳定性和电化学活性中同时出现的双周期规律进行了统一阐述。   相关成果发表于《自然—通讯》(Nat. Commun. 2023, 14, 3256)。该研究得到国家自然科学基金、中国工程物理研究院表面物理与化学重点实验室学科发展基金和国家重点研发项目的资助。镧系元素掺杂二硫化钼对氧还原反应的增强效应(图中显示了模拟所得的电流电势极化曲线以及半波电势所表现出的双周期趋势)
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 线上直播 | 动力电池电化学技术发展,挑战及策略
    为了使广大科研工作者能更全面深入的了解动力电池电化学方面的应用,普林斯顿输力强电化学特举办专题网络研讨会进行探讨。动力电池电化学技术发展,挑战及策略时间:6月28日10:00-11:30动力电池电化学测试需求及挑战析锂,界面演变对超/快充影响安全性,热失控及失效机制分析电化学特征与SoC, SoH ,余量评估和寿命预测相关性
  • 中国计量大学200.00万元采购电化学工作站,波散型XRF,气质联用仪,分子荧光光谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 浙江求是招标代理有限公司关于中国计量大学能源催化材料及检测技术实验室项目的公开招标公告 浙江省-杭州市-西湖区 状态:公告 更新时间: 2023-10-02 招标文件: 附件1 项目概况 中国计量大学能源催化材料及检测技术实验室项目招标项目的潜在投标人应在政府采购云平台(https://www.zcygov.cn)获取(下载)招标文件,并于 2023年10月23日 09:00(北京时间)前递交(上传)投标文件。 一、项目基本情况 项目编号:QSZB-Z(H)-B23388(GK) 项目名称:中国计量大学能源催化材料及检测技术实验室项目 预算金额(元):2000000 最高限价(元):920000,470000,610000 采购需求: 标项一 标项名称: 多通道电化学工作站等 数量: 1 预算金额(元): 920000 简要规格描述或项目基本概况介绍、用途:详见第二章 采购需求 备注: 标项二 标项名称: 多功能缺陷荧光光谱仪 数量: 1 预算金额(元): 470000 简要规格描述或项目基本概况介绍、用途:详见第二章 采购需求 备注:标项三 标项名称: 气质联用仪 数量: 1 预算金额(元): 610000 简要规格描述或项目基本概况介绍、用途:详见第二章 采购需求 备注: 合同履约期限:标项 1、2、3,国产产品:自合同签订之日起30日内交付并安装完毕;进口产品:中标人应于“进出口货物征免税证明”办理后60天内将所供商品按时、安全运至采购人指定地点,安装调试完毕后交采购人验收。 本项目(是)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:标项1、2、3:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:/至2023年10月23日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政府采购云平台(https://www.zcygov.cn) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年10月23日 09:00(北京时间) 投标地点(网址):政府采购云平台(https://www.zcygov.cn) 开标时间:2023年10月23日 09:00 开标地点(网址):政府采购云平台(https://www.zcygov.cn)/杭州市西湖区玉古路173号中田大厦21楼(求是招标会议室1) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.《浙江省财政厅关于进一步发挥政府采购政策功能全力推动经济稳进提质的通知》 (浙财采监(2022)3号)、《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号))、《浙江省财政厅关于进一步加大政府采购支持中小企业力度助力扎实稳住经济的通知》 (浙财采监(2022)8号)已分别于2022年1月29日、2022年2月1日和2022年7月1日开始实施,此前有关规定与上述文件内容不一致的,按上述文件要求执行。 2.根据《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号)文件关于“健全行政裁决机制”要求,鼓励供应商在线提起询问,路径为:政采云-项目采购-询问质疑投诉-询问列表:鼓励供应商在线提起质疑,路径为:政采云-项目采购-询问质疑投诉-质疑列表。质疑供应商对在线质疑答复不满意的,可在线提起投诉,路径为:浙江政府服务网-政府采购投诉处理-在线办理。 3.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。质疑函范本、投诉书范本请到浙江政府采购网下载专区下载。 4.其他事项:(1)需要落实的政府采购政策:包括节约资源、保护环境、支持科技创新、促进中小企业发展等。详见招标文件的第三章-采购项目需要落实的政府采购政策。▲(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务后不得再参加该采购项目的其他采购活动。 七、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:中国计量大学 地 址:杭州市下沙高教园区学源街258号 传 真:/ 项目联系人(询问):徐老师 项目联系方式(询问):0571-86876258 质疑联系人:顾老师 质疑联系方式:0571-86836056 2.采购代理机构信息 名 称:浙江求是招标代理有限公司 地 址:杭州市西湖区玉古路173号中田大厦21楼 传 真:/ 项目联系人(询问):陈应俭、俞炳 项目联系方式(询问):0571-87670302 质疑联系人:胡沁梦 质疑联系方式:0571-81110356 3.同级政府采购监督管理部门 名 称:浙江省财政厅政府采购监管处、浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真:/ 联 系 人:朱女士、王女士 监督投诉电话:0571-85252453 政策咨询:何一平、冯华,0571-87058424、87055741 预算金额未达100万元的采购项目,由采购人处理采购争议。 若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线95763获取热线服务帮助。 CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。 潜在供应商 附件信息: 10.23AM,QSZB-Z(H)-B23388(GK),计量,能源催化材料及检测技术实验室[定稿].docx163.4K× 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:电化学工作站,波散型XRF,气质联用仪,分子荧光光谱 开标时间:2023-10-23 09:00 预算金额:200.00万元 采购单位:中国计量大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:浙江求是招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 浙江求是招标代理有限公司关于中国计量大学能源催化材料及检测技术实验室项目的公开招标公告 浙江省-杭州市-西湖区 状态:公告 更新时间: 2023-10-02 招标文件: 附件1 项目概况 中国计量大学能源催化材料及检测技术实验室项目招标项目的潜在投标人应在政府采购云平台(https://www.zcygov.cn)获取(下载)招标文件,并于 2023年10月23日 09:00(北京时间)前递交(上传)投标文件。 一、项目基本情况 项目编号:QSZB-Z(H)-B23388(GK) 项目名称:中国计量大学能源催化材料及检测技术实验室项目 预算金额(元):2000000 最高限价(元):920000,470000,610000 采购需求: 标项一 标项名称: 多通道电化学工作站等 数量: 1 预算金额(元): 920000 简要规格描述或项目基本概况介绍、用途:详见第二章 采购需求 备注: 标项二 标项名称: 多功能缺陷荧光光谱仪 数量: 1 预算金额(元): 470000 简要规格描述或项目基本概况介绍、用途:详见第二章 采购需求 备注: 标项三 标项名称: 气质联用仪 数量: 1 预算金额(元): 610000 简要规格描述或项目基本概况介绍、用途:详见第二章 采购需求 备注: 合同履约期限:标项 1、2、3,国产产品:自合同签订之日起30日内交付并安装完毕;进口产品:中标人应于“进出口货物征免税证明”办理后60天内将所供商品按时、安全运至采购人指定地点,安装调试完毕后交采购人验收。 本项目(是)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:标项1、2、3:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:/至2023年10月23日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政府采购云平台(https://www.zcygov.cn) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年10月23日 09:00(北京时间) 投标地点(网址):政府采购云平台(https://www.zcygov.cn) 开标时间:2023年10月23日 09:00 开标地点(网址):政府采购云平台(https://www.zcygov.cn)/杭州市西湖区玉古路173号中田大厦21楼(求是招标会议室1) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.《浙江省财政厅关于进一步发挥政府采购政策功能全力推动经济稳进提质的通知》 (浙财采监(2022)3号)、《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号))、《浙江省财政厅关于进一步加大政府采购支持中小企业力度助力扎实稳住经济的通知》 (浙财采监(2022)8号)已分别于2022年1月29日、2022年2月1日和2022年7月1日开始实施,此前有关规定与上述文件内容不一致的,按上述文件要求执行。 2.根据《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号)文件关于“健全行政裁决机制”要求,鼓励供应商在线提起询问,路径为:政采云-项目采购-询问质疑投诉-询问列表:鼓励供应商在线提起质疑,路径为:政采云-项目采购-询问质疑投诉-质疑列表。质疑供应商对在线质疑答复不满意的,可在线提起投诉,路径为:浙江政府服务网-政府采购投诉处理-在线办理。 3.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。质疑函范本、投诉书范本请到浙江政府采购网下载专区下载。 4.其他事项:(1)需要落实的政府采购政策:包括节约资源、保护环境、支持科技创新、促进中小企业发展等。详见招标文件的第三章-采购项目需要落实的政府采购政策。▲(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务后不得再参加该采购项目的其他采购活动。 七、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:中国计量大学 地 址:杭州市下沙高教园区学源街258号 传 真:/ 项目联系人(询问):徐老师 项目联系方式(询问):0571-86876258 质疑联系人:顾老师 质疑联系方式:0571-86836056 2.采购代理机构信息 名 称:浙江求是招标代理有限公司 地 址:杭州市西湖区玉古路173号中田大厦21楼 传 真:/ 项目联系人(询问):陈应俭、俞炳 项目联系方式(询问):0571-87670302 质疑联系人:胡沁梦 质疑联系方式:0571-81110356 3.同级政府采购监督管理部门 名 称:浙江省财政厅政府采购监管处、浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真:/ 联 系 人:朱女士、王女士 监督投诉电话:0571-85252453 政策咨询:何一平、冯华,0571-87058424、87055741 预算金额未达100万元的采购项目,由采购人处理采购争议。 若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线95763获取热线服务帮助。 CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。 潜在供应商 附件信息: 10.23AM,QSZB-Z(H)-B23388(GK),计量,能源催化材料及检测技术实验室[定稿].docx163.4K
  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 美国Gamry电化学新品发布-Interface™ 1010系列电化学工作站
    —— Gamry不断追求在电化学领域的技术创新! 美国Gamry 电化学仪器公司(Gamry Instruments,Inc.)是世界电化学工作站的领先制造者,从单通道到多通道电化学工作站,在全球都已得到广泛应用。 Gamry不断追求在电化学领域的技术创新,最新推出的Interface™ 1010系列电化学工作站,是Gamry电化学专家与仪器专家共同开发的成果。这是一款研究级、通用型电化学工作站,最终模数分辨率达到23位,频率分辨率(采样时间的倒数)达到1/232。 Interface™ 1010是电化学领域最精密制造的电子产品,采用表面贴装电子元件方式,机箱内无电缆、线束、互联;所选用的变速风扇、低噪音电源、专门设计的底盘等,充分保证了仪器更低的漂移,更高的精度、准确度及稳定性。 Interface™ 1010可自由组合成为多通道电化学工作站,并且通道之间达到完美隔离,互不影响。 Interface™ 1010具有多种细分型号(Interface™ 1010E、1010B、1010T),满足用户不同方面的需求。 下面将详细阐述Interface™ 1010系列电化学工作站的技术特点: 最佳分辨率:为了获得最佳模数分辨率,Gamry以16位A/D转换器为设计基础,然后增加了噪声滤波器,以消除通道中的任何噪声。最后,通过放大器进一步对信号进行可控放大,增益高达×100,几乎为27倍,即提高7位分辨率。当增益添加到A/D转换器时,得到的最终分辨率为23位,是几乎没有噪声条件下的分辨率!上图是电化学工作站InterfaceTM 1010采用Framework™ 软件,针对200 Ω电阻的实际噪声数据(电位0.0 vs参考值; IE范围1μA满量程;滤波器:1 kHz;CA速度正常)。峰值电流为41.1 nA。使用这种200Ω电阻,我们可以从欧姆定律计算峰峰值电压仅为8.2μV。请注意,没有电源(60 Hz)信号引起的噪声! 频率分辨率在电子学中,频率分辨率 ?f 可以定义为采样时间的倒数。对于Gamry仪器,采用32位直接数字合成时钟为信号发生源,拥有1/232的频率分辨率。(有关频率分辨率的更多信息,请参见我们的技术报告“波形生成和频率分辨率”)。 微调电位器微调电位器会引来系列系统误差和费时矫正。 Interface™ 1010采取软硬件的完美结合,在相关硬件里结合相应软件,不采用微调电位器来实现微调性能。几乎所有的调整都是通过软件自动执行,很少需要手动校准。一般来说,微调电位器极易受到机械冲击和温度变化的影响,而使电化学测量结果失真。因此,Interface™ 1010的设计,不需要更多手动,使校准更容易。InterfaceTM 1010内部的印刷电路板请注意组件的平面分布:左上角的变速冷却风扇远离敏感的电子设备,来避免信号中的噪音。 只在表面安装元器件Gamry仪器在印刷电路板中只使用表面贴装电子元件。表面安装的组件意味着体积更小,温度波动更小,当您获取数据时,可以减少漂移并获得更精确的信号。 没有电缆、线束或互连Interface™ 1010在其机箱里面不包含电缆,线束或互连。这意味着Interface™ 1010具有优越的机械可靠性(无连接变松),较少的杂散电磁干扰,以及更少的触点而导致内部腐蚀。降低金属间接触,可以保证我们的仪器具有更低的漂移,更好的稳定性。 低噪声电源Gamry制造的系列电化学工作站,都使用低噪声开关电源。这种电源消除了电磁干扰。它是有效率的,意味着产生的热量较少,而使环境更加环保。 专门设计的底盘Gamry制造的系列电化学工作站中的底盘,保证优化除热和保持恒温。底盘有一个特殊的引导气流设计,可以更快地冷却电子设备。专门设计的底盘,保证Interface™ 1010电位器的低漂移,高精度和稳定的测量! 变速风扇设计电化学工作站机箱内的电脑控制的变频风扇,可以有效冷却内部电子元件,风扇设计用于保持恒温。电动马达驱动的风扇会产生少量的电气噪音,风扇远离敏感元件,有效避免风扇信号引起的噪音。另外,变速风扇更安静,这在繁忙的实验室环境中很重要。 通道间的完美隔离电化学测量中的信号测量或者施加来自不同电极或者不同通道。这些信号对应的每一个通道,理想地说,不应该影响另外一个通道的信号。也就是说,通道之间要彼此隔离。Gamry 采取特制组件与导电栅栏,大大降低了任何电磁干扰与通道之间的影响。绿色制造为了保护环境,所有Gamry电化学工作站均符合中国RoHS标准,因此您可以确保Interface™ 1010几乎无铅,无汞,无镉。 Gamry电化学工作站也采取可回收利用的铝制底盘。 了解更详细的产品信息,请登陆Gamry官网。
  • 通知:上海台雄开通400电话了
    尊敬的客户及广大经销商朋友们: 您们好!为了进一步提高公司服务质量,从而更好的服务于各位客户及广大经销商朋友们,公司已于2013年6月14日正式开通了400服务热线电话,电话号码为:400-638-0616(固定电话及手机均可以拨打)。 固定电话号码不变:021-34120616 34120618 传真:021-34120568 希望此举能给您带来更加便捷的沟通渠道及更好的服务,感谢您们一直以来对我司各项工作的大力支持与配合,我们将做得更好!顺祝:生意兴隆,阖家幸福! 上海台雄工程配套设备有限公司 2013年7月14日
  • 电化学合成与科研创新
    科研的核心精神是什么?创新、创新、创新!!! 如何创新?这是一个重大课题。不如看看Phil. S Baran的现身说法。1 Phil.S Baran,他是谁? ? 美国斯克利普斯研究所(Scripps)教授? 美国科学院院院士,2017年? 麦克阿瑟天才奖得主,2013年(MacArthur Fellowship)? 主页:http://baranlab.org/? 研究方向:有机合成? 发表文章130多篇,其中11篇Nature,7篇Science2 Phil.S Baran为什么尝试电化学合成? 套用Phil. S Baran的原话,主流合成化学领域中尝试做电化学都是出于一种原因:绝望。譬如:单体之间的N-N键结成二聚合分子,只能用电化学方法合成烯丙位氧化,CH弱键可以被氧化,但是所用催化剂量大,昂贵,不环保产率低如何突破传统合成的瓶颈?传统合成的研究从1840年发展到现在,要创新谈何容易?!那是否可以在方法创新?!电化学合成方法进入他的视线了。3 Phil. S Baran用电化学合成法同时上Nature和Science 1. 《Nature》上发表的文章为:电化学方法氧化烯丙位碳氢键(C-H键)。(Scalable and sustainable electrochemical allylic C–H oxidation. Nature, DOI: 10.1038/nature17431)2. 《Science》上发表的文章为:烷基-烷基交叉偶联的电化学方法(A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, DOI: 10.1126/science.aaf61234 电化学方法氧化烯丙位碳氢键(C-H键)框架解读1. Nature文章电化学方法氧化烯丙位碳氢键的背景:烯丙基的氧化是有机合成中的经典反应,传统方法需要借助高毒性的氧化试剂,如铬和硒;还有很昂贵的催化剂,如钯和铑,难以放大工业级别的合成,如下图1-a、b所示。这篇文章改用电化学氧化的方法,结果到底如何呢? 电化学烯丙位的氧化早在1968年就有报道,电化学氧化α-蒎烯(1),如下图1-C(2)所示,直到1985年才有个重大的提升,可以直接实现氧化,如图1-C(3),只是产率比较低,都在13%-24%之间。图片来源:Nature, DOI: 10.1038/nature174312.Phil. S Baran实验室对电化学合成条件做的优化、扩展。第一步:选择合适的电极Phil. S Baran实验室未采用昂贵的金/铂电话,改而采用比较经济的,惰性也非常好的石墨电极和网状玻碳电极(RVC电极)。但是石墨电极有一定的吸附作用,回收率偏低。而RVC电极表现出更稳定的反应性能。第二步:筛选最佳的反应媒介和共氧化物,如Fig.2所示 图片来源:Nature, DOI: 10.1038/nature17431第三步:从朱栾倍半萜烯丙位的氧化扩展到烯丙位的氧化的通用电化学合成方法 图片来源:Nature, DOI: 10.1038/nature17431 第四步产量升级:100g规模的合成 图片来源:Nature, DOI: 10.1038/nature174315 从“电化学方法氧化烯丙位碳氢键(C-H键)”中看到的社会价值 1. 更经济、环保:从昂贵、有毒金属催化剂到经济、环保“电”催化的转变2. C-H氧化批量生产药物/化学品:从不可能变成可能3. 电化学合成方式或可创造一个全新的合成世界!这还不是尾声,Phil. S Baran还有更大壮举:虽然发表了Nature,也带来了巨大的社会价值,但是实验中还有小小遗憾。当时做C-H氧化电化学合成设备,全部都是自行搭建,恒电位仪、电极、反应管、电极固定夹、数据分析和记录器等等10多项产品,即便专业人员也需要耗费超40min的时间才可以完成搭建,且合成反应的重现性很差。他能否弥补这份遗憾? 2017年8月22日,美国秋季化学会上,Phil. S Baran带给大家更多的惊喜:一份对电化学合成不一样的解读 + 一个全球标准化的电化学合成仪“ElectraSyn 2.0”。点击视频,了解更多关于美国秋季发布会现场情况。Phil.S Baran 发布会现场
  • 古老而又年轻的技术——电化学发展趋势展望
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 供稿:上海仪电科学仪器股份有限公司 /span /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 一、我国电化学发展历程 /strong /span /p p   电化学分析技术是一项古老而又年轻的技术,起源于1791年意大利医学教授发现金属可使蛙腿肌肉抽缩的“动物电”现象,1800年伏特制成第一个实用电池,开启了电化学研究的新时代。经过2个多世纪的发展,电化学技术取得的成就举世瞩目,极大地推动了科学的进步和社会的发展。中国改革开放40多年来,电化学技术快速发展,逐渐成为化学、生命、材料、物理、能源、交通、环境和信息等领域的广泛分析工具,对国民经济、国防建设、科学研究等有着至关重要的意义。 /p p   在20世纪80年代中期以前,我国的电化学分析基础方法已经建立起来,电化学仪表主要采用静电计管作为输入级,以指针式显示测量值的电化学仪表,如酸度计、自动电位仪、方波极谱仪、伏安和循环伏安仪等,制造厂商有上海雷磁、延边无线电厂等。从20世纪80年代中期到90年代初期,随着电子技术的发展和计算机的普及,我国开始研究电化学仪器的计算机控制技术和数据处理技术,如“雷磁”研制的电化学仪器开始采用计算机技术,电站水质分析仪系列荣获“国家推荐产品”称号,并圆满完成了国家“95”攻关项目电站水质分析仪系列产品计算机系统项目。90年代中期,我国的研究者在电化学分析化学理论和实验方法及测试技术方面进行了深入研究,我国的电化学仪器技术进一步发展,在专用和常用仪器方面,出现了一批我国自主研发生产的仪器,标志着我国电化学分析仪器工业已经具有一定规模的研究、开发和生产能力。到90年代末期,电化学工作站的研制,标志着我国已经完全掌握了电化学仪器技术。从90年代末期到21世纪,随着嵌入式微型计算机和网络技术的发展,电化学分析仪器逐渐向智能化、信息化、微型化、集成式发展,电化学和电分析的技术和方法也更成熟,国内很多企业和研究机构进行了相关电化学仪器的研制和试制,特别是芯片技术、超微电极、多通道技术、联用技术等均得到了深入的发展,标志着我国电化学技术达到国际水准。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 二、我国电化学分析技术和产品发展历程和特点 /strong /span /p p   与典型化学分析方法相比,电化学分析法具有高灵敏度、高准确度、宽测量范围、易操作、高自动化程度、低误差等特点。我国的电化学基本仪器(PH计、离子计、电导率和溶氧仪),大致经历了以下4个发展阶段: /p p   第1代电化学仪表:采用静电计管作为输入级,用指针式电表显示测量值的电化学仪表。 /p p   第2代电化学仪表:采用运算放大器和A/D转换集成电路,用电位器调节进行校准的电化学仪表。 /p p   第3代电化学仪表:在第2代基础上,将一些标准数据储存在芯片中,采用软件技术进行自动校准,具备一些智能化功能的电化学仪表。 /p p   第4代电化学仪表:以多参数仪表为设计对象,硬件材料和操作模式更人性化和简单化,配套操作软件和配件,组成单参数、双参数或多参数的系列多功能多模块的电化学仪表,典型代表为雷磁DZS-708L多参数分析仪。仪器多以集成式、功能化、微型化和便携式为主要特点,如雷磁DZB-718L便携式多参数分析仪。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/fb176247-9ca8-434a-b820-e18763c3472a.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图1 我国电化学发展阶段(以雷磁产品为例) /span /strong /p p   目前,虽然我国的电化学仪器很多技术和仪器可以达到国际水平,但是也有一些问题亟待解决。例如部分电化学仪器的一些基础部件和设备,在国内根本很难找到合格的加工企业,只能引进国外的设备和材料,导致生产成本较高 我国的电化学中低端产品生产线比较全面和丰富,但是高端产品线还需完善和改进。除此之外,若要成为电化学技术专家,做这个行业的国际标杆,国内企业的管理水平和创新水平,均有待于提高。 /p p style=" margin-bottom: 10px margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong   三、未来电化学技术与产品的发展趋势 /strong /span /p p   21世纪是高新技术和网络信息化的时代,我国电化学技术的发展重点将围绕科研、生产、人类环境三大领域需求,向综合、联用、信息网络化发展,同时更趋微型化、集成化、自动化和智能化。重点开发的产品以技术含量高的中高端产品为主,用于水质检测、食品和药品检测、质量控制、人类健康和环境检测等多领域。快速、准确、稳定、安全、环保、便携、简单等将成为电化学产品的设计宗旨。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 四、“雷磁”发展历程和代表性电化学产品 /strong /span /p p   “雷磁”作为上海仪电科学仪器股份有限公司的自主品牌,创立于1940年,作为中国第一台pH计和第一支玻璃电极的诞生地,在科学仪器发展的道路上,已逐渐成长为电化学分析仪器领域的领军企业。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d7170f16-1aed-4cd2-a094-f54e48e75024.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图2 中国科学仪器行业泰斗朱良漪先生为“雷磁”题词 /span /strong /p p   1940年,荣仁本先生在永嘉路229弄8号设立雷磁电化研究室,从事于小型电化研究工作,制造涂料电阻,并开始电化学仪器的研制。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7242930f-a420-4ddd-bfcf-135248c8db77.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图3 电化学研究--电阻算尺和第一台pH计 /span /strong /p p   1953年,改名为雷磁电化仪器工业社,迁至威海路12弄14号,生产玻璃电极、酸度计。 /p p   1956年,雷磁电化仪器工业社在大合营高潮中被批准为公私合营,公私合营成立雷磁仪器厂。 /p p   1966年,改名为上海第二分析仪器厂。 /p p   1981年,在工商正式注册“雷磁”商标。 /p p   1983年,恢复“上海雷磁仪器厂“厂名。 /p p   2001年,按上海精密科学仪器公司实体化工作要求,变更为上海精密科学仪器有限公司雷磁仪器厂。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2ae3b077-5560-4560-bb4c-c4cc82d1a0ee.jpg" title=" 4_副本.jpg" alt=" 4_副本.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图4 2011年新公司成立,仪电控股领导和嘉定区领导为新公司揭牌 /span /strong /p p   2011年,经上海国资委批准,上海仪电控股公司决定,雷磁仪器等资产,经市场评估后注入上海仪电控股(集团)公司旗下上海仪电电子(集团)有限公司,转制成立“上海仪电科学仪器股份有限公司”。 /p p   2015年,按照仪电集团转型发展战略,作为优质资产被纳入上海仪电(集团)有限公司旗下的上市公司云赛智联股份有限公司(股票代码600602),成为智慧城市建设中检测感知业务的主体之一。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/bf0830f6-203d-4f74-a478-e99a434037a2.jpg" title=" 5_副本.png" alt=" 5_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图5 雷磁代表性电化学产品:台式引领版系列 /span /strong /p p   产品是核心竞争力,雷磁通过不断技术突破和产品的更新换代,在电化学分析仪器产品线上不断进步,引领国内电化学技术不断发展,逐渐形成围绕水质分析的一个完整的产线结构。其中,电化学最具代表性产品为引领版系列,包括实验室单数数和多参数引领版产品、便携式单数数和多参数引领版产品。引领版系列产品由于功能齐全、技术领先、操作方便,成为电化学高端主流产品之一。美观流行的彩色触摸屏设计、合理的操作界面布局、强大的智能操作系统和高精度级别的技术参数成为引领版系列产品的突出优势。除此之外,引领版系列中的多参数仪表,可同时支持四个模块(pH计、电导率仪、溶解氧仪、离子计),实现四通道测量,该技术国际领先,促进了我国电化学产品一体化、智能化和功能化的发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/dd3dfc68-c95c-4a2f-aa99-e003b4f11424.jpg" title=" 6_副本.png" alt=" 6_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图6 雷磁代表性电化学产品:便携式引领版系列 /span /strong /p p   雷磁另一代表性电化学产品为ZDJ-5B系列自动电位滴定仪,该产品具有以下技术优势:1)通过柔性自适应技术进行模块化组合实现不同种类的滴定分析 2)可同时控制并支持多种滴定应用模块,进行电位滴定、光度滴定、电导滴定、永停滴定和温度滴定等,通过电位变化、电导电极、温度电极、氧化还原电极和光度电极实时检测溶液检测参数的变化,自动控制滴定过程和判断滴定终点 3)自动样品切换,可进行多样品的自动滴定分析 4)滴定过程可编程,用户可研究针对各种滴定分析的分析模式 5)支持多种辅助设备如打印机、自动进样器等,形成全自动滴定分子的计算机软件工作站 6)电极精度高、重复性好、性能稳定等优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/dbe53eed-f351-4417-b177-41396f437c1f.jpg" title=" 7_副本.png" alt=" 7_副本.png" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图7 雷磁代表性电化学产品:ZDJ-5B自动电位滴定仪系列 /span /strong /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 五、雷磁电化学产品应用领域及其优势 /strong /span /p p   雷磁电化学产品,包括PH计、电导率仪、离子计、溶解氧测定仪、多参数水质测定仪和滴定仪等,最具优势的应用领域为实验室常规分析和环境检测。 /p p   在实验室常规分析中,雷磁的电化学分析仪器,在食品安全、生物医药、能源化工、环境保护等各大分析实验室的定性分析和定量分析中有着广泛的应用。一方面,相比于其他分析方法如ICP-MS、HPLC、AAS、LC、GC等,电化学分析方法无需样品前处理,对样品无特殊要求,只需将仪器和配套电极连接后即可测试,测试过程操作简单、响应速度快、测试周期短、实时性好、灵敏度高、应用范围广、实验成本低等一系列优势。例如雷磁的DWS-296型氨氮分析仪(荣获“CISILE自主创新金奖”),在测试过程中,单次测量最短只需几分钟,而且测量范围广、抗干扰能力强、试剂成本低、测试电极寿命长等显著优势。该产品的检出限可达到离子色谱水平,但没有离子色谱操作那么繁琐费时,而且技术人员容易上手,人力成本和测量成本更合理。另一方面,在实验室分析过程中,一般需要控制实验的环境如酸碱度、溶液的离子浓度和导电性等参数,因此,PH计、离子计和电导率仪常被各实验室列为通用性和辅助性设备进行样品检测和实验过程分析。雷磁的PHS-3C型酸度计,作为一款基础耐用型仪器,具有性价比高、实用性强、操作简便等优势,已经写入众多教材和标准当中,成为各大高校、研究所和第三方检测机构等实验室电化学仪器的首要选择,被评为“科学仪器行业最受关注仪器”和“国产好仪器”。除PHS-3C型酸度计外,还有DDSJ-308F电导率仪荣获“国产好仪器”称号、PXSJ-226型离子计荣获“CISILE自主创新银奖”、DZS-708L型多参数分析仪和ZDJ-5B型滴定仪等产品荣获“CISILE自主创新金奖”,获得国家高度认可,并且市场反响热烈,客户好评如潮。 /p p   环境检测,特别是水处理领域,雷磁具有很好的市场竞争力和影响力。雷磁聚焦水质分析将近70多年,作为水质处理的应用专家,主持和参与制定30份国家标准和行业标准,其中17份为第一起草人。相继承担了包括国家科技部“振兴国产仪器重大专项”在内的各类政府科研项目共50余项,申报了发明专利数十项,专利总数累计200余项。雷磁的环境检测设备主要为现场便携箱设备和在线监测设备。这些设备均运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及雷磁的专用分析软件和通讯网络,即时检测水质。雷磁的在线产品不仅测量时间短,还可以实时连续监测,准确快速地获得测量数据,及时反映污染变化状况等,满足政府和企业进行有效水环境管理的需求。除此之外,雷磁电化学产品在水处理应用上还获得了一系列荣誉称号:电站水质分析仪系列荣获“国家推荐产品”称号,DZB-715原位水质监测仪、COD-580型在线COD监测仪、COD-582在线COD监测仪、DWG-8002A型在线氨氮自动监测仪等产品荣获“CISILE自主创新金奖”。 /p p style=" margin-top: 10px margin-bottom: 10px " span style=" color: rgb(255, 0, 0) " strong   六、雷磁电化学产品布局规划 /strong /span /p p   雷磁将围绕“领先的科学仪器制造商、检测溯源系统解决方案与运行服务提供商”的战略目标,重点发展现代分析仪器,研究智能化和信息化先进分析仪器技术和电化学传感器技术,突破环境保护监测、食品药品等重大应用领域的检测应用方案和系统集成技术,打造智能检测仪器互联的管理系统和溯源协同平台。 /p p br/ /p
  • 用户的采购与您只差一个400电话的距离
    p   400电话是仪信通免费为所有会员提供的用户电话转接服务热线,用户可以在PC端和手机端任何页面通过400电话快速联系厂商,同时厂商可以在仪信通会员后台查看详细的来电信息,方便厂商及时查看未接电话,跟进已接电话,以及对来电数据进行统计。 /p p   最新调研数据显示,用户首先会选择使用拨打电话的方法来咨询厂商,为了方便用户直接与厂商沟通,更大程度地提高厂商的宣传效果,仪器信息网为所有会员开通了400电话服务。仪器信息网400电话来电量呈指数型增长,三个月成单率多数超过50%。 /p p    strong 一、用户习惯变化分析 /strong /p p   2016年中旬仪器信息网通过对用户抽样调研发现,越来越多的用户选择通过直接拨打电话联系厂商,传统的在线留言和电子邮件方式逐渐被淡化,选择直接拨打电话的用户主要是定向采购或者单一采购,如果处于采购前期调研和信息收集的采购者,更多会愿意通过快速留言或者邮件联系厂商,其他也包括通过仪器无线关注厂商微信号、直接拨打仪器信息网寻求推荐等方式。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 551px HEIGHT: 330px" title=" 调查数据.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201611/insimg/f6dc2012-2bfb-4bcd-a990-64252c5b74fd.jpg" width=" 551" height=" 330" / /p p style=" TEXT-ALIGN: center"   调查时间:2016年6月 /p p    strong 二、仪信通400电话效果分析 /strong /p p   2016年中旬,仪器信息网同时抽样调研5家厂商的400电话来电效果,对2016年4、5、6这三个月内所有400来电量和成单率进行了调研。 /p p   已成单金额=400来电中已成单的总金额(4、5、6三个月内) /p p   成交率=已成单400来电/400总来电量(4、5、6三个月内) /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 551px HEIGHT: 330px" title=" 效果调查.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201611/insimg/3f4d2749-d355-4329-89fe-770b08d82ab4.jpg" width=" 551" height=" 330" / /p p style=" TEXT-ALIGN: center"   调查时间:2016年6月 /p p   除了在已成交信息之外,还有很多时待成单的信息,所以最终成交率将远远高于以上数据。 /p p    strong 三、仪信通400电话趋势分析 /strong /p p   下面是仪信通会员400电话来电总数量,从趋势开看,每年的400电话数量都以接近一倍的数量持续增加。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 553px HEIGHT: 337px" title=" 趋势调查.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201611/insimg/c758f894-7210-4ea8-96f8-424a9c831eab.jpg" width=" 553" height=" 337" / /p p   在此之前,由于400电话成本较高,所以只针对仪信通金牌及以上的会员免费开放使用400电话,随着用户习惯变化,400电话使用率提升,仪信通决定对所有仪信通会员开放式400电话服务,截止2016年10月份,所有会员都已经免费开放了400电话服务。在满足用户需求的情况下,更大程度地提高厂商的宣传效果。 /p p    strong 四、2016年十月份仪信通400电话量来电量TOP10 /strong /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 553px HEIGHT: 335px" title=" 来电量TOP10.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201611/insimg/f45a6985-ba44-4481-bee9-6fbf1bd7ec32.jpg" width=" 553" height=" 335" / /p p br/ /p p   发现每一个需求用户,传递有价值的仪器产品信息,提供快捷精准的采购服务是仪器信息网一直发展的根本。 /p
  • 锂离子电池电化学测量方法概述
    p   锂离子电池电极过程一般经历复杂的多步骤电化学反应,并伴随化学反应,电极是非均相多孔粉末电极。为了获得可重现的、能反映材料与电池热力学及动力学特征的信息,需要对锂离子电池电极过程本身有清楚的认识。 /p p   电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空间电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。这些过程有些同时进行,有些先后发生。 /p p   电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。影响电极过程热力学的因素包括理想电极材料的电化学势,受电极材料形貌、结晶度、结晶取向、表面官能团影响的缺陷能,温度等因素。影响电极过程动力学的因素包括电化学与化学反应活化能,极化电流与电势,电极与电解质相电位匹配性,电极材料离子、电子输运特性,参与电化学反应的活性位密度、真实面积,离子扩散距离,电极与电解质浸润程度与接触面积,界面结构与界面副反应,温度等。 /p p   为了理解复杂的电极过程,一般电化学测量要结合稳态和暂态方法,通常包括3个基本步骤,如图1所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a9afc2e6-64ea-4948-82ad-3215bccf8bd5.jpg" title=" 001.jpg.png" alt=" 001.jpg.png" / /p p    strong 1 电化学测量概述 /strong /p p   1.1测量的基本内容 /p p   电化学测量主要研究电池或电极的电流、电势在稳态和暂态的激励信号下随外界条件变化的规律,测量反映动力学特性的参数。 /p p   1.2测量电池的分类及特点电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。 /p p   1.2.1两电极电池如图2所示,蓝色虚线框所示是一个典型的两电极电池的测量示意图,其中W表示研究电极,亦称之为工作电极(workingelectrode),C是辅助电极(auxiliaryelectrode),亦称之为对电极(counterelectrode)。锂电池的研究中多数为两电极电池,两电极电池测量的电压(voltage)是正极电势(potential)与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42e77e09-6d49-4696-a71d-981ad1f27239.jpg" title=" 002.jpg.png" alt=" 002.jpg.png" / /p p   1.2.2三电极电池与电极电势以及极化电流的测量图2是一个三电极电池示意图,W和C分别是工作电极和对电极(同上),R是参比电极(referenceelectrode)。W和C之间通过极化电流,实现电极的极化。W和R之间通过极小的电流,用于测量工作电极的电势。通过三电极电池,可以专门研究工作电极的电极过程动力学。 /p p   由于在锂离子电池中,正极和负极的电化学响应存在较大差异,近年来通过测量两电极电池电压电流曲线,对曲线进行dQ/dV处理,结合熵的原位测量,也能大致判断电池的电流或电压响应主要是与负极还是与正极反应有关。 /p p   1.3参比电极的特性及门类参比电极的性能直接影响电极电势的准确测量,通常参比电极应具备以下基本特征:①参比电极应为可逆电极 ②不易被极化,以保证电极电势比较标准和恒定 ③具有较好的恢复特性,不发生严重的滞后现象 ④具有较好的稳定性和重现性 ⑤快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性 ⑥不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。 /p p   常用的水溶液体系参比电极有可逆氢电极、甘汞电极、汞-氧化汞电极、汞-硫酸亚汞电极等 常用的非水溶液体系参比电极有银-氯化银电极、Pt电极以及金属锂、钠等电极。此外,也可以用银丝、铂丝做准参比电极,或者采用电化学反应电位稳定的溶解于电解液的二茂铁氧化还原电对。关于准参比电极细节可参考A.J.Bard编著的《ElectrochemicalMethods》。 /p p   1.4研究电极的门类及特性电化学测量中常用的研究电极主要有固体电极、超微电极和单晶电极。一般电化学研究所指的的固体电极主要有Pt电极和碳电极。其中碳电极包括热解石墨、高定向热解石墨(HOPG)、多晶石墨、玻璃化碳、碳纤维等。固体电极在使用时需要对其表面进行特殊处理,以期达到较好的重复性。常规的处理步骤为:①浸泡有机溶剂,除去表面吸附有机物 ②机械抛光,初步获取较高的表面光洁度 ③电化学抛光,除去电极表面氧化层及残留吸附物质 ④溶液净化,保证溶液的纯度,消除溶液中的杂质对测量结果的影响。 /p p   此外,超微电极和单晶电极以其独特的性质,近些年来也得到了较广泛的应用。前者可以快速获得动力学参数,且对待测材料的量要求很低,可以避免黏结剂、导电添加剂的干扰。后者可以精确获得溶剂吸脱附、表面结构、结晶取向等对电极过程动力学的影响。 /p p   在锂离子电池的研究中,固体电极包括含有活性物质的多孔粉末电极、多晶薄膜电极、外延膜薄膜电极、单颗粒微电极以及单晶电极等,多数测量时采用多孔粉末电极。 /p p   1.5电极过程电极过程一般情况下包括下列基本过程或步骤:①电化学反应过程:在电极/溶液界面上得到或失去电子生成反应产物的过程,即电荷转移过程 ②传质过程:反应物向电极表面或内部传递或反应产物自电极内部或表面向溶液中或向电极内部的传递过程(扩散和迁移) ③电极界面处靠近电解液一侧的双电层以及靠近电极内一侧的空间电荷层的充放电过程 ④溶液中离子的电迁移或电子导体、电极内电子的导电过程。 /p p   此外,伴随电化学反应,还有溶剂、阴阳离子、电化学反应产物的吸附/脱附过程,新相生长过程以及其它化学反应等。 /p p   锂离子电池作为一种复杂的电化学体系,其电极过程同样具备上述几个基本步骤。其工作原理如图3所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/93c5e038-8fe5-45b8-95cf-7a848c79c7c2.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p   针对不同的电极材料及电极体系,上述基本过程可简化为锂离子电池中离子和电子的传输及存储过程。所涉及的电化学过程有电子、离子在材料的体相、两相界面和(solidelectrolyteinterphase,SEI)的形成等过程。典型的电极过程及动力学参数有:①离子在电解质中的迁移电阻(Rsol) ②离子在电极表面的吸附电阻和电容(Rad,Cad) ③电化学双电层电容(Cdl) ④空间电荷层电容(Csc) ⑤离子在电极电解质界面的传输电阻(Rincorporation) ⑥离子在表面膜中的输运电阻和电容(Rfilm,Cfilm) ⑦电荷转移(Rct) ⑧电解质中离子的扩散电阻(Zdiffusion) ⑨电极中离子的扩散(Zdiffusion)——体相扩散(Rb)和晶粒晶界中的扩散(Rgb) ⑩宿主晶格中外来原子/离子的存储电容(Cchem) 相转变反应电容(Cchem) 电子的输运(Re)。 /p p   上述基本动力学参数涉及不同的电极基本过程,因而具有不同的时间常数。典型的电池中的电极过程及时间常数如图4所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/15e1c68c-99dc-4dd3-baf5-27e2c29a2754.jpg" title=" 004.jpg.png" alt=" 004.jpg.png" / /p p   1.6电化学极化的类型及其特征1.6.1极化的类型及其特征在施加了外来电场后,电池或电极逐渐偏离平衡电势的状态,称之为极化。在不具有流动相的电池中,存在着3种类型的极化:①电化学极化——与电荷转移过程有关的极化,极化的驱动力是电场梯度 ②浓差极化——与参与电化学反应的反应物和产物的扩散过程有关的极化,极化的驱动力为浓度梯度 ③欧姆极化——与载流子在电池中各相输运有关的极化,驱动力是电场梯度。 /p p   若还存在其它基本电极过程,如匀相或多相化学反应过程,则可能存在化学反应极化。 /p p   极化电势与平衡电势的差值的大小被称之为过电势。 /p p   1.6.2极化的影响因素各类极化的影响因素如下。(1)电化学极化的大小是由电化学反应速率决定的,电化学极化电阻(Rct)的大小与交换电流密度(io)直接相关。受多种因素影响,包括电极电位、电极电位与电解质电化学势差、反应物与产物的活度、参与电化学反应的电极的真实表面积、结晶取向、有序度、表面电导、反应温度、催化剂催化特性、电化学反应的可逆性等。 /p p   电化学极化的电流与电势在一定的电流电压范围内一般符合Tafel关系,log(i)与过电势成正比。 /p p   (2)浓差极化与传质粒子的扩散系数有关。电池中的扩散过程可以发生在电极材料内部,多孔电极的孔隙中,以及电解质相中,参与扩散的可以是多种带电或中性粒子。涉及扩散的粒子流的流量一般符合菲克扩散定律,与扩散系数及浓度梯度有关。由于电池是非均相体系,扩散系数与浓度梯度是空间位置的函数,在电化学反应的过程中,会随时间变化。传质的快慢与传质距离的平方成正比。 /p p   浓差极化过电势hcon与电流i,极限电流il的关系符合对数关系,hcon=RT/nF´ ln[(il-i)/il]。在过电势较小时,hcon=-RTi/nFil。 /p p   (3)欧姆极化的大小是由电池内部涉及到电迁移的各类电阻之和,即欧姆电阻决定的。欧姆极化过电势与极化电流密度成正比。 /p p    strong 2 小结与展望 /strong /p p   电化学表征技术在锂离子电池中有着非常广泛的应用,而电化学表征方法也非常之丰富,除了文中介绍的几种方法外,还有诸如 PSCA、CPR、CITT、RPG 等。随着实际应用的需要,新的电化学表征方法,特别是与其它表征技术结合形成的各类原位测量技术,正在迅速发展。 /p p   电极过程动力学研究的目的是获得能反映电极材料本征动力学特性的参数值,例如电荷转移电阻、扩散系数、交换电流密度,膜电阻等,并掌握该参数值随不同充放电深度(嵌脱锂量)以及温度的变化,从而能够理解、模拟、预测各类工况下及充电过程中电池极化电阻、电容的变化规律。而实验室在基础研究时往往采用粉末电极,导致在不同材料之间可靠的比较动力学参数基本不可能非常精确,除非材料的尺寸、粒度分布、表面官能团、导电添加剂、粘接剂、分散度、电极厚度、压实密度、体积容量得到了精确的控制和能实现高度的一致性。 /p p   相对于手工制作的电极,自动化设备制作的电极往往具有较好的一致性,更适合用来研究电极过程动力学。在基础研究时最好采用薄膜电极、微电极或单晶电极。 /p p   对于批量生产的电池,通过比较充放电曲线,分析直流极化电阻、固定频率的交流阻抗,开路电压等,可以获得表观的动力学参数,采用这些参数通过电化学模拟软件,可以将为准确的预测电池各类工况下的荷电态、极化电阻、输出功率,成为电源管理系统软件的核心内容 。 /p p   事实上,锂离子电池涉及的电化学为嵌入电极电化学,有别于传统的电极不发生结构演化,电化学反应主要发生在电极表面的溶液电化学。电化学双电层(EDL)与空间电荷层(SCL)共存,在充放电过程中,离子将穿过 EDL 与 SCL,电荷转移往往发生在电极内部而非表面,电极为混合离子导体,电化学反应伴随着相变和内部传质,这与一般教科书上描述的的电化学反应体系、研究方法、数学模型存在显著差异,需要发展新的理论与实验方法。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所) /i /span /p
  • 2012年上半年发布仪器新品:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。   电化学分析是利用物质的电化学性质测定物质成分的分析方法。它是仪器分析法的一个重要组成部分,以电导、电位、电流和电量等化学参数与被测物质含量之间的关系作为计量的基础。根据所测量电化学参数的不同,常见的电化学分析仪器有:pH计、电位滴定仪、电化学工作站、卡尔费修水分仪、电导率仪、库仑仪、极谱仪等。   电化学仪器是实现电化学分析与电化学测量的基本工具,量大面广。电化学信号可直接使用,无须精密的机械和光学系统,方便经济,是企事业单位及科研机构实验室常用的一类分析仪器。目前电化学仪器不仅作为实验室基础研究的科学仪器,也拓展到现场分析技术和仪器仪表等领域,在线分析、便携化、多功能化等亦是其未来的发展方向。   2012年的上半年,电化学领域新产品新技术不断推出。仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。   pH 计 日本堀场 HORIBA F-70 LAQUA PH计 上市时间:2012年3月 (汕头市科技设备供应公司代理)   HORIBA F-70 LAQUA系列PH计是一款操作简单而有趣的新形仪表,采用宽屏静电容量式触摸屏,触感操作;智能导航可以及时指引进而解决校准及测量故障等问题;此外,该款仪器的玻璃管电极易清洗。   卡氏水分测定仪 上海禾工科学仪器有限公司 全自动卡尔费休水分测定仪AKF-1 上市时间:2012年3月   AKF系列全自动卡尔费休水份测定仪在传统产品上进行了大量的创新,增加了仪器稳定性,降低了仪器故障,消除了运行噪声,同时改良了操作界面,加入自动打空白,自动清洗装置,自动保持检测状态等技术,仪器操作的简便、自动、安全、高效。 上海禾工科学仪器有限公司高 精度智能卡尔费休水分测定仪AKF-2010(升级型) 上市时间:2012年4月   AKF-2010卡尔费休水分测定仪采用Windos操作系统,5.6寸高精度触摸屏;操作简单直观,可以外接键盘鼠标,并且可以连接到网络,直接用网络传输数据,可以实现对仪器的远程控制和远程数据传输处理及监管;该款仪器还具有极大的扩展性,可方便升级为电化学自动滴定系统;其全封闭滴定池,使用户无需直接接触有毒试剂即可完成整个分析过程以及仪器的日常维护等工作。   自动电位滴定仪 日本京都电子公司 AT-700自动电位滴定仪 上市时间:2012年4月 (上海今昊科学仪器有限公司代理)   AT-700自动电位滴定仪采用了新的液路设计,更换试剂、日常维护更加简单;并且可以扩展为双管滴定,最多可连接10组滴定单元;可配套专用多样品转换器使用,经济实用;该电位滴定仪使用通用的USB接口连接各种外部设备,U盘存储,键盘输入,条码扫描;精确的液滴控制保证了实验的精度;多种规格的测试电极和多种外设极大扩展了电位滴定仪的应用范围;仪器设计紧凑,体积为原来型号仪器的一半。   电化学工作站、恒电位仪 美国青藤 DY2116B微型恒电位仪/恒电流仪 上市时间:2012年4月 (雷迪美特中国有限公司代理)   DY2116B是美国Digi-Ivy, Inc.公司生产的一款袖珍式恒电位仪/恒电流仪。该仪器采用最新的半导体芯片科技,通过独特的电路设计大大缩小了仪器的体积,应用更为便捷;噪声低,稳定性高,精心设计的硬、软件的有机结合,在不用Faraday屏蔽罩的情况下也很容易获得pA的电流测量分辨;信号发生和采集通过16-bit DAC和16-bit ADC来完成,最小电流分辨可达0.76pA;操作简单,功能多样化,易于使用,控制界面一目了然。 美国Gamry电化学公司 Interface1000电化学工作站   Interface 1000具有9个电流范围,3个增益范围,很灵活地适用于从腐蚀到电池,从传感器到超级电容的应用领域;高性能:电池充放电、极化实验,Interface 1000可以达到1A电流,槽压可以达到20V;和Gamry其他系统一样,Interface 1000采用浮地技术设计,使用与接地的工作电极系统;Interface 1000 可以达到 20 uV 噪声效果;不需要添加任何模块,Interface 1000 可以测量到1 MHz的交流阻抗;多台Interface 1000可以方便的组合为多通道的电化学工作站,并且比传统的多通道使用起来灵活。   电化学仪器部件、外设 美国pine光谱电化学装置 上市时间:2012年2月 (理化(香港)有限公司代理)   Pine公司的光谱电化学装置可以实现电化学方面的检测,并同时能实现光谱的检测。整套装置中,关键在于蜂窝状的电极和薄层石英电解池的配合使用,实现了电化学与光谱的同时检测;蜂窝状电极由三电极系统集成,以铂、金等贵金属作为工作电极,蜂窝状的制作工艺使光线穿透电解池,让研究者能够了解实时光谱及电化学数据。 美国pine光电化学石英电解池 上市时间:2012年2月 (理化(香港)有限公司代理)   PINE公司的光电化学石英电解池顶端有一较大的端口,可插入光电阳极(通常是硅晶片)。电解池周围的端口可插入对电极(通常为铂环)和参比电极;并且专门设计有气体喷射和净化的配件。可见光及紫外光可以通过电解池的任一两侧玻璃。在需要光学窗口的情况下,一侧或两侧的玻璃可以更换为可移动的光学窗口;除了在光电化学研究中应用,石英电解池也广泛应用在溶剂体系研究中(如强碱)。   了解更多电化学仪器,请访问仪器信息网电化学仪器专场   了解更多新品,请访问仪器信息网新品栏目
  • 色谱行业销售:如何让客户不挂你电话?
    作为一个打了6年电话的色谱耗材销售,从开始几个月被挂次数数也数不清,到现在给客户打电话成功率达95%以上。怎么样才能让客户不挂你的电话?(就如这篇文章,我写到这里,有的朋友已经点了手机屏幕左上角关闭,帅哥mei女会选择继续看下去。)最重要的便是:在电话刚接通开始的10秒钟和你说的前三句话,决定了客户是否挂你电话。首先,想想你之前挂的一些营销电话,他们有什么共同特征?一听就知道是推销的!说了一大堆不知道说啥 ~自己说自己的,不管我在干嘛......所以第一步我们要避开这种情况。而通常这种推销电话都是电脑自动拨打的,一天打几百个,一般是电信、移动、或保险推销业务用到。我们作为耗材电话销售,打电话之前一定是要做好准备。1. 调整自己的语气、语调、音量,可以让同事帮忙听听,不求让人听起来舒服,起码不能有明显的营销味道;2. 明确自己打电话给客户的目的,是需要了解客户的什么信息(仪器情况?耗材品牌?色谱柱用量?实验情况?),当我们电话达到设定的目的后,就可以舒适的结束通话。3. 电话销售,最重要的是沟通,而沟通是需要双方的表达和倾听的。双方都能得到想要的信息,这样客户才有兴趣和你聊下去。做好以上思想准备后,第二步,知己知彼。知己:了解自家的产品线,产品特点,应用等等。当然,作为一个新的销售,首先要求的是需要大概知道,太过深入的一些问题可以让客户以qq或者邮件形式沟通。后面,工作的同时需要不断学习提高,了解产品知识,做到拿手捻来。例如大家所经常挂的推销电话(电信或者移动推销业务的),他们电话销售对自己要推销的产品是非常的了解清楚的,可以扬长避短的介绍。色谱耗材销售也是同理,对自己的产品需要非常的了解,优点、缺点都是需要知道,同时需要和客户去沟通的。知彼:对于客户的单位,我们需要了解他们是做哪个方面的,主要做哪些产品?销售哪些产品?内销还是外销?这些都是非常重要的,这是决定客户是否挂你电话一个非常重要的点。知己知彼后,你就可以有针对性的跟客户进行沟通。例如针对客户做的是中药还是西药,再根据自己的产品,沟通他们可能会出现的问题:中药柱子损耗大、碱性物质容易拖尾等等;或者他们做的产品你公司其他客户也有在做,可以类比举例;如果内销基本都是按照中国药典的标准,外销一般就是usp、ep、bp等。通过这几个方面去与客户沟通,就可以促进和客户的进一步了解。好不容易做好了这些笔记和思想准备后,要拿起电话来打了,却发现自己还是瑟瑟发抖,大脑空白。不要慌,问题不大!我们可以再设计一下开场白,也就是这前10秒我们要说什么能够马上说到客户的兴趣点,让对话继续。对于色谱耗材销售来说,没有万金油的开场白,没有一个客户是完全一样的,最多就是同类型、类似而已。所以前两部分的了解和准备就非常的必要了。它们决定了你的开场白是从哪方面开始的。如果客户是实验室使用者,那我们得从他做的实验、产品说起;客户是采购,我们得从品牌,折扣说起;客户做中药,我们从前处理,杂质,色谱柱寿命说起;客户做西药,我们从拖尾,峰型说起;客户按国标或者中国药典,我们要去了解他的标准要求;客户做仿制药,我们要从usp、ep说起;等等...我们色谱耗材电话销售需要做的就是了解客户,说出客户潜在或者目前存在的问题,和他沟通讨论。被挂电话了,就证明我们双方还需要更加深入的了解。沟通技巧不是最重要的。最重要的是要专业,真诚,在能够解决客户问题的情况下,顺便赚点钱。 至此,希望可以帮到新入行的电话销售新人。关于电话销售的沟通技巧,一两篇肯定是说不完的,未完待续。
  • 天美中国总部电话总机公告
    尊敬的客户、合作伙伴及所有相关单位、人员:  由于中国联通公司在北京市朝阳区天畅园施工,导致该园区电话线路无法接通,并告知无法预计接通时间。天美(中国)科学仪器有限公司的总机010-64010651近期也将无法正常使用。大家可通过以下几种途径与我们取得联系:1、客户服务热线400-810-7898和800-810-78902、传真:010-640602023、公司邮箱:techcomp@techcomp.cn4、您熟悉的天美员工的手机号码5、除北京总部外的其它全国13个分公司电话运转正常。6、天美公司官方微信公众号(天美中国)留言。 因此给客户、合作伙伴及相关单位工作带来不便,敬请谅解。公司总机恢复正常后,会再次公告通知。感谢您一直以来对天美公司的支持与认可。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 美国Gamry电化学参加“2017中国材料大会”
    中国材料领域的盛会 —— “中国材料大会”于2017年7月9日-11日在宁夏银川隆重举办。本次会议由中国材料研究学会发起并主办,主题是“新材料、新技术、新发展”。会议包含36个国内分会场与2个国际材料论坛,涵盖能源材料、环境材料、先进结构材料、功能材料、材料基础研究等材料领域,来自海内外各高校研究所大约5000人参加了此次交流。大会开幕式 大会开幕式由李元元院士主持并致辞,国际材联主席Soo-Wohn Lee、宁夏回族自治区副主席姚爱兴等分别致辞。 开幕式结束后,中国科学院金属研究所/清华-伯克利深圳学院成会明院士、英国剑桥大学T.W.Clyne教授、德国Matthias Scheffler教授以及美国麻省理工学院李巨教授分别带来了精彩的大会报告。能量转换与储存材料分论坛 美国Gamry电化学仪器公司是世界电化学工作站的领先制造者,从单通道到多通道电化学工作站,在全球都已得到广泛应用。从线路板的设计、元器件的选择、信号的处理,甚至到智能导线,Gamry一致都追求电化学仪器的最佳性能。 本次会议,Gamry展出了大电流、高性能的Reference3000AE,专为电池测试打造的大电流、超低阻抗测试系统Interface 5000电化学工作站,用于光电研究的IMPS/IMVS 太阳能电池测试系统,以及Gamry独有的兼容1-10MHz晶片的电化学石英晶体微天平eQCM等设备,并同与会人员在材料表征、电池测试、光催化、腐蚀等领域进行了广泛的交流。 Gamry工作人员与参会人员交流 关于Gamry产品 Reference 3000AE电化学工作站: 21 电极最大施加电位32V仪器输入阻抗高达100TΩ优越超前的准确性、精度及速度最低电流分辨率100aA(1X10-16A)仪器噪声80dB(100kHz)(*CMRR:该值越大,表示噪声和相互干扰越小)准确测量超低阻抗(微欧级) 半电池阻抗测试电池阴阳极同步阻抗测试单电池与电池堆同步阻抗测量 Interface 5000电化学工作站: 专为电池研究打造高达5A的大电流设计超低阻抗测量,低至微欧同步跟踪阴阳极电压及阻抗 IMPS/IMVS 太阳能电池测试系统 专为电池研究打造高达5A的大电流设计超低阻抗测量,低至微欧同步跟踪阴阳极电压及阻抗 IMPS/IMVS 太阳能电池测试系统 为太阳能电池研究量身定制的有力工具IMPS/IMVS测试兼容各种LED光源准确测量超低光电流光学屏蔽箱,既可以作为法拉第笼屏蔽周围电磁干扰,又可以消除环境光线的干扰。 Reference 600+电化学工作站: 无需添加任何硬件,准确测量超低电流!测量频率范围10μHz-5MHz准确测量高达1TΩ的电化学体系阻抗 eQCM 10M电化学石英晶体微天平: 兼容1-10MHz的晶体可以检测出 ng/cm2级的质量变化检测膜的刚性温控电解池阻尼特别高的粘稠溶液体系也可以测试 了解更多产品信息,请登录Gamry官网-产品中心 美国Gamry电化学刚瑞(上海)商务信息咨询有限公司地址:上海市杨浦区逸仙路25号同济晶度310室 200437电话: 021-65686006微信公众号:Gamry电化学
  • “哈希电化学 新品给力推”活动正式启动
    拥有实验室台式、便携式和在线测量等种类齐全的哈希电化学家族,2011年春季再推新品。首创的荧光法测定溶解氧技术(LDO)的HQd系列台式测定仪,携手便携式和台式sensION+系列pH套装,打造哈希电化学新品推荐月。 3月18日至4月30日,登录“哈希电化学 新品给力推”活动网站http://echem.hach.com.cn,点击“给力推呀“,将哈希电化学新品推荐给您的业内朋友,注册、推荐累计积分,赢取最给力推荐奖、占得先机奖和最给力传播奖。iPad, iPod nano等你来拿!
  • 兰贝石公司春节放假安排,值班电话4006008767
    北京兰贝石公司春节放假安排如下: 1. 2月1日-2月8日集中放年假 2. 2月9日-2月17日春节放假 3. 2月18日正常上班 4. 放假期间业务咨询及售后服务请拨打电话400-600-8767 或 13436881966
  • 人和科仪新增400售后服务电话
    上海人和科学仪器有限公司新增售后服务电话:400-888-0117。如您购买了我司的产品发现有产品技术或其它方面的疑问可拨打此售后服务热线,我们的专业技术人员将热忱在电话中为您排除故障,并将在两小时后电话回访您,且在三个工作日后再次回访,以保证产品的优质服务。 上海人和科学仪器有限公司 市场部 2008-1-30
  • 本网服务电话分机号升位通知
    各位网友及客户:您好! 本网程控电话交换机系统今日全面升级, 升级后各人分机号码全部升位, 请您在联系本网工作人员时, 在原分机号码前加拨“80”。例如: 原分机号为“15”,现在变为“8015”;原分机号为“16”,现在变为“8016”。以此类推。 本网服务热线总机: 010-51654077, 82051182,82053462,82053463 对由此给您带来的不便,表示歉意! 仪器信息网客服部
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 快速检测三聚氰胺新招:电化学法
    西北工业大学副教授赵廷凯和该校教授李铁虎等人对采用电化学方法简单快速检测三聚氰胺进行了深入研究,为三聚氰胺的快速准确检测提供了新思路。研究成果近日发表于国际期刊《电化学会志》。   赵廷凯向《中国科学报》记者介绍说,目前三聚氰胺的检测主要采用色谱法、质谱法和荧光法。这些方法在一定条件下可以检测三聚氰胺,但存在灵敏度低、前期处理复杂、耗时长等问题。而电化学方法具有简单快速、灵敏度高、准确等特点。同时,使用碳纳米管与壳聚糖纳米复合材料作为电极材料来检测三聚氰胺,具有实际应用前景。   据悉,近年来,李铁虎团队对碳纳米管及复合材料的制备工艺进行了系统研究,为其进一步在电化学、生物医药、航空航天领域的实际应用打下了基础。   研究人员结合碳纳米管的巨大比表面积和壳聚糖的高溶解性及吸附活性,制备出了碳纳米管与壳聚糖的纳米复合材料。用涂覆在玻碳电极上的该纳米复合材料检测三聚氰胺,检测极限达到3×10-9摩尔/升,比目前使用的传统检测方法提高了近一个数量级。同时,该方法简单环保,无需前期处理且速度快,检测仅需2分钟,为在乳制品或食品中三聚氰胺的简单快速检测提供了试验依据。   事实上,赵廷凯等人在最近的实验中已得到接近10-10摩尔/升的三聚氰胺检测极限。赵廷凯表示,利用该研究制备出的碳纳米管复合材料作为涂层,在普通电化学测试仪器上即可进行三聚氰胺检测,检测成本低。
  • 第十八次全国电化学大会召开 董绍俊获成就奖
    p   8月7日-10日,由中国化学会电化学委员会主办,哈尔滨工业大学承办、黑龙江大学协办的第十八次全国电化学大会在哈尔滨工业大学召开。副校长韩杰才出席大会。 /p p style=" text-align: center " img style=" width: 550px height: 364px " title=" 01.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/a31fe64d-bf14-4261-9e24-e1ea6d211a16.jpg" width=" 550" height=" 364" / /p p   本次大会以“支撑未来能源发展的电化学”为主题,旨在围绕电化学科学和技术发展中的基础、应用和前沿问题开展广泛的学术交流和研讨,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,加强科研合作和技术转化,推动中国电化学学科的发展,促进电化学在新材料、新能源、环境、生命等领域的应用。 /p p style=" text-align: center " img style=" width: 550px height: 187px " title=" 02.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/7f10471a-394a-43d3-97eb-f63e20b57e3d.jpg" width=" 550" height=" 187" / /p p   作为国内电化学界规模最大、涉及领域最广、学术水平最高的学术盛会,此次会议共有来自全国高等院校、科研院所、企事业单位共计110余家机构的近2000名代表出席。会议还邀请了日本、法国、美国、英国等7个国家和地区的大学及研究机构的专家参会。 /p p   本次大会得到全国电化学同仁的积极响应,共收到会议论文1796篇。大会设立了基础电化学,化学电源(含锂离子电池、燃料电池、下一代储能电池、超级电容器与其它化学电源),有机、环境与工业电化学,纳米与材料电化学,光电化学与新型太阳能电池,电分析与生物电化学等12个分会开展了交流讨论。大会共安排6个大会报告、57个主题报告、102个邀请报告、150个口头报告、282个青年报告、1198个墙报。这些论文反映了我国在电化学和相关领域取得的进展和成果,体现了我国电化学学科近年来的科学技术水平。 /p p style=" text-align: center " img style=" width: 550px height: 399px " title=" 03.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/da7a0626-2c36-4993-80f4-d0f07c02e1cf.jpg" width=" 550" height=" 399" / /p p style=" text-align: center " strong 董绍俊院士获第二届中国电化学成就奖 /strong /p p   本次大会颁发了中国电化学成就奖、中国电化学贡献奖、中国电化学青年奖、《电化学》期刊优秀论文奖、第十八次全国电化学大会组织奖、电化学企业赞助奖及中聚奖学金。会议共评出40篇优秀论文奖,其中优秀口头报告奖20名,优秀墙报奖20名。与会嘉宾和领导为获奖人员颁奖。 /p p style=" text-align: center " img style=" width: 550px height: 333px " title=" 20158141767442.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201508/noimg/e20eb076-ed84-4aac-88b1-647e4492bc1e.jpg" width=" 550" height=" 333" / /p p   为满足广大青年学者和学生的需求,本次大会继续举办了电化学技术专题讲座,聘请4位在电化学理论、方法和材料结构解析方面有较深造诣的专家授课,共有近300人参加了培训。会议期间还举办了3天国际电化学相关设备展览以及技术发布会。 /p p   据悉,第十九次全国电化学大会将于2017年落户上海,由上海电力学院和复旦大学共同承办。 /p
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 大连大特气体400电话售后服务现已开通
    尊敬的客户朋友们:您们好!为进一步提高我司售后服务质量,更好的服务于各位客户及朋友们,大连大特气体售后服务全面升级,正式开通400售后服务电话,号码为:400-811-8107,您可通过固定电话及手机拨打。电话接听时间:北京时间周一至周五8:00-17:00,法定节假日除外。 大特气体的售后服务团队全部由资深技术专家组成,继2020年荣获五星级售后服务认证后再次扩大团队阵容。我们将全天候在线支持您关于我司产品使用过程中的任何问题,并同步实现线上技术指导,第一时间组织协调支持。我们始终把提高产品质量、优化客户服务、完善专业技术放在企业发展的最重要位置。希望此举能为您带来更加便捷的沟通及更优质的服务。 感谢您们一直以来对我司各项工作的大力支持与配合,我们将不断努力并竭诚为您服务!‍
  • 美国Gamry电化学参加 2016全国腐蚀电化学及测试方法学术交流会
    主题为“面向石油、天然气和海洋工程的腐蚀电化学”的2016全国腐蚀电化学及测试方法学术交流会于7月13日~7月15日在中国青岛顺利举行。本次会议由腐蚀与防护学会腐蚀电化学及测试方法专业委员会主办、中国石油大学(华东)协办,来自全国的腐蚀研究者共聚青岛,交流和展示最新成果,讨论腐蚀电化学学科的前沿和发展方向,探索如何进一步推动和拓展腐蚀电化学科学和技术在我国石油工程、天然气工程、海洋工程和水处理中的应用与发展。 美国Gamry电化学仪器公司是电化学专业仪器生产厂商。目前在中国的上海与北京有专门的技术人员与支持中心, 维修中心。 本次大会, 产品经理司国春与技术支持工程师谈天与到会的新、老客户进行了交流和互动。 针对腐蚀领域,Gamry将具有优异测试性能的Ref 600升级至Ref 600 Plus。升级后的Ref 600 Plus频率范围扩展至10μHz~5MHz,电流范围13个量程(600fA~600mA),仪器本身噪声低至μV,具有超高的阻抗测试范围和精度μΩ~TΩ(参考阻抗精度图),集恒电位计、恒电流计、ZRA为一身,可运行完整的直流技术、交流阻抗和电化学噪声测试。优异的浮地性能,轻松应用于石油、天然气管道在线监测,高温高压反应釜等领域。 Interface 1000是另一种最佳选择,包含应用腐蚀领域的各种直流、交流、噪声等测试方法,并可组成多通道,提高测试效率。Gamry多通道系统比较灵活,同型号或不同型号均可组成多通道,各个通道之间相互独立, 也可同时进行测试。 为了更好的让新、老客户了解和熟悉使用Gamry电化学工作站,Gamry计划提供系列培训方式,包括定期上海、北京培训,安装现场培训,网络在线培训以及阻抗/腐蚀专场培训(美国),各种培训详情请参考以下链接:http://cn.gamry.com/training-info.pdf 。诚挚欢迎新、老客户前来参加。
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制