当前位置: 仪器信息网 > 行业主题 > >

二苄肼

仪器信息网二苄肼专题为您提供2024年最新二苄肼价格报价、厂家品牌的相关信息, 包括二苄肼参数、型号等,不管是国产,还是进口品牌的二苄肼您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二苄肼相关的耗材配件、试剂标物,还有二苄肼相关的最新资讯、资料,以及二苄肼相关的解决方案。

二苄肼相关的资讯

  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
  • 2014诺贝尔化学奖“催熟”中国超分辨率光学显微镜市场
    1873年,德国科学家阿贝(Abbe)根据衍射理论首次推导出衍射分辨极限,即能够被光学分辨的两点间的距离总是大于波长的一半。换句话说,传统的光学显微镜分辨率有一个物理极限:它不可能突破0.2微米,这也被称之为“阿贝魔咒”。而艾力克贝齐格(Eric Betzig)、斯特凡W赫尔(Stefan W. Hell)和WE莫尔纳尔(W. E. Moerner)于2014年被授予诺贝尔化学奖,正是因为突破了这个极限。由于他们的成就,光学显微镜现在可以进入纳米世界了。相较于另一种大家熟悉的超高分辨率成像技术——电子显微镜,超分辨率光学显微镜有其独特的优势,譬如通过它可以对单个活体细胞内部的结构和生理活动进行观察,而电子显微镜是无法做到这一点的。 这三位科学家可能没有想到的是,他们的获奖也极大促进了中国超分辨率显微镜市场的发展。 通过日前在中国科学技术大学生命科学学院召开的第八届中国生命科学公共平台管理与发展研讨会显微成像技术论坛,笔者近距离接触了许多来自中国顶级科研机构的生命科学实验平台显微成像部门的一线管理及技术人员,也近距离感知了超分辨率显微技术的热度。 尽管传统的激光扫描共聚焦显微镜依然是当前细胞生物医学成像领域的主力仪器,但得益于2014年诺贝尔化学奖的结果,中国相关领域的越来越多的研究人员已开始把目光投向了更加先进的超高分辨率光学显微镜。而徕卡、尼康、蔡司等主流光学显微镜厂商也及时把握商机,纷纷加大了相关产品在华的推广力度。据笔者了解,实际上在2014年之前,基于不同超分辨率原理的商业化产品在市场上已经可以看到,只是由于价格较为昂贵,没有引起大家太多的注意。到2014年,这一市场才开始真正发力,据保守估计,去年中国市场相关产品的销售数量至少在10台以上。本次会议上不少单位对该类产品也表现出了浓厚的兴趣,纷纷流露出购买意向。 与此同时,中国的一些科研单位(譬如:浙江大学,中科院苏州医工所等)也在进行超分辨率光学成像技术的研究工作。我们期待这项技术能够帮助纳米工程、生物工程、医学、材料学等相关研究领域的科学家获得更多的发现。(主编当班) 显微成像技术论坛来自科研机构的报告嘉宾分别是:浙江大学医学院 吴航军中科院上海生化细胞所细胞分析技术平台 王艳国家蛋白质科学中心(上海) 于洋南京医科大学分析测试中心 胡凡中国科学技术大学 吴旭
  • 科学家用婴儿尿布材料突破光学显微镜分辨极限
    Edward Boyden   我们都知道,显微镜能够放大活细胞和组织,但是你想过用它观察更微小的细节么?这听起来特别像一个看过多次《爱丽丝梦游仙境》的科学家的幻想。但是,生物学家们以这个概念为基础发明来一种新的技术,利用普通的显微镜对整个大脑进行成像,展示出了精致的分子细节。   这项技术叫做expansion microscopy,使用一种通常在婴儿尿布中可以找到的材料使生物组织膨胀。剑桥麻省理工学院(MIT)的神经学工程师(neuroengineer)Edward Boyden在上个月举行的一场会议中与他MIT的同事Fei Chen 和 Paul Tillberg报告了该技术。   Expansion microscopy:超分辨率显微镜的转折   Expansion microscopy是超分辨率显微镜的一个转折。2014年,美国科学家埃里克&bull 白兹格(Eric Betzig),德国科学家斯特凡&bull W&bull 赫尔(Stefan W. Hell),美国科学家威廉姆&bull 艾斯科&bull 莫尔纳尔(William E. Moerner)因超分辨率荧光显微技术获得了诺贝尔化学奖。这两种技术都在试图绕过物理定律带来的限制。   1873年,德国物理学家Ernst Abbe推断,传统的光学显微镜不能区分距离小于200纳米的物体,这大约是可见光最短波长的一半。距离小于这个衍射极限的话,物体会变得模糊。光学显微镜的最大分辨率只能达到横向200纳米,纵向600纳米。   超高分辨显微镜通过使用荧光分子绑定蛋白,更好的定位分子的发光来源,从而克服了Abbe指出的限制。利用这种技术,科学家可以区别出距离近达20纳米的物体。不过这项技术需要昂贵的、专业的设备,但可以解决一些厚结构的研究难题,比如大脑或肿瘤。   神经科学家们一直想收集大脑更多的分子细节,比如神经突触中蛋白的位置、两个神经传递信息处的连接、甚至环绕大脑的一组神经元。   在NIH的会议中,Boyden说:&ldquo 我们一直想做的就是找出让物体变得更大的方法。&rdquo 为了实现这个目标,他的团队用了一种叫做acrylate的化合物,该物质含有两种特性:第一,它可以形成密集的网状结构将蛋白质固定住 第二,它在水存在的情况下会膨胀。   加点水,让一切变得神奇   首先,组织需要经过一组化学混合物处理,使它变得透明 然后,用荧光分子绑定特定蛋白 最后将acrylate注入组织中。就像婴儿尿布一样,加水会使acrylate聚合物膨胀。经过拉伸,荧光标记的分子之间的距离越来越远。之前因为太近无法区别的蛋白在光学显微镜中有了新的焦点。在Boyden的展示中,该技术可以解决膨胀前分子距离近达60纳米的难题。   最重要的一点是,膨胀的过程很大程度上维持了蛋白之间的相对方向和连接,保持其它细胞结构的完整。该技术使蛋白相对位置的失真程度为1-4%。Expansion microscopy与其它超高分辨技术相比表现了良好的性能。   在一项试验中,研究人员用Expansion microscopy测定膨胀的小鼠大脑神经突触两端的蛋白质之间的距离,结果与用超高分辨技术测量的数据几乎相同。   此外,Expansion microscopy在复杂组织的三维成像上表现的更好。在会议中,Boyden展示了一个半毫米厚度的小鼠大脑海马区的图像,揭示了邻近神经元之间的连接。放大图像还能看到突触结构的细节,叫做boutons,是释放神经递质的地方。Boyden的团队用Expansion microscopy还研究了果蝇和斑马鱼的大脑,目前正在用研究人类的大脑。   技术总是在不断的超越   加州理工学院的神经学家Viviana Gradinaru说,Boyden的这项技术是科学家如何通过改变生物组织绕过固有限制的好例子。2013年,Gradinaru与斯坦福大学的Karl Deisseroth领导的团队报告了一种去除脂肪,从而让小鼠完整大脑透明化的方法。这种方法让厚的组织在光学显微镜下得以成像。去年,Gradinaru的团队将这项技术运用到了其它器官和整只老鼠中。   悉尼大学显微镜专家Guy Cox说:&ldquo Expansion microscopy确实非常巧妙,但是它的实际用途有多大还不清楚。如果它要用在很关键的地方,我推测它会与超高分辨技术结合起来。它的着重点应该是分子研究,而不是整个细胞。&rdquo
  • 美德科学家因超分辨率荧光显微镜获诺贝尔化学奖
    瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为&ldquo 阿贝分辨率&rdquo 。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一&ldquo 束缚&rdquo ,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。 声明还说,黑尔于2000年开发出受激发射损耗(STED)显微镜,他用一束激光激发荧光分子发光,再用另一束激光消除掉纳米尺寸以外的所有荧光,通过两束激光交替扫描样本,呈现出突破&ldquo 阿贝分辨率&rdquo 的图像。贝齐格和莫纳通过各自的独立研究,为另一种显微镜技术&mdash &mdash 单分子显微镜的发展奠定了基础,这一方法主要是依靠开关单个荧光分子来实现更清晰的成像。2006年,贝齐格第一次应用了这种方法。因此,这两项成果同获今年诺贝尔化学奖。 今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分。
  • 830万!北京师范大学珠海校区理工实验平台二合一超高分辨鉴定质谱系统采购项目
    项目编号:BMCC-ZC22-0663项目名称:北京师范大学珠海校区理工实验平台二合一超高分辨鉴定质谱系统采购项目预算金额:830.0000000 万元(人民币)采购需求:包号名称简要技术需求预算(万元)数量是否接受进口01北京师范大学珠海校区理工实验平台二合一超高分辨鉴定质谱系统采购项目质谱配置软件具备实时监控并反馈喷雾稳定性功能…8301套是合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目( 不接受 )联合体投标。0663-北京师范大学珠海校区理工实验平台二合一超高分辨鉴定质谱系统采购项目-公告-11.14.docx
  • 530万!浙江大学医学院附属第二医院快速超高分辨率激光共聚焦显微镜项目
    项目编号:0625-22215621-5 项目名称:浙江大学医学院附属第二医院快速超高分辨率激光共聚焦显微镜项目 预算金额(元):5300000 最高限价(元):/ 采购需求: 标项名称: 快速超高分辨率激光共聚焦显微镜 数量: 1 预算金额(元): 5300000 简要规格描述或项目基本概况介绍、用途:该设备用于获取清晰的高质量的以及超高分辨率的共聚焦荧光图像,可用于观测固定细胞,活细胞,动植物组织的深层结构, 得到清晰锐利的多层Z平面结构 (光学切片) 备注:允许进口 合同履约期限:标项 1,到货时间:合同签订后30个工作日内 本项目(是)接受联合体投标。二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无
  • 240万!复旦大学高分辨率晶体衍射仪采购项目(二次招标)
    项目编号:0705-2240 02028108项目名称:复旦大学高分辨率晶体衍射仪采购预算金额:240.0000000 万元(人民币)最高限价(如有):235.2000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高分辨率晶体衍射仪1套最大输出功率:3kW或更优;最大管流达到或优于:60mA,1mA/步,机柜同步数字显示。预算金额:人民币240万元。最高限价:人民币235.2万元。合同履行期限:签订合同后8个月内。 合同履行期限:合同履行期限:签订合同后8个月内。本项目( 不接受 )联合体投标。
  • 655万!超高分辨四极杆静电场轨道阱液相质谱仪采购项目(二次招标))
    项目编号:SHXM-00-20220602-1030项目名称:超高分辨四极杆静电场轨道阱液相质谱仪预算编号: 0021-W09520 预算金额(元): 6550000(/)最高限价(元): 6550000 采购需求: 包名称:超高分辨四极杆静电场轨道阱液相质谱仪 数量:1 预算金额(元):6550000 简要规格描述或项目基本概况介绍、用途: 详见招标文件合同履约期限: 合同签订后90天内完成交付、安装、调试,并通过采购人验收。 本项目( 不允许 )接受联合体投标。
  • 天宫二号紫外临边探测专项载荷研制通过验收
    p   6月23日,天宫二号紫外临边探测专项载荷在轨指标评价评审会在北京召开,评审组一致同意紫外临边探测专项载荷通过评审。 /p p   评审组由北京大学、国家卫星气象中心、北京应用气象研究所、中科院空间总体部、西安光机所、长春光机所和大气物理所等单位专家组成。 /p p   评审组专家认为:紫外临边探测专项在国际上首次提出并实现了环形探测新模式,采用环形+前向联合探测新体制实现了多方位、多波段同时大气成份探测,两台载荷的功能和性能指标满足研制任务书要求,考核评定为成功。 /p p   天宫二号紫外临边探测专项载荷由中科院长春光学精密机械与物理研究所负责研制。该专项载荷搭载于天宫二号,于2016年9月15日发射升空。发射成功后10小时,该专项载荷加电,1小时10分钟后温控达到稳定状态。中科院大气物理所作为用户单位,在测试项目及内容覆盖了全部功能、外部、内部接口,并满足任务书要求的基础上开展了在轨指标评价工作。空间实验室在轨运行期间,该载荷对地球边缘大气层进行紫外-可见-近红外光谱临边探测,获取地球临边光谱数据。通过大气成分临边反演技术,获取大气成分如O3的垂直分布,并对大气气溶胶等信息进行反演试验性探索。 /p p   天宫二号紫外临边探测专项载荷由紫外前向光谱仪和紫外环形成像仪构成,如下图所示,二者具有强互补性。环形成像仪提供大气辐射多方位空间分布与动态的宏观结构,前向光谱仪提供某一方位的精细结构。这是国内首次采用临边观测方式进行大气探测,并且可以实现对大气密度和臭氧等大气痕量气体浓度的同时遥感。 /p center img alt=" 天宫二号紫外临边探测专项载荷研制通过验收" src=" http://images.ofweek.com/Upload/News/2017-07/10/nick/1499658005903068332.jpg" width=" 400" height=" 141" / /center p style=" TEXT-ALIGN: center"   紫外前向光谱仪和紫外环形成像仪 /p p   紫外临边探测专项的研制与空间实验室的在轨试验,为地球环境与气候预测、空间天气学应用和紫外姿态敏感单元研究等开辟了新方向,为空间大气临边成像光谱探测的业务化运行奠定基础。该专项载荷在大气痕量气体监测、大气与环境预报、空间天气等领域具有广泛的应用前景。 /p
  • 赛默飞高分辨磁质谱 环境二噁英监控中的“金标准”
    赛默飞世尔作为二噁英检测行业领导者,一直致力于帮助广大用户提升检测能力和技术水平,2019年11月13日赛默飞世尔二噁英检测技术研讨会在无锡万豪酒店隆重举行,会议邀请中国科学院生态中心郑明辉研究员,国家食品安全风险评估中心李敬光研究员,国家环境分析测试中心齐丽副研究员、许鹏军高工以及来自全国数十家检测单位的七十余名客户共同对环境和食品中的二噁英检测技术现状与发展进行了深入探讨与交流。我国环境领域二噁英排放的监管情况我国对二恶英类的污染控制比工业发达国家晚了20年左右,但是近年来追赶势头强劲。目前主要管控精力放在对废弃物焚烧的控制和与焚烧相关的工业生产排放上,对相关行业的副产物二恶英类控制还需要加强。随着城市化进程的逐步推进,垃圾分类的逐步推广,由于垃圾填埋过度占用土地,符合减量化,无害化和资源化的垃圾焚烧逐渐成为垃圾处理的主流方向,但垃圾焚烧厂的新建也有可能加重二恶英类的污染,如不能及早采取行动,我国二恶英类的环境释放将有上升的势头。目前二恶英类监测技术在环保监测方法中还是属于难度大、费用高的检测项目,近年来第三方二噁英实验室的快速发展,检测费用逐步下降,二噁英监测从业人员也有了长足进步,这对二恶英排放的整体监管十分有利。2010年,颁布关于加强二恶英污染防治的指导意见。环保监管的逐年加力都对二噁英总量管控和监测领域带来利好。目前环境样品使用高分辨磁质谱用于二噁英检测的标准1. HJ 77.1-2008 水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法2. HJ 77.2-2008 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法3. HJ 77.3-2008 固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法4. HJ 77.4-2008 土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法二噁英排放限量标准的逐步完善2018年底至2019年,陆续颁布新的环境限量标准,包括l GB 36600-2018 土壤环境质量 建设用地土壤污染风险管控标准l GB 37823-2019 制药工业大气污染物排放标准l GB 37823-2019 涂料 油墨 胶黏剂工业大气排放标准而生活垃圾焚烧逐步取代垃圾填埋,成为常规的生活垃圾处理方式。而垃圾焚烧中的二噁英含量监测,是垃圾焚烧监测中的重中之重。2019年 我国生活垃圾年产量超过四亿吨从产业角度来看,垃圾是放错位置的资源,垃圾焚烧电场项目,在建的和已经建成的有418余家,当然在这之外还有167座正在建设,共有600家。江苏,山东和浙江排在垃圾焚烧的前三地区,区域二噁英监控任重道远。不同行业二噁英排放限量标准赛默飞高分辨磁质谱 环境二噁英监控中的“金标准”目前全球的二噁英监控都可以使用高分辨磁质谱,而且是全球公认的“黄金标准”。包括美国,欧盟,日本,中国。目前全球的二噁英检测的方法赛默飞高分辨磁质谱概述及其性能特点赛默飞高分辨磁质谱源于优良的德国制造,创立于上世纪20年代的MAT工厂,场址在德国北部小城不莱梅,工厂隔壁就是全球知名的飞机制造厂商“空中客车”。采用紧凑的反向nier-johnson结构,磁场在前,电场在后,这样有利于降低加速电压,从而设计更加紧凑而低能耗的磁场和电场。目前市场占有率已经高达90%以上。1.全球最灵敏的高分辨磁质谱 20fg 2378-TCDD 信噪比 高于200:12.先进的自动进样器技术,专利的RECO马达,底部探针技术,可以实现微量体积的准确进样。3. 多变的配置,单气相,双气相和Dual DATA,可以满足不同研究方向和大通量的样品需求随着2014年欧盟GCQQQ的食品安全指导文件的推出,我国二噁英领域内的专家们也在紧锣密鼓的开展一系列二噁英标准的制定和更新工作,在环境监测领域,生态环境部计划制定串联质谱检测二噁英的标准,但此标准定位还有待讨论,与此同行,生态环境部正在修订二噁英磁质谱的金标准,新的二噁英磁质谱标准也会出台。另一方面,食品安全领域的串联质谱标准也在制定中,但由于串联质谱检测方法仍需要进一步验证来评价其可靠性,目前该方法的使用受到一定限制。下期我们将继续为大家介绍赛默飞在GCQQQ以及二噁英样品前处理领域的全流程方案,敬请期待。
  • 中科院科研装备研制项目“能量/动量二维解析的高分辨电子能量损失谱仪”顺利通过验收
    7月9日,中科院条财局组织专家对物理所承担的中科院科研装备研制项目“能量/动量二维解析的高分辨电子能量损失谱仪” 进行了现场验收。专家组听取了项目组的工作报告、财务报告和测试报告,检查设备的现场运行情况,审核相关文件档案。经讨论认为承担单位完成了实施方案规定的研制任务,实现了研制目标,一致同意通过验收。  能量/动量二维解析的高分辨电子能量损失谱仪由真空系统、六维样品低温操纵台,单色化电子束源、半球形电子能量分析器等几个部分组成,同时集成了角分辨光电子谱仪的功能。对电子能量损失谱在能量、动量的二维成像测量是世界上第一次实现,具有很强的技术创新特点。  该谱仪具备高分辨率,高效率及高采样密度的优势,是测量电子带边结构、声子和表面等离激元及其各向异性特征,以及探索表面低维体系中新原理、新性质的不可替代的重要方法,是研究材料表面电子与晶格相互作用、低维纳米结构表面等离激元衰减特性等的强大工具,用于新材料表面宏观量子现象、新奇物性机理等的探索,有望导致新物理现象与新原理的发现,推动人工设计构造低维纳米功能材料相关的基础研究。同时,该仪器的研制成功对于增强我国先进科学仪器设备的自主创新能力具有重大意义。验收会议现场验收现场考察及技术测试
  • 新到货二手仪器DFS-高分辨气相色谱质谱仪-二噁英采样与分析配备
    21年5月5日新到货二手仪器DFS-高分辨气相色谱质谱仪 +Trace 1310,双GC DFS-高分辨气相色谱质谱仪 +双GC Trace 1310,二噁英检测,兴奋剂检测必备,质谱仲裁法,NIST基础图库,这台热电磁质谱机有着拿手绝活。DFS-高分辨气相色谱质谱仪应用双聚焦扇形磁场(GC-DFS-HRMS)具有超过60000 (10%峰谷定义)的zui大分辨率,扫描质量范围为m/z2-1200,动态定量范围达106(5fg-5ng),精确质量数小于2ppm (电场扫描),主要用于常规含氯二噁英分析,是多种法规列入的二噁英定量分析“黄金法则”仪器,DFS-高分辨气相色谱质谱仪仪器还可用于定性定量分析其他环境污染物,如溴代二噁英、溴氯混合取代二噁英、多氯联苯、多溴联苯醚、多溴联苯、氯代萘等,能提供优越的分析精确度和精密度,以及极高的灵敏度。二噁英采样与分析配备赛默飞的双气相色谱DFS-高分辨气相色谱质谱仪,配备自动进样器、电子轰击离子源(EI)及化学电离源(CI)等,可进行常规含氯二噁英、含溴及溴氯混合取代非常规二噁英以及类二噁英多氯联苯的分析,主要应用于环境污染领域的研究。实验室拥有两台气相色谱双聚焦扇形磁场高分辨质谱DFS-高分辨气相色谱质谱仪(GC-HRMS, DFS和MAT95-XP),超净前处理,配备烟气采样器在内的各种环境采样设备,可进行大气、烟气、水、土壤等环境介质中的二噁英采样与分析。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(二)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期接着上期的第一部分超高分辨率显微技术在神经科学中的应用(一) ,为第二部分内容。4.荧光标记与样品制备4.1. 荧光标记神经元和脑片的超分辨率成像是用适当的荧光团标记感兴趣的生物分子,理想情况下是以定量和化学计量的方式。虽然SIM和其他超分辨方法的成像质量取决于信号背景(S/B)比,但SIM对荧光团没有特殊要求。另一方面,STED显微镜可达到的分辨率在很大程度上取决于所用荧光团的光稳定性。RESOLFT显微镜使用可逆光开关FPs,具有两个稳定状态,因此可以使用较低的激光照射强度。所有SMLM方法的定位精度取决于每个事件检测到的光子数。dSTORM需要光开关有机荧光团,包括菁、罗丹明和恶嗪染;而PALM则需要使用光开关、光转换和光激活FPs。与此相反,DNA-PAINT理论上适用于所有荧光团,因为开/关速率由对接链和成像链序列和缓冲条件决定,而其中 Cy3B和ATTO 643效果最好。、为了获得一张好的超分辨率图像,除了成像方法以外,样品制备也非常关键。使用荧光探针进行高效和特异的标记,并且使标记误差(荧光团和目标之间的距离)达到最小。为了通过荧光成像进行结构解析,标记密度(即荧光探针之间的距离)必须显著高于所需的分辨率。另一方面,特别是对于接近几乎分子分辨率的超分辨率成像方法,标记误差必须尽可能小,以达到高精度成像。对于活细胞标记而言,在合适的表达载体中融合感兴趣的蛋白质的基因编码FPs无疑成为首选。然而,FPs的亮度较低,与有机染料相比,其图像分辨率较低。理想的标记方法是使用荧光染料标记基因编码的蛋白质、肽标签或单一氨基酸。在模式生物如果蝇或秀丽隐杆线虫的应用得益于基因编码工具,通过转座子、操纵二分体Gal4/UAS表达系统或Crispr/Cas9方法引入或去除突触蛋白和荧光蛋白。由于瞬时转染的细胞表现出不同的蛋白质表达水平,蛋白质的分布和功能不一定反映野生型的情况。图5 通过单体链霉亲和素结合AP标记的突触蛋白成像结果显示Nlg1和LRRTM2的差异分布(dSTORM成像)。上排:Homer 1c GFP作为突触后室的参考。第二排:Nlg1和LRRTM2(dSTORM成像)。左下:频率分布直方图,用于显示相对于Homer 1位置中心的信号分散情况。右下:列出比较两种蛋白质的突触结构域数量的直方图。然而,通过构建优化表达,稳定表达的细胞或CRISPR基因敲入等方法可以产生从内源性到强过表达的蛋白质表达水平。根据不同的转染策略,可以采用不同的方法转染神经元。传统的磷酸钙共沉淀法和脂质体法在大多数实验室都可实施,但这两种技术的转染效率很低。而病毒转染的效率比较高,允许注射到大脑区域,但需要实验者具备病毒生产方面的专业知识,并需要考虑生物安全问题。此外,还必须考虑病毒类型、插入片段大小、毒性和差异表达等因素。要达到高转染效率,可以使用高压脉冲将核酸直接输送到细胞核,进行核转染。然而其缺点是,当这种方法应用于小鼠原代神经元时,会导致细胞存活率较低,并且实验设备昂贵,还需要根据神经元密度和物种对脉冲参数进行多次测试。另外,也可以使用细胞附着式高电阻管,在完整神经元网络(如器官型切片)中进行单细胞电穿孔。利用这种方式,结合CRISPR基因敲入获得了接近内源性的蛋白质表达水平。基于CRISPR基因敲入,在神经元发育的不同时间点通过脂质感染、核感染或病毒转染在神经元中实现。如前所述,FPs光稳定性和荧光光子输出较低,这降低了图像质量。另外,连接大小为2−5nm的FP后,蛋白质功能可能会受到影响。因此,首先必须清楚感兴趣的蛋白质在野生型的功能表现。而有机染料比FPs小得多,有更高的光子产率和光稳定性,但需要与其它能与感兴趣分子结合的分子进行连接耦合。对于固定细胞,使用一抗和二抗进行免疫染色仍然是标记内源性蛋白质的首选方法。缺点是由两个大小17.5 nm左右的IG抗体间接免疫标记有可能导致标记误差。使用直接法免疫荧光或Fab片段可以减少标记误差。另外针对GFP或转基因短肽标签的更小(1.5×2.5 nm)的骆驼“纳米抗体”已应用于dSTORM成像。此外,耦合了链霉亲和素的荧光染料可用于神经元和器官型组织中靶蛋白的特异性标记。使用这种标记方法,研究了神经氨酸酶-1ß、神经肽原-1和富含亮氨酸的重复跨膜蛋白2的动力学和纳米级结构,并揭示了跨突触粘附结构的形成(图5)。另外可以使用生物正交肽或自标记蛋白质标签,例如FlAsH tags, SNAP-tags, and Halo-tags。这些标签蛋白与目标蛋白共表达,并以共价和特异性结合其各自的荧光标记试剂或配体。对于肌动蛋白和微管的标记,可以使用小肽药物,如双环七肽-鬼笔环肽和紫杉烷类药物,如紫杉醇。膜和细胞器的标记可以通过荧光脂质和细胞器的追踪试剂来实现。此外,小肽或配体可以直接用荧光团标记,并特异性结合生物分子,例如,显示抑制性突触后位点的超结合肽。要达到最小的标记误差,可以通过单个非天然氨基酸的特定位点标记实现。通过基因编码导入设计的非天然氨基酸,并用四嗪染料进行生物正交点击化学标记。显然,神经元和组织切片必须根据要成像的结构进行透膜和固定。与所使用的标记方法无关,特别注意所用的试剂必须能保留自然细胞环境中生物分子的超微结构。通过化学试剂固定交联蛋白质,可能会影响结合亲和力,也可能削弱分子间的相互作用。在大多数情况下,多聚甲醛(PFA)和戊二醛已成功用于神经科学的超分辨率成像。此外,还引入了乙二醛等新型固定剂。膜分子应始终使用4%的PFA和0.2%戊二醛固定,以尽量减少残余流动性并避免伪影,例如抗体结合诱导的簇形成。4.2. 神经元的多色遗传标记荧光蛋白彻底改变了神经元的活细胞成像方式,因为荧光蛋白可以与感兴趣的蛋白质融合,并且在假定不影响野生型功能的前提下,用于双色和三色成像。神经系统具有非常高密度的轴突和树突相互作用结构,需要使用更多不同颜色的标记来区分不同的神经元连接。2007年,随着一种名为Brainbow的转基因方案的开发,这一问题得到了解决,该策略能够对神经元进行多色标记。结合单细胞分辨率成像技术,Brainbow技术可以用来创建大脑图谱,详细描述神经元如何形成回路,其连接体以及它们投射到何处。Brainbow利用了三原色,即可见光谱的所有颜色都可以由三种原色的不同混合物生成,即红色、绿色、蓝色(RGB)或转化为荧光蛋白,例如RFP、YFP和CFP。为了实现这一想法,应用了Cre/lox重组系统,该系统可以通过DNA切除、反转或染色体重组启动基因表达,使三个荧光蛋白基因中的一个在转基因中随机表达。转基因盒的多个拷贝的引入导致三个不同拷贝数的基因在每个细胞中组合表达,从而产生几十种颜色,使相邻神经元分化并观察其相互作用。Brainbow技术非常适合绘制不同神经元类型之间的连接模式,追踪轴突,并识别大脑中远距离的神经元连接。此外,已经证明Brainbow表达可以成功地用于研究周围神经损伤后的轴突再生,并检测大脑发育过程中的重要阶段。为了进一步改进Brainbow在包括突触蛋白在内的大脑和连接图谱中的应用,SRM的应用是显而易见的。最近通过结合Brainbow、顺序免疫染色和ExM同时研究同一脑切片上的形态、分子标记和连接,成功地证明了这一点(图6)。将这项技术应用到全脑研究一直是一个挑战,直到最近才成功应用。图6 结合Brainbow和ExM的多轮免疫染色和ExM(miriEx)成像。(A) 实验方案:在Parvalbumin cre/+ 小鼠的脑切片中,Parvalbumin蛋白阳性中间神经元通过Brainbow进行观察,并在下一轮应用4倍ExM成像。使用EYFP信号对Homer1和Gephyrin进行免疫染色来观察突触。(B) Brainbow 信号的免疫染色。(C) 分别通过突触后标记homer1和Gephyrin的免疫染色来区分抑制性和兴奋性突触。插图(D)−(F)和(G)−(I) 显示图像的更多细节图。(J)和(K)神经元的形态重建(使用ImageJ软件插件nTracer),包括其各自传入的特征。虚线框表示(B)和(C)中所示的区域。重建的神经元按顺序编号。标尺(膨胀前的):10μm(B/C)、2.5μm(I)、20μm(J/K)。4.3. 神经科学中的光电联合显微镜电子显微镜(EM)和电子断层扫描具有光学显微镜无法达到的空间分辨率,可以获得细胞和细胞器的超微结构信息。然而,EM和电子断层扫描不能标记特定的分子,因此难以识别未知的细胞结构或具有相似形态特征的结构。用胶体金标记结合抗体可以实现蛋白质的纳米级定位,但抗原的标记效率低下,这意味着胶体金颗粒的数量仅占抗原总数量的1%到20%。而另一方面,荧光显微镜虽然分辨率较低,但可以进行大视场成像和对活细胞中蛋白质进行定位。对固定样本细胞中的各种分子进行高效和特异的分子标记后,结合超分辨率荧光显微镜方法,达到的空间分辨率可以远低于衍射极限。因此,光电联合显微镜(CLEM)作为一种通用的方法,在电子显微镜提供的细胞超微结构背景下,通过超分辨率成像来可视化蛋白质的定位和相互作用。然而,将超分辨率成像与EM结合起来更为困难,因为乍一看,这主要是由于两种方法的样品制备流程不同且不兼容。例如,EM中保存超微结构所需的固定和染色会引入很强的自发荧光。而且荧光蛋白还会在固定和聚合物包埋所需的脱水和氧化条件下淬灭。此外,这两幅图像必须在纳米精度下精确叠加,首先需要使用在荧光成像和EM中都表现出极好的对比度的固定对准标记物,如裸金微球。 另外,样品脱水引起的结构变形会严重破坏两幅图像的正确叠加。所以必须在超微结构和荧光保存之间找到折衷方案。例如,已经证明,对于某些周期性分子结构,如核孔复合体,无需使用对准标记,dSTORM和EM扫描图像可以以20 nm的精度叠加。光电联合显微镜的流程是先对轴突和树突进行荧光实时成像后,再使用透射电镜观察。例如,表达GFP的脑组织在荧光成像后进行化学固定,再使用电子密度标记进行免疫标记,例如EM金。或者采用更成熟的方法,如过氧化物酶或胶体金标记。最后,可以通过光转化在荧光团处局部生成二氨基联苯胺(DAB)聚合物。为了克服标记问题并确保超微结构的保存,已经开发了用于EM (NATIVE)的纳米体辅助组织免疫染色。NATIVE能够高效标记蛋白质,无需苛刻的渗透步骤、特殊树脂、锇替代物或透明化试剂。随着方法的改进和技术的发展,光电联合显微镜已被证明是研究不同种类突触和定位突触蛋白的理想选择。5.超分辨显微镜观察神经元隔室/突触以及神经元−胶质细胞相互作用下面我们将展示通过超高技术获得的有关细胞骨架组成和动力学、突触前室和突触后室对神经传递准确性至关重要的分子组装,以及形成神经元功能的星形细胞结构的调节和构建的最新数据。5.1. 细胞骨架神经元的极化性质以及树突和轴突的长度都需要结构和功能性支架来支持它们的稳定性、适应可塑性和物质运输,这些特性对神经元的存活和信号传递是必不可少的。因此,神经细胞骨架的结构在过去几十年中引起了神经科学家的注意,并在其它文献中进行了详细的回顾。20世纪70年代的电镜研究表明,神经细胞骨架由三种主要类型的神经纤维组成:大小约为20−30 nm的微管,直径为10 nm的神经纤维和5−10 nm大小的肌动蛋白丝。微管是由异二聚体在GTP依赖性组装过程中结合α和β微管蛋白单体组装而成的圆柱体,称为原丝,再由13个这样的原丝形成一个微管单元。轴突的微管成束状组织,并根据其相对于神经元胞体的位置显示不同的方向。它们的极化通过快速增长的正端和缓慢增长的负端体现。STED显微镜揭示了快速生长极依赖钙锚定在肌动蛋白皮质上。使用dSTORM对发育中的神经元进行活细胞成像证明了神经元极性和轴突具有方向一致的、平行的由TRIM46驱动的微管束,而树突微管的特征是混合极性。用Motor-PAINT方法进行纳米跟踪发现稳定和乙酰化的微管显示负端向外的方向,而动态和酪氨酸酶化的微管则显示相反的方向(图7)。例如轴突起始节中微管密集地聚集在束簇中,由于密集的重叠定位,使用SMLM方法具有挑战性。这个问题可以通过两种实验方法来解决:第一,设计更小的标记探针,如微管蛋白纳米抗体,这不需对神经元微管更详细的观察。第二,一种降低群聚密度的超分辨率方法,如ExM,可用于胞体和树突中微管亚群的可视化。神经纤维是在轴突中形成的广泛平行网络的异质聚合物,它为轴突提供稳定性并调节轴突直径和传导速度,其组成包括低、中、高分子量神经纤维、中间蛋白和外周蛋白的三联体。它们的自组装首先形成平行的异二聚体,然后半交错地结合成反平行的四聚体。最后,八个四聚体横向聚集成单位长度的神经纤维,进一步拉长并径向压缩至最终的神经纤维外观。用电镜观察到在神经纤维之间的交界面,形成3−5 nm大小的交叉桥,但对其功能及其与神经纤维的分子相互作用仍不清楚。在这里,ExM与SMLM的结合或DNA-PAINT的应用可能有助于研究密集神经纤维中的这种相互作用。神经纤维动力学已经通过光转换和光活化SRM实验进行了研究,显示了端到端蛋白合成中的退火和切断过程。肌动蛋白最初被认为与一组更集中的短肌动蛋白丝结合在一起,在轴浆中形成斑点状的膜下层。在原代神经元和脑切片中使用phalloidin Alexa Fluor 647进行STORM成像,揭示了轴突肌动蛋白的新的组成原理。这些实验揭示了轴突中存在圆周式肌动蛋白环,每190 nm固定重复间隔绕一圈,并进一步表征了轴突中具有类似尺寸的ßII血影蛋白和钠通道的周期性条带,而树突状腔室内显示出更细长的肌动蛋白组织。此外,通过STORM成像发现,并通过STED显微镜的研究得到证实,这种肌动蛋白组织模式的普遍性也存在于树突中。进一步的报告发现,尽管树突中也存在基于肌动蛋白血影蛋白的周期性膜骨架,树突中这种结构的形成倾向和发育速度低于轴突。此外,本文还显示了肌动蛋白和血影蛋白在胞体和部分树突中的二维多边形晶格结构,类似于红细胞中的膜骨架结构。此外,使用SiR-actin,可通过STED显微镜在活的原代神经元中观察到这种周期性结构。最后,最近的CLEM方法结合铂金复原电镜(PREM)和STORM研究了无顶轴突中的肌动蛋白组织,并提供了轴突编织状肌动蛋白结构与周期性肌动蛋白超微结构相关的证据(图8)。图8。原代神经元无顶轴突(unroofed axons)的CLEM成像(结合铂复型电子显微镜和STORM的光电联合成像)。用铂复型电镜(PREM)(灰色)显示的轴突辫状条带(箭头)被叠加到大鼠原代神经元的超分辨肌动蛋白环(伪彩)上,比例尺=2, 1, 0.2μm(从左到右)。中间:轴突辫状条带间距测量后显示出与周期肌动蛋白间距相似的尺寸。右图:在铂复型电镜(PREM)中记录的神经纤维厚度,未分裂(交织在一起)和分裂(分裂开)的轴突肌动蛋白辫状条带为蓝色,树突中的单个肌动蛋白神经纤维为紫色,微管为灰色参考。采用平均值和标准误显示数据。Copyright 2019 Springer Nature.ßII 血影蛋白基因敲除导致周期性肌动蛋白环结构破坏,同时细胞器的双向轴突运输受损。SMLM结果显示,与轴突相比,轴突起始节中的分子组织其特征是轴突起始节(AIS)蛋白ankyrin-G和ßIV-血影蛋白,这种基于肌动蛋白-血影蛋白的细胞骨架与远端轴突相似。此外,在AIS中存在ßIV-血影蛋白和Ankyrin G,而在远端轴突中存在ßi--血影蛋白和Ankyrin B。SMLM显示与肌动蛋白环相连的纵向头对头ßIV血影蛋白和Ankyrin的二价取向有助于建立紧凑的AIS超微结构,该超微结构甚至对针对肌动蛋白和微管的药物治疗具有抵抗力。进一步显示Ankyrin-G会聚集到亚结构域,增强神经元活性,而成为精神疾病的主要风险基因。随后的SMLM研究还阐明了αII血影蛋白与ßIV血影蛋白共同在AIS提供强健的周期性细胞骨架组织以及防止AIS装配不完全和神经变性的重要性。一份相关报告显示,αII 血影蛋白丰度随有髓鞘轴突直径的增加而增加,表明大直径轴突更容易发生神经退行性病变。在免疫标记II血影蛋白后,将其连接到一种可膨胀的聚合物,并在水中膨胀后,通过ExM研究ßII spectrin沿轴突的周期性模式。这一新方法证实了如前所述的细胞骨架内部的组织原理。不幸的是,在ExM过程中,phalloidin探针在膨胀过程中被冲掉。有两种策略解决这一问题:一方面,携带甲基丙烯酸基团的phalloidin三功能抗体被设计用于与凝胶的有效标记;另一方面,最近的一份报告使用荧光团结合抗体,类似于常规免疫染色,将荧光团靶向phalloidin探针与凝胶连接。在中枢神经系统的几种神经细胞类型和动物物种中,肌动蛋白和附属蛋白的强大超微结构组织也得到了证实。外周神经系统(PNS)中,STED显微镜也显示在梳理的神经纤维样本上有重复的细胞骨架成分。最后,SMLM揭示了肌动蛋白-血影蛋白骨架的一个重要生物学功能:它可以作为一个信号平台,通过组织跨膜信号蛋白,包括G蛋白偶联受体(GPCR)、细胞粘附分子(CAM)和受体酪氨酸激酶(RTK),在神经元中进行信号转导从而实现GPCR-和CAM介导的RTK信号。5.2. 突触前室为了确保有效的神经化学传递,突触前膨大参与突触囊泡循环、神经递质填充以及与突触前膜在活性区(特殊蛋白质密集分布的纳米隔室)的融合,以最终释放神经递质。在这里,我们关注SRM如何扩展我们对突触前功能的理解。早期只能使用EM对化学固定神经元里的小直径突触小泡进行研究,但随着SRM的出现,应用快速STED显微镜,通过免疫标记位于突触前室突触小泡上的钙传感器突触标记蛋白1(SYT1)来观察突触小泡的活动。STED显微镜进一步显示,突触小泡融合后Syt1分子似乎驻留在突触膜上,也支持胞吐后突触小泡蛋白的清除过程。此外,在突触小泡融合过程中,当暴露于细胞外空间时,靶向Synaptobevin 2 pHluorin的荧光团结合纳米体后,亚衍射追踪显示了突触小泡的异质性迁移。一种类似的方法使用vGlut1 pHluorin在原代神经元中的表达来观察单个神经元突触小泡,定位精度为27 nm,并揭示了突触小泡的多个不同释放位点。作为一项方法学的进步,为了对主动循环的小泡成像,设计了一种名为mCLING的亲脂膜探针,该探针可对突触膜进行染色,通过内吞作用和固定,可以进行免疫标记,且和SRM相结合。突触小泡的胞吐过程需要一组属于突触前细胞基质的突触前蛋白质的高度可靠的相互作用,使突触小泡接近和暂时驻留在所谓活动区的膜上,并最终释放突触小泡。黑腹果蝇易于遗传,有助于精确定位果蝇幼虫神经肌肉接头(NMJ)活动区的第一个重要蛋白质。Bruchpilot(Brp)是一种必不可少的活性区成分,是一种大的、卷曲的螺旋蛋白,对于钙通道聚集和突触囊泡定位到突触释放位点至关重要。除了通过Brp研究钙通道聚集外,STED显微镜还证明了该蛋白细长的组织结构,并揭示了与Brp相互作用的蛋白(如syd-1α、liprin和rim结合蛋白(RBP))的定位。定量dSTORM方法研究了果蝇活动区Brp丝的数量,并显示了Brp的结构组织与其功能之间的强相关性。接下来的研究通过dSTORM评估Syt1敲除后的活动区(CAZ)电生理学和细胞基质参数。这项研究表明,在果蝇NMJs 1b型突触膨胀中,Syt1基因的敲除导致更高的Brp计数和簇内Brp图谱的改变。在哺乳动物突触中,突触前支架蛋白bassoon 和 piccolo参与突触囊泡释放的调节。据报道,bassoon蛋白通过与RBP的相互作用来控制CaV2.1型钙通道的定位。此外bassoon蛋白能加速囊泡释放,因为其丢失导致小脑苔藓纤维到颗粒细胞突触中的突触囊泡数量显著减少和突触抑制。STED显微镜显示bassoon 和 piccolo蛋白是一个夹心三明治结构,两侧为piccolo蛋白,bassoon蛋白居中。STORM成像通过距离测量显示bassoon蛋白相对于突触前和突触后室中其他相关突触蛋白质的方向。囊泡胞吐过程由一组可溶性ethylmaleimide敏感因子附着受体(SNARE)蛋白质进一步协调。位于突触膜上的囊泡SNAREs (v-SNAREs) 蛋白和 t-SNARES蛋白的复杂形成导致突触囊泡成功融合。在质膜上的突触体相关蛋白25(SNAP-25)和突触融合蛋白聚集首先通过STED显微镜进行研究。这项研究表明,大约75个突触融合蛋白分子被堆积成50- 60 nm大小的纳米团簇。在之后的研究中,SMLM以更高的精度对SNAP-25和突触融合蛋白的分布进行成像。在这里,描述了Syntaxin簇内的分子密度梯度。dSTORM成像显示,未聚集的分子紧密地定位于聚集区域。最近的一项研究显示了一种以syntaxin或SNAP-25为靶点的像。研究表明,集中在突触前部位的60%的通道是可变的。此外,通过应用BAPTA钙缓冲降低了钙通道的扩散。结果表明,突触小泡和钙通道之间的纳米域偶联保证了神经传递的精确度,并可根据需要通过突触前钙通道的扩散进行精细调节。 在融合和递质释放后,内吞机制诱导循环产生新的囊泡,从而重建可释放的囊泡池并为持续的神经传递提供基础。囊泡循环的主要机制由网格蛋白介导的内吞作用组成。使用光遗传学和”闪光冷冻”电镜的研究也报道了比超快的内吞快200倍的过程。如双色iso-STED显微镜所示,通过摄取针对囊泡内膜结合位点的Syt 1抗体,将内吞位点定位到活性区外周。此外,在神经内分泌细胞中,STED显微镜也揭示了囊泡只能部分与突触前膜融合释放递质,形成一个“Ω”形状的结构,而没有完全融入膜中,因此有利于“接触后即脱离”(kiss and run)的模式。与网格蛋白介导的内吞作用相比,它会产生更快囊泡再循环率的递质释放模型。依赖于活性的大量内吞作用进一步增加了可能涉及的机制的复杂性,有人提出,根据突触类型和活动,多种内吞模式可能并行运作。本文由超高显微技术应用工程师郭连峰、黄梓彤编译
  • EAST托卡马克核聚变实验装置升级进入二期
    EAST托卡马克核聚变实验装置辅助加热系统工程开工典礼,11月29日在中科院合肥研究院等离子体所举行。中科院副院长詹文龙、国家自然科学基金委副主任何鸣鸿、核工业西南物理研究院院长刘永、合肥研究院院长王英俭等共同为工程开工剪彩。   詹文龙表示,等离子体所通过自主创新率先研制建成了世界上首个全超导托卡马克EAST装置,是我国聚变界的里程碑。但EAST建成运行仅是它整个科学计划的第一步,作为探索核聚变能源的先进实验装置,EAST肩负重要科学目标,需要对装置进行升级改造。   而EAST辅助加热系统将极大地提高EAST装置性能,使其在发展稳态高性能等离子体物理的科学研究计划中始终处于世界前沿地位,必将提升我国聚变能研究的自主创新能力和在国际上的地位。詹文龙强调,要把EAST辅助加热系统建设好,把“EAST二期”引入国际舞台,作出更多具有重大国际影响的成果和贡献。   何鸣鸿表示,国家重大科学工程是国家创新能力的一个重要基础和平台,EAST建成运行后将能够探索更多科学问题,基金委一直很重视核聚变相关的研究,希望研究所能做出更多一流工作。
  • 北京有群“嗅辨员” 鼻子辨臭能力超仪器数倍
    从透明的玻璃气瓶中,用玻璃针管缓缓抽出一管从垃圾场采集到的“臭气”,然后注入密封的袋子中,打开出气口,一边用手轻轻捏着袋体,一边将鼻子凑近仔细嗅辨。作为北京市环境卫生监测站的一名“闻臭员”,张超每天的工作就是到各大垃圾场去采集排放出来的“臭气”,带回实验室通过“闻臭”来判断垃圾场的排放是否达标。这样特殊的工作,张超一干就是11年。不过,张超可不愿意别人管他叫“闻臭员”,他们的专业名称叫做嗅辨员。像他一样具有专业资质的嗅辨员,全市共有约300名。  每天至少去3个垃圾场采样  又到了张超最怕的夏天。气温攀升到30多摄氏度之后,不少人都尽量避免高温作业,但对于张超和他的同事们来说,几乎每天都要进行的固定检测却不能因为高温而停止。  天气炎热,气体更易扩散,虽然焚烧厂的垃圾已经经过严格处理,并没有传统垃圾场扑鼻的恶臭,但空气中依然会夹杂着一些特殊气味。为了更加全面地监测,除了能够产生气味的焚烧炉,废水池以及厂区边界,也都需要进行采样。相比于在臭不可闻的垃圾堆放站收集气体,张超认为这已经算是比较好的工作环境。  采样的气瓶在带离实验室前,要提前对其进行抽真空处理。随后,嗅辨员需要亲赴垃圾场的厂界位置采集一些环境空气,取样带回实验室,对臭气浓度进行检测,以此来衡量垃圾场的排污情况是否达标。  张超说,全市目前共有50个垃圾处理设施,有19个垃圾填埋场、综合处理厂、焚烧厂和转运站,必须保证每个月都得去一次。而像是粪便消纳站和一些区的垃圾处理场,则要保证每季度去一次。这样算下来,嗅辨员每天至少要去3个垃圾处理设施,才能够保证完成任务。  采集回来的样品,当天就必须进行嗅辨,以防采集回来的气体飘散或是变质。  鼻子辨臭能力超仪器数倍  在北京市环境卫生监测站内,张超的脸上滚满了豆大的汗珠。回到实验室后,采集的气体将会被高度稀释,并放入气袋中,以便嗅辨员来嗅。  一个嗅辨小组由6名嗅辨员和一名判定师组成。一边忙着操作,张超一边解释说,每个嗅辨员会发给3个密封的袋子,3个袋子中只有1个里面打入了从垃圾场采集回来的样品空气,而其他两个袋子中则只有干净的空气。嗅辨员用鼻子闻了袋中的气体后,觉得哪个袋子中有味道,就在相应的表格中打对钩,如果觉得没有味道,则在表格中打叉,无法确定就画圆圈。最后通过公式,算出样本的臭味是否达到国家标准。只要闻着臭,就说明排放肯定不达标。之后,再由城管委来决定对垃圾场的处罚或是整改措施。  在科技如此发达的今天,为何还需要用人的鼻子来判别空气质量?张超说,科学检测仪器虽然越来越先进,但机器只能显示数值,无法分辨臭味。光数据显示还不够,如果依然有股怪味儿,对周边的居民肯定还有影响。臭味本身就是一种污染源。“人的鼻子,比仪器能够检测到的味道要多得多。比如仪器可能只能检测到十几种或是二十几种指标,但是人的鼻子却能够闻到几十种甚至上百种味道。”  数据虽然安全,但是闻起来却依然有臭味,嗅辨员既专业又接地气的检测方式,无疑给越来越多的垃圾处理设施提出了更高要求。  男不许抽烟喝酒 女必须素面朝天  一只富有经验的鼻子显然至关重要,但是想要成为一名嗅辨员,光靠鼻子灵还远远不够,必须先经过国家恶臭重点实验室的审核,并通过专门的笔试和嗅觉测试才能拿到资质,资格证每三年就需要重新考核。目前,整个北京拿到嗅辨资格审核的一共有约300名嗅辨员。  回忆起考核时的场景,张超说,每个参加考核的嗅辨员会发给5个纸条,其中两个纸条上蘸一些嗅液,闻几轮,来进行嗅觉考核。  在日常的生活中,嗅辨员还有不少额外的要求。比如不能抽烟、喝酒,避免吃辛辣刺激的食物,遇到感冒也不能进行嗅辨。在这工作的女性全部素面朝天,绝对不能化妆,指甲油不能涂,连防晒霜都不能抹,风油精、花露水都不能喷。“比如说下午要检测,中午饭肯定不能吃包子一类有味道的东西。”  硫化氢的味道特别难闻,闻起来是一股臭鸡蛋的味儿。张超说,刚开始做嗅辨员时,偶尔还会因为闻到恶臭变得头晕恶心,食欲不振。但是做的时间长了,慢慢就习惯了。“我已经做这行11年了,早习惯了。”
  • 手机摄像变全息显微镜,史上最小发光二极管问世
    新加坡—麻省理工学院研究与技术联盟的科学家开发了世界上最小的LED(发光二极管)。这种新型LED可用于构建迄今最小的全息显微镜,让现有手机上的摄像头仅通过修改硅芯片和软件即可转换为显微镜。相关研究发表在最近的《光学》杂志上。  这一突破得到了革命性神经网络算法的支持,该算法能够重建全息显微镜观察的物体,增强对细胞和细菌等微观物体的检查,而无须笨重的传统显微镜或额外的光学器件。  大多数光子芯片中的光都来自芯片外,这导致整体能源效率低下,从根本上限制了芯片的可扩展性。  团队此次开发的最小硅发射器,其光强度可与目前最先进的大面积硅发射器相媲美。新型LED在室温下表现出高空间强度(102±48毫瓦/平方厘米),并且在所有已知的硅发射器中具有最小的发射面积(0.09±0.04平方微米)。为了展示潜在的实际应用,研究人员随后将这种LED集成到一个不需要透镜或针孔的在线、厘米级全硅全息显微镜中。  他们还构建了一种新颖的、未经训练的深度神经网络架构,该架构能使全息显微镜重建图像并提高图像质量。与需要训练的传统方法不同,新的神经网络架构通过在算法中嵌入物理模型来消除训练的需要,允许研究人员在事先不了解光源光谱或光束轮廓的情况下使用新型光源。  这种微型LED和神经网络的协同组合,可用于其他计算成像,例如用于活细胞跟踪的紧凑型显微镜或活植物等生物组织的光谱成像。该研究还为光子学的重大进步铺平了道路。
  • 468万!同济大学全二维气相色谱-高分辨率质谱联用仪采购项目
    项目编号:3109-234Z20233008 (项目编号:Z20230359)项目名称:同济大学全二维气相色谱-高分辨率质谱联用仪采购项目预算金额:468.0000000 万元(人民币)最高限价(如有):468.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格1全二维气相色谱-高分辨率质谱联用仪 1套1.1峰面积重复性:1.3 孵化箱位数:12位 (详见采购需求)合同履行期限:合同签订后6个月内交货本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月20日 至 2023年02月27日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市静安区天目中路380号11楼方式:现场或邮件获取售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:中国上海四平路1239号联系方式:段老师 8621-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、朱逸元 8621-620912733.项目联系方式项目联系人:戴小军、朱逸元电话:8621-62091273
  • 超分辨显微镜研究获进展
    p style=" text-align: justify text-indent: 2em " 中国科学院上海高等研究院宏观量子中心研究员王中阳课题组和中国科学院上海光学精密机械研究所量子光学实验室研究员韩申生课题组合作,首次提出利用鬼成像方法加快超分辨率荧光光学显微镜的成像速度。新方法有望捕获细胞内以亚毫秒速度发生的生物过程。相关研究成果以Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints& nbsp 为题发表在美国光学学会刊物OPTICA上(DOI:& nbsp 10.1364 / OPTICA.6.001515),并被美国光学学会(The Optical Society, OSA)作为高影响研究工作在发表的同时同步向媒体进行宣传推广。 /p p style=" text-align: justify text-indent: 2em " 超分辨光学显微技术通过克服光的衍射极限来实现纳米级的分辨率。尽管传统超分辨显微镜可以定位细胞内单个分子,并构建超分辨图像,但在活细胞中却很难使用,因为重建图像需要成百上千帧——这个过程太慢,无法捕捉快速变化的动力学过程。为了解决这个问题,该研究团队将随机相位调制器加入到荧光显微镜中实现荧光信号的编码,并结合鬼成像技术与随机测量压缩感知方法,大幅度提高图像信息获取效率,数量级地减少重构超分辨图像所需的采样帧数。研究结果表明,在高标记密度下只需要通过单帧荧光图像的采样就可实现80nm分辨率的超分辨光学成像。 /p p style=" text-align: justify text-indent: 2em " 此外,研究的新方法还与2014年诺贝尔奖三大超分辨率技术之一的随机光学重建显微镜(STORM)相结合,将STORM的采样帧数减少了一个数量级以上。研究结果显示成像一个60nm的环,该方法只用10帧图像就可以重构图像,而传统的STORM方法需要多达4000帧图像才能达到同样的效果。该方法还实现用100帧图像分辨40nm标尺。并且研究的超分辨成像显微镜不需要高的照明强度,这有助于减少光漂白和光毒性,有利于长时间的动态生物过程和活细胞成像研究。因此这项创新技术有望在生物、医学等超分辨显微成像研究领域得到广泛的应用。 /p p style=" text-align: justify text-indent: 2em " 文章的第一作者是上海高研院博士研究生李文文。该工作受到国家重点研发计划(“数字诊疗装备研发”专项)的资助。& nbsp /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 516px " src=" https://img1.17img.cn/17img/images/201912/uepic/bdc8a826-986f-499a-b428-d54bb5a2570c.jpg" title=" 显微镜装置示意图与重构结果.jpg" alt=" 显微镜装置示意图与重构结果.jpg" width=" 600" height=" 516" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图:显微镜装置示意图与重构结果 /p
  • 苏泊尔事件别把消费者晾一边
    不能放任这种没有结果的争论,最终只会使问题不了了之,却置消费者的权益于不顾。把原委揭个底儿透,苏泊尔则会心服口服,消费者更会心明眼亮。   一边是央视报道坚定认为,苏泊尔炊具锰含量超标,称即使按新标准也不合格,有的甚至高出国家标准近4倍。一边是苏泊尔坚持确认,炊具产品经过检测符合国家相关标准,否认对人体有害。   针尖对上麦芒,双方如此振振有词的背后,恐怕不仅仅是一个产品质量问题,也不仅仅是涉及在实际中所依据的国家标准问题,更可能涉及到的是一些“模糊地带”,以致可以打一打“擦边球”。各执不同依据标准,在各自价值体系中也都成立,双方却无法对接与对话,虽然这种争论都很理直气壮,却形同“鸡对鸭讲”,对问题解决无益,反倒把消费者满腹狐疑地晾在一边。   争执的双方各自使用了所依据的概念,一个是锰含量,一个是锰析出量。中国标准的通行概念是锰含量,并对不锈钢制品的锰含量作出明确规定。按此标准,苏泊尔锰含量超标。不过,苏泊尔用的是锰析出量,称我国目前尚未制定关于锰析出量的相关标准,在发达国家也仅意大利有限定标准。单从辩驳的角度看,苏泊尔是自己挖了一个坑跳进去了。既然中国没有锰析出量的标准,那苏泊尔声称检测符合中国标准就很“扯”,没有标准你还怎么依?   从一般企业的实际操作情况看,即使自己的产品标准走在国家标准的前面,也不会只按自己的标准出牌而根本不理国家标准。通常的做法是,既标定自己的“先进标准”,又给出符合国家标准的指标。这样就一目了然了。不论是对监管者、消费者还是行业自己一方,可以各取所需,不存在不懂的障碍。   事情奇就奇在,同样的炊具,貌似先进的“锰析出量”检测合格,反倒是貌似不先进的“锰含量”超标。这在学术理论上却是不成立的。前者合格,理论上后者的检测就必然合格,是一种“包含”关系而不是“反包含”关系,否则只能说明锰析出量的标准既不先进也不严格,要低于锰含量的国家标准。   尽管如是,政府部门却不宜保持沉默。事涉国家标准,就应当把个中原委说清楚道明白。既是苏泊尔坚持用锰析出量标准,那就搞清锰析出量与锰含量之间的关系,二者有什么联系与区别,在实际中用哪个标准更重要、对消费者更关键,说明中国为什么要用锰含量,为什么没用锰析出量。不能放任这种没有结果的争论,最终只会使问题不了了之,却置消费者的权益于不顾。把原委揭个底儿透,苏泊尔则会心服口服,消费者更会心明眼亮。
  • LECO最新推出高分辨、高通量全二维GCTOFMS
    LECO公司推出复杂基质样品分离未知物体系鉴定完美解决方案——全二维气相色谱-高分辨高通量飞行时间质谱联仪(Pegasus GC-HRT 4D)   2015年LECO公司隆重推出新一代的Pegasus GC-HRT 4D气质联用分析系统。该系统是由全二维气相色谱与高速高分辨飞行时间质谱(原创专利技术)联用组成,为GCMS分析领域带来了最尖端的检测技术。   全二维气相色谱自上世纪90年代发展至今已相当成熟,受到众多分析领域应用专家的关注和认可,越来越广泛的应用到环境,食品安全、石油石化和代谢组学等领域。全二维气相色谱分离度很高,色谱分辨能力大幅提升,峰容量从一两百飞跃到上万,灵敏度也显著提高。该技术更新了传统一维气相色谱,不但实现了分析水平的突破,而且工作效率大大提高。美国力可公司(LECO)是全世界第一家推出全二维气相色谱整机方案,也是唯一提供全二维气相及质谱商业化整机的仪器供应商,一直以来引领全二维气相色谱、及全二维气相色谱与质谱联用技术的发展潮流。   2015年美国质谱年会上,力可公司重磅推出最新一代的全二维气相色谱与高分辨高通量飞行时间质谱联用系统(Pegasus GC-HRT 4D)。   图1:全二维气相色谱与高分辨高通量飞行时间质谱联用系统(Pegasus GC-HRT 4D)   该套系统的质量分析器突破了传统TOF飞行管设计的技术禁锢,采用了LECO专利的无网珊多级反射技术Folded Flight Path® (FFP® ),提供200张全扫谱图/秒的高速率数据采集,50,000的质量分辨率,及市场最高的ppb 级质量精度,各项指标高于目前市场同类产品一个数量级。真正实现了速度、分辨率、质量准确度、动态范围的核心指标上相互无妥协的高性能要求,该系列产品经过近20年的开拓,目前已成为GCTOFMS的领军品牌和顶级产品,进一步巩固了LECO在高端GCMS领域的市场地位。给广大分析研究者的工作提供了史无前例的分离鉴定能力,为分析工作者带来前所未有的信心。   图2:Pegasus GC-HRT 4D硬件系统 图3:HRT质量分析器核心部件   “该产品在市场上备受期待,用户对其出色的性能和检测结果非常满意”, LECO公司分离科学产品经理Lorne Fell说, “LECO公司在 GCxGC 上积累了多年经验,从而在该仪器新功能的研发中兼顾了成熟性与创新性,平衡了可靠性与先进性。在急需此类仪器的关键市场——代谢组学、石油、环境等,我们可以确信该仪器将让我们的客户真正的发现我的样品中究竟有什么?是什么?而不是在玩猜谜游戏。”   与该先进硬件技术相配套的软件系统为 LECO 公司拥有专利的高分辨率解卷积(HRD)的 ChromaTOF-HRT® 软件。该套软件专门为高分辨数据量身定制,可适用于NIST 标准质谱库和精确质量数谱库,可以最有效的发挥高分辨数据的优势。对未知物的准确定性,主要通过系统的以下高度集成化功能来协同实现:通过CI源产生准分子离子峰、利用两维保留时间的匹配性、同位素丰度比、解卷积后碎片离子峰的精确质量数等功能。具有低于500ppb质量准确度,超过市场上现有仪器10-100倍以上峰容量的Pegasus GC-HRT 4D是对抗最复杂样品共流出和未知体系全解析最有效的解决方案。   Pegasus GC-HRT 4D技术特点   1.两种高性能技术的整合:业内最成熟的全二维(GCxGC)系统与高达50,000分辨率的高速飞行时间质谱相结合,复杂样品分离分析的终极武器   2. 四个维度的分离/分辨优势:一维色谱分离、二维色谱分离、高质量分辨率和优异的质量准确度、业内领先的高分辨解卷积技术   3. 优异的质量精度和峰容量:ppb级的质量精度,使定性结果更可靠   4. 高速采集速率:高达200张谱图/秒,可以和GCxGC分离系统完美结合   5. 全二维(GCxGC)分离模式:可支持液氮式或免消耗型热调制器,识别和鉴定出更多低含量化合物   6. CI源作为EI源的互补:CI源下拥有同样的质量准确度和高分辨率,为未知物的定性提供全面的依据   7. 集成化的专业软件平台:专为高分辨质谱开发,可以充分发挥高分辨数据的优势,高度自动化的数据采集、硬件支持、数据分析和报告输出功能   8. 专业的GCxGC柱配置计算器:更快捷的进行柱参数配置优化,轻松开发新方法。
  • 国产首台高分辨傅里叶静电阱质谱问世
    4月18日,“质”造新未来,“谱”写新征程——安益谱高端质谱新品发布会在苏州举行。我国首台/套自主研发的高分辨傅里叶静电阱气质联用仪Anyeep Cassitrap 120K正式发布。  安益谱从2004年起开始气相色谱质谱技术的自主研发,经过十多年的技术积累与沉淀,在2018年成功推出了7700高性能双腔单四极杆气质联用仪,2021年,推出了首款气相色谱串联三重四极杆质谱仪,并在2022年完成了国产液质三重四极杆产品Anyeep TQ9100的开发工作。  此次安益谱推出的高分辨傅里叶静电阱质谱Cassitrap 120K融合了四极杆和傅里叶静电阱的优势。具有越小质量越高分辨、单谱较高动态范围、高质量精度、更高效的全谱等特点,其精确定性定量模式可以实现更高的分辨率、更准确的定量和更快的速度,并且在二硫化碳同位素结构的研究以及对18种多氯联苯的测定等应用上表现优秀。  安益谱总经理张小华介绍,“Cassitrap120K配备了用户友好的操作界面和强大的数据处理软件,提供更便捷、高效的分析体验,能够胜任各种复杂分析任务,轻松获得信息丰富的数据和结果。无论是在科学研究、环境监测、食品安全,还是在石油化工等工业生产领域,都可以确保在化合物鉴别、定量和非靶向分析中获得极高的可靠性。”  中国仪器仪表学会分析仪器分会理事长、中国计量科学研究院院长方向表示,致力于高端质谱的研发,一直是全体质谱人共同的梦想。Cassitrap 120K傅里叶变换静电阱高分辨气质联用仪的发布,不仅标志着我们在超高分辨率质谱领域取得了重大突破,更是中国高质量质谱技术迅猛发展的起点。期待这台仪器成为中国人的好质谱,成为人人能用得起的好质谱,期待中国质谱技术能够迅速占领市场,引领行业潮流。
  • 1460万!深圳医学科学院超高分辨共聚焦显微镜和快速高分辨共聚焦显微镜采购项目
    一、项目基本情况: 1.项目编号:SZCG2024001054 项目名称:深圳医学科学院超高分辨共聚焦显微镜采购项目 预算金额(单位:元):9700000.00 最高限价(如有):无 采购需求:标的名称数量单位简要技术需求(服务需求)备注深圳医学科学院超高分辨共聚焦显微镜采购项目1套详见招标文件 合同履行期限:详见招标文件用户需求书。 本项目不接受联合体投标,详见“申请人的资格要求”。2.项目编号:SZCG2024001055 项目名称:深圳医学科学院快速高分辨共聚焦显微镜采购项目 预算金额(单位:元):4900000.00 最高限价(如有):无 采购需求:标的名称数量单位简要技术需求(服务需求)备注深圳医学科学院快速高分辨共聚焦显微镜采购项目1套详见招标文件合同履行期限:详见招标文件用户需求书。 本项目不接受联合体投标,详见“申请人的资格要求”。二、获取招标文件 时间:2024年08月31日至2024年09月11日(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可于2024年08月31日至2024年09月11日13:30 期间登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的采购文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)的供应商,请先办理密钥(请点击),并前往深圳市南山区沙河西路3185号南山智谷A座(深圳交易集团总部大楼)3楼前台(咨询电话:0755-83948165、0755-83938966、4008301330)绑定深圳政府采购智慧平台用户,再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。三、对本次招标提出询问,请按以下方式联系 1.采购人信息 名称:深圳医学科学院 地址:广东省深圳市光明区新湖街道光明生命科学园A栋17层 联系方式:0755-66650028 2.政府集中采购机构 名称:深圳公共资源交易中心,具体由深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)组织实施 地址:深圳市南山区沙河西路3185号南山智谷A座(深圳交易集团总部大楼)27楼 联系方式:0755-86580001、0755-86580002 3.项目联系方式 项目联系人:龚工 电话:0755-86580002
  • 高端新品发布!国产双束电镜+超高分辨电镜闪耀2023全国电镜年会
    10月26日,2023年全国电子显微学学术年会在东莞市召开。国仪量子在会议期间重磅发布自主研制的聚焦离子束电子束双束显微镜DB500、超高分辨场发射扫描电子显微镜SEM5000X,开启了国产高端电镜发展的全新时代。发布会现场,国仪量子应用工程师详细介绍了两款全新电镜的研发历程与技术细节,并现场演示了双束电镜的测样过程,点燃了与会嘉宾对国产高端电镜的热情。与用户共创!开启国产电镜全新时代多年来,国仪量子的工程师持续深入现场,走到用户身边,挖掘其对性能、操作等多维度需求,并将这些反馈落实到产品规划中。张泽院士(右三)、陈江华教授(左四)、马德生老师(左二)与国仪量子副总裁张伟(右二)、副总裁曹峰(左三)等人合影此前,国产电镜技术一直局限在显微成像层面,难以满足更高层次的微纳表征、测量加工制造等综合性需求。国仪量子抓住用户痛点,基于深厚的技术积累与出色的产品工程化能力,研发了自主可控的聚焦离子束电子束双束显微镜DB500。这标志着国产电镜正式迈入了微纳加工的全新时代。针对有着更小观测尺度、更高分辨率观测需求的科研用户,国仪量子推出了敢为人先、极具挑战意识的,超高分辨场发射扫描电子显微镜SEM5000X。进一步夯实了国产高端电镜发展的基础。聚焦离子束电子束双束显微镜DB500优雅精“制”DB500DB500拥有自主可控的场发射电子镜筒和“承影”离子镜筒,是一款优雅全能的纳米分析和制样工具。高压隧道技术(SuperTunnel)、低像差无漏磁物镜设计,低电压高分辨率成像,保证纳米分析能力。“承影”离子镜筒采用液态镓离子源,拥有高稳定、高质量的离子束流,保证纳米加工能力。集成式的纳米机械手、气体注入器、电子物镜防污染机构,拥有24个扩展口,配置全面,自主可控,扩展性强,为您打造全能纳米分析和加工中心。离子镜筒"承影"分辨率:3 nm@30 kV探针电流:1 pA~50 nA加速电压范围:500 V~30 kV使用寿命:≥1000小时长时间稳定性:72小时不间断工作纳米机械手仓内安装方式三轴全压电驱动步进精度≤10nm最大移动速度2mm/s集成式控制方式离子束-电子束协同气体注入器单气体注入多种气源可选伸缩距离≥35 mm重复定位精度≤10 um加热温度控制精度≤0.1℃加热温度范围:室温~90℃集成式控制方式产品优势DB50001高压隧道技术和无漏磁物镜的电子镜筒,高分辨率成像,兼容磁性样品02“承影”离子镜筒,高稳定、高质量的离子束流,用于高质量纳米加工和TEM制样03样品仓内压电陶瓷驱动的机械手,集成式控制方式,操作精准到位04自主可控,扩展性强,集成化设计的离子源更换时间快,极致的售后服务,提供免费的三年质保无忧服务超高分辨场发射扫描电子显微镜SEM5000X超高分辨 挑战极限SEM5000XSEM5000X是一款超高分辨率场发射扫描电子显微镜,其分辨率达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV。高分辨物镜设计、高压隧道技术(SuperTunnel)以及镜筒工艺升级,实现了低电压分辨率的进一步提升。全新设计的样品仓,扩展接口增加至16个,快速换样仓最大支持8寸晶圆(最大直径208 mm),极大扩展应用范围。高级扫描模式和自动功能增强,带来了更强的性能和更好的体验。产品优势SEM5000X01超高分辨率成像,达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV02样品台减速和高压隧道技术组合的双减速技术,挑战极限样品拍摄场景03高精度机械优中心样品台、超稳定性的机架减震设计,可搭配整体罩壳设计,极大减弱环境对极限分辨率的影响04最大支持8寸晶圆(最大直径208 mm)的快速换样仓,满足半导体和科研应用需求本届会议期间,来自全国的近2000位显微学人齐聚一堂,以振兴电子显微学事业发展为己任,瞄准国家重大需求和国际前沿科学问题,不断为我国卡脖子难题的攻克贡献中国电子显微学者不可或缺的重要力量。国仪量子秉承”为国造仪“的初心,基于市场与用户需求,坚持自主创新与科研攻关,为国产高端科学仪器发展和国家科技自立自强不懈努力。
  • 谈“糖”色变的时代,测糖珀金埃尔默有“谱”
    01NEWS新闻背景 元气森林的“0糖”风波当现在的媒体都把含糖食品和饮料,与肥胖、龋齿、心脏病(高血压、高血脂)、糖尿病等一系列健康问题联系在一起时,谈“糖”色变也就成为必然的结局。近日,不少年轻人喜欢的饮料品牌元气森林,因旗下乳茶产品涉嫌虚假宣传一事发布致歉声明。元气森林声称没有说清楚“0蔗糖”和“0糖”的区别,引发了误解。据澎湃新闻网等媒体报道,日前该元气森林已经对产品进行了修正升级:包装从原来的“0蔗糖、低脂肪”改为“低糖、低脂肪”。02NEWS关于“糖”的几个信息食品中“0蔗糖”和“0糖”的区别在哪?市面上标的无糖饮料和食品等于“0糖”吗?无糖饮料为什么喝起来还是甜的,珀金埃尔默在此收集了一些信息。#01“0蔗糖”≠“0糖”糖类是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为“碳水化合物”。蔗糖属于二糖,只是庞大糖类家族中的一份子,除了蔗糖,还有白砂糖、玉米糖浆、麦芽糖、葡萄糖、乳糖、果糖等。元气森林乳茶中有奶,而奶中含有丰富乳糖,所以所谓的“0糖”并不是无糖,只是不含蔗糖而已。#02无糖食品≠“0糖”根据我国《预包装食品营养标签通则》的规定,食品中的糖含量少于0.5g/100g(固体)或100mL(液体),即可标注为“无糖食品”。无糖食品≠“0糖”,而是包括了不含糖或糖的总量不超过5‰的食品。#03“无糖”产品≠不甜无糖食品为了更好的口感,往往采用代糖来代替蔗糖,其甜度是白糖的几十倍甚至数百倍。代糖主要以下几类:代糖
  • 南京大学最新Nature中的变温拉曼测量
    大地繁花已似锦,白衣战士正凯旋,再来话科研—南京大学新Nature中的变温拉曼测量经过人民的不懈努力我国的疫情阻击战已经取得重大胜利,祖国大地已繁花似锦,我们可敬的白衣战士正凯旋而归。2020年的春天少了应有的热闹与繁华,多了些宁静的处与思考,而思想的火花经过时间的沉淀能够酿造出科研的精华。希望我们重新回归科研岗位的时候能够创造出更多出色的科研成果。其实在疫情期间我国的科研工作者依然做出了很多的工作,仅Quantum Design China的用户就在Science和Nature上发表了多篇重要的科研成果。今天我们要介绍的是南京大学高力波教授、奚啸翔教授等多个课题组合作在Nature上发表的新科研成果,采用质子辅助的CVD方法生长制备出了无褶皱的超平石墨烯。该方法成功解决了传统CVD制备石墨烯过程中由于石墨烯与基质材料强耦合作用而形成的褶皱,这为石墨烯在二维电子器件等领域的应用扫除了一大障碍。文章表明,在质子辅助的CVD制备方法中,质子能够渗透石墨烯,对石墨烯和衬底之间的范德瓦尔斯相互作用进行去耦合,使褶皱完全消失。该方法还可以对传统CVD制备过程中产生的褶皱进行很大程度的去除。此外,通过新方法制备的超平石墨烯材料,不仅具有优异的清洁能力,还在测量中展示了室温量子霍尔效应。研究认为,质子辅助的CVD方法不仅能制备出高质量的石墨烯,并且对制备其他种类的纳米材料具有普适性,为制备高质量的二维材料提供了一种新途径。值得一提的是,文章中对样品进行了高质量的变温Raman测量,清晰的展示了不同制备与处理条件的石墨烯G峰和2D峰随温度变化的峰位移动。揭示了石墨烯与衬底之间相互作用的强弱以及石墨烯受到的应力大小。原文图4节选,不同制备与处理条件的石墨烯变温拉曼光谱中G峰与2D峰位置随温度的变化曲线补充材料图8节选,不同条件生长的石墨烯与通过转移方法在Cu和SiO2衬底上的石墨烯变温拉曼图谱文章中高质量的变温拉曼测量是南京大学物理学院奚啸翔教授通过Montana Instruments公司生产的Cryostation® 系列高性能恒温器与普林斯顿光谱仪联合测量完成的。高质量的数据表明了基于Cryostation系列恒温器的变温拉曼具有非常优异且稳定的性能。了解文章全部精彩内容请浏览原文https://www.nature.com/articles/s41586-019-1870-3目前由Montana Instruments公司与Princeton Instruments联合开发的超精细变温显微拉曼系统——microReveal RAMAN已经正式向全球销售。该集成式系统实现了变温拉曼的优化测量,省去了自己搭建变温拉曼的繁琐过程。该系统根据不同的应用可以实现4K-350K(500K可选)大温区范围内的拉曼光谱与成像、荧光光谱与成像、吸收光谱、电学测量和光电输运测量等多种功能。 拓展阅读:microReveal RAMAN在二维材料方面的应用--之石墨烯 背景简介从某种意义上说,石墨烯是的二维积木,所有sp2杂化碳的同素异形体均可以由石墨烯来构成,例如可以将石墨烯裹成零维的富勒烯、卷成一维的纳米管、堆砌成三维的石墨。石墨烯中载流子的高迁移率与近弹道输运性质使其在高频纳米电子器件方面有广阔的应用前景[1–10]。此外,他的光学和机械性能非常适合应用于薄膜晶体管、透明导电复合材料和电、柔性光电子材料等。显微拉曼系统是对石墨烯材料进行的非破坏性表征手段中效果较好的一种。例如通过G带和2D带的特征可以用来确定石墨烯的确切层数,而D和D’带可以用来评估石墨烯的缺陷。因此Raman是对石墨烯进行优化和应用不可或缺的测量设备。与其他二维材料相比,所有碳基材料的拉曼光谱数据中都蕴含了丰富有趣的信息。在室温研究中温度的波动与晶格的震动会引起局部性质的平均以及谱线的展宽,这限制了对光谱中有用信息的获取与分析。这种情况下只有材料中存在很强的扰动或化学组分的变化才能在展宽的谱线上表现出来。相比之下,在低温下谱线非常锐利,微小的峰位移动与形状变化都很容易观察到,可以对诸如多层重叠、副产物、不规则行为、损坏、官能团信息、化学修饰等等进行准确观测[12-14]。变温拉曼是分析石墨烯的理想方法,因为它可以对样品特性进行的表征并且还可以对其温度依赖行为进行研究[15]。石墨烯的峰位移动非常微小且容易受到温度波动的影响,因此想要获得一套、完整的变温拉曼光谱通常需要等待材料达到热平衡,在普通的变温设备中每一个温度点的稳定通常需要20分钟以上。此外高数值孔径物镜景深非常小(1um),温度波动时由于试验装置的热胀冷缩效应特别容易出现跑焦或样品漂出测量位置等问题。为了解决上述问题,Montana Instruments推出了MicroReveal RAMAN。该设备采用了超低热容快速变温样品台使样品快速实现热平衡(20-30秒达到热平衡)。集成的真空环境物镜采用立控温设计确保实现超低位置温漂。该套装置可以快速实现大温度范围内的(4K-350K,500K可选)高精度拉曼测量。实验与测量进行变温拉曼测量的样品处在高性能的恒温器中,样品所处环境的控温范围4K-350K。集成加热器和温度计的低热容快速变温样品台可实现样品的快速变温。激光光源通过100X, 0.75 NA的物镜聚焦在样品上。拉曼信号由该物镜收集后经过滤波光路进入光谱仪。预准直的模块化光路装置是连接样品低温环境与光谱仪的重要组成部分,封闭的模块可以防止漏光。光路中同时耦合了白光显微镜,有助于样品的观察和定位。通过高精度纳米位移器可实现对样品特定区域的定位观察以及全温区范围内的聚焦调整。本次实验中,我们将对石墨烯的D峰、G峰和2D峰进行观测。石墨烯的G峰是一个位于1587 cm-1附近较为锐的峰[3]。该峰位对应石墨烯SP2杂化碳原子面内振动模式。D峰也就是缺陷峰,出现在1350 cm-1,对应石墨烯边缘或被缺陷活化的sp2杂化碳原子环的呼吸振动模式[3]。D峰的强度直接与样品中的缺陷数量成比例,代表了石墨烯晶格的缺陷和无序程度,该峰在石墨和高质量的石墨烯中通常比较弱或消失。2D峰位出现在2687 cm-1是D峰位的倍频峰,有时称为是D峰的“谐波”,是两个声子晶格的振动模式。与D峰不同的是,它并不需要缺陷的激活,因此2D峰在石墨烯中始终是一个很强的峰,与是否存在D峰或缺陷无关[1-11]。按照经验来说,虽然G峰与2D峰没有关联,但是我们可以根据2D峰强和G峰强的比例来识别单层的石墨烯。对于单层石墨烯,峰强比例I(2D)/I(G)约为2,而对于双层石墨烯比例约为1。这个I(2D)/I(G)比例与D峰的消失以及2D峰形状的对称通常是用来判断无缺陷石墨烯的标准。本文研究中使用的单层和双层石墨烯样品是放置在带有SiO2层的Si衬底上。本次测试使用的条件:激发光:532 nm激光,带宽优于1 MHz。光斑尺寸:0.75 NA、100X镜头,1.5 um光斑直径。光谱仪:Princeton Instruments IsoPlane 高性能光谱仪。光栅:600线, 闪耀波长 500 nm。谱宽:3800 cm-1。样品安装:单层和双层石墨烯在硅衬底上,通过导热良好的Apiezon N grease粘在样品座上。样品先降温至低温度,然后间隔20K或50K进行升温测量。样品每次到达新的温度点后进行30秒钟的热稳定。通过控温软件读出的温度可以清楚的看到,温度稳定性优于10mK。每个温度点的光谱采集时间约为20 s。图1、白光显微镜观察照射在单层石墨烯上的1.5 um直径激光光斑结果与讨论单层石墨烯单层石墨烯样品拉曼光谱与温度的依赖关系如图2所示。该石墨烯样品2D峰位随温度的移动系数为-0.034 cm-1/K,如图2a所示。图2b中峰强比例I(2D)/I(G)约为2.5,这表明样品为纯净的单层石墨烯。图2 a) 在温度从5K增加到300K时,2D峰向低波数方向移动。b) 单层石墨烯拉曼光谱的温度依赖性(5K到300K)双层石墨烯对于双层石墨烯样品,温度相关的拉曼光谱如图3所示。I(2D)/I(G) 的比值约为1.2,与双层石墨烯的预期值一致[3-13]。双层石墨烯的2D峰随温度的移动系数为-0.066 cm-1/K,温度与2D峰位的关系如图3b所示。图3 a) 双层石墨烯的温度依赖性(5K到300K)拉曼光谱;b)不同温度的归一化拉曼光谱。总结温度相关性测量在开发和表征新型材料时起着关键性作用。当材料从3维降至2维时,对相变、分子热运动、晶体结构对称性变化的表征要求对样品温度和测量环境进行更加的控制。对于光谱测量,在系统的变温测量过程中位置热漂移与温度稳定性尤为重要。本次测量中如图2和图3所示,拉曼光谱显示出了预期的I(2D)/I(G)比值,以及2D峰位在从5K升至300K时向低波数的偏移。单层石墨烯的2D峰位随温度变化系数为-0.034 cm-1/K,如图2a)所示。双层石墨烯的2D峰位随温度变化系数为-0.066 cm-1/K,如图3b)所示。这些结果与预期和先前报到的结果一致。本次实验采用全干式的光学恒温器,配备快速变温样品台、集成真空高数值孔径物镜,通过预准直的光学模块与普林斯顿的完全无像差光谱仪IsoPlane相连,形成一套高性能的变温拉曼测量系统。现在,研究人员可以直接购买Montana Instruments公司具有拉曼光谱和成像功能的高性能变温拉曼系统。MicroReveal RAMAN解决方案显著地减少了搭建变温拉曼实验装置的时间与成本。研究者可以快速获得理想的实验环境,将更多精力专注于开发和研究新材料。想要了解怎样使用MicroReveal RAMAN来提升您的科学研究,请联系我们。我们的样机应用实验室即将投入使用,可以为您试测样品。参考文献1. Geim, A. K. Novoselov, K. S. The rise of graphene. Nature Mater. 2007, 6, 183–191.2. Charlier, J. C. Eklund, P. C. Zhu, J. Ferrari, A. C. Electron and phonon properties of graphene: their relationship with carbon nanotubes. Topics Appl. Phys. 2008, 111, 673–709.3. Malard, L. M. Pimenta, M. A. Dresselhaus, G. Dresselhaus, M.S. Raman spectroscopy in graphene, Physics Reports 2009, 473, 51-87.4. Bonaccorso, F. Sun, Z. Hasan, T. Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 2010, 4, 611–622.5. Bonaccorso, F. Lombardo, A. Hasan, T. Sun, Z. Colombo, L. Ferrari, A. C. Production and processing of graphene and 2d crystals. Materials Today 2012, 15, 564–589.6. Lin, Y.M. et al. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662.7. Torrisi, F. et al. Inkjet-Printed Graphene Electronics. ACS Nano 2012, 6, 2992–3006.8. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.9. Novoselov, K. S. Geim, A. K. Morozov, S. V. Jiang, D. Zhang, Y. Dubonos, S. V. Grigorieva, I. V. Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films, Science 2004, 306, 666-669.10. Zhang, Y. Tan, Y. W. Stormer, H. L. Kim, P. Experimental Observation of the Quantum Hall Effect and Berry' s Phase in Graphene, Nature 2005, 438, 201-204.11. Bolotin, K. I. Sikes, K. J. Jiang, Z. Klima, M. Fedenberg, G. Hone, J. Kim, P. Stomer, H. L. Ultrahigh Electron Mobility in Suspended Graphene, Solid State Comunn. 2008, 146, 351-355.12. Dieing, T. Hollricher, O. Toporski, J. Editors “Confocal Raman Microscopy”, Springer Series in Optical Sciences ISBN 978-3-642- 12521-8 Springer Heidelberg Dordrecht London New York, SpringerVerlag Berlin Heidelberg 2010.13. Tian, Y. Reijnders, A. A. Osterhoudt, G. B. Valmianski, I. Ramirez, J. G. Urban, C. Zhong, R. Schneeloch, J. Gu, G. Henslee, I. Burch, K. S. Low vibration high numerical aperture automated variable temperature Raman microscope, Rev. Sci. Instr. 2016, 87, 043105.14. Ferrari, A. C. Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, 2013, 8, 235-246.15. Calizo I. Miao, F. Bao, W. Lau, C. N. Balandin, A. A. Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices, Applied Physics Letters 2007, 91, 071913.
  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 1229万!中国科学院大连化学物理研究所高分辨三维重构X射线显微镜和全二维色谱分析系统采购项目
    一、项目基本情况1.项目编号:OITC-G240270123项目名称:中国科学院大连化学物理研究所高分辨三维重构X射线显微镜采购项目预算金额:869.000000 万元(人民币)最高限价(如有):869.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品1高分辨三维重构X射线显微镜1是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求。本项目( 不接受 )联合体投标。2.项目编号:OITC-G240270127项目名称:中国科学院大连化学物理研究所全二维色谱分析系统采购项目预算金额:360.000000 万元(人民币)最高限价(如有):360.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品1全二维色谱分析系统1是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年06月11日 至 2024年06月18日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院大连化学物理研究所     地址:辽宁省大连市中山路457号        联系方式:王老师,0411-84379707      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、王琪 010-68290523            3.项目联系方式项目联系人:窦志超、王琪电 话:  010-68290523
  • 扫描电镜 | 低电压下如何获取高分辨图像
    随着纳米材料在各个工业领域的应用,推动了超高分辨率的扫描电镜的发展,但这些材料导电性不佳,因此,对低电压下仍具有高分辨率的扫描电镜提出迫切需求。 低电压扫描电镜的主要特点之一是能直接对不导电样品进行观察,同时保持高的分辨率。但是其面临的问题是束流电压降低,信号量会显著下降,同时低电压下扫描电镜像差导致分辨率降低。随着扫描电镜技术的蓬勃发展,这些问题目前都得已大大改善。 为了弥补低电压下信噪比低的问题,赛默飞Apreo 2系列电镜配备了YAG材质背散射探测器(T1)(图1)。YAG(Y3Al5O12:Ce3+)是一种具有高发光效率的闪烁体材料,用掺铈的YAG材料制成的背散射探测器,发光效率更高,亮度更高,更耐离子和电子的轰击,因此几乎不存在随使用时间的累积而导致发光效率下降的问题。Apreo 2系列电镜的T1背散射探测器置于镜筒内靠近极靴下部,这样不仅可以获取大量的信号,而且不会有误操作导致的撞毁风险。同时T1接收的是背散射电子,因此,可以大大改善导电性不佳的样品带来的荷电问题。 图1 Apreo 2 扫描电镜的T1探测器位置示意图 为了减小低电压下像差增加的问题,赛默飞Apreo 2系列电镜发展出了样品台减速模式(图2),以减小透镜色差和提高低电压图像分辨率。减速模式中引入的“着陆电压”的概念,即实际到达样品表面的电压,其计算非常简单,入射电压减去减速电压即为着陆电压。例如,电子束初始加速电压5kV,在样品台上加4kV的减速电压,在样品表面的着陆电压为1kV,采用减速模式后入射到样品上的电压是1kV,在样品内的电子束扩展范围和对样品荷电的减缓同初始加速电压为1kV的情形一致,但其电子束的亮度接近加速电压为5kV的状态。因此,采用减速模式,一方面保持了高加速电压下的亮度和足够的信噪比,以及高分辨率,同时又真正实现了样品表面荷电的有效缓解。减速模式下,还有一个优点,使电子束与样品相互作用产生的信号电子在减速电压的作用下加速,这些信号电子在被探测器探测到时能量更高,从而提高了二次电子或者背散射电子收集效率,增加了信噪比。图2 样品台减速模式工作原理示意图 在实际应用中,我们会将样品台减速模式和T1探测器联合使用,以获取高分辨图像。比如,锂电池隔膜是一种PP或者PE材质的高分子薄膜,其导电性极差,常规的电镜无法解决荷电问题,而使用T1探测器不仅可以解决荷电问题,而且搭配减速模式仪器使用还可以获取高信噪比图像(图3)。稀土氧化物Y2O3粉体是制造微波用磁性材料及军事通讯工程用的重要材料,综合导电性较差,高加速电压容易使表面积累荷电,而且会掩盖颗粒表面细节,因此,我们采用低加速电压搭配减速模式进行高分辨成像(图4)。 图3 锂电池隔膜(加速电压:500V,放大倍数:30000,探测器:T1,减速电压:1kV) 图4 Y2O3粉末颗粒(加速电压:500V,放大倍数:100000,探测器:T1)
  • 高分辨率二次离子质谱助力嫦娥五号月球样品研究取得重大进展!
    记者从国家航天局获悉,研究团队在嫦娥五号月球样品研究方面取得进展。近期,由中国地质调查局中国地质科学院地质研究所北京离子探针中心刘敦一研究员,和地质所海外高级访问学者澳大利亚科廷大学Alexander Nemchin教授领衔的国际研究团队,对嫦娥五号月球玄武岩开展了年代学、元素、同位素分析,证明月球在19.6亿年前仍存在岩浆活动,为完善月球演化历史提供了关键科学证据。相关研究论文《嫦娥五号年轻玄武岩的年代与成分》,于北京时间10月8日凌晨在线发表于国际学术期刊《Science》上。这是以嫦娥五号月球样品为研究对象发表的首篇学术成果。据了解,月球的岩浆作用在何时停止,一直是月球演化历史研究中的重大科学问题之一,此前关于月球样品的研究成果并未发现月球存在比29亿年更年轻的岩浆活动。嫦娥五号任务采样位置设计在了月表最年轻的月海玄武岩区域,通过表取和钻取两种形式采集到共1731克月球样品。全世界科学家都希望从嫦娥五号样品研究中获得更年轻的岩浆事件结果,以完善月球岩浆演化历史。研究团队用详尽的微区原位高分辨率二次离子质谱(SHRIMP)定年数据和坚实的岩石矿物地球化学数据,证明了月球直至19.6亿年前仍存在岩浆活动,使此前已知的月球地质寿命延长了约10亿年。
  • 同济大学高分辨气体稳定同位素比值质谱分析系统(第二次)中标公告
    p style=" text-align: center " strong 同济大学高分辨气体稳定同位素比值质谱分析系统(第二次)中标公告 /strong /p p   上海东松医疗科技股份有限公司受同济大学的委托,就高分辨气体稳定同位素比值质谱分析系统项目(项目编号:0811-174DSITC1874)组织采购,评标工作已经结束,中标结果如下: /p p strong 一、项目信息 /strong /p p 项目编号:0811-174DSITC1874 /p p 项目名称:高分辨气体稳定同位素比值质谱分析系统 /p p 项目联系人:林之翔、刘韵 /p p 联系方式:0086-21-63230480转8610、8606 /p p strong 二、采购单位信息 /strong /p p 采购单位名称:同济大学 /p p 采购单位地址:中国上海市四平路1239号 /p p 采购单位联系方式:江小英 021-65989234 /p p strong 三、项目用途、简要技术要求及合同履行日期: /strong /p p 详见招标文件 /p p strong 四、采购代理机构信息 /strong /p p 采购代理机构全称:上海东松医疗科技股份有限公司 /p p 采购代理机构地址:中国上海市宁波路1号申华金融大厦11楼 /p p 采购代理机构联系方式:林之翔、刘韵 0086-21-63230480转8610、8606 /p p strong 五、中标信息 /strong /p p 招标公告日期:2017年11月28日 /p p 中标日期:2017年12月19日 /p p 总中标金额: ?xml:namespace prefix=" fmt" fmt:formatnumber type=" currency" pattern=" ¥.000000#" 341.4759 /fmt:formatnumber 万元(人民币) /?xml:namespace /p p 中标供应商名称、联系地址及中标金额: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td 序号 /td td 中标供应商名称 /td td 中标供应商联系地址 /td td 中标金额(万元) /td /tr tr td 1 /td td 赛默飞世尔科技(中国)有限公司 /td td 上海市浦东新区新金桥路27号6号楼 /td td 341.475900 /td /tr /tbody /table p 评审专家名单: /p p 周苏闽、李宾、钟建华、陈燕、成鑫荣(业主代表) /p p 中标标的名称、规格型号、数量、单价、服务要求: /p p 中标标的:高分辨气体稳定同位素比值质谱分析系统 /p p 规格型号:253 Plus /p p 数量:1套 /p p 中标金额:51.5万美元 /p p strong 六、其它补充事宜 /strong /p p 中标金额按照预估免税美元汇率6.6306折算为人民币进行公示,合同金额以实际结算为准。 /p p 如对本次评审结果有异议,请在3个日历日内以书面形式向上海东松医疗科技股份有限公司(地址:上海市宁波路1号11楼,邮编:200002, 联系电话:021-63230480*8602)提出质疑。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制