当前位置: 仪器信息网 > 行业主题 > >

咪草烟

仪器信息网咪草烟专题为您提供2024年最新咪草烟价格报价、厂家品牌的相关信息, 包括咪草烟参数、型号等,不管是国产,还是进口品牌的咪草烟您都可以在这里找到。 除此之外,仪器信息网还免费为您整合咪草烟相关的耗材配件、试剂标物,还有咪草烟相关的最新资讯、资料,以及咪草烟相关的解决方案。

咪草烟相关的论坛

  • 【讨论】烟草企业员工爆出惊天秘密

    谁都知道香烟是有害的,可是大多数人只是知道烟的危害只是烟草的尼古丁,其实,真正的香烟的剧毒,藏在“过滤嘴材料”上。以下我所说的,绝对是真实的:一个在烟草生产行业的朋友,最近向我透露被他们烟草行业隐瞒了十年的秘密,力劝我戒烟,他说烟真不是人吸的。我把他的谈话整理成文告诉大家,吸烟的朋友们,为了健康,我们一起戒烟吧!我朋友说:“有些话早几年就想对你说,可一直都没机会.同时我也顾忌到许多东西.比如我本人的工资.可是看到我们的产品在害着许多不知情的人,我就于心不忍。良知一直折磨着我,今天见面,我看到你还是在吸烟,心里很难受,不把实情告诉你,是我不够朋友。我把实情透露给你,信不信由你,我还是劝你,为了你的健康,为了你的家人,为了你的幸福生活,为了我们的友情,你马上把烟戒了!”我朋友面露惧色:“你们那里会知道,国内的烟草行业为了降低生产成本,把本来的过滤嘴材料更换了,由于怕改变口味,引起消费者的不适应。目前只是把低档烟改了,也有部分企业把中高档烟也改了。以前的滤嘴填充物是木质纤维做的叫做醋酸纤维,价格比较高,但对人体无害,而且过滤效果比较好。现在的滤嘴材料竟是用聚丙稀代替的〔聚丙稀:一种塑料原料〕它本身是无毒的,但是它经过化学和物理处理后拉成了纤维丝,看上去和以前一样,但是会有很多肉眼看不到的细碎纤维丝在你吸烟时被你吸进你的肺里。要知道那些细小的纤维是没法再从你的肺泡里出来了。而且为了让消费者看不出来,我们还在纤维里加了粘和剂。因为很粘没法生产,于是又加入了稀释剂。这两种都是有挥发性质的胶体,里面含有大量的苯,芳香烃类和类似油漆里面的化合物。车间里的生产工人都有头晕,恶心,呕吐的迹象。试想人吸了会怎样?企业对此则严格保密。遇到有环评,贯标等单位来检查时,都把车间大门关死,不让人进出。只给人看老滤嘴的生产过程。滤嘴在接香烟时,由于塑料容易粘刀,不好切割,我们就在刀片上涂抹硅油(又一种致癌物)其实吸烟对人体本来就有害,可是再雪上加霜就会让身体受到更大的毒害,成为有毒香烟。消费者如果得了肺癌还以为只是吸烟太多造成的呢。劝你戒烟,仅此就是足够的理由了,希望能引起你的重视。”

  • 日本修改异恶唑草酮、甲咪唑烟酸、丁氟消草、腈苯唑等农药部分基准值(2012年)

    下記農薬について、食品中の残留基準を設定・イソキサフルトール(Isoxaflutole,异恶唑草酮,用途:除草剤)・イマザピック(Imazamethapyr,甲基咪草烟; 甲咪唑烟酸,用途:除草剤)※・エタルフルラリン(Ethalfluraline,丁氟消草,用途:除草剤)・フェンブコナゾール(Fenbuconazole,腈苯唑,用途:殺菌剤)・フロニカミド(FLONICAMID,氟啶虫酰胺,用途:殺虫剤)・ぺノキススラム(Penoxsulam,五氟磺草胺,用途:除草剤)・マンジプロパミド(Mandipropamid,双炔酰菌胺,用途:殺菌剤)※今回基準値を設定するイマザピックはイマザピックアンモニウム塩として暫定基準が設定されていたため、イマザピックアンモニウム塩として経過措置を設定しているが、各種試験はイマザピックを用いて実施されていること、海外における基準値はイマザピックの残留量を考慮して設定されていることから、今後は告示においては、イマザピックアンモニウム塩は「イマザピック」とする。・フェンブコナゾール:かき等6食品・フロニカミド:小豆等27食品・ぺノキススラム:ぶどう等5食品・マンジプロパミド:だいこん類(ラディッシュを含む。)の葉等7食品・イソキサフルトール:米(玄米をいう。)等7食品・イマザピック:豚の筋肉等17食品・エタルフルラリン:きゅうり(ガーキンを含む。)等9食品・フロニカミド:羊の筋肉等15食品・イソキサフルトール:とうもろこし等19食品・イマザピック:牛の脂肪等9食品・フェンブコナゾール:みかん等10食品・フロニカミド:クレソン等32食品・マンジプロパミド:はくさい等20食品≪施行・適用期日≫ 平成24年6月14日 ※ただし、下記の農薬等ごとに掲げる食品に係る残留基準値については、  平成24年12月14日から適用。 ◆イソキサフルトール  米、小麦、大麦、ライ麦、とうもろこし、そば、その他の穀類、  その他のスパイス、豚の肝臓、その他の陸棲哺乳類に属する動物の肝臓、  乳、鶏の卵及びその他の家きんの卵 ◆イマザピック  豚の筋肉、豚の脂肪、豚の肝臓、豚の腎臓、豚の食用部分及び乳 ◆エタルフルラリン   きゅうり、かぼちゃ、しろうり、すいか、メロン類果実、まくわうり、  その他のうり科野菜、えだまめ及びべにばなの種子

  • 关于烟草的研究

    烟草【异名】野烟(《滇南本草》),相思草、返魂烟(《食物本草会纂》),仁草、八角草、烟酒(《粤志》),金丝醺(《纲目拾遗》),贪报草、延命草(《现代实用中药》),穿墙草,土烟草(《福建民间草药》),金鸡脚下红(《湖南药物志》)。【来源】为茄科植物烟草的叶。【植物形态】烟草一年生草本,高1~2米。茎直立,粗壮,基部木质化,上部分枝,被有粘质毛。叶互生;叶片甚大,呈椭圆状披针形,长10~30厘米,宽约8~15厘米,先端渐尖,基部稍下延成翅状柄,或稍呈心耳状,多少抱茎,全缘或带微波状,上面绿色,下面淡绿色,被粘毛。圆锥花序或总状花序,顶生;花有苞和柄,柄长4~5厘米;萼绿色,长圆形,长约2厘米,裂片披针形,先端尖锐;花冠漏斗形,长约3~5厘米,喉部稍膨大,筒部粉红色,罕有白色,外面被软毛,裂片5,先端锐尖,红色;雄蕊5,花丝与花冠等长或稍短;雌蕊1,花柱长,柱头圆形,子房上位,2室,胚珠多数。蒴果卵圆形,长约15厘米,略超出宿存萼。种子细小,多数,黄褐色。花期8~10月。分布于温带、热带地区。我国各地栽植者很多。【采集】通常于7月间,俟烟叶由深绿色变为淡黄色,叶尖下垂时采收。由于叶的成熟有先后,可分数次采摘,采后先晒干或烘干,再经回潮、发酵,干燥后即成。【药材】干燥的叶呈卵形或椭圆状披针形,叶柄甚短,有翅,上面黄棕色,下面较淡,主脉宽而凸出,多脓毛,稍经湿润则带粘着性。具特异的香气,味苦辣。主产山东、安徽、福建、湖南、湖北、山西、四川及贵州等地。【化学成分】含生物碱约1~9%及芸香甙、有机酸(苹果酸、柠檬酸)、脂肪、树脂、无机质。尚含γ-谷甾醇葡萄糖甙、环本波萝烯醇。烟叶生物碱共分离出14种,其中12种的结构已确定,以烟碱、毒藜碱、去氢毒藜碱等较为主要。烟草全株都含烟碱,以叶中含量最多,约占全株含量的64%,其余,根占13%,茎18%,花5%。【药理作用】烟草中主要成分为烟碱,占总碱之93%,普通香烟中含量约1~2%。其他成分因含量很少,故无重要意义。烟碱在医疗上无用途,主要为毒理学上的意义;急性中毒时死亡之快,与氰化物相似。成人致死量约在50毫克左右,1支烟卷即含20~30毫克。但有儿童吞食烟卷数支后仍有得救者,因烟丝中的烟碱吸收较慢,因此先吸收部分即可产生剧烈呕吐,而将留下部分吐出。吸烟是一种相当普遍的习惯,嗜好者认为1支烟卷可消除疲劳与抑制,提高工作效率;实际上这只是给予吸者精神上的某种满足而巳,在客观试验中,吸烟对于脑力或体力的,特别是需要高度准确性的活动,如打靶或投篮球,只有降低成绩的作用。吸烟成习惯者对烟碱的某些急性作用能产生一定耐受性,但与吗啡、阿片等不同,戒除时并无痛苦的戒断症状。每次吸入之烟碱量,不仅与烟制品(如烟卷、雪茄、烟斗丝等)中的含量有关,而且与抽吸的深度与速度有关,如在10分钟内抽掉2/3烟卷时,大概可吸入0.2毫克烟碱,如在5分钟内抽2/3时,则可吸入2毫克。吸烟过多,可产生各种毒性反应。因其有刺激性,可致慢性咽炎以及其他呼吸道症状。支气管炎的发生率,嗜好者(每天20支以上)较不吸烟者高4~7倍。肺癌似与吸烟有关,在45岁后发生肺癌的病人中,每天吸25支以上的比不吸烟的多50倍左右。在胃肠道方面,易得消化失常、神经性胃病、溃疡病及便秘。吸烟与高血压症间的关系,尚不能确定,但一般认为易得期外收缩等心律不齐与冠状动脉病等。而闭塞血栓性脉管炎,几全部见于重量吸烟者,过量吸烟还可引起头痛、失眠等神经症状。烟碱在粘膜面极易吸收,如置2滴于小狗舌面,1~2分钟内即可中毒而死;由完整的皮肤表面,亦能吸收而致中毒。【性味】辛,温,有毒。【功用主治】行气止痛,解毒杀虫。治食滞饱胀,气结疼痛,痈疽,疔疮,疥癣,蛇、犬咬伤。

  • 【转帖】一个被烟草行业隐瞒了十年的秘密

    【转帖】一个被烟草行业隐瞒了十年的秘密

    一个被烟草行业隐瞒了十年的秘密(转自驴家网 有些话早几年就想说了,可一直都没机会.同时我也顾忌到许多东西.比如我本人的工资.可是看到我们的产品在害着许多不知情的人,尤其是经济条件不好的人我就于心不忍。良知折磨了我好久,今天我终于决定把他说出来。希望能引起大家的重视。   国内的烟草行业为了降低生产成本,把本来的[color=#DC143C]过滤嘴材料[/color]更换了,由于怕改变口味,引起消费者的不适应。目前只是把低档烟改了,也有部分企业把中高档烟也改了。以前的滤嘴填充物是木质纤维做的叫做[color=#00008B]醋酸纤维[/color],价格比较高,但对人体无害,而且过滤效果比较好。现在的滤嘴材料竟是用[color=#DC143C]聚丙稀[/color]代替的〔聚丙稀:一种塑料原料〕它本身是无毒的,但是它经过化学和物理处理后拉成了纤维丝,看上去和以前一样,但是会有很多肉眼看不到的细碎纤维丝在你吸烟时被你吸进你的肺里。要知道那些细小的纤维是没法再从你的肺泡里出来了。而且为了让消费者看不出来,我们还在纤维里加了粘和剂。因为很粘没法生产,于是又加入了稀释剂。这两种都是有挥发性质的胶体,里面含有大量的苯,芳香烃类和类似油漆里面的化合物。车间里的生产工人都有头晕,恶心,呕吐的迹象。试想人吸了会怎样?企业对此则严格保密。遇到有环评,贯标等单位来检查时,都把车间大门关死,不让人进出。只给人看老滤嘴的生产过程。滤嘴在接香烟时,由于塑料容易粘刀,不好切割,我们就在刀片上涂抹硅油(又一种致癌物)其实吸烟对人体本来就有害,可是再雪上加霜就会让身体受到更大的毒害,成为有毒香烟。消费者如果得了肺癌还以为只是吸烟太多造成的呢。我由于时间有限不能揭露更多,希望有良知的人能够帮忙转帖到各大论坛,群,社区,以引起更多人的重视。谢谢。另外我会在以后不定期的披露香烟生产中的一些毒害环节。   希望大家能帮忙把帖子顶上去,不要让更多的人受害。 [img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907031809_158516_1604910_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907031810_158517_1604910_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907031810_158518_1604910_3.jpg[/img]

  • 烟草及烟草制品转基因检测

    在中国我们的烟民有很多,像老一辈的老人百分之八十都有着不断的烟史,虽然近年来国家不断地在号召远离烟草,但是这已经成为了一种趋势一种习惯,现今在全球范围内转基因科技的广泛应用,而烟草也成为了众多转基因科技的一份子。转基因烟草就是利用转基因技术应用到烟草植物的种植中,把吞噬毒素的生物基因嫁接到了烟草植物身上,我们可以通过检测来判断是否是转基因烟草,烟草及烟草制品转基因的测定项目主要包括:1.机打片烟卷烟2.烟叶样品DNA提取方法3.样品前处理(包鲜烟叶、烤后烟叶)4.DNA提取(包括:鲜烟叶、烤后烟叶)5.DNA含量和纯度的测定(紫外区波长扫描、硝酸还原酶基因序列PCR扩增)6.转基因烟叶检测方法7共有序列引物的PCR检测(引物设计、PCR扩增体系)。这样一套完整的流程就可以为一些生产加工的烟草及烟草制品定性了。检测是一种保护手段,可以让我们看转基因产本的本质,为我们的认知选择上提供了便捷。英格尔基因实验室的专业检测团队采用PCR技术,从分子水平检测农产品、加工原料、成品中的转基因成分,为食品生产加工和流通企业、检测机构、研究院所提供全面快速、简便经济的专业基因检测服务。

  • 求助烟草及烟草制品重金属分析设备

    年后手头上要做新的项目,现来求助给各位达人,分析烟草及烟草制品重金属分析的仪器设备及样品前处理设备(要满足烟草行业检测标准),是否有做过类似的,希望多多指教。谢谢!

  • 【金秋计划】+烟草水分测试新方法-低场核磁法

    烟草材料中水分是烟草行业高度关注的指标, 它是影响卷烟加工生产、 储存运输、 感官评价的重要因素。 水分是反映烟草材料物理性质的重要参数之一, 含水率大小不仅几乎与物料所有性质密切相关( 如填充值、耐加工性、密度、弹性等物理特性及烟支燃烧特性), 而且是物料回潮、 干燥等热湿加工过程中工艺控制与调整的主要依据。因此,对物料中水分状态的研究, 是理解干燥、 回潮等热湿加工现象及烟草物性变化规律的重点。 烟草水分测试方法对比 利用传统烘箱法得到的烟草含水率,仅能表征出烟草总的含水率,无法对烟草中不同状态的水进行测定,此外,烘箱法耗时较长,一般需要2 h以上才能完成含水率的测定。 红外水分检测技术虽然普遍应用于即时水分监控上,但对物料表观性质、颜色和环境光线较敏感,其检测结果波动明显,误差范围大于6%,尤其对厚度或体积较大的物料,误差很大。 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法或卡尔费休法可以准确测定含水率,但这两种方法消耗试剂多,操作繁琐,不满足常规使用要求。 对于烟草水分测试,核磁共振作为一种实时、无损、无侵入的定量测量技术,能够从微观的角度反映农产品的含水率、水分赋存状态等指标,在食品科学研究领域受到国内外学者广泛关注,已应用到农产品的含水率、水分分布等的测定。目前,基于低场核磁共振技术在烟草水分测试的研究已逐渐开展,且建立了基于低场核磁共振技术的含水率检测方法。 烟草水分测试方法-低场核磁法基本原理: 烟草样品放入磁场中,对样品施加一定频率的射频脉冲,样品中氢质子吸收射频能量后跃迁到高能态,射频脉冲关闭后,氢质子释放吸收的射频能量回到基态。在此过程可检测信号,信号强度与氢含量相关,信号的衰减过程称为弛豫过程,弛豫的快慢氢质子所处环境相关。因此可以通过信号强度检测水分含量,通过弛豫时间研究水分的状态。 [align=center][img=,640,426]https://p7.itc.cn/images01/20230609/2c36379c876e40eb8936ca5c72005c16.png[/img][/align][align=center][img=,425,298]https://p8.itc.cn/q_70/images01/20230609/28259adbf9254c40a823b41c63bb6e4b.png[/img][/align] 应用案例:低场核磁共振技术可用于不同含湿条件下的烟丝、 梗丝、 再造烟叶烟草材料中的水分赋存特性进行研究 [align=center][img=,640,453]https://p6.itc.cn/images01/20230609/969909079edb43eebb12972165536a8f.png[/img][/align]

  • 烟草中Amadori化合物的研究

    [font=&]【序号】:1[/font][font=&]【作者】:[url=https://www.zhangqiaokeyan.com/search.html?doctypes=4_5_6_1-0_4-0_1_2_3_7_9&sertext=%E5%88%98%E9%9B%B7%E9%9B%A8&option=202]刘雷雨 [/url][/font][font=&]【题名】:[b]烟草中Amadori化合物的研究[/b][/font][font=&]【期刊】:[font=&][color=#666666]郑州烟草研究院[/color][/font][/font][font=&]【年、卷、期、起止页码】:2017[/font][font=&]【全文链接】:https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/02031190576.html[/font]

  • 20年来最成功的除草剂——苯嘧磺草胺

    20年来最成功的除草剂——苯嘧磺草胺

    上世纪60年代。当时,杜邦公司开发出了首个脲嘧啶类除草剂—除草定,正式开启了该类除草剂研发的先河。而真正掀起脲嘧啶类除草剂开发热潮的是在上世纪90年代,当时人们对于该类除草剂的作用机理有了更深入的了解,发现脲嘧啶类除草剂属于原卟啉原氧化酶(PPO)抑制剂。杜邦公司在推出除草定后,又相继推出了异草定和特草定等产品。富美实的双苯嘧草酮以及先正达的氟丙嘧草酯均属于该类除草剂。而巴斯夫于2009年推出的苯嘧磺草胺(saflufenacil)更属于该类除草剂中的佼佼者。苯嘧磺草胺能够适用于多种生产系统和非耕地,在苗后或苗前均能使用;其次,适用作物多。苯嘧磺草胺能够用于包括谷物、玉米、棉花、水稻、高粱、大豆和果树等在内的30多种作物上;再次,防除谱广。苯嘧磺草胺能够防除90余种阔叶杂草,包括一些对三嗪类、草甘膦及乙酰乳酸合成酶抑制剂存在抗性的杂草。另外,它也具有作用快、残效期长等多种特性。http://ng1.17img.cn/bbsfiles/images/2017/02/201702010042_01_1623180_3.jpg2009年,苯嘧磺草胺在南美国家尼加拉瓜、智利和阿根廷三国登记。2010年,苯嘧磺草胺与精二甲吩草胺的复配制剂Verdict在美国获得登记,用于大豆。同年,苯嘧磺草胺正式登陆中国,以70%水分散粒剂(商品名:巴佰金)的形式面世,用于柑橘园和非耕地的杂草防除,由诺普信负责在中国市场的总经销。目前,苯嘧磺草胺已在美国、加拿大、中国、尼加拉瓜、智利、阿根廷、巴西和澳大利亚等国登记。苯嘧磺草胺可替代苯氧类除草剂2,4-D和磺酰脲类除草剂与草甘膦复配,可降低防治顽固性杂草对草甘膦的使用量。2014年,苯嘧磺草胺的全球销售额达到1.4亿美元。据巴斯夫公司预测,苯嘧磺草胺可实现3亿欧元的年峰值销售额。苯嘧磺草胺目前仍处于专利保护期中,其在中国的专利为巴斯夫于2001年申请的《尿嘧啶取代的苯基氨磺酰羧酰胺》,专利号为ZL01801896.3,对苯嘧磺草胺的化合物及合成方法进行了保护,该专利将于2021年4月30日到期.

  • 请教乙羧氟草醚含量检测

    [color=#444444]乙羧氟草醚,需要检验其百分含量,请问各位大侠有具体的方法用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测?据我所知,可以用有机液(比如甲醇)溶解,然后扣除溶解峰,就是主产品含量,请问大家,这个方法可行吗?甲醇检测方法和乙羧氟草醚检测的方法(温度控制方法初温,检测温度,)相同吗?[/color]

  • 若甘草被删除食品添加剂,会对中国凉茶、蜜饯行业造成严重影响吗?

    有版友发帖卫生部拟撤38种食品添加剂,其中有一项:甘草,其作为甜味剂,主要用于蜜饯凉果、糖果饮料类。若是被删除了,中国凉茶(王老吉、和其正等)、蜜饯凉果(盐津铺子、九制陈皮等)的风味会改变很多,会对上述行业造成严重影响吗?另:按GB 2760 甘草属于甜味剂,但其也属药食同源食品,是否可以功效成分(降火)继续使用于中国凉茶中?

  • 可与有益细菌共生的转基因烟草和油菜

    很多豆科植物的根细胞能与根瘤菌共生,并由此获得更多营养,提高植株的抗病害能力。那么能不能让其他作物也与根瘤菌共生,为增产创造条件呢?在对此进行尝试时,俄罗斯科研人员通过转基因手段,让烟草、油菜与根瘤菌成功“配对”。根瘤菌在进入豆科植物的根细胞并定居下来后,能与后者协作合成为植株供氧的蛋白,并将游离的氮转变成氮素营养,因此很多豆科植物的种子不仅数量多,而且富含蛋白质。http://pic.biodiscover.com/uploads/b3e3e393c77e35a4a3f3cbd1e429b5dc/article/biodiscover_26d54f184803e74153.jpg可与有益细菌共生的转基因烟草和油菜可否利用这种方式改进其他作物的长势和收成呢?实现这一目标着实不易,因为很多植物的根细胞无法和根瘤菌自然共生。那么能否人工“配对”呢?俄罗斯科学院乌法科学中心的研究人员决定用转基因手段进行尝试。负责这项研究的小组不久前在俄学术刊物《应用生物化学和微生物学》上报告说,研究者将普遍种植的红花烟草和具有重要经济价值的甘蓝型油菜选为实验对象,截取烟草的小块叶片和油菜幼苗的茎部,并为其注入豌豆的一种基因。该基因能指导合成一种植物凝集素,它能与根瘤菌和植物根细胞同时结合,帮助根瘤菌在根细胞中安家落户。在完成上述操作后,研究小组通过培植使烟草叶片边缘和油菜的嫩茎上生成细长的不定根,并让与豌豆共生的根瘤菌和这些不定根亲密接触。实验结果显示,与完全不含特定凝集素基因的烟草和油菜相比,在转基因烟草和油菜根部聚集的根瘤菌的数量分别高出13倍和36倍,人工“配对”取得显著进展。目前研究小组正在观察“配对”后的根瘤菌和根细胞如何共同生活,分析这种共生能否改进烟草和油菜的性状。研究小组成员韦尔希尼娜认为,这种转基因研究有望为促进多种经济作物增产提供新途径。

  • 【前沿科技】科学家利用烟草花叶病毒造出病毒晶体管

    【前沿科技】科学家利用烟草花叶病毒造出病毒晶体管

    美国科学家用烟草花叶病毒制造出了开关速度非常快的“病毒晶体管”电脑病毒和手机病毒令人头痛,生物意义上的病毒却可能用来制造新型晶体管,使芯片功能更加强大。美国科学家已经用烟草花叶病毒制造出了开关速度非常快的“病毒晶体管”。晶体管的开关速度直接关系到芯片处理信息的速度。如果能将“病毒晶体管”大量集成制造成芯片,可望大大提升电子设备的性能。例如,数码相机显示一张照片原本需要若干毫秒,使用新芯片后所需时间可缩短到微秒级别。美国加州大学洛杉矶分校的科学家最近在英国《自然纳米技术》杂志上报告说,他们在长度约30纳米(1纳米为十亿分之一米)的烟草花叶病毒表面涂上纳米级的金属铂粒子,平均每个病毒表面约有16个铂粒子。然后将病毒嵌入聚合物制造的网格,将网格置于两层电极中间,形成与普通晶体管类似的“三明治”结构。对这种“病毒晶体管”施加电压后,每个铂粒子都会释放一个电子到病毒表面的蛋白质上,使晶体管切换到“开启”状态。如果电压降低到一定水平以下,电子从蛋白质跳回铂粒子,使晶体管“关闭”。在这一过程中,电荷移动的距离只有10纳米左右,所需时间仅100微秒。这一成果离制造出实用的芯片尚有很大距离。科学家说,他们正在研究怎样将多个“病毒晶体管”连接起来,希望在4年内研制出由数百万个“病毒晶体管”组成的芯片样品[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703192143_45574_1603372_3.jpg[/img]烟草花叶病毒来源:新华社

  • 【原创大赛】草酸(草酸盐)的神奇来源

    【原创大赛】草酸(草酸盐)的神奇来源

    最近在某一产品的来料的离子色谱(IC型号:Dionex DX-500) 监控中发现阴离子的总数值有不断上升的趋势,且不断逼近规格线(spec)。按相关的文件规定,一旦这些监控数据超过规格线,这些来料是不能接收。当我们将这些异常情况反馈给供应商后,供应商查找了他们出货之前同一批的IC监控数据,没有发现异常。但是我们把这些样品返回给他们,他们测试的IC结果跟我们的测试结果很类似,都偏高。这些样品出了什么问题呢?难道是这批样品在转运或者保存时被污染了?我们决定努力去找这出其中的根源。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232237_528586_2942222_3.jpg 首先,我们对原始数据进行了分析。通过分析,发现这批样品中有个未知的离子的趋势跟总离子的趋势很类似,最近的走势也是不断往上扬。所以初步判断这个未知离子的增加可能是这批产品的总阴离子不断上升的原因。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232237_528587_2942222_3.jpg 那这个未知离子是什么呢?查阅相关的文献和结合这个未知离子的保留时间,怀疑这个未知离子可能是草酸(草酸盐)。我们找来草酸钠试剂,用UDI水溶解它,配成100ug/L的草酸钠溶液。当把配好的草酸钠溶液注射到离子色谱中,发现草酸根保留时间(10.237min)跟平时样品中未知离子保留时间(10.317min)很相近。所以基本确认这个未知离子就是草酸盐。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232238_528588_2942222_3.jpg 为了进一步确认这个未知离子就是草酸盐,我们还进行了加标实验。加标实验结果得到的重复回收率是103%。这就进一步证明了这个未知离子就是草酸(草酸盐)。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232238_528589_2942222_3.jpg 那这些草酸(盐草酸)是怎么来的呢?这些样品从供应商转运到我们的工厂,整个过程是用保鲜膜密封好的。整个运转过程没有拆包过程,所以这些样品是不会跟外界有任何的接触。按常理来说,这些样品应该不会受到污染的。通过与供应商的交流,了解到这些样品是在供应商那边储存了一段时间(~3个月),才运转到我们的公司。难道是供应商的存储地方有草酸盐,渗透到样品里而污染了样品?经过供应商的再三确认,他们存储样品的仓库是绝对没有草酸盐。那草酸盐是产品在自己存储的时候,自己产生的草酸盐? 我们测试了不同存储时间的产品,得到一个令人诧异的结果:这些样品的草酸值和总阴离子的值跟存储之间有着很好的关联。在前6个月里,草酸和总阴离子的值随着存储时间的增加而增加,但过了6个月之后基本趋于稳定。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232240_528590_2942222_3.jpg 产品在存储时是已经密封的,跟它接触的可能也就是从保鲜膜外面渗透进去的空气和水分,难道空气和水分会和这些产品发生反应而产生出草酸(草酸盐)吗?从上面的数据可以知道草酸(草酸盐)产生的过程应该是非常缓慢的。那怎么去验证这个猜测呢? 我们选了两个不同存储时间的2批(#1:存储时间不到一个月,#2存储时间~3个月)样品,放到恒温恒湿烘箱中进行测试(测试条件:温度85℃,湿度85%,持续时间100小时)。我们分别用离子色谱测量这2批样品的阴离子(经过恒温恒湿测试和没有测试各测试一组)的值。最后的结果显示:经过恒温恒湿测试后,草酸跟明显增加,但是其他离子却减少了。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232242_528591_2942222_3.jpg 这说明了在恒温恒湿测试过程中,其他离子因为水汽的冲洗而不断减少;但因为整个测试过程中因为发生了某些反应而产生了草酸(草酸盐),故草酸(草酸盐)没有减少反而增加了。 产品主要是有三个部件组合而成(#1:FX;#2:LB;#3:Baseplate);那草酸(草酸盐)是由哪个部件产生的呢?通过研究和实验,我们发现草酸跟增加主要是这个部件(#3:Base Plate)。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232243_528592_2942222_3.jpg 我们知道部件(Base Plate )的成份主要是不锈钢(Fe,Cr,Ni)。所以我们对草酸(草酸盐)产生的原理做了下面的推断:草酸(草酸盐)增加是由于在部件(Base Plate )的表面发生水解反应。整个化学反应过程是因为大气中的CO2和水汽在部件(Base Plate )的Fe,Cr的催化作用下发生了化学反应,不断产生草酸并附着在部件(Base Plate )的表面。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412232243_528593_2942222_3.jpg

  • 烟草微生物限量

    烟草及烟草制品微生物限量标准要去哪里才能查得到?望老师不吝赐教

  • 【求助】烟草 Amadori化合物 烟草中含量

    本人的硕士研究方向是烟草中Amadori化合物的定性定量分析,但不知道一些特定氨基酸的Amadori化合物在烟草中的具体含量,希望大家帮忙,能提供文献最好,谢谢!

  • 氟磺胺草醚

    有做氟磺胺草醚的么?想咨询下,扩项的加标水平如果加检出限,不能做出回收怎么办?

  • 调查称烟草致死率达12%,一起测测烟草中的有毒有害物质

    无意中看见一条新闻:中国烟草致死率达12% 女烟民数量可能被低估世界卫生组织日前发布了170多个国家2004年的吸烟致死率。报告显示,2004年中国吸烟导致的死亡占所有因疾病导致死亡的12%,与全球平均数字持平。这也是世卫组织首次按国别发布相关数字。报告统计了世界170多个国家30岁以上人口中,因传染性和非传染性疾病(不含火灾等外因)导致的死亡率以及直接烟草使用(不含二手烟)致死率。其中,直接烟草使用致死率最高的是美洲和欧洲,为16%。这与这些地区使用烟草历史较长有关。   之前国内媒体报道,中国目前有3.5亿烟民,其中约3000万为女性。世界卫生组织的报告则显示,中国男性和女性的直接烟草使用致死率分别为12%和11%,----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------众所周知,烟草中重要的成分是尼古丁,尼古丁的检测也相对比较热门,不知道各位版友,有没有兴趣针对自己可取得的烟草进行测量,把结果展示给大家看看。其实不知道其它有毒有害物质是什么,希望大家给测试一下,普及一下知识,提示男同胞的同时,给女同胞也上上课,欢迎检测其它的成分,越全越好!希望发帖方式:烟草品牌:烟草产地:使用仪器:检测结果:参与有奖!

  • 烟草中Amadori化合物的研究

    [font=宋体]【序号】:[/font][font=&]1[/font][font=宋体]【作者】:[/font][font=&][font=&][size=13px]刘雷雨[/size][/font][/font][font=宋体]【题名】:[b]烟草中Amadori化合物的研究[/b][/font][font=宋体]【期刊】:[/font][font=&] 学位论文[/font][font=宋体]【年、卷、期、起止页码】:[/font][font=&]2017[/font][font=&]【全文链接】:https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/02031190576.html[/font][font=&][size=13px][color=#0066cc]刘雷雨[/color][/size][/font]

  • CNS_19.009_甘草酸盐

    CNS_19.009_甘草酸盐

    [align=center]CNS食品添加剂—甘草酸盐性质概述[/align] 杨勉疾[align=center]2021年 7 月[/align]1.甘草酸盐系列物质理化性质概述1.1 甘草酸理化性质 甘草入药史自古以来,是最为广泛的药用植物之一。其中甘草酸(CA)被认为是其提取物中最主要活性成分。甘草酸呈白色结晶性粉末,甜度约为蔗糖的200倍。显甜迟后,但留甜时间长;相对密度(d204):1.43;熔点在212-217℃左右;常压沸点972℃;闪点288℃;溶解性:难溶于冷水,易溶于热水,不溶于油脂,其热水溶液冷却后呈黏稠冻胶状。溶于丙二醇。 GA是一种单桥皂甙,其由三萜类疏水性苷元(18β甘草次酸)与亲水性二葡萄糖醛酸结合而成,GA的两亲性结构决定了其性能溶液中的物理性质。使得GA分子聚集水溶液中的表面活性化合物会导致聚集体、胶束的形成,并且在较高浓度下尤甚。其皂苷结构决定了GA许多特殊药理功能,调节其疏水分子形成水溶性复合物能力,可以用于调节其他物质化学稳定性,水溶性,生物利用度;以及在临床上应用于能性药物释放系统(DDS)。其有急性毒性:人体口经TDLo:280mg/kg/4W;小鼠口经LCLo:3gm/kg;小鼠腹经LCLo:2gm/kg;小鼠静脉LC:300mg/kg。在环境方面,甘草酸对水稍有危害,不可使未稀释或大量的产品接触地下水、水道或者污水系统。若无政府许可,不得排入周围环境。[1] 下图1.2分别为二维糖平台与三萜组成的基本结构单元透视图从两边伸出的部分;球和棍子(b)和空间填充(c)表示,显示由相互渗透的基本元素形成的通道单位(以浅灰色和深灰色显示的分子属于相邻单位)。通道约占晶体体积的42%。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081544564157_4482_1608728_3.png[/img][/align][align=center]图 1甘草酸二维结构[size=16px][2][/size][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081544567370_8_1608728_3.png[/img][/align][align=center]图 2 甘草酸三维立体结构[2][/align] 甘草酸作为一种多元酸,在碱性或离子液体内会不同程度脱质子成盐,在自然条件下,会和钾、钠离子结合存在。甘草酸盐是由甘草酸衍生的一系列盐类总称,包括甘草酸铵、甘草酸一钾及三钾、甘草甜素二钠等。1.2 甘草酸铵 甘草酸铵为白色粉末或淡黄色结晶型粉末,有强甜味,甜度约为蔗糖的200倍,溶于氨水,不溶于冰乙酸。应用于甜味剂,依照我国《食品添加剂使用卫生标准》,可按生产需要适量用于肉类罐头、调味品、糖果、饼干、蜜饯凉果、饮料等等。还可以用于进一步制备其他甘草酸盐类的中间物。 甘草酸单铵盐具激素样活性,但无激素的副作用,不仅对气管炎、支气管炎、咳嗽、哮喘等呼吸系统疾病有显著疗效。而且对消化道感染、乙肝、口腔溃疡、胃溃疡等也有奇效。对于多种毒素如白喉毒素、河月豕毒素、破伤风毒素和蛇毒等有着较强的解毒功效。同时还具有类似肾上腺皮质激素的作用。其毒理学半数致死量为10g/kg;经骨髓微核实验证实无致突变作用[3]。1.3 甘草酸一钾及三钾 甘草酸一钾及三钾类似白色或淡黄色粉末,无臭。有特殊甜味(甘草酸一钾为蔗糖的500倍;甘草酸三钾为蔗糖的150倍),甜味残留时间长,易溶于水,溶于稀乙醇、甘油、丙二醇,微溶于无水乙醇和乙醚。其同样应用于甜味剂,和甘草酸铵类似;毒理依据其半致死量为小鼠口服>10g/kg[4]。 在化妆品行业,可配制成护肤霜,祛斑霜高级珍珠膏等,既有美容护肤,又能消炎、抗变态反应,治疗皮肤病等作用;在医药行业,可用于眼药水、口腔炎的药膏;在日化行业,可用于牙膏。1.4 甘草酸二钠 甘草酸二钠又名甘草甜素二钠。为白色至淡黄色粉末,味极甜,稀释4000倍仍有甜味,甜度约为蔗糖的150-200倍,且甜味残留时间长。易溶于水,溶于稀乙醇、甘油、丙二醇,不溶于无水乙醇、乙醚、氯仿和油脂。用作甜味剂。日本限用于酱油(0.015g/L)和豆酱(0.03-0.07g/L)。毒性为半致死量5g/kg[5]。 由于其在水中非常易溶解,溶液澄清透明,无杂质和怪味,口感好,在食品添加剂方面具有低热能、安全无毒和较强的医疗保健功效,是高血压、肥胖症、糖尿病、心脏病患者使用的最理想甜味剂,有浓郁的甘草特殊香味,具有保健、解毒、护肝、消炎、增香等功效,是非常理想的纯天然甜味剂原料。2.甘草酸盐的制备及检测标准2.1 甘草酸生产方法及指标[6] 甘草酸以甘草为直接制备原料。将甘草的根茎干燥后粉碎至0.833mm的粉末(保留纤维部分)取粉末及纤维200kg,加水1200kg,在85-100℃下浸提2h。过滤后滤渣再用1000kg水提取2h,过滤后滤渣再重复浸提1次。合并3次滤液,在搪瓷蒸发器中浓缩至1/5体积。冷却后加入95%乙醇,使乙醇浓度达到65%,静置24h,过滤除去植物蛋白、多糖等杂质。滤液中加入硫酸,调节PH至甘草酸沉淀析出。过滤。洗涤后,加入3倍的丙酮,加热可回流3h,倾出提取液,残渣再反复回流提取2次。合并3次提取液,过滤后回收丙酮,浸湿甘草酸,与45℃干燥1h,缓缓升温至85-95℃,快烘干时,升至100-105℃烘干5min,经粉碎后即得成品。 此外,也可直接用氨水萃取,经浓缩后用硫酸沉淀,再用95%乙醇重结晶而得。 其质量指标需要符合中国企标:水分≤13%;灰分15%;熔点为220℃。2.2甘草酸二钠制备及质量标准[7] 甘草酸二钠一般由甘草酸为直接原料。其一由甘草甜素与钠碱进行部分中和而后精制而成。其二,由甘草粉加五倍水煮沸抽提,滤去固形物,加稀硫酸至呈弱酸性。室温下放置至析出物沉降,除去上澄清液,沉淀经水析出后用氨水中和、过滤、滤液加醋酸使甘草甜素铵析出,用70%-80%乙醇重结晶,按理论值加入碳酸钠水溶液,减压浓缩而得。 其质量指标参照日本标准,1999。包括含量95%-100%,溶液性状:10%水溶液应透明;5%溶液PH值5.5-6.5,氯化物(Cl-计)≤0.014%;水分≤13%;砷含量<4mg/kg;重金属<40mg/kg等等。相应的质量指标分析手段一般均通过标准试剂化学滴定得到。2.3甘草酸一钾及三钾制备方法及质量标准[8] 以甘草酸粗品(含量75%)为原料,在乙醇中用氢氧化钾中和而得。将100g甘草酸盐粗品加入400ml工业乙醇中国,在40-50℃下搅拌提取1h。抽滤后滤渣用200ml乙醇在同样的条件下提取1h,合并提取液,在搅拌下加入20%的KOH乙醇溶液至PH至7-8为止。静置片刻后分离得甘草酸三钾黄色结晶200g,将其放入80-90ml冰醋酸中,加热至75℃,保温几分钟使其转化为单钾盐,抽滤得近白色甘草酸单钾盐粗品,用少量工业乙醇洗涤一次,以出去黄酮类色素和甘草次酸等杂质。粗品用400ml乙醇冰醋酸混合液溶解,加入10g活性炭,在80℃下脱色0.5h。过滤后滤液放置结晶,得产品25-30g,收率约为70%。 其质量指标包括含量(UV法≥98%;HPLC≥85%);重金属≤0.001;砷盐≤0.0002;灰分≤9.63%;水中不溶物≤0.5%。2.4 间接甘草酸盐生产制备方法 为使甘草酸发挥更好的疗效和提高生产效率,非常需要实用性较强的制备甘草酸盐精品方法。 根据甘草酸易溶于热水,可溶于热稀醇,几乎不溶于无水乙醇和乙醚, 又可于水溶液中加稀酸游离液,又可于水溶液中加稀酸游离出来的性质,以及甘草酸锌盐、铁盐、铝盐及秘盐在热水中仅微溶或者不溶的性质,可以使甘草酸在水或稀醇溶液中与相应的无机盐水溶液反应制取需要的甘草酸盐。如果选用粗甘草酸溶液作原料,则得到甘草酸盐粗品,要制成精品往往需要反复多次精制,[font=times new roman][size=13px] [/size][/font]操作十分繁琐.如果选用甘草酸单按盐精品为原料,[font=times new roman][size=13px] [/size][/font]可以比较方便地制取草酸盐精品。在实际生产中,可以利用甘草或者甘草浸膏为原料,先制取甘草酸单按盐精品,然后再以甘草酸单按盐为原料制备甘草酸盐别的品种。在质量指标检测方面,甘草酸根含量测定可采用层析法,锌、秘、铝和铁的测定可采用容量分析或重量分析的方法。2.4.1甘草锌制备 取甘草酸单铁盐209溶于80%乙醇90ml中,加热回流,慢慢滴加予热至50℃的5%硫酸锌溶液80g,生成白色沉淀,加完硫酸锌溶液后,保温反应30min,之后降温至20℃,过滤,滤饼用6oml蒸馏水分三次清洗,滤尽母液,取出滤饼真空50℃干燥,得棕黄色甘草锌粉末19.69。测定甘草酸根含量87.6%,锌含为10.5%。2.4.2甘草酸秘制备 取甘草酸单铵盐溶于200ml热水中,于8℃在搅拌下慢慢滴加予热至60℃的10%的硝酸秘酸性溶509,需维持反应液为酸性(PH~3),生成白色沉淀,加完硝酸秘溶液后,保温反应30min,然后降温至30℃,过滤,滤饼用60rnl蒸馏水分三次清洗,滤尽母液,再以95%乙醇45ml分三次清洗,滤尽母液,在40~50℃真空干操,得白色甘草酸秘粉末21.39,测定甘草酸根含量82.2%,秘含量14%。3.甘草酸盐应用 邓淑华等人研究显示,甘草酸二钠、甘草酸二钾、甘草酸二铵在体外实验条件下,对金黄色葡萄球菌、白色葡萄球菌、大肠埃希氏菌、福氏志贺氏菌、乙型副伤寒沙门氏菌等细菌均表现了不同程度的抑菌作用。实验额外证实,甘草酸盐对乙型副伤寒沙门氏菌、金黄色葡萄球菌(附院)、福氏志贺氏菌等细菌具有一定的杀菌作用[9]。 甘草酸盐及甘草煎剂对杀虫双染毒的小鼠急性中毒不仅有顶防作用,而且甘草酸盐对急性中毒还有治疗作用,能明显降低杀虫双不同途径染毒之小鼠 、兔子的死亡率、其解毒机尚待进一步研究[10]。Francesco Maione[font=宋体]等人对单铵甘草酸盐抗炎抗伤害以小鼠实验进行以及生化和对接研究。在小鼠单次给药后的,一次腹腔注射AG对酵母多糖引起的足跖水肿和足跖肿胀均有抗炎作用腹膜炎。此外,在几种疼痛动物模型中,如扭体试验、福尔马林试验,酵母多糖诱发的痛觉过敏,试验前24小时给予AG可诱发痛觉过敏强烈的抗伤害作用。综上所述,所有这些发现都突出了AG在疼痛和或炎症相关疾病临床治疗中的潜在应用。AG与mPGES-2和COX-2的关键氨基酸相互作用。经过实验结果分析,甘草酸单铵的抗炎抗伤效应来自其与mPGES-2和COX-2的特异受体相互作用 。AG在结合处的定位较好COX-2与Trp387、Ser530(氢键)和Arg120等关键氨基酸相互作用时的囊袋。此外,通过结合刚性和柔性分子对接研究,两种可能的方法提出了AG与5-LO相互作用的机制:非氧化还原竞争结合和非氧化还原竞争结合Fe[/font][font=宋体]2+[/font][font=宋体]络合。而理论计算结果显示,前者结合能相对更低。[/font][font=宋体][11][/font]Carlotta Marianecci等人[font=宋体]研究表明甘草提取物可用于治疗皮炎、湿疹和银屑病,其疗效与皮质类固醇相当。在这项工作中,通过研究不同浓度的表面活性剂(吐温85和司班20)和胆固醇组成的囊泡在甘草酸铵(AG)释放中用于治疗各种炎症性疾病的效果。对囊泡进行了包括尺寸、ζ电位、各向异性、药物包封率、稳定性、细胞毒性评价和皮肤耐受性等方面的表征,证实纤维素膜在甘草酸铵囊泡的体外释药特性中作用[/font][font=宋体][12][/font][font=宋体]。[/font]甘草酸在大多数肝脏疾病的临床实践中用作肝脏保护剂。万荣等研究证实,甘草酸二铵减缓肝损伤并可阻止自然杀伤T细胞。其通过两种不同剂量甘草酸多铵给药对照试验,通过检测相应指标。得出预处理能显著降低血清ALT并改善cona诱导的自身免疫性肝组织损伤的结论。实验结果证实,DG预处理可下调攻击后的炎性细胞因子与Con A,并可以抑制胸腺T淋巴细胞凋亡。此外,甘草酸二铵还可有效地抑制CD4的增殖+CD25、CD69+、CD8+及CD69型+等外周血和脾脏的亚群,并显著下调NKT细胞的频率,同时上调树突状细胞的频率肝脏[13]。隋秀文等研究证明了甘草酸多铵盐和氯化锂共同作用抑制伪狂犬病病毒PrV感染,并可诱导PrV细胞凋亡。(PrV)是一种猪嗜神经性疱疹病毒与单纯疱疹病毒1型(HSV-1)有共同的基因组排列。其感染严重威胁畜牧业和人类健康。以甘草酸多铵盐为基底开发有效的抗病毒药物是减少PrV感染的重要策略之一[14]。李云等研究证实,甘草酸二铵(DG)具有抗炎和保肝药理作用。非酒精性脂肪肝(NAFLD),作为常见的慢性肝病,在世界范围内普遍存在。李云团队通过高脂饮食诱导的NAFLD模型小鼠实验,我们观察到DG可以减轻体重、肝脏脂肪变性以及肝脏炎症Illumina对16S rRNA的测序显示DG干预改变NAFLD小鼠肠道微生物群的组成,使得肠道菌群的丰富度显著增加。特别是DG降低了厚壁菌与拟杆菌的比率和产生内毒素的细菌(如脱硫弧菌)提高了益生菌如变形杆菌和乳酸杆菌的丰度。DG能增强短链蛋白的表达水平,如产脂肪酸(SCFA)的细菌、瘤胃科和漆树科,促进SCFA的产生。此外DG补充显著减轻了肠道低度炎症。促进细胞表达紧密连接蛋白、杯状细胞数量和粘蛋白分泌,从而增强肠屏障功能。因此,目前可以认为,DG对NAFLD的预防可能是通过调节肠道菌群和恢复肠道功能来实现的[15]。异甘草酸镁(MgIG)被广泛应用于慢性肝病的治疗。主要认为是通过作用于肝毒性诱导物质——甲氨蝶呤(MTX)诱导的肝毒性实现其效果。曹雨竹等人研究结果显示,预防性的给予小鼠MgIG(9和18mg/kg/天)可显著降低小鼠血液中血清天冬氨酸转氨酶和丙氨酸转氨酶的减少;MgIG还能减轻MTX诱导的肝纤维化。对MTX诱导的肝细胞损伤有较好的保护作用。此外,MTX还可诱导环氧合酶-2(COX-2)表达,给予MgIG后,肠道通透性和炎症减轻。总之,MgIG对甲氨蝶呤引起的肝毒性和肠道损伤有积极作用一种,是有可能缓解MTX肝脏和肠道副作用的药物[16]。4.总结甘草是一种豆科草本植物,其作史古已有之,必然意味着甘草所独具的 性质千百年来一直为人们所使用。而其主要活性成分甘草酸及其衍生盐类由于其甜度极高,且甜度留存时间长,主要用作甜味剂用于食品添加剂中。但都具有一定毒性,需要严格按照国家标准使用。此外,甘草酸盐还具有药理性质,在生物医药研究方面受到了学者的广泛关注,具有抗炎、保肝两方面的功能,因此也频繁应用与新型药物的开发,其价值也得到了更多的延伸。参考文献[1]甘草酸的制备及其在食品工业中的应用.食品工业,1994,(6);49~51[2]Tykarska E , Gdaniec M . Toward Better Understanding of Isomorphism of Glycyrrhizic Acid and Its Mono- and Dibasic Salts[J]. Crystal Growth & Design, 2013, 13(3):1301-1308.[3]郑国斌.从甘草酸粗品制取甘草酸单钾盐.中国医药工业杂志,1995,26(2);54[4-5,7-8]食品添加剂应用手册/孙平,张津凤主编.一北京:化学工业出版社,2010.10 ISBN978-7-122-09417-9[6]苌云玉.甘草酸盐制备方法研究[J].基层中药杂志,1995(04):33-34. [9]邓淑华,王晓斌,王鸿梅,刘艳华.甘草酸盐抗菌作用的实验研究[J].承德医 学院学报,2011,28(03):325-326.[10]黄能慧,曾样锬,刘季昆,夏炳南.甘草酸盐对农药(杀虫双)的解救作用[J].贵阳医学院学报,1982(03):21-22.[size=13px] [/size][11] Maione F , Minosi P , Giannuario A D , et al. Long-Lasting Anti-Inflammatory and Antinociceptive Effects of Acute Ammonium Glycyrrhizinate Administration: Pharmacological, Biochemical, and Docking Studies[J]. Molecules, 2019, 24(13)[12] [size=13px][color=#222222]Koide M , Takahashi M , Tamagaki S , et al. Catalytic effect of dipotassium glycyrrhizinate on the hydrolysis of nonionic ester surfactants[J]. Journal of the American Oil Chemists' Society, 1996, 73.[/color][/size][13]万荣, 刘莎, 范稚坚,等. Clinical Observation of Diammonium Glycyrrhizinate Enteric-coated Capsule in Preventing Liver Injury Induced by Anti-tuberculosis Drugs[J]. 大理学院学报, 2019, 004(004):45-47.[color=#222222][14] Sui X , Yin J , Ren X . Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus.[J]. Antiviral Research, 2010, 85(2):346-353. [15][/color] [color=#222222]Li, Yun, Liu, et al. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier[J]. Molecular pharmaceutics, 2018.[/color][16] Marianecci C , Rinaldi F , Mastriota M , et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models[J]. Journal of Controlled Release, 2012, 164(1):17-25.

  • 该不该有“烟草院士”

    1959年出生于江苏常州,23岁毕业于南京师范大学化学系,3年后获郑州烟草研究院工学硕士学位,现任该院科研副院长,今年52岁的谢剑平,历经4年3次提名,终于当选工程院环境与轻纺工程学部院士。“减害降焦是我们烟草科技工作者的责任和使命”吸烟有害健康这是不争的事实,减了就无害了,不吸才对。有害的东西本就不应该当成研究课题,现在又有了一位院士,中国有趣的事儿越来越多啦!

  • 氟草烟的测定?

    大家好: 有做食品中氟草烟的测定的吗?在液质上响应值怎么样?为什么标准上写的响应值很高,而我优化后响应值却很低呢?求指教,谢谢!

  • 近红外光谱技术分析烟草的化学成分

    近红外光谱技术分析烟草的化学成分

    近红外光谱技术分析烟草的化学成分 摘 要 应用近红外光谱仪对制丝线烟丝的定量的快速分析,能够快速评价烟草等质量状况,该方法不需要对烟丝进行处理,实现对的烟丝快速的检测,提供大量的数据,免去实验室人员复杂操作,可对烟草企业的效益具有非常重要的意义。主题词 近红外光谱;烟草化学成分;偏最小二乘法(PLS)引言 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团C一H!O一H!_N一H!S一H!P一H等振动的倍频和合频吸收。不同基团(如甲基,亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别。所以近红外光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成性质测量。习惯上将近红外区划分为近红外短波(780一1100nm)和近红外长波(1100一2526nm)两个区域。 物质的红外光谱包含了组成与结构的信息,而性质参数(如油品的相对密度,馏程和闪点等)也与其组成、结构相关,因此在样品的近红外光谱和其性质参数间也必然存在着内在的联系。使用化学计量学这种数学方对其两者进行关联,可确立这两者间的定量或定性关系,即校正模型。建立模型后,只要测量未知样品的近红外光谱,再通过软件自动对模型库进行检索,[font='宋体

  • 烟草重金属,吸二手烟也中毒

    首先声明,本人不抽烟,每次去公司厕所,中午回宿舍休息,总是有几个同事在拼命的吸,满屋子的烟味。。。。。。。。。。或许您也碰到类似我的窘境,那尼古丁味道,实在是不敢恭维,之前网上曝光说中国很多品牌卷烟都检出含有重金属,烟草中含有铅,砷和镉等,烟草重金属,吸二手烟也中毒,大家谈谈烟草中的重金属吧?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制