当前位置: 仪器信息网 > 行业主题 > >

马齿苋

仪器信息网马齿苋专题为您提供2024年最新马齿苋价格报价、厂家品牌的相关信息, 包括马齿苋参数、型号等,不管是国产,还是进口品牌的马齿苋您都可以在这里找到。 除此之外,仪器信息网还免费为您整合马齿苋相关的耗材配件、试剂标物,还有马齿苋相关的最新资讯、资料,以及马齿苋相关的解决方案。

马齿苋相关的资讯

  • 欧盟拟修订农药吡嗪酮的最高残留限量
    依据欧盟委员会(EC)No 396/2005法规第6节,德国收到北莱茵州农业协会(Landwirtschaftskammer NRW)关于修订农药吡嗪酮(pymetrozine)在菠菜、马齿苋和甜菜叶(食用)中最高残留限量(MRL)的申请。德国依据No 396/2005法规第8节起草了一份评估报告草案,并于2010年6月7日提交欧盟委员会,同时转寄欧盟食品安全局。修订详情和欧盟食品安全局的评估意见如下: 商品 现行MRL值(mg/kg) 拟修订后的MRL值(mg/kg) 意见 菠菜 0.02* 0.4 对提议的MRL值的证据充分,不会对消费者构成风险。 马齿苋 0.02* 0.4 甜菜叶(食用) 0.02* 0.4 *指MRL值设定为检测限。
  • 关注!食药物质超100种!
    2023年11月17日,国家卫生健康委、国家市场监管总局发布《关于对党参等9种物质开展按照传统既是食品又是中药材的物质公告》(2023年第9号),生产经营的食品中不得添加药品,但是可以添加按照传统既是食品又是中药材的物质(简称食药物质),新法规的发布更有利于食品行业产品创新。 目前发布的食药物质名单有三批,共102种物质,包括《卫生部关于进一步规范保健食品原料管理的通知》(卫法监发[2002]51号)、《关于当归等6种新增按照传统既是食品又是中药材的物质公告》(2019年第8号)和《关于党参等9种新增按照传统既是食品又是中药材的物质公告》(2023年第9号)。物质名单出处备注丁香、八角茴香、刀豆、小茴香、小蓟、山药、山楂、马齿苋、乌梢蛇、乌梅、木瓜、火麻仁、代代花、玉竹、甘草、白芷、白果、白扁豆、白扁豆花、龙眼肉(桂圆)、决明子、百合、肉豆蔻、肉桂、余甘子、佛手、杏仁(甜、苦)、沙棘、牡蛎、芡实、花椒、赤小豆、阿胶、鸡内金、麦芽、昆布、枣(大枣、酸枣、黑枣)、罗汉果、郁李仁、金银花、青果、鱼腥草、姜(生姜、干姜)、枳椇子、枸杞子、栀子、砂仁、胖大海、茯苓、香橼、香薷、桃仁、桑叶、桑椹、桔红、桔梗、益智仁、荷叶、莱菔子、莲子、高良姜、淡竹叶、淡豆豉、菊花、菊苣、黄芥子、黄精、紫苏、紫苏籽、葛根、黑芝麻、黑胡椒、槐米、槐花、蒲公英、蜂蜜、榧子、酸枣仁、鲜白茅根、鲜芦根、蝮蛇、橘皮、薄荷、薏苡仁、薤白、覆盆子、藿香《卫生部关于进一步规范保健食品原料管理的通知》87种当归、山柰、西红花(在香辛料和调味品中又称“藏红花”)、草果、姜黄、荜茇《关于当归等6种新增按照传统既是食品又是中药材的物质公告》6种仅作为香辛料和调味品党参、肉苁蓉(荒漠)、铁皮石斛、西洋参、黄芪、灵芝、山茱萸、天麻、杜仲叶《关于党参等9种新增按照传统既是食品又是中药材的物质公告9种
  • 上海市药品监督管理局关于上海市中药配方颗粒质量标准(第五批)的公示
    根据国家药品监督管理局的统一部署要求,上海市药品监督管理局按照国家《关于结束中药配方颗粒试点工作的公告》和《中药配方颗粒国家标准申报资料目录及要求》的有关要求,开展上海市中药配方颗粒质量标准研究,形成了第五批80个中药配方颗粒公示标准。为确保标准的科学性、合理性和适用性,现就上述中药配方颗粒质量标准进行公示(详见附件),公示期为15天。公示期间,请相关单位认真研究,如有异议,请及时来函将意见反馈至上海市药品监督管理局药品注册处,并附相关说明、实验数据和联系方式。来函需加盖公章,同时将公函扫描件电子版发送至指定邮箱。公示期满未回复意见即视为对公示标准无异议。联系人:卓阳,毛秀红电话:021-54909077;021-38839900-26602电子邮件:maoxh71@163.com地址:上海市徐汇区宜山路728号邮编:200233附件:上海市中药配方颗粒质量标准(第五批)品种目录序号配方颗粒名称序号配方颗粒名称1白扁豆配方颗粒41六月雪(六月雪)配方颗粒2白前(柳叶白前)配方颗粒42龙葵配方颗粒3柏子仁配方颗粒43马齿苋配方颗粒4北沙参配方颗粒44猫人参配方颗粒5萹蓄配方颗粒45梅花配方颗粒6槟榔配方颗粒46蜜炙黄芪(蒙古黄芪)配方颗粒7草果仁配方颗粒47绵萆薢(绵萆薢)配方颗粒8侧柏炭配方颗粒48藕节配方颗粒9茶树根配方颗粒49婆婆针配方颗粒10炒白扁豆配方颗粒50羌活(羌活)配方颗粒11炒海螵蛸(无针乌贼)配方颗粒51青风藤(青藤)配方颗粒12炒路路通配方颗粒52苘麻子配方颗粒13炒牡丹皮配方颗粒53砂炒干蟾(中华大蟾蜍)配方颗粒14炒桑螵蛸(大刀螂)配方颗粒54砂炒牛角䚡(水牛)配方颗粒15茺蔚子配方颗粒55山慈菇(杜鹃兰)配方颗粒16穿山龙配方颗粒56山楂炭(山里红)配方颗粒17大蓟配方颗粒57蛇六谷(魔芋)配方颗粒18地枯蒌配方颗粒58石菖蒲配方颗粒19豆蔻(爪哇白豆蔻)配方颗粒59石决明(皱纹盘鲍)配方颗粒20煅瓦楞子(毛蚶)配方颗粒60石榴皮配方颗粒21粉萆薢配方颗粒61柿蒂配方颗粒22蜂房(果马蜂)配方颗粒62蜀羊泉配方颗粒23凤凰衣配方颗粒63丝瓜络配方颗粒24凤尾草配方颗粒64天冬配方颗粒25覆盆子配方颗粒65天浆壳配方颗粒26藁本(藁本)配方颗粒66铁树叶配方颗粒27枸橘梨配方颗粒67望江南配方颗粒28黑豆配方颗粒68威灵仙(东北铁线莲)配方颗粒29胡颓子叶配方颗粒69西青果配方颗粒30葫芦壳配方颗粒70细辛(北细辛)配方颗粒31黄荆子配方颗粒71小茴香配方颗粒32积雪草配方颗粒72薤白(小根蒜)配方颗粒33荠菜花配方颗粒73岩柏配方颗粒34姜炙竹茹(青秆竹)配方颗粒74泽漆配方颗粒35降香配方颗粒75珍珠母(三角帆蚌)配方颗粒36金沸草(旋覆花)配方颗粒76制半夏配方颗粒37景天三七配方颗粒77制穞豆衣配方颗粒38橘络配方颗粒78制南星(掌叶半夏)配方颗粒39莲须配方颗粒79竹茹(青秆竹)配方颗粒40六神曲炭(沪)配方颗粒80紫草(新疆紫草)配方颗粒上海市药品监督管理局2021年12月22日上海中药配方颗粒质量标准公示稿(第五批80个)
  • 中国养殖业滥用抗生素惊人 成人体“隐形炸弹”
    抗生素的滥用正在中国养殖业形成恶性循环   这里的鸡拿抗生素当饭吃,长期食用“有抗食品”,消费者的耐药性也会不知不觉增强,等于在人体内埋下一颗“隐形炸弹”,一旦患病,很可能就无药可治。   河北保定的朱师傅在当地一家规模较大的养鸡场做饲养员已经有五年多了。每天,他都会戴着像防毒面具一样的口罩,进到臭气熏天的养鸡场内进行投食和消毒等工作。朱师傅说,小鸡一般养到三四个月后,就被送到这里,关进一个个狭小的笼子。抬头是送水的胶皮管,低头是流动的饲料槽。它们唯一的活动就是抬头饮水和低头吃饲料。直到他们病死,或者被淘汰。   为什么会被关进狭小的笼子——在它们短暂的一生中,食用的都是添加了多种激素和抗生素的饲料,在食用激素后,鸡往往会变得很兴奋,甚至跳得很高,只能把它们囚禁在小笼子里。   朱师傅发现,这里的鸡和散养的鸡有点不同,比如,下蛋以后不会“咯咯嗒、咯咯嗒……”地叫上半天,而是一声不吭 比如下蛋要多一些,一只鸡每天差不多都会下一个蛋,有时甚至会下两个 还比如,这些鸡需要打七八种疫苗。   这里的鸡养殖一年多后,产蛋量就会减少和停止。之后,它们就会被淘汰掉,送到肉鸡市场出售。由于长时间不见阳光和缺少运动,在转运时需要特别小心。因为它们的骨骼很脆弱,很容易就会摔断腿,或者摔死。   朱师傅当饲养员的这五年里,已经患上了职业病,再也吃不得鸡蛋,一闻到鸡蛋味就会呕吐,哪怕是自家散养的。   肉鸡的命运看起来还不如这些蛋鸡,同样狭小的环境,它们的生存周期只有四五十天,当从小鸡迅速长成可以上市的肉鸡,它们的命运也就结束了。由于集约化养殖,为了避免由于拥挤和不卫生的养殖环境导致的疾病暴发和传播,这些鸡同样需要食用防止疾病的混有抗生素的饲料或水。   “一些抗生素现在已经被鸡当成饭来吃。”中国社会科学院中医药事业国情调研组副执行长张南说。   这种源于西方的现代养殖技术被引进中国后正在各个养殖场复制。而用抗生素饲喂的现象并非只在养鸡场存在,猪、奶牛甚至是人工饲养的鱼虾,面临着与鸡同样的命运。上个世纪,美国国会技术办公室曾指出:“当前的养殖业集中在高产量、高密度、令人窒息的养殖环境中。某种程度上,定期使用抗生素使得这种养殖模式得以维持。”   解放军总医院营养科教授赵霖介绍说,这种模式被称为现代“疯狂畜牧业”,其进行生产的两大技术就是:为了快速育出体积大的猪、禽,就要饲喂动物蛋白质(即肉骨粉(MBM)饲料) 而为了防止猪、禽生病,就要注射抗生素。   恶性循环   北京康华远景科技有限公司畜牧专家肖传明谈起国内养殖业,不时发出“心寒”的感叹。过去十年,他在全国各地的养殖场考察,抗生素滥用的情况让他感到触目惊心。近年来,他还发现:原来需要50天出笼的肉鸡,现在缩短到40天以下。   “尽管有大量的抗生素每天饲喂,有些鸡养到40天的时候还是会大量死亡,而且很难控制,所以养殖户只好提前在37天的时候就把鸡给卖了,因为养不活。”肖传明透露,如果要想让鸡在短时间内出栏,势必又需要更多的生长激素。   在肖传明看来,国内养殖场正在进入恶性循环:低成本导致养殖环境差(特别是高密度饲养)、饲料原料品质低劣——动物容易得病——需要使用大量的抗生素——抗生素会影响鸡的消化道系统,导致菌群紊乱和免疫力低下——导致药物及激素的大量使用。在这样的循环中,抗生素和激素的使用剂量在不断加大。   中国社会科学院农村发展所尹晓青副研究员在山东、辽宁调查农村禽畜养殖情况后发现,养猪者广泛使用添加了抗生素等药物的饲料,被调查养殖者中,有50%养殖户在饲料里不同程度地添加了抗生素等药物。   据北京大学临床药理研究所教授肖永红等专家调查推算,中国每年生产抗生素大约21万吨,其中9.7万吨抗生素用于畜牧养殖业。更有专家预测,这个数量可能超过一半。   人体的“隐形炸弹”   由于动物会对抗生素产生耐药性,因此养殖户们需要不断投入新的抗生素,而且添加量会越来越多。北京天福莱生物科技有限公司总经理汪鲲博士介绍,以前使用的土霉素、黄胺霉等抗生素,现在养殖场都不用了,改为混霉素、罗璇霉素等,也就是说,用在人身上的抗生素基本都出现在了禽畜行业里。   中国社会科学院中医药事业国情调研组的调研也证明了这点:在我国养殖业中,特别是在中小养殖户中,抗生素的滥用已登峰造极。不仅大量使用具有严重毒副作用的已被淘汰的抗生素,就连人类还在试用的某些新抗生素也已用于动物。许多动物不是病死的,而是过量用药致死。   由于抗生素在动物体内无法得到有效降解,形成了抗生素残留。有专家提醒说,经常食用含有抗生素的“有抗食品”,即使是微量的,也可能使人出现荨麻疹或过敏性症状及其他不良反应 长期食用“有抗食品”,消费者的耐药性也会不知不觉增强,等于在人体内埋下一颗“隐形炸弹”,将来一旦患病,很可能就无药可治。   这并非危言耸听,最近几年,美国一些养殖场的工人感染耐药细菌的案例不断发生。美国很多医学家都认为,“动物滥用抗生素与人类感染耐药菌有明显关联”。   尽管农业部出台了《允许使用的饲料添加剂品种目录》、《动物源性食品中兽药最高残留限量》等规定,但是养殖户滥用抗生素的现象依然难以监控。除了法规不够健全,监管人手少,而养殖者多且松散,难以有效监管外,有关部门对每批上市的禽畜类肉产品都进行抗生素残留等检测也很难做到。而即便检查到养殖者违规使用抗生素,处罚措施也一般是批评教育和罚款,威慑力度不够。   抗生素滥用现象难以控制的另外一个重要因素是抗生素在养殖业里已经形成了完整的经济利益链条。   “养殖户一方面对抗生素的使用有错误认识,但另一方面有些企业专门靠卖药赚钱,由此延伸出了一条龙式的服务。本来每只肉鸡0.5元药费就算超量了,可现在部分养殖户每只肉鸡的药费已上升到2元以上了,太可怕了!”肖传明说。   用中草药代替抗生素?   对于抗生素滥用,中国社会科学院中医药事业国情调研组陈其广无比担忧,他认为,由此引发的食品安全问题已经到了关乎我们民族繁衍的程度。他介绍,多年来,为克服现代化学合成饲料添加剂与抗生素药物的滥用,我国一些专家与养殖企业一直在探索运用中草药解决抗生素污染问题。   北京饲料工业协会会长谢仲权从1996年开始关注饲料中的抗生素问题,“国外养殖方式只求数量不求质量只讲效益不讲安全,这种掠夺式的养殖方式对国内是一种误导。”意识到问题严重的他联合了一些企业成立天然植物添加剂委员会,试图通过天然植物中草药饲料添加剂解决养殖出现的问题。经过研究,他发现可以用金银花、莲翘、大青叶、牛蒡子、马齿苋、鱼腥草等中草药代替抗生素。他把这一研究成果应用到企业,成效显著。   一些研究表明,饲料中添加中草药可明显改变肠道细菌组成及数量,使有益菌类增加,并抑制大部分条件致病菌的生长。而且中草药添加剂在畜禽体内发挥有效作用后可被分解,没有毒害与残留,不产生抗药性。   广州市饲料工业协会多年来也在推广“安全饲料,风味食品工程”,利用中草药优势解决了食品安全与质量问题。   不过让谢仲权感到遗憾的是,天然中草药并没有列入农业部饲料添加剂目录里,对于推广这种养殖方式缺乏政策上的支持。据谢仲权介绍,目前天然中草药添加剂在各省份都有试用,但最多的省份也只有5%的份额。   “很多养殖户都意识到抗生素的问题,他们自己也不吃自己养出来的猪,如果他们知道有替代品,政府又支持,我们可以为食品安全发挥作用。”谢仲权认为,推广中草药饲料添加剂是个系统工程,需要在观念上引导,同时要进行广泛的健康养殖配套技术推广示范工作。   链接:丹麦经验   丹麦是世界上最大的猪肉出口国,也是较早推出抗生素饲料禁令的国家。   1995年春天,丹麦一家电视台曝光了“猪是如何泡在抗生素的药罐中”长大的,顿时震撼整个丹麦。   1998年4月,猪肉行业宣布35公斤以上生猪自愿停止使用一切抗生素饲料 同年,丹麦政府开始对使用抗生素的猪收税(每头猪2美元)。   2000年,丹麦政府下令,所有动物,不论大小,一律禁用抗生素饲料。   禁用当年,猪出现大量病患,动物医用抗生素使用量比1999年多了20多吨。不过,另一数据更值得关注:动物抗生素(包含抗生素饲料和动物医用抗生素)的年使用量,从1995年的210吨,降至2000年的96吨。   此后,丹麦养殖业者通过改善饲料、打造环境舒适的猪舍等措施,最终使动物医用抗生素的使用量也降低了。禁用抗生素饲料不仅让丹麦食用肉更安全,还让丹麦人感染耐药性肠球菌的数量不断减少。
  • 165项保健食品用原料团体标准8月1日正式实施(附全文下载)!
    中国营养保健食品协会批准发布《保健食品用原料人参叶》(T/CNHFA111.21-2024)等165项团体标准,现予公告,自2024年8月1日起实施。附件:批准发布团体标准信息111.21-2024 保健食品用原料人参叶团体标准.pdf111.22-2024 保健食品用原料土茯苓团体标准.pdf111.23-2024 保健食品用原料大蓟团体标准.pdf111.24-2024 保健食品用原料女贞子团体标准.pdf111.26-2024 保健食品用原料川牛膝团体标准.pdf111.25-2024 保健食品用原料山茱萸团体标准.pdf111.29-2024 保健食品用原料马鹿茸团体标准.pdf111.30-2024 保健食品用原料五加皮团体标准.pdf111.27-2024 保健食品用原料川贝母团体标准.pdf111.28-2024 保健食品用原料川芎团体标准.pdf111.33-2024 保健食品用原料天门冬团体标准.pdf111.32-2024 保健食品用原料升麻团体标准.pdf111.31-2024 保健食品用原料五味子团体标准.pdf111.34-2024 保健食品用原料天麻团体标准.pdf111.35-2024 保健食品用原料太子参团体标准.pdf111.36-2024 保健食品用原料巴戟天团体标准.pdf111.38-2024 保健食品用原料木贼团体标准.pdf111.37-2024 保健食品用原料木香团体标准.pdf111.40-2024 保健食品用原料车前子团体标准.pdf111.39-2024 保健食品用原料牛蒡子团体标准.pdf111.41-2024 保健食品用原料车前草团体标准.pdf111.42-2024 保健食品用原料北沙参团体标准.pdf111.43-2024 保健食品用原料平贝母团体标准.pdf111.45-2024 保健食品用原料生地黄团体标准.pdf111.44-2024 保健食品用原料玄参团体标准.pdf111.48-2024 保健食品用原料白术团体标准.pdf111.46-2024 保健食品用原料生何首乌团体标准.pdf111.49-2024 保健食品用原料白芍团体标准.pdf111.51-2024 保健食品用原料石决明团体标准.pdf111.47-2024 保健食品用原料白及团体标准.pdf111.50-2024 保健食品用原料白豆蔻团体标准.pdf111.52-2024 保健食品用原料地骨皮团体标准.pdf111.54-2024 保健食品用原料竹茹团体标准.pdf111.53-2024 保健食品用原料当归团体标准.pdf111.55-2024 保健食品用原料红花团体标准.pdf111.56-2024 保健食品用原料怀牛膝团体标准.pdf111.57-2024 保健食品用原料杜仲团体标准.pdf111.59-2024 保健食品用原料沙苑子团体标准.pdf111.58-2024 保健食品用原料杜仲叶团体标准.pdf111.60-2024 保健食品用原料牡丹皮团体标准.pdf111.62-2024 保健食品用原料苍术团体标准.pdf111.61-2024 保健食品用原料芦荟团体标准.pdf111.64-2024 保健食品用原料诃子团体标准.pdf111.63-2024 保健食品用原料补骨脂团体标准.pdf111.65-2024 保健食品用原料赤芍团体标准.pdf111.66-2024 保健食品用原料远志团体标准.pdf111.69-2024 保健食品用原料佩兰团体标准.pdf111.68-2024 保健食品用原料龟甲团体标准.pdf111.70-2024 保健食品用原料侧柏叶团体标准.pdf111.67-2024 保健食品用原料麦门冬团体标准.pdf111.73-2024 保健食品用原料刺五加团体标准.pdf111.74-2024 保健食品用原料泽兰团体标准.pdf111.72-2024 保健食品用原料制何首乌团体标准.pdf111.71-2024 保健食品用原料制大黄团体标准.pdf111.76-2024 保健食品用原料玫瑰花团体标准.pdf111.78-2024 保健食品用原料罗布麻团体标准.pdf111.75-2024 保健食品用原料泽泻团体标准.pdf111.77-2024 保健食品用原料知母团体标准.pdf111.79-2024 保健食品用原料金荞麦团体标准.pdf111.81-2024 保健食品用原料青皮团体标准.pdf111.80-2024 保健食品用原料金樱子团体标准.pdf111.82-2024 保健食品用原料厚朴团体标准.pdf111.84-2024 保健食品用原料姜黄团体标准.pdf111.83-2024 保健食品用原料厚朴花团体标准.pdf111.86-2024 保健食品用原料枳实团体标准.pdf111.87-2024 保健食品用原料柏子仁团体标准.pdf111.85-2024 保健食品用原料枳壳团体标准.pdf111.89-2024 保健食品用原料胡芦巴团体标准.pdf111.88-2024 保健食品用原料珍珠团体标准.pdf111.90-2024 保健食品用原料茜草团体标准.pdf111.92-2024 保健食品用原料韭菜子团体标准.pdf111.93-2024 保健食品用原料首乌藤团体标准.pdf111.95-2024 保健食品用原料党参团体标准-.pdf111.94-2024 保健食品用原料香附团体标准-.pdf111.96-2024 保健食品用原料桑白皮团体标准.pdf111.91-2024 保健食品用原料荜茇团体标准.pdf111.97-2024 保健食品用原料桑枝团体标准.pdf111.99-2024 保健食品用原料益母草团体标准.pdf111.101-2024 保健食品用原料菟丝子团体标准.pdf111.100-2024 保健食品用原料积雪草团体标准.pdf111.98-2024 保健食品用原料浙贝母团体标准.pdf111.104-2024 保健食品用原料番泻叶团体标准.pdf111.105-2024 保健食品用原料蛤蚧团体标准.pdf111.102-2024 保健食品用原料野菊花团体标准.pdf111.103-2024 保健食品用原料湖北贝母团体标准.pdf111.106-2024 保健食品用原料槐实团体标准.pdf111.109-2024 保健食品用原料蜂胶团体标准.pdf111.110-2024 保健食品用原料墨旱莲团体标准.pdf111.107-2024 保健食品用原料蒲黄团体标准.pdf111.108-2024 保健食品用原料蒺藜团体标准.pdf111.111-2024 保健食品用原料熟大黄团体标准.pdf111.114-2024 保健食品用原料丁香团体标准.pdf111.113-2024 保健食品用原料鳖甲团体标准.pdf111.112-2024 保健食品用原料熟地黄团体标准.pdf111.116-2024 保健食品用原料刀豆团体标准.pdf111.115-2024 保健食品用原料八角茴香团体标准.pdf111.119-2024 保健食品用原料山药团体标准.pdf111.117-2024 保健食品用原料小茴香团体标准.pdf111.118-2024 保健食品用原料小蓟团体标准.pdf111.121-2024 保健食品用原料马齿苋团体标准.pdf111.122-2024 保健食品用原料乌梢蛇团体标准.pdf111.120-2024 保健食品用原料山楂团体标准.pdf111.125-2024 保健食品用原料火麻仁团体标准.pdf111.124-2024 保健食品用原料木瓜团体标准.pdf111.123-2024 保健食品用原料乌梅团体标准.pdf111.127-2024 保健食品用原料玉竹团体标准.pdf111.126-2024 保健食品用原料覆盆子团体标准.pdf111.128-2024 保健食品用原料甘草团体标准.pdf111.130-2024 保健食品用原料白果团体标准.pdf111.132-2024 保健食品用原料龙眼肉(桂圆)团体标准.pdf111.131-2024 保健食品用原料白扁豆团体标准.pdf111.133-2024 保健食品用原料百合团体标准.pdf111.129-2024 保健食品用原料白芷团体标准.pdf111.135-2024 保健食品用原料肉桂团体标准.pdf111.136-2024 保健食品用原料余甘子团体标准.pdf111.137-2024 保健食品用原料佛手团体标准.pdf111.134-2024 保健食品用原料肉豆蔻团体标准.pdf111.138-2024 保健食品用原料杏仁(苦)团体标准.pdf111.139-2024 保健食品用原料沙棘团体标准.pdf111.141-2024 保健食品用原料芡实团体标准.pdf111.142-2024 保健食品用原料花椒团体标准.pdf111.140-2024 保健食品用原料牡蛎团体标准.pdf111.143-2024 保健食品用原料赤小豆团体标准.pdf111.146-2024 保健食品用原料麦芽团体标准.pdf111.144-2024 保健食品用原料阿胶团体标准.pdf111.145-2024 保健食品用原料鸡内金团体标准-.pdf111.148-2024 保健食品用原料大枣团体标准.pdf111.147-2024 保健食品用原料昆布团体标准.pdf111.151-2024 保健食品用原料青果团体标准.pdf111.150-2024 保健食品用原料郁李仁团体标准.pdf111.152-2024 保健食品用原料鱼腥草团体标准.pdf111.153.2-2024 保健食品用原料姜(干姜)团体标准.pdf111.149-2024 保健食品用原料罗汉果团体标准.pdf111.153.1-2024 保健食品用原料姜(生姜)团体标准.pdf111.156-2024 保健食品用原料胖大海团体标准.pdf111.154-2024 保健食品用原料栀子团体标准.pdf111.157-2024 保健食品用原料香橼团体标准.pdf111.158-2024 保健食品用原料香薷团体标准.pdf111.155-2024 保健食品用原料砂仁团体标准.pdf111.159-2024 保健食品用原料桃仁团体标准.pdf111.160-2024 保健食品用原料桑叶团体标准.pdf111.162-2024 保健食品用原料薄荷团体标准.pdf111.161-2024 保健食品用原料桑椹团体标准.pdf111.163-2024 保健食品用原料桔梗团体标准.pdf111.166-2024 保健食品用原料莲子团体标准.pdf111.164-2024 保健食品用原料荷叶团体标准.pdf111.165-2024 保健食品用原料莱菔子团体标准.pdf111.168-2024 保健食品用原料淡竹叶团体标准.pdf111.169-2024 保健食品用原料淡豆豉团体标准.pdf
  • 7T超高场无液氦磁共振成像系统关键技术通过鉴定
    近日,由中国科学院电工研究所、北京大学、北京斯派克科技发展有限公司联合完成的“7T超高场无液氦磁共振成像系统关键技术”通过中国电工技术学会组织的成果鉴定。中国科学院院士陈维江任鉴定委员会主任,7位行业资深专家组成的鉴定委员会一致认为,该技术成果整体处于国际领先水平。7T超高场无液氦磁共振成像系统。电工研究所供图该成果由中国科学院院士、中国科学院电工研究所研究员王秋良团队完成。成果面向无液氦超高场磁共振成像重大需求,开展了超导磁体传导冷却、超导匀场线圈精准调控、梯度线圈工程优化和超高场射频线圈设计优化等一系列关键技术研究,成功研制出7T超高场无液氦磁共振成像系统,并在生物体成像检测中得到应用。成像系统核心关键技术指标已通过中国计量科学院第三方检测CNAS和APMP认证。7T超高场无液氦磁共振成像系统具有无液氦、轻型化、易维护等特点,能灵活实现系统快速转移和快速安装。同时,成像系统采用超强梯度线圈,大幅度减小了空间编码尺度,图像分辨率提升至十微米量级,满足小鼠等动物的成像检测需求,在临床前动物模型研究当中具有重要应用前景。
  • NeoSuite CIMS 试剂库存管理系统4.1 更新内容
    NeoSuite CIMS试剂库存管理系统,是化学实验室对化学试剂进行精细化管理的管理平台。系统的上线将为客户大大减少试剂浪费,缩短试剂申领周期,同时降低试剂使用安全风险。此次版本更新,对产品的易用性,严谨性和安全性上做了大幅度的更新。主要更新如下:功能性更新1. 系统管理员及库存管理员首页 增加了统计数据及图表,分数据展示与图表展示 消息提醒:管理员登录时,弹出试剂近效期提醒或者化合物库存预警。 2. 数据管理功能 系统自带了化合物基础库,支持从化合物基础数据库中直接导入相关数据,不再需要手工维护。 添加了化合物的备库警戒量 3. 查询申领 增加了试剂的结构式检索功能 试剂检索结果页面重新排版,列表和大图标的两种展示方式,增加试剂详情页 4. 废液管理功能 增加了废液收集功能,后台配置了废液收集权限的用户在前台可新增废液收集表格 5. 试剂入库功能 修改了入库管理的打印条码功能,增加了打印全部条码功能 用户可选择打印的条码的大小(在系统管理参数设置页面可设置默认大小) 6. 统计图表(前台) 增加申领统计图表(申领人员),增加审批统计图表(审批人员) 7. 统计图表功能 增加了图形化申领统计报表和试剂统计报表,可导出相关数据。 8. 系统管理功能 用户管理增加了用户批量导入功能 系统内置了几种常用角色,管理员不能做修改。但管理员可以重新定义新的角色。 安全性更新1. 用户登陆逻辑判断 分前端用户和后台用户,前端登录角色:申领,审批,项目管理;后端登录角色除去前端登录角色的任何角色; 用户唯一性登录判断,如果已经在别处登陆提示用户该账户已经登录(根据登录登出日志判断)。 2. 密码安全策略 申领用户在修改密码时,以前用过的密码不可再用 根据输入的密码立刻判断密码的弱中强进度提示 3. 系统参数设置 可对密码强度,过期时间等进行设置; 可自定义条码尺寸、自定义前缀、条码前缀规则; 自定义消息提醒功能; 邮件通知设定 4. 日志查看 增加了操作日志查看功能 产品详情:请点击此处产品咨询:021-51821768-转市场部
  • 海鲜在吃镉!吃着扇贝的我眼泪流了下来
    我吃着扇贝,津津有味却发现我可怜的扇贝吃着镉也“津津有味”浙江大学刘广绪团队提出,研究人员曾在nature旗下期刊scientific reports 发表文章:《ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety》海洋酸化导致双壳类海产品中镉的积累增高!双壳类海产品:属软体动物门,也称作瓣鳃纲(bivalvia )或无头纲(acephala )。瓣鳃纲动物全部生活在水中,大部分海产,少数生活在淡水中。约有2万种,分布很广。一般运动缓慢,有的潜居泥沙中,有的固着生活,也有的凿石或凿木而栖。该纲全部种类均可食用,如蚶、牡蛎、青蛤、河蚬、蛤仔等;有的只食其闭壳肌,如扇贝的闭壳肌干制品称干贝,多种可入药,部分种能产珍珠。不要小看双壳类海产品!你以为跟你没有关系?还有海鲜砂锅粥、黄金脆生蚝、白酒番茄煮蛤蜊、清蒸蛏子、文蛤干贝鲜虾粥、蛤蜊浓汤、酸桔汁腌扇贝、蒜蓉粉丝蒸扇贝......然而海洋酸化,也与我们有关。二氧化碳在世界范围的增加,使得更多的二氧化碳进入海洋。相信大家对这个公式都不陌生:别人是自己选择的路,跪着也要走完吃货是世界人民制造的二氧化碳,飘到海洋里也要吃完!浙江大学刘广绪团队在不同ph下,对三种不同种类双壳类海产品的三种组织中的铬含量进行了测量统计。(a) m. meretrix,文蛤 (b) t.granosa,血蛤(泥蚶) and (c) m. edulis贻贝在不同的贝类海产品的不同组织中都存在一个相同的趋势:随着海洋酸性的增强,贝类海产品组织中的镉含量也在以相当大的程度提高,这也意味着食品中铬含量的积累也在增长。随着二氧化碳在世界范围的增加,海洋酸化也成为一个严峻的现象。文章指出,海洋酸化对于双壳类海产品的食品安全影响被人们在很大程度上忽视了。双壳类海产品为人类提供了大量的蛋白质和必需元素,并且有丰富的人类必要的维生素,比如b6和b12。但是当双壳类海产品富集了太多的污染,将会给人类的健康带来威胁。tips : 镉是人体非必需元素,在自然界中常以化合物状态存在,一般含量很低,正常环境状态下,不会影响人体健康。当环境受到镉污染后,镉可在生物体内富集,通过食物链进入人体引起慢性中毒。长期摄入含镉食品,可使肾脏发生慢性中毒,主要是损害肾小管和肾小球,导致蛋白尿、氨基酸尿和糖尿。同时,由于个镉离子取代了骨骼中的钙离子,从而妨碍钙在骨质上的正常沉积,也妨碍骨胶原的正常固化成熟,导致软骨病。也许你也很好奇,海洋酸化怎么就让我吃上了丰富的重金属?两个原因:1. 海洋酸化使得双壳类海产品增加对镉的摄取2. 海洋酸化使得双壳类海产品排泄镉的能力却被减弱这将导致镉在这些海产品中的富集。研究人员解释了镉在双壳类海洋生物钟的积累机制。请看下方大图片。(a) 酸化的海水有更高的镉浓度和cd2+/ca2+比率,这将使cd2+更易通过ca2+通道进入。(b) 上皮细胞被酸化的海水破坏,使得镉更容易穿透。(c) 酸化的海水抑制了基因pgp-5的表达,减弱了镉的排出。(d) 海洋酸化可能会给海洋生物带来压力,使用于排除镉的能量减少。我们难以在短时间内改变海洋酸化现象,但是在生蚝等双壳类海洋产品的食用中我们却可以采取相当多的措施来保证自己的食品安全。比如看养殖海产品的人有没有使用赛莱默分析仪器(xylem analytics)中的ph测量监控仪器;比如选择正规渠道,正规品牌进行购买海产品;比如去食品监管好的饭店进行用餐;比如不吃。在水产养殖领域,ph的监控是不可缺少的一部分。这样不仅可以给海洋生物带来更舒适的环境,还能使站在食物链顶端的人类少受伤害。赛莱默分析仪器的ph测量仪器分为台式,手持,在线多种。赛莱默分析仪器将用我们最多的心为您提供最优质的水质分析仪器与多种解决方案。您可在赛莱默分析仪器官网了解产品详细参数。参考文献:1.《ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety》2. 百度百科
  • 美媒:研究发现钠钾电池有望替代锂电池
    p   美媒称,佐治亚理工学院的研究人员发现了表明以钠和钾为基础的电池有望成为锂电池之潜在替代品的新证据。 /p p   据美国每日科学网站6月19日报道,从单次充电就能行驶数百英里的电动车,到与汽油锯一样威力巨大的链锯,每年都有利用电池技术最新进步的新产品进入市场。 /p p   但这种增长势头导致人们担心,世界上的锂供应可能最终会耗尽。锂这种金属是许多新型充电电池的核心材料。 /p p   报道称,现在,佐治亚理工学院的研究人员发现了表明以钠和钾为基础的电池有望成为锂电池之潜在替代品的新证据。 /p p   乔治· W· 伍德拉夫机械工程学院以及材料科学和工程学院的助理教授马修· 麦克道尔说:“钠离子和钾离子电池的最大障碍之一是,与其他电池相比,它们的衰减和老化速度往往较快,而储存的能量较少。但我们发现,情况并非始终如此。” /p p   报道称,研究团队研究了三种不同的离子——锂、钠和钾——是如何与硫化铁颗粒发生反应的。这项研究得到美国国家科学基金会和能源部资助,相关论文于6月19日发表在《焦耳》杂志上。 /p p   在电池充电和放电时,离子会不断与构成电池电极的颗粒发生反应,并穿透这些颗粒。这一反应过程会导致电极颗粒发生大量变化,通常会将它们粉碎成细微颗粒。由于钠离子和钾离子大于锂离子,所以传统上人们认为,它们在与颗粒发生反应时会导致更严重的老化。 /p p   报道称,在实验中,他们在电子显微镜下直接观察电池内发生的反应,其中硫化铁颗粒发挥电池电极的作用。研究人员发现,与钠离子和钾离子发生反应的硫化铁比与锂离子发生反应的硫化铁更为稳定,表明以钠或钾为基础的电池寿命可能比预期的要长得多。 /p p   与不同离子发生反应的方式之间的差异显而易见。在与锂接触时,硫化铁在电子显微镜下看上去几乎要爆炸一样。与之相反,在与钠和钾接触时,硫化铁像气球一样慢慢膨胀。 /p p   佐治亚理工学院的研究生马修· 伯宾格说:“我们看到了一种非常稳定、没有发生断裂的反应。这表明,这种材料和其他类似材料能被用于制造经久耐用、具有更大稳定性的新型电池。” /p
  • 越好吃的烧烤,越危险?
    盛夏时节,白天为生活奔波游走的人们约着三五好友,在夜幕降临路的边摊边喝冰啤酒边撸串,与朋友谈天说地似乎成为城市人群的B二选择。然而,这一热闹红火,烟火气十足的生活场景却“暗藏”风险。这时需给大家普及一个名词—苯并(a)芘。是一种含苯环的稠环芳烃,它是是世界卫生组织认证的三大致癌物之一,经常接触此类物质容易使胃、肺、肝、膀胱和消化道发生癌变,是国家抽检重点对象之一。 它广泛分布于自然界,汽车尾气,沥青,焦化炼油等工业污水,Y草烟气中都含有苯并(a)芘,而且它还可以直接或间接的污染农作物和水产品,并且不适宜的食品加工制作也会使苯并(a)芘污染食品,如烟熏、火烤、烧焦、油炸的食品,尤其是烧烤一类的烹饪方式,更是苯并(a)芘污染重灾区。首先,烧烤所用的木炭本身就含有苯并(a)芘,在高温下能伴随烟气侵入食品;其次,烧烤过程会有油脂滴落,脂肪焦化后会产生聚合反应形成苯并(a)芘,附着在食物表面,并且也是烧烤中苯并(a)芘的主要来源。被烤焦,碳化的食物苯并(a)芘含量更高,因为脂肪高温分解后产生自由基会相互结合成苯并(a)芘。在此还需多强调的一点是烤制温度和烤制时间对食品中苯并(a)芘产生的多少又直接影响,温度越高,时间越长苯并(a)芘含量越多。有研究表明,油脂加热到270℃时会产生苯并(a)芘,在低于该温度下烤制的食品,刚烤制熟时,是不含苯并(a)芘的。因此,虽说烧烤“暗藏”风险,但只要我们选择合适的烹饪方式,烧烤也不是吃不得的。 • 以炉烤、电烤等方式对食物进行烤制可极大避免苯并(a)芘的污染,因为烤炉,电烤可以有效地对烤制温度进行控制,不与明火接触,热力均匀,防止焦糊,大大减少致癌物质的生成; • 也可以用锡纸、竹筒包裹着肉进行烤制,这样可以避免过多含致癌物的烟雾进入食物中。当然如果条件不允许,那就尽量把肉肉最外层的皮去掉再吃,千万别舍不得; • 还有很重要的一点就是控制烤制温度,在烤熟的前提下,尽量将温度控制在160℃以下(这时候可控温的电烤炉就显示出它的优势了),可以大大减少致癌物的产生; • 另外,烤的时候要多翻动,这样也能控制肉的表面温度不会过高,受热均匀熟得快,烧烤时间自然就变短了。就算人在江湖吃,万不得已只能选择明火烤,也最好选那种烟从下面抽走的烤具。一般而言,肉距离火源越远,产生的致癌物越少。我们吃完烤串,最好再吃点新鲜果蔬,如香蕉、苹果、梨子等,这样能够促进肠胃蠕动。吃烧烤时人体内容易聚集产生强致癌物质多环芳香烃,但在人体食用梨子等新鲜果蔬后,可有效降低多环芳香烃在人体内的含量。此外,香蕉等水果能在一定程度上抑制苯并(a)芘的致癌危害。
  • 专题约稿|电池的多尺度分析对储能研究的贡献
    p style=" margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " span style=" margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px " i style=" margin: 0px padding: 0px " strong style=" margin: 0px padding: 0px " 专题约稿| /strong /i /span span style=" color: rgb(255, 0, 0) " i strong span style=" font-family: sans-serif " 电池的多尺度分析对储能研究的贡献 /span /strong /i /span /p p style=" margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " strong style=" margin: 0px padding: 0px " i style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px font-size: 18px color: red " /span /i /strong br/ /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " i style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px color: rgb(127, 127, 127) " ——“锂电检测技术系列——形貌分析技术”专题征文 /span /i /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " i style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px color: rgb(127, 127, 127) " (作者:赛默飞世尔科技) /span /i /p p   从我们的手机和笔记本电脑到我们用于建筑和运输的电动交通工具,电池对我们的日常生活至关重要。与此同时,在我们通过引入更高效的电动汽车和替代能源等方式来努力改善地球生活环境时,我们需要更好的新型电池材料来实现性能更高的电池最终目标。这意味着我们需要构建比目前市场上的电池和能量存储设备具备更经济,轻便,紧凑,安全,耐用,易于充电和能量密集的特性电池产品。 /p p   利用电子显微镜,X射线断层扫描,拉曼显微镜,X射线衍射,FTIR,,和XPS等技术,研究人员可以从毫米到纳米级别对电池进行多尺度的检测,从而发现电池在充电和放电时性能衰减的原因。他们也正在学习如何设计在设计新电池时, 通过用不同的表征手段来检查从原材料,电池元件到最终产品的各个环节,从而得到能够承受极端温度的更安全的电池。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 401px " src=" https://img1.17img.cn/17img/images/201905/uepic/7c6f1795-ad7a-422e-aa9d-a7e09c3b86d5.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 401" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:比较18650 锂电池充放电前后Cu集流器在每个水平切片的形状 /span /p p   上图:通过自动的图像处理来确定Cu集流器在每一个水平切片的位置,可以定量的计算出电池中心部分由于充放电导致电极膨胀而变小。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/201905/uepic/7981de91-f38d-4e8e-83e6-97a9ff313f91.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 253" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 上图:Thermo ScientificTM HeliScan microCT /span /p p   18650型锂电池被广泛应用于手电筒,电动香烟甚至一些电动汽车等各种电池供电设备。通过使用Thermo ScientificTM HeliScan microCT对这种电池在充放电前后进行3D扫描和成像,研究人员可以定量的研究电池在循环时内部的变化。通过对3D数据的定量分析,我们发现在电池充放电后,电池内部的电极片体积膨胀,中心杆周围的区域减小。 这种体积膨胀可以在电池单元中产生压力。 如果在电池设计中没有考虑到这种效果,电池单元中的压力可能会导致电池短路,从而可能导致灾难性后果。 因此在设计电池的过程中, 电池制造商对此进行量化非常重要。 /p p   下一代电池的发展对我们的生活影响将是深远的。电动汽车一次充电就可以行驶更长的距离,充电过程需要几分钟而不是几小时。为我们的手机和笔记本电脑供电的电池功能将更强大,使用寿命更长,技术公司也可以将电池使用在更加复杂的应用上,例如虚拟现实。电动工具将持续更长时间并具有更强的输出电流,使工人能够在建筑行业中执行更高能耗的任务。 同时,下一代电池将能够存储更多来自太阳能电池板和风力涡轮机的能量,从而为我们的家庭和办公室提供更高效的电力。 /p p   今天的大部分研究都集中在通过了解锂离子电池失效的原因来改善锂离子电池的性能。随着具有液体电解质的锂离子电池接近最高性能,科学家们正在探索能量密度更高的材料以及储能器件,例如固态电池,从而实现能量储存方面的进一步突破。 /p p   使用不同的分析技术在多尺度对电池以及材料进行研究将是更好地理解电池衰减机理和帮助设计下一代新电池的关键。 /p p    /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" " strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" "    /span /strong strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 附:关于锂电系列专题约稿 /span /strong br style=" margin: 0px padding: 0px " / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" "   近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" "   锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" "   为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。 span style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " 锂电检测系列专题内容征集进行中: /span a href=" https://www.instrument.com.cn/news/20181204/476436.shtml" target=" _blank" style=" margin: 0px padding: 0px color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " span style=" margin: 0px padding: 0px " 【征集申报链接】 /span /a & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p table border=" 0" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 系列序号 /span /strong /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列专题主题 /span /strong /p /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 专题上线时间 /span /strong /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 1 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" —— /span span style=" font-size:12px font-family:宋体 color:#444444" 电性能检测技术 /span /p /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family: & #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 2019 /span span style=" font-size:12px font-family:宋体 color:#444444" 年 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 1 /span span style=" font-size:12px font-family:宋体 color:#444444" 月 /span span style=" font-size: 12px font-family:宋体 color:#00B0F0" 【 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" a href=" https://www.instrument.com.cn/zt/lidian1" target=" _blank" span style=" font-family: 宋体 color: rgb(0, 176, 240)" span 链接】 /span /span /a /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 2 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" —— /span span style=" font-size:12px font-family:宋体 color:#444444" 成分分析技术 /span /p /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family: & #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 2019 /span span style=" font-size:12px font-family:宋体 color:#444444" 年 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 3 /span span style=" font-size:12px font-family:宋体 color:#444444" 月 /span span style=" font-size: 12px font-family:宋体 color:#00B0F0" 【 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" a href=" https://www.instrument.com.cn/zt/lidian2" target=" _blank" span style=" font-family: 宋体 color: rgb(0, 176, 240)" span 链接】 /span /span /a /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 3 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" —— /span span style=" font-size:12px font-family:宋体 color:#444444" 形貌分析技术 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 2019 /span span style=" font-size:12px font-family:宋体 color:#444444" 年 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 5 /span span style=" font-size:12px font-family:宋体 color:#444444" 月 /span span style=" font-size:12px font-family:宋体 color:#00B0F0" 【 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" a href=" https://www.instrument.com.cn/zt/lidian3" target=" _blank" span style=" font-family: 宋体 color: rgb(0, 176, 240)" span 链接】 /span /span /a /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 4 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" —— /span span style=" font-size:12px font-family:宋体 color:#444444" 晶体结构分析技术 /span /p /td td rowspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 5 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" ——X /span span style=" font-size:12px font-family:宋体 color:#444444" 射线光电子能谱分析技术 /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" 6 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 锂电检测技术系列 /span span style=" font-size:12px font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#444444" —— /span span style=" font-size:12px font-family:宋体 color:#444444" 安全性和可靠性分析仪器及设备 /span /p /td /tr /tbody /table p br/ /p
  • 研究发现:晚于这个时间吃早餐,患糖尿病风险较高
    众所周知,早餐是人一天中比较重要的一餐。此前的研究表明,早餐可以让人精力充沛,提高工作和学习的效率。但是,几点吃早餐最合适,很多人并不清楚。近日,一项发表在2021年美国内分泌学会年会上的研究表明:在8:30之前开始吃早餐的人,血糖水平和胰岛素抵抗程度均较低,这或许可以降低患2型糖尿病的风险。在研究过程中,科学家对一万多名成年人进行了调查。他们发现,进食时间间隔短的人,胰岛素抵抗水平高。而在早上8:30之前吃早餐的人,体内胰岛素抵抗水平普遍偏低。科学家表示,不管人们是否禁食,如果他们在早上8:30之前吃第一顿饭,其胰岛素抵抗水平就会降低。这表明较早时间吃早餐,总体上对人体的新陈代谢有更多益处。科学家建议,糖尿病患者除了要特别注意早餐时间,还应该注重营养。比如全谷物搭配一些蔬菜、肉类,饮料可以选择牛奶或咖啡。
  • CHINA-PHARM 2013成功闭幕 彰显医药市场信心与商机
    2013年11月1日,由中国医药国际交流中心和杜塞尔多夫展览(上海)有限公司共同主办的&ldquo 第十八届中国国际医药(工业)展览会暨技术交流会&rdquo (CHINA-PHARM 2013)在上海新国际博览中心完美落下帷幕。作为行业内重要的国际专业展览会,随着新修订药品GMP的实施,CHINA-PHARM为推动国内外制药设备发展,继续发挥着积极作用。   前瞻政策,全线产品,实效方案 尽在CHINA-PHARM   本届展会的面积达23,000平方米,在为期四天的展期内,共有来自21个国家和地区的421家展商在这一医药盛典上百花齐放,竞相展示各自的优势产品与技术。德国展团,英国展团,中国台湾展团,Club Italy意大利企业展区等作为国家和地区展团也纷纷亮相CHINA-PHARM。主办单位在展前针对专业买家组织,进行了富有实效性的观众招募活动和多渠道的宣传方式,使得今年的现场专业观众组织工作卓有成效。开展期间观众人潮涌动,馆内熙熙攘攘,川流不息,人气十足。数据统计显示,CHINA-PHARM 2013共接待观众20,443人次,其业务范围涵盖了药品、生物制品生产、原料药/中间体/化工产品生产、专业贸易和代理、保健品/食品/化妆品生产、医药商业/咨询、学术机构/院校、协会、媒体,及相关政府部门等。本届展会吸引了60个国家和地区的专业观众,彰显CHINA-PHARM的国际影响力和高度专业性。展会现场共接待了来自不同国家和地区的23个专业买家团。   同期活动与技术交流会精彩纷呈 探讨热点话题扩展行业视野   CHINA-PHARM展会期间举办的2013中国制药工程年会(ISPE-CCPIE China Conference 2013)、2013年PDA/CCPIE无菌药品生产研讨会、药用辅料GMP论坛、制药行业洁净技术论坛及相关专业技术交流会等多场活动,从政策、科技、商业发展等多重角度、不同层面进行深入的研讨和交流制药领域技术问题,介绍了先进的技术和产品,活动参与踊跃,展商和观众对同期活动均有很高的评价。其中,中国制药工程年会由医药交流中心和国际制药工程协会共同组织,得到国家食品药品监督管理总局药品认证管理中心的大力支持和指导 无菌药品生产研讨会得到了美国注射剂协会(PDA)的支持。展览会同期进行第二届CHINA-PHARM医药生物人才交流活动,参与者有来自行业内知名的医药生物上市企业,为相关生物医药企业与求职者提供一个沟通交流的平台,现场招贤纳士。   国际化展会为中外行业交流牵线搭桥 深受展商及观众赞扬   参展商评价CHINA-PHARM时表示,&ldquo 在CHINA-PHARM中,不仅能够寻找到项目,更能够创造项目。&rdquo &ldquo 在本届展览会,我们已经签订了两、三百个订单,来到CHINA-PHARM,确实收获良多。&rdquo &ldquo 每年参加CHINA-PHARM已经成为我们重要的年度活动,在展览会上不仅仅是为了当场做成交易,更重要的是能够先一步获得市场商机。&rdquo &ldquo 曾经在参加展览会结束后回到工厂就有陌生的新客户前来洽谈,深入了解才知道原来是在展览会中看到我们,CHINA-PHARM的参展效果不仅仅在展会现场,还能够有延续性!&rdquo &ldquo 2014年,我们还会继续参加CHINA-PHARM,并扩大展示面积,同CHINA-PHARM一起在深圳全新呈现!&rdquo   也有观众参观后表示,&ldquo CHINA-PHARM是一个气氛轻松,拥有相当多国际品牌参展商的展会,除了参观展会,还有诸多高水准的研讨活动,令人收益颇丰。&rdquo &ldquo CHINA-PHARM的行业专业性很强,展品丰富,能够了解到国际最新的技术和发展趋势,是一个很好的沟通机会。&rdquo &ldquo 中国制药工程年会的内容都是国际最尖端的技术,并且能够在这里了解到行业的走向,认识了很多行业内的新朋友,特别是有机会与国家食品药品监督管理总局药品认证管理中心的领导和专家进行现场交流,十分的难得。&rdquo 也有国际观众在参观后现场达成下一届CHINA-PHARM展览会的参展协议。   自1998年以来,德国机械设备制造业联合会食品与包装机械专业协会(VDMA)每届都组织德国展团参展,深深感受到CHINA-PHARM展会行业地位的日益突显,其副总经理Dr. Peter Golz表示:&ldquo CHINA-PHARM带来了行业最新的技术和设备,更重要的是,CHINA-PHARM为行业提供了未来趋势的指引。&rdquo   国家食品药品监督管理总局药品认证中心主任杨威、副主任沈传勇,和各省市认证中心领导共同参观了CHINA-PHARM展览会,并与很多展商进行了面对面的交流。   作为一个具有国际影响力的展览会,CHINA-PHARM不仅拉进了国内外医药企业的距离,促进了国内外医药技术的交流,更成为先进制药技术和理念的传播平台。   下届CHINA-PHARM展览会将于2014年10月28-31日在深圳会展中心举行。全新呈现,深圳再见!   CHINA-PHARM展览会的更多信息,请访问网站:www.china-pharm.net
  • 降低锂离子电池的火灾和爆炸风险
    2013年1月7日,一架波音787飞机上的保洁人员发现飞机后舱冒烟。一名机修工在经过仔细检查后,发现火灾源自APU电池外壳的盖子。所幸这架飞机当时停在美国洛根国际机场,因此183名旅客和11名机组人员均未受伤。九天后的2013年1月16日,另一架波音787飞机因出现主锂离子电池事故而不得不紧急降落在日本高松机场。因此,联邦航空管理局(FAA)在NTSB(美国国家运输安全委员会)开展调查前,停飞了整个787“梦幻客机”机队。被忽视的严重问题 NTSB调查发现,火灾最可能的原因是锂离子电池发生内部短路。这种短路导致热失控,造成相邻电池温度升高,从而导致过热、火灾甚至爆炸。波音787飞机是第*一架使用大型锂离子电池的飞机,经过一番艰难排查,发现其存在一定的局限性。总结如下:波音、FAA和电池制造商并未完全解锂离子电池的相关风险。然而,这不是锂离子电池第*一次在飞机上引发问题。就在今年,FAA发布了一份在线清单,列出了从1991年3月至2019年5月22日发生的258起独立事件,其中包括锂离子电池导致的烟雾、火灾、过热或爆炸。自2016年4月以来,国际民用航空组织一直实施有关锂离子电池航空运输的严格法规——美国今年也已效仿此项举措。那么,为什么锂离子电池如此危险?制造商可采取哪些措施来降低风险?什么原因导致锂离子电池过热?NTSB调查发现,电池发生的内部短路会导致火灾。短路会导致电流过大,使电池过度加热,从而使之点燃。如今,人们普遍认为,电池内异物产生的细小金属颗粒是导致短路的原因。产生这种现象的方式如下:1. 化学短路在这种情况下,阴极附近的电解质内尺寸为20µm至50µm的微小金属颗粒发生电离。电离原子带正电荷,表明它们会被吸引至阳极。在向阳极移动时,它们会穿透电池隔板,从而导致阴极至阳极侧发生短路。2. 物理短路如果阴极电解质中存在大金属颗粒(如尺寸超过100µm),则它们的尺寸大到足以在隔板上打孔,并将电流直接从阴极传送至阳极侧,从而再次发生短路。如何对应以确保安全?为确保安全操作,电池制造商和电池组件提供商必须检查并减少生产中的金属异物。必须将异物保持在最*低限度的区域如下:阳极和阴极材料导电增强剂浆料形成过程镀层和干燥过程检查这类区域中的金属异物的尺寸和密度将有助于避免发生会导致整个波音787机队停飞的现场故障。日立X射线异物分析仪EA8000日立分析仪器开发出专门用于检测和分析锂离子电池内金属异物的X射线分析仪EA8000,它创新性地协同使用X射线透射成像与先进的X射线荧光光谱,具有极快的测量速度、高准确性和高精密度等特点,可用于维持整个锂离子电池生产过程中的质量。
  • 通过质谱分析发现两百万年前牙齿内含最古老人族基因
    人族指人类及其古老的亲属,大约700万年前出现在非洲。据《自然》网站10日报道,在一项最新研究中,来自丹麦和南非的科学家从生活在200万年前的非洲原始人罗百氏傍人的牙齿化石中提取到了其基因信息,这是迄今发现的最古老的人族基因,将基因记录追溯到了以前无法企及的时间。描述相关蛋白质序列的论文已经提交生物预印本网站。  哥本哈根大学和开普敦大学研究人员领导的团队,对在约翰内斯堡西北部发现的4个罗百氏傍人的化石进行了采样。长期以来,研究人员一直在争论这些原始人与其他古代人类物种的关系。  研究团队使用质谱分析技术,分析了每个样本牙釉质(牙齿的矿物外层)中的数百种氨基酸。他们在一些牙齿中发现了釉原蛋白-Y,其由Y染色体上的一个基因产生,他们因此确定这些牙齿属于男性。另外两颗牙齿缺乏釉原蛋白-Y的迹象,且含有该蛋白的X染色体版本,他们推断这些样本可能来自女性。  研究人员指出,这是一个惊人的发现,这么漫长的岁月,这些遗骸“几乎变成了石头”。  研究团队对所有4个样本中约400个相同的氨基酸进行了测序,在此基础上绘制出了一个简单的进化树。  研究团队指出,根据这些古老遗骸的基因数据构建的进化树,“有望成为古人类学领域一个变革性突破”。研究古老的蛋白质可提高人们对非洲南方古猿等在人类家谱中的位置的理解,有“人类祖母”之称的“露西”就属于南方古猿。不过,也有其他科学家表示,古老的蛋白质是否有助人们对人类进化的图景达成共识,目前还没有定论。
  • 添加纳米线让锂离子电池更安全
    p style=" text-indent: 2em " 无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。 /p p style=" text-indent: 2em " 在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。 /p p style=" text-indent: 2em " 他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。 /p
  • 安东帕流变仪如何降低电池安全风险?
    目前,欧盟约20%的温室气体排放是由交通造成的。如果你关注于这个问题,你将无法忽略一个主题:电池。几十年来,它们一直是收音机、牙刷、电话不可或缺的,在过去几年中,我们甚至在更大范围内改用电能,例如汽车。电动汽车是一种趋势。尽管它们带来了优势,但有时仍带来一些恐惧:如果汽车电池突然爆炸怎么办?识别风险“原则上,这是可能的。理论上,不正确的接触会导致电池燃烧,甚至包括汽车电池,”Anton Paar流变仪领域的培训与沟通经理兼电池专家Christopher Giehl说道。电动汽车通常配备锂离子电池。与所有电池一样,该电池由正极(阳极)和负极(阴极)负载端组成。中间是隔膜和电解质溶液,它提供锂离子的充电传输。如果双方在没有电解质溶液和隔板的情况下“接触”,或者如果电池充电过快,就会发生过热,电池可能会爆炸。对于汽车电池,这可能在出现事故时发生,例如隔板被撕裂或刺穿。将风险降至最低这就是Anton Paar流变仪(如MCR 92或702e MultiDrive)发挥作用的地方。它们用于电池领域的三种不同分析。“首先:分析所谓的‘浆料’的流动特性。浆料以液体状态覆盖在集电体上,干燥、压制,形成正极或负极。对于混合、转移和涂覆到集电体的过程,浆料的流变特性非常重要。第二:可以分析隔膜的拉伸特性。它需要非常有弹性,不易撕裂,并且在高温和潮湿条件下保持稳定。第三:我们正在分析电解质溶液(正极和负极之间的液体)。它必须很容易填充,但理想情况下是剪切加厚,这意味着它会在突然的强大压力下变硬,就像车祸一样。否则,正极和负极会接触,导致短路,并可能导致火灾或爆炸,”Christopher Giehl说。
  • 五仁还是咸肉?吃得安全才最美味
    盼望着,盼望着,中秋的脚步近了。三天惬意小长假,当然少不了月饼。从前大家守着自家门口吃,相互之间没交流,无论是五仁还是咸肉,都没意见。如今交流频繁了,大家对哪种月饼好吃争论不下。不过咱先别管馅料了,吃得安全才最重要。安不安全我们就来测下色素吧。 色素想必大家都不陌生,添加到食物中可令食物看起来更加诱人。食用色素主要分为天然色素和人工合成色素,只要是按照国家标准添加,并不会对人体产生危害。检测色素常用方法是高效液相色谱法,在这里日立将对六种人工合成色素进行分析。六种人工合成色素的最大紫外吸收波长不同,可以使用二极管阵列检测器进行同时分析,获得最佳波长下的提取色谱图。还可通过比较标准品与待测样品的光谱图,排除假阳性峰,实现更精准无误的分析。【标准品】缩写中文名称提取波长R2苋菜红 530 nmB2靛蓝胭脂红 620 nmY5日落黄480 nmB1亮蓝FCF620 nmR3四碘荧光素 530 nmR106酸性红52530 nm[分析条件] 色谱柱 : 日立 LaChrom C18 (3 mm) 4.6 mm I.D. 150 mm流动相 : (A) 10mmol/L 醋酸铵/ CH3CN = 95/ 5 (B) 10 mmol/L 醋酸铵/ CH3CN = 50 / 50梯度 : (0 min) B 2 % ® (21 min) B 100 % ® (27 min) B 100 %流速 : 1.0 mL/min 柱温 : 40 °C检测波长: DAD 254nm, 480nm, 530nm, 620nm进样量: 10 mL [标准品的等高线图(各50 mg/L)]【最佳波长下的提取色谱图】【光谱图的确认】【线性】在0.5~50 mg/L浓度范围,所有色素的标准曲线的r2≥0.999,显示了良好的线性关系。 小结:日立液相二极管阵列检测器能达到与紫外检测器同等的灵敏度,无需担心低含量样品的测定。既可提取不同波长的色谱图,又有光谱图可排除假阳性的误判,实乃食品行业必备检测器——日立液相二极管阵列检测器。关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注日立高新官方网站:http://www.hitachi-hightech.com/cn/
  • 德国RETSCH(莱驰)西安技术交流会举办
    刚参加了北京分析测试学术报告及展览会(BCEIA),举办了北京办事处的开业典礼,德国RETSCH(莱驰)又马不停蹄地前往西安,举办样品前处理技术交流会。此前,RETSCH已在全国13个城市举办过技术交流会,此次西安之行为2009年度德国RETSCH(莱驰)的全国样品前处理技术交流会画上了圆满的句号。   12月4日,来自西安各大高校,商检、质检、研究所近百名实验室工作者将西安香格里拉金花大酒店会议室坐的满满当当,德国RETSCH(莱驰)西安技术交流会在大家的期待中召开。   此次技术交流会由RETSCH北方总代理北京博力飞科技发展有限公司和RETSCH中国总部合办。由RETSCH中国区经理董亮先生、产品经理苏璇小姐、博力飞公司区域经理黄皓先生分别讲解,从地矿冶金行业的整体取制样方案到RoHS行业的样品制备,从筛分技术到粒径粒形分析,从食品生物的应用到土壤及固废的样品制备,分多个角度、多个行业阐述了RETSCH粉碎筛分设备的应用和设计特点。会议现场提供了近十台样机,比如颚式粉碎仪BB51、振动盘式研磨仪RS200、超离心研磨仪ZM200、冷冻混合研磨仪MM400、刀式捣磨仪GM200、振荡筛分仪AS200等,许多用户带来样品进行现场演示,都取得了满意的效果。   RETSCH在样品前处理设备研究上不断推陈出新,两款新品隆重上市,包括全自动冷冻研磨仪Cryomill、强力筛分仪AS450。Cryomill被誉为低温粉碎技术的新里程碑,整个研磨过程样品始终处在液氮下,保证了样品绝对不会变性,液氮的加入和补充,仪器的预冷,整个粉碎过程全部由程序自动控制,即方便又安全,避免了手工添加液氮的危险性 强力筛分仪AS450强劲的能量和多达20kg的处理量是您高质量的筛分的又一选择。2010年莱驰还将推出专家型刀式研磨仪GM300、气流筛分仪AS200jet等仪器,帮助您实现更完美的样品前处理过程。     全自动冷冻研磨仪Cryomill   作为样品前处理行业的领头羊,RETSCH不断研发新产品进行多方式的市场推广,市场占有率不断攀升 2010年RETSCH中国会不断完善技术支持和售后服务体系来回报客户对RETSCH品牌的信任。   关注RETSCH,关注2010!
  • 德国RETSCH(莱驰)参加西安颗粒学年会
    一年一度的中国颗粒学年会于2010年8月15日至18日在西安举办,与往年不同的是,同期还举办中国颗粒学会第五次会员代表大会及理事会换届工作会议、上海颗粒学会年会及北京粉体技术协会年会,还安排企业交流专场、仪器设备展示会。 如此盛大的会议,作为样品前处理行业领头羊的德国RETSCH(莱驰)自然必不可少。RETSCH中国区总经理董亮先生在颗粒测试与应用分会场为在场嘉宾介绍了动态数字成像技术在现代粒度分析中的应用,带领大家走进粒径粒形分析的新领域。 莱驰专注于实验室样品前处理,有全套的筛分仪和颗粒粒径分析设备。您在仪器设备展示区也能见到莱驰的身影。根据不同的颗粒性质、单次处理量,莱驰都有相应的筛分仪适用。例如一般性的干性颗粒,可使用振动筛分仪AS200进行颗粒大小测试;如果颗粒很大处理量也很大,例如建筑行业,可使用强力筛分仪AS450筛分。2010年莱驰还推出新款空气动力筛分仪AS200jet,能够有效防止微小颗粒团聚现象的产生。 除此之外,令来宾赞不绝口的就是莱驰多功能粒径粒形分析仪camsizer,这是全球第一台利用动态数字成像技术的粒度分析仪。测量范围宽,并且只需一次进样,就可得到颗粒大小、分布、球形度、对称性、凹凸度等颗粒综合信息,大大提高了实验室工作者的效率。 如果您想进一步了解莱驰仪器,可于2010年9月15日-17日至上海龙阳路新国际博览中心,莱驰将携所有2010年新品现身Analytica 2010慕尼黑生化展,期待您的光临。 德国莱驰展位号 W1 1210
  • 限国产!佛山仙湖实验室预算540万采购燃料电池环境实验舱
    3月12日,佛山仙湖实验室燃料电池环境实验舱采购项目发布招标公告,该项目预算540万,采购本国产品。一、项目基本情况项目编号:XH2021CB-01-006(内部编号:GZGK21D039A0087Z)项目名称:佛山仙湖实验室燃料电池环境实验舱采购项目采购方式:公开招标预算金额:5,400,000.00元采购需求:燃料电池环境实验舱实现的功能:环境舱主要用于150KW功率等级燃料电池发动机及其配套散热器,以及150KW的电堆在-40-+85℃的环境下进行温度存储试验,在-30-+65℃的舱内环境下进行60min额定功率、峰值功率、动态响应、稳态特性等试验时,舱内空气供应充足,各工况下发动机迎风面温度波动不超±3℃。并满足-40℃条件下低温启动试验,温度海拔高度试验(进排气管道气压模拟)。环境仓预留气体、冷却水以及电路接口。环境舱可分别做燃料电池发动机及电堆环境测试,环境舱需与发动机测试台架及电堆测试台架进行软硬件系统集成,可通过测试台架主控系统远程监测控制环境仓的工作状态。环境舱可进行单独编程控制,也可通过测试台架主控程序进联调控制。注:本项目采购本国产品。二、获取招标文件时间:2021年03月12日至2021年03月19日,每天上午09:00:00至12:00:00,下午14:30:00至17:30:00(北京时间,法定节假日除外)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)方式:现场购买或在线购买。售价(元/套): 300三、提交投标文件截止时间、开标时间和地点2021年04月02日 15时00分00秒(北京时间)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)四、联系方式1. 釆购人信息名称:佛山仙湖实验室地址:广东省佛山市南海区丹灶镇仙湖度假区阳明路1号联系方式:0757-812290952. 釆购代理机构信息名称:广州市国科招标代理有限公司地址:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)联系方式:020-876870433. 项目联系方式项目联系人:张小姐、李小姐电话:020-87687142、020-87688847五、附件投标须知.pdf0087Z佛山仙湖实验室燃料电池环境实验舱采购项目——发售稿.pdf
  • 日程公布|赤池敏宏、林金明教授领衔第二届“中日科学家论坛”
    仪器信息网讯 仪器信息网(instrument.com.cn)将再次携手日本分析仪器工业协会(Japan Analytical Instruments Manufacturers Association, JAIMA)共同组织科学家论坛“中日科学家论坛——之生命科学”。鉴于全球新冠疫情,本次会议将采取线上方式,借助成熟的网络会议平台,突破时间地域的限制,为海内外专家提供便捷的方式,进行跨越时空的交流。 此次在线科技论坛有幸邀请到日本著名细胞工程学家、东京工业大学名誉教授赤池敏宏教授,国家杰出青年科学基金获得者、清华大学林金明教授,南开大学杨军教授,南京大学江德臣教授,中国科学院大连化学物理研究所陆瑶研究员及东京都立大学関禎子研究员。将分别围绕生命科学中的细胞工程、生物材料及其再生医学领域应用、创新细胞分析技术和生物基底材料表征技术等前瞻性领域进行探讨。主办单位:仪器信息网 日本分析仪器工业协会JAIMA会议形式:线上会议会议时间:2022年7月20日09:30-16:00(北京时间)报名参会:免费,点击此处链接 或扫描下方二维码扫码报名日前,会议日程已确定,详细日程如下:中日科学家论坛——之生命科学(北京时间7月20日)报告时间报告题目报告嘉宾 09:30-09:40 致辞 唐海霞 北京信立方科技发展股份有限公司 CEO 09:40-09:50 致辞 中本晃 日本分析仪器工业会(JAIMA) 会长 9:50—10:35 NEW ERA of Advanced Biomaterials for Regenerative Medicine, Drug Delivery System and NEW vaccination- From “ Cadherin Biology to Cadherin Engineering” 再生医学、载药系统和新型疫苗先进生物材料新时代-从“钙粘蛋白生物学到钙粘蛋白工程” 赤池敏宏 东京工业大学 名誉教授 関禎子 东京都立大学 客员研究员 10:35-11:15 钙黏素功能化生物材料调控干细胞命运及其再生医学应用研究 杨军 南开大学 教授 11:15-13:30 午休 13:30-14:10 Microfluidics Combined with Mass Spectrometry for Cell Analysis 微流控质谱联用细胞分析方法研究 林金明 清华大学 教授 14:10-14:50 单细胞活性分析 江德臣 南京大学 教授 14:50-15:30微流控芯片单细胞分泌分析 陆瑶 中国科学院大连化学物理研究所 研究员 报告嘉宾简介赤池敏宏教授 赤池敏宏教授作为东京工业大学的名誉教授,是细胞工程学(Cell engineering)领域的权威。他坚信“生物材料的未来是光明的”,是医学、生命科学和材料科学的桥梁。他的研究工作以开发高品质ES细胞和iPS细胞的大规模培养技术为目标,在再生医疗领域取得国内外的广泛关注。 赤池敏宏教授在中国具有丰富的科研经验,也在中国结交了很多知己,并培养了大量年轻学者和学生,将中国视为自己的“第二故乡”。本次他希望借助以往的经验,以其再生医疗及其周边领域的实用化研究科研课题申请“中国制造2025”的关键领域——“生物医药”领域的政府资金支持。 主要研究课题——为了实现再生医疗用生物材料(医用高分子材料)的开发 目前,在再生医疗研究领域,人工器官的高度功能化、长期植入人工器官的开发、以iPS(人工多功能性细胞)技术安全培养大量细胞等技术开发呈现迟滞状态。赤池教授在再生医学领域,意图使用细胞替代组织、器官的功能,以达到组织再生、维持和修复的目的。其中,他利用iPS细胞间连接蛋白(钙黏蛋白,cadherin)的蛋白抗体,开发出一种细胞吸附性材料,可以识别和调控细胞功能。采用这种生物材料培养iPS细胞,细胞将不聚集,也不会感染未知病毒,并可实现细胞的大规模培养,这正是再生医疗应用的重要技术,具有划时代的意义。林金明教授 清华大学化学系教授,博士生导师,1992-2002年在日本留学和工作,1997年3月获得日本东京都立大学工学博士学位,同年留校任教。受聘中国科学院生态环境研究中心研究员,博士生导师。2001年获得国家杰出青年科学基金,2008年受聘教育部长江学者特聘教授,2014年入选英国皇家化学会会士。 目前主要从事微流控质谱联用细胞分析、空气负离子制备与应用、化学发光免疫分析的研究。发表研究论文400余篇,授权发明专利30项,并在专利基础上研制成功多款仪器设备,得到普及推广。目前兼任中国化学会监事会监事、分析化学专业委员会副主任、中国药学会药物分析专业委员会副主任委员,中国分析测试协会常务理事等多种学术委员会委员。杨军教授 南开大学教授,1990年毕业于天津大学应用化学系高分子化工专业(学士);1997年毕业于天津大学应用化学系高分子材料专业(硕士);2001年毕业于日本东京工业大学生命理工学研究科生物技术专业(博士);2001-2005年在日本国立医药品食品卫生研究所完成 JSPS 博士后并继任日本厚生省流动研究员工作;2006年入职南开大学任现职。中国生物材料学会生物医用高分子分会委员、中国复合材料学会生物医用复合材料分会理事及天津生物医学工程学会理事,多种SCI源期刊审稿人。 研究领域为生物材料与再生医学。着眼于生物学、材料学及生物工程学的交叉融合发展,基于生物合成研发融合蛋白材料及其与天然多糖的复合材料,研究三维仿生细胞外微环境构建的基本原理与技术;探索工程化干细胞与组织工程材料在再生医学领域的应用研发,并已取得独创性研究成果。主持并完成多项国家和天津市自然科学基金,参与国家自然科学基金重点和863/973项目数项;发表SCI学术期刊60余篇,申报发明专利7项(已获授权7项),参与《生物材料科学:医用材料导论》(原著第2版)-中文版翻译及《材料大辞典》(第2版)生物医用材料编委会。江德臣教授 南京大学化学化工学院及生命分析化学国家重点实验室教授,博士生导师,单细胞分析课题组组长,教育部青年长江学者,江苏省化学化工学会质谱专业委员会秘书长。于2000、2003和2008年分别在南京大学、复旦大学和美国凯斯西储大学获学士、硕士和博士学位。2008-2011年在美国北卡莱罗拉州大学教堂山分校从事博士后研究。2011年加入南京大学化学化工学院。研究兴趣为高内涵单细胞分析方法和装置的建立。主持国家自然科学基金项目3项,作为研究骨干参与基金委重大仪器专项、科技部重大仪器专项、重点研发计划、重点项目等。曾获仪器仪表学会分析仪器分会“朱良漪分析仪器青年创新奖”。以通讯作者在PNAS、JACS、Angew、Anal Chem 等期刊发表学术论文50余篇。申请/授权中国专利6项。陆瑶研究员 陆瑶,博士,中科院大连化物所研究员、研究组组长。主要从事基于微流控芯片的单细胞分析技术发展及其在健康、疾病中的应用等研究,相关工作以责任作者发表于PNAS, Science Signaling, Analytical Chemistry等期刊。发展的单细胞分泌蛋白分析技术被著名科普杂志《科学家》(The Scientist)评为2017年度十大医疗技术发明首位。関禎子 関禎子,东京都立大学客员研究员,生命材料表面分析专家,在赤池敏宏教授的研究中负责AFM分析工作。
  • 锂离子电池用X射线异物检测仪问世
    精工电子纳米科技有限公司成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日展出。   锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。   金属异物的掺入途径是通过活性物质[1]、分离器[2]等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。   最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。   把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。   X射线异物检测仪的主要特征:   1、可在数分钟内检测出A4大小样品中20μm左右的金属异物   例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。   2、元素识别速度大幅提升   对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。   3、一体化的操作,提高作业效率   X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。   [1]活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。   [2]分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来。
  • 锂离子电池用X射线异物检测仪问世
    世界首台*1 使微小金属异物的快速检测及元素分析自动化   精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。SIINT成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日的日本国内最大的分析仪器展「分析展/科学仪器展2011」(幕张Messe)展出。 X射线异物检查仪(样机)   锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。   金属异物的掺入途径是通过活性物质*2・ 分离器*3等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。   最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。   把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。   【X射线异物检测仪的主要特征】   1.可在数分钟内检测出A4大小样品中20μm左右的金属异物   例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。   2.元素识别速度大幅提升   对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。   3.一体化的操作,提高作业效率   X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。   *1 敝司调查   *2 活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。   *3 分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来   本产品的咨询方式   中国:   精工盈司电子科技(上海)有限公司   TEL:021-50273533   FAX:021-50273733   MAIL:sales@siint.com.cn   日本:   【媒体宣传】   精工电子有限公司   综合企划本部 秘书广告部   【客户】   精工电子纳米科技有限公司   分析营业部 营业二科   TEL: 03-6280-0077(直线)   MAIL:info@siint.co.jp
  • 德国耐驰西安技术研讨会圆满结束
    10月12日,德国耐驰公司在13朝古都西安举办热分析技术研讨会,来自西安交通大学、西北工业大学、西北大学、西安理工大学、航天43所、西航公司等多个高校和研究机构的51名科研人员参加了此次会议。会场上气氛热烈,与会者与耐驰公司的技术专家曾智强博士热烈讨论了有关热分析方面的技术问题,会议在热烈的讨论中圆满结束。 耐驰公司在西安的热分析用户众多,并且很多用户是做航空航天方面的研究,这些客户对仪器的测试要求非常苛刻,在某些方面代表了目前测试的最高要求,耐驰公司的仪器都可以很好的满足,从另外一个方面也反映了耐驰仪器的性能和品质。此次会议主题以高温仪器为主,同时介绍了耐驰仪器的最新进展。耐驰公司不但能够全线提供热分析仪器,而且近几年在仪器研发方面投入了大量的精力,新近又推出一系列新款仪器,F3系列的同步热分析仪,差示扫描量热仪、热机械分析仪等。同时在绝热量热领域也有新品推出,绝热量热仪(ARC244、ARC254和APTAC264),针对不同的应用需求,可以灵活配置不同的模块,该仪器非常适用于工业安全领域,可以测量放热化学反应的热量和压力,帮助研究者掌握过程安全的关键因素,实现制造、运输、贮运等方面的安全评估,应用领域涵盖化工、医药、能源(电池、煤炭、石油)、军工(爆炸物)等。 会议就客户经常碰到的技术难题做了现场解答,并提供给客户详实的应用实例,对于新仪器应用方面客户感兴趣的问题,耐驰的技术专家也给予了全面的解答,会议内容充实,讲解仔细,得到与会者的一致肯定,会议在愉快的气氛中顺利结束。 耐驰下一站将移师天津,如果想了解更多关于热分析方面的技术问题,欢迎您参加耐驰的热分析技术研讨会,或者登录耐驰的网站:www.netzsch.cn。
  • 英发现可精确监控锂电池老化的新方法
    科技日报2010年05月22日讯 英国研究人员在最新一期的《自然材料学》杂志撰文指出,他们找到了一种简单而精确的方法,可以监控锂电池中正在进行的化学反应,尽早发现和量化容易引发火灾的枝状晶体的形成。研究人员表示,该新方法将助力锂电池的大规模商业化应用。   目前,锂电池广泛地应用于手提电脑和手机中,它也是下一代电动汽车发展的“引擎”。但是,锂电池存在着一个主要的缺陷:在几次充放电循环之后,尤其是锂电池被快速充电后,炭阳极会出现细小的锂纤维(枝状晶体),这些枝状晶体会引发短路,导致电池快速过热甚至引火爆炸。   通过利用理论模型、光学显微镜和扫描电子显微镜来研究枝状晶体的形成,研究人员找到了一种量化已经成型的枝状晶体数量的方法,并在使用核磁共振成像光谱观察一个1厘米长的电池中发生的化学反应时验证了新方法。
  • 郭冰再度减持华测检测620万股 套现1.46亿
    2015 年5月4 日,华测检测股东郭冰减持无限售条件流通股6,200,000 股,减持比例达到公司总股本的1.63%。本次减持均价23.59元,套现1.46亿元。本次减持后,郭冰仍持有公司股份2441万股,占总股本的6.4%,均为无限售条件流通股份。   此前,在2015年4月7-10日期间,通过交易系统郭冰累计减持华测检测股份575万股,占公司总股份的1.51%。如果以华测检测当时股价粗略估算,郭冰此次减持套现资金超过了一亿元。   2015年3月23日至4月3日期间,郭冰通过交易系统减持公司股份450万元,占公司总股份的1.18%。   2014年7月3日,华测检测发布公告,称郭冰辞去华测检测董事职务。当时郭冰现直接或间接持有华测检测股份5689.83万股。   目前,郭冰已加入天美(控股)有限公司担任大中华区行政总裁一职。
  • 雪迪龙敖小强再减持600万股 套现2.4亿元
    北京雪迪龙科技股份有限公司于2015年6月12日接到控股股东敖小强的通知,因向雪迪龙员工持股计划提供无息借款和个人投资及其他资金需求,敖小强于2015年6月11日通过深圳证券交易所大宗交易方式减持本公司无限售流通股600万股,占公司总股本的0.99%。   按照减持均价计算,敖小强此次套现约2.38亿元。上个月中旬,敖小强曾减持1200万股,当时套现约为3.21亿元。如此对比发现,借助智慧环保、海外技术并购等利好事件,雪迪龙公司股价攀升不少。   敖小强自2015年4月21日披露股份减持计划起至本次减持完成,已累计减持股份1800万股,占公司总股本的2.98%。   本次减持完成后,敖小强持有公司股份38,526万股,占公司总股本的63.69%,仍为公司控股股东、实际控制人。
  • 万测集团CHINAPLAS2018国际橡塑展绚丽呈现
    china plas2018中国国际塑料橡胶工业展已落下帷幕,万测集团作为试验机行业的创新者与引领者,在本届国际橡塑展上留下了坚实而浓墨重彩的一笔。 万测集团是一家集研发、制造、销售、服务和专业力学性能测试解决技术方案提供、实施为一体的国家高新技术企业。拥有国内最好的试验机,凭借多年的行业经验和创造性的技术团队创新开发,产品覆盖了航空航天、机械制造、车辆制造、船舶工业、建筑建材、生物材料、大专院校、科研院所、国家质检、进出口检验等众多领域。 万测集团此次展会展出的产品有:teststar(新秀)etm104b-ts电子万能试验机、teststar(新秀)pit501j-ts塑料摆锤冲击试验机、dsm251a微电脑全自动哑铃制样机、mfi452熔体流动速率试验机。 teststar(新秀)etm104b-ts电子万能试验机采用精密预加载高精度滚珠丝杆、线性运动导向装置,确保整机运行的高线性。采用高速率、低振动的世界一流原装进口伺服电机驱动装置,可实现全寿命免维护。它采用dtc-500控制器,高达1000hz采样频率及500000码有效采样分辨率,1000mm/min横梁移动速及美国原装进口具有自识别功能的高精度负荷传感器,完全满足全球安全指令包括机械设备的2006/42/ec,低电压2006/95/ec,emc指令20044/108/ec等国际标准要求。采用testpilot 2.0世界通用测控软件,全部c++语言精炼而成,运行效率高,全语言版更可一键式切换各种国际通用语言。 teststar(新秀)pit501j-ts塑料摆锤冲击试验机采用伺服电机驱动自动取摆,自动冲击,冲击试样后自动挂摆,自动采集数据;冲击按钮采用双按钮双手操作,具有设备急停、断电自动刹车等一系列安全性操作设计;可变角度,30-150°预仰角不分档设定;设备具有多种试验功能,配置不同的摆锤,即可做简支梁试验,也可做悬臂梁试验。teststar(新秀)pit501j-ts塑料摆锤冲击试验机 dsm251a微电脑全自动哑铃制样机通过微电脑控制,不同试样只需选择相对应的试样程序即可,无需更换其它模具。可直接将管材或板材固定到设备上进行取样。该机还配有工业吸尘器和全透明安全防护罩。操作简单,制样快捷,制样种类多,制样准确,安全可靠。 mfi452熔体流动速率试验机是测定热塑性塑料在一定条件下的熔体流动速率的专用仪器。该试验对热塑性塑料及化纤的原料、制品等产品的质量保证,有着重要的意义。本机温度控制精度高,关键零件氮化处理,强度、硬度高,变形小,确保测定数据的精确和稳定。该设备广泛应用于建筑工程质量检测站、产品质检单位、科研院校等各种塑料生产检验、开发研究等领域。 dsm251a微电脑全自动哑铃制样机和mfi452熔体流动速率试验机 万测通过本届展会向来自世界各地的客户展示了高性能的产品以及专业优质的服务。 万测集团坚定遵循着“立足试验机领域,使用最新技术,结合我们的勤奋和智慧,从客户现实需求出发,研制最实用和最适用的试验机,为客户价值的最大化而努力。”这一企业使命力求为每一位有不同需要的客户提供优质满意的服务。通过万测集团chinaplas2018年中国国际塑料橡胶展的绚丽呈现,深信万测集团有能力更有信心成为业界倍受推崇的、全球优秀的试验机企业。
  • 先河环保大股东计划减持 众高管提前套现
    在获得解禁半个月之后,先河环保的控股股东、实际控制人李玉国就宣布了自己的减持计划,其计划将解禁的近千万股份减持殆尽。而就在公告发布的4天前,公司的众多高管却精准套现了350余万股。   11月18日晚间,先河环保发布公告,公司控股股东、实际控制人李玉国计划于2013年11月21日-2014年5月21日通过集中竞价或者大宗交易方式拟减持不超过900万股公司股份,即不超过公司总股本的4.44%。   李玉国所持股份是在11月5日刚刚获得解禁。作为控股股东,李玉国持有先河环保3943.76万股,但同时其又担任公司董事、总经理,因此此次获得解禁的是其持股数量的25%,也即985.94万股。   由于李玉国最多计划减持900万股,因此公司的大股东可以说是几乎将能减持的所有股份坚持殆尽。11月19日,在减持计划出炉后的首个交易日,先河环保股价开盘跌幅超过3%,减持将使股价短期压力由此可见,但公司高管却在4天前提前减持躲过了一劫。   深交所诚信档案显示,11月14日,先河环保董事、财务总监陈荣强,董事、副总经理范朝和张香计分别减持了公司100万、100万和150万股,成交均价同为18.86元/股,合计套现6601万元。减持时间正好是大股东减持公告发布前4天,颇有先知先觉的意味。   截至11月19日午盘,先河环保收于20.78元,下跌2.67%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制