当前位置: 仪器信息网 > 行业主题 > >

神经酸

仪器信息网神经酸专题为您提供2024年最新神经酸价格报价、厂家品牌的相关信息, 包括神经酸参数、型号等,不管是国产,还是进口品牌的神经酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经酸相关的耗材配件、试剂标物,还有神经酸相关的最新资讯、资料,以及神经酸相关的解决方案。

神经酸相关的论坛

  • 【求助】氨基酸神经递质检测

    HOLC进行氨基酸神经递质检测,紫外检测器,DNFB柱前衍生,文献上都在衍生化前加乙腈,但我做的加乙腈后对峰高和峰型影响很大,那为什么还要加乙腈呢?

  • 中文文献2篇神经导管04

    【序号】:7【作者】: 张仲宁1薛东鹤1张婉衡2【题名】:壳聚糖改性的聚乳酸-羟基乙酸共聚物神经导管的制备、表征及其生物学性能【期刊】:郑州大学学报(医学版). 【年、卷、期、起止页码】:2020,55(02)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=HNYK202002032&v=maJvW%25mmd2FYStPp92Ih7l2xTp2v%25mmd2FuzJMtvtfUorkQ%25mmd2BK6sJJdf9i5cqFHXucnbsSmvLW0【序号】:8【作者】: 张孙富1王斌2【题名】:合成可生物降解神经导管修复损伤周围神经:生物相容性良好【期刊】:中国组织工程研究. 【年、卷、期、起止页码】:2015,19(25)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=XDKF201525025&v=xB4nwWopl%25mmd2BxKvEBdYvyznrm2h6AO8eiEZCvE6yIpvIfZxR5oP%25mmd2BK6E6Q5tW1bBHEv

  • 中文文献2篇神经导管03

    【序号】:5【作者】: 刘彦冬窦源东侯春林林浩东【题名】:电纺丝壳聚糖/聚乳酸神经导管修复大鼠周围神经缺损的实验研究【期刊】:中国修复重建外科杂志. 【年、卷、期、起止页码】:2015,29(05)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=ZXCW201505025&v=H8ZdnxMSQAhW7xoEcXlvYcOI30L7qStYX8mVVeVmxUAC%25mmd2BJzhJEw8erfW9l0JGufK【序号】:6【作者】: 徐云强1【题名】:胶原/丝素蛋白神经导管修复周围神经缺损的研究与应用进展【期刊】:中国组织工程研究. 【年、卷、期、起止页码】:2016,20(38)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=XDKF201638020&v=jaJk3KUEge4tEIo4rBWJCG1CxoVs8bqvcedPwqPn9meI6TxbMPz0xGZhg1aAcxfW

  • 【神经信息学的重大突破】科学家研发新型神经示踪技术

    来自加州大学圣地亚哥分校,北京大学生命科学学院的研究人员发表了题为“Mapping Neural Circuits with Activity-Dependent Nuclear Import of a Transcription Factor”的文章,报道了一种新型神经示踪技术,并利用这一技术追踪了一种关键的钙离子应答转录因子,这一研究模式将可以用于识别特异神经群体中的活性神经元。相关成果公布在《神经遗传学期刊》(

  • 【转帖】------一个神经病取钱经历!!!

    爆笑,一个神经病取钱经历一天下午,我同学在建设银行十分无聊的上班,一个穿得很糟糕的女士(神经病患者)来到他窗口,给了他一张纸条要提款。纸条上赫然写着 "兹派XX同志于贵银行处提取人民币". 然后是l后面N多个零元。落款是*****办公厅***。我同学本来想报警,可看该神经病患者女子很认真的样子,想想还是打发给保安算鸟.(~估计保安也是很闲). 果然,保安对该女子说:"你这张条子想要提款,必须先到对面派出所,找所长盖一个章,他盖完章,你再来取钱就没问题啦。"   该女子想都没想,直接就向派出所走去了。(这保安还真不一般,平时有点小看他了).  大概十多分钟,排队的顾客慢慢多起来的时候,那个女子兴高采烈的回来了,举着那个条子,说:"人家说啦,办公程序简化了,不用所长批条直接就可以取钱啦。"   我这个同学一听到这就不住的感叹:警察队伍里真有高人,一句"高调"就给打发回来了。  我这个同学和保安当时就有点傻了,营业大厅有很多人都在,怕她精神病发作起来影响正常的秩序,只好把值班主管找来了。主管和女患者在一边聊了几句,问你取钱做什么用呀,女患者说:"取钱卖面包,蛋糕,吃的,卖穿的"主管指了指不远处的地方,该女子就又高高兴兴地走了。保安去请教"高招",主管当时是这样对女患者说的: "我们这里是建行,只有建房子才能到这里取钱。你取钱买吃的,那肯定是粮食了,要去农行,买穿的等东西,取钱要到工商银行才行!"   我同学打心眼里佩服呀,到底是当主管的啊!!!!   过了一会儿,该女士又回来了.而且带来了工行的回答:"农行的人说了,这里是农行,只有农民能取钱,我是城市人口,工行的人说了,我们这里是公行,只能公的来取,母的不行!!!!,说我是贱人,要到建行取钱" 我同学,保安,主管,狂晕.......

  • 【金秋计划】杜仲防治神经退行性疾病的机制研究进展

    [font=宋体]神经退行性疾病是由于神经元或其髓鞘丧失所致的一类慢性、进行性损害疾病,按其病情缓急可分为急性神经退行性疾病和慢性神经退行性疾病,前者包括脑缺血([/font]cerebral ischemia[font=宋体],[/font]CI[font=宋体])、脑损伤、癫痫([/font]epilepsy[font=宋体],[/font]EP[font=宋体]);后者包括阿尔茨海默病([/font]Alzheimer’s disease[font=宋体],[/font]AD[font=宋体])、帕金森病([/font]Parkinson’s disease[font=宋体],[/font]PD[font=宋体])、亨廷顿病([/font]Huntington’s disease[font=宋体],[/font]HD[font=宋体])、肌萎缩性侧索硬化([/font]amyotrophic lateral sclerosis[font=宋体],[/font]ALS[font=宋体])及不同类型脊髓小脑[color=var(--weui-LINK)]共济失调[i][/i][/color]([/font]spinocerebellar ataxias[font=宋体],[/font]SCA[font=宋体])等。随着我国人口老龄化现状的不断加剧,神经退行性疾病发病率日益升高,有研究推测我国[/font]2050[font=宋体]年[/font]AD[font=宋体]的患病人数可高达[/font]4 250[font=宋体]万[/font][sup][color=black][1][/color][/sup][font=宋体],已[/font][font=宋体]然成为危及老年人身体健康和生活质量的另一大类疾病。现代医学认为神经退行性疾病发病机制与[color=var(--weui-LINK)]氧化应激[i][/i][/color]、线粒体功能障碍、兴奋性毒素、免疫炎症等相关。鉴于致病因素复杂性及病理变化不可逆性,故迄今为止针对神经退行性疾病还未能提出有效的治愈手段,临床上所使用的药物也大多只能改善症状,不能延缓疾病发展,从根本上逆转进行性神经变性[/font][sup][color=black][2][/color][/sup][font=宋体]。因此,开发防治神经退行性疾病的药物已成为一项重要的研究内容,也是亟待解决的一大难题。[/font] [font=宋体]杜仲为杜仲科植物杜仲[/font][i]Eucommia ulmoides[/i] Oliv. [font=宋体]的干燥树皮,属于陕西地区的道地药材之一,有补肝肾、强筋骨、安胎之功,在临床上应用广泛,主治肝肾不足所致腰膝酸痛、筋骨无力、头晕目眩、妊娠漏血、胎动不安等。其始载于我国汉代著作[color=var(--weui-LINK)]《神农本草经》[i][/i][/color],谓其“杜仲,味辛,平。主腰脊痛;补中益精气,坚筋骨,强志;除阴下痒湿,小便余沥。久服轻身,耐老。”明朝李时珍在[color=var(--weui-LINK)]《本草纲目》[i][/i][/color]中亦曾云:“昔有杜仲,服此得道,因名思仙”,《圣惠方》中称杜仲散“治中风筋脉挛急”,均体现了杜仲极高的药用价值[/font][sup][color=black][3][/color][/sup][font=宋体]。现代药理学研究表明杜仲具有抗氧化、抗炎、神经保护等多重药理活性,现已被开发成多种药物制剂如全杜仲胶囊、参杞杜仲丸、健脑补肾丸、天智颗粒、怡心健脑颗粒等,临床上常用于改善认知障碍、健忘、睡眠障碍等神经系统疾病。近年来随着学者们对杜仲药理作用不断深入挖掘,发现其在治疗神经退行性疾病方面也表现出较好的治疗潜力,本文将对杜仲防治神经退行性疾病的作用机制进行归纳总结。 [/font][b][color=#ffffff][back=#0080ff]1 [font=黑体]化学成分[/font][/back][/color][/b][font=宋体]杜仲化学成分复杂,至今从中共分离出[/font]200[font=宋体]多种化合物,主要为木脂素类、环烯醚萜类、黄酮类、多糖类、甾体类、多糖类及酚酸类等。针对杜仲活性成分目前研究最多、组成成分最明确的就是木脂素类化合物,其中包括松脂醇二葡萄糖苷([/font]pinoresinol diglucoside[font=宋体],[/font]PDG[font=宋体])、丁香脂二葡萄糖苷、丁香脂素单葡萄糖苷、松脂素、丁香脂素等[/font]55[font=宋体]种[/font][sup][color=black][4][/color][/sup][font=宋体]。[/font][font=宋体]《[color=var(--weui-LINK)]中国药典[i][/i][/color]》[/font]2020[font=宋体]年版已将[/font]PDG[font=宋体]作为评判杜仲质量优劣的指标成分之一,其规定杜仲皮中[/font]PDG[font=宋体]的质量分数不得少于[/font]0.10%[sup][color=black][5][/color][/sup][font=宋体]。此外,杜仲不同部位(皮、叶、枝)所富含的成分种类、含量在一定程度上均存在差异,如在杜仲皮中以木脂素类化合物为主,并且其数量和含量均为最高;杜仲叶中活性最高的是黄酮类化合物,如槲皮素、山柰酚、芦丁等;雄花中富含环烯醚萜类化合物杜仲苷、京尼平苷、桃叶珊瑚苷等,而种子中则更多偏向于不饱和脂肪酸[/font][sup][color=black][6][/color][/sup][font=宋体]。王传森等[/font][sup][color=black][7][/color][/sup][font=宋体]归纳总结了近[/font]10[font=宋体]种杜仲中具有神经保护作用的化学成分,其中包括木脂素类化合物[/font]PDG[font=宋体]、松脂醇,环烯醚萜类化合物桃叶珊瑚苷、京尼平苷、京尼平苷酸,黄酮类化合物槲皮素、黄芩素、千层纸素,以及苯丙素类化合物绿原酸、隐绿原酸、阿魏酸,上述活性成分可从抑制炎症反应、调控细胞凋亡、改善脑内神经递质水平等多重角度发挥神经保护作用,也为杜仲防治神经退行性疾病提供了较为充分的现代生物学证据。 [/font][b][color=#ffffff][back=#0080ff]2 [font=黑体]防治神经退行性疾病的作用机制[/font][/back][/color][/b]2.1 [font=黑体]抗氧化应激[/font][b][font=宋体]、[/font][/b][font=黑体]抗炎[/font][font=宋体]生理状态下,机体产生的活性氧簇([/font]reactive oxygen species[font=宋体],[/font]ROS[font=宋体])可被体内超氧化物歧化酶([/font]superoxide sismutase[font=宋体],[/font]SOD[font=宋体])和谷胱甘肽过氧化酶([/font]glutathione peroxidase[font=宋体],[/font]GSH-Px[font=宋体])等抗氧化系统清除,其生成和清除过程处于动态平衡,以维持内环境稳定,而病理情况下机体生成[/font]ROS[font=宋体]的速度远远超过内源清除能力,以致[/font]ROS[font=宋体]大量堆积,使胞内[/font]DNA[font=宋体]、蛋白质、脂质等大分子化合物处于过氧化状态,不能发挥其正常生理功能[/font][sup][color=black][8][/color][/sup][font=宋体]。杜仲发挥抗氧化应激主要是通过维持[/font]SOD[font=宋体]、[/font]GSH-Px[font=宋体]、过氧化氢酶([/font]catalase[font=宋体],[/font]CAT[font=宋体])活性,并降低丙二醛([/font]malondialdehyde[font=宋体],[/font]MDA[font=宋体])的含量,以提高脑组织抗氧化能力及细胞活力、减轻氧化损伤[/font][sup][color=black][9-10][/color][/sup][font=宋体]。[/font]2019[font=宋体]年[/font]Zaplatic[font=宋体]等[/font][sup][color=black][11][/color][/sup][font=宋体]研究发现黄酮类化合物槲皮素能清除体内所积聚的羟基自由基([/font]OH[font=宋体])和[/font]ROS[font=宋体]以发挥神经保护作用,其机制可能与调控核因子[/font]- [font=宋体]红细胞[/font]2[font=宋体]相关因子[/font]2[font=宋体]([/font]nuclear factor-erythroid 2 related factor 2[font=宋体],[/font]Nrf2[font=宋体])、[/font]C-Jun[font=宋体]氨基末端激酶([/font]c-Jun [i]N[/i]-terminal kinase[font=宋体],[/font]JNK[font=宋体])、丝裂原活化蛋白激酶([/font]mitogen-activated proteinkinase[font=宋体],[/font]MAPK[font=宋体])等信号通路相关。[/font][font=宋体]除了氧化应激,炎症反应也是神经退行性疾病发病机制中的关键因素,过度的神经炎症会加剧神经细胞的损伤,进一步推进神经系统疾病的发生发展[/font][sup][color=black][12][/color][/sup][font=宋体]。[/font]Kwon[font=宋体]等[/font][sup][color=black][13][/color][/sup][font=宋体]报道杜仲提取物能下调脂多糖诱导的环氧合酶[/font]-2[font=宋体]([/font]cyclooxygenase[font=宋体],[/font]COX-2[font=宋体])、一氧化氮合酶([/font]nitric oxide synthase[font=宋体],[/font]NOS[font=宋体])、肿瘤坏死因子[/font]-α[font=宋体]([/font]tumor necrosis factor-α[font=宋体],[/font]TNF-α[font=宋体])、白细胞介素[/font]-1β[font=宋体]([/font]interleukin-1β[font=宋体],[/font]IL-1β[font=宋体])的表达。同时,杨志友等[/font][sup][color=black][14][/color][/sup][font=宋体]也发现杜仲叶有效成分京尼平苷酸可通过调控[/font]p38 MAPK[font=宋体]、[/font]NF-κB[font=宋体]通路抑制[/font]TNF-α[font=宋体]、[/font]IL-1β[font=宋体]、白细胞介素[/font]-6[font=宋体]([/font]interleukin-6[font=宋体],[/font]IL-6[font=宋体])分泌。以上研究结果表明杜仲具有良好的抗氧化应激、抗炎功效。[/font]2.2 [font=黑体]抑制神经细胞凋亡[/font][font=宋体]细胞凋亡是由凋亡基因所控制的细胞自主有序的死亡,目的是维持人体内环境稳定。凋亡生理过程涉及一系列基因的激活、表达及调控,如促凋亡基因[/font]B[font=宋体]淋巴细胞瘤[/font]-2[font=宋体]相关[/font]X[font=宋体]蛋白([/font]B-cell lymphoma-2 associated X protein[font=宋体],[/font][i]Bax[/i][font=宋体])[/font][font=宋体]、胱氨酸天冬氨酸蛋白酶([/font]cysteinasparate protease[font=宋体],[/font][i]Caspase[/i][font=宋体]),抗凋亡基因[/font]B[font=宋体]淋巴细胞瘤[/font]-2[font=宋体]([/font]B-cell lymphoma-2[font=宋体],[/font]Bcl-2[font=宋体])[/font][font=宋体],抑癌基因[/font][i]p53[/i][font=宋体]以及癌基因[/font][i]C-myc[/i][font=宋体]等[/font][sup][color=black][15][/color][/sup][font=宋体]。研究表明,神经退行性疾病发生时海马组织细胞存在不同程度的凋亡水平,[/font]Bcl-2/Bax[font=宋体]水平降低,神经元凋亡率也明显升高[/font][sup][color=black][16][/color][/sup][font=宋体]。杜仲中多种化学成分均可抑制细胞凋亡,其中极具代表性的是[/font]PDG[font=宋体]。[/font]PDG[font=宋体]可上调抗凋亡基因[/font]Bcl-2[font=宋体]相关蛋白表达,具有良好的抑制神经细胞凋亡的作用[/font][sup][color=black][17][/color][/sup][font=宋体]。此外,桃叶珊瑚苷和绿原酸也具有类似功效,如在大鼠肾上腺嗜铬细胞瘤细胞([/font]adrenai pheochromocytoma cells[font=宋体],[/font]PC12[font=宋体])实验中,绿原酸可抑制乙醇诱导的细胞凋亡,降低血清中[/font]Caspase-3[font=宋体]的表达水平;桃叶珊瑚苷则可通过抑制神经细胞凋亡,显著改善神经退行性疾病动物模型的运动及认知功能[/font][sup][color=black][18][/color][/sup][font=宋体]。[/font]2.3 [font=黑体]改善血管内皮功能障碍[/font][b][font=宋体],[/font][/b][font=黑体]促进血管新生[/font][font=宋体]血管内皮功能障碍和脑血管舒缩反应性受损是神经退行性疾病的神经学早期变化,有研究观察到神经退行性疾病更是多与脑小血管疾病合并出现,因此积极促进血管再生是克服持续微血管功能障碍的关键[/font][sup][color=black][19][/color][/sup][font=宋体]。杜仲提取液可调控大鼠内皮细胞基质金属蛋白酶[/font]2[font=宋体]([/font]matrix metalloproteinase 2[font=宋体],[/font]MMP-2[font=宋体])和组织金属蛋白酶抑制因子([/font]tissue inhibitor of metalloproteinase 2[font=宋体],[/font]TIMP-2[font=宋体])的表达,参与血管内皮基质调节,促进血管新生、重构[/font][sup][color=black][20][/color][/sup][font=宋体]。全杜仲胶囊可升高血清中血管内皮生长因子([/font]vascular endothelial growth factor[font=宋体],[/font]VEGF[font=宋体])、成纤维细胞生成因子([/font]basic fibroblast growth factor[font=宋体],[/font]bFGF[font=宋体])表达水平,对治疗股骨头缺血性坏死起着协同作用[/font][sup][color=black][21][/color][/sup][font=宋体]。内皮祖细胞是血管内皮细胞的前体,在诱导血管生成和血管修复方面发挥重要作用。有研究表明杜仲中的槲皮素具有动员内皮祖细胞([/font]endothelial progenitor cell[font=宋体],[/font]EPCs[font=宋体])归巢的功能,可通过激活磷脂酰肌醇[/font]-3-[font=宋体]羟激酶([/font]phosphatidylinositol-3-hydroxykinase[font=宋体],[/font]PI3K[font=宋体])[/font]/[font=宋体]蛋白激酶[/font]B[font=宋体]([/font]protein kinase B[font=宋体],[/font]Akt[font=宋体])[/font][font=宋体]信号通路,促进血清中[/font]EPCs[font=宋体]增殖分化,穿过血脑屏障到达病灶区,以修复受损脑血管[/font][sup][color=black][22][/color][/sup][font=宋体]。同为黄酮类成分千层纸素能提高[/font]EPCs[font=宋体]的迁徙能力,更好地促进血管新生[/font][sup][color=black][23][/color][/sup][font=宋体]。[/font]2.4 [font=黑体]提高神经突触可塑性[/font][font=宋体]突触可塑性作为神经功能网络重建的基础,是大脑学习、记忆的基本神经生物机制,在神经退行性疾病的治疗中具有重要意义。杜仲水提物具有与神经生长因子相似的诱导功能,可促使[/font]PC12[font=宋体]细胞胞体变大、逐渐伸出突触,分化为具有神经细胞形态特征的神经元样细胞[/font][sup][color=black][24][/color][/sup][font=宋体]。张秀峰等[/font][sup][color=black][25][/color][/sup][font=宋体]提出杜仲叶总黄酮可通过调控[/font]Ras[font=宋体]同源基因家族蛋白[/font]A/Rho[font=宋体]相关卷曲螺旋蛋白激酶([/font]Ras homolog gene family memberA/Rho associted coiled coil forming protein kinase[font=宋体],[/font]RhoA/ROCK[font=宋体])通路激活神经元骨架结构改变,促使神经元及突触生长相关蛋白表达,达到抑制脑出血后血肿周围组织神经元损伤、凋亡及修复神经功能的目的。同时,[/font]Kim[font=宋体]等[/font][sup][color=black][26][/color][/sup][font=宋体]通过体外实验发现桃叶珊瑚苷也可以促进神经干细胞的神经元标志物表达,并增加海马干细胞中神经元树突的延伸率。此外,该实验还探讨了桃叶珊瑚苷是否可以改善坐骨神经损伤大鼠的受伤轴突,结果显示其不仅可以促进轴突再生,还能增加生长轴突的厚度。[/font]2.5 [font=黑体]保护线粒体功能[/font][font=宋体]线粒体稳态失衡已被确定为多种神经退行性疾病的中心机制,线粒体功能障碍不仅会影响细胞氧化磷酸化,还会造成[/font]ROS[font=宋体]、钙离子堆积,引起神经元损伤或凋亡[/font][sup][color=black][27][/color][/sup][font=宋体]。据报道,槲皮素可作为线粒体解偶联剂,通过降低线粒体膜电位水平来改善线粒体功能障碍,并恢复三磷酸腺苷([/font]adenosine triphosphate[font=宋体],[/font]ATP[font=宋体])[/font][font=宋体]合成,保证对细胞的能量供应[/font][sup][color=black][28][/color][/sup][font=宋体]。[/font]Wang[font=宋体]等[/font][sup][color=black][29][/color][/sup][font=宋体]则认为槲皮素对线粒体的保护作用可能是依赖于促进线粒体[/font]Keima[font=宋体]荧光蛋白表达,以此来增强[/font]SOD[font=宋体]活性、抑制[/font]α-[font=宋体]突触核蛋白([/font]α-synuclein[font=宋体],[/font]α-Syn[font=宋体])积累、减少线粒体损伤,进而延缓疾病的进展。另外,线粒体蛋白、线粒体转录因子在维持线粒体功能和生物合成中也起到重要作用,在[/font]1-[font=宋体]甲基[/font]-4-[font=宋体]苯基吡啶离子([/font]1-methy-4-phenylpyridine[font=宋体],[/font]MPP[sup]+[/sup][font=宋体])诱导多巴胺([/font]dopamine[font=宋体],[/font]DA[font=宋体])能神经元线粒体损伤的实验中,[/font]Kang[font=宋体]等[/font][sup][color=black][30][/color][/sup][font=宋体]发现,槲皮素能升高[/font]MPP[sup]+[/sup][font=宋体]所抑制的线粒体蛋白、线粒体转录因子表达水平,且显著减轻线粒体破碎、维持线粒体长度,进一步验证了杜仲的线粒体保护作用。[/font]2.6 [font=黑体]重塑肠道菌群作用[/font][font=宋体]肠道微生物作为胃肠道与大脑之间的“桥梁”,其中菌群的代谢产物脂多糖、胆汁酸、短链脂肪酸及氧化三甲胺等均会通过多种分子机制干预疾病的发展[/font][sup][color=black][31][/color][/sup][font=宋体]。目前,国内外已有大量研究通过采用益生菌定殖和定向重塑肠道菌群来治疗神经退行性疾病,如[/font]2022[font=宋体]年[/font]Zhu[font=宋体]等[/font][sup][color=black][32][/color][/sup][font=宋体]给予[/font]AD[font=宋体]小鼠[/font]ig 2[font=宋体]种不同来源的短双歧杆菌,结果发现短双歧杆菌可有效提高肠道内短链脂肪酸的水平,修复受损的肠道上皮屏障,预防神经炎症的发生,改善[/font]AD[font=宋体]小鼠认知障碍。[/font]Wang[font=宋体]等[/font][sup][color=black][33][/color][/sup][font=宋体]使用植物乳杆菌联合美金刚治疗[/font]AD[font=宋体],发现植物乳杆菌可通过重塑肠道菌群以增强美金刚的疗效。杜仲提取物不仅可升高高脂血症大鼠模型肠道内厚壁菌门及疣微菌门丰度,降低拟杆菌门、变形菌门等有害菌丰度,较好地调控脂代谢紊乱,还可以通过影响肠道菌群调控机体多糖的分解和吸收能力,促进小鼠海马齿状回神经干细胞的分化存活,提高其学习记忆能力[/font][sup][color=black][34-35][/color][/sup][font=宋体]。[/font]2.7 [font=黑体]调节下丘脑[/font][b]-[/b][font=黑体]垂体[/font][b]-[/b][font=黑体]肾上腺轴[/font][b][font=宋体]([/font]hypothalamic-pituitary-adrenal[font=宋体],[/font]HPA[font=宋体])[/font][/b][font=黑体]轴相关神经递质[

  • 精神与神经

    各位老师,精神病与神经病,哈哈哈难道说不一样吗?颠倒的两个字意义大不同吗

  • 【分享】神经细胞培养

    体外神经细胞的培养已成为神经生物学研究中十分有用的技术手段。神经细胞培养的主要优点是:(1)分散培养的神经细胞在体外生长成熟后,能保持结构和功能上的某些特点, 而且长期培养能形成髓鞘和建立突触联系,这就提供了体内生长过程在体外重现的机会。(2)能在较长时间内直接观察活细胞的生长、分化、形态和功能变化,便于使用各种不同的技术方法如相差显微镜、荧光显微镜、电子显微镜、激光共聚焦显微镜、同位素标记、原位杂交、免疫组化和电生理等手段进行研究。(3)易于施行物理(如缺血、缺氧)、化学和生物因子(如神经营养因子)等实验条件, 观察条件变更对神经细胞的直接或间接作用。(4)便于从细胞和分子水平探讨某些神经疾病的发病机制,药物或各种因素对胚胎或新生动物神经细胞在生长、发育和分化等各方面的影响。 我们实验室从80年代始开展了神经细胞的体外培养工作,取得了一些经验,现将培养细胞分类及方法简要介绍如下:一.鸡胚背根神经节组织块培养 主要用于神经生长因子(NGF)等神经营养因子的生物活性测定。在差倒置显微镜下观察以神经突起的生长长度和密度为指标半定量评估NGF的活性。1. 材料和方法 (1)选正常受精的鸡蛋,置于37℃生化培养箱内孵化,每日翻动鸡蛋一次。 (2)取孵化8-12 d 的鸡蛋, 用70% 酒精消毒蛋壳,从气室端敲开蛋壳,用消毒镊剥除气室部蛋壳。(3)用弯镊钩住鸡胚颈部,无菌条件下取出鸡胚置小平皿内,除去头部后,腹侧向上置 灭菌毛玻璃片上,用眼科弯镊子打开胸腹腔,除去内脏器官。(4)在解剖显微镜下,小心除去腹膜,暴露脊柱及其两侧,在椎间孔旁可见到沿脊柱两侧 排列的背根节(图1),用一对5号微解剖镊小心取出。(5)置背根节于解剖溶液内,用微解剖镊去除附带组织,接种于涂有鼠尾胶的玻璃或塑料 培养瓶中,在DMEM无血清培养液中培养。2. 结果鸡胚背根神经节在含神经生长因子(NGF, 2.5S,20ng/ml)的无血清培养液中培养24 h,神经节长出密集的神经突起。而未加NGF的神经节培养24 h, 未见神经突起生长。二.新生大鼠、新生小鼠及鸡胚背根神经节分散细胞培养背根神经节(DRG)细胞起源于神经嵴,NGF研究先驱Levi-Montalcini的实验表明,外原性NGF能刺激DRG细胞生长发育并形成广泛的神经网络。在体外,分离培养的神经节在NGF存在的情况下,神经突起的生长在一天之内可长达数毫米,因此,利用培养的DRG细胞,进行轴突生长发育的研究,是最为经典而常用的方法之一。

  • 、人工神经网络

    [font=宋体][font=宋体]人工神经网络([/font][font=Times New Roman]ANN[/font][font=宋体])[/font][/font][sup][font='Times New Roman'][58][/font][/sup][font=宋体][font=宋体]是一种由大量神经单元互联组成的非线性、自适应的信息处理系统。[/font][font=Times New Roman]ANN[/font][font=宋体]通常由通过权重链接的一个输入层、一个输出层和多个隐含层([/font][font=Times New Roman]hidden[/font][/font][font='Times New Roman'] layer[/font][font=宋体][font=Times New Roman]s[/font][/font][font='Times New Roman'][font=宋体])[/font][/font][font=宋体][font=宋体]组成,中间每层由数量不等的神经元组成,每个神经元通过一个线性模型和激活函数与上一层相连。相较于传统的线性模型,[/font][font=Times New Roman]ANN[/font][font=宋体]能够拟合更复杂的函数关系,可能带来更好的预测效果。然而,由此带来的计算成本和样本需求也迅速增加。比如:连接第[/font][/font][i][font='Times New Roman']i[/font][/i][font=宋体]层([/font][i][font='Times New Roman']M[/font][/i][font=宋体]个神经元)第[/font][i][font='Times New Roman']i[/font][/i][font='Times New Roman']+[/font][font='Times New Roman']1[/font][font=宋体]层([/font][i][font='Times New Roman']N[/font][/i][font=宋体][font=宋体]个神经元)的就多达[/font][font=Times New Roman]([/font][/font][i][font='Times New Roman']N[/font][/i][font=宋体][font=Times New Roman]+[/font][/font][font='Times New Roman']1)[/font][font=宋体]×[/font][i][font='Times New Roman']M[/font][/i][font=宋体]个。[/font][font=宋体]随着计算机性能的不断提升和数学理论的发展,深度学习[/font][sup][font='Times New Roman'][59][/font][/sup][font=宋体][font=宋体]在此基础上逐渐出现,并引起广泛关注。除了传统的神经网络的连接结构,人们还提出了具有特定功能的层,例如:卷积层([/font][font=Times New Roman]C[/font][/font][font='Times New Roman']onvolution layer[/font][font=宋体][font=宋体])、池化层([/font][font=Times New Roman]Poolinglayer[/font][font=宋体])、激活层([/font][font=Times New Roman]Activationlayer[/font][font=宋体])、展平层([/font][font=Times New Roman]Flattening layer[/font][font=宋体])、全连接层([/font][font=Times New Roman]Fully connected layer[/font][font=宋体])、丢弃层([/font][font=Times New Roman]Dropoutlayer[/font][font=宋体])等。基于这些功能各异的层结构能够组合出不同的神经网络模型,这些模型在特征提取、预测效果提升、防止过拟合等方面都有一定的优势。[/font][/font]

  • 神经元活动高速荧光成像系统简介

    [b][url=http://www.f-lab.cn/vivo-imaging/micam02.html]神经元活动高速荧光成像系统[/url][/b][url=http://www.f-lab.cn/vivo-imaging/micam02.html]micam02[/url]是专业为[b]神经元活动成像[/b]和[b]神经细胞活动成像[/b]而设计的[b]神经元高速成像系统[/b],具有超高信噪比,能够从[b]膜电压敏感染料[/b]中检测到极为微弱的[b]神经元信号[/b],具有对[b]电压敏感染料信号[/b]高灵敏的[b]高速荧光相机[/b]。神经元活动高速荧光成像系统micam02采用最高信噪比S / N的CCD / CMOS高速相机,它对神经元活动的成像非常有效,广泛用于[b]神经元成像,钙离子成像,膜电压成像,延时成像[/b]和常规高速成像。[img=神经元活动高速荧光成像系统]http://www.f-lab.cn/Upload/micam02-imaging.jpg[/img][b]神经元活动高速荧光成像系统micam02简介[/b]神经元活动高速荧光成像系统micam02采用brainvision公司高灵敏度高速成像系统,具有独特的空间分辨率,灵敏度,暗噪声和读出噪声性能。神经元活动高速荧光成像系统micam02具有采样速度1.7 kHz(micam02 CMOS)75%的量子效率(micam02 HR),68db动态范围(micam02 CMOS)。这种高性能参数有力保证了钙离子成像和膜电压成像应用。[img=神经元活动高速荧光成像系统]http://www.f-lab.cn/Upload/micam02_neuronal.jpg[/img][b]神经元活动高速荧光成像系统micam02特色[/b]可选CMOS摄像头和CCD摄像机。最大帧速率为1.7千赫。适合神经元活动成像,可检测微弱神经元信号 拍摄速度和空间分辨率动态可调,空间分辨率是40x28 - 376x252像素具有弱光成像模式新的“h-bin模式”功能,减少暗噪声,对于暗或荧光的情况非常有效。可用于双波长同步双摄像机成像系统神经元活动高速荧光成像系统micam02处理器有两个摄像头的端口,并可以作为一个可选的第二相机使用双摄像头系统,使同步记录。双摄像机系统可用于电压敏感染料或钙离子指示剂的比值成像,以及多探头成像。用户友好的软件数据分析软件”bv_ana,“里面有许多有用的功能,还包括获取能力以实验更简单,更流畅,更快。记录数据的快速分析能力使用户可以在不同条件下对单个生物样品进行多次实验。[b]神经元活动高速荧光成像系统micam02应用[/b]通过使用电压敏感染料如二-4-ANEPPS测量膜电位的变化高速钙染料成像FRET成像基于血红蛋白和Flavoprotein的内在成像双相机系统的荧光比率成像高速光强度微小变化的检测无创性脑片组织块传播成像神经元活动高速荧光成像系统[b]:[/b][url]http://www.f-lab.cn/vivo-imaging/micam02.html[/url]

  • 【求助】人工神经网络

    据说人工神经网络功能很强大,可以预测,可以评价,什么的。那如果我要用它对一项技术进行评价的话,是不是得自己编程?还是有现成的可以套用?本人非计算机专业,对这个一窍不通,搜索的资料也看得不明不白的。望高人赐教啦!

  • 【金秋计划】黄芪桂枝五物汤治疗糖尿病周围神经病变的研究进展

    随着人口老龄化,糖尿病患病率持续上升,最新数据显示全球大约有5.366亿人患有糖尿病(患病率10.5%),预计到2045年患病人数将达到7.832亿(患病率12.2%)[1]。随着时间的推移,大约50%的糖尿病患者会发展为糖尿病周围神经病变(diabetic peripheral neuropathy,DPN)[2]。DPN是一种以感觉神经病变为主,并累及自主神经系统的神经退行性疾病,表现为远端肢体对疼痛、温度、振动和本体感觉的丧失[3],是下肢截肢和致残性神经病理性疼痛的主要原因[4]。高血糖、血脂异常、微血管损伤、氧化应激、炎症、线粒体功能障碍、晚期糖基化终末产物(advanced glycosylation end products,AGEs)、神经营养因子缺失等在DPN中具有重要作用。目前,治疗DPN的主要目的是缓解症状和疼痛管理[5],针对DPN的疼痛管理,主要应用抗抑郁药物、抗惊厥药物和阿片类镇痛药物,通过抗氧化应激、改善微循环、纠正代谢紊乱、营养神经、缓解疼痛等机制减轻DPN症状。临床上大多数被批准用于治疗DPN的药物如硫辛酸、依帕司他、阿米替林、丙米嗪、加巴喷丁等,虽能有效减轻疼痛,但存在作用途径单一、耐药性差,容易出现头晕、嗜睡、恶心、失眠、视力模糊等不良反应。此外,目前没有新的治疗疼痛性DPN的疗法被批准,临床最有效的一线药物或联合用药尚不清楚[6]。因此,寻找新的治疗DPN的药物刻不容缓。黄芪桂枝五物汤(Huangqi Guizhi Wuwu Decoction,HGD)作为经典名方之一,由黄芪、桂枝、芍药、生姜、大枣组成,具有益气活血、和营通脉的疗效[7],对缓解DPN引起的疼痛、麻木等症状疗效显著,被广泛用于DPN的治疗,具有良好的研究价值和发展前景。本文就DPN的发病机制、HGD治疗DPN的药效基础、临床研究及作用机制进行综述,为HGD治疗DPN的临床应用提供科学依据和理论基础。 1 DPN的发病机制DPN是糖尿病患者常见的严重并发症之一,目前其发病机制尚未完全明确,是由多种病理因素相互作用的结果。以高血糖参与的异常代谢通路为基础,包括多元醇通路、AGEs堆积、己糖胺通路、蛋白激酶C(protein kinase C,PKC)信号通路、内质网应激等[8],这些异常的代谢通路可引起炎症反应、血管内皮增生、神经纤维损伤、破坏线粒体稳态,产生大量活性氧和活性氮自由基,导致氧化应激反应,造成组织损伤。此外活性氧的增加还会激活聚腺苷二磷酸-核糖聚合酶(poly ADP-ribose polymerase,PARP)信号通路,导致神经血管损伤,诱发氧化应激,而氧化应激又会对通路形成正反馈,造成恶性循环。除了高血糖引起的异常代谢通路外,脂代谢异常、神经生长因子(nerve growth factor,NGF)及神经营养不足、胰岛素抵抗等[9]也与DPN的发生发展密切相关。研究发现,糖尿病患者血浆游离饱和脂肪酸的浓度通常会升高,而长链饱和脂肪酸,如棕榈酸酯和硬脂酸酯,会阻碍线粒体的功能及其运输,导致感觉背根神经节的神经元凋亡[10]。脂代谢异常会生成二酰甘油,刺激多元醇通路和PKC通路,细胞内的游离脂肪酸还能够激活核因子-κB(nuclear factor-κB,NF-κB),诱发炎症反应,刺激产生活性氧,破坏线粒体,加剧氧化应激反应[11]。NGF能促进中枢和外周神经元的生长、发育、分化、成熟,维持神经系统的正常功能,加快神经系统损伤后的修复[12]。有研究发现,在糖尿病动物皮肤中,NGF的产生受到抑制[13]。胰岛素信号传导也可能是引起DPN的原因之一,胰岛素不仅是一种激素,同时也是一种具有神经营养作用的神经保护因子[14]。炎症反应主要通过释放炎症因子参与DPN的发生和发展,细胞间黏附因子促进白细胞的迁移和活化,在趋化因子的影响下,单核细胞和巨噬细胞等吞噬细胞到达DPN受损组织并激活,然后分泌包括白细胞介素(interleukin,IL)在内的多种炎性因子,如IL-1β、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等[15]。这3种炎症因子可以影响DPN神经损伤,破坏雪旺细胞与轴突之间的沟通[16-17],DPN的发生和严重程度与TNF-α在内的炎症因子相关联,炎症因子参与疼痛和痛觉过敏的产生,并增加血神经屏障的渗透性,将TNF-α注射到坐骨神经可诱导炎症性脱髓鞘或轴索变性[18]。氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,大量研究表明高血糖可导致氧化应激的产生,并对周围神经中的神经元和雪旺细胞产生损伤[19]。引发氧化应激的原因是活性氧的过量产生,氧化还原平衡被打破导致抗氧化系统失调[20],最终造成组织损伤。高血糖引起的异常代谢通路:多元醇通路、AGEs通路、PARP通路等最终都会引起细胞内氧化应激反应,多元醇通路和PARP通路中消耗了大量的还原性辅酶,导致胞内活性氧清除能力不足,AGEs代谢过程中产生大量活性氧,导致氧化应激反应。综上,DPN的发病机制十分复杂,其病理生理学的核心是神经代谢受损和生物能衰竭[9],高血糖及异常代谢通路、胰岛素抵抗、脂代谢异常、NGF缺失、炎症反应、氧化应激等机制相互影响,造成恶性循环,损伤周围神经组织,最终导致DPN的发生。 2 HGD治疗DPN的方证基础和药效基础2.1 方证基础在中医理论中并未记载DPN病名,但根据其肢体麻木、疼痛等症状可归属于中医“痹证”“痛证”“痿痹”等范畴[21]。《素问奇病论》中提出“此肥美之所发也,此人必数食甘美而多肥也。肥者令人内热,甘者令人中满,故其气上溢,转为消渴。”消渴患者病因多为饮食不节、情志失调等,燥热内盛,煎熬阴液,气血滞而不行。《黄帝内经素问痹论》[22]曰:“病久入深,荣卫之行涩,经络时疏,故不痛,皮肤不营,故为不仁。”消渴日久,但见手足麻木,肢体如冰。DPN病机多因消渴日久,气阴损耗,阴虚邪热内生,精华内涸,导致血气凝滞,络脉不通,不能外输四肢而发病,属本虚标实,瘀血贯穿了疾病的始终。倪青教授认为,该病主要病机可总结为虚、瘀,虚即气阴亏虚,瘀为瘀血阻络,因虚致瘀,虚瘀相兼,虚为本,瘀为标,贯穿DPN的始终[23]。仝小林院士认为DPN属于糖尿病“郁、热、虚、损”4大阶段中的虚、损阶段,脏腑热、经络寒,总以脾虚为本,通补兼施、寒热并用是仝院士辨治DPN的治疗大法[24]。《素问逆调论》[22]云:“营气虚则不仁,卫气虚则不用。”肌肉筋骨失于濡养,故见手足麻木、感觉减退,犹如风痹之状;气阴两虚迁延不愈,阴损及阳,阳虚失煦,故四肢厥冷;气血阴阳俱虚,血行缓滞因热成瘀,痹阻脉络,不通则痛,故见皮肤肌肉刺痛,入夜尤甚;久病肝肾脾胃虚弱,聚湿成痰,痰瘀互结,肢体脉络失荣,故见肌肉日渐萎缩、软弱无力。张仲景在《金匮要略》中对血痹虚劳进行了论述,认为血痹、虚劳都是由于气血不足引起的慢性虚损性疾病,因此,DPN与血痹虚劳具有相关性[25]。HGD出自《金匮要略血痹虚劳病脉证治篇》,是治疗素体营卫不足,外受风邪所致血痹的常用方。方中黄芪补气,为君药。桂枝既能扶助卫阳以祛风邪,又能温通血脉以行血滞,与黄芪相伍,共奏益气扶阳,和血通痹之效。芍药养血,与桂枝相伍,共奏调和营卫,和血通痹之效,2药共为臣药。生姜、大枣养血益气,助芪、芍之力,又能调和营卫,扶阳祛风,共为佐使。诸药相伍,共奏补气温阳,和血通痹之功。2.2 药效基础现代药理实验证明,HGD的主要活性成分为黄酮类和苷类,如毛蕊异黄酮葡萄糖苷、毛蕊异黄酮和刺芒柄花素,可促进胰岛素释放而发挥降糖作用[26]。网络药理学预测HGD可以通过抗氧化应激、抗炎、阻止胆碱能神经信号传递、降低内质网应激水平等[27],直接或间接地发挥保护神经纤维、减轻疼痛、促进能量代谢及神经修复的作用。黄芪性甘,微温,有敛疮生肌、益卫固表、补气升阳的作用[28]。药理实验和临床研究表明,黄芪在抗炎、抗氧化、改善微循环、降血糖、增强免疫等方面疗效显著[29-31]。黄芪皂苷IV是黄芪的主要活性成分之一,《中国药典》2020年版将黄芪皂苷IV确定为黄芪质量控制的重要指标。研究发现,黄芪皂苷IV 24 mg/kg可有效提高DPN大鼠腓总神经运动传导速度,降低血糖浓度和糖化血红蛋白(glycosylated hemoglobin,GHb)水平,减少神经细胞中AGEs的积累,从而有效抑制DPN大鼠有髓纤维面积的减少和节段性脱髓鞘的增加[32]。Yin等[33]通过构建DPN大鼠模型和DPN雪旺细胞损伤模型发现,黄芪皂苷IV 80 mg/kg能够通过增强自噬,减轻雪旺细胞凋亡引起的DPN髓鞘损伤,改善神经功能。Ben等[34]应用黄芪皂苷IV 60 mg/kg连续12周干预DPN大鼠模型,发现黄芪皂苷IV能够改善DPN大鼠背根神经节中线粒体的损伤,显著减少DPN大鼠的机械性异常疼痛,提示黄芪皂苷IV在治疗DPN中有着巨大潜力。桂枝具有散寒解表、温通经脉的功效,临床常用于镇痛、抑菌、抗过敏及促进血管舒张、抗血小板聚集等[35-36]。目前DPN的发病机制被认为与胰岛素缺乏或胰岛素抵抗、高血糖和血脂异常有关[6],桂枝提取物不仅具有降血糖的作用[37-38],还可以减少肠道对胆固醇和脂肪酸的吸收[39]。现代药理研究发现,桂枝主要含有挥发油类和有机酸类化合物成分[40],其中挥发油中的主要药效成分为肉桂醛。Chun等[41]通过构建肉桂醛调控的编码基因对周围神经变性影响的生物信息学分析发现,肉桂醛能够通过影响雪旺细胞氧化应激反应而抑制周围神经变性。背根神经节神经元对高葡萄糖浓度应激的易感性与DPN的发生发展有关,是DPN损伤的靶细胞[42]。Shi等[43]通过构建高糖诱导的背根神经节神经元细胞模型发现,肉桂醛100 nmol/L能够通过抑制NF-κB通路,从而起到保护背根神经节神经元作用,减少细胞凋亡。另有研究发现,肉桂醛20、40 mg/kg可显著降低糖尿病大鼠的血糖水平,逆转糖尿病大鼠的神经炎症反应和神经递质水平的变化,提示肉桂醛在防治DPN方面具有巨大潜力[44]。现代药理研究发现,白芍化学成分主要有单萜及其苷类、三萜类、黄酮类等,具有抗炎、镇痛、抗血栓、抗氧化、降血糖等作用[45-46]。Huang等[47]通过大鼠坐骨神经受损实验发现,白芍提取物能显著增强神经突起的生长及其生长相关蛋白和突触素的表达,有助于促进周围神经再生,提示白芍提取物可能是一种潜在的神经生长促进因子。《中国药典》2020年版中将芍药苷定量控制作为对白芍的含量测定项,表明芍药苷是白芍的重要质量标志物。研究发现,芍药苷100 μmol/L具有显著的抗氧化应激作用,可以通过激活核因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)信号通路保护雪旺细胞免受高糖诱导的氧化损伤[48]。朱晏伯等[49]通过观察芍药苷对高糖环境下雪旺细胞线粒体动力学的影响,发现芍药苷100 μmol/L能促进高糖环境下雪旺细胞线粒体融合,降低分裂,维持线粒体动力学平衡,改善线粒体形态与功能,降低雪旺细胞凋亡。邢琪昌等[50]构建了芍药苷-疾病-靶点网络分析,结果得出芍药苷具有降血糖、抗氧化、减轻神经炎症和疼痛等功效,在治疗DPN中具有潜在的应用价值。生姜是一种广泛使用的药食同源类中药,具有辛温解表、温里散寒的功效[51],现代药理研究表明生姜具有抗炎镇痛、抗糖尿病、增强免疫力等作用[52]。生姜可通过促进外周血葡萄糖的利用,纠正受损的肝肾糖酵解,限制糖异生物质的形成,从而有效地控制组织糖原含量[53]。此外,炎症反应与DPN的发生发展密切相关[54],生姜提取物还能够显著抑制炎性因子IL-6和TNF-α的表达,减轻白细胞浸润或水肿的形成,起到保护神经的作用[55]。Shen等[56]通过构建DPN大鼠模型,并用生姜提取物进行治疗,发现生姜提取物不仅可以减轻疼痛,还可以调节DPN大鼠肠道菌群微生物的组成,表明生姜提取物靶向肠道微生物群可能是治疗DPN的一种新治疗策略。6-姜烯酚是生姜中的重要生物活性化合物之一[57],已广泛用于治疗多种疾病。Nurrochmad等[58]研究发现,6-姜烯酚15 mg/kg和生姜提取物400 mg/kg能够降低血糖,减轻糖尿病神经疼痛小鼠模型的热痛和机械疼痛,减轻坐骨神经微结构受损程度,提示6-姜烯酚和生姜提取物对糖尿病神经疼痛小鼠具有抗痛觉过敏和神经保护作用。大枣具有增强免疫、抗氧化的功效[59]。小胶质细胞激活介导的神经炎症在DPN神经病理性疼痛中起着重要作用[60]。大枣提取物对小胶质细胞的激活有抑制作用,可减轻小胶质细胞一氧化氮释放的增加,同时降低促炎因子IL-6、IL-1β和TNF-α的表达,改善神经性疼痛[61]。另有研究证实,大枣提取物还能促进神经末梢乙酰胆碱释放,刺激胰腺细胞促进胰岛素释放,起到降低血糖的作用[62]。Kaeidi等[63]将大鼠肾上腺嗜铬细胞瘤PC12细胞作为DPN体外模型,研究大枣提取物对PC12细胞中葡萄糖诱导的神经毒性的神经保护作用,发现大枣提取物300 μg/mL可降低高葡萄糖诱导的细胞毒性,并阻止活性氧的生成,抑制神经细胞凋亡,表明大枣提取物具有减轻DPN的治疗潜力。上述研究为阐明HGD是治疗DPN的标准方剂提供了有力证据。药效基础研究发现,5味中药能够通过降血糖、抗炎、抗氧化、修复受损神经、调节肠道微生物群、改善线粒体形态与功能等多种途径防治DPN的发生发展。然而关于HGD全方治疗DPN的研究尚缺乏相关模型的入血成分、药动学分析,因此利用现有中药分析技术明确其药效物质基础,特别是HGD体内外化学成分分析及量效关系研究,在治疗DPN方面具有重要意义。3 HGD治疗DPN的临床研究近年来,临床研究证明使用HGD可有效治疗DPN,通过增减药味,或联合化学药、其他方剂及外用疗法,达到治疗疾病,改善患者生活质量的目标。3.1 原方应用在临床治疗治疗中,因为患者年龄、病程、症状严重程度等不同,所以直接采用原方剂量治疗的案例比较少。胡宗华[64]将90例DPN患者分为对照组和观察组,对照组给予甲钴胺片治疗,观察组给予HGD治疗,结果显示观察组空腹血糖、餐后血糖、血液流变学指标均低于对照组。雷琳丽[65]应用HGD治疗DPN患者发现,HGD组空腹血糖、感觉神经传导速度、下肢振动感觉阈值均优于甲钴胺组,总有效率达93.33%。这2项临床研究表明HGD对于缓解DPN患者的血糖及症状方面效果显著。3.2 复方加减联合化学药HGD加减和甲钴胺联合应用,可明显改善患者四肢麻木、烧灼、疼痛、针刺感等临床症状[66],降低血清TNF-α炎性因子,提高超氧化物歧化酶水平[67]。HGD加减与盐酸法舒地尔注射液组合可以降低DPN患者空腹血糖、餐后2 h血糖、HbA1c、总胆固醇等指标,显著改善感觉神经传导速度和运动神经传导速度[68]。在一项为期12周治疗DPN的研究中[69],HGD、依帕司他、长春西汀注射液三者联合治疗,周围神经传导速度显著提高,中医证候积分较治疗前显著降低且优于对照组,血糖得到明显改善。根据以上临床研究,发现HGD加减联合化学药可有效降低患者血糖水平,抑制炎症反应发生及发展,改善氧化应激,减轻麻木、疼痛等临床症状,进而提升了患者的生活质量。可总结以下用药加减规律:若舌脉以血瘀为主,临床症状以刺痛为主,则加用当归、川芎、桃仁、三七等活血类药物;若患者肢体疼痛以刺痛且有定处为主,则加用鸡血藤、红花、牛膝、丹参等活血祛瘀止痛类药物;若患者肢体疼痛加重,出现入夜痛甚,则加用全蝎、地龙、没药、乳香等以痛经活络消痹止痛;若患者肢体出现水肿,则加用苍术、薏苡仁、木瓜等利水除湿、通络除痹。目前常用的化学药有甲钴胺、依帕司他、阿司匹林肠溶片、盐酸法舒地尔等药物。见表1。图片3.3 复方加减联合其他方剂相比于单独应用和联合化学药应用,HGD联合当归四逆汤、补阳还五汤、桃红四物汤等方剂治疗DPN,也取得良好的疗效。HGD联合当归四逆汤治疗DPN患者后,患者肢体冰冷、疼痛和麻木等临床症状大幅减轻,神经系统反射基本恢复正常[79],患者肢体血流速度得到改善[80]。HGD和补阳还五汤组合治疗总有效率达92%,临床症状明显缓解,神经传导速度增幅较高,密歇根糖尿病审计病变积分明显低于对照组[81]。连珍珍等[82]应用HGD合桃红四物汤加减治疗DPN研究显示,患者治疗前后血糖、HbA1c、中医证候积分、密歇根糖尿病审计病变积分、神经传导速度均有好转。当归四逆汤温经散寒、养血通脉,主治血虚寒厥证。补阳还五汤具有补气、助阳、通络化瘀的功效,主治气虚血瘀之证。桃红四物汤养血活血,主治血虚兼血瘀证。HGD联合补阳还五汤、当归四逆汤、桃红四物汤等方剂治疗DPN,能够有效减轻患者肢体冰冷、疼痛麻木等临床症状,改善神经传导速度,降低血糖。DPN的病因病机复杂多样,但以虚为本、瘀为标,肌肉筋骨失于濡养,致使手足麻木、厥冷、痹阻脉络、不通则痛。因此在临床治疗中,应补气补血补阳、活血化瘀通络。3.4 复方加减联合针灸在临床中,HGD还可以联合针灸治疗DPN。在孟凡冰等[83]的临床研究中,服用HGD,同时联合针灸治疗,血液黏度、多伦多临床评分均下降,神经传导速度也显著提升。赵荣等[84]研究发现,经HGD联合针灸治疗DPN后,患者肢体麻木、疼痛、无力的症状明显好转,中医证候积分量表较治疗前下降,对比患者治疗前后血常规、肝肾功能、心电图指标,差异无统计学意义,表明HGD联合针灸治疗DPN临床疗效确切且安全性较高。相较于单用HGD加减治疗,联用针灸后,临床症状缓解方面疗效更佳。部分穴位如三阴交、太溪和内关穴下有神经走行,针灸针对神经直接刺激后,可明显提高对神经功能的良性调节作用。四肢关节以下的腧穴,如足三里、三阴交、曲池、内关等,能够起到疏通局部经络气血的作用。针对DPN的关键病机,辅以关元穴、肾俞穴、胰俞穴、脾俞穴等,能达到补虚培元、调和脏腑的功效。见表2。图片3.5 复方加减联合其他疗法此外,HGD还可以联合中药足浴、穴位敷贴、高压氧等疗法共同治疗DPN。一项临床实验显示[91],口服HGD联合中药足浴(丹参、艾叶、红花、凤仙透骨草、皂角刺各20 g,肉桂、川椒各10 g),临床疗效优于对照组。HGD配合涌泉穴穴位贴敷治疗DPN后,患者全血高切比黏度、全血低切比黏度、血浆黏度水平均明显下降,有效改善了患者的血糖水平[92]。以上临床实验表明,HGD治疗DPN效果显著,有单独应用、联合化学药、针灸、中药足浴和穴位贴敷等用法,有效改善DPN患者糖脂代谢、血液流变学,降低患者血糖水平、氧化应激指标,抑制炎症反应,降低中医证候积分,提高神经传导速度,减轻DPN患者疼痛、麻木、四肢厥冷等临床症状。4 HGD治疗DPN的机制研究4.1 降低血糖,改善糖脂代谢高血糖是糖尿病前期、糖尿病前期神经病变、DPN的主要危险因素[93],不仅会直接损伤神经,其介导的多种异常代谢途径,如多元醇通路、AGEs通路、己糖胺通路,会通过激活炎症反应、氧化应激、线粒体功能障碍等造成神经屏障破坏、周围微血管损伤,最终累及神经。除高血糖激活的异常代谢途径,最近的研究表明血脂异常也在DPN发生发展中起着重要作用[11]。刘曼曼等[94]研究发现HGD可有效降低DPN患者空腹血糖、餐后2 h血糖、HbA1c,患者肢体神经传导速度、麻、凉、痛等症状得到改善。林云梅等[95]采用HGD治疗DPN患者,检测患者血糖、血脂水平发现,治疗组空腹血糖、餐后2 h血糖、总胆固醇、三酰甘油、低密度脂蛋白胆固醇均显著下降。这2项研究表明HGD能够有效调节DPN患者机体血糖、血脂水平,改善受损神经组织。4.2 抑制异常代谢通路4.2.1 抑制AGEs通路 在糖尿病患者中,神经组织被过度糖化,导致蛋白质、脂质、核酸等与还原糖类发生非酶促反应生成AGEs[96]。糖尿病患者皮肤和周围神经存在大量AGEs,特别是神经元、雪旺细胞、神经内膜和神经外膜微血管中[97]。AGEs与晚期糖基化终产物受体(receptor for advanced glycationend products,RAGE)结合后引起内皮功能障碍、氧化应激和促炎信号的传导[98]。方颖等[99]通过高脂饲养联合ip链脲佐菌素建立DPN大鼠模型,经HGD干预后,发现DPN大鼠血清IL-1β、TNF-α炎症因子的含量显著降低,其作用机制可能与减少AGEs蓄积,阻断AGEs/RAGE/NF-κB信号有关。4.2.2 调节内质网应激,抑制细胞凋亡 高血糖能够扰乱蛋白质稳态并上调未折叠的坐骨神经蛋白[100],而内质网腔内未折叠或错误折叠蛋白的积累会诱导内质网应激[101],最终激活环磷酸腺苷反应元件结合转录因子同源蛋白(C/EBP-homologous protein,Chop)导致细胞凋亡[102]。张岩等[103-104]通过构建DPN大鼠模型发现,经HGD组干预后,DPN大鼠Chop蛋白表达显著降低,HGD可以通过调节内质网应激途径抑制细胞凋亡。此外,HGD还能够显著降低坐骨神经细胞凋亡相关B细胞淋巴瘤-2相关X蛋白和半胱氨酸天冬氨酸蛋白酶-12蛋白的表达,抑制坐骨神经细胞凋亡并改善和修复糖尿病大鼠坐骨神经损伤。内质网应激介导Chop凋亡蛋白的同时,也激活了c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)[105],JNK可以抑制髓鞘蛋白的产生,诱导雪旺细胞去分化,从而导致脱髓鞘和神经损伤的发生[106]。肖凡等[107]研究发现,HGD给药组DPN小鼠神经纤维和髓鞘出现再生,空腹血糖、鼠尾热痛觉敏感程度、坐骨神经传导速度、坐骨神经组织病理状态均显著优于模型组,JNK蛋白表达也显著减少,推测HGD可能通过抑制内质网应激水平来改善DPN大鼠坐骨神经功能、减轻坐骨神经组织损伤。4.3 抗炎镇痛DPN与炎症反应密切相关,炎症标志物的水平可以预测DPN的发生和发展[108]。多项临床研究证明,HGD可以有效降低IL-6、TNF-α等炎症因子水平,改善神经传导速度[109-110]。miR-146a是一种短链非编码RNA分子,miR-146a与糖尿病慢性并发症间存在独立的负相关关系[111],在长期高血糖的情况下,miR-146a的表达下降,NF-κB的抑制减弱,导致IL-1β和TNF-α炎性因子表达水平升高[112]。郭咏梅等[113]研究发现,HGD可以上调DPN大鼠模型miR-146a基因表达,降低DPN大鼠血清中炎症因子IL-1β和TNF-α水平,以及机械痛阈值,提高神经传导速度,推断HGD治疗DPN的机制与抑制炎症反应有关。周雯等[114]研究发现,HGD能够呈剂量相关性降低DPN大鼠血清IL-1β、TNF-α水平,减轻周围神经组织炎症损伤。4.4 抗氧化应激氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,过多的活性氧除造成轴突变性外,还会导致神经纤维的功能减退,与DPN的发生发展密切相关[115]。经HGD干预后DPN大鼠血糖、丙二醛水平显著下降,血清谷胱甘肽水平升高,提示HGD具有抗氧化作用[116]。硫氧还蛋白(thioredoxin,Trx)是一种广泛存在于生物体内的氧化还原调节蛋白,不仅可以通过清除活性氧来抵抗细胞内的氧化应激,还可以作为一种生长因子促进细胞的生长[117],而硫氧还蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)是Trx的生理抑制剂,能下调Trx表达。张文娓等[118]通过研究HGD对DPN大鼠周围神经组织Trx及TXNIP表达的影响,发现HGD可明显提高Trx的表达,降低TXNIP的表达,进一步表明HGD可通过抗氧化应激来治疗DPN。4.5 营养神经修复NGF在外周神经纤维重建和中枢神经系统的营养维持中具有重要作用[119],有研究发现NGF可明显缩短神经再生长和髓鞘再生时间[120]。多项实验研究表明HGD可有效改善DPN大鼠坐

  • 新品发布 | 博莱克氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)线上首发

    近日,由博莱克和曼哈格联合研发生产的[b]蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法)隆重推出。[/b]本次推出的3套kit是建立在高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱平台上,[b]可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。[color=#007aaa][b]检测指标[/b][/color][b]20种蛋白质氨基酸[/b][img=图片]https://mmbiz.qpic.cn/mmbiz_jpg/icdrj1xN3nzegREY8y6hordCcUZoxG9K97QPNdH4obtZicibTMluC5udpfiaJiakibKs7AbPU3hClbjibUQfL6gbS5rew/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1[/img][b]12种神经递质[/b][img=图片]https://mmbiz.qpic.cn/mmbiz_jpg/icdrj1xN3nzegREY8y6hordCcUZoxG9K9IK9iaOIB2UO3yelv03QV2rgWvChRJCFD5zCEl3oreG95Zn9oOXicHkibQ/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1[/img][b]6种儿茶酚胺[/b][img=图片]https://mmbiz.qpic.cn/mmbiz_png/icdrj1xN3nzegREY8y6hordCcUZoxG9K94WshNibEBJJ0rMfibQ8zzdJh0bHUBNVoVOQkgBcn8o1XMiaHs5SyLiavRA/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img][color=#007aaa][b]产品优势[/b][/color][b]01串联质谱:[/b][/b]定量检测小分子的金标准,特异性强,一次同时检测多个靶标[b][b]02增敏探针:[/b][/b]授权专利,特异性结合并自带电荷,灵敏度提高至少两个数量级[b][b]03用样量少:[/b][/b]仅需20~150 μL血样或20 μL尿样,针对痕量物质表现依旧优异[b][b]04保护巯基:[/b][/b]对于易被氧化的-SH有特殊保护,能准确检测半胱氨酸的正确浓度[b][b][/b][color=#007aaa][b]功能与应用[/b][/color][img=图片]https://mmbiz.qpic.cn/mmbiz_png/icdrj1xN3nzegREY8y6hordCcUZoxG9K9LJ61xnXI8us6X0FeTHFHz8WMbDdiae2XHQWQiaxOFNVLptjticpquWM1w/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img][color=#000000]蛋白质是构成人体的物质基础,氨基酸是蛋白质的最基础单元,色氨酸、谷氨酸和天冬氨酸本身就是神经递质。氨基酸代谢水平异常与先天性代谢缺陷、营养缺乏、代谢紊乱等相关,氨基酸的平衡是人体健康的基本前提。[/color][img=图片]https://mmbiz.qpic.cn/mmbiz_png/icdrj1xN3nzegREY8y6hordCcUZoxG9K9Chia5YF4iawh49HXODTR0KduB7a6kpHR9z26ibxBInmXiae5zwbRr1CZDQ/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img][color=#000000]神经递质包括儿茶酚胺、吲哚胺、GABA、酪胺等,对心血管、神经、内分泌等组织系统有着广泛的调节作用,并对如睡眠觉醒、情感、情绪、应激行为等生理活动产生重要影响。对神经递质的定量测量,能对抑郁症、阿尔茨海默症、唐氏综合症等疾病进行辅助诊断。[/color][img=图片]https://mmbiz.qpic.cn/mmbiz_png/icdrj1xN3nzegREY8y6hordCcUZoxG9K9150wUu0z4hJlb7ej5ibD3tY1slFwaNVbcadxIiarcGWS3SOT2Y7fsQTw/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img][color=#000000]儿茶酚胺是重要的肾上腺素受体激动剂,包括多巴胺、去甲肾上腺素和肾上腺素等。嗜铬细胞瘤和副神经节瘤患者(PPGL)会合成、分泌和释放大量儿茶酚胺,引起血压升高等一系列临床症侯群,检测相应浓度可用于辅助诊断。[/color][color=#000000][/color][color=#007aaa][b]适用仪器[/b][/color][color=#3daad6][/color][/b][align=left][font=微软雅黑, sans-serif]Agilent 1290-6470 [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS以及6430/6465/6495系列[/font][/align][align=left][font=微软雅黑, sans-serif]SCIEX QTRAP 6500+ [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS以及4500/5500/7500系列[/font][/align][color=#007aaa][b]技术专利[/b][/color][img=图片]https://mmbiz.qpic.cn/mmbiz_png/icdrj1xN3nzegREY8y6hordCcUZoxG9K9ylBQsq2I5ufO92uInPLy0yD3VxUjFvJwPGDJjibTkM7JibelNPkQEspA/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img][img=图片]https://mmbiz.qpic.cn/mmbiz_png/icdrj1xN3nzegREY8y6hordCcUZoxG9K9oqY8V5tuicC6TG5k9eyPQLNphZicFPibQ0BuSoelib4Kt0P7XDHNqPfByg/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img][b][color=#007aaa]关于博莱克[/color][/b]博莱克科技(武汉)有限公司(简称博莱克,SMI)创立于2015年,位于武汉市东湖新技术开发区,专注于代谢组学在科研服务领域的技术开发与应用,被认定为国家级高新技术企业和武汉市科技“小巨人”企业。公司拥有完善的核磁共振波谱仪、色谱质谱联用仪等技术平台,提供整体方案设计、代谢组学检测、定量检测试剂盒等服务及产品。博莱克自成立以来,成功开发了几十项代谢表型检测方法并获得多项专利,覆盖氨基酸、脂肪酸、维生素、胆汁酸等数千种代谢物,已为近百家知名医院、大学及科研院所提供过高质量的科研服务,致力于成为中国代谢组学先行者和下一代技术的领导者。[color=#3daad6][b]博莱克:聚焦代谢表型科研服务[/b][/color][align=center][/align]地址:武汉市东湖新技术开发区电话:19947560496邮箱:jameschen37@smi-wh.cn网址:www.smi-wh.cn

  • 组织工程人工神经修复周围神经损伤的研究进展

    【序号】:2【作者】:赵文强1温树正2郝增涛【题名】:组织工程人工神经修复周围神经损伤的研究进展【期刊】:实用手外科杂志. 【年、卷、期、起止页码】:2019,33(04)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=SSV49NPffwf2IiSLJLAb4B5oX01zdScWhNXt8JO1xEz9q9Yt8m4TfjhQ-PO9o1LCyWWY5aLqNloCsPuNYpl1lJ2RGqle0M4TBdQ6HN5h6LiiZU32g55HHY_k097wKTdRJyg4vVETHqZb5GOh6Yr7zQ==&uniplatform=NZKPT&language=CHS

  • 聚己内酯/几丁糖—神经营养因子-3多通道神经导管修复大鼠坐骨神经缺损的实验研究

    【序号】:2【作者】:鲁正宇【题名】:聚己内酯/几丁糖—神经营养因子-3多通道神经导管修复大鼠坐骨神经缺损的实验研究【期刊】:中国人民解放军海军军医大学【年、卷、期、起止页码】:2023【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELFPBonMmeY4CXYJt15MzEqPbIZwAi9KGr_K6lWlPFCF9RmB2DZHadt2qxH9QmcxSj2vMIjNa2QqdxgXfxaq9JgKOuSefNflQVv2sgoh8XiaDx5eem1E-4TAmnYLx4yLiOJUvTXgbvh0kQ==&uniplatform=NZKPT&language=CHS

  • 新型神经导管修复大鼠坐骨神经缺损的实验研究

    【序号】:2【作者】:罗东【题名】:新型神经导管修复大鼠坐骨神经缺损的实验研究【期刊】:中国人民解放军医学院【年、卷、期、起止页码】:2021【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELG067KzQTe68sS1WRAO_oBBUqz7bGRGU5f7BXF9euJDKqO0p3KEbO6TtLjkzy12TqRnFJHp03j412XavtvYhwe8tXB4yYB1jYEot7SGq-Y-6aBNikgLyZ1MpkrChH5oeerbwX6gyFWcVA==&uniplatform=NZKPT&language=CHS

  • iPSC神经细胞培养试剂

    iPSC神经细胞培养试剂【胜创生物】成功取得GlobalStem中国区总代理:人ES细胞mRNA高效转染试剂,GlobalStem公司2006年在美国成立,其团队核心技术骨干为原Lifetech部门,负责研发生产细胞转染试剂Lipofectamine 2000、Lipofectamine 3000及细胞培养试剂等。  GlobalStem专注于iPSC(诱导性多功能干细胞神经分化)神经细胞转染、干细胞转染试剂,iPSC神经细胞培养、干细胞培养、原代细胞培养试剂。  【胜创生物】http://www.shengchuangbio.com/-人ES细胞mRNA高效转染试剂  DNA-In-Neuro:在神经细胞中的转染效率约高于Lipofectamine 2000的 3倍。  DNA-In-Neuro:*转染效率高*低毒性*数据重复性高*操作简单。  日前,【胜创生物】公司已成功取得GlobalStem的中国总代理权,电话咨询400-6400-850  胜创生物以“品质第一,客户第一“为公司价值观,以引进”新产品、新技术“为己任,更多资讯关注胜创生物微信【sc-bios】获取详情!

  • 【关注安全】抗菌皂含少量有毒物质可损害儿童神经发育

    http://www.sina.com.cn 2007年10月08日09:48 生命时报   只要是对孩子健康有所关心的家长,恐怕都会对铅中毒忌惮三分。但据美国媒体9月21日报道,其实,在生活中,有许多日常用品,比含铅涂料还危险。  1.汞合金填充物  不要用汞合金填充物(又称水银填充物)为孩子补牙,否则一旦孩子吸入汞蒸气,甚至将其吞下,就可能导致汞中毒。  2.抗菌皂  抗菌皂为什么能抗菌?因为里面含有少量的有毒物质。这对人体也有害,特别是对神经系统正在发育的儿童而言。因此,要避免一切宣称“抗菌”的产品,最好使用自然香皂,让孩子的免疫系统发挥作用,杀死一般细菌。  3.运动饮料  仅仅因为“运动”二字,一些父母便认为这种饮料是健康的,还觉得它能起到补钾的作用。实际上,这其中含有的化学甜味剂却是有害的。喝水是更聪明的方法。  4.非处方药品  几乎所有的药品都有一定的毒性。而许多儿童药品比成人药品毒性更强,因为它们增加了化学甜味剂和人工色素的含量。   5.防晒油中的遮光剂  许多防晒油中的遮光剂能导致皮肤癌,因为它们含有多种有毒物质。更严重的是,遮光剂阻挡了紫外线,使皮肤不能正常制造维生素D,影响骨骼生长。  6.加工过的牛奶  不到10岁的儿童就患上心脏病,有一部分原因是跟他们喝的加工牛奶有关。因为这些加工牛奶中,有些会含有杀虫剂和其他化学物质。  7.快餐  快餐极不健康,不仅因为这些食品常常是油炸的,还因为它们含有添加剂、味精、色素等物质。奇怪的是,许多家长对孩子良好表现的奖励,竟然是为他们购买不健康的快餐食品。  8.洗衣剂  洗衣剂中含有的有毒物质很多,其中的香味剂就属于致癌物质。它们对环境有害,同样对儿童健康有害。  9.阻燃剂  在新型的儿童床垫上,经常会喷洒阻燃剂,它们可以轻易地被儿童皮肤吸收,破坏他们的免疫系统和神经系统。此外,许多服装、地毯、毛毯等产品现在也含有阻燃剂。  10.碳酸饮料  它可能导致糖尿病和肥胖,还含有磷酸,会损害牙齿,导致骨质疏松。此外,儿童经常喝碳酸饮料则更危险,因为它们含有的化学甜味剂与学习能力低下和神经紊乱都有关系。  11.空气清新剂  空气清新剂含有致癌物质,能够导致哮喘和其他呼吸系统疾病。如果你重视孩子的健康,就用橘子皮来代替吧。  12.人工合成的维生素  一些儿童专用维生素是人工合成的,其中往往会添加一些人工色素和化学甜味剂。因此要避免购买廉价的儿童合成维生素,而选择有质量保证的产品。

  • 人工神经网络ANN软件

    谁有人工神经网络ANN分析方法的软件,请传上来或留个地址,我的邮箱zhuzilong@sohu.com小弟这里先谢谢了[em61] [em61]

  • 【金秋计划】丹酚酸B靶向神经氨酸酶NEU1改善肾纤维化

    [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]1、慢性肾脏病患者肾小管上皮细胞(TEC)中NEU1升高[/size] [size=14px] [/size] [size=14px]作者首先通过分析肾脏转录组学数据库检测神经氨酸酶(NEU1-NEU4)的表达,发现肾活检组织中NEU1而非NEU2-NEU4的mRNA显著上调,NEU1在大多数类型的CKD(IgA、糖尿病肾病、狼疮性肾炎等)中升高。此外,作者纳入临床样本发现肾纤维化患者的NEU1蛋白水平显著高于无肾纤维化患者,NEU1含量的增加主要与肾损伤分子1(KIM1)共定位,NEU1表达与肾小球滤过率呈负相关。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、NEU1在小鼠纤维化肾脏中上调[/size] [size=14px] [/size] [size=14px]接下来,作者测定了小鼠中NEU1的蛋白水平,通过单侧输尿管梗阻(UUO)或叶酸刺激建立肾纤维化模型,发现NEU1 mRNA和蛋白水平在纤维化小鼠的肾脏中显著增加,肾脏切片的染色显示NEU1在TEC中的定位增加。此外,NEU1的水平与纤维化指数呈正相关。进一步在TEC中敲低/过表达究NEU1来研究NEU1在TEC损伤中的作用,发现NEU1介导的TGFβ诱导的HK-2细胞上皮/间质标志物改变。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]3、TEC特异性NEU1缺失抑制小鼠肾纤维化[/size] [size=14px] [/size] [size=14px]为了研究 NEU1 在肾纤维化中的作用,作者构建了TEC 特异性缺失Neu1的小鼠,通过单侧输尿管梗阻(UUO),发现NEU1敲除显著改善了形态,减少胶原沉积,抑制肾小管坏死和肾小管间质炎症,抑制巨噬细胞浸润和肾小管细胞中的pNF-κB,抑制UUO 诱导的KIM1 表达,抑制了EMT进展,抑制了UUO诱导的炎症细胞因子水平。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]在另一种由叶酸诱导的肾纤维化模型中,Neu1CKO小鼠的形态和肾重也明显改善,NEU1敲低显著改善肾功能相关肌酐和血尿素氮水平,抑制叶酸诱导的KIM1表达,减少肾小管损伤和间质纤维化。巨噬细胞浸润,EMT标记基因表达,促炎细胞因子,纤维化因子等均由于肾小管上皮细胞中NEU1缺乏而明显逆转。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、NEU1过表达增强UUO诱导的小鼠肾纤维化[/size] [size=14px] [/size] [size=14px]除功能丧失外,作者还使用AAV9-NEU1将其注射到小鼠的肾皮层中进行NEU1过表达,免疫荧光结果显示AAV9-NEU1成功转导到TEC中。此外,NEU1过表达加剧了UUO诱导的肾脏萎缩,管状膨胀和胶原蛋白在肾脏皮质和髓质中的沉积,增强了UUO诱导的KIM1表达和肾脏中的EMT进展,增加了UUO刺激的巨噬细胞浸润,促炎细胞因子,纤维化因子的表达。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]5、NEU1与ALK5在160–200区域相互作用[/size] [size=14px] [/size] [size=14px]为了深入研究NEU1促进肾纤维化的潜在机制,作者通过[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]芯片检测差异表达基因,前三位富集的KEGG通路包括TGF-β信号通路,由于TGFβ是驱动CKD中EMT和纤维化的主要致病因素,作者以TGF-β信号通路为中心。通过测试NEU1与TGF-β受体直接互作的可能性,Co-IP发现NEU1选择性地与ALK5结合,但不能与ALK2、ALK3等受体结合。Co-IP结合质谱法确认NEU1与ALK5的相互作用,免疫荧光显示NEU1与ALK5共定位于人纤维化肾脏。此外,双分子荧光互补(BiFC)以及原位邻位连接测定(PLA)均验证了NEU1和ALK5在患者纤维化肾中的直接相互作用。进一步SPR、PLA和Co-IP确定了ALK5的特异性结合域,证实NEU1与ALK5在160–200区域相互作用。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]6、NEU1与ALK5互作并稳定ALK5以增强 ALK5-SMAD2/3信号通路[/size] [size=14px] [/size] [size=14px]为了研究NEU1-ALK5互作对ALK5的影响,作者测量了ALK5在存在或不存在NEU1的情况下的稳定性,发现NEU1敲低促进ALK5降解,而NEU1过表达抑制ALK5降解,表明NEU1与ALK5相互作用并稳定ALK5。ALK5 能够磷酸化其底物SMAD家族,作者发现NEU1沉默显著抑制TGFβ诱导的SMAD2/3激活,而NEU1过表达在TGFβ存在下维持SMAD2/3连续激活。此外,酶活性位点(mtNEU1:D103A、Y370A、E394A)的突变降低了NEU1过表达对TGFβ诱导的ALK5-SMAD2/3激活的影响,这些结果表明,NEU1与细胞质中ALK5的GS 结构域(氨基酸160-200)互作,然后增强ALK5-SMAD2/3信号通路,导致肾纤维化。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]7、丹酚酸B靶向 NEU1保护肾脏[/size] [size=14px] [/size] [size=14px]为了鉴定靶向NEU1的候选化合物,作者采用SPR筛选了来自药用植物的74种天然产物与重组人NEU1蛋白的结合亲和力,发现NEU结合亲和力最强的前两种化合物是来自丹参的丹酚酸B和和迷迭香酸中的迷迭香酸。Co-IP和PLA实验表明丹酚酸B显著抑制NEU1与ALK5之间的相互作用,TGFβ诱导的ALK5-SMAD2/3信号通路激活也被丹酚酸B阻断。随后,作者在小鼠模型中研究了丹酚酸B对肾损伤的保护作用,证实丹酚酸B可显著减轻UUO诱导的肾损伤和肾纤维化,抑制Kim1、Snai1和Snai2表达,抑制促炎细胞因子的产生,抑制ALK5的磷酸化和SMAD2/3的下游磷酸化,在缺血/再灌注诱导的小鼠模型中复制了丹酚酸B对肾损伤的保护作用。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]为了测试NEU1是否介导丹酚酸B的保护作用,作者采用了Neu1 CKO小鼠模型,发现在Neu1 CKO小鼠中,丹酚酸B的治疗未能进一步减少UUO刺激下的肾损伤和肾纤维化,不能进一步抑制UUO诱导的Kim1表达。此外,在Neu1CKO小鼠中,丹酚酸B处理对ALK5磷酸化的抑制作用没有进一步增强。这些数据表明NEU1是保护肾脏的丹酚酸B所必需的。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结[/size] [size=14px] [/size] [size=14px]研究揭示了NEU1在慢性肾病中的新功能、新机制、新药物。研究人员首先基于临床样本、多种肾纤维化动物、细胞模型,发现NEU1在肾纤维化中过度活化。应用免疫荧光技术检测,发现高表达的NEU1主要定位在肾小管上皮细胞中。进一步构建了肾小管上皮细胞特异性NEU1敲除和过表达小鼠,在单侧输尿管结扎(UUO)和叶酸(FA)刺激模型下,敲除NEU1抑制上皮-间质转化、炎细胞因子产生和胶原沉积,从而改善肾纤维化、对抗肾损伤;相反,过表达NEU1则加重UUO诱导的肾纤维化。采用[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] array、Co-IP、BiFC、PLA等技术手段发现NEU1选择性结合TGFβ I型受体ALK5,截短质粒、SPR技术明确NEU1与ALK5的160-200氨基酸区域结合,从而稳定ALK5,促使ALK5-Smad2/3信号通路持续激活,诱发肾纤维化发生发展。研究人员进一步以人源NEU1为靶点,从中药中筛选具有肾脏保护作用的活性成分。从近百个中药单体化合物中发现中药丹参中的丹酚酸B与人源NEU1重组蛋白具有极强亲和力;通过动物水平研究,明确了丹酚酸B抑制NEU1、对抗ALK5-Smad2/3通路激活改善肾纤维化,利用NEU1敲除小鼠,证实丹酚酸B依赖于NEU1对抗肾损伤,为揭示丹参发挥肾保护作用的科学内涵提供直接靶点证据,也为靶向NEU1途径治疗慢性肾病的临床应用和药物研发开拓了新方向。[/size]

  • 中文文献2篇神经导管06

    【序号】:1【作者】: 罗鹏1彭邱亮2向剑平3戚剑3【题名】:合成材料神经导管与自体神经移植修复周围神经缺损的比较【期刊】:中国组织工程研究. 【年、卷、期、起止页码】:2013,17(16)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2013&filename=XDKF201316037&v=tfrpChNVpdFApC7IiE%25mmd2BdE5%25mmd2Bl4hHT6hyABW%25mmd2BDD%25mmd2FIw3R%25mmd2BjC%25mmd2BqtQvB%25mmd2ByJeFrXHXjnLI[/url]【序号】:2【作者】: 门永芝於子卫【题名】:生物材料构建神经导管修复周围神经损伤的研究进展【期刊】:听力学及言语疾病杂志.【年、卷、期、起止页码】: 2014,22(06)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2014&filename=TLXJ201406028&v=phkGqa8oXvYw%25mmd2B0%25mmd2FAFZeFWY733a9aBltSc%25mmd2FvN%25mmd2FJY%25mmd2Fkqy%25mmd2Fn9BN%25mmd2F25s269aUOQtRM1P[/url]

  • 卷积神经网络模型发展及应用

    卷积神经网络模型发展及应用

    [b]卷积神经网络模型发展及应用转载地址:[/b]http://fcst.ceaj.org/CN/abstract/abstract2521.shtml [img]https://oss-emcsprod-public.modb.pro/image/editor/20220802-9243a15c-bcd6-4a63-921e-932f257a1e05.png[/img][img=,690,212]https://ng1.17img.cn/bbsfiles/images/2022/08/202208021122351500_3641_5785239_3.png!w690x212.jpg[/img]深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学习样本数据的特征表示,卷积神经网络已经广泛应用于图像分类、目标检测、语义分割以及自然语言处理等领域。[b]首先分析了典型卷积神经网络模型为提高其性能增加网络深度以及宽度的模型结构,分析了采用注意力机制进一步提升模型性能的网络结构,然后归纳分析了目前的特殊模型结构,最后总结并讨论了卷积神经网络在相关领域的应用,并对未来的研究方向进行展望。[/b]卷积神经网络(convolutional neural network,CNN) 在计算机视觉[1- 5]、自然语言处理[6- 7]等领域已被广泛 应用。在卷积神经网络兴起之前,主要依靠人工针对特定的问题设计算法,比如采用 Sobel、LoG(Laplacian of Gaussian)、Canny、Prewitt 等[8- 11]算子进行边 缘 检 测 ,采 用 Harris、DoG(difference of Gaussian)、FAST(features from accelerated segment test)、SIFT (scale invariant feature transform)等[12-15]用于角点等特 征检测,并且采用传统分类器如 K近域、支持向量机、 稀疏分类器等[16- 18]进行分类。特征提取和分类器的 设计是图片分类等任务的关键,对分类结果的好坏 有着最为直接的影响。卷积神经网络可以自动地从 训练样本中学习特征并且分类,解决了人工特征设计 的局限性。神经网络的思想起源于1943年McCulloch 和 Pitts 提出的神经元模型[19],简称 MCP 神经元模 型。它是利用计算机来模拟人的神经元反应的过 程,具有开创性意义。此模型将神经元反应简化为 三个过程:输入信号线性加权、求和、非线性激活。1958 年到 1969 年为神经网络模型发展的第一阶段, 称为第一代神经网络模型。在 1958 年 Rosenblatt 第 一次在 MCP 模型上增加学习功能并应用于机器学 习,发明了感知器算法[20],该算法使用 MCP 模型能够 采用梯度下降法从训练样本中自动学习并更新权 值,并能对输入的多维数据进行二分类,其理论与实 践的效果引起了神经网络研究的第一次浪潮。1969 年美国数学家及人工智能先驱 Minsky在其著作中证 明感知器本质上是一种线性模型[21],只能处理线性分 类问题,最简单的异或问题都无法正确分类,因此神 经网络的研究也陷入了近二十年的停滞。1986 年到 1988 年是神经网络模型发展的第二阶段,称为第二 代神经网络模型。1986 年 Rumelhart 等人提出了误 差反向传播算法(back propagation algorithm,BP)[22]。BP 算法采用 Sigmoid 进行非线性映射,有效解决了 非线性分类和学习的问题,掀起了神经网络第二次 研究高潮。BP 网络是迄今为止最常用的神经网络, 目前大多神经网络模型都是采用 BP网络或者其变化 形式。早期神经网络缺少严格数学理论的支撑,并 且在此后的近十年时间,由于其容易过拟合以及训 练速度慢,并且在 1991 年反向传播算法被指出在后 向传播的过程中存在梯度消失的问题[23],神经网络再 次慢慢淡出人们的视线。1998 年 LeCun 发明了 LeNet-5,并在 Mnist 数据 集达到 98%以上的识别准确率,形成影响深远的卷积 神经网络结构,但此时神经网络的发展正处于下坡 时期,没有引起足够的重视。从感知机提出到 2006 年以前,此阶段称为浅层 学习,2006 年至今是神经网络的第三阶段,称为深度 学习。深度学习分为快速发展期(2006—2012 年)和 爆发期(2012 年至今),2006 年 Hinton 提出无监督的 “逐层初始化”策略以降低训练难度,并提出具有多 隐层的深度信念网络(deep belief network,DBN)[24], 从此拉开了深度学习大幕。随着深度学习理论的研究和发展,研究人员提 出了一系列卷积神经网络模型。为了比较不同模型 的质量,收集并整理了文献中模型在分类任务上的 识别率,如图 1所示。由于部分模型并未在 ImageNet 数据集测试识别率,给出了其在 Cifar-100 或 Mnist数 据集上的识别率。其中,Top-1识别率指的是 CNN 模型预测出最大概率的分类为正确类别的概率。Top-5 识别率指的是 CNN 模型预测出最大概率的前 5 个分 类里有正确类别的概率。2012 年,由 Alex Krizhevshy 提出的 AlexNet给卷 积神经网络迎来了历史性的突破。AlexNet 在百万 量级的 ImageNet数据集上对于图像分类的精度大幅 度超过传统方法,一举摘下了视觉领域竞赛 ILSVRC2012的桂冠。自 AlexNet之后,研究者从卷积神经网 络的结构出发进行创新,主要有简单的堆叠结构模 型,比如 ZFNet、VGGNet、MSRNet。堆叠结构模型通 过改进卷积神经的基本单元并将其堆叠以增加网络 的深度提升模型性能,但仅在深度这单一维度提升 模 型 性 能 具 有 瓶 颈 ;后 来 在 NIN(network in network)模型提出使用多个分支进行计算的网中网结 构模型,使宽度和深度都可增加,具有代表性的模型 有 Inception 系列模型等;随着模型深度以及宽度的 增加,网络模型出现参数量过多、过拟合以及难以训 练等诸多问题。ResNet 提出残差结构后,为更深层 网络构建提出解决方案,随即涌现出很多残差结构模 型,比如基于 ResNet 改进后的 ResNeXt、DenseNet、 PolyNet、WideResNet,并且 Inception也引入残差结构 形成了 Inception-ResNet-block,以及基于残差结构并 改进其特征通道数量增加方式的 DPResNet;与之前 在空间维度上提升模型性能的方法相比,注意力机 制模型通过通道注意力和空间注意力机制可以根据 特征通道重要程度进一步提升模型性能,典型的模 型为 SENet、SKNet 以及 CBAM(convolutional block attention module)。传统的卷积神经网络模型性能十分优秀,已经 应用到各个领域,具有举足轻重的地位。由于卷积 神经网络的模型十分丰富,有些模型的结构或用途 比较特殊,在本文中统称为特殊模型,包括具有简单的结构和很少参数量的挤压网络模型 SqueezeNet,采 用无监督学习的生成对抗网络模型(generative adversarial network,GAN),其具有完全相同的两路网络 结构以及权值的孪生神经网络模型 SiameseNet,以 及通过线性运算生成其他冗余特征图的幽灵网络 GhostNet。由于卷积神经网络的一系列突破性研究成果, 并根据不同的任务需求不断改进,使其在目标检测、 语义分割、自然语言处理等不同的任务中均获得了 成功的应用。[b]基于以上认识,本文首先概括性地介绍了卷积 神经网络的发展历史,然后分析了典型的卷积神经 网络模型通过堆叠结构、网中网结构、残差结构以及 注意力机制提升模型性能的方法,并进一步介绍了 特殊的卷积神经网络模型及其结构,最后讨论了卷 积神经网络在目标检测、语义分割以及自然语言处 理领域的典型应用,并对当前深度卷积神经网络存 在的问题以及未来发展方向进行探讨。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2022/08/202208021123119824_325_5785239_3.png!w690x387.jpg[/img][/b][img]https://oss-emcsprod-public.modb.pro/image/editor/20220802-51d3c121-d787-4a08-a7a4-a7f9ecb3a33d.png[/img][b]转载文章,如有侵权,请联系我删除[/b]

  • 【转帖】科学家发现神经系统“交警”

    自然》:科学家发现神经系统“交警”蛋白质MEC-17帮助维持大脑细胞内的“交通秩序”美国研究人员发现一种蛋白质帮助维持大脑细胞内的“交通秩序”,“指挥”细胞内营养物质和废弃物何去何从。这一发现有助研究帕金森氏症和阿尔茨海默氏症(早老性痴呆症)等神经系统疾病的治疗方法。“交警”这种蛋白质名为MEC-17。它的发现纯属好奇结果。美国趣味科学网站9月8日援引佐治亚大学富兰克林艺术和科学学院细胞生物学系教授亚采克·格蒂希的话报道:“这一项目没有任何医学或科学驱动,纯粹是因为好奇细胞内运输机制,但看起来我们确定了神经系统内发挥重要作用的一种酶。”格蒂希说,细胞内有一个管道网,称为微管,这些微管由蛋白质组成,承担细胞内部物质运输,还在细胞生长、细胞间发送信号等方面发挥重要作用。而这个管道网内的交通信号指示就是一种名为“乙酰化标记”的化学添加剂,明确指示微管将何种蛋白质运往大脑细胞内何处。研究人员发现,乙酰化标记存在于大脑负责发送信号的神经细胞内的微管,而负责接收信号的神经细胞内的微管没有这一标记。催化事实上,研究人员早在1983年就发现了乙酰化标记,但直到近期才了解它的作用在于系统管理微管内运输物质的动力蛋白。不过,研究人员一直不清楚乙酰化标记形成的细胞过程,换句话说,哪一种酶决定这一“交通信号”在何地发挥作用。格蒂希和同事分别研究了原生动物四膜虫、线虫、斑马鱼和人体癌细胞后发现,MEC-17就是负责微管乙酰化的“交警”。研究人员发现,MEC-17在微管乙酰化反应中起到催化作用。具体到线虫,这种酶与它的触感有关;在斑马鱼身上,MEC-17损耗会导致神经肌肉缺陷。研究结果由权威期刊《自然》杂志发表。运用先前一些研究结果显示,亨廷顿氏症、帕金森氏症和阿尔茨海默氏症等神经退化性疾病患者的微管乙酰化标记水平发生改变。格蒂希说,确认MEC-17这种酶,了解它的工作机制之后,制药企业就可以开发药物抑制或提高它的活性,从而治疗神经退化性疾病。格蒂希的研究小组由多家实验室成员组成。他将这项研究成果归功于大家精诚合作,“一起努力才让我们能够使用各种模型,结果发现MEC-17参与的微管乙酰化过程是一种***性保留作用。没有亲密合作,那不可能实现”。新华网

  • 小动物脑部活动神经成像仪介绍

    [url=http://www.f-lab.cn/vivo-imaging/nvista.html][b]小动物脑部活动神经成像仪[/b]nVista[/url]是美国inscopix公司新一代细胞级活体实时脑动态成像分析系统,具有细胞级分辨率和实时成像功能。小动物脑部活动神经成像仪采用微型显微镜设计,具有领先的钙动态单光子落射荧光成像技术,适合动态神经活动成像。小动物脑部活动神经成像仪nVista特点成千上万的神经元同时成像单细胞分辨率水平具有细胞类型特异性任何小动物脑区均可成像纵向时间达到数月之久针对于自由活动的动物和鸟类[b][img=小动物脑部活动神经成像仪]http://www.f-lab.cn/Upload/nVista-inscopix.JPG[/img][img=小动物脑部活动神经成像仪]http://www.f-lab.cn/Upload/nVista-calcium-imaging.JPG[/img][/b]小动物脑部活动神经成像仪:[url]http://www.f-lab.cn/vivo-imaging/nvista.html[/url][b][/b]

  • 中国中枢神经制药市场 谁主沉浮?

    科技日报 2012年12月27日 星期四本报记者 李颖 给力产学研 与海外市场相比,我国中枢神经类药物市场尚处于起步阶段,主要表现在市场规模小、人均用药量小等。根据美国医药市场咨询公司IMSHealth预测:2012年全球中枢神经类疾病市场规模超2000亿美元,增速小于10%。但是反观中国市场,2012年中国中枢神经类疾病市场规模将超230亿元人民币,到2020年甚至将超过1000亿元人民币;且截至2012年6月,中枢神经市场与去年同比增长约30%,并持续保持高速增长的趋势。这样高壁垒、高毛利、高增长的新兴市场对外资制药企业有绝对的吸引力。 2012年1月以来,中国制造业开始经历30年以来最严酷的外资撤出严冬,由于中国地区劳动力成本的持续上涨及中国人口红利消失,外加中国境内竞争加剧,外资相继成为迁徙出中国制造业候鸟,但是在中枢神经制药(CNS)板块,外商直接投资(FDI)却呈现截然相反的势头,丹麦灵北制药、礼来等国际大型CNS企业加速升级在华研发机构及直接开设制药工厂,中国CNS市场方兴未艾,显然外来资本已深谋大局。 强强联合 深耕“领地” 从全球范围来看,中枢神经类药物过去几年依然保持了较快的增长速度,年均增长9.46%,是各类药物中销售总额最大的一类药物,其用药规模已经超过了心血管及肿瘤用药。 继与勃林格殷格翰就糖尿病药物联合开发及商业推广达成合作协议后,2011年4月,礼来与美敦力宣布结盟,利用美敦力的植入式给药系统技术结合礼来生物改良型胶质细胞源性神经营养因子(GDNF),合作开发一种治疗帕金森病的新方法。 作为在新兴市场的战略核心,礼来去年在中国成立了专门的中枢神经药物团队。加强研发,强化队伍,加快新药上市,礼来深入该领域的决心由此可见一斑。据礼来公司神经变性团队首席科学官MichaelL.Hutton博士介绍,采用生物合成技术设计的GDNF,能够克服该研究领域以前所面临的一些技术障碍。 GDNF仅仅是礼来研发产品线中的一个。目前,礼来在研的化合物达到近70个,其中处于Ⅲ期临床试验阶段的药物数量将增加至10个,这让礼来并不那么担心专利过期可能带来的挑战。礼来全球董事长、总裁兼首席执行官李励达透露,未来5年,礼来预计将在中国推出13只新药。 本土企业 蹒跚起步 中国中枢神经将持续保持高速增长的趋势,增长速度远高于国际市场。但是,与海外市场相比,我国中枢神经类药物市场尚处于起步阶段,主要表现在市场规模小、人均用药量小等。 由于我国对麻醉和精神类药品采取的定点生产和布局的政策,企业要获得该类药品的生产许可要求非常严格,即使是仿制药品企业数量也非常有限。定点生产企业也只能严格按照麻醉药品和精神药品年度生产计划安排生产。作为国内医药行业唯一一家专注于中枢神经药物细分市场的企业是恩华药业。相比于全球9.46%的年均增速,国内中枢神经类药物市场年均增速更高达15%。 目前,我国中枢神经药品市场主要由外资企业(包括合资企业)占据,各大外资制药企业均拥有中枢神经药品,且外资产品均在各细分市场占据相对优势。如阿斯利康的麻醉药品、美国礼来的抗焦虑抑郁药、西安杨森的抗精神病药、浙江杭州赛诺菲圣德拉堡民生制药公司的抗癫痫药等。中资企业达到规模生产的很少,除了恩华药业的力月西(镇静催眠)和福尔利(麻醉)、思利舒(抗精神病)、一舒(抗焦虑抑郁)外,还有西安力邦的异丙酚(麻醉)、重庆大西南的阿立哌唑(抗精神病)和文拉法辛(抗焦虑抑郁)。 综合数据库显示,排前10名的中枢神经类制药企业中,只有四家中资企业,除恩华药业外有北京四环、重庆大西南和西安力邦三家属于中资企业。 高手入局 整装待发 目前,中国各类精神类疾病患者达到1亿人以上,其中重度患者超过1600万人,70%的患者未得到有效治疗。显然,为了抢占中国市场,国际CNS巨头亦将目标锁定中国超过1亿患者,频频出手。礼来近年在全球裁员14%,却扩充礼来中国一倍员工人数;葛兰素史克升级中国研发中心为其全球神经科学研究总部,主导其全球范围内的神经类药物研发活动;而一向低调的丹麦灵北更是大动作连连,在今年陆续在华设立研发中心和生产工厂。 在中国天津建立自己的工厂是灵北的一大举措,其全球供应运营及工程部高级副总裁Lars Bang在接受采访时表示:“天津生产厂将是灵北全球的重要生产基地,也是灵北在亚洲建立的第一家生产厂。”为了填补中国治疗阿尔茨海默病市场需求缺口,天津生产厂计划在未来三年内的首期任务主要生产易倍申药物。 自1996年开始,灵北产品陆续进入中国市场;灵北中国总部和灵北学院先后在北京设立;2011年灵北在上海设立亚洲首个研发中心,该研发中心将逐步分担灵北全球范围内CNS的研发工作。显而易见,灵北不断将重心向中国市场倾斜的背后,是我国精神疾病患者对中枢神经类药物需求巨大的现状。 灵北制药作为高科技生物企业在天津开设制药工厂项目获得天津政府及天津西青开发区政府的大力支持。对此,作为中国大陆和香港地区负责人的Herman Santoni表示,灵北中国天津制药工厂建立后,灵北承诺加大药品研发投资,帮助培养中国药品研发类人才,推广抑郁教育和老年痴呆护理培训项目,为中国患者提供更优质的产品和服务。 在中枢神经系统领域拥有强大产品线的灵北,此前其产品黛力新、喜普妙、来士普、易倍申在华已有多年销售历史,患者及医生的认同度也较高。现在,灵北的经营模式正在发生变化,逐步建立和扩大自己的销售队伍,大力加深在华投资及本土化进程。 内外资企业打响争夺战 相较于OTC制药市场经历多年厮杀,中国本土制药企业及外资企业已经形成旗帜鲜明的控制格局,但是在CNS市场,由于中国本土中枢神经制药企业起步较晚,而社会经济高速增长带来精神及神经系统疾病高发,中国精神疾病患者对中枢神经类药物的需求巨大,使外资中枢神经制药企业占尽天时地利。 一方面本土制药企业中能够自主研发及生产中枢神经类药物的寥寥可数,而灵北、葛兰素史克等在中枢神经制药却拥有多年研发经验及多项成功产品,这是外资制药企业抢先占据中国CNS市场的先天优势。随着外资制药企业和外资品牌逐步进入我国市场,一些重磅中枢神经系统药物如喜普妙、百优解等销售迅速上升,规模先后过亿,外资制药企业完全有足够的时间,在中国本土制药企业完成中枢神经药物研发、临床试验、产品化之前,形成对市场的瓜分及占有。但是,鉴于中国的药品招标制度对于本土企业有一定的支持作用,未来本土企业也将会进入这一领域。 无疑,在中枢神经类药物市场,一场外资药企间的市场争夺战正在悄然打响。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制