当前位置: 仪器信息网 > 行业主题 > >

杀螨脲

仪器信息网杀螨脲专题为您提供2024年最新杀螨脲价格报价、厂家品牌的相关信息, 包括杀螨脲参数、型号等,不管是国产,还是进口品牌的杀螨脲您都可以在这里找到。 除此之外,仪器信息网还免费为您整合杀螨脲相关的耗材配件、试剂标物,还有杀螨脲相关的最新资讯、资料,以及杀螨脲相关的解决方案。

杀螨脲相关的资讯

  • 厦大牵头研制!全球首个戊型肝炎病毒抗原尿液检测试剂盒获批上市!
    25日,记者从厦门大学国家传染病诊断试剂与疫苗工程技术研究中心获悉,近日,由厦门大学、中国食品药品检定研究院和万泰生物联合研制的戊型肝炎病毒抗原尿液检测试剂盒(胶体金法、荧光免疫层析法)获得国家药品监督管理局批准上市。该试剂为全球首个以尿液抗原为靶标的戊肝诊断试剂,填补了相关产品和技术空白,其临床评估结果显示检测准确度为98.58%,对全球戊肝患者的临床诊断与治疗管理具有重大意义。戊型肝炎病毒(hepatitis E virus,HEV)是全球范围内病毒性肝炎最主要的病原体之一。全球每年新发HEV感染2000万例,死亡44000例。在我国,戊肝是急性病毒性肝炎的首要病因,其发病人数正逐年上升。慢性肝病患者、孕妇、老年人是HEV感染的高危人群。慢乙肝患者重叠感染HEV后,与未重叠感染HEV的患者相比,肝衰竭发生风险升高至10.9倍,死亡风险升高至8.54倍。有报道显示孕妇特别是妊娠晚期孕妇,感染HEV后的病死率高达15%~25%,且死胎率、早产率高。老年人感染HEV容易导致重型肝炎,占比达14%。我国现阶段戊肝的临床诊断主要依赖HEV IgM抗体检测(《戊型病毒性肝炎诊疗规范》,2009),但仅依赖血清学检测指标难以判断是否为戊肝现症感染,因此亟需病原学检测方法。作为RNA病毒,HEV的核酸检测存在操作复杂、成本高、易污染等问题,因而未能大规模的推广和使用。HEV抗原检测虽然是更便捷的诊断手段,但此前的抗原试剂存在灵敏度不高、阳性周期短等问题。研究团队以尿液中pORF2抗原为靶标研制了全球首个HEV抗原尿液检测试剂盒,首次在全球范围内将临床肝炎的诊断与治疗指导由血液或者粪便靶标转移至尿液中。据介绍,尿液抗原检测为戊肝临床诊断提供了最有效的手段。同时其采样简便、安全无创、检测快速,将极大提高戊肝临床诊断可及性和诊断效率,尤其是在戊肝主要流行的非洲、东南亚等发展中地区。该试剂具有我国自主知识产权,在戊肝诊断方面实现了重要突破,为全球肝炎防治贡献了中国力量。据悉,该试剂近期将投入市场,未来将出现在医院、疾控中心等场所用于戊肝的快速精准诊断。
  • 长沙清查行动!整楼封锁,逐一尿检!目前毒检方式,你知道几种?
    红网时刻1月14日讯 1月13日晚10点,长沙警方出动300名警力封锁清查了“城市经典”大楼,对楼内所有人员逐一尿检,并在一宾馆里发现一名男子毒 品尿检呈阳性,随即该男子被警方带至坡子街派出所进一步调查。毒 品主要通过刺激人体的中枢神经系统,使吸食者产生兴奋、抑制的一种依赖性麻醉药品或者精神药品。吸食毒 品会引起诸如消化系统、血液系统、呼吸系统、生殖系统等诸多脏器的严重损伤。毒 品种类多种多样,不论哪一种,都在危害着自己、危害着家庭以及社会。随着法庭科学领域及其相关领域的技术不断更新,针对人体内不同生物检材的毒 品检验鉴定技术也在持续发展。在生物检材的选取方面,根据现场情况或检材本身特点越来越向无损性、保护隐私等方向发展。体内摄毒检验中常见的生物检材有血液、尿液、唾液、毛发等,摄毒命案中还可提取针眼皮肤、胃内容物、肝、肾等生物组织进行检验,以完成入体途径、血浓度、死因等体内链条的鉴定。此外,还有指甲、胎粪等非常规检材,也能提供许多有价值信息。当前体内毒 品痕量检测有几种?唾液多应用在毒驾检查中,采集方式安全无创伤,不受时间、地点、性别、隐私的影响。唾液中毒 品来源于摄毒后残留在口腔中的原体,一般在摄毒后12~24h后原体消除,后期有一些来源于经过体内代谢后进入唾液的毒 品原体和代谢物。因此,检验结果可能会出现两个极端,唾液中毒 品浓度较低或极高。血液和尿液是常规检验体内毒 品的检材。毒 品在血液检材中有效检验时间窗一般是几分钟、几小时到几天,血液因不同个体间血容量相近差异性小,则作为毒 品定量、测定中毒量和致死量的最 佳检材。在尿液检材中有效检验时间窗一般是1天到数天。尿液由于含毒 品原体或代谢物浓度高,是应用于筛查鉴定缩小范围的首 选检材。GA510 尿液痕量毒 品快速检测系统,由奥谱天成与中国科学院稀土材料研究所联合研制,尿液毒 品快速检测仪,选配 4G 模块、身份证识别模块和可补光摄像头,可用于公安民警外出现场执法使用,现场对吸毒人员进行拍照和身份验证。设备内置大容量电池,充满电能使用一天(检测 100 人份),并现场打印结果作为公安禁毒民警现场查验处置依据。毛发是近些年来摄毒检验中较为热门的检材,其能反映远期较长时间(1个月前至半年甚至更长时间)的摄毒信息。一般头发的生长速率为 1~1.2cm/ 月,对错过案发时血尿等检材提取期的案件,头发可提供案发当时摄毒信息。一般来说,尿液中的毒 品成分在吸毒后6-10 天就无法检出,而毛发几个月甚至几年都不一定会脱落,忠实地记录着身体里发生过的情况。也就是说,只要头发足够长,毛发就可以反映主人的吸毒情况!例如女性几十厘米长的头发,甚至可以反映几年内的吸毒情况。GA500 智能毛发痕量毒 品检测系统,由奥谱天成与上海市公安局联合研发,手持式毛发毒 品快速检测仪,标配 4G模块和可补光摄像头,并标配身份证识别模块,非常适用于公安民警外出现场执法使用。
  • 大咖面对面|高友鹤:尿液蛋白质组学 实现更早期的诊断
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼生物标志物是与机体生理及病理状态相关的可监测到变化的生化指标,蛋白质组学是精准医学中生物标志物研究至关重要的一环,其最终目的也是为了指导临床,服务精准医学。尿液可以被连续、大量、重复收集并便捷、稳定地保存,且组分相对简单,易于分析,是理想的标志物研究样本。我们邀请了20余年来一直从事尿液蛋白质组学研究、北京师范大学生命科学学院的高友鹤教授,他分享了课题组应用尿液蛋白质组学技术进行的相关研究及重要成果、尿蛋白质组面临的机遇与挑战。北京师范大学生命科学学院 高友鹤教授尿液生物标志物 实现更早诊断✦ ✦ ✦ ✦ 尿液可以更早期、更敏感地发现生理病理的线索。近年来,高友鹤教授团队不断拓展尿蛋白质组在医学上的应用边界,从最开始的大器官、弥漫的病变,到更小的、更不容易被发现的疾病研究。甚至一些需要越过很多屏障的生理病理研究,如血脑屏障、胎盘屏障等。结果都很令人兴奋。甚至正常人的生理变化都能反映出来,比如说有没有运动,有没有打疫苗等等。假如疾病发现得早,医学工作者就有更多的机会能够阻止疾病的发展,或者让病程发展减慢,或者减少并发症等。在医学上,早期诊断至关重要,甚至比治疗更重要。尿液样本保存新方法✦ ✦ ✦ ✦ 尿液组成简单,细胞较少,尿里蛋白足够多而且都是水溶性的。因此从技术上来说,尿液检测比血液检测更简单。尿液研究的难点在于样本保存。高友鹤教授指出,尿液里占大量体积的其实是无效的水分,所以只需去除水分,富集包含信息量的“干货”即可。//团队使用特殊的膜来吸附有效成分,滤除水分并吹干膜,再用真空袋密封。这种保存方法隔绝了氧气和水分,可使尿液样本保存得更好,成本更低。这项规范化的尿液样本方法为尿液标志物的研究奠定了基础。尿液蛋白质与中药整体化研究✦ ✦ ✦ ✦ 高友鹤教授团队也开展了中药的相关研究,以往大多数中药研究思路都是将单个中药材分离纯化,再寻找其中的有效成分,然后再开展药效研究。这种研究方式对中医的一些理论可能受到影响,无法反映中药成分之间的协同作用和互相抵消作用。利用尿液蛋白质组,可开展研究中药的整体研究效果。团队最近开展了相关探索,用中成药饲喂动物后,观察其尿液蛋白质组的整体变化。这是一个很好的整体化研究中药的方式。与赛默飞的不解之缘✦ ✦ ✦ ✦ 超高分辨液相色谱-质谱联用仪是尿液蛋白质组学研究的主要分析平台。高友鹤教授说:“我从美国回来的时候了解到,赛默飞的质谱仪更适合做蛋白质组,所以我们开始尝试买了最早的版本LCQ。从那时起,我们实验室从最早的LCQ、LTQ、到现在的Orbitrap Fusion Lumos三合一质谱,基本上都是用的赛默飞的系列质谱仪。”赛默飞质谱仪“质谱仪是一类高端的精密分析仪器,因此很多单位都有专人负责,而我们实验室至今从未有过专人负责。”高友鹤教授表示,“这意味着仪器的大部分使用者是我们的研究生,并没有专门的仪器维护经验。在这种情况下,赛默飞的质谱仪能够陪伴我们到现在还能持续工作,这说明赛默飞的仪器非常皮实稳定。”“希望未来的质谱仪器能更好用,像傻瓜相机一样简单易用,最理想的是,仪器公司能够做更多的配套设备,比如在临床检测中,尿液能通过自动化处理得出蛋白质组数据,把分析出的临床相关信息反馈给医生,描述出病人的病理及生理学状态。”尿液检测应得到更多重视✦ ✦ ✦ ✦ 从疾病到健康的转变,实际上就是从相对晚期到相对早期的转变。在这个转变的过程中,尿液能起到的作用,超过了其他的体液,应该受到更多的重视。希望现阶段的研究能够更多更快地应用到临床领域,造福人类。同时,希望能够产学研多方合作,实现低成本、自动化等满足临床的分析需求的标准流程。人物简介1990年,高友鹤获中国协和医科大学医学博士(MD),后赴美获美国康涅狄格大学生物医学博士,并在美国哈佛医学院工作;2001年起获聘中国医学科学院特聘教授,任基础医学研究所病理生理学系教授。2014年12月获聘北京师范大学生命科学学院教授。曾获全国优秀博士论文指导教师,国家杰出青年基金,新世纪百千万人才国家级人选。现任《Urine》杂志创始主编,中国生化分子生物学会蛋白质组学分会理事等。如需合作转载本文,请文末留言。
  • 拉曼测血糖! 糖尿病患者期待的智能手表或许真的来了
    在实现了睡眠监测、心率监测、血氧检测等功能之后,大家对智能手表的健康功能充满了新的期待,如果能在硬件层面加入血糖检测等新功能,那将是糖尿病患者等群体的福音!  据外媒WinFuture报道,三星和苹果公司目前都在研发可以测量糖含量的智能穿戴设备,包括Apple Watch 7和三星Galaxy Watch 4、Watch Active3。  报道称,这几款智能手表没有用来戳使用者皮肤以获取血液样本的针。三星和苹果两家公司可能会借助光学传感器,然后可以借助拉曼光谱法确定血糖水平,该功能是否实际可行还有待观察。两家公司的开发人员正在与麻省理工学院的科学家合作,从而提高该方法的可靠性。  据悉,三星很可能会在今年下半年的一次活动中展示Galaxy Watch 4、Watch Active3,而新的Apple Watch 7可能会在9月推出。 换句话说,我们要下半年才能确认这些设备是否能够测量血糖水平。
  • 厦门行圆满结束
    Labbuy实验室商城之玩美五年计划第一站厦门行已经圆满结束。为期四天的厦门之旅吸引了来自四面八方的会员朋友,相聚在中国最浪漫的休闲城市。 11月15日,我们集体入驻厦门金雁酒店,四星级的沿湖酒店让来宾感觉既奢华又舒适,既温馨又浪漫。依傍白鹭洲公园,大家可以望湖而坐,喝茶、聊天、不到半天的时间,我们的会员都成了朋友。 在金门、在鼓浪屿、在厦门大学,都有我们的身影,客户与我们形影不离,用相机一次次的记录那些精彩、美好的瞬间。 临别时,我们依依不舍,感谢的话语有千万种,唯有一语都是相同:希望在不久的将来,能够再聚! 再此,Labbbuy实验室商城也再次感谢所有参加活动的会员朋友们,我们会再接再厉,举办更多更好玩的活动回馈陪我们一路成长的会员们。
  • 国内首台尿素在线检测装置问世
    记者11月22日从中科院合肥物质科学研究院获悉,由该院技术生物所和河南心连心化肥有限公司共同完成的,国内第一台尿素产品质量在线检测装置近日研发成功并投入生产应用。将装置安放在尿素传送带的上方,就能实时精确监测出尿素中尿素、缩二脲、水分的含量。   我国化肥产品结构以氮肥为主,占化肥总量的60%,而氮肥中60%以上为尿素。在尿素产品的生产过程中,高温会促使其产生缩二脲,当缩二脲浓度较高时会对作物生长有抑制作用,由于尿素易溶于水、易吸湿结块,因此准确测量尿素、缩二脲、水分三者含量难度较大,而如果测量精度不够,又很难保证尿素产品的品质。传统测定方法操作复杂、耗时长、消耗化学试剂成本高,同时不利于环保,因此发展尿素产品质量快速检测方法意义重大。   技术生物所科研人员在利用近红外漫反射光谱定量分析技术建立尿素中尿素、缩二脲和水分含量模型的基础上,研发出在尿素生产线上在线检测尿素、缩二脲、水分含量等尿素质量指标的装置。通过调试改进,克服了工业现场震动较大、化肥移动速度快对测量精度的影响,实现了对尿素产品品质在线检测的目标。
  • 泳池水质普遍余氯低尿素高
    7月6日,北京市卫生监督所检查人员来到朝阳区朝阳公园检查露天游泳池水质通过手机扫描二维码可获得水质实时监测数据。  随着夏季来临,气温不断攀升,北京市各大游泳场馆人气爆棚。然而,眼前的一池碧水是否真像看到的这么干净?近日,记者跟随市卫生监督所工作人员,对多家室外游泳馆水质进行检测,发现所检测的游泳场馆泳池水质均存在余氯偏低、尿素较高等问题。  据市卫生监督所公共场所卫生监督科副科长刘颖介绍,按照国家标准,游泳场馆水质检测主要针对五项卫生指标(水温、余氯、PH值、浊度、ORP)。其中,余氯浓度过低对池水起不到消毒效果,池水里的细菌及致病微生物就可能会过多地繁殖,从而引起疾病传播 而过高则可能对人体的眼黏膜、皮肤黏膜及口腔黏膜等产生刺激作用,特别是对儿童、妇女和老年人等敏感人群会更明显。另外,泳池还普遍存在尿素较高的问题,同样对人体有害。  经过记者的探访和了解,游泳馆水质不达标多为经营者为省钱偷工减料所致。  □现场  刚加消毒药剂余氯仍低于国标  7月6日下午2时许,记者跟随市卫生监督所工作人员来到北京团结湖公园海滨乐园。记者在现场看到,不少人正在泳池里游泳嬉戏。  随后,市卫生监督所的工作人员走到一处游泳池旁边,从游泳池里取出水,用检测余氯的试纸进行检测。大约1分钟后,检测数据显示余氯值为0.1mg/L。随后,工作人员又走到另外一个泳池,让游客在泳池中央取出一小瓶水进行检测,检测结果显示余氯为0.2mg/L。  记者了解到,为了保持游泳池水的卫生,杀灭池水中的致病微生物,各游泳场馆在循环过滤池水的同时会加入一定剂量的含氯消毒药剂,从而产生游离性余氯。游泳池水余氯浓度的国家标准为0.3-0.5mg/L,然而,在本次检查中,该泳池余氯比国家标准低。而该游泳馆一名负责人向市卫生监督所工作人员承认,游泳馆刚对泳池加入含氯消毒药剂不到1个小时。  刘颖介绍,余氯浓度过低对池水起不到消毒效果,池水里的细菌及致病微生物就可能会过多地繁殖从而引起疾病传播 而过高则可能对人体的眼黏膜、皮肤黏膜及口腔黏膜等产生刺激作用,特别是对儿童、妇女和老年人等敏感人群会更明显。另外,夏季气温高阳光照射强烈,会对余氯进行分解,因此,夏季余氯消耗会特别大。余氯补得不够或者没有的话会非常危险。  除滨海乐园外,市卫生监督所还对朝阳公园沙滩主题乐园进行了检测,现场检测了几个点的余氯,其中一个点的余氯数据也略低。  泳池尿素超标来源排汗和小便  根据国家相关标准规定,游泳池水质的尿素应小于等于3.5mg/L。但是根据往年的数据来看,游泳池尿素超标问题普遍存在。  刘颖表示,尿素含量过高时,尿素中的氨会与含氯消毒剂形成氯胺类物质,使游泳者产生厌恶感,刺激皮肤、眼角膜、腐蚀头皮等。  刘颖说,现在不少游泳池采取溢流式循环过滤,其原理是将泳池溢出来的水收集到水箱中,再用循环泵把水抽到沙缸里进行过滤之后重新放回游泳池。虽然毛发等杂质会被过滤掉,但细菌含量等无法降低,而尿素必须换新水才能降低含量。尿素通过过滤循环设备是去除不掉的,每天有人在里面不停地游、排汗或者排尿,尿素会越来越高,所以泳池管理方需要即时补充新水。  “目前我们也在通过其他的方法不换水把尿素去掉。就是通过尿素分离技术,把有机物分解掉。但是这种技术需要费用也较高,只有个别游泳场馆在用。”刘颖说。  据了解,游泳池中之所以有尿素,一方面是人在游泳中会不停地排汗,另一方面就是有人在游泳池中小便。  □原因  为省钱消毒环节“偷工减料”  记者了解到,北京有不少游泳池采取溢流式循环过滤,为了省钱,有些游泳池甚至不开或者只在夜间开启循环系统。但长期不换水、循环系统不开,而为保持水体清澈,一些游泳馆就大量、反复使用聚合氯化铝沉淀剂,吸附水中悬浮物。肉眼看上去清澈透明,实际上水体富含大量铝离子,会对人体尤其是眼睛带来损害。  此外,一些游泳场馆在消毒上也存在“偷工减料”。有业内人士表示,一般来说,一个1000立方米的游泳池用的消毒剂、沉淀剂等各种消毒物料,一个月的费用要1万元左右。市场上各类消毒剂质量和价格参差不齐,为省钱,一些经营者就选用廉价消毒剂,消毒效果难以保证。  □对策  实时监测系统可随时看水质  为应对即将到来的游泳高峰期,目前,全市百家泳池已于上月启动“扫一扫泳池水质我知晓”活动。市民在游泳馆明显处可通过手机扫描此二维码,在游泳前第一时间了解该泳池的余氯、浊度、pH值等数值。如果发现不达标的情况,公众可以通过公共卫生服务热线12320对发现的问题进行投诉。  记者获悉,市卫生监督所在100家游泳场馆安装了实时监测系统,所选择的多是室外的、人多的、学校的、社区的以及承担一些国际国内重大赛事,这占到游泳总人数的百分之八十左右。  目前,北京市游泳场馆电子监管指挥中心建设完毕,实时监测游泳场馆水质的五项主要卫生指标(水温、余氯、PH值、浊度、ORP),并在5分钟到7分半钟更新一组数据。一旦触及预警线,会立刻报警,监督员会立即赶赴现场进行处理。遇到高温天气,卫生监督部门将加强对室外泳池的监督检查。  “为了保证水质,市卫生监督部门今后会对游泳场馆,特别是问题游泳馆加大检查频率”,刘颖说,市卫生监督所将专项监督检查重点解决市民所关注的池水浑浊和尿素含量超标的问题,各级卫生监督机构将通过培训和指导等方式督促游泳场馆经营者加强自身管理,同时对违法行为依法给予行政处罚。  □小贴士  游泳者如何判断和维护水质?  1.到现场一般需要先看下水质的现状,浑浊度现行的国标标准是5,真到5的话已经很浑浊了,没法看了。所以用肉眼看基本上很清澈可以见底,那肯定是在国家标准范围内。  2.站在泳池边闻闻有没有氯气的味道,最好是有淡淡的氯气的味道,不能太浓,也不能闻不到。太浓的话说明余氯超标,会对人体有伤害,闻不到说明余氯太少,达不到消毒效果。  3.像PH值或者浑浊度可能会在实时监测系统上看看数据,然后再结合现场感官现状做一个初步判定。  4.因为男士皮屑多,女士化妆品多,到水里后有机物溶解进去通过一般方法不容易去掉,必须通过强氧化剂分解掉。所以建议广大游泳爱好者养成泳前淋浴等习惯。  国家标准:  水温:22-26  余氯:0.3mg/l-0.5mg/l  PH值6.5-8.5  浊度:0-5  ORP:650  尿素3.5mg/l
  • 质谱分析法又立功!新的帕金森病诊断尿液蛋白质标记物被发现
    普渡大学和Tymora Analytical Operations的科学家团队通过对尿液胞外囊泡(EVs)蛋白质和磷酸化蛋白质进行质谱分析识别了一组可用于诊断帕金森病的蛋白质标志物。该项工作于本月发表在Communication Medicine,其中详细介绍了研究工作。该研究的部分资助来源于迈克尔J福克斯帕金森研究基金会,该组织的一部分工作就是探究EVs分析是否能识别新型的帕金森病标志物。EVs是由细胞分泌到各种体液中,被认为能反映来源细胞的分子组成。鉴于检测源自癌细胞的外泌体中的蛋白质或核酸比检测患者血液或尿液中自由循环的癌细胞相关核酸或蛋白质可能更容易的想法,胞外囊泡已成为液体活检研究的一个热门领域。同样的思路也适用于神经退行性疾病,尤其是从血液或尿液样本中寻找这些疾病的标志物,血液或尿液相比于脑脊液易于获取,但含有的相关标志物浓度通常较低。总部位于印第安纳州威斯特拉法叶市的Tymora是普渡大学化学生物学和分析化学教授安迪陶(Andy Tao)实验室的衍生企业。Tymora的首席执行官是Communication Medicine论文的通讯作者之一Anton Iliuk。Tymora专注于EVs的蛋白质组学和磷酸化蛋白组学分析,将其作为研究服务出售给外部合作伙伴以及用于其内部生物标志物和诊断方法的开发工作。2018年,该公司及其合作者在Journal of Proteome Research杂志上发表了一项研究,在该研究中,他们在尿液中收集的EVs中鉴定出约860种磷酸化蛋白质和超过2,000种未修饰的蛋白质。迈克尔J福克斯帕金森研究基金会的研究项目副总裁Shalini Padmanabhan是该论文的作者之一,她表示,基金会的研究人员在阅读该研究时“对结果很有兴趣”,因为鉴定到的蛋白中包括几种与帕金森病有关的蛋白质。Padmanabhan指出,当时基金会已经收集了大量来自帕金森病患者的尿液样本,并由Tymora技术看到一个检验新方法(识别帕金森病患者EVs蛋白质特征相对于健康对照组的变化)的机会。研究人员使用Tymora的EVtrap技术从哥伦比亚大学欧文医学中心收集的82个尿液样本中分离出EVs(21个健康对照组,13个携带与帕金森病相关的LRRK2突变但健康的人,28名没有LRRK2突变的帕金森病患者和20名携带LRRK2突变的帕金森病患者)。EVtrap方法使用包被疏水和亲水基团的磁珠来结合EVs的脂质双层膜。该方法可灵敏且可重复地捕获EVs,同时限制高浓度循环蛋白的捕获,这是相对于其他一些EV富集方法的优势。在分离出外泌体后,研究人员在赛默飞Q-Exactive HF-X仪器上进行LC-MS分析其蛋白质。他们识别4,476个独特的蛋白质和2,680个独特的磷酸化蛋白质,从中筛选出48个潜在的标记物,并最终确定了6个最佳标志物。他们发现,这六个标志物组合可以在曲线下面积为0.94的情况下区分健康人群和帕金森病患者。随后,研究人员用两个实验验证了这些表现最佳的蛋白质和与帕金森有关的其它蛋白质。其中一个实验利用靶向质谱技术测定13名健康对照组和23名帕金森病患者的蛋白质,另一个实验使用免疫方法测定10名健康对照组和10名帕金森病患者的蛋白质。Tao 表示,他的实验室继续与哥伦比亚大学的研究小组合作获取更多的样本,并且正在与普渡大学的同事Jean-Christophe Rochet合作研究蛋白质聚集在帕金森病、阿尔茨海默病和Lewy小体痴呆等神经退行性疾病中的作用。Tao 和 Rochet 正在探讨的一个问题是外泌体是否可能成为突触核蛋白α-synuclein(α-syn)的有用来源。在帕金森病患者中,错误折叠的α-syn聚集形成路易氏小体在大脑中积累,被认为会引起神经元损伤,也被认为是潜在的药物靶标和生物标志物。对于帕金森病的诊断,α突触核蛋白种子扩增检测方法前景光明。该方法通过将来自患者的αSyn与正常αSyn孵育并观察其是否产生帕金森病的特征性聚集物。通常,αSyn突触核蛋白样品从患者脑脊液中收集,需要进行脊髓穿刺。这促使研究人员探索通过血液或尿液样品等微创性的方式收集这种蛋白质,其中外泌体是一种潜在的采样途径。Padmanabhan指出,“虽然α-synuclein的分布范围及与帕金森病生物学相关性的全面了解仍不充分,但已有人提出外泌体可能富集有α-synuclein,包括病理性形式。”她补充说,到目前为止,福克斯基金会将外泌体用作αSyn的样本来源的主要工作侧重于在血液中的外泌体,“血液中α Syn的存在已经有研究支持”。然而,她表示该组织“继续探索所有可能的CSF替代方案,以改进临床使用的检测,作为我们持续开展的突触核蛋白生物学研究项目的一部分”。CEO Iliuk表示Tymora不打算继续开发Communication Medicine论文中确定的标记物,但他指出,神经退行性疾病,特别是阿尔茨海默病,已成为Tymora内部生物标志物开发工作和为外部客户工作的重点。Iliuk指出,虽然血浆被广泛认为是临床诊断阿尔茨海默病生物标志物的最切实可行的替代样本,但帕金森病的研究显示了尿液EVs作为神经退行性疾病生物标志物来源的潜力。他说:“我们在血浆方面做了相当多的工作,我认为那是主要关注的地方。但是我们最近一直在研究尿液。现在还处于非常初期的阶段,人们对其作为一种可行的样本还存在很多犹豫,因为它距离大脑太远了,所以并不是一个合情合理的选择。但我认为帕金森病的研究表明神经退行性疾病的标志物可以传播到尿液中并被检测到。”福克斯基金会支持了许多其他在尿液中寻找帕金森病蛋白标记物的努力,包括2021年由马克斯普朗克生物化学研究所蛋白质组学和信号转导部门主任Matthias Mann实验室发表的蛋白质组学研究,该研究确定了几种潜在的帕金森病蛋白标志物。文章链接:https://www.nature.com/articles/s43856-023-00294-w
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 博奥推出糖尿病基因检测新品
    近日,由博奥生物集团有限公司暨生物芯片北京国家工程研究中心(简称博奥生物)、上海市第六人民医院、上海市糖尿病研究所联合主办,博奥颐和健康科学技术(北京)有限公司(简称博奥颐和)承办的糖尿病精准防控暨爱身谱糖尿病基因检测产品发布会在京举行。  中国工程院院士程京指出,要推动包括糖尿病在内的慢病防控政策法规的制定和完善,加快健康管理专业人才的培养,实现疾病“未病先防、早诊早治”,以降低疾病社会经济负担。会上,博奥颐和还发布了“爱身谱糖尿病基因检测”新品。
  • 快速检测I型糖尿病纳米芯片问世
    最近,美国斯坦福大学医学院开发出一种廉价的便携式微芯片,可以在Ⅰ型糖尿病患者出现症状之前,快速检测出那些高风险人群。研究人员认为,这种芯片不仅能高效广泛地预诊出糖尿病人,还有助于提高全世界的糖尿病护理水平,帮人们更好地研究疾病历史,开发新疗法。相关论文在线发表于7月13日的《自然· 医学》网站上。   据物理学家组织网7月13日报道,目前的糖尿病主要分两种&mdash &mdash Ⅰ型和Ⅱ型。二者都有高血糖特征,但病因和治疗方法都不同。Ⅰ型糖尿病是一种自身免疫类疾病,患者的免疫系统会攻击自身健康组织,使身体停止制造胰岛素。当病人自己的抗体攻击胰腺的胰岛素生产细胞时,这种病就开始了。自抗体只出现在Ⅰ型糖尿病患者中,而在Ⅱ型中没有,新方法就是通过这一点来区别它们。   研究人员开发的微芯片利用纳米技术来检测Ⅰ型糖尿病,能把Ⅰ型和Ⅱ型快速区别开来。原有老方法用放射性材料来检测自身抗体,需要几天时间,每次花几百美元。相比之下,微芯片不用放射性材料,几分钟就能出结果,每个芯片预计成本约20美元,可测试15次以上。而且微芯片用血量更少,不用抽血,只需指尖采血即可。   他们用该芯片对一些志愿者进行了测试,诊断出了哪些人患有糖尿病,而哪些人没有。此外,这种方法对Ⅰ型糖尿病高风险者,如病人的亲戚也有利,因为医生能在他们显出症状之前,跟踪监测他们的自抗体水平。   &ldquo 自抗体就是个&lsquo 水晶球&rsquo 。&rdquo 论文高级作者、斯坦福大学露西尔· 帕卡德儿童医院儿科内分泌学副教授布莱恩· 费尔德曼说,&ldquo 即使你现在还没有糖尿病,如果你血液里有和糖尿病有关的自抗体,患病的风险就高,有了多种自抗体后,风险就超过90%了。&rdquo   十年前患Ⅰ型糖尿病的似乎只有儿童,患Ⅱ型糖尿病的似乎只有肥胖中年人。由于差异明显,人们常省掉实验室检测,因为老方法昂贵而困难。但现在,约1/4的糖尿病儿童是Ⅱ型,越来越多的成人糖尿病是Ⅰ型,其原因尚不清楚。人们需要更好的检测技术,因为现在病情已变。   越来越多证据表明,如果对Ⅰ型糖尿患者实施早期积极治疗,可能遏制自身免疫攻击胰腺,让他们保留一定的胰岛素制造能力。费尔德曼说:&ldquo 在那些高风险者发病之前,这种方法有很大可能找到他们,让他们开始早期治疗,提前预防糖尿病或并发症。&rdquo   目前,斯坦福大学已为该芯片提出了专利申请,研究人员正在筹备成立一家公司,在获得美国食品药品管理局(FDA)批准后就把它推向市场。
  • 厦门大学拉曼光谱研究团队,助力第二届拉曼光谱会议
    近年来,拉曼光谱相关的新技术、新仪器、新应用层出不穷,特别在物理材料、生命科学等多个领域发挥着越来越重要的作用。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,第二届拉曼光谱网络会议(iCRS2020)将于2020年9月23-24日举办,针对当下拉曼光谱相关研究热点进行探讨,促进我国拉曼光谱相关仪器技术及应用的发展。  作为国内最为顶尖的厦门大学拉曼研究团队,也将助力第二届拉曼光谱会议。  厦门大学任斌教授简介:厦门大学化学化工学院副院长,2008年获国家杰出青年科学基金,2016年入选教育部“长江学者”特聘教授。  厦门大学李剑锋教授简介:基金委“杰出青年基金”(2019),国家自然科学奖二等奖(排名第三,2019),中组部“万人计划”领军人才(2019),中国青年科技奖(2018),基金委“优秀青年基金”(2015)  普识纳米曾勇明博士简介:从事拉曼光谱技术在食品安全、环境污染物检测领域和毒品危化品快检应用方法开发,参与科技部多个项目,参国家标准《拉曼光谱仪》起草(唯一企业单位),已申请发明专利35件。将在9月24日16:15进行《表面增强拉曼光谱在芬太尼类等新精活物质的快速检测应用》报告。  iCRS2020设置了SERS/TERS、拉曼光谱在物理材料领域的应用、拉曼光谱在生命科学领域的应用、拉曼光谱仪器及拉曼光谱技术四个分会场,安排了4场大会报告,10场邀请报告,会议将免费向听众开放,参会者足不出户就可以学习知识并和顶尖专家学者在线交流。报名参会请点击“立即报名”。
  • 验尿能查胃癌?GC-MS助胃癌实现无创化诊断
    p    span style=" font-family: times new roman " 上海瑞金医院7日披露,瑞金医院上海消化外科研究所朱正纲、于颖彦教授领衔的研究团队发现尿液中可以检测到胃癌标志物。 /span /p p span style=" font-family: times new roman "   这预示着今后通过尿液就可以筛查胃癌。该成果对于实现胃癌的“无创化”诊断、提高胃癌早期发现、早期治疗有着积极的意义。这项研究成果在国际癌症研究权威刊物《癌症靶标(Oncotarget)》发表。 /span /p p span style=" font-family: times new roman "   据悉,中国是胃癌的高发区,早期胃癌症状并不明显,而国人对胃镜检查心怀恐惧,往往被查出胃癌时已是中晚期,错失最佳手术治疗时机。瑞金医院外科研究团队关注到肿瘤研究领域长期被忽视的生物样本——尿液,并在研究中发现尿液中确实存在胃癌标志物。研究团队表示,这些新发现的尿液小分子化合物与血清传统肿瘤标志物对比,显示出更好的敏感性与特异性。 /span /p p span style=" font-family: times new roman "   由于尿液中的代谢物是小分子物质,原有的检测设备无法分析测试小分子化合物。瑞金医院胃癌转化医学研究课题组从头摸索并建立分析方法。研究人员收集取样,利用分析化学领域的精密仪器(气相色谱-质谱联用仪暨GC-MS),对收集到的样本进行初筛和第二步的定量分析验证,最终发现氨基酸类和有机酸类共14种小分子化合物有生物学意义,这些新发现的胃癌尿液小分子化合物作为肿瘤标志物与血清传统肿瘤标志物对比分析,显示出良好的敏感性与特异性,其中有3种小分子在尿中的升高与胃癌不良预后有相关性。 /span /p p span style=" font-family: times new roman "   据悉,课题组早前已有胃癌血液标志物研究成果入选上海科技创新中心建设首批转化专利,由张江知识产权运营平台买断并进行试剂盒的制备与报批。医院方面表示,此次围绕胃癌患者尿液小分子标志物的创新性发现亦已申请国家发明专利。 /span /p p span style=" font-family: times new roman "   据透露,课题组目前正着手进行尿液新型小分子标志物的临床实用检测方法学探索,希望尽快使这项集医工、医理多学科交叉性研究成果早日实现临床转化,造福患者。 /span /p
  • 基于拉曼光谱和机器学习算法的沙门氏菌快速鉴定
    近日,中国人民公安大学侦查学院姜红课题组采用拉曼光谱结合卷积神经网络实现了对沙门氏菌的快速鉴定。相关研究成果以题为“Rapid identification of salmonella serovars by using Raman spectroscopy and machine learning algorithm”发表在国际学术期刊Talanta(IF=6.556)上。食源性疾病是世界范围内一个普遍存在且日益严重的公共健康问题,而食源性沙门氏菌感染是人类最常见的患病原因之一。本研究针对三种最具致病性的沙门氏菌血清型,使用拉曼光谱获取其光谱数据,选择适合解决多分类问题的卷积神经网络(CNN)对拉曼光谱数据进行深入挖掘和分析。比较了五种光谱预处理方法,Savitzky-Golay平滑(SG),多元散射校正(MSC),标准正态变量(SNV)和希尔伯特变换(HT)对CNN模型预测能力的影响。采用准确度(ACC)、精度、召回率和F1得分 4种机器学习评价指标来评估不同预处理方法下的模型性能。结果表明,拉曼光谱与CNN模型结合使用,能在单细胞水平上快速鉴定三种沙门氏菌血清型。此外,该模型在区分不同血清型的病原菌和密切相关的细菌种类方面具有很大潜力。图1. 针对激光波长优化的拉曼光谱的三维瀑布图(A)和曲面图(B)图2. 基于拉曼光谱的沙门氏菌的CNN分析示意图图3. 肠炎沙门氏菌、鼠伤寒沙门氏菌和德比沙门氏菌的平均拉曼光谱图4. 三种沙门氏菌血清型的原始光谱和处理后的光谱图5. (A)CNN模型训练集的识别精度;(B)CNN模型训练集的损失率;(C)CNN模型测试集的识别精度(D)CNN模型的测试集的损失率图6. 测试集中机器学习的四个评估指标图7. 不同预处理条件下CNN模型的混淆矩阵本研究评估了五种光谱预处理方法下CNN模型的预测能力,并得出结论,SG结合SNV是利用拉曼光谱预测沙门氏菌血清型的最准确的光谱预处理方法,在CNN模型中训练集的准确率达到98.7%,测试集的准确率超过98.5%。使用这种方法预处理光谱数据比其他方法具有更高的准确率。该研究进一步丰富了沙门氏菌血清型的拉曼光谱数据库。拉曼光谱结合机器学习算法在鉴定致病菌血清型方面的巨大潜力,这对于临床快速诊断食源性疾病以及预防食源性疾病至关重要。
  • 你说的白,是什么白:小麦粉中硫脲的测定
    2019年,国家粮食和物资储备局办公室在第330号通知[1]中公开了国家标准《小麦粉》征求意见稿,其中小麦粉的定义为:小麦粉wheat flour是指由普通小麦(六倍体小麦,Triticum aestivum L.)经过碾磨制粉,去除部分麸皮和胚并达到一定加工精度要求的、未添加任何物质的、能够满足制作面制食品要求的产品。与《关于进一步加强小麦粉质量安全监管的公告》(2017 年第132号)[2]中关于小麦粉(通用)中添加物的要求,即“取得‘小麦粉(通用)’生产许可的企业,不得在小麦粉中添加任何食品辅料”,保持一致。 早前被允许添加之后又被禁止的过氧化苯甲酰(Dibenzoyl peroxide, BPO),在近几年的食品安全抽检中时有被检出,其非法添加的目的主要是给新生产的小麦粉脱色[3]。然而在小麦粉的加工和储藏过程中,经常会出现颜色加深的现象,即褐变。发生褐变的主要原因是,小麦籽粒中的多酚氧化酶(Polyphenol oxidase, PPO)催化酚类物质氧化生成褐色或黑色的醌类物质[4],从而影响了小麦粉的色泽,降低了小麦粉的品质。 根据GB 2760-2014 附录B[5]中,对食品漂白剂的定义:能够破坏、抑制食品的发色因素,使其褪色或使食品免于褐变的物质。针对小麦粉的酶促褐变,一些不法的的商贩会通过添加具有还原性的硫脲(Thiourea)进行漂白,硫脲能够抑制多酚氧化酶的活性,阻止褐变的发生,在一定程度上将醌类还原成酚类,掩盖不好的品质,达到提亮增白的效果。而硫脲的非法添加会刺激呼吸道和肠道,抑制甲状腺和造血器官的机能,引起咳嗽、胸闷、头痛、嗜睡、无力、面色苍白、面部虚肿、基础代谢降低、血压下降、脉搏变慢、白细胞减少等症状[6]。早在2001年,世界卫生组织国际癌症研究机构就将硫脲列在了3类致癌物清单中。 原食品药品监督管理总局于2016年发布第196号公告[7],公布了食品补充检验方法《小麦粉中硫脲的测定 BJS 201602》,填补了国内硫脲检测标准的空白。为了进一步规范企业的生产行为,加强小麦粉质量安全监管,总局于2017年发布第132号公告[2],其中明确规定“严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料”。 在此背景下,赛默飞实验室对高效液相色谱法测定小麦粉中硫脲的实验条件,开展了相关研究工作。 01样品前处理准确称取均质小麦粉1.0 g(精确至0.01 g)于15 mL旋盖螺口圆底离心管中,加入10.00 mL 80:20乙腈水,旋紧盖子,涡旋分散30 s,水浴超声提取20 min(由于超声时间较长,水浴温度会升高,建议加入冰袋控温),10000 rpm 4℃ 冷冻离心10 min,取上清液过0.2 μm亲水PTFE微孔滤膜,滤液上机测试。02色谱条件● 液相色谱仪:UltiMate™ 3000 HPLC 液相色谱系统● 色谱柱:Syncronis™ HILIC, 250×4.6 mm, 5μm (P/N: 97505-254630)● 柱温:20 ℃● 进样量:5 µL● 流动相:A为乙腈,B为水● 洗脱程序:A:B=90:10,等度洗脱● 流速:1 mL/min● 检测波长:246 nm● 采样频率:5 Hz● 采集时间:12 min03实验结果与讨论3.1色谱条件优化 3.1.1 色谱柱选择硫脲标准品溶液在Syncronis HILIC色谱柱上获得了出色的峰型和优异的灵敏度。图1. 硫脲标准品溶液色谱图(1.00 μg/mL) (点击查看大图) 3.1.2 样品溶剂的选择在HILIC模式下,采用80:20乙腈水作为标准品稀释液时,10.0 μg/mL硫脲标准品得到了尖锐且对称的峰型。图2. 硫脲标准品溶液色谱图(10.0 μg/mL)(A:稀释溶剂为纯水,B:稀释溶剂为80:20乙腈水)3.1.3 柱温的选择当色谱柱柱温选择20 ℃ 时,硫脲峰与杂质峰可达到基线分离。同时,采集时间由10 min延长至12 min,可避免11 min左右的杂质峰延迟至下一针进样时出峰。图3. 30℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)图4. 20℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)3.2样品前处理优化本次试验中前处理流程为:称取1.00 g小麦粉,加入10.00 mL 80:20乙腈水(提取溶剂与标准品稀释溶剂保持一致),涡旋混匀,高速冷冻离心,取上清液过膜,上机测试。处理一批次8个样品,耗时约1小时。而标准推荐的前处理流程,在提取、过滤(离心)后,加入了旋蒸浓缩10 mL 80:20乙醇水提取液的操作,耗时较长,且样品通量小。因此优化后的前处理流程,提高了样品通量,减少了溶剂用量,效率得到提升。 3.3线性范围、方法检出限及方法定量限在优化的色谱条件下,硫脲标准工作液线性范围为0.20-5.00 μg/mL,线性方程y=0.9109x-0.0300,线性相关系数r2=0.99992,线性关系良好。硫脲线性方程图及标准曲线点叠加色谱图。在优化前处理条件下,硫脲方法检出限为2.0 mg/kg,定量限为5.0 mg/kg。 图5. 硫脲线性方程图及标准曲线点叠加色谱图(点击查看大图)3.4回收率和精密度小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围在 91.2%~95.0% 之间,相对标准偏差在 0.57%~2.36% 之间(n=6)表1 小麦粉基质 2.0、5.0、20.0 mg/kg三水平加标回收率范围和精密度(点击查看大图)图6小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围和精密度(点击查看大图)图7小麦粉基质中硫脲方法检出限 MDL 浓度 (2.0 mg/kg) 加标 (点击查看大图)图8小麦粉基质中硫脲方法定量限 LOQ 浓度 (5.0 mg/kg)加标(点击查看大图)图9小麦粉基质中硫脲10倍方法检出限浓度 (20.0 mg/kg)加标(点击查看大图)04结论本方法针对食品补充检验方法《小麦粉中硫脲的测定 BJS201602》进行了优化,简化了前处理流程,优化了色谱条件,线性范围、方法检出限及定量限、加标回收率及精密度均能满足方法确认的要求。该方法简单、便捷,适用于小麦粉中非法添加物硫脲的快速测定。 参考文献:[1] 国家粮食和物资储备局办公室. 关于《小麦》《小麦粉》国家标准公开征求意见的通知 国粮办发[2019]330号[EB/OL]. http://www.lswz.gov.cn/html/zmhd/yjzj/2019-11/11/content_247627.shtml[2] 总局关于进一步加强小麦粉质量安全监管的公告(2017年第132号)[J]. 现代面粉工业,2017,31(06):28.[3] 于鸿飞. 国内外小麦粉标准的差异及我国现行小麦粉标准的修订研究[D]. 西北农林科技大学,2011.[4] 黄海霞,张真,吴金芝. 小麦多酚氧化酶特性及褐变控制研究[J]. 安徽农业科学,2008,36(31):13574-13575,13638.[5] GB 2760-2014. 食品安全国家标准 食品添加剂使用标准[S]. 2014[6] 焦安浩. 硫脲的危险性及安全管理措施研究[J]. 化工管理,2021(07):95-96[7] 总局关于发布食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法的公告[J]. 中国食品卫生杂志,2017,29(01):25.[8] Thermo Fisher Scientific Technical Guide 21003:HILIC Separations Technical Guide-A Practical Guide to HILIC Mechanisms, Method Development and Troubleshooting[A/OL]. https://assets.thermofisher.cn/TFS-Assets/CMD/brochures/TG-21003-HILIC-Separations-TG21003-EN.pdf . 2014
  • 早鸟倒计时 | 精准定位“感染诊断”,聚焦分子诊断热点话题,MDx2021重磅来袭!
    2021年5月20-21日,由上海商图信息BIOMAP主办,中国医疗器械行业协会IVD分会、武汉东湖国家自主创新示范区生物医药行业协会、厦门大学分子诊断教育部工程研究中心和上海交通大学生命科学技术学院合作支持的MDx 2021第七届中国先进分子诊断技术与应用论坛将在上海新发展亚太JW万豪酒店盛大召开。为期2天,4大板块精准定位“感染诊断”精彩议题抢先看,你想了解的?这里都有!板块一:行业前景机遇及临床落地探讨全新亮点:• 分子诊断产品规范化/注册申报• 国产替代影响/原始技术创新/临床应用邓子新,中国科学院院士,微生物分子遗传学家卢洪洲,上海市公共卫生临床中心党委书记中检院,NGS质量评价研究员卢大儒,复旦大学生命与科学学院副院长陈敬贤,金域医学病毒诊断与转化中心呼吸道疾病学科带头人刘晓微,江苏德能医学科技有限公司创始人兼临床总监蔡从利,致众科技常务副总欧阳卓君,同泽合信总经理柳丹,鼎晖投资创新与成长投资合伙人持续更新中… … 板块二:基于测序的技术与应用革新全新亮点:• NGS/纳米孔/固态纳米孔测序技术• 宏基因组测序结核诊断/临床应用新方案• 测序技术助力传染诊断/溯源及用药新突破张永振,中国疾病预防控制中心传染病所研究员许腾,广州微远基因创始人兼CTO秦楠,锐翌生物创始人&CEO余乐,源生基因创始人兼CEO刘晓,泛因医学创始人戚晓琪,赛默飞基因科学与临床测序,NGS产品经理持续更新中… … 板块三:新冠/其他病原体核酸快检/多重联检全新亮点:• 新冠病毒突变株的分型挑战与检测应对• 优化技术路线多维度升级核酸快检平台• 数字PCR/CRISPR/微流控等技术落地• 自动化/一体化/集成化/多重联检冯雁,上海交通大学生命科学技术学院常务副院长李庆阁,厦门大学分子诊断教育部工程研究中心负责人,致善生物董事长程奇,杭州禾骑士未来生物科技有限公司CTO王海滨,北京纳捷创始人兼首席科学家居金良,上海仁度生物创始人兼首席科学家邓中平,湖南圣湘生物副总经理持续更新中… … 板块四:分子POCT技术平台开发落地全新亮点:• 差异化底层技术的一体化分子POCT开发思路• 多重/居家自检趋势下的便携平台开发及应用• 提升工艺及质控以平衡便携与性能的方案探讨邢婉丽,清华大学医学院研究员、博士生导师、生物芯片北京国家工程研究中心常务副主任兼博奥生物集团有限公司高级副总裁,北京博奥晶典生物技术有限公司首席执行官兼技术总监贺新义,上海交通大学生命科学技术学院微生物代谢国家重点实验室研究员尤其敏,优思达董事长兼首席科学家才蕾,万孚倍特总经理持续更新中… … 更多论坛详情,欢迎至MDx2021官网查看: www.bmapglobal.com/mdx2021 MDx展位已售罄,会场晚宴赞助、纸&笔赞助、手提袋赞助等更多形式赞助方案,欢迎咨询组委会小助手预定:18017839885(同微信)MDx2021论坛早鸟票限时抢购• 早鸟优惠即将截止,立即注册MDx2021预定优惠门票• 3人及以上同行将享受团定福利“满3赠1”,欢迎转发分享! 扫码进入MDx2021论坛官网立即注册欢迎联系MDx组委会咨询更多论坛资讯电话:180 1793 9885(同微信)邮箱:mdx@bmapglobal.com网站:www.bmapglobal.com/mdx2021
  • 合肥研究院实现人尿毒品快速筛查与便携式检测
    p   中国科学院合肥物质科学研究院智能机械研究所纳米材料与环境检测研究室研究员杨良保等人成功发展了人尿中毒品快速分离与检测的便携式工具箱策略,利用高重现性的表面增强 a title=" " href=" http://www.instrument.com.cn/zc/34.html" target=" _self" 拉曼 /a 散射(SERS)基底,实现了毒品分子指纹特征的快速检测,而且可以对人尿中多种毒品同时检测与识别。相关成果发表在《分析化学》杂志上(Anal. Chem. 2015, 87, 9500?9506)。 /p p   真实人体尿液中毒品分子的快速SERS检测面临三个方面的难题:(1)毒品分子快速分离和富集 (2)尿液复杂成分干扰 (3)SERS活性纳米结构热点效率。针对真实环境中吸毒人员高通量快速筛查的需求,研究人员发展的便携式工具箱仅仅包括一管萃取溶剂、一管固体粉末、标准化制备的SERS基底包和一台手持式微型拉曼设备。将两管试剂与待测尿样混合震荡、静置分层后,取上层清液滴于标准基底上,利用手持式拉曼检测即可实现尿样中冰毒、摇头丸和丧尸药三种常见毒品的快速检测,该策略还展现了对双组份同时检测的能力,具有多重毒品的混合检测潜力。这些研究成果不仅提供了人尿中毒品的新型检测方法,而且对推广毒品的现场快速检测具有非常重要的社会意义和经济价值。 /p p   另外,该课题组针对人尿样中毒品的快速检测,系统研究了尿样毒品的快速分离富集、多种组分性质与多通道检测,以及毒品分子SERS信号的智能算法识别等方面,取得了系列研究成果。相关成果连续发表在《分析化学》杂志上(Analytical Chemistry 2015, 87(9): 4821-4828 Analytical Chemistry 2015,87(5): 2937-2944)。 /p p   该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持 /p p style=" TEXT-ALIGN: center" img title=" W020150921354084042636.jpg" src=" http://img1.17img.cn/17img/images/201509/noimg/a57c619f-ee79-4054-a66b-7b29b4928c90.jpg" / /p p style=" TEXT-ALIGN: center" 便携式工具箱快速检测人尿中毒品的流程图 /p p & nbsp /p p & nbsp /p p & nbsp /p
  • 南开大学李功玉:我的质谱前十年,从“菜鸟球员”到“菜鸟教练”的奇妙之旅
    从收到中科大黄光明老师转发的贺老师邀请邮件至今,已过去数月有余。很遗憾没能赶上盛大的CNCP-2020《十年回顾》。思考了很久,也拜读了多篇优秀的CNCPer回顾文章,今天总算在南开园,敲下了《我的质谱前十年》这样一个平淡而真实的题目。一直在想是否用《我的质谱前半生》为题会更有吸引力。2012-2022,从中科大起步,踏入质谱分析的科研殿堂,我用了将近十年的时间,勉强完成了从一个质谱“菜鸟球员”(质谱分析方向的一年级研究生)到“菜鸟教练”(质谱分析方向的特聘研究员)的艰难转身。然而,时至今日,在CNCP中我仍然是一名初学者,每天都在继续学习蛋白质组学及相关技术,争取成为一名合格的CNCPer。很荣幸能成为第三代CNCPer一员,也特别感谢贺老师和黄老师给予这样宝贵的平台与机会,我也得以从繁杂的课题组事务中偷得片刻闲暇,在2022年11月的某个傍晚晚饭过后,关上办公室透着微光的玻璃门,放下《视频会议中///请勿扰》的警示牌,随手开了一瓶“82年”的可乐,开始回顾这十年的点点滴滴与细细碎碎。这篇波澜不惊的流水账,期待能给大家茶余饭后带来些许谈资笑料,足矣。如能给年轻的CNCPer学生朋友们带来些许借鉴或者经验教训,也是我内心深处最大的满足啦。  梦起中科大:初识基础质谱  中科大是一个令人魂牵梦萦的地方。出国率高、理科强校、数不清的第一名,对于一个“菜鸟”研究生来说,这些就是中科大耀眼的标签。由于怀揣一个出国梦,因此选择了考研中科大并最终以专业第一的成绩被录取(后来才知道很多同学是保研进来的,根本就不用跟我们pk)。2012年3月底第一次来到科大见到年轻的黄老师。当时在教学楼与黄老师第一次见面聊了一个多小时,初步印象是,黄老师皮肤很好,人也很好。我感觉自我回答很完美的一个问题是:为什么选择分析化学而不是有机化学等其它方向(是因为分析轻松吗)?我说,分析方向相对绿色环保、无毒无害,但是要想出重要成果,肯定要付出加倍努力才行(多么朴实无华的表态)。在我自己当过好多次面试官以后,我才发现自己当时的回答有多么强烈地抓住一位年轻老板的心(此处手动偷笑中)。自此被黄老师选中,追随着黄老师的脚步,在黄老师入职科大大约半年后,我也顺利成为了Huang Lab的第一届硕士研究生。(其实我第一位联系的是邓兆祥老师,当时官网上还没有出现黄老师的太多信息。现在回想起来也要感谢邓老师的推荐,才得以有机会进入质谱分析行业。)  图1. 在Huang Lab搭建的第一个CE-ESI-MS接口装置图。  在中科大这五年,在黄老师的指导下,在科研课题方面,很惭愧仅干了三件小事:1)第一个课题是关于毛细管电泳-质谱接口开发,近乎失败告终(图1,后来课题转给师妹,共同作者发表1篇RCM) 2)基于非接触式电喷雾离子化技术,提出了In-cell MS的概念(原位细胞蛋白质谱,借鉴了当时很火的in-cell NMR),实现了细胞内高表达蛋白的直接进样质谱分析(图2和图3,发表2篇Anal Chem,其中图3是博士毕业前3个月,拿到了博后offer之后等签证过程中的一个quick publication) 3)发展出毫秒级微电泳理论(可能与第一个失败的电泳课题有关)与毫秒级电磁感应加热理论,并整合离子淌度质谱(访问密西根大学),实现了溶液蛋白高级结构动态变化的在线质谱实时监测(发表1篇Anal Chem)。  图2.在Huang Lab搭建的脉冲高压电源电路图、In-cell MS及高通量非接触式电喷雾装置图图3. 博士毕业前3个月发表的一篇Anal Chem  中科大读博期间,有太多的难忘时刻。正如我的博士毕业论文上青涩的文笔所描绘的那般场景,我们致力于发展一种新型的蛋白质质谱监测方式,力争实现细胞内蛋白质的原位、快速监测与结构分析,核心的解决思路是利用超强抗基质干扰能力的离子化方法,并在活细胞内金属蛋白与配体相互作用等方面做了初步的尝试。至今仍会为尝试了6个月差点放弃的全细胞电喷雾实验而突然看到蛋白信号的那一瞬间所触动,起初黄老师和我自己其实都并不太确定最后能拿到信号。6个月的时间里,我们尝试了除了稀释样品外的几乎所有可能想到的方案,直到有一天,我不小心把细胞稀释液给配稀了3个数量级(“失误”),隐隐约约在杂乱的氯化钠团簇离子背景峰中,看到了几个与众不同的多电荷态峰。虽然那时候的信噪比奇差无比,我顿时就预感了成功就在眼前了。剩下的只是参数优化而已。这个课题当时是和中科大化学系刘扬中老师课题组合作的,翻到当时给刘老师的邮件(图4),当时还起了一个特别诗意的名字,One Spray One Separation。这个课题后来我总结起来,还是自己受限于思维定势了,当时一直想着寄希望提高样品量以此获得信号,不曾想过稀释、降低浓度可以减少干扰、提高离子化效率,毕竟惯性思维(思维定势)告诉我,细胞内的蛋白太少了。可是质谱是一个超高灵敏的检测仪器,甚至可以实现单个分子水平上的离子信号监测。虽然后来我们开复盘会的时候,有朝这个方向思考,不过最终并没有进一步实施,后来Albert Heck等相关课题组在charge detection-mass spectrometry(CDMS)仪器上就实现了类似的设想(发表了一系列高影响力文章)。(欲了解相关可点击:电荷检测质谱技术进展)  总结而言,中科大的这段时光是质谱梦的开端,在黄光明老师的指导下,我学会了基础质谱的相关知识,尤其是离子源方面。在黄老师自由宽松的学术氛围下,一切似乎都是那么从容,我可以做自己想做的课题,可以尝试自己不靠谱的想法,这种和谐的科研环境让我很多时候都觉得博士生活并不是人们宣扬的那样枯燥与无趣。这份心态陪伴我渡过了一个又一个关键的时间节点:2014年4月第一篇文章的发表,2015年6月第一次看到细胞内冷应激蛋白的信号,2015年12月与斯坦福大学Richard Zare教授在南京第一次面谈,2016年3月校青年基金获批,2016年4月成功抵达密歇根大学安娜堡分校Brandon T. Ruotolo教授实验室,2016年10月Anal. Chem.接收,2017年4月提交博士毕业论文。  图4. 2015年6月17日首次看到全细胞喷雾钙调蛋白的信号之后,给合作导师刘扬中老师的邮件  寻梦安娜堡:启蒙结构质谱  安娜堡给人的感觉就像是初恋,砰然心动、短暂相伴却也刻骨铭心。在个人职业发展方面,也特别感谢黄老师的大力支持,成功前往密西根大学进行短期交流。这次作为访问学生的身份前往安娜堡的经历,对我的人生走向起着至关重要的作用,彷佛打开了新世界的大门。我可以把所有的事情写成回忆录、拍成照片视频等共享,然而这种认识新事物的过程与体验,若非本人经历是无法体会的。  作为访问学生,第一次去美国,一切都充满未知,语言、饮食习惯、生活和社会环境,每天都给我带来冲击。当时Brandon刚好过了tenure考核,正在学术休假。因此与他直接面对面的交流机会并不多。大多数时间都是跟着实验室师兄师姐们学习离子淌度质谱。很庆幸在此期间接受了离子淌度理论、非变性质谱样品制备以及质谱数据采集及数据处理等方面的系统训练。短短的四个月时间,太多令人回忆起来觉得温暖的瞬间,报到那天是4月11日,负责帮我办手续的HR上来就是一句happy birthday,随后就拿到了后来失而复得的两张UM校园卡(图5)。2016年参加了人生第一次ASMS会议,一个人感受经济舱(第一次坐那种只有二三十个座位的小型客机)、乘坐灰狗长途汽车、换乘短途Uber穿梭在美国中西部大玉米地之间,安娜堡、普渡、俄亥俄州立以及UIUC香槟多个校区,朝发夕至。  图5. 两张UM校园卡(其中一张属于遗失又找回)  图6. ASMS-2016 Ruotolo课题组圣安东尼奥聚餐  翻看着旧照片,思绪万千。2016年和2019年,两次到访Ruotolo Lab,体验截然不同。图6是第一次访问时随课题组参加当年的ASMS年会,在圣安东尼奥(德州)当地一家牛排店,课题组聚餐前的大合影。那一次会议对我来说突如其来,规模之大、交流之深,完全超出我对学术会议的预期,由于我没有做好充分准备,一切都猝不及防,走马观花、热闹过场,却也收获了一批一面之交的、之后时不时线上交流的学术网友。学术上,我的结构质谱是从这里开始的,Ruotolo Lab教会了我离子淌度质谱的基础知识。在做文献阅读时我被Brandon发表在JACS和Angew上的三篇Hofmeister盐调控蛋白结构的文章所深深吸引。作为一个初学者,最快入门的方式就是模仿与重复别人的代表性实验。当时我对此执念很深,因此就开始动手重复那些让我痴迷的实验。Brandon那三篇文章主要是聚焦在盐本身对蛋白的一级质谱的信号挖掘,包括寡聚体组成以及碰撞横截面积CCS的变化等信息。我当时就很想知道,这些盐如果真的调控了高级结构,是否这些盐也能调控复合物拓扑学组装结构?我当时有一个猜想:有没有可能在特定盐的喷雾条件下,复合物的拓扑学结构能够得到更好的保护?因为在结构质谱领域,一直被人诟病的一个地方,就是我们直接测量的是脱溶剂条件下的结构,与溶液相真实结构之间必然存在差异。而这种差异具体有多少,尚缺乏有效的定量评估方法以及通用的差异缓和措施。  图7. 附带普渡大学Graham Cooks院士真迹的实验记录本  一次实验中我意外地发现,当我在经典的非变性质谱溶液中,加入低浓度的碳酸氢铵时,神奇的现象出现了:血红蛋白四聚体复合物的气相解离路径发生了显著变化。传统条件下,几乎所有文献和实验都会相信,四聚体会解离成单体和三聚体,这种解离路径与其溶液中“二聚的二聚”的结构特点是相矛盾的。而在我调整Hofmeister盐条件之后,这种传统认知被打破,四聚体优先解离为二聚体,而这恰恰是溶液相拓扑学结构的真实情况。在我去Purdue访问Aston Lab以及去Ohio State University访问Wysocki Lab时,分别与Graham和Vicki谈论了我当时引以为傲的新发现,试图从两位SID发明人那里得到机制解析方面的帮助。两位都对这个现象表示感兴趣,Graham还用一张便签纸写下了他从电荷态分布的角度给我的一些猜想建议(图7)。第一次观测到这个新现象是大约在抵达安娜堡一个月内。Brandon对此非常谨慎,为了说服他,我接下来的访问时间里,做了至少十种不同复合物体系,并从各种不同的侧面去试图解释这里到底发生了什么。正如博士导师黄光明老师经常在组会上说的那样,咱们做科研的,没有人会相信魔术。后来经过接近2年的断断续续补充实验(图8),我们发现这可能和pH改变之后邻近的双硫键易发生交联有相关性,最终Brandon选择将文章发表在IJMS的一期结构质谱约稿专刊上(尽管我当时有一万个不愿意,从一个初学者的执拗与不成熟的角度看,这种新奇的发现怎么都可以发到一个影响力更高的杂志上)。  图8. 论“喷针质量对于非变性结构质谱实验成功重要性” ——UM实验记录本  2019年夏天,在美国质谱学会博士后职业发展奖的支持下,我再次来到Ruotolo Lab,再次感受安娜堡夏天的尾巴。只是这次是短暂的两周交流,来之前我就一个一个联系之前一起住在Arbor Village、周末一起打球的好朋友们,包括现在已经回到浙大任教授的优秀结构生物学专家张岩老师(青千、长江、青年973首席科学家),只是大家大都已经搬走离开或已回国。我自己选择住在一个更远的、公交车可以直达的地方,想着进一步感受安娜堡downtown远端的生活。这一次,UM给我重新启用之前的学号,课题组安全培训表上我的两次签名之间竟然还没有翻页(亲切感油然而生!),实验室也仍然沿用之前大家商量安排质谱机时的传统(图9)。这一次我来的主要任务是学习结构质谱指引下的分子模拟方法(图10),然而很遗憾,两周的时间还是太过短暂,我并没有完全掌握分子模拟本身,在课题组成员的帮助下,我只基本掌握了在拿到分子结构后,如何用我们的结构质谱数据去匹配、筛选、构建气相条件下的蛋白结构。而图10是当时我在离开安娜堡之前,为了防止我离开课题组以后就忘了怎么做,带我做模拟的Chae要求我在黑板上写下来的工作流程。这一张照片已经成为了我实验室(LimsLab)分子模拟初学者的第一手教材。看着图5的校园卡,猛然发现,还在有效期内,期待疫情过后,重返安娜堡的画面。  图9. Ruotolo课题组安全培训记录(2016+2019)与质谱实验安排表。  图10. 结构质谱指引下的分子模拟过程(2019年8月,写于安娜堡Ruotolo Lab)。  驻扎麦迪逊:感受定量质谱  麦迪逊的经历印象深刻,酸甜苦辣,受益终生。从2017年8月至2021年1月,我在麦屯过了四个中国年。期间没有回国,后来疫情来了,也就直接放弃了回国休假的打算,直到回南开的那一天。麦屯是全美宜居幸福指数排名第一的城市,也是我人生中待过时间第四长的一个城市,同时也是我在美国待过时间最长的一个城市。难忘的生活细节太多,也认识了超级多好朋友兄弟姐妹。竟然一时间不知从何处下笔。今天回想起来,还是觉得时间过得太快,过去四年的时光历历在目,仿佛一切就在昨天。  图11. 博士后导师Lingjun赠送歌手赵雷亲笔签名CD,2019年3月23日,药学院办公室。  非常荣幸加入李灵军老师课题组Li Lab进行博士后训练。印象中Lingjun一直都非常忙,Li Lab课题组大小事务都要操心,几乎每天都工作到凌晨两三点,在凌晨收到李老师的邮件或者信息也不足为奇,当然如果你的邮件被淹没在茫茫list中也偶有发生。记得当时联系李老师申请博后位置,李老师就是在我发送第二封邮件时才回复。Li Lab课题组的研究兴趣广泛,但是以定量质谱方法开发为核心,Lingjun在这个方向上还获得了美国质谱学会ASMS专门给中青年科学家设立的、一年仅颁发一位的重量级奖项Biemann Medal(李老师获得的荣誉如果全部列出来,将占据我这篇文章一半以上的篇幅,建议感兴趣的读者请自行查阅)。Lingjun最让我佩服的一点是,可以常年不花时间锻炼身体,却似乎从来不感冒不生病,一年365天铁人般坚守在工作岗位上。平时的爱好,主要是追追星(图11,赵雷)以及朋友圈发发美食美景和美图。  犹记得当时,刚好前期主要负责离子淌度相关方向的贾辰熙师兄回国(现任北京蛋白质中心独立PI),而我在Brandon那边有一些离子淌度的训练背景,加上有NIH的基金需要这个方向继续发展,最后顺利进入了Li Lab,成为麦屯定量质谱大团队的一员。李老师备受领域内同行的尊敬与认可,作为李老师的学生与课题组成员,我们也深得其益,每次出去开会提到Madison Li Lab就能得到wow的大声回应,而我自己也得益于Lingjun的reputation,成功申请到ASMS的博士后职业发展奖(Postdoc Career DevelopmentAward)。这对于我的职业生涯确实起着很大的鼓舞作用,并以此为契机,推动着后面的每一步探索。  图12. “快速入门”的一篇文章(手性修饰质谱方法学开发)。  博后期间,协助指导了几名研究生,负责维护管理离子淌度质谱Synapt G2,参与撰写了几份NIH基金并发表了五六篇论文,代表Li Lab在ASMS年会上做了两次口头报告。科研方面,总结起来,很惭愧在Li Lab仅干了以下两件小事:  (1)定量质谱方向,一事无成,只是在最后一年时间里(拿到南开的offer之后回国之前),跟着实验室的小伙伴们,学会了4-plex DiLeu的简单合成与组学定量应用,没有在这个方向上帮助Li Lab做出任何贡献(而我自己到今天还在后悔,如果给我更长的时间,我一定会把蛋白组学样品制备、数据处理、定量测量等方面加强,组学质谱技术太强大了!)。当然,在我现在自己课题组LimsLab,我正在弥补这个遗憾,我的学生们目前也正在DiLeu定量质谱的道路上摸索着前行,争取能将DiLeu探针推广到完整蛋白标记领域中。  图13. “厚积薄发”的一篇文章(纳秒光化学点击反应助力原位蛋白质谱分析)。  (2)结构质谱方向,三年多的时间里,主要在以下三个方面取得一点小的进展:发展了面向蛋白结构微小差异的高通量构象操控新策略AIU(发表1篇AC+1篇JASMS) 借鉴印第安纳大学Clemmer Group多维分离单糖小分子的思路,发展了多维差异放大结构质谱新策略,并成功应用于手性多肽的快速结构拆分(图12,如果没记错,这是Li Lab近年来的第一篇Nat. Commun.) 受荧光热电泳实验启发,开发了质谱兼容的纳秒光化学点击反应,实现了蛋白原位检测与结构标记分析(图13,如果没记错,应该是Li Lab近年来的第二篇Nat. Commun.)。前两个工作我现在的学生也在follow,似乎他们现在很喜欢使用相关的技术方法,而第三个工作,我当时在Li Lab协助指导的博士生也跟着拓展,应用到小分子代谢物的检测分析中,今年发表了一篇AC。第二个工作我把它标注为“快速入门”,第三个工作则为“厚积薄发”,主要原因在于课题的完成过程截然不同,前者的关键数据是在我抵达麦屯一个多月就拿到了(美国入境签证为证,哈哈哈),而后者则是我构思了很长时间的一个idea(2017年开始构思),经过漫长的摸索调整,才以最终发表的样子呈现在大家面前。  2020年2月,一场突如其来的新冠疫情席卷全球。所有人的生活方式均因此而改变。犹记得最后一次驱车前往UIUC校园,Jonathan Sweedler实验室使用TIMS仪器就是2月底,当时还特别幸运,在大玉米地香槟这座城市遇到了受Jonathan邀请来化学系做特邀报告的Dick Zare(图14,右下倒数第二张)。这也是除了我去斯坦福Zare Lab访问期间与Dick在美国的唯一一次会面。从此之后,大家经历了居家办公、线上组会、带薪休假的艰难岁月,后来给南开投了第一封求职信便很快收到学院回复,再后来就是和Li Lab的各位小伙伴线上告别(图14,Lingjun很贴心地拼贴了我们故事的点点滴滴,包括第一次线下和李老师在海口国际分析化学年会见面的青涩照片,右下,太感动啦)。  图14. 2021年1月,与Li Lab的各位小伙伴们线上告别。  南开再起航:创办LimsLab  南开是一个既熟悉又陌生的全新环境,无限可能、机遇大于挑战,因此充满期待。南开化学在我投递求职信的第二天就给了我面试通知,并在面试后一周内毫不犹豫地通知我通过了学院的面试。我也在随后毫不犹豫地接受了这份来自南开的爽快offer。于是开始筹建实验室,回国前就在构思自己实验室名字,博后实验室叫Li Lab,最后把自己的实验室叫做LimsLab(图15),寓意为Li-MS-Lab或者Li-IMS-Lab。如其名,LimsLab将打造以离子淌度质谱为核心技术的大分子结构质谱分析实验室。  图15. 南开大学大分子结构质谱分析实验室Logo。  2021年2月25日,我第一次来到天津,第一次来到南开,高效完成了各项报到工作。至此,可以算得上是完成了从“菜鸟球员”到“菜鸟教练”的角色转换。虽然之前也曾帮助实验室做过一些相关的服务工作,而只有此次真正完成角色转变之后,我才深刻意识到一位导师所面临的事物有多繁杂,尤其是对一个从毛坯房白手起家的“菜鸟教练”(图16)。每次被要求填写业余爱好时,我都会毫不犹豫地写下“篮球”这两个字。如果把科研事业当成篮球爱好,首先要建好球场,然后要招募球员。而在这些工作之前,最为重要的是,作为这样一个身兼数职的“菜鸟教练”,虽然有学校给提供的start-up启动经费,还需要时时刻刻思考着如何“融资”,而不断构思着说服“资本家们”给你投资的理由。  庆幸的是,在各位同行专家的大力支持与鼓励下,经过快两年的摸爬滚打,LimsLab目前运转逐渐步入正轨,课题组目前拥有操作室(图17)、质谱室(图18)、制样室(图19)、细胞间和学生办公室等多个活动空间,仪器设备有适用于蛋白组学高通量定量分析的Orbitrap Eclipse(依托生科院)、Fusion Lumos(依托药化生国重),有高分辨结构质谱离子淌度仪Cyclic IMS(依托海河实验室)和经典结构质谱仪Synapt G2(依托国重),近期也着手采购非变性大分子结构质谱QE UHMR仪器。同时,实验室的小伙伴们还一起盲盒般开箱了一台适用于离子源等方法开发的Orbitrap二手质谱仪器(图20)。除配套设备外,LimsLab课题组目前经费充足,拥有研究生和科研助理十余名科研人员,现亟需在定量蛋白组学、合成化学和计算模拟化学等方向的博士后研究员加入,以充实、完善LimsLab队伍,尽快提升团队的整体科研素养与综合水平。待遇由你定,要求仅一条,那就是对高水平科研工作有足够的热情与向往。  随附LimsLab课题组网站:https://www.x-mol.com/groups/gongyu_li  同附PI联系方式:李功玉(ligongyu@nankai.edu.cn)  再附PI简介:李功玉,南开大学化学学院,研究员、博士生导师。入选国家高层次青年人才计划(2021)、主持科技部重点研发青年项目(2022)。2017年毕业于中国科学技术大学,获理学博士学位。 2017年至2021年在美国威斯康星大学麦迪逊分校开展博士后研究。2016年和2019年两次前往美国密西根大学安娜堡分校交流访问。2021年2月加入南开大学化学学院,成立LimsLab课题组,研究方向为大分子结构质谱分析。图16. “菜鸟教练”的必修课之毛坯实验室装修(拍摄于2021年3月)。图17. 南开大学LimsLab实验室操作室(拍摄于2022年11月)。图18. 南开大学LimsLab实验室质谱室(拍摄于2022年11月)。 图19. 南开大学LimsLab实验室制样室(拍摄于2022年11月)。  图20. 南开大学LimsLab实验室成功自主拆机(拍摄于2022年11月)。
  • 《中国2型糖尿病防治指南(2020年版)》正式发布
    2021年4月19日,《中国2型糖尿病防治指南(2020年版)》正式发布!新版指南由中华医学会糖尿病学分会组织编写,在《中华糖尿病杂志》和《中华内分泌代谢杂志》同步发表。新版指南对糖尿病诊断标准、治疗路径等多个方面进行了重要更新。其中,最重要的变化是首次将糖化血红蛋白(HbA1c)纳入诊断标准。据悉,《中国2型糖尿病防治指南》于2003年首次发表,并于2007、2010、2013和2017年进行了4次修订,迄今为止已经发布了5版。划重点新版指南提到,目前为止,我国糖尿病患病率仍在持续增长。最新发表的流行病学调查数据显示,按照世界卫生组织(WHO标准),我国的糖尿病患病率11.2%,知晓率36.5%,治疗率32.2%,控制率49.2%。其中,中国≥65岁的老年糖尿病患者数约3550万,居世界首位,占全球老年糖尿病患者的1/4。新版指南推荐,在有严格质量控制的实验室,采用标准化方法测定的HbA1c可以作为糖尿病的补充诊断标准。也就是说,新版指南正式将HbA1c纳入糖尿病的诊断标准当中,并以HbA1c≥6.5%作为切点,辅助糖尿病的诊断。糖尿病的诊断标准新版指南还规定,对于糖化血红蛋白的控制目标,应该遵循个体化原则。对于那些年纪较轻、病程较短、没有并发症、没有心血管疾病的患者,可以在没有低血糖或其他不良反应的前提下,采取严格的HbA1c控制目标。否则,则可以采取相对宽松的控制目标。就是说,并不要求所有人都将HbA1c控制在6.5%以下。糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血中的葡萄糖相结合的产物。它是通过缓慢、持续及不可逆的糖化反应形成,其含量的多少取决于血糖浓度以及血糖与血红蛋白接触时间,而与抽血时间、患者是否空无关,是衡量血糖控制的重要指标。由于其稳定性好,监测频率低,使得HbA1c成为国际公认的用于评估糖尿病患者长期血糖状况的理想指标。目前,一线的HbA1c检测方法主要是高效液相色谱法(HPLC)和电泳法,这两种方法有各自的优势,但是对于有异常血红蛋白(hemoglobin variant)干扰的样品,这两种方法均不能给出准确的检测结果。MALDI-TOF质谱法是融智生物研发的检测HbA1c的一种新方法,其基本原理是体内非酶促糖化反应造成β珠蛋白链增加一个葡萄糖,使得糖化与非糖化β珠蛋白链分子量相差162Da,通过糖化β珠蛋白链/(β珠蛋白链+糖化β珠蛋白链)来计算其糖基化率。与其他HbA1c检测系统不同,MALDI-TOF 质谱检测的是游离的珠蛋白链,而不是四聚体。 QuanGHb糖化血红蛋白定量质谱系统(MALDI-TOF质谱法)基于上述检测原理,加之融智生物MALDI-TOF质谱系统的高分辨能力,QuanGHb糖化血红蛋白定量质谱系统不仅能准确定量HbA1c,同时也可检测其他类型变异血红蛋白(hemoglobin variant),且抗干扰能力优异,为HbA1c检测提供了新的思路。
  • 辽宁省浑河流域鸟岛水质自动监测系统通过竣工验收
    隆力德公司承建东北高寒地区首批11个水质自动监测站通过竣工验收 12月7日上午,厦门隆力德环境技术开发有限公司承建东北高寒地区首批11个省级水质自动监测站之一的辽宁省浑河流域鸟岛水质自动监测站举行了竣工剪彩仪式。辽宁省环境保护厅范国华副厅长、辽宁省环境监测实验中心仇伟光站长、张峥副站长、辽河办、省政府采购中心等相关领导以及我司刘俊平总经理参加了竣工揭牌剪彩仪式。 辽宁省环境保护厅范国华副厅长、辽宁省环境监测实验中心仇伟光站长、张峥副站长、省政府采购中心王处长共同为沈阳鸟岛水质自动监测站工程竣工揭牌,我司刘俊平总经理以及辽河办领导、省中心综合室彭跃主任共同为沈阳鸟岛水质自动监测站工程竣工剪彩,相关领导在仪式结束后参观了新站房。 站点地址:辽宁省沈阳市鸟岛 监测项目:常规五参数水质分析、高锰酸盐指数检测,氨氮的测定 站点说明:水质自动监测系统位于沈阳市鸟岛,处于浑河干流中,监测数据可反映浑河由抚顺流入沈阳前水质状况,为浑河沈阳段的起始断面,可作为参考断面,为浑河沈阳段的污染治理、生态保护等工作提供数据支撑。
  • 欧盟食品安全局审查霜脲氰的最大残留限量
    p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 近日,欧盟食品安全局审查了霜脲氰(cymoxanil)的最大残留限量,提议修订其在部分商品中的残留限量。 /p p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 根据欧盟法规396/2005号第12条的规定,欧盟食品安全局对霜脲氰的残留限量进行了审查。为评估霜脲氰在植物、加工产品、轮作作物、牲畜中最大残留限量,欧盟食品安全局参考了91/414/EEC指令框架下的结论以及成员国报告的欧盟许可进口限量,在现行数据的基础之上,得出残留限量建议。最终提议修订霜脲氰在土豆、大蒜、洋葱等商品中的最大残留限量。 /p p style=" TEXT-ALIGN: center LINE-HEIGHT: 1.75em" img style=" WIDTH: 600px HEIGHT: 408px" title=" QQ图片20151215141546.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201512/insimg/bc2cf991-899a-4f5e-aa04-c8dab9bfa08f.jpg" width=" 600" height=" 408" / /p p br/ /p
  • 赫施曼助力动植物中角鲨烯含量的测定
    角鲨烯是一种高不饱和的天然萜类化合物,被广泛应用于医药和化妆品等相关领域。根据GB/T 43732-2024,动植物中角鲨烯含量的测定方法为:气相色谱法。非油脂类样品(油脂类样品直接皂化和甲酯化)经水解,乙醚-石油醚混合溶液提取,皂化和甲酯化。用正已烷萃取,经气相色谱法测定,外标法定量。实验涉及标准工作溶液的配置:角鲨烯标准工作溶液:用Miragen电动移液器加0.300mL标准储备液于100mL容量瓶中,再采用20mL规格的opus电子瓶口分配器,stepper模式设置4个体积分别为1.00、2.00、4.00、5.00mL,然后按分液键,将4个体积的标准储备液(100μg/mL)分别加到100mL容量瓶中,用正已烷定容,得到质量浓度为3.00、10.0、20.0、50.0、100μg/mL的系列溶液。样品前处理:1.非油脂类提取:水解后的样品,用瓶口分液器加入10mL95%乙醇,混匀,然后加入50mL乙醚-石油醚混合溶液,振摇5min,静置10min。用少量的乙醚-石油醚混合溶液冲洗具塞试管和塞子,将醚层转移到250mL烧杯中。按照以上步骤重复提取水解液两次,将三次收集的醚层合并到250mL烧杯中。放置于水浴锅上蒸发至干得到样品提取物。2.皂化及甲酯化:将提取物用正已烷溶解并完全转移至25mL试管中,用氮吹仪吹干,用Miragen电动移液器加入1mL的1moL/L氢氧化钾-甲醇溶液,在涡旋振荡器上振荡2min,用Miragen电动移液器加入5.0mL正已烷,在涡旋振荡器上萃取1min,用饱和氯化钠溶液洗涤至中性,静置,使水相和正已烷相分层。用Miragen电动移液器取正已烷相3mL于10mL试管中,加入约0.3g无水硫酸钠进行干燥,用0.22μm滤膜过滤,待测。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的常规液体(酸、碱、有机试剂等)的移取,而实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 涨姿势-琥珀中发现古雏鸟,科学家采用显微CT等无损设备神还原
    琥珀中发现古雏鸟:科学家采用显微CT等无损设备神还原新浪科技讯 6月8日消息,中加美等国的古生物学家在北京宣布,他们发现了有史以来第一件琥珀中的雏鸟标本,此次发表的标本是一只较为完整的反鸟类雏鸟,记录了其生命最初几周的骨学和羽毛特征。2016年,邢立达团队首次发现了世界上首例琥珀中的古鸟类翅膀和非鸟恐龙内容物,“我们在2015年便发现了数个更完整的古鸟类琥珀,尽管骨骼的三维重建耗费了大量的时间和精力,但结果令人非常震撼。”邢立达介绍说,“研究表明,特异保存的化石往往能提供远古生命前所未见的细节,比如“木乃伊”化的鸭嘴龙类埃德蒙顿龙所留下的皮肤印痕,虚骨龙类棒爪龙留下的肠道痕迹,以及中国热河生物群的众多脊椎动物化石。尽管这些标本对古生物学研究做出了特殊的贡献,但仍会受到成岩作用的影响,损失大量细节。琥珀则恰恰没有这些问题,它能为古生物提供无与伦比的保存状态,唯一的缺陷是它所能容纳的包裹物大小受到严格限制,因此琥珀中完整的大个体脊椎动物极为罕见。 比龙标本,蕴藏着几乎完整的雏鸟“此次,我们描述的古鸟类琥珀珀体很大,约9厘米长,容纳了接近完整的一只古鸟类的头部、颈椎、翅膀、脚部和尾部,以及大量相关的软组织和皮肤结构。”论文的作者之一,美国洛杉矶自然史博物馆恐龙研究院院长路易斯恰普(luis m。 chiappe)教授称,“这些保存下来的软组织除了各种形态的羽毛之外,还包括了裸露的耳朵、眼睑,以及跗骨上极具细节的鳞片,这为古鸟类研究提供了千载难逢的机会。”这件标本来自著名的琥珀产区之一,缅甸北部克钦邦胡康河谷。此地的琥珀距今约9900万年前,属于白垩纪中期的诺曼森阶。邢立达介绍:“这只小鸟体型娇小,从吻部到尾巴末端的长度约6厘米。当时它生活在缅甸北部潮湿的热带环境中,不幸被柏类或南洋杉类针叶树所流下的树脂包裹,在漫长的地质年代中形成琥珀,并一直保存至今。” 琥珀中的古鸟标本保存极为完好,尤其是约2厘米长的金黄色鸟足特别醒目,“上面的鳞片,丝状羽栩栩如生,有很锋利的爪子,当时当地人都以为是蜥蜴爪,但我意识到这个标本尤其特殊,更像鸟类的足部,”标本的拥有方,腾冲虎魄阁博物馆馆长陈光先生回忆道,获取标本之后,研究团队开始只是注意到了一对非常精美的鸟足,之后采用显微ct等无损设备来成像和分析标本之后,才发现了琥珀内部还隐藏着头骨、脊椎等重要信息,通过对ct数据的重建、分割和融合,最终无损得到了所有骨骼的高清3d形态。青年古鸟类学家邹晶梅表示,比龙标本的头骨有明显的牙齿,其椎体等其它骨骼形态一致表明,它属于典型的反鸟类。反鸟类是白垩纪出现的一类相对原始的鸟类,其肩带骨骼的关节组合与现生鸟类的相反,因此得名。反鸟类和今鸟类是鸟类演化的两个主要的谱系,并在早白垩世出现了较大的生态分化和辐射,它们有着较强的飞行能力,拇趾与其他三趾对握,适宜树栖,但最终在晚白垩世末期与恐龙一道完全绝灭。“羽毛形态是本次研究的重点之一。”瑞安麦凯勒教授说道,“比龙标本保留着迄今最为完整的古鸟幼鸟羽毛和皮肤,这在白垩纪的标本中尚属首次,这些细节包括羽序、羽毛的结构和色素特征等。” 比龙标本的羽毛形态学细节非常精致,幼鸟被树脂包裹时,正处于稚羽发育的最初阶段,这些稚羽同样可以与其他标本的羽毛印痕或缅甸琥珀中的孤立羽毛相对比。不过,不同于任何现生新孵出的雏鸟,比龙标本的羽毛同时具备了不同寻常的早熟性和晚熟性相混合的特征,同时存在着功能性飞羽和零散的体羽。此外,比龙标本的腿部、足部和尾部的羽毛形态亦不寻常,暗示着与现生鸟类的相比,反鸟类的雏绒羽可能更接近于现生鸟类的廓羽。不过,这些区域也保存着丝状羽,似乎类似于更原始的兽脚类的原始羽毛。“所有这些细节都是此前我们一无所知的。” 比龙标本复原图 绘图张宗达比龙标本是目前缅甸琥珀中最完整的古鸟类化石,它是一只出生仅数周的反鸟类雏鸟,琥珀的特异性使其保存了人类历史上最丰富的雏鸟骨学与软组织细节,为我们了解反鸟类和今鸟类在发育上的显著差异提供了新的证据。(郭祎)该研究由中国地质大学(北京)邢立达副教授、中国科学院古脊椎动物与古人类研究所外籍研究员邹晶梅(jingmai o’connor),中国科学院动物所白明副研究员、加拿大萨斯喀彻温省皇家博物馆瑞安麦凯勒(ryan c。 mckellar)教授等学者共同研究。研究论文发表于国际知名地学刊物《冈瓦纳研究》(gondwana research,影响因子8.743)。该项目受美国国家地理学会、中国国家自然科学基金、加拿大自然科学和工程研究理事会等项目支持。 以上信息来源:快科技借助布鲁克skyscan2211纳米级ct的检测手段,进入更深的研究领域!
  • 央视曝光!网红玩具毒素超标!拉曼光谱仪竟是药用硼砂“鉴定官”
    【央视曝光网红玩具毒素超标 硼砂毒副作用大】专家表示,目前市面上几乎所有的“史莱姆”水晶泥内全都含有硼砂成分,再加上这种玩具质地黏软,极易粘在皮肤上,孩子们经常接触,就有可能会发生轻微的皮肤过敏。如果皮肤有破损,再接触硼砂,毒副作用的显现就会更快更大。对于成人来说,中毒量大概是一到三克,致死量就是十五克。而对于婴幼儿来说的话,致死量就是二到三克;对于儿童来说(致死量)就是五克。(网红玩具-史莱姆)硼砂(Borax)一种无机化合物,一般写作Na2B4O710H2O,为硼酸盐类矿物硼砂经精制而成的结晶,为常用外用中药品种之一,其主要成分为四硼酸钠[Na2B4O5(OH)48H2O,Na2B4O710H2O],性能甘,咸,凉,归肺、胃经,具有清热消痰,解毒防腐等功效。硼砂具有一定的毒性,应用不当,易对人体产生伤害,目前市场上,药用硼砂和工业用硼砂混杂,其中质量不合格的工业硼砂充当药用,严重的影响了临床用药安全有效。质量安全问题突出,检测就成了安全使用最重要的一环。奥谱天成科研级显微拉曼光谱仪‍拉曼Raman光谱分析是一种快速分析技术,它是利用拉曼散射原理,得到可以表征分子振动能级的指纹光谱,提供成分和结构的信息,拥有非破坏性和精细如“指纹”的分辨能力。拉曼光谱峰形尖锐明显,分子结构信息明确,其在药品检测中的应用主要为定性鉴别。根据有关文献,硼砂(Na2B4O710H2O)在拉曼光谱中的拉曼位移主要体现在四面体硼( BO5-4 )、三角形硼( BO3-3 )、水分子以及B ( OH) 键〔9〕。其中,拉曼位移在576cm-1处的7号峰是四面体硼( BO5-4 )振动最强吸收的特征峰 在460、385和350 cm-1处的 10 号、12号、13号峰为BO5-4对称弯曲振动中强吸收的特征峰 在762 cm-1处的6号峰为BO5-4对称伸缩振动 在948 cm-1处的4号峰为三角形硼( BO3-3 ) 的对称伸缩振动 其余的16、17、19和20这4个共有峰属于晶格振动。(硼砂样品拉曼光谱特征)综上所述,奥谱天成拉曼光谱仪可通过直观分析鉴别硼砂及其粉末的真伪,可用于硼砂及其粉末的鉴别。对于硼砂的两种易混淆药材:白硇砂和白矾,图谱的特征峰明显与硼砂正 品不同,可以准确区分,说明该图谱特征专属性较高,可为硼砂真伪鉴别提供基本和可靠的依据;中药硼砂拉曼指纹特征图谱,与正 品硼砂拉曼图谱相似度高,指纹特征明显,专属性强,为硼砂的快速鉴别提供了可靠的方法。
  • 基于光纤传感的尿比重仪
    仪器名称 基于光纤传感的尿比重仪 单位名称 深圳大学 联系人 李学金 联系邮箱 lixuejin@szu.edu.cn 成果成熟度 □正在研发 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 &radic 技术入股 □合作开发 □其他 成果简介: 基于光纤传感的尿比重仪是一种新型肾功能及人体体液溶质含量的监控仪器。采用先进的光纤传感技术,可实现高灵敏的实时在线检测(现有比重仪做不到),并能大大缩小仪器的体积。 本仪器的灵敏度比市场上现有尿比重仪高10倍以上,并能实现检测即时数显和实时记录等功能。还可以通过转换标定体系,转换成液体浓度、折射率等量的检测。 应用前景: 基于光纤传感的尿比重仪主要用于检测人体尿液的比重值,用于临床医学上诊断肾脏的浓缩功能,并可用于初步诊断糖尿病、蛋白尿、急性肾炎、高热、脱水、尿崩症、尿毒症、慢性肾小球肾炎、急性肾炎多尿期等;也可以反映一些疾病的程度,如糖尿病患者,如果血糖升高,尿比重值也会相应升高。 另外,本仪器还可广泛用于各种液体的浓度、折射率的检测或监控,如酿酒过程中,酒精浓度的监控;各种化学药剂生产过程中的浓度监控(相比电学的方法,采用光学的检测方法,不但灵敏度高,而且在易燃易爆环境中使用安全可靠);环境水体污染程度检测等。 本仪器可应用于人体健康指标智能监测,安装于小便池中,人们可以通过每次小便及时得知自己的健康情况,是一种新型的智能家居。随着&ldquo 智慧城市&rdquo 列入十二五规划的一项重要内容,物联网应用技术将得到一个新的发展和完善。智能家居做为物联网最广泛的应用,不管是在物联网的大浪潮下、还是在智慧城市建设中都有着广泛的前景,蕴含着巨大的市场潜力。 知识产权及项目获奖情况: 已获得专利,专利名称:一种液体比重仪,专利号:201520045154.2
  • 尽显仪器人才未来风采——厦大学子HORIBA学习实践圆满结束!
    2024年3月29日,随着厦门大学(以下简称厦大)任斌教授结题发言的结束,厦大化学化工学院与萨本栋微米纳米科学技术研究院的7名研究生与博士生成功取得结业证书,标志着他们在HORIBA前沿应用开发中心(Analytical Solution Plaza,简称ASP)的学习与实践活动圆满结束。△ 全体人员合影留念,记录珍贵的实践之旅厦大学子ASP学习实践活动,是此前厦大化学化工学院与ASP“学生实习基地”战略合作项目的延伸,旨在培养高质量的仪器技术人才,为仪器行业进步发展增势赋能。此次活动也得到了嘉庚创新实验室(由厦门市政府与厦大共同创建)的支持——该实验室工程师陈建群老师亲自担任带队导师,帮助厦大学子们完成为期5天的学习与实践活动。“优势互补、多边融合、合作共赢”是ASP的重要使命,也正好与战略合作项目的核心目标相契合。ASP位于HORIBA集团全新投资的厚立方二楼,有诸多的先进仪器,并组建了强大的技术专家团队。同学们在此不仅能获得研究课题上的启发,更能亲身感受企业的真实生产环境及运营模式,体会到团队协同合作的重要性。开题仪式上,ASP总监沈婧博士与厚立方总务处的周韶波女士分别为大家介绍了ASP与厚立方大楼的基本情况。同时,厦大同学们分别阐述了各自的课题与此行的学习重点,并期待后续能在课题方向、技术创新以及未来发展等各方面都能获得专业的建议与指导。△ 在开题仪式上,同学们与导师就此行核心学习目标展开探讨开题仪式后,同学们参观了厚立方大楼。HORIBA应用技术专家们对位于二楼的ASP进行了重点介绍。ASP内汇集了光学光谱、分子光谱、表面测量、粒度表征和元素分析等五大技术领域的多款先进仪器。其中有同学们熟悉的基础科研常客,如iHR320/550成像光谱仪、LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪及XploRA PLUS 高性能全自动拉曼光谱仪等,也有工业企业用户广泛选择的LabRAM Soleil高分辨超灵敏智能拉曼成像仪,其卓越的自动化性能让同学们印象深刻。值得一提的是,与拉曼光谱仪耦合的AFM-Raman/TERS装置也引起了大家的研究热情。△ ASP内多款产品助力高校师生们源源不断产出多项科研成果△ 同学们对ASP内的仪器非常感兴趣,当即展开讨论接下来的四天,是充实的培训实习环节。HORIBA应用技术专家团队围绕仪器性能测试、工作原理、软件功能等,结合实际研究应用案例,为厦大的同学们进行了详细地介绍和说明。同时,HORIBA 本地研发团队也分享了构建高效仪器的设计理念、光路调节的关键技巧,以及仪器的设计研发、质控、软件编制开发及项目管理等知识技能。此外,销售工程师为同学们介绍了光栅光谱仪,让大家对HORIBA的核心技术有了更深入的了解。△ HORIBA专家团队为同学们讲解光谱与仪器研发知识△ 同学们在导师的指导下进行实践操作最后的结业仪式上,同学们以精彩的结题报告展示了他们的学习成果。厦门大学任斌教授亲临现场发表结题讲话并颁发结业证书。他对同学们在实习期间的表现给予了高度评价,希望他们通过这次机会,不仅能够开阔眼界,还能将领先的光谱技术与项目管理经验带回课题组。同时,他也希望同学们能够将HORIBA的创新文化与精神融入到今后的学习和工作中,为科技进步和全人类可持续发展贡献力量。△ 任斌教授发表结题讲话并颁发结业证书厦大学子在ASP 的学习与实践活动圆满落幕,同学们在理论与实践中获得了显著成长。这次活动是HORIBA在校企合作和产学研融合方面的一次重要尝试。我们期望通过这次活动树立典范,为后续的合作提供有力借鉴和示范效应。未来,我们将继续携手厦大以及更多高校和企业,培养更多高质量人才,为行业的繁荣与发展源源不断注入新活力。
  • 蔓延全美的鼠沙门氏菌疫情源自实验室
    国际在线消息:美国疾病控制和预防中心29日宣布,目前在全美35个州蔓延的鼠伤寒沙门氏菌疫情不是因食品污染,而是因微生物实验室中的鼠伤寒沙门氏菌传染引发的。   美疾控中心的官员说,自去年8月以来,美国35个州相继发生鼠伤寒沙门氏菌疫情,迄今已造成至少73人染病,其中1人死亡。有关部门经过数月调查后,将源头锁定在遍布全美多个地区的微生物实验室。实验室中的鼠伤寒沙门氏菌可通过衣物、笔记本、钥匙和其他物品传播。而本次疫情中被感染的人既有学生,也有实验室的工作人员及其家人。   目前,美国相关部门正在展开联合调查,并对全美各地的微生物实验室进行整顿。   鼠伤寒沙门氏菌是引起急性肠胃炎的主要病原菌,患者染病后的症状主要包括头痛、恶心、腹痛、呕吐、腹泻和发热等。
  • 浙大邬建敏团队成果:糖尿病肾病的尿液多组学诊断
    糖尿病肾病(DKD)作为糖尿病的最常见的微血管并发症,对患者的健康构成了严重威胁,并已成为慢性肾脏疾病及终末期肾脏疾病的主要诱因。然而,仅根据临床信息进行DKD诊断存在高达49.2%的错误率。因此,开发有效的早期诊断方法对于预防糖尿病相关并发症至关重要。  研究表明,在微量蛋白尿出现之前,许多糖尿病患者可能已经经历了肾功能的早期下降。随着肽组学和代谢组学研究的深入,对DKD的病理机制有了更深入的理解,并发现了一些潜在的生物标志物,这些发现为早期诊断DKD提供了新的视角和方法。  浙江大学化学系分析化学研究所邬建敏团队,通过整合代谢组学和肽组学数据,成功构建了一个尿液多组学分析平台,显著提升了DKD早期诊断和病情判评估的准确性。进一步结合机器学习,研究团队构建了一个逐步预测模型。该模型在外部验证队列中展示出卓越的分类性能:健康对照组(HC)的准确率为89.9%、2型糖尿病(T2DM)为75.5%、早期DKD为69.6%、显性DKD为75.7%。此外,该模型还能以87.5%的准确率区分尿微量白蛋白浓度异常的T2DM患者。  基于肽组学和代谢组学的糖尿病肾病诊断研究2023年发表于国际著名期刊Theranostics[THERANOSTICS 2023 13(10):3188-3203.]  原文链接  https://www.thno.org/v13p3188  DKD诊断的三步预测模型
  • SPE应用文集005:尿液样品净化检测硝酸盐及亚硝酸盐
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。 《尿液样品净化检测硝酸盐及亚硝酸盐》(Clean-up of Urine samples before Determination of Nitrite and Nitrate) 应用领域:临床医疗 目标分析物:硝酸盐、亚硝酸盐 样品基质:尿液 萃取柱:BAKERBOND spe&trade C18, 100 mg, 1mL 安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱 小柱活化:加入2X1mL甲醇活化,2X1mL水平衡,保持过程中小柱始终处于润湿状态 上样与清洗:缓慢加入2X500uL尿液样品,以1mL/min的速度抽出,收集滤液,用2000uL流动相稀释 分析方法:离子交换色谱法 以上即为固相萃取步骤,相关产品信息如下: B7020-01 BAKERBOND spe&trade C18, 100 mg, 1mL B9093-03 甲醇, ' BAKER ANALYZED' ® HPLC B4218-03 水, ' BAKER ANALYZED' ® HPLC 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_175681.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 第三届国际拉曼前沿技术高端论坛在厦门召开
    仪器信息网讯 2015年5月6日,由HORIBA科学仪器事业部与厦门大学固体表面物理化学国家重点实验室共同主办的第三届国际拉曼前沿技术高端论坛(RamanFest)在厦门召开,共吸引了170余位拉曼领域的老师和学生参加。据悉HORIBA Scientific已经是第三次主办RamanFest了,第一届与法国里尔科技大学合作举办(2013年),第二届与哈佛大学共同举办(2014年)。 会议现场   本次会议为期三天,共开设三个主题:拉曼增强技术(SERS&TERS)的研究进展(5月6日),以及拉曼在材料科学(5月7日)和生命科学(5月8日)中的应用,共邀请了二十多位来自中国、美国、英国、法国、德国、日本、新加坡、韩国等国家的学者作精彩报告。   会议伊始,HORIBA Scientific中国区总经理(欧美产线)Dr.Ramdane BENFERHAT回顾历史,展望未来,从1922年拉曼散射理论的预言讲起,介绍了拉曼现象的发现、拉曼技术的发展,以及拉曼光谱仪器的演变历史,并指出了目前拉曼光谱面临的挑战。 HORIBA Scientific中国区总经理(欧美产线)Dr.Ramdane BENFERHAT 报告题目:Raman Spectroscopy History and Challenges   目前,拉曼增强的研究依然是拉曼研究的热点,在第一天的报告中,厦门大学的田中群院士、任斌教授、关西学院大学Yukihiro Ozaki教授、韩国化学研究所Yung Doug Suh博士、华东理工大学龙亿涛教授、吉林大学徐抒平教授、北京大学黄岩谊教授等分别介绍了在拉曼增强领域的研究进展。而且在海报展区我们也可以发现,30个展板中有一半以上都涉及到了拉曼增强的研究。 厦门大学 田中群院士 报告题目:What Will be the Next Big Fest of Raman Spectroscopy from Fundamental to Applications 厦门大学 任斌教授 报告题目:Tip-enhanced Raman spectroscopy for surface and interfaces 关西学院大学(Kwansei Gakuin University) Yukihiro Ozaki教授 报告题目:Tip-enhanced Raman scattering study of graphenes 韩国化学研究所(Korea Research Institute of Chemical Technology ,KRICT) Yung Doug Suh博士 报告题目:Nanogap-enhanced Raman scattering (NERS) controlled by DNA 华东理工大学 龙亿涛教授 报告题目:Monitoring chemical reaction on single nanoparticles using scattering microspectroscopy 吉林大学 徐抒平教授 报告题目:Angle-dependent spectroscopy for directional SERS emission 北京大学 黄岩谊教授 报告题目:Seeing the chemistry in live cells through stimulated Raman scattering microscopy   为了帮助年轻学者展示自己最新的研究成果,并与国内外知名学者做深入交流,本届会议专门设立了海报专场,并将在会议期间评选出三个“优秀海报奖”。 海报专场   此外,本次会议还专门设置了应用及技术展示区、3A用户俱乐部及售后服务咨询专区等,方便用户参观和咨询。 应用及技术展示区 3A用户俱乐部及售后服务咨询专区 Joy&Fun拍照分享活动 合影   虽然会议第一天的主题是SERS和TERS的技术进展,但是我们同时也发现,7个邀请报告中有5个都提到了生命科学方面的应用。与会的很多老师也提到,现在越来越多生命科学方面的研究希望通过拉曼的手段来表征,虽然这其中还存在一些问题,但是这是一个很明显的趋势。而且,本次会议也专门设立了生命科学的专场,并邀请了多位专家作相关报告,详细内容请见仪器信息网后续报道。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制