当前位置: 仪器信息网 > 行业主题 > >

腐霉利

仪器信息网腐霉利专题为您提供2024年最新腐霉利价格报价、厂家品牌的相关信息, 包括腐霉利参数、型号等,不管是国产,还是进口品牌的腐霉利您都可以在这里找到。 除此之外,仪器信息网还免费为您整合腐霉利相关的耗材配件、试剂标物,还有腐霉利相关的最新资讯、资料,以及腐霉利相关的解决方案。

腐霉利相关的论坛

  • 韭菜中腐霉利

    韭菜基质的腐霉利本底值高,导致检测韭菜中的腐霉利含量低,有什么方法可以解决吗

  • 腐霉利标准溶液

    最近再扩项做蔬菜,水果中的腐霉利,我们12月08日配制的100ug/mL的腐霉利丙酮液为无色,可是1ug/mL的腐霉利却变成了浅桔红色了,是不是腐霉利稀溶液不稳定啊??[img=,690,930]http://ng1.17img.cn/bbsfiles/images/2017/12/201712141608_01_2166779_3.jpg!w690x930.jpg[/img]

  • 20769检测腐霉利

    有板油问:20769检测腐霉利的时候,线性不好,可能会是什么原因??50微克以上每升就差了

  • 腐霉利特征离子对

    大家用GB 23200.113做腐霉利的时候选的特征离子是多少?用标准中的特征离子对,基质干扰很严重!没办法定性!求各位前辈解惑。

  • 【求助】哪位大侠做过腐霉利的检测??

    GB/T20769-2008标准名称: 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱-串联质谱法其中有一个项目是腐霉利( procymidone),是一种新型杀菌剂,属于低毒性杀菌剂。主要是抑制菌体内甘油三酯的合成,具有保护和治疗的双重作用。下面是它的别名,Sumilex,速克灵,杀霉利,二甲菌核利,速克灵、黑灰净、必克灵、消霉灵、扫霉特、棚丰、福烟、克霉宁、灰霉灭、灰霉星、胜得灵、天达腐霉利不知道是不是腐霉利在液质上的响应比较低的缘故,10ppm的标准品都做不出相应的离子!有没有版友有这方面的经验呀?请指导一下,多谢!!

  • 腐霉利的离子对是多少?

    腐霉利的离子对是多少?

    腐霉利的离子对与电压值是多少?用的是AB4500[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]。[img=,269,171]https://ng1.17img.cn/bbsfiles/images/2022/03/202203282253175073_9897_1645480_3.jpg!w269x171.jpg[/img]

  • 韭菜腐霉利超标限为什么那么低

    检测韭菜经常超标,好奇问下,为什么2763里韭菜腐霉利0.2就超标,其他蔬菜都是2或者5呢?是因为腐霉利在韭菜是灌根使用,其他是喷施吗?

  • 【原创大赛】韭菜的不合格项目腐霉利

    [b][size=20px]#01 韭菜腐霉利不合格原因分析[/size][/b][size=16px]? 腐霉利对韭菜灰霉病防治效果显著[/size][size=16px]腐霉利属于有机氯类农药,是一种杀菌剂,低毒,可抑制菌体内甘油三酯的合成,具有保护和治疗的双重作用;对灰霉病有显著的防治效果。灰霉病是韭菜的主要病害,及时应用化学农药施是目前生产中的主要措施。[/size][size=16px]? 腐霉利安全间隔期长[/size][size=16px]腐霉利的安全间隔期有14天和30天两种,韭菜的收茬周期大概在25天-35天左右,达到收割标准后必须及时收割,否则商品性状会很快下降。因此即使在生长季只使用1次,如果农户使用操作不当,都极易在韭菜上残留超标。[/size][size=16px]? 冬春季节灰霉病严重,施药次数增加[/size][size=16px]冬春季节气温低,湿度大,韭菜的灰霉病发生严重,一次施药难以控制,农户会增加用药次数,从而增加腐霉利超标风险。[/size][size=16px]? 韭菜灰霉病备选药剂少[/size][size=16px]防治韭菜灰霉病备选药剂少,目前只有腐霉利和嘧霉胺两个有效成分登记在韭菜上使用,农户没有其他备选药剂;腐霉利成本较低,且效果显著,因此成为农户首选。[/size][size=16px]? 韭菜为多年生植物,易富集[/size][size=16px]韭菜是多年生草本植物,考虑到商品品质,一般两年重新种植一次,这种生长特性,会增加腐霉利在同一块种植地的残留富集风险。[/size][b][size=20px]#02 如何避免腐霉利残留超标?[/size][/b][size=16px]生产者:[/size][size=16px]1. 降低湿度,控制灰霉病的危害。建议生产中采用二次放风,严格控制棚内湿度。阴天或雾霾天气,揭棚后半小时左右应打开风口5~10分钟,将棚内湿度排出,降低灰霉病发病几率,从而降低农药的使用率。[1][/size][size=16px]2. 生物防治,减少化学农药使用。研究发现,枯草芽孢杆菌[2]等生物防治菌株对灰霉病具有一定的抑制效果,可以尝试使用。[/size][size=16px]3. 制订方案,科学合理施药。及时做好用药记录,认真阅读农药使用标签,严格遵循推荐用量和频次,坚持执行农药安全间隔期,有条件的可在专业人士指导下用药。[/size][size=16px]消费者:[/size][size=16px]1. 从正规超市菜市场购买新鲜的韭菜。[/size][size=16px]2. 到家及时清洗,使用流水不断的冲洗,且蔬菜类应先洗再切。[/size][size=16px]3. 由于腐霉利残留一般集中在韭菜根部,清洗完成后可以把根部切掉。[3][/size][size=16px]监管部门:[/size][size=16px]1. 加快韭菜灰霉病药剂的登记。加强政策和项目等引导,鼓励并支持农药企业开展防治韭菜灰霉病的新药剂登记,尤其是作用机理偏新的高效低毒杀菌剂。[4][/size][size=16px]2. 通过宣传和监管等方式,提高生产者科学用药水平。不合理使用农药是造成韭菜食品安全问题的直接原因。因此,一方面建议相关部门加强对韭菜农药的监管力度;一方面,加强农药科学使用的技术培训、指导和宣传等,提高农户食品安全意识。[/size]资料来源:[1] 张尚卿. 韭菜腐霉利总超标合理用药是关键[N]. 农业科技报,2020-12-16(005).[2] 陈宇春,陈敏,王其刚,晏慧君,唐开学,邱显钦.植物灰霉病及抗性研究进展[J].江苏农业科学,2020,48(15):42-51+63.[3] 河北省市场监督管理局.看不见的危害:韭菜中的“腐霉利”残留.[4] 胡彬,李琳,戚如诗,孙海,王胤,郑建秋.从韭菜腐霉利残留超标看农药登记及最大残留限量标准的科学制定[J].中国蔬菜,2020(05):9-11.

  • 腐霉利的母离子与子离子是多少?

    这两天用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]AB4500做腐霉利,母离子与子离子分别是284、95、67,但出峰很小,不同浓度的响应值差不多,这样线性不好。

  • 异菌脲、腐霉利的离子对是多少?

    用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]AB4500检测异菌脲、腐霉利,它们的离子对是多少,DP、CE电压是多少?为何这两种农药的响应值不好?

  • 腐霉利的回收率很低,可能有哪些原因?

    腐霉利的回收率很低,可能有哪些原因?背景1:农业部的能力验证,腐霉利的回收率很低,只有47%,NY761方法,淋洗体系(9+1)。如果淋洗体系中丙酮不足10%,回收率是不是会低?背景2:自己实验室做添加回收,回收率在90多。

  • GB 23200.113腐霉利离子干扰大,无法定量

    在使用GB 23200.113的时候发现腐霉利在附录B,序号190,离子96(67.1)和96(53.1)分析实际样品的时候,有很大干扰,换了283的离子后没干扰,且峰形对称,锐利。附录B下方写了资料性附录,按GB/T 1.1-2020中9.6.1.2中写道:资料性附录给出有助于理解或使用文件的附加信息。我们在实际使用过程中是否能使用其他离子呢。查询药典后,药典中使用的也是283离子。

  • 有版友做过腐霉利吗?怎么找不到母离子峰?

    有版友做过腐霉利吗?怎么找不到母离子峰?上次工程师来帮着试着做一下,也是找不到工程师怀疑是不是标液的问题?标液是从标物中心买的,应该不会用问题吧!大家使用的什么标准品 呀?是固体的,还是液体的呀?做的效果怎么样?期待大家的信息!

  • 气质联用仪上检测的腐霉利数据偏高,是什么原因?

    [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]上检测的腐霉利数据偏高,是什么原因?用基质配标液比溶剂标响应高2.5倍,前处理方法用GB23200.113方法,最后一步不氮吹,乙腈直接上机,为何回收率很高。

  • 【原创大赛】能力验证:青菜、西红柿中毒死蜱、对硫磷、克百威、腐霉利的测定

    【原创大赛】能力验证:青菜、西红柿中毒死蜱、对硫磷、克百威、腐霉利的测定

    能力验证:青菜、西红柿中毒死蜱、对硫磷、克百威、腐霉利的测定 今年参加了中国检验检疫科学研究院组织的能力验证:蔬菜中毒死蜱、对硫磷、克百威、腐霉利的测定,下面讲下参加此次能力的经历与体会。我们的检测结果:[img=,690,44]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151612509140_6935_2166779_3.png!w690x44.jpg[/img][img=,690,24]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151613008516_7001_2166779_3.png!w690x24.jpg[/img][img=,690,41]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151652122496_6997_2166779_3.png!w690x41.jpg[/img][img=,690,24]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151652195303_1476_2166779_3.png!w690x24.jpg[/img]从这组数据可以看出我们的结果离中位值是非常接近的,能力验证的结果令人相当满意,一次性顺利通过。我们将这四个农药残留分成两组,用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]法(毒死蜱、对硫磷)与[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]法(克百威、腐霉利)分别检验。[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]法(毒死蜱、对硫磷)的测定方法及仪器条件:[img=,690,351]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151619289607_6661_2166779_3.png!w690x351.jpg[/img]标准曲线系列使用液配制及工作曲线:[img=,690,211]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151626131033_3915_2166779_3.png!w690x211.jpg[/img][img=,690,392]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151626236993_464_2166779_3.png!w690x392.jpg[/img][img=,690,323]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151626321520_8126_2166779_3.png!w690x323.jpg[/img]50ng/mL毒死蜱、对硫磷标液与试剂空白堆栈色谱图:[img=,690,474]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151629039822_9875_2166779_3.png!w690x474.jpg[/img]标液与样品的堆栈色谱图:[img=,690,456]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151634226583_8520_2166779_3.png!w690x456.jpg[/img][img=,690,127]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151635270939_2835_2166779_3.png!w690x127.jpg[/img]标液与样品加标(加入1000ng/mL毒死蜱、对硫磷混标1.25mL,相当于0.1mg/kg加标水平,与样品同时同样进行前处理:称取12.5克的试样,加入25.0mL乙腈,吸取5.0mL提取液处理定容至2.5mL,这里浓缩比为1,因此理论上机浓度为100ng/mL。[img=,690,477]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151647055906_1701_2166779_3.png!w690x477.jpg[/img][img=,690,115]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151647162417_4281_2166779_3.png!w690x115.jpg[/img]因此样品的测定结果:毒死蜱:0.100mg/kg、对硫磷:0.530mg/kg;加标回收率:毒死蜱:(194.2-100.1)*100%/100=94.1%,对硫磷:(154.5-53.0)*100%/100=101.5%[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]法(克百威、腐霉利)的测定:[img=,690,506]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151701460939_2835_2166779_3.png!w690x506.jpg[/img]SIM参数:克百威-1: 164:149:131=100:91.5:35.4;克百威-2: 164:149:131=100:60.1:24.1;腐霉利: 283:285:255=100:53.1:13.0工作曲线系列标液点的配制及工作曲线:[img=,690,242]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151709583853_6309_2166779_3.png!w690x242.jpg[/img][img=,690,462]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151717262679_3036_2166779_3.png!w690x462.jpg[/img][img=,690,470]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151717382189_3152_2166779_3.png!w690x470.jpg[/img][img=,690,480]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151717479531_9618_2166779_3.png!w690x480.jpg[/img]200ng/mL混标的TIC图:[img=,608,554]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151718391939_7088_2166779_3.png!w608x554.jpg[/img]样品测定结果TIC图:[img=,659,624]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151723085151_7389_2166779_3.png!w659x624.jpg[/img]样品加标(加入1000ng/mL克百威、腐霉利混标1.0mL,相当于0.1mg/kg加标水平,与样品同时同样进行前处理:称取10.0克的试样,加入40.0mL乙腈,吸取20.0mL提取液处理定容至5.0mL,这里浓缩比为1,因此理论上机浓度为100ng/mL)测定结果TIC图:[img=,680,625]https://ng1.17img.cn/bbsfiles/images/2018/09/201809151724037130_6186_2166779_3.png!w680x625.jpg[/img]因此样品的定量检测结果为:克百威(20.58+75.38)*2*5*0.001/10=0.096mg/kg;腐霉利:0.076mg/kg 加标回收率:克百威(37.44+164.38-96)*100%/100=106%;腐霉利(163.4-75)*100%/100=88.4%结论:1、能力验证的检测要等仪器稳定后(重复进样RSD小于10%)方可进考核样液; 2、前处理过程加标水平与理论上机浓度之间的关系是通过样品处理过程中所得的浓缩比进行换算的,为了简化计算,浓缩比最好为1、10等整数倍 3、考核样也不一定要用基质加标,因为这样会增加检测的难度,可以用溶剂直接配制拉标曲定量,同时做加标回收,如果加标回收率符合要求(80~120)%之间,说明此实验过程满意,检测结果也不用进行回收率的折算。以上是个人参加能力验证的心得体会。

  • 超高效液相色谱-串联质谱法测定韭菜中 腐霉利农药残留

    [align=center][size=29px]超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url][/size][size=29px]-[/size][size=29px]串联质谱[/size][size=29px]法测定韭菜中[/size][/align][align=center][size=29px]腐霉利农药残留[/size][/align][align=left][font='times new roman'][size=13px][color=#000000]1 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]立题[/color][/size][/font][font='times new roman'][size=13px][color=#000000]背景和[/color][/size][/font][font='times new roman'][size=13px][color=#000000]目的[/color][/size][/font][font='times new roman'][size=13px][color=#000000]意义[/color][/size][/font][/align] [font='times new roman'][size=13px][color=#000000]韭菜属于石蒜科葱属多年生宿根蔬菜,适应性强,抗寒耐热,在全国各地均有栽培[/color][/size][/font][font='times new roman'][size=13px][color=#000000],[/color][/size][/font][font='times new roman'][size=13px][color=#000000]基本上一年四季均有供应[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][1, 2][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000],韭菜既有很好的食用价值,又有很好的药用价值,深受广大消费者喜爱,是我国消费量较大的的一种蔬菜[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][3][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。然而通过分析国家食品安全风险评估结果发现,韭菜的农药残留合格率远低于蔬菜总体合格率,存在质量安全风险隐患[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][4, 5][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000],超标项目主要为腐霉利,韭菜中腐霉利残留超标成为公众日渐关注的主要问题[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][6, 7][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000],2018 年8月2日,山东省食品药品监督局公布五批次韭菜腐霉利超标,其中一批次超标338倍。同日,安徽省食品药品监督局也公布了三批次韭菜腐霉利超标,其中一批次超标13.55 倍。2019 年5月22日,河南省市场监管局发布了《关于 22 批次食品不合格情况的通告》,在 22 批次食品不合格中,7 批次韭菜腐霉利检出值超标[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][8][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。[/color][/size][/font][font='times new roman'][size=13px][color=#000000]韭菜中腐霉利超标频繁曝光,造成消费者产生[/color][/size][/font][font='times new roman'][size=13px][color=#000000]“[/color][/size][/font][font='times new roman'][size=13px][color=#000000]毒韭菜[/color][/size][/font][font='times new roman'][size=13px][color=#000000]”[/color][/size][/font][font='times new roman'][size=13px][color=#000000]的认识[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][1, 9][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。我国2021年9月3日起实施[/color][/size][/font][font='times new roman'][size=13px][color=#000000]的[/color][/size][/font][font='times new roman'][size=13px][color=#000000]《食品安全国家标准 食品中农药最大残留限量》(GB 2763-2021)规定,杀菌剂腐霉利在韭菜中的最大残留限量是0.2 mg/kg。2023年2月底,最新发布的《食品安全国家标准 食品中2[/color][/size][/font][font='times new roman'][size=13px][color=#000000],[/color][/size][/font][font='times new roman'][size=13px][color=#000000]4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1—2022)中,杀菌剂腐霉利在韭菜中的最大残留限量已调整为5 mg/kg。[/color][/size][/font] [font='times new roman'][size=13px][color=#000000]腐霉利(procymidone)又名杀霉利、速克灵,化学成分为 N-( 3,5-二氯苯基) -1,2-二甲基环丙烷-1,2-二羰基亚胺[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][3][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。主要通过抑制菌体内甘油三酯的合成,对葡萄孢属和核盘菌属真菌有特效,兼具保护和治疗双重作用,低毒、廉价、高效且具有广谱杀菌性[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][10][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000],可防治蔬菜、果树等植物的灰霉病、菌核病、黑星病等病害[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][11][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。而韭菜主要病害较多,有灰霉病、疫病、菌核病、软腐病等[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][11, 12][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000],其中灰霉病是韭菜的常见重要病害,发病后期常造成大量叶片溃烂、植株死亡,严重影响韭菜生[/color][/size][/font][font='times new roman'][size=13px][color=#000000]长[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][2][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。目前腐霉利仍是防治韭菜灰霉病的主要药物之一[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][6, 13][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。 然而农药不合理的[/color][/size][/font][font='times new roman'][size=13px][color=#000000]使[/color][/size][/font][font='times new roman'][size=13px][color=#000000]用会导致蔬菜农药残留量超标,从而对消费者健康带来危害。[/color][/size][/font] [font='times new roman'][size=13px][color=#000000]腐霉利毒性虽然较低,日常接触不会使人或者动物发生急性中毒以及皮肤、黏膜损伤,但腐霉利可以在蔬菜和土壤中蓄积,其大量使用以及环境残留所体现出对环境内分泌干扰活性[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][14][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000],在体内或体外都表现出抗雄激素特性,可以阻止雄激素与雄激素受体结合,进而抑制雄激素调控基因的表达,造成生殖器官的异常发育,如生殖器发育滞后、畸形或肿瘤等[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][15][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。长期暴露可能对人体生殖系统产生不良影响。美国环[/color][/size][/font][font='times new roman'][size=13px][color=#000000]境[/color][/size][/font][font='times new roman'][size=13px][color=#000000]保护署([/color][/size][/font][font='times new roman'][size=13px][color=#000000]Environmental Protection Agency[/color][/size][/font][font='times new roman'][size=13px][color=#000000],[/color][/size][/font][font='times new roman'][size=13px][color=#000000]EPA)认为腐霉利能引发人体雄激素依赖组织发生组织学变化,或对其他类似内分泌系统产生负面影响[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][8][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。[/color][/size][/font] [font='times new roman'][size=13px][color=#000000]目前,腐霉利检测方法常见的有[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法(GC)、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱法([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS)[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][16][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(LC)[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][17][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][18][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]等。其中 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 法具有灵敏、快速和准确等优点,但前处理多采用固相萃取方法,操作繁琐且需要大量的有机试剂。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法,目前文献报道较少,[/color][/size][/font][font='times new roman'][size=13px][color=#000000]《[/color][/size][/font][font='times new roman'][size=13px][color=#000000]食品污染物检测方法手册[/color][/size][/font][font='times new roman'][size=13px][color=#000000]》[/color][/size][/font][font='times new roman'][size=13px][color=#000000]植物性[/color][/size][/font][font='times new roman'][size=13px][color=#000000]样品中[/color][/size][/font][font='times new roman'][size=13px][color=#000000]农药多组分残留采用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法,方法处理简单,但该方法是同时测定植物性样品中19种农药残留,方法的设定要兼顾不同植物性样品的基质和19种农药的特性,处理方法和仪器条件对于韭菜中腐霉利并不是最优选择,而且韭菜是一种复杂基质,其中的蒜氨酸水解会产生一系列含有不同取代基的硫化物,对检测结果会产生较强干扰,在农残检测中属于分析难度较大的基质[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][16][/color][/size][/sup][/font][font='times new roman'][size=13px][color=#000000]。对于新鲜韭菜,常采用微波消解先消除巯基的干扰[/color][/size][/font][font='times new roman'][sup][size=13px][color=#000000][16, 17][/color][/size][/sup][/font][font='times newroman'][size=13px][color=#000000]。韭菜的腐霉利超标问题备受社会各界关注,严重影响了群众消费韭菜的信心,故急需建立针对韭菜中腐霉利的检测方法,开展韭菜中腐霉利的专项检测,本研究在[/color][/size][/font][font='times new roman'][size=13px][color=#000000]《[/color][/size][/font][font='times new roman'][size=13px][color=#000000]食品污染物检测方法手册[/color][/size][/font][font='times new roman'][size=13px][color=#000000]》[/color][/size][/font][font='times new roman'][size=13px][color=#000000]中[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法的基础上,针对韭菜特殊基质,优化了前处理条件,根据腐霉利在韭菜基质的干扰情况,优化了色谱和质谱条件,顺利建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定韭菜中腐霉利农药残留的检测方法,方法简单快速,灵敏准确,特异性强,应用该方法对[/color][/size][/font][font='times new roman'][size=13px][color=#000000]本市[/color][/size][/font][font='times new roman'][size=13px][color=#000000]售韭菜开展专项定量检测,初步掌握了我市韭菜中腐霉利农药的残留污染水平,运用农产品中农药残留最大限量[/color][/size][/font][font='times new roman'][size=13px][color=#000000]([/color][/size][/font][font='times new roman'][size=13px][color=#000000]MRL)评判其超标情况,为腐霉利的安全使用、监督、检测提供参考,为评估韭菜质量安全状况、指导农户在韭菜病虫害防治过程中科学使用农药及相关部门对农产品质量监管提供科学依据,[/color][/size][/font][font='times new roman'][size=13px][color=#000000]进一步[/color][/size][/font][font='times new roman'][size=13px][color=#000000]保障[/color][/size][/font][font='times new roman'][size=13px][color=#000000]了[/color][/size][/font][font='times new roman'][size=13px][color=#000000]消费者[/color][/size][/font][font='times new roman'][size=13px][color=#000000]的食品健康和安全[/color][/size][/font][font='times new roman'][size=13px][color=#000000]。[/color][/size][/font] [align=left][font='times new roman'][size=13px][color=#000000]2 材料与方法[/color][/size][/font][/align] [font='times new roman'][size=16px]2.1材料[/size][/font] [align=left][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px].1[/size][/font][font='times new roman'][size=16px].1[/size][/font][font='times new roman'][size=16px]样品[/size][/font][font='times new roman'][size=16px]来源[/size][/fon

  • 【分享】中国输韩蒜苔检测出腐霉利超标。(7楼)2015年10月29日

    日本产糯米检测出腐霉利超标。北見市のきたみらい農協で、もち米から基準値を超えるプロシミドン(PROCYMIDONE,用途:殺菌剤)0.03ppm(基準値:0.02ppm)が検出されていたことがわかった。同農協は全量を回収し、焼却処分するとしている。もち米に基準超す農薬 北見の農協2011年04月19日北見市のきたみらい農協(西川孝範組合長・組合戸数1300戸)で、昨秋に収穫したもち米の一部が食品衛生法が定める残留農薬基準値を超え、約130トンが「食用不適切米」として焼却処分されていたことが18日、わかった。農協から通報を受けた道農政事務所や道農政部が事態を重く見て1月と3月に立ち入り調査し、農薬散布の改善指導をしている。 同農協などによると、昨年11月にホクレンの自主検査で同市端野地区で栽培された「きたゆきもち」から残留農薬基準値(0・02ppm)を超える農薬の殺菌剤成分のプロシミドン(0・03ppm)が出たことが発端。同農協では12月、同地区で生産されたもち米(約560トン)を再検査し、約130トンについて基準値を超えていたことを確認し、焼却処分を決めた。 約15トンが本州のもち加工メーカーに出荷されたが、同農協では「全量を回収、消費者には一切出回っていない」という。 道農政部が農薬取締法に基づいて調査したところ、コメ生産農家(47戸)への生産履歴には当該農薬の使用例はなく、問題の殺菌剤は近隣のタマネギ畑で散布例があったが、不適正使用は認められなかった。 ただ、昨年は盛夏でもち米の収穫時期が平年より2週間早く、タマネギ防除時期と重なったため、「タマネギ用農薬が収穫直前の水田に飛散した可能性が否定できない」としている。 同農協によると、一連の被害見込み額は販売代金、回収費用、商品買い取り代、焼却処理費を含め4千万円台にのぼるという。 同農協の坂下一夫・専務は「8農協が2003年に合併し、現在の組織となったが、初の事態でコメ農家ばかりでなくタマネギ農家も大変なショックを受けている。農薬飛散防止により一層の取り組みをしようと、関係機関で協議している」と話している。

  • 傅若农:气-固色谱的魅力

    [b]编者注:[/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。  [url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#800080]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#800080]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#800080]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#800080]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url] [color=#0000ff] [b]一、 气-固色谱早于气-液色谱问世[/b][/color]  大多数人知道1952年Martin和Synge由于发明了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]而获得诺贝尔化学奖,但是,真正的第一台气-固色谱仪是Erika Cremer和她的学生在奥地利因斯布鲁克(Innsbruck)大学开发出来的。1944-1945年第二次世界大战正酣期间,Cremer和她的学生设计开发出第一台气-固色谱仪。在此期间有一段迷人的故事。  Erika Cremer(1900-1996)学的是物理化学,具有很好的吸附/解吸方面的研究背景。1940年,她进入奥地利因斯布鲁克大学参与了乙炔的氢化研究工作,她碰到的问题之一是测定混合物中的乙炔和乙烯的含量,她在开始时的试验是用选择性吸附方法进行测定,但是,她发现这两个化合物的吸附热的差别不足以使它们用经典的吸附方法得到分离,与此同时她很熟悉由Hesse写的液相色谱教科书(1943年出版),此书让她知道可以考虑使用吸附色谱的方法,用气体作流动相,利用吸附性差别来分离混合物。  Cremer经过研究和思考,总结了她的新思路并写成一篇短文,投送到Naturwissenschaften 杂志发表,该杂志于1944年11月29日收到她的论文,1945年2月杂志接受了她的论文, Cremer收到出版社的清样后立即校对返回。可是当出版社正准备以特刊付印时,出版社工厂在空袭中被炸毁,所以这篇论文葬身于废墟之中,一直未能发表,直到31年后的1976年才作为历史文件发表。  在第二次世界大战结束以后,奥地利因斯布鲁克大学的实验室大部分被毁了,但是Cremer的一个新来的研究生Fritz Prior,可以在他原来的中学(他原是这个中学的老师)进行试验,作为他的博士论文,Cremer决定进行在空袭中被炸毁论文中设想的气-固色谱仪器和方法,幸运的是她原来自己设计制作的热导池还在,她们组装的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]具备了现代[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的主要部件,氢气发生气做载气,有载气流量调节器,有一个进样系统,分离用色谱柱和一个热导检测器,这一方案现在还存放在德意志博物馆的波恩分馆中展出。  1947年春Prior的工作结束了,得到了正结果,这一仪器可以定量分离空气、乙炔、乙烯。下图是这篇论文的一张分离图。[align=center][img=,312,180]http://img1.17img.cn/17img/old/NewsImags/images/2014109101225.png[/img][/align][align=center][b]图 1 Prior 分离乙炔和乙烯的色谱[/b][/align][align=center]色谱柱:u型管,直径1 cm,填充硅胶20 cm 柱温 25 ℃.[/align][align=center]A= 空气, B= 乙烯, C= 乙炔[/align][align=center][img=,572,380]http://img1.17img.cn/17img/old/NewsImags/images/2014109101241.png[/img][/align][align=center][b]图 2 1959年Cremer在东德举行的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]报告会时和当代四位著名色谱学专家的合影[/b][/align][align=center](中间是Cremer)[/align][align=center](来源:L. S. Ettre,Chromatographia,2002,55:625)[/align]  [color=#0000ff][b]二、 早期的气-固色谱的固定相[/b][/color]  气-固色谱的出现早于气-液色谱,这也是因为在上世纪40-50年代有几位出色的物理化学家研究吸附剂的吸附理论,为气-固色谱奠定了理论和实际基础。  在上世纪后半页用于气-固色谱的吸附剂有硅胶、活性碳、氧化铝、分子筛、石墨化炭黑、碳分子筛、多孔聚合物等,这些吸附剂可以作填充柱的固定相,也可以填充或涂渍到玻璃、金属或弹性石英毛细管中。这些吸附剂的用途如表 1 所示。[align=center][b]表 1 吸附剂的应用领域[/b][/align][align=center][b][img=,491,183]http://img1.17img.cn/17img/old/NewsImags/images/2014109101314.bmp[/img][/b][/align]  [b]1、硅胶吸附剂[/b]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展早期,硅胶可以用作气-固色谱的固定相,也可以用作气-液色谱的载体,由于硅胶制作工艺、原料表面积及孔径的不同,其分离性能有很大的差别,为此厂家进行了标准化的分级,有不同品牌和规格的色谱用硅胶,下表是Rhone- Progil 公司生产的球型多孔硅胶,而Waters公司又把其中的 Porasil 进一步筛分成不同粒度的产品。[align=center][b]表 2 商品硅胶的型号和规格[/b][/align][align=center][b][img=,576,224]http://img1.17img.cn/17img/old/NewsImags/images/201410910145.bmp[/img][/b][/align]  我国当时的天津第二试剂厂也生产了DG-1,DG-2,DG-3和DG-4,其性能类似于Porasil A,Porasil B,Porasil C,Porasil D。例如Supelco公司和Sigma-Aldrich公司供应用于分析硫化合物的硅胶填充色谱柱:Chromosil 310和 Chromosil 330,有许多实际使用的报告。  硅胶吸附剂的填充柱使用者不多,但在分析硫化物的场合仍然有人在用,如上海大学的Hui Wang等使用Chromosil 310和 GDX 502(极性聚合物多孔小球)以吸附-解吸方是分析色谱方式分析氢气中 ppb 级 SO2. (Intern.J. hydrogen energy,2010,35:2994-2996)。  德国的 Martin Steinbacher等也是使用Chromosil 310 柱(152cm x 3.2mm id )分析土壤和大气中的微量的硫化羰和二氧化硫(Atmospheric Environment, 2004,38:6043-6052)。  英国的 Evelyn E. Newby 利用 Chromosil 330 柱(244cm x 3.2mm id )在60℃分析口腔气体中的硫化氢和甲基硫醇等气体,评价牙膏消除口臭的作用(Archives of oral biology 53,2008, Suppl. 1 :S19-S25)。  美国的Julie K. Furne等利用Chromosil 330 柱(244cm x 3.2mm id )分析排泄物中的硫化氢。(J. Chromatogr.B, 2001,754:253-258)。  英国的M. Steinke 等使用Chromosil 330 柱(183cm x 3.2mm id )的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定二甲基硫化物评价硫代甜菜碱裂解酶的活性。(J. Sea Research,2000, 43:233-244)。 [b] 2、 氧化铝吸附剂[/b]  氧化铝有5种晶形,在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]里多用g型,它有很好的热稳定性和机械强度,其含水量不同吸附性就有很大的差异,所以在使用前要进行适当的活化处理。上世纪80年代已故色谱学者鞠云甫对氧化铝吸附剂做过深入研究,他得到如下的结论:  (1) 可用改变热处理温度的方法来控制g-氧化铝微球的比表面, 氧化铝微球在350 ℃ 发生相转变, 至420℃ 完全转变为g氧化铝。  (2) g-氧化铝微球表面的酸, 主要是路易斯酸可用涂渍固定液改性的方法予以降低。改性后的 g-氧化铝微球表面酸度低于国外氧化铝表面酸度, 这种改性减弱了固定相的极性。  (3)热处理温度对要分离组分的保留值有重大影响,如用0.3% 阿皮松-L 对经过500℃ 灼烧4小时得到的g-氧化铝微球改性而制得的固定相, 在85 ℃ 柱温下能够全分离C1-C 4的烃类15个组分。(鞠云甫等,燃料化学学报,1983,12(1):69-76)  但是后来的研究表明,人们用碱金属卤化物让氧化铝改性,也可以得到很好的效果。英国的 A. Braithwaitel等研究了用碱金属卤化物处理氧化铝的表面,得到以下的结论:  (1) 未改性氧化铝表面有路易斯酸活化点,可以与不饱和烃的p电子产生作用,比饱和烃的保留时间增加,同时不饱和烃的色谱峰会产生拖尾,用碱金属卤化物改性氧化铝表面会消除拖尾,但是也会影响饱和烃和不饱和烃的分离保留因子。  (2) 氧化铝的改性必须要减少路易斯酸活化点,以便形成更为均一的表面性能,假定氧化铝表面的改性过程是碱金属阳离子和阴离子的共同作用,那么改性剂的阴离子就有选择性封闭大部分路易斯酸活化点的作用,这些活化点就不能再和被分析物作用,但不是所有的卤化物阴离子都有这一作用。改性剂的阳离子也会影响氧化铝的吸附作用,主要是卤化物的阳离子随其阳离子体积的减小,使烯烃/烷烃的分离度增加。其原因显然是表面上的极性或者是表面上阳离子的电荷密度增加所致,或者是两种原因的结合所致。  (3) 假定阳离子对氧化铝表面的改性是由于它降低了吸附剂的吸附特性,从而降低了吸附物质和吸附剂的作用力,被改型吸附剂的活性就可以用改性剂的量来控制,但是只要很少量的改性剂就可以使色谱峰的拖尾消除,得到对称的色谱峰。改性剂浓度超过一个临界值盐就会析出来,就起不到封闭活化点的作用,改性剂的浓度在2-4%之间。(Chromatographia,1996,42(1/2):77-82)  [b]3、分子筛吸附剂[/b]  1925年人们发现了天然泡沸石(如菱沸石)对水、甲醇、乙醇等蒸气有很强的吸附作用,而对丙酮、醚和苯等蒸气则不予吸附,这种泡沸石就是天然的分子筛。后来人们模仿天然泡沸石的生成条件,并不断改进合成工艺,合成了多种类型的人造分子筛。所以叫做分子筛,是因为泡沸石具有象笼子一样的结晶结构,笼子的孔穴大小一致,而且正好是与分子的尺寸大小相当,分子尺寸比泡沸石孔穴尺寸小的就容易吸附,相反就不吸附。  分子筛具有几何选择性:分子筛的结晶结构有一定的尺寸,不同类型的分子筛具有不同的尺寸,表 中的数据。因而分子筛的选择性和所用分子筛类型及被分离化合物的临界尺寸有关。所谓临界尺寸是指垂直于其长度的最大横截面的直径,一些化合物的临界尺寸见表3。[align=center][b]表3 气固色谱用分子筛的几何尺寸[/b][/align][align=center][b][img=,361,112]http://img1.17img.cn/17img/old/NewsImags/images/2014109101344.bmp[/img][/b][/align]  分子筛对极性分子和极化率大的分子作用力强,对极性分子和不饱和烃分子有较大的亲和力,如在4A 分子筛上吸附下列气体的能力依次加大:  O2 N2 CH4 CO C2H6 C2H4 CO2 C2H2  分子筛对有可成氢键的化合物有很强的作用力 如分子筛对水、CO2、NO2有不可逆吸附的作用。  分子筛具有一些其他吸附剂所没有的特点,如:即使在低浓度下对被吸附物质也有较高的吸附容量。在高温下对被吸附物质也有较高的吸附容量。在高流速下对被吸附物质也有较高的吸附能力。  使用分子筛应注意的问题:使用分子筛之前一定要活化,一般是在真空下于300~400℃干燥 3h 。或在550℃干燥2h。分子筛的型号不同,其分离性能也有很大的差异。分子筛对一些活性气体有不可逆吸附的特点,如H2O、CO2、NO2、H2S、SO2、Cl2、HCl等在分子筛上是可逆吸附。  分子筛在气固色谱中的应用:主要用于O2、N2 、CO、CH4等永久气体的分离,由于碳多孔小球的出现,分子筛的作用有一定程度的下降。  但是近年来由于介孔分子筛的出现,把分子筛的孔径提高到30nm,为分子筛的应用扩大了范围。1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,在催化分离等方面有广阔的应用前景。但是由于 MCM-41 有孔径较小、孔壁较薄、水热稳定性及化学稳定性较差等缺点,使其应用受到很大的限制。1998年在美国加州大学圣芭芭拉分校作博士后研究的赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15(SBA 是Santa Barbara Amorphous的字头),其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保和经济发展的需求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。下图是SBA-15不同孔径的结构图(文献来源:赵东元等. Science ,1998,279:548 宗蒙,黄英,赵阳,材料导报A:综述篇,2012,26(9):54-59)[align=center][img=,380,577]http://img1.17img.cn/17img/old/NewsImags/images/2014109101441.png[/img][/align][align=center][b]图3 SBA-15投射电镜图[/b][/align][align=center](A) 6nm, (B)8.9nm (C) 20nm, (D) 26nm[/align][align=center]  平均孔径数据来自BET和X-射线衍射结果.[/align]  国内一些单位把SBA-15介孔分子筛作为气-固色谱固定相,如中科院煤炭化学研究所的赵燕玲等研究了SBA-15介孔分子筛作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相对含有甲烷、乙烷、乙烯、丙烷和丙烯的气态烃类混合物和正己烷/l-己烯、正庚烷/l-庚烯、正辛烷/1-辛烯 3 种液态烃类混合物的色谱分离性能 并与硅胶作为色谱固定相分离3 种液态烃类混合物的情况进行了比较。与常规色谱填料硅胶相比,SBA-15介孔分子筛更适合作为烯烃/烷烃分离的色谱固定相。(赵燕玲等,石油化工,2010,39(10):1110-1114)[b]  4、高分子多孔小球(GDX)[/b]  高分子多孔小球是1966年 Hollis 用苯乙烯和二乙烯基苯进行共聚而得到的,他对这类聚合物的色谱分离性能进行了详细的研究,把它们叫做Porapak。他所研究 Porapak Q 是一种色谱分离性能十分优秀的气-固色谱固定相。不久出现了各种品牌的高分子多孔小球固定相。我国在60年代末中科院化学所也研究出这类高分子多孔小球固定相,把它们命名为GDX(Gaofenzi Duokong Xiaoqiu),是高分子多孔小球汉语拼音的字头。后来天津化学试剂二厂生产了GDX 101、GDX 102、GDX 103、GDX 104、GDX 105、GDX 201、GDX 301、GDX 501等牌号,上海化学试剂厂生产了叫做“401.....404有机载体”的高分子多孔小球。  [b](1) GDX的特点[/b]  a、GDX的疏水性很强,水峰可以在乙烷后洗脱出,为有机物中微量水的测定提供了一种优良的色谱固定相。  b、GDX是球形,大小均匀,有利于色谱柱的填充,提高了柱效。  c、改变聚合工艺条件,可改变GDX的极性和孔径,制出各种性能的的高分子多孔小球来。  [b](2) GDX的制备[/b]   GDX是用二乙烯基苯和苯乙烯在水中进行悬浮聚合而得。即把要聚合的单体分散在水中,在引发剂的作用下进行共聚,由于在原料中加入一定量的溶剂作稀释剂,在聚合过程中稀释剂不起反应,但它会在小球中占据一定空间,待聚合后把稀释剂赶出来,在高分子多孔小球中就形成了很多小孔。GDX的结构如图4。[align=center][img=,225,166]http://img1.17img.cn/17img/old/NewsImags/images/201410910155.png[/img][/align][align=center][b]图 4 GDX的结构[/b][/align]  [b](3) GDX的性质[/b]  GDX是白色或微黄色的圆球,比表面从几十到几百 m2/g,表观密度为0.1~0.5 g/mL,一般可耐高温250~270℃。国内外高分子多孔小球的性能见分析化学手册第5分册-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。  [b](4) GDX的应用[/b]  有机物中微量水的测定:如顺丁橡胶的合成中要求单体丁二烯含水量在3×10-5 g/mL以下,用100 cm × 0.4cm i.d.GDX-105色谱柱,在120℃柱温下,载气流速 33mL/min,可很好地进行测定。有机溶剂和氯化氢中的微量水分可用GDX-104柱测定。  半水煤气成分的测定:用GDX-104(3.7m)和分子筛(3.0m)的串联柱,通过阀切换在GDX-104柱上分离CH4、CO、CO2。在分子筛柱上分离O2和N2。可避免CO2通过分子筛柱。  自从Hollis 开发出高分子多孔小球之后有很多近一步的研究,但是没有更多的突破,只是在扩大了应用方面有不少研究工作。  [b]5、碳吸附剂  (1)活性碳[/b]  早期除去硅胶以外活性碳是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]使用最早的固定相,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,色谱性能不能令人满意,就把它改性,以适应色谱分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最最重要的是原料的选择和预处理。活性碳的基本性质决定于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质,主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,一直到没有所担心的过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂,制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。由于活性碳表面具有很大的化学和几何不均一性,特别是工业用活性碳尤为严重,即使是低沸点气体和轻烃,也会产生很厉害的拖尾。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展早期活性碳只用于分析稳定的气体特别是惰性气体和轻烃。上世纪 50年代初捷克的 Janak 和 60年代初波兰的 Zielinski 在使用活性碳作固定相分析气体混合物方面做了很多工作。此后由于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展和活性碳研究的深入,人们就对活性碳的表面进行改性,包括用化学方法除去活性碳中的灰分(除去无机杂质),在无氧气氛中进行高温处理除去活性碳表面结合的氧,用催化活化及高温碳沉积的方法对多孔结构进行改性。用活性碳填充的色谱柱出现拖尾不仅是由于活性碳上的微孔和孔径的不均一所造成毛细管凝聚,更重要的也还由于混合物中的一些成分在各种非碳物质上的强烈吸附所致,这些附加的物质有两类,在活性碳孔中的无机物,他们在表面上没有键合,部分灰分和杂原子(常常是氧和氢、硫、氮、卤素等),这些杂原子与碳骨架进行了化学结合。而且这些附加物会使进行色谱分离的物质产生可逆吸附。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用中,活性碳的改性是把活性碳在150-200 ℃下处理几个小时,并在0.1 mm Hg真空下除去水分,这样不会影响吸附剂的表面性能。之后就出现了石墨化炭黑和碳分子筛。 [b] (2)石墨化碳黑[/b]  为了克服活性碳的缺点,国内外早期进行了许多研究,就把碳黑在真空中或在还原性气氛中进行高温处理,如加热到3000℃,结果在碳表面上形成石墨状的晶形。这样处理之后,表面均匀、活化点也大为减少了。比表面由几百 m2/g 下降到 低于 30 m2/g 。所以大大改善了色谱峰形。提高了分析的再现性。据原苏联基先列夫的研究,认为在石墨化碳黑的表面上没有官能团,没有π键,所以它的吸附性主要靠色散力起作用,因而石墨化碳黑的极性比角鲨烷还小。  为了适应各种样品的分离,可对它进行各种表面处理,如:  ① 涂渍少量固定液消除残存的少量活化点。  ② 分离酸性化合物时可用磷酸处理石墨化碳黑。  ③ 分离碱性化合物时可用有机碱处理石墨化碳黑。  ④ 在100℃下用氢气处理石墨化碳黑可除去表面的氧,适于还原性物质的分离。[b]  (3) 碳分子筛 (碳多孔小球)[/b]  1968年 Kaiser 制备出一种碳吸附剂叫“碳分子筛”,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。  我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(TDX), 具体的牌号有 TDX-01 TDX-02。它们的堆积密度为 0.6 g/mL,比表面为 800 m2/g,碳多孔小球具有下面一些特点:  ① 非极性很强,表面活化点少,疏水性强,可使水峰在甲烷前或后洗脱出。  柱效高,1 m 色谱柱可有 1200~1500 理论塔板数。  ③ 耐腐蚀、耐辐射。  ④ 寿命长。  碳多孔小球用于一些永久气体的分析:TDX 可用于 H2、N2,、O2、CO、O2 、CH4、C2H2、C2H4、C2H6、以及C3的烃类和SO2等气体的分析。碳多孔小球即使在50℃的柱温下对N2,和O2也有一定的分离能力。TDX可很好地用于氮肥厂的半水煤气分析在半水煤气中含有N2, O2,CO, CO2和CH4,用TDX-1柱可把这些气体分开。TDX 可用于金属热处理气氛的分析在金属热处理中为了控制渗碳或渗氮的量,要分析热处理炉子里的气氛,所含组分类似于半水煤气,可用TDX-1柱进行分析。由于碳多孔小球的非极性很突出,极性化合物在这一固定相上的保留时间很短,同时由于它的表面上活化点很少,一些氢键型化合物可得到对称色谱峰。所以它适于分析这类化合物。碳多孔小球的表面类似于石墨化碳黑,对水的保留作用极差,但对烃类有较强的保留作用,因此可用碳多孔小球分析低碳烃中的水分。[b] [color=#0000ff] 三、 近年出现的气-固色谱固定相[/color]  1、碳纳米材料[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  自从1991年日本学者饭岛澄男(Sumio Iijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域,在2004年又出现了另外一种有趣的碳物质——石墨烯,G),CNTs和G是碳的两种同素异形体,他们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图5所示。[align=center][img=,624,530]http://img1.17img.cn/17img/old/NewsImags/images/2014109101521.png[/img][/align][align=center][b]图 5 石墨碳家族的各种形态[/b][/align][align=center](Angew. Chem. Int. Ed. 2009, 48:7752-7777)[/align]  由于CNTs具有表面积大、活化点多、p-p键作用力强等特殊性能,适合于在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相中应用,而且它的纳米级多孔性能有利于减小传质阻力,可得到对称的色谱峰,目前它的应用主要限于标准的混合物,如烷烃、芳香族化合物、醇类、酯类、酮类。  厦门大学的袁东星早在2002年就是用比较纯净的碳纳米管做成填充柱进行研究,并与活性  炭、石墨化碳黑(Carbopack B)柱进行比较,比较它们分离醇、酮、醚、酯、有机酸类的性能。2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相。同年国内袁黎明研究组把单壁CNTs和离子液体组成混合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,制备成毛细管色谱柱,CNTs可以改善离子液体的分离性能。此后有两年停滞,从2008年又有一些研究报告出现。到近5年CNTs作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究又多起来,下表4列出2008年至今发表的一些有关CNTs作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究的工作。[align=center][b]表4 2008年后有关CNTs作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究的工作[/b][/align][align=center][b][img=,601,591]http://img1.17img.cn/17img/old/NewsImags/images/2014109101551.bmp[/img][/b][/align][align=center][b][img=,600,148]http://img1.17img.cn/17img/old/NewsImags/images/201410910167.bmp[/img][/b][/align][align=center][b][img=,600,442]http://img1.17img.cn/17img/old/NewsImags/images/2014109101618.bmp[/img][/b][/align]  [b]2、金属有机框架化合物作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,MOFs在分析化学中有多种应用,也是极好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相。  由于MOFs不容易涂渍在毛细管壁上。南开大学严秀平研究组用动态法把纳米级MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,使最难分离的二甲苯三个位置异构体得到十分漂亮的基线分离,并用于多种混合物的分离上。[align=center][img=,304,232]http://img1.17img.cn/17img/old/NewsImags/images/2014109101636.png[/img][/align][align=center][b]图 6 二甲苯三个位置异构体的分离图[/b][/align]  近几年国内严秀平研究组和云南师范大学的袁黎明研究组对MOFs作色谱固定相做了许多十分出色的工作,限于篇幅有机会再讨论。  另外固体固定相当今主要用于制备PLOT(多孔层开管柱,这一课题下次再讨论。  在结束此文之际,看到已故蒋生祥先生和郭勇博士团队今年发表的一篇有关碳基吸附剂-碳纳米管的综述(J Chromatogr A, 2014,1357:53-67)(但是此文只涉及碳纳米管作固相萃取和固相微萃取的论述,没有设计碳基吸附剂作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的综述)。同时看到瞿其署先生团队在2014年发表的有关石墨烯的制备、性能及在分析化学中应用的综述论文(J Chromatogr A,2014,1362:1-15 ),有兴趣者可直接阅读。 [color=#0000ff][b] 小结[/b][/color]  气-固色谱虽然它的应用广泛性远不如气-液色谱,但它还是一个很有用的方法,有它突出的魅力,是气-液色谱不能代替的技术。使用上述几种吸附剂制备的填充柱或PLOT柱,对低沸点混合物的分离具有独到的作用。不过,近年出现的多种纳米材料可作气-固色谱固定相,虽然它们具有独特的优点,但是还有待进行更深入的工作,形成商品柱,才能发挥其作用。目前实际应用的还是常规的气-固色谱固定相。下一讲,我将介绍PLOT柱的诱惑力。([color=#0000ff]未完待续[/color])[align=right]  (作者:北京理工大学傅若农教授)[/align]

  • 光学玻璃防霉的问题

    光学玻璃防霉的问题

    光学玻璃防霉技术有新进展现有的光学玻璃防霉液效果很一般,有的防霉产品会腐蚀原有的光学镀膜,持续时间也不理想现在有一种自组装单分子膜技术,在光学玻璃的表面利用特定的化学键,让特定结构的分子按照一定的头尾一致的排列规则,以化学键的方式连接到玻璃上去,形成一层防水,抗菌,防霉,耐溶剂,耐摩擦,耐腐蚀,耐洗涤的单分子防霉菌镀膜层。膜层的厚度可以控制在十几个纳米之间,不影响光线的通过,它和玻璃表层分子发生化学键接,使光学玻璃表面具有永久性的防霉菌特性,同时还可以增加玻璃表面的机械强度。镀膜层外侧的分子团,对单细胞生物具有杀伤作用,霉菌、细菌、藻类等单细胞生物无法在这层镀膜层上顺利繁殖。   经过试验验证,由于镀膜层的分子排列结构十分特殊,膜层对霉菌有很强的抑制作用,能有效的抑制、杀死微生物;同时镀膜层完全封闭了光学玻璃表面的硅羟基活性基团,外界的水汽不再吸附在玻璃表面,进而侵蚀玻璃,避免玻璃表层出现碱金属盐的析出,避免玻璃表层形成氧化硅水合胶体疏松结构,防止出现干雾现象。由于采用的特殊的分子结构形成特殊的排列方式,对光学玻璃以及镜片的氟化镁增透膜起到了生物和物理双重保护,既能杀死抑制微生物产生的霉变,也能防止由于水汽引起的反碱而产生的干雾,是一种性能极为先进的防霉、防雾化学镀膜技术。http://ng1.17img.cn/bbsfiles/images/2017/03/201703241450_01_2704993_3.gif经过客户的测试,防霉效果在光学玻璃常规存储条件下,可达到4、5、6、7四个月100天以上不长霉。这一产品是汉雄科技专门针对军工特殊需求客户开发,以解决现有防霉镀膜产品时效短、腐蚀底层镀膜、不耐溶剂擦拭等缺点。http://ng1.17img.cn/bbsfiles/images/2013/03/201303291359_432853_2704993_3.jpg马上霉雨天气就要到了,如何渡过夏季的这4个月,是考验防霉性能的时候到了特别说明:这款防霉液是无毒的,主要溶剂成分是乙醇、异丙醇,不含有重金属离子,不含苯酚,不含有机砷,不含有机锡,不含有机汞。本产品在研发之初就严格考虑到了毒性问题,由于这个防霉液我们自己也要自用,不会毒害自己人的^_^重金属离子毒杀的原理是,金属离子和蛋白质上的巯基结合,使蛋白质变性,HK-2防霉液的防霉抗菌原理完全不是这样的,它是采用触杀方式,抗菌分子的分子链的亲油长链会自动插入细菌含有磷脂的细胞膜内,造成代谢障碍,导致细胞死亡。单细胞的微生物难逃这样的触杀环境,无法在这样的微观环境中繁殖。

  • 喝上一口“玫瑰的礼服”

    喝上一口“玫瑰的礼服”,那丝滑的口感如同恋人间的温柔拥抱,让你陶醉在这美好的感觉中。随着嘴唇的轻轻触碰,那A6986玫瑰的香甜的味道在舌尖上跳![img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407031703272920_2081_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407031703278213_4053_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407031703278194_4792_1642069_3.png[/img]

  • 霉豆腐,有些地方叫腐乳的,有因为霉菌产生的毒素么?

    我对微生物这块不了解,特来请教。喜欢吃霉豆腐。今年3月底自己动手做了不少。考虑到是利用霉菌,就在香肠上扫了些霉菌到豆腐上。现在的状况是做成功了,也蛮好吃。但不知这样霉菌会不会有毒呀?如果会致癌就太恐怖了。请高手赐教。谢谢。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制