当前位置: 仪器信息网 > 行业主题 > >

氟离子

仪器信息网氟离子专题为您提供2024年最新氟离子价格报价、厂家品牌的相关信息, 包括氟离子参数、型号等,不管是国产,还是进口品牌的氟离子您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟离子相关的耗材配件、试剂标物,还有氟离子相关的最新资讯、资料,以及氟离子相关的解决方案。

氟离子相关的资讯

  • 全彩屏负氧离子监测站-负氧离子在环境中有多少
    全彩屏负氧离子监测站-负氧离子在环境中有多少#2022已更新كمعددالأيوناتالسالبةفيالبيئةقدتمتحديثها【品牌型号:天合环境TH-FZ5】因为空气中绝大部分的有害物质都携带正离子,负离子与正离子中和后使空气中的正离子和氧气产生能量转移,导致有害物质无氧结合形成落尘效应,从而达到漂浮在空气中的都是负氧离子。因此,高浓度负离子具有消烟、除尘、杀菌、中和高压静电、预防辐射、净化空气的功能。要想知道环境中有多少负氧离子,全彩屏负氧离子监测站是不错的选择。一、产品简介高智能一体化负氧离子监测站可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素。传感器一体化设计,无机械位移,精度高、使用寿命长现场可通过全彩液晶屏读取数据,亦可远程云平台/WEB/微信公众号实时查看数据现场用户可自定义添加歌曲,亦可超标语音播报二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°)分辨率1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃)分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH)分辨率0.1%RH;5、大气压力:测量原理压阻式,300-1100hpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m37、PM10:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m38、噪声:测量原理电容式,30-120dB(±1.5dB)分辨率0.1db9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)分辨率1个/m310、氧含量:测量原理电化学,0~100%uol(±3%uol)分辨率0.1%11、屏幕:分辨率1920(RGB)×1080(FHD),工作频率120Hz,亮度1500-2500 cd/m212、立杆:碳钢双立柱,可耐受15级强台风13、工作环境:温度-20℃-55℃,湿度0%-100%14、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证15、生产企业具有知识产权管理体系认证证书、计算机软件注册证书17、数据存储:可存储一年的原始监测数据18、数据传输:4G/光纤19、供电方式:220V市电20、功耗:500w四、产品特点1、整机采用高集成模组化设计,标准化电器设计,工作状态一目了然,可实现快速维护2、防水:主体结构采用2-3mm碳钢,配合复合密封胶条,实现多角度防水3、防尘:设备底部配备过滤装置,可过滤5μm以上尘埃粒子,同时过滤棉可从外部快速更换,无需专业人员操作4、防雷、防漏电:内有防雷装置及漏电保护器,保护机器及周围人身安全5、采用高透、耐高温高强度钢化玻璃,防火、防划、防爆6、喇叭:户外大功率防水扬声器,双声道设计,声音清晰立体7、内置感光探头,可有效识别光照变化,自动调节屏幕亮度8、显示屏采用LED背光源,寿命达到50000小时,环保节能动态对比度高,显示画面更清晰9、散热系统采用工业级涡流离心风扇,风量大、转速高、噪声小,内置感温探头传感设备,有效识别内部温度变化,同时可根据现场环境调节响应温度及响应速度,实现低能耗精确控温10、内置时控开关,可设置预定开启和关闭时间11、全彩显示界面,设备开机自动进入气象监测平台(显示画面支持有限定制)12、可选配摄像头,显示界面可同步摄像头画面13、一体化传感器,传感器一体化集成,安装方便,维护简单五、云平台介绍1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本12、支持同步本地天气预报
  • 智检含氟牙膏,守护口腔健康—奥豪斯ST5000i台式离子计在牙膏氟离子检测的应用
    氟是人类必需的14种微量元素之一,人体中的氟主要存在于骨骼、牙齿和软组织中。市面上大多数牙膏都含氟化物,《中国居民口腔健康指南》认为使用含氟牙膏刷牙是安全、有效的防龋措施,提倡使用含氟牙膏预防龋病,尤其适合有患龋倾向的儿童和老年人使用。但如果氟过量,危害也不小,轻者导致满嘴发黄、发花的氟斑牙,重者就是氟骨症,让患者关节疼痛、运动困难,失去劳动能力。市面上含氟牙膏中的氟主要以氟化亚锡、单氟磷酸钠或氟化钠形式存在。我国牙膏执行标准GB 8372-2008中标出:成人牙膏氟含量在0.05%—0.15%之间,儿童牙膏氟含量在0.05%—0.11%之间。目前牙膏生产厂家常用的测定方法有气相色谱法、离子色谱法、分光光度法,滴定法和氟离子选择性电极法等。氟离子选择性电极法是一种省时、环保又经济的测试方法。离子计通过测量由溶液、离子选择电极与参比电极构成的电池电动势,从而得到溶液中离子浓度。本次奥豪斯工程师选取市场上常见的六款牙膏:两面针、花王、云南白药、狮王、高露洁、中华牙膏进行含氟量测试。通过配制含有ISA溶液的浓度分别为1 mg/L、2 mg/L、3 mg/L、4 mg/L、5 mg/L的氟离子标准溶液,将复合氟离子选择性电极依次插入到上述标准溶液中,得出对应的电位mV和浓度值。选择奥豪斯ST5000i台式离子计,无需复杂公式换算即可直读浓度(例如pX,mol/L,mg/L等)经过几分钟的测试后,结果如下:通过上述测试数据可以看出这几款牙膏的氟含量都低于0.15%国标文件中限定值。而选择电极法准确度较高,作为牙膏氟含量的测量方法,操作简单、快捷、可靠。ST5000i台式离子计优点-设置便捷,功能强大数据存储量大,可储存多达1000条测试数据,多种校准与测试模式,校准提醒,多种终点判定模式,GLP测量功能等。-显示清晰,操作直观4.3寸超大彩色液晶屏,触摸操作即可进行测量和校准。-坚固耐用,创新设计IP54等级防水防尘仪表,标配透明保护罩可适用于严苛实验环境,创新独立电极支架可360°无死角轻松旋转,RS232接口打印输出和USB接口可轻松导出数据。友好的操作界面,大屏幕显示奥豪斯最新推出的ST5000i台式离子计集简单、快速、准确于一体,无需化学分离即可检测不同离子含量,是您智测的好帮手。欲了解更多产品信息,请与我们联系!
  • 水相中氟离子的快速检测成功实现
    近年来,离子识别作为仿生学中重要的分支领域受到了化学研究者的极大关注。光化学传感器由于具有高灵敏度、可实时检测等优势,在分子识别和传感器的应用方面得到蓬勃发展。   在科技部、国家自然科学基金委和中国科学院的共同支持下,化学研究所光化学院重点实验室的课题组多年来致力于对离子识别方法学的研究,曾提出了离子置换方法,利用荧光的开关过程实现了双离子的检测(Inorg. Chem., 2006, 45 (8), 3140)。近年来,随着课题组对一系列激发态分子内质子转移化合物(ESIPT)的设计合成及对其性质的深入研究(J. Phys. Chem., B, 2004,108(30), 10887,J. Phys. Chem. A,2007, 111 (46), 11793 J. Phys. Chem. B,2007, 111 (21), 5861),该类化合物由于其特殊的聚集荧光增强效应在白光发光二极管研究、能量传递及离子传感器方面得到应用(J. Phys. Chem. C,2009, 113 (9), 3862 J. Phys. Chem. A,2009, 113 (20), 5888)。最近,研究人员以修饰的ESIPT化合物为母体制备的纳米颗粒,成功实现了在水溶液中对氟离子的快速专一识别,该工作发表在Angew. Chem. Int. Ed. 2010, 49, 4915-4918上。   在以前的研究工作中,对氟离子的检测往往很难在水溶液中实现,并且由于检测过程受到其它多种阴离子的干扰,专一性受到限制。研究人员在以往工作的基础上,将具有聚集荧光增强作用的质子转移化合物BTHPB进行硅烷基化,并将产物制备成纳米颗粒分散在含有CTAB的水溶液中作为检测试剂,利用硅与氟的特殊的相互作用,成功实现了纯水溶剂体系中氟离子的快速检测。在此基础上,研究人员制备得到了氟离子检测试纸,不仅对水中氟离子的检测专一性高,而且方便快捷。   有关工作目前已申请国家发明专利。
  • 【盛瀚】"标准"加"规定",全力护航土壤中氟离子检测
    为了更好的保护生态环境,合理利用土地资源,我国开展了较大规模的土壤普查工作,此项工作为土壤分离、土地资源开发利用、土壤改良、合理施肥等提供了科学依据。根据国家统一安排部署,由环保、国土、农业等五部门联合开展的全国农用地土壤污染状况详查已经启动,为了数据可比,国家规定了统一方法,《全国土壤污染状况详查土壤样品分析测试方法技术规定》(报批稿),离子色谱法在检测方法之列。 ★离子色谱法可同时分析水中F-、CL-、NO3-、SO42-等多种离子的含量。离子色谱法是参照 GB 5085.3-2007《危险废物鉴别标准 浸出毒性鉴别 附录 F 固体废物 氟离子、溴酸根、氯离子、亚硝酸根、氰酸根、溴离子、硝酸根、磷酸根、硫酸根的测定 离子色谱法》编制。★ 土壤污染排查工作的一个主要特点就是样品量大,使用离子色谱搭配自动进样器可以实现昼夜不间断测试,满足短时间内检测大量样品的需求。SHA-15型自动进样器一次可完成108个样品的检测,并且具有自动稀释功能,显著减少标准曲线、样品测试的工作量。 氟离子测试对色谱柱的一个要求就是氟离子与水负峰的分离效果要好,避免水负峰对氟离子的影响。盛瀚自主研发的SH-AC-9型阴离子色谱柱,氟离子与水负峰分离度可达2.0,有效排除了水负峰的影响,使得检测数据准确可靠。CIC-D100型离子色谱仪小知识氟是自然界分布最广泛的元素之一,占地壳组成的0.072%~0.078%,也是人和动物的必需微量元素。土壤中氟的主要来源:一是自然成因,土壤中氟含量的高低和存在形态的变化从根本上受控于自然地质地球化学作用;二是人为成因,在工农业生产领域中产生的大量含氟废弃物进入环境后,直接或间接的进入土壤。
  • 航创发布深圳航创HC-603氟离子计新品
    深圳航创HC-603离子计离子选择电极是一种电化学传感器,它可以将溶液中特定离子的活度变化转换成电极电位的变化,电极电位和溶液中离子活度的关系符合能斯特(NERNST)方程,即电极电位和溶液中离子活度的对数成线性关系。   采用离子选择电极法测定溶液中的离子浓度是近年来随着传感器技术的成熟和微机技术的应用发展起来的。具有分析速度快、测量精密度高等优点。    HC-603仪器是一种基于离子选择电极法,利用微处理机实现分析的电化学分析仪器,采用各种离子选择电极作为指示电极,配合参比电极一起使用,形成闭合的电化学测试系统。适用于测量溶液中各种无机离子浓度。   1.2仪器特点• 采用大屏幕中文液晶显示屏,触控式操作方式,人机对话,功能完善,操作、 维护极为方便。• 采用先进USB接口的通信方式。便捷将仪器对应测试结果数据共享到计算机。查询、编辑、留底任意打印输出。• 仪器采用ARM架构快速高性能处理器,保证测试结果的高效、准确。• 仪器具有断电保护功能,关机不会导致已贮存测量数据、标定结果及其他参数的丢失 。• 浓度测量的模式多,包含直读浓度、标准添加、试样添加、GRAN测量等模式。 • 仪器支持多种常规的离子模式,如:K+、Na+、Cl-、Ca2+、WH、pH、F-、NO3-等。• 快速切换各种离子浓度单位,如mg/L、g/L 、mmol/L 、mol/L 、pX等。• 仪器自带热敏打印机,测量时可及时打印出测试结果 。 2.性能指标1.?仪器的级别:0.001级;2.测量范围: pH:0.000pH~14.000pH;pX:1.000pX~8.000pX;mV:-1999.9mV~1999.9mV;离子浓度:钠离子(0.23μg/L~2.3g/L);氟离子(0.19μg/L~1.9g/L);氯离子(0.35μg/L~3.5g/L)等温度:(0~60.0)℃。 3.分辨率:pH/pX:0.001pH/pX;mV:0.1mV;最小分辨率:0.01μg/L温度:0.1℃。4.电子单元基本误差:pH/pX:±0.002pH/pX; mV:±0.03%FS;离子浓度:: ±0.3%; 温度: ±0.1℃。5.电子单元的重复性?a)?pH/pX:?0.001pH/pX;?b)?mV:?0.1mV;6.电子单元的稳定性?pH/pX:? (±0.01pH/pX)/3h7.仪器的基本误差pH/pX: ±0.01pH/pX温度:±0.4℃(0~60.0)℃8.输入阻抗:大于1×1012Ω。9.温度补偿:(0.1~60.0)℃(手动或自动)10.水样温度:(5~60)℃?11.储运温度:(-25~55)℃(不包含电极,电极应高于0℃)12.供电电源:交流(198~242)V,频率50Hz±1Hz13.外形尺寸(mm):342×255×12914.仪器重量:2kg创新点:HC-603氟离子计是一款全新便携式离子计,突出创新点是操作简单,打破了传统离子计复杂繁琐的操作模式,软硬件方面都有很大的提升,标定、显示、打印更加流畅,是氟离子检测的好帮手。 深圳航创HC-603氟离子计
  • 石墨烯“织就”锂离子“梦幻华服”
    p style=" text-indent: 2em " 如果说那薄如蝉翼、六角网格纹路质地的材料是巧夺天工的织锦,那么这位八零后的女科学家就是一位新锐的时尚设计师,她以新潮的艺术思维、灵巧的双手把“织锦”幻化成“梦幻华服”。她就是中国科学院金属研究所博士、北京圣盟科技有限公司首席科学家赵金平。而她和团队制作“梦幻华服”的“织锦”就是被称作“新材料之王”的石墨烯。 /p p style=" text-indent: 2em " 7月16日上午,在北京科技会堂,赵金平向汇聚于此的业内专家展示、讲解自己和团队取得的一项重大突破:石墨烯包裹改性锂离子电池正、负极材料技术。该技术形象地说就是给锂离子电极材料“量体裁衣”,从而大幅提升电池性能。 /p p style=" text-indent: 2em " ①独创两套包覆法 /p p style=" text-indent: 2em " 规模化试产成功 /p p style=" text-indent: 2em " 通过现场展示的放大5万倍的扫描电镜图,赵博士娓娓讲述着石墨烯“梦幻华服”特有的科技之美:“如此图所示,石墨烯非常均匀地包覆在三元材料锂离子表面,不仅不会破坏被包覆的三元材料,而且形成了更加稳定的结构。” /p p style=" text-indent: 2em " 传统电极材料在充放电循环过程中,体积极容易增大膨出,严重时会导致粉化,极大影响电池性能。石墨烯具有超高导电性、柔性,将其包覆在电极材料表面,如同为其“穿上”了量身定制的“魔法衣”,既能增强电子转移速率,提高导电性,又能约束其体积变化,大幅提高放电容量、充放电次数等性能。 /p p style=" text-indent: 2em " 近年来,国际上研究石墨烯包覆技术的学者很多,不过大多停留在学术探讨层面,极少实现技术,更不要说实现产业化。赵金平团队正是迎着技术难题而上,通过数年持之以恒努力,在全球率先实现了石墨烯包覆电极材料尤其是三元正极材料和碳硅负极材料等的技术突破,申请数项国家专利。特别难能可贵的是,该技术投入规模化试产成功,为商业化量产奠定了基础。 /p p style=" text-indent: 2em " 对石墨烯包覆技术的秘诀,赵金平透露说,就如同给电极材料制作衣服,要“合身”“美观”,就必须量体裁衣、个性化定制,也就是说,要针对不同电极材料的结构和表面特性,制作适宜的石墨烯材料,采用相应的包覆方法。具体来说,她带领团队针对正极材料和负极材料,分别开发了“两相界面包覆法”和“液氮冷萃法”。 /p p style=" text-indent: 2em " ②性能指标大幅提升 /p p style=" text-indent: 2em " 推动提前实现能量密度2020 /p p style=" text-indent: 2em " “就放电容量而言,经过500次循环后,石墨烯包覆的三元材料和加入了添加剂的石墨烯包覆的三元材料的容量保持率分别为87.3%和98.08%,其循环稳定性比传统三元材料分别提升了40%和50.56%。经过1000次循环后,加入了添加剂的石墨烯包覆的三元材料容量保持率还能达83.87%。”赵金平对石墨烯包覆后的三原材料性能指标如数家珍。 /p p style=" text-indent: 2em " 负极材料经过石墨烯包裹后不仅循环稳定性有所提升,其容量也大幅度提高。赵金平以氧化铁材料为例介绍说,通过“液氮冷萃法”,加入添加剂后,石墨烯均匀地包裹在氧化铁表面,其容量提高67.1%,稳定性提高18.2%。最值得期待的是石墨烯包裹硅负极材料的性能表现,目前,她和团队正在做相关实验和测试,相信相关数据一定会让人特别振奋。 /p p style=" text-indent: 2em " 在认真评审后,由国家新材料产业发展专家咨询委员会委员、清华大学材料科学与工程系教授翁端,国家“千人计划”专家、中科院大连化学物理研究所研究员吴忠帅,中国国际石墨烯资源产业联盟常务副理事长阮汝祥等10人组成的专家委员会认为,“石墨烯包覆锂离子电池正、负极材料技术达到国际先进水平,同意通过科技成果评价。”该技术应用到车用动力电池上,就可望实现单体能量密度达到300瓦时/千克,而这正是《智能汽车关键技术产业化实施方案》提出的2020年车用动力电池能量密度指标。 /p p style=" text-indent: 2em " 赵金平特别指出,石墨烯包裹技术和石墨烯基电池材料优异的性能已经通过国家动力电池创新中心和风帆有限责任公司的检测,后者还出具了相关样品的检测报告。在技术专利方面,目前,赵金平团队基于石墨烯的包裹技术已申请2项国家专利,还有数项专利正在申报中。 /p p style=" text-indent: 2em " ③突破源于3个方面 /p p style=" text-indent: 2em " 领先气质诠释创新中国 /p p style=" text-indent: 2em " 石墨烯作为电子迁移率超高、热传导效应性能超好的神奇二维碳纳米材料,自2004年被发现以来,特别是其发现者因此获得2010 年度诺贝尔物理学奖以来,成为耀眼的“明星”材料,将其用于提升锂离子电池性能的研究更是不断掀起热潮。然而,教育部查新工作站发布的相关科技查新报告显示,除了赵金平团队研发成果申请的专利外,在国内外已公开发表的文献和专利中,尚未见有利用针对锂离子电池正极材料的“两相界面包覆”工艺和针对负级材料的“液氮冷萃”工艺,制备比容量大、循环稳定性好的石墨烯改性锂离子电池电极材料的报道。 /p p style=" text-indent: 2em " 赵金平团队为何能取得原创性技术突破呢?在业内专家看来,大体上在于3个方面。一是优质石墨烯供应充足。赵金平团队的研究占据了一个先天优势:所在公司北京圣盟科技是全球石墨烯制备的领先企业,可以为技术开发提供高品质石墨烯支持,而这正是取得突破至关重要的基础条件。否则,以品质不高的石墨烯或者石墨粉投入科研,取得突破是难以想象的。二是长期的技术积累和不怕困难的拼搏精神。赵金平和团队在石墨烯科研领域耕耘了近10年,相关包覆技术创新是长期摸索的必然。迎难而上、苦心钻研的拼搏是成功的必备条件。在实验中,由于三元材料颗粒较大,石墨烯包裹困难,她带领团队硬是攻关了近一年半,锲而不舍,不断尝试,终获成功。三是中国石墨烯科研实力居前,引领世界。据《经济日报》今年年初报道,中国是石墨烯研究和应用开发最为活跃的国家之一,在全球石墨烯专利中,近六成来自中国。正是国内良好的石墨烯科技创新环境和氛围,培养造就了赵金平团队勇于创新的精神和能力。  /p
  • 赛默飞世尔推出氟离子浓度测量套装F090
    氟作为水质中一个重要的参数,在多个领域需要精确的测量。由于离子选择电极法具有电极结构简单牢固,灵敏度高,响应速度快,能克服色泽干扰,精度高等优点,而且便于携带、操作简单,因而被广泛应用于环境监测、食品安全、卫生医疗等各个行业领域。现在,已有多个国家标准和行业标准引用氟离子选择电极法作为测定水、茶叶、尿、血液、土壤等介质中氟离子的含量的标准方法。为此,赛默飞世尔科技特别推出了公开定价为RMB9980的特价氟离子浓度测量套装F090! 详情请浏览http://www.instrument.com.cn/netshow/SH100750/C84042.htm。
  • 恒美-负氧离子检测仪如何选择-购买必看
    点击此处可进入优惠通道→负氧离子检测仪 负氧离子检测仪是用于测量空气中负氧离子浓度的设备,对于评价空气质量、改善室内环境具有重要意义。负氧离子检测仪器的价格因品牌、型号、功能和测量范围的不同而不同。一般来说,价格从几百元到几千元不等。一些简单的负氧离子检测仪器可能更便宜,但它们通常不具备精确的测量和数据分析功能。一些先进的负氧离子检测仪器具有更多的功能,如自动记录、数据存储和远程监控等,价格也相对较高。如何选择合适的负氧离子检测仪器?1、根据测量范围选择不同的负氧离子检测仪器有不同的测量范围。一些简单的设备只能测量较低浓度的负氧离子,而一些先进的设备可以测量较高浓度的负氧离子。因此,在选择设备时,需要根据实际需要选择具有合适测量范围的设备。2、根据精度选择负氧离子检测仪的精度越高,测量结果就越可靠。因此,在选择设备时,需要注意设备的测量精度。一些先进的设备可能使用更先进的传感器和测量技术来提供更准确的测量。3、按功能选择负氧离子检测仪具有自动记录、数据存储、远程监控等多种功能。在选择设备时,需要根据实际需要选择具有相应功能的设备。例如,如果需要长时间监测空气质量,可以选择具有自动记录和数据存储功能的设备。4、根据品牌和价格选择品牌和价格也是选择负氧离子检测仪器时需要考虑的因素。一些知名品牌的设备可能质量更可靠,但价格也相对较高。但一些价格较低的设备可能质量不稳定,需要谨慎选择。 在选择负氧离子检测仪器时,需要根据实际需要选择合适的设备,同时要注意设备的测量范围、精度、功能、品牌、价格等因素。这样才能选择一款实用可靠的负氧离子检测仪器。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 等离子如何提升太阳能光伏板封装可靠性
    等离子清洗机提升太阳能光伏板封装可靠性2017年,习近平总书记在党的十九大报告中提出,必须树立和践行“绿水青山就是金山银山”的理念,站在人与自然和谐共生的高度谋发展。生态环境是人类生存发展的根基,通过清洁能源的开发使用,才能做好保护生态环境,走好绿色发展之路。一、清洁能源之太阳能光伏一般情况,太阳能光伏板的使用环境较为苛刻,而国家规定光伏电站的设计使用寿命是25年,因此太阳能光伏组件封装的可靠性就显得尤为重要。光伏产业流程中,哪些环节会影响最终的封装效果呢? 二、光伏产业流程 显而易见,中游太阳能光伏板制程中,背板可靠性、压层件工艺、整体光伏组件封装工艺等,均是影响太阳能光伏板封装可靠性的重要因素。下面我们来了解,如何使用等离子技术,提高太阳能光伏组件封装可靠性!三、等离子提升太阳能光伏板封装可靠性太阳能光伏板在生产过程中,存在大量涂覆、复合、粘接、热压等工艺,使用等离子技术活化后,可以有效提高材料表面的润湿性,从而提升整体封装效果。01 等离子提升光伏背板可靠性太阳能背板需具备优越的耐候性、高绝缘性以及低水透性能。含氟材料的耐候性、斥水赤油性能,能很好的满足这一要求,但斥水斥油性不利于与基材复合,因此在与基材(PET)涂覆/复合前,使用等离子清洗,可有效提高含氟材料与基材涂覆/复合的可靠性。02 等离子提升光伏压层件工艺可靠性 压层件工艺中,使用等离子清洗机对光伏玻璃表面和底板上的氟膜进行表面处理,能更好的与EVA结合,提高压层件各组件的结合强度。03 等离子提升“组件”工艺可靠性压层件完成后,加上边框、密封胶、接线盒,就完成了我们的主体“太阳能光伏板”的制作。在这一环节,使用等离子清洗机对边框进行处理,从理论上讲,对密封效果也会有一定程度的提升。后续加上逆变器、汇流箱、支架、蓄电池等,一个整体的光伏系统就可以完成啦。
  • 安康首个大气负氧离子监测站落户汉阴
    近日,安康大气负氧离子监测站在汉阴县凤凰山国家森林公园建成并投入使用。连日来,汉阴气象局经过精心筹备、选址、购买仪器、安装调试等,在汉漩路10公里处全面完成了全市首个大气负氧离子监测站建设工作。大气负氧离子监测站的建设,可实时对大气负氧离子、气温、湿度等要素进行24小时不间断自动监测采集和发布。负氧离子是空气中一种带负电荷的气体离子,常被人们称之为“长素”或“空气维生素”,是评价环境和空气质量的一个重要标准,负氧离子浓度等级越高说明对人体健康越有利。大气负氧离子监测站的建成为汉阴县创建“中国天然氧吧”提供了有力保障,“中国天然氧吧”的创建是以凤凰山国家森林公园为核心,深入贯彻创新、协调、绿色、开放、共享发展理念,大力实施“生态立县”战略,依托该县舒适的自然气候、优良的生态环境,充分发掘高质量的旅游憩息资源,积极发展生态旅游、健康旅游、养生旅游,倡导绿色、生态生活理念,全面提升生态环境质量,积极促进全县生态旅游蓬勃发展。
  • 宁波材料所在离子型聚氨酯和类Piezo 2离子皮肤研究方面取得进展
    2021年诺贝尔生理学或医学奖颁给美国科学家David J. Julius和Ardem Patapoutian,以表彰他们在痛觉和触觉研究方面所作出的贡献。人类自诞生以来,一直对自身如何感知世界而感到好奇,但是一直不清楚神经系统是如何感知环境的。Julius利用辣椒素,发现了细胞中存在一种离子通道蛋白TRPV1,在疼痛和热的感知中起着核心作用。而另一位诺奖获得者Patapoutian则揭示了触觉的奥秘。Patapoutian与课题组合作者从小鼠细胞入手,经过长期的努力,最终在哺乳动物的细胞上发现了Piezo 1和Piezo 2这两种用于感应压力的通道蛋白。在一般状态下,Piezo 2蛋白呈闭合状态,细胞膜内外电位保持平衡。在按压状态下,由于细胞膜的张力,蛋白通道被打开,细胞外阳离子被挤入细胞内,破坏了离子平衡,使得穿过膜的离子电流发生了变化,产生了电信号。神经元将该电信号传递至中枢神经系统,在大脑中产生信息。   受到Piezo 2蛋白的启发,中国科学院宁波材料技术与工程研究所生物基高分子材料团队将离子液体(IL)与含有离子键的离子型聚氨酯(i-PU)混合,制备了一种以离子为传输介质的新型离子皮肤I-Skin-i。i-PU被用来模仿通道蛋白Piezo 2,离子液体被用来模仿细胞内外的传输离子。按压前,由于离子间相互作用,i-PU能够通过离子键相互作用吸引住离子液体中的正负离子,类似于闭合状态的Piezo 2通道蛋白。在按压过程中,i-PU分子链之间的空间被压缩,与i-PU结合较弱的离子被挤压至表面,类似Piezo 2通道蛋白被打开并完成离子传输。正负离子的迁移形成双电层,产生了电容信号。此时,该离子皮肤如同细胞膜上的Piezo 2蛋白,能够完成“将机械信号转换成化学信号输出”这一过程。并且由于i-PU中含有离子键,因此以i-PU为基底制备的I-Skin-i具有自修复的功能。最后,就可将I-Skin-i贴在人体不同部位,感知从呼吸到跳跃的动作,在穿戴式健康监测设备方面展现应用潜质。   该工作发表在《先进功能材料》(Adv. Funct. Mater., 2021, DOI: 10.1002/adfm.202106341)上。该工作得到国家自然科学基金、浙江省自然科学基金、浙江省重点研发计划和中科院青年创新促进会的资助。
  • 首次商业交付!国仪量子离子阱量子计算平台ION I
    近日,国仪量子离子阱量子计算平台ION I正式交付。  该套交付设备由国仪量子与国内某高校用户围绕科研场景需求,在系统的设计、制造、测试等方面进行了深入合作研发。用户将基于该平台进行量子计算、量子模拟与量子算法等领域的研究。据公开报道显示,该平台为国内首台实现商业化交付的离子阱量子计算平台。  离子阱量子计算平台ION I  ION I离子阱量子计算平台具有超高的集成化和小型化优势,整机由真空与阱系统、光路与稳频系统、测控与电子学系统、激光与微波控制系统组成,具有较高的量子比特保真度和操作精度。  ION I离子阱量子计算平台可操控比特数目2~12任意可选,单比特门保真度超99.97%,两比特门保真度超99.7%,相干时间T2*大于100 ms。该系统可稳定囚禁离子数目超90+,一维离子阱晶体数目数小时不变云。多项核心技术指标达到国际一流水准。  国仪量子离子阱量子计算机项目负责人吴亚表示:“ION I离子阱量子计算平台基于用户科研需求,充分整合了真空、激光和光学、射频和微波技术以及电子学系统等,进行了模块化设计与标准化制造。它的首次商业化交付,标志着我国科研团队在离子阱量子计算领域已具备了较高的研发水平与一定的产品化、工程化能力。”  国仪量子基于在量子信息技术与高端科学仪器领域长期的技术积累与产品工程化经验,根据用户需求,打造了高度工程化、适应多场景、稳定可靠的离子阱量子计算研究平台。未来,国仪量子将与用户携手,充分发挥离子阱量子计算平台优势,开展量子计算算法、应用研究,为量子计算技术的突破贡献力量。
  • 上海硅酸盐所发展出基于层状结构电解质的固态氟离子电池
    固态氟离子电池(SSFIBs)是一种阴离子穿梭驱动、无碱金属的新兴储能体系,具有成本低、安全性好、能量密度大等潜在优势。相比于传统的阳离子穿梭电池(如碱金属离子电池、多价阳离子电池等),氟离子电池可避免负极枝晶生长以及多价离子迁移缓慢等问题,还具有潜在的高体积能量密度(理论达5000 Wh/L),但这一体系面临着高导氟离子电解质缺乏以及低温下(150 ℃)表现出10-4 S/cm的高离子电导率,导致对应SSFIBs的可逆循环需要高温维持,限制了其应用场景。近年来出现的CsPbF3系列钙钛矿、MSnF4(M=Ba, Pb)等氟化物在室温下便可表现出较高的离子电导率,尤其在Sn(II)基氟化物中,Sn(II)的孤电子效应可诱导氟位缺陷或无序的形成,并伴随着静电排斥效应,利于氟离子的体相传输。然而,已报道的基于Sn(II)基电解质的SSFIBs由于潜在的体相分解或者界面衰退,即便在弱电流密度(KSn2F5固态电解质的合成与结构KSn2F5的离子-电子导电性能KSn2F5的离子-电子导电性能KSn2F5基对称电池的界面动力学分析准固态氟离子电池的构架和电化学性能CuF2正极放电和充电态的形貌和物相分析
  • 疾病防治专栏 | 人体体液中钙、镁、氟、磷离子的检测
    疾控防治专栏人体体液中钙、镁、氟、磷离子的检测引言人体内的液体由水及溶解在水中的无机盐、有机物一起构成,统称体液。水是体液中的主要成分,也是人体内含量最多的物质。体液广泛分布于机体细胞内外,细胞内液是物质代谢的主要部位,细胞外液则是机体各细胞生存的内环境。保持体液容量、分布和组成的动态平衡,是保证细胞正常代谢、维持各种器官生理功能的必需条件。体液中主要的电解质有 Na+、K+、Ca2+、Mg2+、Cl-、HCO3-、HPO42-和 SO42-,以及一些有机酸和蛋白质等。监控人体体液中电解质对疾控防治工作有重要指导意义。泌尿系统结石是泌尿外科常见的疾病之一,发病率及复发率高,其中以磷酸钙、磷酸铵镁和草酸钙结石为主。尿液内磷酸盐、草酸盐等浓度增大时,晶体物质即可析出沉淀形成尿路结石。有研究指出,尿氟水平可作为反映人体氟摄入情况的重要指标,以及作为地方性氟中毒的病区判定和防治效果评价。本文小编为大家介绍离子色谱检测人体体液中氟、磷酸盐、镁、钙的方法。皖仪科技应用方案 仪器设备 ---------------------------------------------------离子色谱仪,配有电导检测器淋洗液发生器:氢氧根型、甲磺酸型自动进样器样品前处理---------------------------------------------将样品稀释一定倍数后,经超滤后进样分析。色谱条件-----------------------------------------------1.阴离子测试色谱条件2.阳离子测试色谱条件测试结果----------------------------------------------- 阴离子标曲测试谱图 1.线性校准曲线2.样品测试谱图 阳离子标曲测试谱图 1.线性校准曲线2.样品测试谱图阳离子的测试中,Na+、NH4+的分离度一直是大家关注的重点,合适的色谱柱、合适的色谱条件对测试结果至关重要,下面看看咱们本次测试的分离度信息,所有离子的分离度都完全满足测试需求的哦。 进样信息 总结以上就是小编对人体体液中离子的测试结果了,可以看出,所有离子的线性均大于0.995,线性良好,氟离子在0.0025mg/L时峰形明显,完全满足检出限需求,阳离子的测试也是表现优异,选择离子色谱仪进行人体体液中阴阳离子的测定,方法简单,一次进样可做多种组分分析。皖仪科技 中国高端色谱标杆品牌
  • 航创发布深圳航创HC-800全自动氟氯离子分析仪新品
    HC-800全自动氟氯离子分析仪具有以下性能特点:自动进样快速进行定量分析,测值准确; 实时在线监测和实验室监测任意选择; 连续批量测量,仪器标定、测量自动进行; 采用离子选择电极法测量; 智能化免维护设计,操作简单; 双显示(液晶显示及热敏打印); 现场安装培训,整机保修一年,终身维修; 应用领域:医疗行业、饮用水、地表水、工业生产用水、污水等。技术参数: 测量范围:氟离子 0-12000mg/L; 氯离子 0~35500mg/L;pH 0~14;分辨率:0.01mg/L; 准确度等级:0.1级;测试时间:<3min; 显示方式:双显示(液晶显示及热敏打印); 通讯接口:RS232、USB 2.0(双通信接口); 电压:AC220V±10%; 频率:50Hz; 功率:<60W; 外形尺寸:38.5*23.5*34.5cm; 仪器工作条件:①环境温度:10~35℃;②空气相对湿度:<85%;③除地球磁场外周围无强磁场干扰; 信息管理软件(选配)。创新点:HC-800全自动氟氯离子分析仪结合氟氯两种离子检测的完美结合,可快速同时检测氟氯两种离子浓度,无需单独配制试剂,无需绘制曲线和计算操作,对样本的要求不高,可应用于各行业中的氟氯离子检测,特殊行业支持选型定制,在技术上突破传统瓶颈,开创氟离子和氯离子微量速检之先河。 深圳航创HC-800全自动氟氯离子分析仪
  • 上海精科研发出DWG-8003型在线氟离子监测仪
    为了满足市场对环保仪器日益增长的需求,上海精科今年以来加快了研发在线环保仪器的步伐,在今年第三季度推出了大型的ZDG-520型在线自动滴定仪后,第四季度又研制出大型的DWG-8003型在线氟离子监测仪,使飞乐精科大型环保仪器发展成四类:COD在线水质监测仪、DWG8002A型氨氮自动监测仪、ZDG-520型在线自动滴定仪和DWG-8003型在线氟离子监测仪,基本形成了&ldquo 现场进行水环境监测&rdquo 仪器的系列化,为致力于发展我国环保仪器作出了一份贡献。 DWG-8003型在线氟离子监测仪可广泛用于各行业工业企业、高等院校、科研部门或环保部门对污水排放中的氟离子浓度进行检测或对河道、湖泊等进行氟离子浓度检测;检测其是否超国家与国际标准,以控制工业企业废水氟离子的浓度和河道、湖泊水环境的氟离子浓度,防止污染水环境和保护珍贵的水资源。
  • 中国科大发展固体核磁共振方法揭示氟离子通道渗透机制
    核磁共振方法除可获得分子结构信息外,还可观测分子的动态特性,这些可为阐明蛋白质等生物大分子的功能机制提供重要信息。随着高速魔角旋转技术的发展,固体核磁谱分辨率大幅提高,从理论上突破了液体核磁观测的分子量的限制,逐渐被运用于研究磷脂膜环境中的膜蛋白等超大生物分子复合物体系的动态构象。但低信号强度和低分辨率限制了生物分子固体核磁研究的广泛开展。自然界中氢原子和氟原子的旋磁比大、NMR信号强,是比较理想的NMR观测对象。氟原子在生物分子结构中极少存在,无观测背景信号,是理想的NMR观测探针。因此,氢检测和氟检测方法的发展可能显著扩展固体核磁在复杂生物体系中的运用。   2023年8月23日,中国科学技术大学微尺度物质科学国家研究中心史朝为课题组在国际著名学术期刊ScienceAdvances上在线发表了题为“Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR”的研究论文,研究团队以氟离子通道蛋白Fluc-Ec1作为研究对象,结合氘代和19F定点标记方法,发展并优化膜蛋白固体核磁氢检测及氟检测研究方案,为膜蛋白核磁研究提供新思路。环境中的氟离子可通过弱酸积累效应在细菌细胞内积累,产生毒害作用。微生物通过F-膜转运蛋白将F-运输至体外进而抑制其毒性作用。来自Fluc(fluoridechannel)家族的Fluc-Ec1蛋白是由130个左右的氨基酸组成的离子通道,具有独特的双重拓扑二聚体的结构,且对氟离子具有高度选择性。静态的F-通道蛋白的晶体结构难以描述F-渗透的具体机制,F-通道蛋白被抗体类似物固定在一种构象上。氟原子和氧原子相似的电子云密度以及分子动力学模拟数据使得晶体结构中极性轨道(polartrack)上的氟离子结合位点(F1and F2sites)引发争议,另外突变体功能保留或丧失的机制目前仍不清楚。   研究团队通过观测磷脂膜环境中的Fluc-Ec1在不同氟离子浓度中的构象,结合基因密码子扩展方法,在蛋白质前庭位置引入非天然氨基酸三氟甲基苯丙氨酸(tfmF),设计19F-19F自旋扩散实验,验证了Fluc-Ec1存在新的氟离子结合位点(F0site)。研究团队利用1H-1H自旋扩散实验直接检测水和蛋白质的相互作用,通过氘代来减少氢原子的非相干背景,结合water-hNH谱图以及自旋扩散传递和衰减规律,得到了主链酰胺质子和水分子的距离信息,证明了F1位点结合的是水,而不是氟。   此外,晶体学研究无法从结构的角度解释F80M突变体具有功能活性而F83M突变体丧失功能活性的现象,研究团队通过分别对比F80M、F83M和野生型蛋白脂质体样品的碳检测谱图,结合液体核磁共振技术验证loop 1突变体功能,发现loop 1是F83M突变体丧失通道活性的重要因素,进一步揭示了loop 1在F-渗透过程中的重要性。综上,研究团队更正了先前推测的氟离子通道离子配位位点,提出氟-水交替“water-mediated knock-on”的渗透模型,为全面理解Fluc通道中的渗透和门控机制提供科学依据。中国科学技术大学张瑾、宋丹、李娟以及德国亚琛工业大学的Florian Karl Schackert为该论文的共同第一作者,中国科学技术大学微尺度物质科学国家研究中心史朝为特任研究员为该文章的通讯作者。中国科学技术大学的龚为民教授、田长麟教授、项晟祺教授以及德国Jülich研究中心的Paolo Carloni和Mercedes Alfonso-Prieto教授团队也参与了该研究工作并给予了大力帮助。该研究得到了科技部、国家自然科学基金、中国科学院、中国科学技术大学以及德国科学基金会的经费资助。
  • 奥立龙 9609BNWP 氟离子选择性电极 特价促销
    9608BNWP氟离子电极 现货特价促销。原价9180. 特价是6500/支。先到先得。仓库有限。选择性电极(ISE)简介 Thermo Scientifi c Orion 是全球研制出第一支离子电极 - 钙离子电极的制造商,公司发展40 年来已开发30 多种具有专利技术的离子电极,为众多行业广泛使用,成为同业中最著名的离子电极制造商。Orion 的许多离子电极分析方法已被众多国家的政府组织列为相关行业中的标准方法,例如:牙膏中氟化物的测定(国家牙膏标准GB 8372-2008)。 当今采用离子电极从事物质研究分析的科研机构中有70% 以上使用的都是Thermo Scientifi c Orion 离子电极,Thermo Scientific Orion 离子电极是您进行离子分析最可信赖的**品牌。 离子选择性电极(ISE)的应用 离子选择性电极是一种简单、迅速、能用于有色和混浊溶液的非破坏性分析工具,一般不需进行化学分离,不要求复杂的仪器,可以分辨不同离子的存在形式,能测量少到几微升的样品,所以十分适用于野外分析和现场自动连续监测。与其他分析方法相比,它在阴离子分析方面特别具有竞争能力。电极对活度产生响应这一点也有特殊意义,使它不但可用作络合物化学和动力学的研究工具,而且通过电极的微型化已被用于直接观察体液甚至细胞内某些重要离子的活度变化。离子选择性电极的分析对象十分广泛,它已成功地应用于环境监测、水质和土壤分析、临床化验、海洋考察、工业流程控制以及地质、冶金、农业、食品和药物分析等领域。 离子测量常识 离子测量前,要尽可能先查阅相关的技术文献,选择正确的离子测量方法和离子浓度测量仪与电极 由于各种溶液的成份不一样,离子价态也不一样,其温度系数也不一样,故分析仪要做到对任何溶液都做出温度补偿那是办不到的,在进行离子浓度的精确测量时,需要将离子标准液和样品温度调节到同一温度 离子浓度的测量,需要配合相应的离子强度调节剂和标准液9609BNWPF-离子复合电极饱和—10-6M 饱和—0.02ppm900061F-离子电极填充液5 x 60ml940906F-离子标准液0.1M NaF(475 ml)940907F-离子标准液100ppm F-(475 ml)040906F-离子标准液1 ppm F-(475 ml)040907F-离子标准液2 ppm F-(475 ml)040908F-离子标准液10 ppm F-(475 ml)940909F-离子强度调节剂3780 ml940911F-离子强度调节剂475 ml
  • 航创发布深圳航创HC-800全自动氟离子分析仪新品
    HC-800全自动氟离子分析仪具有以下性能特点:自动进样快速进行定量分析,测值准确; 连续批量测量,仪器标定、测量自动进行; 采用先进离子选择电极技术,性能稳定,测试快速; 智能化免维护设计,操作简单; 双显示(液晶显示及热敏打印); 现场安装培训,整机保修一年,终身维修; 技术参数: 测量范围:0-190 mg/L, 0-12000mg/L;样品类型:尿液、血清、唾液、工业盐酸、氢氟酸、牙膏、水泥、工业用水、污水等各种水样;分辨率:0.01mg/L; 测试时间:<3min; 显示方式:双显示(液晶显示及热敏打印); 通讯接口:RS232、USB 2.0(双通信接口); 电压:AC220V±10%; 频率:50Hz; 功率:<60W; 创新点:HC-800全自动氟离子分析仪在检测速度和检测精度以及检测样品的复杂性方面都有很大的提升,实现各领域氟离子检测的精准、快捷和高效。 深圳航创HC-800全自动氟离子分析仪
  • 上海秀中公司负氧离子监测发布系统
    概述上海秀中电子设备有限公司是国内最先开发、研制负氧离子连续监测LED实时显示发布系统的企业,监测仪器及LED显示技术成熟领先,稳定可靠,售后及时完善。监测仪器负氧离子监测仪可连续实时在线监测空气中温度、湿度及负氧离子含量(可扩展监测PM2.5、风力风向、紫外线、雨量、噪声、O2、CO、SO2、NO等含量),仪器能抗高湿、抗高温、抗低温,防雨防雷,野外长期工作。具备无线GPRS通信功能,管理人员可在全国任何一处,远程获取实时及历史数据。监测数据可保存到数据库中(Oracle,SQL Server,Access均可)或文本文件中。用户也可使用电子表格EXCEL浏览数据,并可自动生成曲线图表,直观而方便。LED显示屏LED显示发布系统采用无线GPRS或3G方式进行数据传输,令LED的安装位置灵活可变。除了常规的单色显示外,另有全彩显示可供选择。除了显示发布温湿度、负氧离子含量,还可以循环滚动播放天气预报、文字广告、宣传口号、警示提醒、通知告示等。全彩屏幕可以播放照片、视屏、动画等节目。 售后定期在全国范围内开展每半年一次的主动客户回访,仪器保养,有效地保证了仪器的长期稳定运行,令甲方或经销商无任何后顾之忧。用户苏州市气象局、浙江省气象局、广东云浮市环境监测站、浙江省丽水市林业局、杭州西溪湿地、长春净月潭国家森林公园、杭州余杭区鸬鸟镇人民政府、太仓市国家现代农业园区、合肥大蜀山国家森林公园。案例视频展示:http://v.youku.com/v_show/id_XMTM2OTc1MDY3Ng==.htmlhttp://v.youku.com/v_show/id_XMTM2OTc3ODQwMA==.htmlhttp://v.youku.com/v_show/id_XMTM2OTc5NTg3Mg==.html
  • 国家环监网水中氟测定情况公布 离子色谱法占主流
    p   中国环境监测总站公布了2016年第一轮国家环境监测网实验室水质氟化物能力考核结果,本次考核项目为水质氟化物,包括离子选择电极法和离子色谱法,考核对象为各省(自治区、直辖市)地级(含)以上监测站。最终,离子选择电极法收回结果152份,其中1家监测站的结果经专家讨论作为异常值予以剔除,参与统计的结果为151份 离子色谱法收回结果198份,全部参与统计,即选用离子色谱法的单位占比为57%。 /p p   样品测定结果总体情况见下表。 /p p style=" text-align: center " img style=" width: 600px height: 199px " src=" http://img1.17img.cn/17img/images/201606/insimg/1f473d71-f7c4-4491-91a2-18eceb900815.jpg" title=" QQ截图20160621094926.jpg" border=" 0" height=" 199" hspace=" 0" vspace=" 0" width=" 600" / /p p style=" text-align: center " img style=" width: 600px height: 204px " src=" http://img1.17img.cn/17img/images/201606/insimg/9c542d90-5cb2-4412-9277-2973ce65beff.jpg" title=" QQ截图20160621094937.jpg" border=" 0" height=" 204" hspace=" 0" vspace=" 0" width=" 600" / /p p    strong 方法标准统计 /strong /p p   本次离子选择电极法考核各参加单位依据的方法标准以《水质 氟化物的测定 离子选择电极法》(GB 7484-87)为主,仅1家单位依据的标准为《生活饮用水标准检验方法 无机非金属指标》(3.1 氟化物 离子选择电极法)(GB/T 5750.5-2006)。本次离子色谱法考核各参加单位依据的方法标准以《水质 无机阴离子的测定 离子色谱法》(HJ/T 84-2001)为主,所占的比例为92.4%,方法标准的具体分布情况见表6。 /p p style=" text-align: center " img style=" width: 600px height: 163px " src=" http://img1.17img.cn/17img/images/201606/insimg/b355e096-2190-4dfc-836a-bd0ebe611123.jpg" title=" QQ截图20160621095237.jpg" border=" 0" height=" 163" hspace=" 0" vspace=" 0" width=" 600" / /p p    strong 标样来源统计 /strong /p p   本次两种方法的考核中,各参加单位使用的标样均主要来源于环保部标样所,所占的比例超过90%。另有部分单位的标样来源于国家有色金属及电子材料分析测试中心、水利部和中国计量科学研究院。 /p
  • 全国空气负氧离子监测试点工作启动
    3月20日,国家林业局办公室印发《关于开展全国空气负氧离子监测试点工作的通知》,决定启动相关监测,并选取河北省张家口市、山西省朔州市、浙江省丽水市、江西省上饶市、湖北省十堰市、广西壮族自治区桂林市和重庆市南川区等7个市(区)作为全国第一批空气负氧离子监测试点地区。   《通知》指出,试点省份省级林业主管部门要有专人负责,明确厅(局)级领导为负责人,处级领导为联络员,试点市(区)市级林业主管部门要组织专业队伍,负责日常工作 每个试点市(区)应按要求设立一个监测中心、若干监测站并配备相关配套设施,监测站要选择有代表性区域进行选址 所有监测站点数据将被统一传送到国家林业局生态监测评估中心进行数据汇总和评估,各试点省份和试点市(区),可通过网页访问形式,自行查阅、下载和分析监测数据 国家林业局生态监测评估中心会适时组织试点市(区)相关人员进行技术培训,提高工作人员业务能力水平。   《通知》要求,各试点省份省级林业主管部门要将负责人及联络员名单于4月15日前报送国家林业局。
  • “湖北空气负氧离子浓度地方标准”出台 监测数据将公示
    11月18日,“湖北省空气负氧离子浓度等级”地方标准(以下简称标准)正式实施。该标准制定科学客观,公众易于理解,对湖北省空气负氧离子浓度的监测、评估和服务,以及指导公众健康生活,具有重要作用。  湖北省空气负氧离子浓度等级地方标准由湖北省气象局和湖北省林业科学研究院联合起草,结合湖北地域气候、地貌类型等特点,利用2014年湖北省逐10min的空气负氧离子浓度数据,统计各小时平均值作为建模数据,以反映空气的平均状态,建立空气负氧离子浓度等级。  标准界定:当负氧离子浓度100个/cm3时为Ⅴ级,当负氧离子浓度在100~500个/cm3时为Ⅳ级,当负氧离子浓度在500~1000个/cm3时为Ⅲ级,当负氧离子浓度在1000~1500个/cm3时为Ⅱ级,当负氧离子浓度≥ 1500个/cm3时为Ⅰ级。  据了解,湖北是全国较早开展空气负氧离子观测和应用的省份之一。2013年10月,由湖北省气象局和湖北省林业厅共同开展全省空气负氧离子站网建设,湖北省气象信息与技术保障中心、湖北省林业科学研究院作为具体承建单位于2014年1月完成了空气负氧离子观测仪器站网的建设,2014年3月提供湖北省空气负氧离子浓度的实时监测和服务。  随着湖北省空气负氧离子浓度等级地方标准的出台实施,湖北空气负氧离子浓度监测数据及相关服务产品也将陆续开始对公众发布。
  • 江苏太仓启用上海秀中负氧离子自动监测系统
    “负氧离子1405个,温度23.8℃,湿度40.8%……”近日,在太仓市现代农业园区生态餐厅对面的绿树丛中,一块液晶显示屏上闪烁的红色数字吸引了人们的注意力。原来,这就是最近刚刚启用的全市首套负氧离子自动监测系统。为了向游客形象直观地展示优良的生态环境,最近园区投入20多万元引进专业设备,建起了全市首套负氧离子自动监测系统。   作为全国首批农业园区类国家4A级景区、首批国家级农业产业化示范基地,太仓市现代农业园区建设全面提速,品牌影响力和景区美誉度日益提高,每年都有数十万游客前来游览。来到这里的游客除了一览园区的美景外,还能呼吸到格外清新的空气。但空气究竟清新到什么程度?以往游客只能凭感觉。“负氧离子测报系统会将监测到的数据自动传输到预报中心,每3分钟就会自动更新一次,数据准确、参照性强。” 该市现代农业园区管理处副主任吴建华说。   负氧离子是空气中一种带负电荷的气体离子,常被人们称之为“长寿素”或“空气维生素”,是评价环境和空气质量的一个重要指标,负氧离子浓度等级越高,说明对人体健康越有利。据介绍,按照世界卫生组织的标准规定,清新空气的负氧离子浓度为每立方厘米1000个到1500个。最近几天的监测显示,该园区每立方厘米空气中的负氧离子基本在1400个左右,说明园区的空气很清新。   为了进一步丰富旅游元素,太仓市现代农业园区在不断完善现代农业展示馆、花卉园艺展示馆、生态湿地馆等原有旅游项目的基础上,近年来还积极整合资源,投入大笔资金,先后种植了近10万株郁金香、150亩桃花、100亩樱花、50亩梅花、30亩梨花等,不仅美化了园区环境,更提升了园区的空气质量,整个园区几乎是“花的海洋”,也是一个“天然氧吧”。对此,该市农委相关负责人表示,“花的海洋”市民可以用眼直接看到,但“天然氧吧”要靠数据说话,他们将充分发挥负氧离子自动监测系统的作用,树立起园区高品质生态旅游景区的形象。
  • 国产离子注入设备实现28纳米工艺全覆盖
    记者6月29日从中国电子科技集团获悉,该集团旗下中电科电子装备集团有限公司(以下简称“电科装备”)已实现离子注入装备28纳米工艺制程全覆盖,有力保障我国集成电路制造行业在成熟制程领域的产业安全。研发人员正在调试离子注入机。中国电科供图据悉,离子注入机是芯片制造中的关键装备,28纳米则是当前芯片应用领域中覆盖面最广的成熟制程。电科装备连续突破光路、控制、软件等关键模块的核心技术,形成中束流、大束流、高能及第三代半导体等全系列离子注入机产品格局,实现了28纳米工艺制程全覆盖,切实保障中国“芯”的生产制造。据了解,作为国内最早从事离子注入设备研制及产业化的企业,电科装备已具备从产品设计到量产应用的完整研制体系,产品涵盖逻辑、存储、功率器件、传感器等工艺器件,百台设备广泛应用于国内各大集成电路先进产线,累计流片量超2000万片,有力提升我国产业链供应链韧性和安全水平。
  • 北京烁科中科信大束流离子注入机交付
    2月15日,北京烁科中科信宣布本年度首台大束流离子注入机在国内某知名集成电路产线move in。离子注入机是集成电路制造前工序中的关键设备。北京烁科中科信称,本台设备是大束流离子注入机工程化最新成果的集中体现,在原有设备性能的基础上,优化了多项机台核心参数,综合WPH已实现与国际先进机台对标。据了解,北京烁科中科信电子装备有限公司成立于2019年6月17日,公司源于中国电科第48研究所,是国内唯一一家专注于集成电路领域离子注入机业务的高端装备供应商。公司产品聚焦集成电路主要应用领域,兼顾化合物半导体、材料加工制备等领域,形成中束流、大束流、高能机、定制机、化合物半导体等系列化离子注入机产品体系。2022年8月,北京烁科中科信第4台中束流离子注入机顺利于某集成电路产线Movein;同年9月,北京烁科中科信中束流离子注入机交付。
  • 中国环境科学学会拟立项团体标准《水质 可提取有机氟的测定 燃烧离子色谱法》
    根据《中国环境科学学会标准管理办法(试行)》的有关规定,经自愿申报、形式审查、专家论证等程序,团体标准《水质 可提取有机氟的测定 燃烧离子色谱法》项目通过了论证,拟正式立项。现将拟立项团体标准名称、牵头单位予以公示。公示期为2024年4月19日至5月3日。如对公示项目存在异议,请在公示期内与我会联系。联系人:高 强电 话:010-62246242通讯地址:北京市海淀区红联南村54号(100082)电子邮箱:gaoqiang3411@163.com
  • 高温高压光学浮区法单晶炉在锂离子电池领域最新应用进展
    锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等优势,在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),因此,研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal of Crystal Growth。作者所采用的高压光学浮区炉为德国SciDre公司的HKZ高压光学浮区法单晶炉。温度梯度分布[1]XRD图谱及晶体实物图片[1] 德国SciDre公司推出的HKZ高温高压光学浮区法单晶炉高可实现3000℃及以上的生长温度,晶体生长腔大压力可达300 bar,可实现10-5 mbar的高真空环境,适用于生长各种超导材料、介电材料、磁性材料、电池材料等各种氧化物及金属间化合物单晶生长。德国SciDre公司推出的HKZ系列高温高压光学浮区炉外观图参考文献:[1]. Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556, 2021, 125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • “超级沙”可高效吸附水中重金属离子
    据英国广播公司(BBC)6月24日报道,美国科学家将普通沙子涂上便宜且来源丰富的氧化石墨,使其变身为“超级沙”,能有效地除去水中的汞和染料分子,普通沙子过滤10分钟就会饱和,而“超级沙”吸收重金属可超过50分钟,净水能力提高了5倍。这种成本低廉的实用产品可广泛应用于发展中国家,相关论文发表在美国化学学会出版的《应用材料与界面》杂志上。   参与此项研究的美国莱斯大学的高薇(音译)表示,当水被病原体、有机污染物和重金属离子污染时,普通粗沙的净化效率比细沙低,但细沙存在过滤速度慢的缺点。他们将具有很强吸附能力的氧化石墨同普通粗沙混合在一起放入水中,然后将混合物加热到105摄氏度,待水挥发掉,就得到了这种水流通过量大、净水效率更高“超级沙”。   该研究的领导者、莱斯大学的普利克尔阿加延表示,为了使该“超级沙”能有针对性地吸附污水中的某些有机污染物或特定金属,可对氧化石墨进行修改。   澳大利亚莫纳什大学的梅耐克马巨德表示,这项技术的另一优势是便宜,“超级沙”的性能可与市面上的活性炭相媲美,但却使用的是便宜且储量丰富的氧化石墨,如果能在室温下制造,会更具成本优势。   世界卫生组织(WHO)表示,撒哈拉以南非洲国家仅有60%的居民、大洋洲仅有50%的居民能方便地获得饮用水。用沙子净化水已有6000多年的历史了,这种涂了氧化石墨的“超级沙”有望让这些国家和地区的人民更方便地获得饮用水。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制