当前位置: 仪器信息网 > 行业主题 > >

碘溴苄

仪器信息网碘溴苄专题为您提供2024年最新碘溴苄价格报价、厂家品牌的相关信息, 包括碘溴苄参数、型号等,不管是国产,还是进口品牌的碘溴苄您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘溴苄相关的耗材配件、试剂标物,还有碘溴苄相关的最新资讯、资料,以及碘溴苄相关的解决方案。

碘溴苄相关的方案

  • 海能仪器:自动熔点仪法检测溴盐的熔点
    溴盐,即溴离子和金属离子铸成的盐类,溴盐有缓解肌肉紧张和镇静的作用,应用于食品添加剂,饲料添加剂,日用化工原料,医药工业原料,印染整助剂等行业。在有机化学领域中,对于纯粹的有机化合物,一般都有固定熔点。熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。本文采用全自动熔点仪法来检测溴盐的熔点,操作简单、快速、结果准确。
  • JH70全自动熔点仪检测溴盐的熔点
    1 前言 嗅盐用来提高我们的身体的灵活度和注意力,很多人认为瞬间增加了他们的力量。但研究表明,嗅盐在运动中并不能增加我们的肌肉力量,但是看起来的效果很可能是注意力集中的心理影响。溴盐,即溴离子和金属离子铸成的盐类,溴盐有缓解肌肉紧张和镇静的作用,应用于食品添加剂,饲料添加剂,日用化工原料,医药工业原料,印染整助剂等行业。在有机化学领域中,对于纯粹的有机化合物,一般都有固定熔点。熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。本文采用全自动熔点仪法来检测溴盐的熔点,操作简单、快速、结果准确。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的一溴二碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 土壤和沉积物多溴联苯的测定高分辨气相色谱-高分辨质谱法
    本文使用高分辨双聚焦磁式质谱仪DFS(德国,不莱梅)对土壤和沉积物中多溴联苯的含量的检测方法进行了气相色谱质谱方法开发及条件优化。多溴联苯同系物共209种,对209种化合物都进行精确的定性定量比较困难,受限于市场化的标准物质,检测的必要性和方法的复杂性,我们选择20个多溴联苯单体进行检测,采用同位素稀释法二级内标法定量。净化方式选择多层硅胶柱净化。色谱柱选择:30m(柱长)*0.25um(内径)*0.1um(膜厚),进样方式采用脉冲不分流进样(Surge Splitless),质谱分辨率R 5000(10%峰谷定义)。
  • 离子色谱法(IonPac AS27)测定饮用水中一氯乙酸、 一溴乙酸、一碘乙酸、二氯乙酸、二溴乙酸和三氯乙酸 6种卤乙酸含量
    卤代乙酸(haloacetic acids,HAAs)是饮用水加氯消毒时氯与水中存在的天然有机物反应生成的一类消毒副产物。通常所说的卤代乙酸包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸、三溴乙酸、溴氯乙酸、一氯二溴乙酸和一溴二氯乙酸等9种。在已知的加氯消毒产生的副产物中,卤代乙酸含量约占总量的13%左右,其中以二氯乙酸(DCAA)、三氯乙酸(TCAA)含量最高, 致癌风险最大,其致癌风险分别是三氯甲烷的50倍和100倍[1]。因此,美国环境保护署(USEPA)规定饮用水中二氯乙酸,三氯乙酸的含量不得超过30 μg/L,而世界卫生组织(WHO)则规定饮用水中二氯乙酸和三氯乙酸的含量分别不得超过50和100 μg/L。我国最新的饮用水规范《GB 5749-2022 生活饮用水卫生标准》[2]中规定生活饮用水中二氯乙酸和三氯乙酸的最高含量分别不允许超过 50 μg/L和100 μg/L。碘代消毒副产物是一类新的消毒副产物,是由工业污染和海水带来的高浓度碘离子与氯化溴化消毒副产物作用形成。由于碘原子的亲脂性较强,故其细胞和遗传毒性明显强于氯、溴乙酸。例如碘乙酸的遗传毒性是溴乙酸的2.95倍,是氯乙酸的48倍。我国最新的饮用水规范《GB 5749-2022 生活饮用水卫生标准》[2]中规定生活饮用水中碘乙酸的最高允许含量为20μg/L。本文采用高容量的IonPac AS27阴离子交换色谱柱在35°C柱温下,可同时分析饮用水中6种卤乙酸物(即MCAA、MBAA、MIAA、DCAA、DBAA和TCAA),目标物及与常规离子之间分离度良好,无相互干扰。与传统气相方法相比,本方法分析卤代乙酸无需衍生化等复杂的前处理操作,直接进样即可,方便、快捷、高效;同时本方法采用OH体系,系统背景及噪声更低,低含量的消毒副产物检测结果更加准确、可靠。
  • 使用 HPLC-ICP-MS 对婴儿配方奶中的碘和溴进行同步形态分析
    将 Agilent 1260 Infinity II 液相色谱系统与 Agilent 8900 ICP-MS/MS 联用,首次测定了婴儿配方奶样品中的 4 种卤素形态。使用阴离子交换色谱柱可在约 6.5 分钟内实现基线分离,I− 、IO3− 、Br− 和 BrO3− 的检测限均小于等于 0.67 ppb。婴儿配方奶的形态分析提供了关于碘生物有效性和溴酸盐潜在风险的有用信息。此外,还采用 8900 ICP-MS/MS 进行了碘和溴的总元素测定。婴儿配方奶 SRM 中碘的实测值与标准值非常一致,回收率为 103%。127I− 的实测浓度标准值之间也具有很好的一致性,回收率为 101%。溴 SRM 未提供标准值。本研究中分析的四种市售婴儿配方奶样品中未检出碘酸盐或溴酸盐,仅含有碘化物和溴化物。样品中的总碘含量范围为25.9–54.5 µ g/100 kcal。该范围符合美国和中国婴儿配方奶中的碘标准,但超出了 29 µ g/100 kcal 的欧盟最高限量。为测试该方法对准确测定婴儿配方奶样品中四种低浓度形态的适用性,在 20 和 40 ppb 下进行了加标回收率测试。结果实现了基线分离,在多次 100 µ L 进样过程中表现出良好的重现性。
  • 垃圾堆旁边公路上恶臭的检测试验-德国AIRSENSE嗅辨仪
    德国AIRSENSE公司的PEN3型嗅辨仪在这次的环境恶臭气体的分析检测中,可以说达到了很好的试验效果。采用EDU 吸附浓缩热解析装置联用,效果也是极其明显。并且通过参照和建立国家标准相对应的模板文件,可对环境空气进行监测,能够直接测定出其恶臭强度OU值。
  • 苄达赖氨酸在ChromCore 120 C18上的分离(中国药典2020)
    中国药典要求苄达赖氨酸的系统适用性溶液色谱图中, 理论板数按苄达赖氨酸峰计算不低于 3000, 苄达赖氨酸峰与杂质 I 峰的分离度应符合要求。
  • 盐酸溴己新-UHPLC在ChromCore120C18上的分离(中国药典2020)
    采用纳谱分析1.8μm的ChromCore 120 C18色谱柱对盐酸溴己新系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于盐酸溴己新中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 苄达赖氨酸-UHPLC在ChromCore120C18上的分离(中国药典2020)
    中国药典要求苄达赖氨酸的系统适用性溶液色谱图中, 理论板数按苄达赖氨酸峰计算不低于 3000, 苄达赖氨酸峰与杂质 I 峰的分离度应符合要求。
  • 盐酸溴己新在3μm的ChromCore120C18上的分离(中国药典)
    采用纳谱分析3μ m的ChromCore 120 C18色谱柱对盐酸溴己新系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于盐酸溴己新中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 盐酸溴己新在ChromCore120C18上的分离(中国药典2020)
    采用纳谱分析5μ m的ChromCore 120 C18色谱柱对盐酸溴己新系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于盐酸溴己新中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 苄达赖氨酸在3μm的ChromCore120C18上的分离(中国药典)
    中国药典要求苄达赖氨酸的系统适用性溶液色谱图中,理论板数按苄达赖氨酸峰计算不低于3000,苄达赖氨酸峰与杂质I 峰的分离度应符合要求。
  • 苄达赖氨酸在ChromCore120C18上的分离(中国药典2020)
    采用纳谱分析5μ m的ChromCore 120 C18色谱柱对苄达赖氨酸系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于苄达赖氨酸有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 苄达赖氨酸-UHPLC在ChromCore 120 C18上的分离(中国药典2020)
    采用纳谱分析1.8μm的ChromCore 120 C18色谱柱对苄达赖氨酸系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于苄达赖氨酸中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 高低温交变试验箱出现漏电情况的解决方案
    高低温交变试验箱用于模拟产品在不同环境下的性能。漏电会影响试验结果和人员安全。原因有设备老化、设计问题和操作不当。解决方案包括更换老化元件、优化电气设计、加强操作培训和定期检查维护。预防措施包括定期检查接地、线路和元件,加强维护和保养,提高操作人员的安全意识和技术水平。高低温交变试验箱是一种用于模拟产品在不同环境下的性能的设备。然而,在使用过程中,如果设备出现漏电现象,不仅会影响试验结果,还会对人员安全造成威胁。那么,漏电现象的原因是什么呢?一般来说,设备老化、设计问题和操作不当都有可能导致漏电。为了解决漏电问题,我们可以采取以下措施:1. 更换老化元件:对于已经老化的元件,应及时进行更换,以避免因元件老化而引起的漏电问题。2. 优化电气设计:对于设备的设计问题,可以通过优化电气设计来解决。例如,增加绝缘层、改善接地等措施,都可以有效地防止漏电。3. 加强操作培训:操作人员在使用设备时,必须严格遵守操作规程。因此,加强操作培训,提高操作人员的安全意识和技术水平,是防止漏电的重要措施。除了以上解决方案,我们还可以采取以下预防措施来防止漏电:1. 定期检查接地、线路和元件:在使用设备前,必须对设备的接地、线路和元件进行定期检查,以确保设备的正常运转。2. 加强维护和保养:对于设备的使用过程中,应定期进行维护和保养,以保持设备的良好状态。3. 提高操作人员的安全意识和技术水平:操作人员是设备使用的直接责任人,因此,提高操作人员的安全意识和技术水平,是防止漏电的关键。
  • 变温光致发光在InGaAs/GaAs量子点研究中的应用
    在利用带内载流子跃迁的太赫兹应用领域内,InGaAs/GaAs和InAs/GaAs量子点被认为是非常合适的材料。这类应用包括化学生物媒介的远程探测、红外计数测量、激光雷达、污染监测、分子和固态光谱、非损伤医学诊断。通过调整量子点的大小、形状和结构,量子点的类原子光电特性可被优化用于特定的应用。变温光致发光光谱是一种分析含有量子点和量子阱材料的有效手段,辅助优化上述InGaAs/GaAs分子的性质。制冷一般采用两种冷冻机,一种是液氮或液氦制冷;另一种是封闭循环冷冻机,冷冻液在系统中循环。冷冻样品被激光激发,光致发光信号通过光学接口被耦合进光谱仪。
  • 高效阴离子交换色谱—脉冲安培检测模拟海水中痕量溴和碘离子
    本文采用 IonPac AS20 高效阴离子交换分析柱可基线分离 Cl-、Br- 和 I-,并运用脉冲安培检测器测定含氯量较高的水样(模拟海水)中 Br- 和 I-。由于安培检测器对氯响应较低,因此可消除高浓度氯离子对溴离子色谱峰的干扰。该分析方法具有较好的选择性,且有很高的灵敏度和准确度,适用于各类水样中 Br- 和 I- 的同时测定。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的二氯碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 如何解决高低温交变试验箱常跳电的问题
    高低温交变试验箱是测试产品耐候性和稳定性的重要设备,但常出现跳电问题。为解决此问题,需排查原因并采取相应措施修复改善。定期检查、规范操作、保持环境清洁和及时更新软件和硬件是预防措施。解决此问题需多方面入手,加强日常维护和保养,提高实验结果准确性和可靠性。
  • 离子色谱法同时测定饮用水中一碘乙酸和二碘乙酸的含量
    碘代消毒副产物是一类新的消毒副产物,是由工业污染和海水带来的高浓度碘离子与氯化溴化消毒副产物作用形成。由于碘原子的亲脂性较强,故其细胞和遗传毒性明显强于氯、溴乙酸。例如碘乙酸的遗传毒性是溴乙酸的2.95倍,是氯乙酸的48倍[1]。我国最新的饮用水规范《GB 5749-2022 生活饮用水卫生标准》[2]中规定生活饮用水中碘乙酸的最高允许含量为20 μg/L。目前针对一碘乙酸及二碘乙酸的分析方法较少报道,本文采用高容量的IonPac AS19阴离子交换色谱柱在22℃柱温下,可同时分析饮用水中一碘乙酸及二碘乙酸(MIAA和DIAA),目标物及与常规离子之间分离度良好,无相互干扰。本方法分析卤代乙酸无需衍生化等复杂的前处理操作,直接进样即可,方便、快捷、高效;同时本方法采用OH体系,系统背景及噪声更低,低含量的卤乙酸检测结果更加准确、可靠。
  • 电位滴定法溴化钠中溴含量量
    在工业生产溴化钠中,其含量作为生产中的基本指标,是衡量产品品质的基本要求之一,本方法采用硝酸银在硝酸酸性条件下滴定溴化物中的溴,使之生成沉淀,进而计算出溴含量。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的氯碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘乙醛
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的二碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘乙酸乙酯
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 测定溴的含量的应用方案(分光光度法)
    用分光光度法和沉淀滴定法分别测定溴的含量,比较其分析结果,以证明分光光度法测定溴的含量是切实可行的。
  • 盐酸溴己新在ChromCore PFP上的分离
    盐酸溴己新化学名为N-甲基-N-环己基-2-氨基-3,5-二溴苯甲胺盐酸盐,白色或类白色的结晶性粉末;无臭,无味。在甲酸中易溶,在甲醇中微溶,在乙醇和水中极微溶解。本品的熔点为约239℃,熔融时同时分解。本次参考中国药典二部2020年版,采用高效液相色谱法(HPLC),选用纳谱分析ChromCore PFP色谱柱对盐酸溴己新进行检测,盐酸溴己新峰峰形良好,各杂质峰具有良好的峰形和分离度,该方法操作简单,灵敏度高,重复性好,符合药典要求,为该药物的质量保证提供检测依据。
  • 电子鼻、气相色谱-嗅辨仪和气相色谱-质谱联用技术结合识别豉香白酒中异嗅物质
    通过谱图比对及统计学分析,找出2款酒样中具有显著性差异的物质,并最终确定了2款白酒中嗅味差异物质的主要组成。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制