当前位置: 仪器信息网 > 行业主题 > >

并四苯

仪器信息网并四苯专题为您提供2024年最新并四苯价格报价、厂家品牌的相关信息, 包括并四苯参数、型号等,不管是国产,还是进口品牌的并四苯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合并四苯相关的耗材配件、试剂标物,还有并四苯相关的最新资讯、资料,以及并四苯相关的解决方案。

并四苯相关的资讯

  • 中国轻工业联合会公开征集对《葡萄酒中2,4,6-三氯苯甲醚、2,3,4,6-四氯苯甲醚、五氯苯甲醚和三溴苯甲醚的测定方法》等122项轻工行业标准计划项目的意见
    根据标准化工作的总体安排,现将申请立项的《日用陶瓷行业绿色工厂评价要求》等122项轻工行业标准计划项目予以公示(见附件1),截止日期为2023年9月18日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件2)并反馈至我部,电子邮件发送至qgbz445@163.com(邮件注明:轻工行业标准立项公示反馈)。联系电话:010-68396445附件: 1. 2023年9月轻工行业标准制修订计划(征求意见稿)2.标准立项反馈意见表中国轻工业联合会质量标准部2023年9月11日相关标准如下:序号标准项目名称制、修订代替标准项目周期(月)1玻璃容器 食品罐头瓶修订QB/T 4594-2013182玻璃容器 牛奶瓶修订QB/T 4622-2013183纸餐具原纸修订QB/T 4033-2010184食品接触用纸和纸板材料及制品专用纸浆修订QB/T 5051-2017185黄瓜罐头修订QB/T 4625-2014186竹笋罐头修订QB/T 1406-2014187果酱类罐头修订QB/T 1386-2017188蛋白质谷氨酰胺酶制定249纤维二糖酶(β-葡萄糖苷酶)制定2410白芸豆提取物制定2411膳食纤维 第2部分:果蔬纤维修订QB/T 5027-20171812吡咯喹啉醌 (吡咯并喹啉醌二钠盐)制定2413红茶菌发酵剂制定2414食用发酵微藻 第2部分:裸藻制定2415预制菜肴 第5部分:水生蔬菜类制定2416特种葡萄酒 第3部分:利口葡萄酒制定2417果酒 第11部分:黑果腺肋花楸果酒制定2418厨房用空调器性能评价技术规范制定2419家用和类似用途咖啡机制定2420普通陶瓷烹调器修订QB/T 2579-20181821精细陶瓷烹调器修订QB/T 2580-20181822食糖预混粉制定2423生活用纸和纸制品 乙二醛含量的测定制定2424纸、纸板和纸制品 铅、砷、镉、铬、汞含量的测定 ICP-MS法制定2425食品中罗汉果甜苷含量的测定制定2426葡萄酒中2,4,6-三氯苯甲醚、2,3,4,6-四氯苯甲醚、五氯苯甲醚和三溴苯甲醚的测定方法修订QB/T 5198-20171827膳食纤维 第1部分:膳食纤维分类导则制定2428食品用益生元通用技术要求制定2429日用陶瓷行业绿色工厂评价要求制定2430食品接触金属制品制造业绿色工厂评价要求制定2431食品接触金属制品制造业绿色供应链管理评价规范制定2432家具绿色工业园区评价导则制定2433节水型企业 纸浆模塑行业制定2434取水定额 纸浆模塑制品制定24
  • 中国RoHS标准修订:新增四项邻苯类有害物质限制
    2024年6月29日,中国RoHS配套的GB/T 26572-2011《电子电气产品中限用物质的限量要求》第1号修改单发布,将于2026年1月1日正式实施。标准详细修订内容请戳这里复习:《中国RoHS标准修订:新增四项邻苯类有害物质限制,2026年1月1日正式实施》中国RoHS的限用物质在本次修订后,新增四项邻苯物质的管控。这标志着中国RoHS与欧盟 RoHS全面接轨。同时代表:自2026年1月1日后,进入《电器电子产品有害物质限制使用达标管理目录》(简称《达标管理目录》)的十二类产品,应满足新版限用物质限量要求。关于中国RoHS2016年7月1日,《电器电子产品有害物质限值使用管理办法》(行业内亦称中国RoHS 2.0/《管理办法》)正式实施,适用于在我国境内生产、销售和进口的电器电子产品。《达标管理目录》是为实施电器电子产品有害物质限制使用管理而制定的目录。本次标准修订只是引用文件变化,中国RoHS管控的原则没变,可参考《管理办法》和FAQ。岛津拥有应对中国RoHS测试的整体解决方案岛津作为一家科学仪器公司,伴随全球电子行业的企业成长,能够提供测试设备在内的整体解决方案,帮助行业用户全面应对RoHS有害物质检测。快速筛选方案★ Pb/Cd/Hg/Cr/Br能量型X射线荧光光谱仪EDX-LE Plus★ 邻苯二甲酸酯、多溴联苯和多溴二苯醚热裂解-气相色谱质谱仪Py-Screener准确定量方案★ Pb/Cd/Hg原子吸收分光光度计 等离子体发射光谱仪AA-7800 ICPE-9820★ Cr6+紫外可见分光光度计UVmini-1280★ 邻苯二甲酸酯、多溴联苯和多溴二苯醚气相色谱质谱联用仪GCMS-QP2050系列本文内容非商业广告,仅供专业人士参考。
  • 工业和信息化部公开征集对《葡萄酒中2,4,6-三氯苯甲醚、2,3,4,6-四氯苯甲醚、五氯苯甲醚和三溴苯甲醚的测定方法》等153项行业标准、8项行业标准外文版和6项推荐性国家标准计划项目的意见
    根据我部标准化工作的总体安排,现将申请立项的《乘用车电动助力转向系统性能匹配技术要求及试验方法》等153项行业标准、《粗碳酸钴》等8项行业标准外文版项目和《工业互联网平台基于工业互联网的工业企业碳管理通用要求》等6项推荐性国家标准计划项目予以公示(见附件1、2、3),截止日期为2024年5月7日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件4)并反馈至我司,电子邮件发送至KJBZ miit.gov.cn(邮件主题注明:标准立项公示反馈)。公示时间:2024年4月8日—2024年5月7日联系电话:010-68205241地址:北京市西长安街13号工业和信息化部科技司邮编:100804附件:1.《乘用车电动助力转向系统性能匹配技术要求及试验方法》等153项行业标准计划制修订计划(征求意见稿)2.《粗碳酸钴》等8项行业标准外文版计划(征求意见稿)3.《工业互联网平台基于工业互联网的工业企业碳管理通用要求》等6项推荐性国家标准制修订计划(征求意见稿)4.标准立项反馈意见表工业和信息化部科技司2024年4月8日食品相关行业标准计划制修订计划如下:序 号项目编号项目名称制修订代替标准项目周期 (月)技术委员会或技术归口单位1QBCPZT0666-2024蛋白质谷氨酰胺酶制定24全国食品工业标准化技术委员会工业发酵分技术委员会2QBJCZT0667-2024膳食纤维 第1部分:膳食纤维分类导则制定24全国食品工业标准化技术委员会工业发酵分技术委员会3QBJCZT0668-2024食品用益生元通用技术要求制定24全国食品工业标准化技术委员会工业发酵分技术委员会4QBCPZT0669-2024食用发酵微藻 第2部分:裸藻制定24全国食品工业标准化技术委员会工业发酵分技术委员会5QBCPXT0670-2024果酱类罐头修订QB/T 1386-201718全国食品工业标准化技术委员会罐头分技术委员会6QBCPXT0671-2024黄瓜罐头修订QB/T 4625-201418全国食品工业标准化技术委员会罐头分技术委员会7QBCPXT0672-2024竹笋罐头修订QB/T 1406-201418全国食品工业标准化技术委员会罐头分技术委员会8QBCPXT0702-2024膳食纤维 第2部分:果蔬纤维修订QB/T 5027-201718全国食品工业标准化技术委员会工业发酵分技术委员会9QBCPXT0703-2024玻璃容器 食品罐头瓶修订QB/T 4594-201318全国食品直接接触材料及制品标准化技术委员会10QBCPXT0704-2024纸餐具原纸修订QB/T 4033-201018全国食品直接接触材料及制品标准化技术委员会11QBFFZT0792-2024食品中罗汉果甜苷含量的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会12QBFFXT0795-2024葡萄酒中2,4,6-三氯苯甲醚、2,3,4,6-四氯苯甲醚、五氯苯甲醚和三溴苯甲醚的测定方法修订QB/T 5198-201718全国酿酒标准化技术委员会13QBCPZT0686-2024家用和类似用途咖啡机制定24全国家用电器标准化技术委员会14QBCPXT0701-2024普通陶瓷烹调器修订QB/T 2579-201818全国日用陶瓷标准化技术委员会
  • 生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》等5项国家生态环境标准
    为支撑相关水污染物排放标准、土壤风险管控标准实施与重点流域水生态监测,服务固体废物处理处置,近日,生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)等5项国家生态环境标准。  《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)为首次发布,适用于土壤和沉积物中13种苯胺类和2种联苯胺类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准实施。本标准的发布实施填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,可为建设用地土壤风险管控、土壤污染修复提供监测技术支撑。  《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)为首次发布,适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石和冶炼炉渣等固体废物中16种无机元素和7种氧化物的测定,支撑《农用污泥污染物控制标准》(GB 4284-2018)、《水泥窑协同处置固体废物环境保护技术规范》(HJ 662-2013)等标准实施。与已有固体废物无机元素的监测分析方法标准相比,本标准适用范围增加了污泥、污染土壤等介质,前处理方法简单、分析速度快,有助于提高分析效率。  《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中可吸附有机卤素(AOX)的测定,支撑《污水综合排放标准》(GB 8978-1996)等实施。与《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB/T 15959-1995)相比,本标准调整了适用范围,细化了校准、样品测定和结果表示等内容,增加了干扰和消除、质量保证与质量控制等内容,更好地满足生态环境监测实际工作需要。  《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)均为首次发布,适用于地表水中浮游植物的测定。浮游植物是水生生物的组成部分,作为一个重要的营养级代表,是水生态监测中不可缺少的内容。浮游植物密度也是地表水水质表征、水华预警等的重要指标之一。上述两项标准作为地表水中浮游植物的监测方法,可为开展水生态监测,服务流域生态环境保护工作提供支撑。  上述五项标准的发布实施,进一步完善了生态环境监测标准体系,将为规范开展生态环境监测工作,为深入打好污染防治攻坚战提供相关监测方法支撑。
  • 省钱省时绿色快速测“邻苯”——Sigma-Aldrich Supelco 很给力
    省钱省时绿色快速测&ldquo 邻苯&rdquo &mdash &mdash Sigma-Aldrich Supelco 很给力 Sigma-Aldrich 公司的 Supelco 固相微萃取(SPME)摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。不仅仅是在实验室,如此便捷同样可以拓展延伸到户外,便携的采样装置,就是这么简单。(SPME + GCMS 快速、灵敏检测邻苯二甲酸酯) 按照美国环境总署US EPA 8061A, 506和606方法,Supelco的气相色谱柱Equity-1701(cat no. 28372-U)的出色表现邻令人艳羡(请见谱图)。 Sigma-Aldrich 黄金品质的混合标准品,同样一如既往的支持您严谨客观的分析检测工作。即便您有苛刻特殊的要求,我们同样可以为您订制您需要的标品。从前处理到分析耗材,在Sigma-Aldrich都能找到您所需要的。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 图1. Equity-1701分析17种邻苯二甲酸酯 更多相关详细信息请点击以下连接,或至Sigma-Aldrich官方网站。 http://www.instrument.com.cn/netshow/SH101420/download.asp 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318 适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 Equity-1701,30 m× 0.25 mm I.D × df 0.25 &mu m 28372-U PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 482236种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 客服/订购热线:800-819-3336 400-620-3333 客服/订购Email: OrderCN@sial.com
  • 气相色谱-三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯
    建立了气相色谱-三重四极杆串联质谱法测定乳粉中22种邻苯二甲酸酯含量的方法。乳粉样品以水溶解,通过乙腈提取,以氯化钠盐析后,采用气相色谱-三重四极杆串联质谱的多反应监测模式( MRM) 进行定量分析。结果表明,采用基质匹配标准曲线,在5 ng/mL~500n g/mL范围内,22种邻苯二甲酸酯线性关系良好,相关系数(r)均大于0.99,方法检出限在1.0 μg/kg~5.0 μg/kg范围,定量限在3.0 μg/kg~15.0 μg/kg范围。在奶粉基质中3个加标水平下邻苯二甲酸酯的平均回收率在82.4%~111.4%之间,平行测定6次相对标准偏差(RSD)2.4%~9.5%。该方法高效便捷、灵敏度高、稳定性好,适用于乳粉中22种邻苯二甲酸酯检测。 气相色谱_三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯_王金翠.pdf
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下: 标准品 英文名 货号 包装 单价 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 280.8 邻苯二甲酸二乙酯DEP Diethyl phthalate36737-1G 1g 267.93 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 533.52 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 267.93 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 341.64 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 1932.84 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 238.68 邻苯二甲酸二环己酯 DCHP Dicyclohexyl phthalate 36908-250MG 250mg 310.05 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 401.31 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 48557 1g 527.67 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 267.93 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 299.52 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 849.42 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 417.69 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 506.61 邻苯二甲酸二异丙酯DIPrP Diisopropyl phthalate 80137-50ML 50ML 2190.24 邻苯二甲酸二烯丙酯DAP Diallyl phthalate 36925-250MG 250MG 341.64 邻苯二甲酸二丙酯DPrP Dipropyl phthalate 45624-250MG 250MG 267.93 邻苯二甲酸二庚酯DHP Diheptyl phthalate 454818-10G 10G 865.80 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml 453.96 BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml 424.71 BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml424.71 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml 464.49 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml 475.02 DEHP BBP DBP DNOPDEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml 475.02 DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 咨询 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 110 17种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 邻苯二甲酸二异壬酯 68515-48-0 DINP 色谱溶剂         正已烷 农残级 34484-2.5L 2.5L 418.86 乙酸乙酯 农残级 31063-2.5L 2.5L 418.86 环己烷 农残级 34496-2.5L 2.5L 528.84 石油醚,40-60 ° C 农残级 34491-2.5L 2.5L 645.84 乙醇 色谱级 34964-2.5L 2.5L 1744.47 乙酸 LC-MS级 49199-50ML-F 50ML 603.72 异辛烷 农残级 34499-2.5L 2.5L 1690.65 甲醇 农残级 34485-2.5L 2.5L 279.63 试剂         无水硫酸钠 农残级 35896-500G 500G 308.88 气相柱         SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.25&mu m 28471-U 1根 4699.89 SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.10&mu m 28467-U 1根 4699.89 液相柱         Ascentis® C18液相柱 5&mu m,25cm× 4.6mm 581325-U 1根 3239.73 Ascentis® C18保护柱 5&mu m,2cm× 4.0mm 581373-U 1kit 1077.57 固相萃取产品         防交叉污染固相萃取装置 12位 57044 1套 5717.79Supelclean&trade LC-Si 500mg/6ml 505374 30支/盒 741.78 Supelclean&trade LC-Si 1g/6ml(玻璃管,PTFE筛板 54335-U 30支/盒 3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18 500mg/6ml(玻璃管,PTFE筛板 54331-U 30支/盒 2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil® 500mg/3ml(PTFE筛板) 57058 54支/盒 1736.28 装置         Supelco索氏抽提器 200mL 64826 1套 4186.26 产品适用的国家标准: GB/T 21911-2008 食品中邻苯二甲酸酯的测定 GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定 GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定 GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定 SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法 SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法 SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法 WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
  • 美国拟议扩展儿童产品CPSIA邻苯二甲酸酯限制令
    美国国会近日提出一项议案以修订《2008消费品安全改进法案》(CPSIA)。议案拟议扩展儿童玩具和护理用品的邻苯二甲酸酯限制令。   据悉,2008年8月,美国总统乔治· W· 布什签署CPSIA(公法110-314)使其成为正式法律。法律对儿童产品制造商提出了额外的责任要求,也增强了消费品安全委员会(CPSC)的行政权力。   根据CPSIA,六种形式的邻苯二甲酸酯(BBP、DBP、DEHP、DIDP、DINP和DNOP)被限制用于玩具和儿童护理用品。2011年8月,当奥巴马总统正式签署HR 2715法案后,只要求这些邻苯二甲酸酯物质的限制令仅适用于可接触材料。   2014年3月12日,美国国会引进法案S 2120,即&ldquo 扩展含有邻苯二甲酸酯儿童产品的制造、分销和进口等目的的禁令的法案&rdquo 。拟议法案将修订CPSIA第108条(公法110&ndash 314 15 U.S.C. 2057c),将针对儿童玩具和护理用品的邻苯二甲酸酯限制范围扩展至全部儿童产品。法案并没有提出任何具体的执行日期。   表格一   TABLE1. 编者按: 鉴于此,本网提醒涉及对美出口儿童产品的企业,一方面注意关注该议案的后续动向,对可能需要进行的相关技术指标的检测认证工作做到心里有数。另一方面,未雨绸缪,预先制定该方案一旦实施后所需要采取的应对措施。譬如:通过替代物的使用或者产品升级,避免邻苯二甲酸酯在生产中的使用;对于暂时不得不继续使用该类化学品的企业,要注意质量控制以及对出货前限量的检测,不要因超标导致退货,进而带来不必要的损失;以及注意对相关分析方法/标准的学习收集,针对新法规做出积极的调整,在越来越严格的国际市场中把握好主动权。
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • 快速灵敏,坚实可靠 | QSight LC-MS/MS轻松应对土壤和沉积物中苯胺类和联苯胺类化合物的测定
    GB 36600-2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》于2018年正式实施,是我国开展土壤污染防治的重要支撑技术文件。该标准规定了保护人体健康的建设用地土壤污染风险筛选值和管制值,以及监测、实施与监督要求。其中苯胺作为45项基本项目之一,是建设用地初步调查阶段土壤污染风险筛选的必测项目。Tips:苯胺类化合物是指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定的优先控制污染物。关于苯胺的标准测定问题按照GB36600-2018土壤环境质量标准表3推荐的检测方法,土壤中苯胺按照《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ834)来进行检测,而HJ834方法中并没有“苯胺”参数,给检测工作带来一定困扰。据权威解释:实验室按《合格评定化学分析方法确认和验证指南》(GB/T27417-2017)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)和《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ 834-2017)相关要求做好方法验证,确保方法检出限、测定下限、选择性、线性范围、测量范围、基体效应影响、准确度、精密度和测量不确定度等满足GB36600-2018苯胺风险筛选值和管制值要求的基础上,可以使用HJ 834-2017开展土壤中苯胺的监测工作。HJ 1210-2021《土壤和沉积物13种苯胺类和2种联苯胺类化合物的测定液相色谱-三重四极杆质谱法》首次发布,明确规范了土壤和沉积物中苯胺类和联苯胺类化合物的测定方法,并将自2022年6月1日起实施。“土壤或沉积物中苯胺类和联苯胺类目标化合物,在碱性条件下提取,经净化、浓缩、定容后,用液相色谱-三重四极杆质谱仪分离检测。根据保留时间和特征离子定性,内标法定量。”土壤样品成份复杂、基体干扰因素多、调查样品量大,与常规环境样品分析相比更具挑战。珀金埃尔默QSight三重四极杆液质联用仪,灵敏稳定、坚实可靠,该系统具有独特专利的HSID自清洁技术,应对各种复杂的土壤和沉积物基质样品分析时,无需清洗维护,不损失灵敏度,即可完成大量样品的分析,节省维护时间及成本。PerkinElmer LX50 UHPLC-QSight系列三重四级杆质谱仪灵敏稳定,不惧污染同轴高温加热离子源,提高离子化效率创新的加热诱导脱溶剂和层流离子传输技术,提高灵敏度的同时免于维护超快正负模式切换时间,大幅提高工作效率新立式三重四级杆质谱仪,极大节省空间QSight LC-MS/MS应对土壤和沉积物中苯胺和联苯胺类化合物的测定分析解决方案采用QSight LC-MS/MS液质联用系统,成功建立了土壤和沉积物中15种苯胺类和联苯胺类化合物的分析方案,根据保留时间及离子比率进行快速准确定性,其检出限完全满足HJ1210-2021标准中的检测限量要求,轻松应对日常检测分析要求。PerkinElmer LX50 UHPLC参数色谱柱:Quasar SPP C18,2.1×100mm,2.6μm柱温:35℃流速:0.3mL/min进样量:10μLTime/minA/%B/%水(0.01%甲酸)甲醇(0.01%甲酸)0.09552.09555.070307.05959.05959.295512.0955表1 苯胺类和联苯胺类化合物液相色谱梯度洗脱表质谱参数采用PerkinElmer QSight 210三重四极杆液质联用系统进行分析,离子源参数见表2。离子源ESI+喷雾电压120雾化气
  • FUN肆奔跑,悦动四方|四方光电2024年环湖健康跑活动圆满落幕
    4月20日,四方光电"FUN肆奔跑,悦动四方"环湖健康跑活动在美丽的杨桥湖湖畔隆重开跑。本次健康跑活动由四方光电、湖北经济学院体育经济与管理学院联合主办,湖北经济学院杜君鹏教授、四方光电总经理刘志强及公司300多名员工组成的17支参赛团队参与了此次活动。&emsp &emsp 青春洋溢 蓄势待发&emsp &emsp 当天清晨,参赛者们便身着统一的运动T恤,在签到处蓄势待发,焕发出青春的活力与热情。工作人员清点人数、引领参赛员工签到领取物资,确保安全措施落到实处。&emsp &emsp 参赛人员签到&emsp &emsp 开幕式在湖北经济学院体育场举办,四方光电总经理刘志强在致辞中对湖北经济学院的领导以及志愿者对本次活动的大力支持表示衷心感谢。刘总希望大家尽情享受这次健康跑活动,并在日常生活中坚持运动,增进健康,磨炼意志,鼓励大家一起跑起来,跑出快乐,跑出健康,跑出四方人的精神风貌和精神状态!&emsp &emsp 开幕式最后,杜教授宣布了此次活动的规则,随后,热身运动中,大家在专业教练的带领下,拉伸筋骨,调动全身的热情与力量,为接下来的跑步做好充分准备。&emsp &emsp 枪鸣风动,FUN肆开跑&emsp &emsp 随着裁判员的发令枪响,运动员们迈着轻盈的步伐,从起点线一跃而出,踏上了环绕着湖泊的跑道。绿树成荫的跑道与湖边的波光倒影交错构图,形成了一幅动静结合的美丽画卷。参赛者们奋力奔跑,团队成员们互相鼓励,相互扶持,共同享受着跑步带来的愉悦和自由。&emsp &emsp 奋力奔跑&emsp &emsp 本次环湖跑跑道全长10km,共设置10km女子个人赛、10km男子个人赛以及10km团队赛三大类别,在全程设有多个能量补给站,为跑者提供水和能量棒,确保每位参与者能够在轻松愉快中完成比赛。这不仅考验了跑者的体力与耐力,更凸显了四方光电对员工健康生活态度的重视。&emsp &emsp 快乐奔跑&emsp &emsp 在终点处,无论是率先冲线的健将,还是携手同行的团队,都被一阵热烈的掌声和呐喊声迎接。每一位完成赛事的跑者都获得了纪念证书,象征着健康与快乐的收获,并且还给女子、男子组个人赛和团队赛前五名颁发了奖杯与奖品。这些精彩瞬间,成为员工们美好记忆中的一部分。&emsp &emsp FUN肆奔跑 悦动四方&emsp &emsp 在欢声笑语中,本次健康跑活动落下了帷幕,但悦动的氛围依旧在杨桥湖畔回响。此次健康跑活动,不仅锻炼了身体,增进了友谊,更体现了团队合作的精神。全体四方人将团结一心,以奔跑之姿,向着下一个新征途阔步向前。
  • JASIS 2017:杭州安诺奔跑正当时
    本月6日-8日,杭州安诺海外营销部一行人浩浩汤汤前往日本JASIS分析仪器展。此次杭州安诺参与展会,与海外展商展开热烈讨论!此地,全球展商齐聚一堂,切磋交流,展会盛况空前!2017日本JASIS分析仪器展9月6日-8日在日本幕张举办JASIS展会前身为JAIMA,始于1962年。2012年,展会首次由JAMIMA与LSIA联合举办,并更名为JASIS。如今,日本JASIS与美国Pittcon、德国Analytica和中国BCEIA齐名,被誉为分析仪器行业四大展会。绝大部分参展商表示展会效果很好,并且在展会通过产品的实体感官和公司的企业形象对彼此有了更深刻的合作,促成合作的展商不在少数。今年展会于9月6日-8日举办,吸引了500家仪器厂商参展,展位达1300余个。参展企不仅有日立、岛津、HORIBA、JASCO等日本本土仪器厂商,还有安捷伦、赛默飞、珀金埃尔默、布鲁克、SCIEX等欧美企业,北京欣维尔、杭州安诺等中国仪器展商也组团亮相。在生命科学展区,大约有8000人次到场,更有仪器先进专业的讲演会议值得一看!此次杭州安诺也带来了近几年研究的新产品:环境监测PM2.5滤膜,与全球的厂商朋友们一同分享!环境空气,不论在中国还是在日本、美国等全国各地都是极大的关注点,准确采样与专业分析相结合,环境监测和先进仪器分析是相辅相成的。致力于环境空气颗粒物的准确测量和仪器的防尘保护正是安诺过滤的夯实之路!ANOW展位6A-404杭州安诺成立于1989年,前身富春江精微膜分离厂,二十多年来,深耕过滤行业,致力于过滤解决方案的研究,为全球的用户提供一流的过滤产品与解决方案。此次展会,安诺与新老客户也针对过滤产品进行讨论和互相学习。安诺成员与展商亲密交流ANOW核心展品在JASIS2017上,安诺成员与日立、岛津、安捷伦、北京欣维尔等展商相继沟通,在互相的交流过程中,安诺深深感触到完整的解决方案才是企业长久发展的核心。安诺有众多高品质的过滤产品,多年来积累了众多的终端客户的应用,并注重于专业人员的培训和实地学习。过滤之路,安诺奔跑,就现在!
  • 烈日下的五星级服务 | 辗转四地奔波1000多公里,为客户送上星级服务!
    正值三伏天全国各地开启“蒸煮”模式气温飙升至40℃,热到怀疑人生高温下有一批坚守的人他们从一座城到另一座城奔波在客户之间在烈日下展现着五星级服务的精神高温天、暴雨季,盛瀚售后安装调试工作异常忙碌。上周,售后服务工程师舒海鸥奔波1000多公里,辗转四地服务客户,赢得客户信赖。不是在服务客户就是在服务客户的路上从长寿区到重庆市,再到雅安市、达州市,短短一个周的时间,舒工奔波1000多公里,扛过高温与暴雨,将五星级服务送给客户。 今年订单量大,售后安装调试工作也比较紧张。上周舒工接到四份仪器安装调试工单,且客户位置分散、交通不便。为了更好地服务客户,舒工日夜兼程,为赶路方便,通宵坐绿皮火车;为节省时间,吃泡面与面包充饥……在有限时间里,顺利完成任务。 舒工印象最深的是完成雅安清新环境科技公司工作后,急需赶到下一家客户。但是雅安清新公司在郊区,距离城市40公里,交通非常不方便。在烈日下,舒工等了一个多小时才坐上车,赶往车站。“虽然辛苦,但顺利完成任务,自己心里也很美”。烈日奔波获赞誉客户点赞盛瀚五星级服务在烈日下奔波,在暴雨中坚守。舒工专业、及时、高效的服务感动客户,让他们切切实实体验到盛瀚优质的服务。 开江生态环境监测站的客户坦言:曾经使用其他品牌的仪器,遇到问题总是不能及时解决,与售后沟通不顺畅,上门服务不及时。这次接触盛瀚售后服务工程师,能感受到盛瀚售后的体系化,服务工程师专业性,希望以后能体验到更多五星级服务。 △舒工与重庆市疾病预防控制中心客户合照客户认可是我们最大的支持。盛瀚始终坚持“客户第一”,从速度、力度、态度、广度、深度五大维度,实实在在服务好每一位客户。炎炎烈日售后服务不打折 专业专注铸就品质用心服务 温暖呵护
  • 海克斯康计量荣获北京奔驰优秀供应商大奖
    11月18日,海克斯康计量应邀出席了北京奔驰汽车有限公司(BBAC)发动机工厂举办的发动机下线暨优秀供应商颁奖仪式,并荣获BBAC颁发的优秀供应商大奖。位于北京亦庄经济技术开发区的北京奔驰汽车有限公司发动机工厂,是戴姆勒股份公司在全球首个海外发动机制造工厂。该工厂的投产,意味着北京奔驰实现了从单纯整车生产,到向戴姆勒全球贡献先进发动机的历史性跨越。在BBAC发动机项目中,海克斯康计量通过交钥匙的方式为BBAC提供了完善的发动机检测方案,主要完成C级和 E级发动机缸体、缸盖、曲轴等零部件的检测与质量认证,在北京奔驰发动机工厂实验室和质量体系的建设中贡献了海克斯康计量在动力总成领域的最新技术、团队智慧和经验。全套交钥匙项目包括三台Leitz PMM-C、两台Leitz Reference高精度测量机,功能强大的动力总成评价与分析软件QUINDOS,专业的检测托盘、夹具、上下料系统等附件设施,并包括来自海克斯康计量中外汽车动力总成技术专家的技术支持。专业的项目管理和与BBAC中外团队的国际化沟通,使得该项目得以顺利实施,并得到北京奔驰中外双方的认可。随着一期项目的上线与顺利实施,海克斯康计量凭借业已确立的动力总成检测技术优势而在BBAC赢得先机。关于海克斯康计量海克斯康计量为工业计量提供了完善的产品和服务,包括汽车、航空航天、能源和医疗等领域。从产品开发、设计到加工、装配和最终验收,我们为用户提供贯穿产品全生命周期的可操作测量信息。凭借遍布全球的20多个测量产品制造基地、70个提供技术服务与方案展示的精密计量中心,以及分布于五大洲的100多个分销合作伙伴所组成的网络,确保客户完全掌控其生产流程、提升产品质量并提高生产效率。海克斯康计量隶属于海克斯康(Nordic exchange: HEXA B www.hexagon.com)。海克斯康是全球领先的规划、测量和可视化技术供应商,协助客户规划、测量和定位对象,实现数据的优化处理与展现。更多信息,请访问www.hexagonmetrology.com.cn。
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew.Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 万钢:科技离不开“以人为本”四个字
    “为国家的长远发展打地基、铺好路,科技部的任务就是自主创新、重点跨越、支撑发展、引领未来。”正在接受共和国部长访谈的科技部部长万钢面带微笑,随手端起身边的咖啡。   “这种支撑和引领包括经济、社会发展的各方面,科技无处不在。比如这杯咖啡,是海南产的咖啡豆经过科学研究、测试,最终烧制出来的具有蓝山风味的咖啡,就是我们自主创新的成果。”   “走出危机,需要依靠科技引领”   “纵观人类历史,每次经济危机都促进了科技革命,每次人们走出经济危机,都是依靠科技引领。”万钢说,在这次金融危机中,科技的作用得到了检验,值得总结,更值得期待。   2008年,经过20多年精心培育的国家高新技术产业呈现出极大的抗风险性。我国西部和中部,高新技术企业经济增长速度平均在19%至20%,在外向度较高、受金融危机影响较大的东部地区,高新技术产业仍然以超过10%速度逆市发展。   “金融危机中,西方发达国家开始反思,反思的结果就是转型。美国政府提出以新能源作为新增长点,英国提出应更加重视科学技术。各国都意识到,经济转型的供给来源于科学技术,来源于科技的突破。”万钢表示,对于我国而言,要从容面对经济危机,走出低谷,需要在新能源、生物技术、信息领域和先进制造领域重点做好科技支撑,争取突破。   万钢说:“以新能源汽车为例,电动汽车、燃料电池等新能源汽车既能保障能源安全和大气清洁,又可以促进汽车工业的快速发展。”   近年来,我国汽车工业坚持原始创新、集成创新和引进吸收消化再创新相结合,探索出了一条具有中国特色的汽车工业发展的道路,取得了显著成就。但从当前形势来看,世界汽车工业产能过剩,竞争日益激烈,全球金融危机可能导致国际汽车产业格局的剧烈调整。   万钢说,在这种情况下,大力推动以新能源汽车为重点的科技创新,加快推进交通能源战略的转型,是争取在新一轮国际汽车产业调整和变革中抢占先机,保持我国汽车工业可持续发展,实现汽车制造大国向产业强国转变的一个重要的机遇。   “百姓身边的科技,是衣食住行”   科技服务经济,科技同样惠及民生。   万钢在向爱弹钢琴的女儿解释科技到底能为普通人的生活带来什么时,他这样说:“学钢琴需要使用节奏器,原始的节奏器功能单一,只能起到合拍的效果 而现在的微电脑控制节拍器具有录音、调音等功能,更有助于学习和使用。”   “这都是科技带来的。百姓身边的科技,是衣食住行。”以“食”为例,中国用占世界8%的耕地,养活25%左右的人口,同时还能给其他国家以支持,没有科技的支撑是不可想象的。   万钢清晰地记得1969年他当生产队长时,乡间流传的目标口号是亩产粮食600斤“过黄河”,亩产粮食800斤“跨长江”。而通过袁隆平等科技工作者的努力,通过多年来科技助推粮食增产项目的实施,2008年,他在河南看到,玉米亩产1035公斤、小麦600公斤。   在2008年“512”汶川地震的抗灾救灾和灾后重建中,科技也发挥了重要作用。卫星遥感、无人驾驶飞机、北斗导航定位、网络通信等一批先进技术手段,在灾区道路不通、气候恶劣的情况下,为及时了解灾情,果断决策,有效救灾提供了重要技术支持。   “运筹帷幄之中,决胜千里之外。当在指挥中心的大屏幕上清楚地看到卫星传回的图像,显示何处房屋倒塌严重、哪段道路被阻、救援人员已经行进到哪里,我想,科技使这两句话真正得以实现。”   “科学精神激励和造就了一代又一代人才”   “1964年10月16日,我正在理发馆剪头发,听到单管收音机中传出我国第一颗原子弹成功爆炸的消息。当时我对原子弹还没有深入认识,只知道不得了,有了原子弹就没人敢欺负我们国家了。”万钢深情地回忆当时的情景,“对科学的憧憬和为科学发展贡献力量的朦胧理想,正是从那时树立了起来。”   从“两弹一星”成功带来的热爱科学、崇尚科学的社会氛围,到科教兴国战略对科技人才培养、全民科技文化素质的重视,再到建设科技创新型国家理念的深入人心,万钢认为,科学精神激励和造就了一代代人才。   上世纪50年代,“向科学进军”的口号鼓舞了广大知识分子和学生的积极性 1978年“科学技术是生产力”的论述迎来了科学的春天 1995年在全国实施科教兴国战略的部署推动了人才培养 2006年 “自主创新,重点跨越,支撑发展,引领未来”新时期科技工作方针和“到2020年使我国进入创新型国家行列”新目标的确立点燃和激发了科技工作者的创造力。   “科技离不开‘以人为本’四个字。科技部的重要任务之一就是围绕人,培养造就一大批创新科技人才、包括科技工作者和科技管理工作者。”   “老一代科学家留下了默默奉献的精神,留下了勇于牺牲的勇气,留下了把知识和命运结合在一起的文化。”万钢说,多年所积累的精神财富和人才资源正是国家核心竞争力所在。   “若干年后,有人谈起当年的科技部部长万钢,我希望大家说,他为努力推动科技与经济、社会发展结合,为国家的长远发展打好基础、铺好路,为未来培养和造就人才作出了一点贡献。”万钢身体微微前倾,脸上始终带着谦和亲切的微笑。
  • 采用LCMSMS技术分析环境中的苯胺和联苯胺
    苯胺类化合物为芳香胺的代表,指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。苯胺及其衍生物是重要的化工原料和中间体。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定优先控制的污染物。随着现代工农业的发展,苯胺类化合物在环境中排放与残留量日趋增多,对环境以及人们的身体健康所产生的危害日益严重。因此,建立环境样品中苯胺类和联苯胺类化合物的测定方法十分重要。环境标准《HJ 1048-2019 水质17种苯胺类化合物的测定液相色谱-三重四极杆质谱法》,为环境介质中苯胺类化合物的测定提供技术保障和法规依据。珀金埃尔默公司采用QSight LC-MS/MS液质联用系统,建立应对环境样品中苯胺类的分析方案。本方法中,苯胺类、联苯胺类化合物均获得了优异的线性关系(R20.994),该方法的苯胺类和联苯胺类化合物检出限为0.01~0.5μg/L。PerkinElmer LX50 UHPLC-QSight系列三重四级杆液质联用仪欲了解更详细的实验方法,欢迎扫码下载完整的应用报告。扫描上方二维码即可下载资料
  • “苯”就这样测!!-LUMEX推出新塞曼测苯技术方案
    一、技术背景苯作为毒性物质,挥发性大,暴露于空气中很容易扩散。苯及苯化合物主要来自于合成纤维、塑料、燃料、橡胶等,隐藏在油漆、各种涂料的添加剂以及各种胶粘剂、防水材料中,还可来自燃料和烟叶的燃烧。国际卫生组织WHO已经把苯定为强烈致癌物质,人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒,苯可以引起白血病和再生障碍性贫血也被医学界公认。二、技术及方法我国《危险货物品名表》GB 12268-90规定,苯属第三类危险货物易燃液体中的中闪点液体。《住宅设计规范》GB50096-2011规定:苯 ≤0.09(mg/m3)。国际上也有各种法规对苯进行监控。目前我国主要气相色谱法和高效液相色谱法可以检测各种产品中苯的含量。需要通过聚合吸附后在进行前处理消解分析,步骤复杂,检测时间长。三、技术方案针对现有市场的迫切监控需求和分析手段的局限性,LUMEX推出新款直接实时分析的便携测苯仪和连续在线苯监测系统。BA-15系列测苯仪可用于石油天然气生产处理过程、塑胶、燃料纤维、油气涂料的厂区、设备及生产过程中的苯泄露监控,以及PPE聚苯醚采选过程中的精准苯含量测定,满足快速应急检测需求。确保在高浓度甲苯,二甲苯和其他VOC存在条件下,实现无干扰的精准测量。四、技术优势先进技术:高频塞曼背景校正技术,保证超高灵敏度和准确度,抗干扰性强,避免浓度甲苯,二甲苯和其他易挥发其他存在下的干扰;灵活便捷:直接检测,无需吸附预富集,不需气象色谱和液相色谱的复杂分析步骤,可便携,车载,机载和固定站点长期监测和数据记录,适用于紧急突发事故和苯泄露污染应急监测及排查;快捷性:环境空气苯直接实时监测(反应时间1秒),连续线性数据测量,更全面准确反映环境真实情况;高性能:动态检测范围高达6个数量级,0.1ng-10 000.00mg/m3;简单低耗:直接分析,操作简单,无需前处理和分析也无须其它耗材,后续使用成本低。五、应用领域石油天然气—苯作为种石油化工基本原料,存在石油化工生产很多环节。该套仪器可直接实时分析气态苯含量,厂区及设备及生产过程的苯泄露,适用于安全成产和过程控制; 生产安全&质控-直接实时监测厂区、工作场所及空气中的苯含量,可便携、车载和固定站点监测,实现纤维、塑料、燃料、橡胶等,油漆及涂料的安全生产及质控; 污染源应急监测—固液气精巧模块化设计和高灵敏度和检出限适用于各种应急突发事故,快速找到污染源,可在采样点附近完成检测工作,保证检测数据可靠性和高效性。 (来源: LUMEX公司)
  • 逆周期,共百年 | 奥豪斯助力降本增效
    夏天到了,花红柳绿,半年数据即将出炉,又到了提“降本增效”的季节。降本指标分解下来,神圣的学术殿 堂、严谨的科研高地,瞬间变身菜市场:便宜点,再便宜点儿,你不卖,门口二愣子还等着呢……忠于品质但是,咱敞开了说,您真相信这世界上有“平替”这回事儿?天上呱嗒掉下来一台符合要求的仪器,价格还少一个量级?降本增效,是真正的技术活。奥豪斯为您推荐一百多年来,奥豪斯始终追求,为客户提供最合适的仪器。通行全 球的认证体系,百年老店的信誉加持,降本增效这事儿,您可以信赖奥豪斯,而下面这些仪器,我们隆重推荐:EX225DZH/AD天平奥豪斯Explorer&trade 准微量系列天平是为实验室称量要求精确到十万分之一而设计的。Explorer&trade 系列准微量天平在不断创新的技术支持下,专业设计了高速一体化称量系统,确保了称量结果的准确性。在称量应用方面的功能设计也尤为突出,是一款不可多得的十万分之一准微量天平。MB120 水分分析仪水分测试从未如此简单和高效! 作为奥豪斯的旗舰产品,MB120快速水分仪配备了智能化方法开发功能,快速处理各种样品的常规和复杂测试且与烘箱数据保持同步。DEFENDERTM 5000I-DF52P Q1系列电子平台秤奥豪斯新款Defender 5000系列电子平台秤,整秤最 高6000e的检定分度;标配有碳钢喷塑框架,可广泛应用于工农业生产环境。秤体设计通过了专业机构的50万次疲劳加载测试,保证使用过程中坚固耐用,精确稳定。AB41PH 实验室pH计AB41PH实验室pH计设计时,不仅考虑可靠测量性能,还有良好的用户体验。i-Steward可确保重复性和测试精度,从而使您高枕无忧。6.5英寸LCD显示屏和触摸按键,使更改参数、设置和校准的操作与使用智能手机一样简单。FC5916R 多功能离心机Frontier&trade 5000MultiPro多功能离心机可选配不同转子和适配器,适合多种样品的离心分离,用户可根据实验进行个性化配置。共7款机型供选择,样品处理量从0.2ml到最 大4x750ml。功能涵盖几乎所有实验常见应用,如常规的实验室离心分离,检测和工业领域,且满足客户对静音和安全性的严格要求。GUARDIAN&trade 3000加热磁力搅拌器奥豪斯 Guardian&trade 3000 加热磁力搅拌器具有出色的持续高速搅拌和防温度过冲能力,多重安全设计,操控直观便捷,可满足不同的实验需求。该系列提供三种盘面尺寸,可选配温度探针,精确控制样品温度。ISICMBCDG冷冻恒温培养圆周式摇床创新设计的奥豪斯冷冻恒温培养摇床可降温至室温以下10℃,亦可升温至65℃用于培养生物样品,提供可靠、可重复的结果。所有型号均带易于读数、独立显示摇荡参数的触控式操作面板,且安全功能可保护样品及使用者的安全。坚固耐用的三偏心轴驱动及微处理器,实现可靠、稳定的摇荡动作。奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 生态环境部发布《水质 6种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法》等3项国家生态环境标准
    生态环境部发布《水质 6种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法》等3项国家生态环境标准  为支撑相关生态环境质量标准、风险管控标准和污染物排放标准实施,近期,生态环境部发布《水质 6种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1242-2022)、《土壤和沉积物 20种多溴联苯的测定 气相色谱-高分辨质谱法》(HJ 1243-2022)、《地表水环境质量监测技术规范》(HJ 91.2-2022)3项国家生态环境标准。(可点击文件名称下载标准原文)。  《水质 6种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1242-2022)为首次发布,适用于地表水、地下水、生活污水、工业废水和海水中6种邻苯二甲酸酯类化合物的测定,填补了增塑剂邻苯二甲酸二(2-乙基己基)酯的水质分析方法标准空白。本标准前处理操作相对简单,抗干扰能力强,为水中邻苯二甲酸酯类的监测提供技术依据,支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)等水环境质量和水污染物排放标准实施。  《土壤和沉积物 20种多溴联苯的测定 气相色谱-高分辨质谱法》(HJ 1243-2022)为首次发布,适用于土壤和沉积物中20 种多溴联苯的测定。本标准稳定可靠,灵敏度高,填补了生态环境领域多溴联苯分析方法标准的空白,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等标准实施。  《地表水环境质量监测技术规范》(HJ 91.2-2022)为首次修订,适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测。与《地表水和污水监测技术规范》(HJ/T 91-2002)相比,本标准明确了总磷监测的现场前处理方法,完善了布点与采样、监测项目与分析方法、监测数据处理、质量保证与质量控制等相关内容,进一步规范地表水环境质量手工监测工作,支撑《地表水环境质量标准》(GB 3838-2002)实施。  上述3项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • J​ASIS 2022日本药典研讨会
    JASIS 2022日本药典研讨会实施日期2022年9月8日 14:30 -16:30满员谢礼!在JAIMA组织的日本药典研讨会上,许多预先登记和当天参与登记的人访问了,约有200名参与者。另一方面,很遗憾由于会场已满,不得不谢绝入场的来访者也很多。本次研讨会邀请了活跃在各个领域的3名著名讲师,共享最新、最尖端的信息。作为顶级击球手国立医药品食品卫生研究所的合田幸广所长,作为关于日本药典的最新话题,根据第19次修订版日本药典制定基本方针,就天平工作组的活动主题进行了说明,热烈地讨论了国际单位制 (SI) 可追溯性的重要性。北里大学药学院的Kakuko Kato教授于2021年9月在PDG (日本,美国和欧洲三大药房研究委员会) 同意了关于“G -20 Chromatography”的考试方法我们解释了概述和修订提案。3位嘉宾是国立医药品食品卫生研究所药品部的伊豆津健一部长 (Izutsu Kenichi) , 2021年6月告示的JP 18中,元素杂质的管理对象大幅度扩展到了医药品,无菌医药品的包装完全性的评价和泄漏试验法被收录在参考信息中,作为相关内容,我们就多样化的试验法进行了详细说明。报告人:日立高科技、酒井
  • 美国拟批准苯甲酸、苯甲酸钠、丙酸钠用于肉禽产品
    近日,据美国政府网站消息,美国农业部食品安全检验署(FSIS)发布一份终期法规,拟修订联邦肉禽产品检验条例,批准苯甲酸、苯甲酸钠、丙酸钠3种物质用于肉禽产品。   这项终期法规将于2013年5月6日生效。这项终期法规规定,当丙酸钠作为单一抗菌剂用于肉禽产品时,最大限量为0.5%(以重量计) 当苯甲酸钠作为单一抗菌剂用于肉禽产品时,最大限量为0.1% 苯甲酸可作为食品配料用于肉禽产品,最大限量为0.1%。   美国FSIS认为,美国FDA与FSIS均对有关数据进行了评估,一致认为三种物质用于肉禽产品不会对消费者(包括儿童)的健康构成影响。   更多详情参见:   http://www.regulations.gov/#!documentDetail D=FSIS-2011-0018-0022
  • 填补土壤苯胺检测空白---LCMSMS苯胺新标准6月正式实施
    HJ 1210-2021《土壤和沉积13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》,主要适用于土壤和沉积物中苯胺和联苯胺化合物的测定,在今年6月1日正式实施。 标准为首次发布标准,标准的发布实施为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准作支撑,并填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,在建设用地土壤风险管控、土壤污染修复在监测上提供强大支持。 作为参与标准制定的验标单位之一,岛津有从前处理到检测方法一系列完善的解决方案。 应用解决方案 在土壤检测上,岛津除了满足新标准检测外,还提供在分析监测上土壤检测解决方案,包括LC、GC、IC、 AA、ICP、ICPMS、XRF、 GCMS、LCMS等丰富完善的色谱、光谱、质谱仪器,还与国家环境分析测试中心的Smart SIM有机物分析数据库,为土壤检测提供更为便利的分析。 岛津秉承着为了人类和地球的健康的公司经营思想,一直致力于土壤检测分析,提供土壤检测整体解决方案,为土壤监测与环境保护提供助力。 本文内容非商业广告,仅供专业人士参考。
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定》征求意见稿
    国家标准计划《饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 。征求意见稿.pdf编制说明.pdf
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中氯霉素、甲砜霉素和氟苯尼考的测定 高效液相色谱-串联质谱法》征求意见稿
    国家标准计划《饲料中氯霉素、甲砜霉素和氟苯尼考的测定 高效液相色谱-串联质谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准委。主要起草单位 广东省农业科学院农业质量标准与监测技术研究所 、广东农科监测科技有限公司 、海南威尔检测技术有限公司 、广州广电计量检测股份有限公司 。国家标准《饲料中磺胺类药物的测定 液相色谱-串联质谱法》征求意见稿.pdf国家标准《饲料中磺胺类药物的测定 液相色谱-串联质谱法》编制说明.pdf
  • 三本荣获—蔡司中国工业质量解决方案2020经销商最佳合作奖
    蔡司全国经销商集体合照2020年10月27号-29号,东莞市三本精密有限公司总经理董邦朝先生,携夫人孙红霞女士及销售经理朱四海先生一起,代表三本公司,参加了蔡司中国在珠海仁恒洲际酒店举办的2020全国经销商大会,此次大会的主题为”敢梦想 创未来“。10月27号抵达珠海仁恒洲际酒店,下午在酒店4楼董事会议室,三本总经理董邦朝先生参加了蔡司独家经销商会议,当晚蔡司在酒店5楼无边泳池举办了隆重的欢迎晚宴。10月28号上午在酒店4楼的大宴会厅,蔡司中国2020全国经销商大会正式开始,蔡司中国工业质量解决方案副总裁平颉先生对过去一年蔡司在中国取得的傲人成绩作了总结并肯定了所有经销商为此作出的贡献,平总对蔡司未来五年在中国的战略议程作了概述。接着,蔡司销售总监侯世俊先生及市场总监王寅先生针对销售和市场,分别讲述了“more with zeiss”,茶歇之后,蔡司的5位项目负责人,和大家分享了蔡司2020年度的新品发布。 与会期间 三本总经理董邦朝先生受邀,上台参加了蔡司的“圆桌分享会”,与大家一起分享蔡司产品销售过程中的心得体会。 28号下午参会人员到珠海国际赛车场,体会了一次“速度”与”激情”的碰撞。晚上,在酒店3楼大宴会厅a举行了颁奖晚宴。三本公司,作为蔡司广东省授权经销商,获得了蔡司颁发的2020年优秀经销商 “最佳合作奖”。 10月29日上午,蔡司的11位工程师,分别和大家介绍了蔡司产品在 “职业教育和后市场”、“医疗行业”、“消费电子“、”新能源汽车行业“的应用与案例分析,大家听后,受益匪浅。 会议的最后,卡尔蔡司(上海)管理有限公司经销商及大客户经理龚纯意先生,做了此次全国经销商大会的总结,并给各经销商布置了“2021财年经销商关键客户行动计划”。此次大会总结:本次经销商大会,了解到了蔡司的一些新的产品和新的应用领域,蔡司一直坚持不断创新推出更好的产品来满足市场的变化和需求,三本也一直倡导蔡司的以“客户的成功就是我们的成功”来立足服务所属区域市场,未来我们要更加明确目标和方向,做好计划和充分的准备,力争明年在销售行业范围有所拓宽,市场占有率更上一层楼。三本公司,作为蔡司的优秀经销商,此次虽然获得了“最佳合作奖”奖项,但我们通过这次大会,在和同行朋友们交流的时候,知道了自己和其它优秀经销商之间,还是存在着一定的差距,我们三本,要继续保持戒骄戒躁的作风,以更优秀的经销商为榜样,脚踏实地做好自己在授权区域的销售服务工作,始终以“客户满意为中心“作信念争取明年再创佳绩!
  • ProFoss饲料在线检测,帮你降本增效!
    疫情影响,饲料原料生产及供应短缺,怎么办?因地制宜,扩大非常规原料使用;降本增效,饲料生产精细化控制。当然非常规原料的使用离不开福斯 DS2500 F为产品质量保驾护航那又如何解决饲料生产精细化的难题?这台“三无”产品绝对是您的不二选择!福斯 ProfossTM 在线饲料分析仪“无”时不测——产品信息秒Get◆ 安装在生产线上实时监测,每个结果的平均时间3-15秒(可按需设置)。◆ 在中控室里即可实时监控半成品的脂肪、蛋白和水分等指标。◆ 有效避免取样误差&样品制备误差&样品残留误差,大大提高检测结果的准确度。◆ 结果以直观的图形和数字显示,便于查看变化;结果超限还可声音报警,提醒及时处理。“无”所不容——轻松连接各系统◆ 易于集成,轻松连接到您的LIMS或ERP系统。◆ 与企业的PLC系统连接后,可实现一系列生产自动化控制。“无”坚不摧——仪器界的金刚狼◆防护等级 IP 69K (IEC国际电气委员会认证的最高等级,完全防止灰尘侵入的同时,可以承受高压水/水蒸气的清洗,设备仍可正常运转)。◆ 防爆认证IECEx(ATEX)◆ 真正的在线-无旁路-样品窗直接连接生产管道
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 【青岛众瑞】本硕携手,欢迎青大环境学院师生来司交流学习
    2018年12月5日,前日的灰霾散尽,众瑞迎来了一批朝气蓬勃的青年朋友。在校老师的带领下,青岛大学环境科学与工程学院的本硕学生,踏着初冬清晨的暖阳来到了我司参观交流。参观期间,何总与青岛大学老师结合公司仪器做了相关方面的沟通交流,众瑞特派员—研发工程师,向同学们分享了工作经验和专业知识,并结合公司仪器及市场特点讲述了环境监测发展变化趋势。同时,带领同学们参观了样品展示室、生产交付中心以及技术研发中心。为同学们耐心地讲解了众瑞研发生产的主要仪器的性能和适用领域,让同学们亲身感受众瑞的工作环境、企业文化和活力向上的气息,并切实感受了理论与实践相结合的转化成果效用。众瑞欢迎每一位有志青年加入,共同承担环保之责带着青春与活力与众瑞打响蓝天保卫计划!!
  • 专家解读|GB/T 39560.12-2024 电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯
    多溴联苯、多溴二苯醚是一种新型持久性有机污染物,在环境及生物体内普遍存在且污染呈增长趋势,并对动物及人类健康造成潜在的危害,已对其进行严格管控。而邻苯二甲酸酯作为塑料产品中的增塑剂,被广泛应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品等产品中,因其给环境和健康带来严重危害同样已被社会广泛关注,并加以限制。电子电气产品作为人们日常生活必不可少的一部分,产品中所含有害物质对环境和人体健康的影响备受关注,国内外均出台了相关政策对其加以管控,比较典型的就是欧盟RoHS法规,其2.0版本中对多溴联苯、多溴二苯醚以及四种邻苯二甲酸酯物质进行了规定,要求出口到欧盟地区的电子电气产品均应执行法规要求。此外,为贯彻落实我国《“十四五”工业绿色发展规划》中有关推动生产过程清洁化转型,减少有害物质源头使用的重要工作,2024年6月29日GB/T 26572-2011《电子电气产品中限用物质的限量要求》国家标准第1号修改单正式发布,其规定的有害物质限量要求与欧盟RoHS法规管控物质完成一致,这也标志着中国RoHS正式与国际接轨。该修改单中明确规定,电子电气产品有害物质检测方法标准全部更新为GB/T 39560系列,而本标准作为GB/T 39560系列标准的第12部分,同样适用,并将于2024年10月1日开始实施,以此确保我国RoHS检测技术及结果与国际一致。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf一、制定背景 电子电气产品生产和销售企业,为应对欧盟RoHS法规以及我国《电器电子产品有害物质限制使用管理办法》要求,对产品中的限用物质进行检测,以确保符合性。由于法规要求不断更新,且所测试的有机类化合物相对复杂,导致目前所用的检测方法较多,出现同一样品按照不同项目多次处理和测定的情况,花费大量的检测时间和成本。根据有机物萃取和GC-MS检测技术原理,将不同类型的有机化合物通过方法优化,取得同时萃取和检测的方法,从而减少检测时间和技术成本,在确保满足法规要求的同时,为企业及第三方检测机构提供一套更科学、可靠的技术方法,对于保障电子电气产品的安全性和环保性具有重要意义。二、制定过程本标准等同采用IEC62321-12的标准,该国际标准同样为工业和信息化部电子第五研究所牵头制订,本标准在采纳该标准的同时,依托行业发展的战略背景,集合了国内电子电气行业一批权威的科研院所、检测平台、仪器生产厂家以及生产企业代表等22家单位,积极投身标准的制定当中。编制组历时3年对标准技术内容进行了充分而详实的论证,解决了多个技术难点,最终确保标准的实用性,并在相关领域得到推广应用。三、主要内容本标准详细规定了电子电气产品聚合物中PBB、PBDE以及四种邻苯的测试方法,包括适用范围、测定原理、样品制备、仪器参数、校准、质量控制以及附录参考文件等。1. 适用范围:本标准适用于电子电气产品聚合物中多溴联苯(PBB)、多溴二苯醚(PBDE)和四种邻苯二甲酸酯(邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP))的测定。并已经通过测试聚丙烯(PP)、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯(ABS)、丙烯酸橡胶(ACM)、聚苯乙烯(PS)、聚氨酯(PU)和聚乙烯(PE)等材料的评估。测定范围为25 mg/kg至2000 mg/kg。2. 测定原理本标准采用超声波辅助萃取方法,将聚合物样品中的PBB、PBDE和邻苯二甲酸酯萃取出来,然后采用GC-MS进行定性和定量分析。GC-MS可以同时进行多种化合物的分析,灵敏度高,准确性好,是测定PBB、PBDE和邻苯二甲酸酯的理想方法。3. 样品制备本标准在储备溶液准备中,给出了建议使用的标记物、内标物、储备液浓度以及储存条件等信息。在分析的一般说明中将可能影响分析过程的空白值以及外界环境影响因素等进行了阐述说明。样品制备是分析过程中至关重要的一步。本标准规定了样品的研磨、筛分和萃取等步骤。样品应研磨并通过500μm的筛子,或者切成小于1x1 mm的碎片。样品制备的粒径对于萃取效果影响较大,因此标准中对于样品的粒径大小进行了限值,以确保达到最佳的萃取效果。称取100 mg ± 10 mg样品,用预先清洗过的滤纸包裹后置于离心管中,用4mL丙酮/正己烷浸没样品,加入25μL标记物(1000μg/mL),使用超声波辅助萃取方法,将PBB、PBDE和邻苯二甲酸酯从样品中萃取出来。萃取完成的样品进行离心,转移上清液于25mL容量瓶中,重复两次以上萃取步骤,最终将三次萃取离心的上清液全部转移至25mL容量瓶中,定容至标记处,加入内标物后完成样品制备。标记物主要用于指示样品回收率效果,因此在样品制备的前端就应加入,伴随样品处理的全过程,以此进行监控。标准中同样规定了超声的萃取时间以及水浴温度等条件,试剂的选取以及萃取时间和温度的设置对于样品提取效果极为重要,能以最短的时间达到最佳的效果。需要注意的是,萃取过程中,超声浴中的水位应高于管内的萃取液位,并且由于有机溶剂在密封管中的挥发,水浴温度过高可能会造成危险。在操作过程中应关注温度变化,确保试验安全。4. 仪器参数GC-MS的仪器参数对分析结果的准确性和可靠性至关重要。本标准给出了GC-MS的仪器的推荐参数,包括色谱柱类型、进样方式、载气流速、柱温箱温度、传输线温度、离子源温度、电离方法和驻留时间等。这些参数可以根据不同的仪器和分析要求进行调整,同时给出对应目标物的定性与定量离子参考。5. 校准校准是定量分析的基础。本标准规定了使用标准物质溶液进行校准的方法。通过绘制校准曲线,可以建立分析物浓度和仪器响应之间的关系,从而进行定量分析。本标准对校准曲线的具体绘制方法以及推荐选择的浓度点进行了规定,包括标记物以及内标物溶液的配制方法,同时给出校准曲线的线性回归方程以及各参数的意义。需要注意,样品和标准溶液使用的溶剂应该相同,以避免任何潜在的溶剂影响。所有校准溶液在使用前应储存在低于-10℃的温度下。每个校准曲线的线性回归拟合的相对标准偏差(RSD)应小于或等于线性校准函数的 15%。校准曲线绘制过程中应尽可能采用线性回归校准。在不能达到线性回归符合的要求(小于或等于15%的相对标准偏差(RSD)),如果其它统计处理方式(例如相关系数或曲线达到 0.995 或更好)证明可接受,也可使用多项式拟合。此外,在建立十溴二苯醚的校准曲线时,标准中给出校准范围的建议调整要求。6. 计算根据拟合的线性方程进行样品浓度计算,当使用线性回归不能满足曲线的相对标准偏差要求时,可以使用多项式(例如二次)回归,但要满足所有的质量控制要求。如果样品中每种同系物的浓度超出各自的曲线线性范围,需对样品进行稀释,应尽量使其浓度在校准范围的中间部分。样品中的多溴二苯醚总量和多溴联苯总量不仅局限于校准溶液中的标准物质,除此之外的其他可经过确证的多溴二苯醚和多溴联苯物质也应算入总量。7. 质量控制本标准规定了严格的质量控制措施,通过分辨率对仪器进行监控,通过空白试验、基体加标、分析连续校准核查标准物(CCC)、标记物回收率、检出限以及定量限等指标对整个分析方法的过程进行质量监控,并详细阐述了实施过程,当上述所述质控内容不能满足标准中规定的要求时,所得的结果是不可信的,需要对各个环节进行逐一排查确认后,重新进行测试,从而确保分析结果的可靠性和准确性。8. 附录附录中对不同萃取剂的萃取效率实例、不同循环次数的萃取效率实例、气相色谱质谱图、各目标化合物的质谱图、国际实验室间比对12(IIS12)的统计结果进行了展示,对过程操作给予指导。以上为本标准的所有解读内容,通过本次标准解读,对标准的内涵和实施要求有了更深入的了解。这一标准的实施将极大提高检测技术的准确性和可靠性,促进相关行业的持续发展。本标准的制定和实施不仅符合国内市场的需求,更是我们接轨国际标准、参与国际竞争的重要步骤。其有助于提升我国产品在国际市场上的信誉度和竞争力,促进国际贸易的便利化。(作者:工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长/高级工程师 丑天姝)丑天姝,高级工程师,现任工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长。主要从事毒害物质检测、绿色供应链管理、环境地球化学、环境分析等相关研究。主要承担工信部高质量发展专项“高效液相色谱-高分辨离子淌度质谱联用仪”项目、“第二次全国污染源普查工业污染源产排污系数核算项目”、肇庆市科技项目“典型工业污泥低温干化关键技术研发与应用示范”、增城区科技项目“田螺废弃物中芳香基硫酸酯酶的提取及其应用研究”以及“增城市基本农田(菜地)土壤环境质量调查研究”等各类课题项目14项,参与制修订国际标准2项、国家及行业标准8项;发表论文6篇,获得专利3件;出版著作1部。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制