当前位置: 仪器信息网 > 行业主题 > >

冰晶石

仪器信息网冰晶石专题为您提供2024年最新冰晶石价格报价、厂家品牌的相关信息, 包括冰晶石参数、型号等,不管是国产,还是进口品牌的冰晶石您都可以在这里找到。 除此之外,仪器信息网还免费为您整合冰晶石相关的耗材配件、试剂标物,还有冰晶石相关的最新资讯、资料,以及冰晶石相关的解决方案。

冰晶石相关的资讯

  • 科学家揭示抗冻蛋白对冰晶成核的分子机制
    图1:通过定向固定抗冻蛋白,发现抗冻蛋白的冰结合面和非冰结合面对冰核形成的“janus”效应。图2:分子动力学模拟揭示了抗冻蛋白的冰结合面和非冰结合面上界面水性能具有显著差异,从而提供了抗冻蛋白对冰核形成具有的“janus”效应的分子机制。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。因而,自上世纪60年代首次发现抗冻蛋白以来,科研人员对这类蛋白的抗冻机制进行了近半个世纪的研究。但是,科研人员对抗冻蛋白调控冰晶成核的机制一直有争议,即有些科研人员认为抗冻蛋白能促进冰核的形成,而另一些科研人员认为抗冻蛋白可以抑制冰核的生成。在国家自然科学基金委、科技部和中国科学院的大力支持下,中科院化学研究所研究员王健君课题组与中科院上海应用物理研究所副研究员王春雷、研究员方海平和新疆大学教授马纪合作,根据抗冻蛋白的冰结合面 (ice-binding face)和非冰结合面 (non-ice-binding face)具有截然不同官能团的特性,将抗冻蛋白定向固定于固体基底,选择性地研究了抗冻蛋白冰结合面与非冰结合面对冰核形成的影响。研究表明抗冻蛋白的不同面对冰核的形成表现出完全相反的效应:冰结合面促进冰晶成核,而非冰结合面抑制冰晶成核(图1)。他们通过分子动力学模拟进一步研究了抗冻蛋白的冰结合面和非冰结合面界面水的结构,发现了冰结合面上羟基和甲基有序间隔排列使得冰结合面上形成类冰水合层,从而促进冰核生成;而非冰结合面上存在的带电荷侧链及疏水性侧链,使得非冰结合面上的界面水无序,从而抑制冰核形成。揭示了抗冻蛋白对冰成核“janus”效应分子层面的机制。该研究大大加深了人们对抗冻蛋白分子层面防冻机制的理解,同时对仿生合成防覆冰材料和低温器官保存材料有着重要的指导意义。相关结果发表在《美国科学院院刊》(pnas, 2016, doi: 10.1073/pnas.1614379114)上。
  • 数十项光谱分析相关标准即将实施 ICP-OES方法成“主力军”
    标准先行,规范引领。对科学仪器及分析测试行业而言,相关标准的制修订和推行对仪器技术及分析方法的市场推广具有非常重要的价值和意义。  根据中华人民共和国中央人民政府“国家标准信息查询”信息,以“光谱”为关键词搜索(不完全统计),2021年伊始,有数十项光谱分析方法相关的新国标及行标实施或者即将实施。其中,国家标准26项、行业标准25项。特别值得注意的是,51项标准中,ICP-OES 方法31项,占比超过60%!  随着分光及检测器等关键元件的快速发展,电感耦合等离子体发射光谱技术也不断完善,已在地质、环保、化工、生物、医药、食品、冶金、农业等领域发挥着至关重要的作用。ICP-OES具有检出限低、准确度高、线性范围宽、多种元素同时测定等优点,其分析能力和技术的进步为元素分析带来了巨大的便利。业内人士分析道,相较于AAS和ICP-MS,ICP-OES有其非常适合的领域。比如,在环境领域,ICP-OES比ICP-MS更适合分析废水及固废样品,因为其基体耐受性更好。另外其进样系统以及光路是两个独立的系统,意味着其更“耐脏”,系统残留会更少;在食品检测中,ICP-OES比ICP-MS更适合营养元素的分析,因为其中营养元素浓度往往是ppm级,在ICP-MS里面很容易造成饱和,过高的浓度也会大大降低检测器的寿命,而在ICP-OES就不存在这些问题。而与AAS相比,ICP-OES多元素分析的效率还是比较高,而且其线性范围也是远好于AAS。如进行RoHS或者EN71-3等,鉴于应用上的优势,近年来ICP-OES的应用领域有了明显的扩展,大多数元素检测领域都有ICP-OES的身影,特别是在一些新兴领域的分析检测,同时市场采购量的逐年增加也证明了该类仪器有着更为广阔的应用前景。而相关标准方法的推出势头在一定程度上也显示出,ICP-OES已成为了原子光谱仪器的“主力军”!相信伴随着一些标准法规的实施,ICP-OES将在元素分析领域体现出更大的价值。除了ICP-OES方法之外,51项标准中,还有8项标准涉及了原子吸收光谱法,4项标准涉及了原子荧光光谱法,4项标准涉及X射线荧光光谱法,2项标准涉及近红外光谱法, 1项标准涉及拉曼光谱法,1项标准涉及直流电弧原子发射光谱法等。  仪器信息网统计部分如下:国家标准序号标准编号标准名称发布日期实施日期1GB/T 14352.19-2021钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量的测定 电感耦合等离子体原子发射光谱法2021/3/92021/10/12GB/T 14352.21-2021钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法2021/3/92021/10/13GB/T 14352.22-2021钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法2021/3/92021/10/14GB/T 39560.301-2020电子电气产品中某些物质的测定 第3-1部分:X射线荧光光谱法筛选铅、汞、镉、总铬和总溴2020/12/142021/7/15GB/T 39538-2020煤中砷、硒、汞的测定 氢化物发生-原子荧光光谱法2020/11/192021/6/16GB/T 20975.33-2020铝及铝合金化学分析方法 第33部分:钾含量的测定 火焰原子吸收光谱法2020/11/192021/10/17GB/T 20975.34-2020铝及铝合金化学分析方法 第34部分:钠含量的测定 火焰原子吸收光谱法2020/11/192021/10/18GB/T 39306-2020再生水水质 总砷的测定 原子荧光光谱法2020/11/192021/10/19GB/T 39356-2020肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定 电感耦合等离子体发射光谱法2020/11/192021/6/110GB/T 39540-2020页岩气组分快速分析 激光拉曼光谱法2020/11/192021/6/111GB/T 39114-2020纳米技术 单壁碳纳米管的紫外/可见/近红外吸收光谱表征方法2020/10/112021/5/112GB/T 39138.3-2020金镍铬铁硅硼合金化学分析方法 第3部分:铬、铁、硅、硼含量的测定 电感耦合等离子体原子发射光谱法2020/10/112021/9/113GB/T 39143-2020金砷合金化学分析方法 砷含量的测定 电感耦合等离子体原子发射光谱法2020/10/112021/9/114GB/T 8151.22-2020锌精矿化学分析方法 第22部分:锌、铜、铅、铁、铝、钙和镁含量的测定 波长色散X射线荧光光谱法2020/9/292021/8/115GB/T 34609.2-2020铑化合物化学分析方法 第2部分:银、金、铂、钯、铱、钌、铅、镍、铜、铁、锡、锌、镁、锰、铝、钙、钠、钾、铬、硅含量的测定 电感耦合等离子体原子发射光谱法2020/9/292021/8/116GB/T 20975.9-2020铝及铝合金化学分析方法 第9部分:锂含量的测定 火焰原子吸收光谱法2020/6/22021/4/117GB/T 20975.25-2020铝及铝合金化学分析方法 第25部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/6/22021/4/118GB/T 20975.36-2020铝及铝合金化学分析方法 第36部分:银含量的测定 火焰原子吸收光谱法2020/6/22021/4/119GB/T 38744-2020机动车尾气净化器中助剂元素化学分析方法 铈、镧、镨、钕、钡、锆含量的测定 电感耦合等离子体原子发射光谱法2020/4/282021/3/120GB/T 15076.6-2020钽铌化学分析方法 第6部分:硅量的测定 电感耦合等离子体原子发射光谱法2020/3/62021/2/121GB/T 15076.11-2020钽铌化学分析方法 第11部分:铌中砷、锑、铅、锡和铋量的测定 直流电弧原子发射光谱法2020/3/62021/2/122GB/T 13747.3-2020锆及锆合金化学分析方法 第3部分:镍量的测定 丁二酮肟分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/123GB/T 13747.4-2020锆及锆合金化学分析方法 第4部分:铬量的测定 二苯卡巴肼分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/124GB/T 4698.10-2020海绵钛、钛及钛合金化学分析方法 第10部分:铬量的测定 硫酸亚铁铵滴定法和电感耦合等离子体原子发射光谱法(含钒)2020/3/62021/2/125GB/T 38513-2020铌铪合金化学分析方法 铪、钛、锆、钨、钽等元素的测定 电感耦合等离子体原子发射光谱法2020/3/62021/2/126GB/T 15076.7-2020钽铌化学分析方法 第7部分:铌中磷量的测定 4-甲基-戊酮-[2]萃取分离磷钼蓝分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/1行业标准序号标准编号标准名称批准日期实施日期1SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法2020/12/192021/4/12YB/T 4850-2020直接还原铁 全铁、磷、硫、二氧化硅、三氧化二铝、氧化钙和氧化镁含量的测定 波长色散X射线荧光光谱法2020/12/92021/4/13YS/T 273.17-2020冰晶石化学分析方法和物理性能测定方法 第17部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/14YS/T 273.16-2020冰晶石化学分析方法和物理性能测定方法 第16部分:锂含量的测定 火焰原子吸收光谱法2020/12/92021/4/15YS/T 1396.2-2020二氯四氨铂化学分析方法 第2部分:镁、钙、铁、镍、铜、铑、钯、银、铱、金、铅含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/16YS/T 1395.2-2020二氯二氨钯化学分析方法 第2部分:银、金、铂、铑、铱、铅、镍、铜、铁、锡、铬含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/17YS/T 832-2020丁辛醇废催化剂化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/18YS/T 955.3-2020粗银化学分析方法 第3部分:金含量的测定 火试金富集-电感耦合等离子体原子发射光谱法2020/12/92021/4/19HG/T 5763-2020茂金属聚烯烃催化剂中金属元素的测定 电感耦合等离子体发射光谱法2020/12/92021/4/110HG/T 5747-2020水处理剂 镍、锰、铜、锌含量的测定 电感耦合等离子体发射光谱(ICP-OES)法2020/12/92021/4/111YS/T 1363-2020二氧化碲化学分析方法 铜、银、镁、镍、锌、钙、铁、铋、硒、铅、钠、锑和砷含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/112YS/T 739.3-2020铝电解质化学分析方法 第3部分:钠、钙、镁、钾、锂元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/113YS/T 273.17-2020冰晶石化学分析方法和物理性能测定方法 第17部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/114YS/T 273.16-2020冰晶石化学分析方法和物理性能测定方法 第16部分:锂含量的测定 火焰原子吸收光谱法2020/12/92021/4/115YS/T 1396.2-2020二氯四氨铂化学分析方法 第2部分:镁、钙、铁、镍、铜、铑、钯、银、铱、金、铅含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/116YS/T 1395.2-2020二氯二氨钯化学分析方法 第2部分:银、金、铂、铑、铱、铅、镍、铜、铁、锡、铬含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/117YS/T 832-2020丁辛醇废催化剂化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/118YS/T 955.3-2020粗银化学分析方法 第3部分:金含量的测定 火试金富集-电感耦合等离子体原子发射光谱法2020/12/92021/4/119HG/T 5763-2020茂金属聚烯烃催化剂中金属元素的测定 电感耦合等离子体发射光谱法2020/12/92021/4/120HG/T 5747-2020水处理剂 镍、锰、铜、锌含量的测定 电感耦合等离子体发射光谱(ICP-OES)法2020/12/92021/4/121SN/T 5233-2020进出口纺织原料 原棉回潮率测定 近红外光谱法2020/8/272021/3/122SN/T 5248-2020进口载金树脂物料中金含量的测定方法 火焰原子吸收光谱法2020/8/272021/3/123SN/T 5251-2020进出口石油焦中钠、铝、硅、钙、钛、钒、锰、铁、镍、硫含量的测定 波长色散X射线荧光光谱法2020/8/272021/3/124SN/T 5249-2020沉淀水合二氧化硅中铁、锰、铜、铝、钛、铅、铬、钙、镁、锌、钾、钠含量的测定 电感耦合等离子体原子发射光谱法2020/8/272021/3/125SN/T 5248-2020进口载金树脂物料中金含量的测定方法 火焰原子吸收光谱法2020/8/272021/3/1
  • 第十七届全国分子光谱学学术会议举行
    仪器信息网讯 2012年10月19-23日,由中国光学学会和中国化学会主办,韶关学院和韶关市化学化工学会联合承办的“第17届全国分子光谱学学术会议”在广东韶关召开。230余名分子光谱领域的专家学者参加了此次会议。 会议现场   大会开幕式由韶关学院科技处处长陈小康教授主持,开幕式上韶关学院校长刘荣万教授、韶关市科技局局长张才明高工、中国光学学会光谱专业委员会主任孟广政教授分别致开幕词,大会组委会主席北京师范大学谢孟峡教授宣读了中国科学院大连化学物理研究所李灿院士为本届分子光谱大会致来的贺信。 韶关学院校长刘荣万教授 韶关市科技局局长张才明高工 中国光学学会光谱专业委员会主任孟广政教授 大会组委会主席北京师范大学谢孟峡教授   会议报告   本届大会通过大会报告、主题报告、邀请报告、口头报告以及墙报展等方式展现了近年来分子光谱领域的最新研究进展。据大会组委会主席谢孟峡教授介绍,分子光谱学是现代科学技术的重要手段,近年来分子光谱学的实验研究、应用研究等逐步取得了重要的进展,本届报告的内容很好的展示了我国近年来分子光谱技术的研究进展,尤其是红外光谱和拉曼光谱技术的研究取得了丰富的成果。   以下是本次会议中的部分精彩报告介绍。厦门大学 孙世刚教授 显微和时间分辨红外光谱及其在电化学能源转换和存储研究中的应用   显微红外光谱是将显微技术应用到傅里叶变换红外光谱仪中,可以与人们熟知的电子探针和电子扫描显微镜技术相媲美。近年来,显微红外光谱已经成为在复合材料研究领域进行研究必备且不可替代的技术。时间分辨光谱学的研究起始于五六十年代,时间分辨傅里叶红外光谱方面的研究始于七十年代,八十年代初出现了商品化的仪器,当前已经在物理、化学生物等研究领域取得了成功的应用。   在报告中,孙世刚教授介绍了以上两种技术在电化学能源转换和存储研究中的应用。利用显微红外光谱可以在分子水平研究电化学反应的机理,以及研究锂离子电池的纳米特性和界面反应。通过时间分辨红外光谱技术可以有效研究电化学反应的热力学和动力学过程。 清华大学 孙素琴教授 复杂混合物体系分析关键问题与思路   红外光谱法用于混合物分析具有无需标记,直接检测;整体成分和特定成分分析;定性定量分析;固体、液体、气体等各种形态样品分析;简便、快速、无损、成本低、绿色环保等优点,并可以和多种仪器联用进行分析。   报告中孙素琴教授介绍了普通红外光谱、二阶导数红外光谱、二维相关红外光谱等在混合物分析中的应用。并介绍了利用红外光谱进行“不分离,即分析”、“边分离,边分析”、“边组合、边分析”的混合物分析路线。以及红外光谱在质量控制过程中所能发挥的“指导大方向,监控全过程”的重要作用,同时孙素琴教授指出目前针对红外光谱的研究远不及色谱、质谱分析方法研究热门,应用也不及紫外光谱广泛,对此孙素琴教授要真正实现红外光谱在定性定量方面的重要作用需要更多的努力。 北京大学 徐怡庄教授 基于正交样品设计的二维相关光谱研究进展   二维相关光谱是一种实验设计与数据处理相结合的分析技术。对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图。   分子间相互作用是化学研究中的热点问题,徐怡庄教授通过采用浓度变化作为外部扰动,构建二维光谱的方法研究了分子间的相互作用。徐教授分别介绍了利用正交样品设计法、双正交样品设计法、以及双异步正交样品设计方法设计新的浓度序列,强化二维相关谱的功能,使二维相关光谱成为更好的研究分子间相关作用的手段。    中国农业大学 闵顺耕教授   近红外光谱技术在农药分析领域的应用   闵顺耕教授介绍说,近红外光谱技术具有快速现场分析的能力,广泛应用于农业与食品、生物医学、石油化工等分析。该方法具有:仪器小,测试快速简单,可实现现场分析;无损分析技术;可对固体、液体和气体样品直接进行测定,无需复杂的前处理过程;样品用量少,基本不用溶剂,方法绿色环保。   闵顺耕教授主要研究了采用近红外光谱法进行农药制剂质量分析与市场监管,建立农药质量分析与市场监控的快速、现场分析技术体系,可用于原料的质量控制、制剂的质量分析、农药质量市场监管、农药生产在线分析与工艺优化。    韶关学院化学与环境工程学院 徐永群教授   光谱比对技术在中药鉴别中的应用   徐永群教授介绍说随着现代分析仪器和技术的发展,荧光光谱和红外光谱技术在中成药质量监控、中药材真伪鉴别和药材分类等方面有了用武之地。和传统荧光法相比,三维荧光光谱能较完整地表现出激发波长和发射波长变化时荧光强度变化信息。三维荧光等高线图可与物质中各荧光物质的本性以及各物质之间的相互作用密切相关,具有指纹性,根据这一特征,可实现对物质的分类和鉴别。在研究中,徐教授利用三维荧光等高线特征谱鉴别中药注射液、对饮料进行聚类分析等都取得了很好的实验结果。   另外徐教授还介绍了红外光谱相似谱能凸显两红外光谱的差异,可辅助红外谱图的解析、物质的分类和鉴别等方面的工作。 吉林大学 赵冰教授 SERS检测多环芳烃   SERS(表面增强拉曼散射)技术具有超灵敏性:SERS的增强因子最高可以达到1014~1015,使单分子检测成为可能,因此其灵敏度不低于任何其他分析方法;高选择性:表面选择定则和共振增强的选择性使得SERS可以在极其复杂的体系中仅仅增强目标分子或基团,得到简单明了的光谱信息;检测条件温和:SERS检测时样品可以是固态、液态和汽态,而且可以方便地用于水溶液体系,这一特点尤其适合生物分子研究领域。   赵冰教授在报告中介绍说课题组设计了一种新型SERS基底,该基底具有稳定、保存时间长的特点,使类似于多环芳烃这类与金没有作用的分子利用SERS技术得以检测。并详细讨论了巯基取代环糊精在金纳米粒子表面的表面覆盖度对SERS效果的影响,以及离心速度对SERS结果的影响。实现了对五种多环芳烃混合物的SERS光谱定性分析,可以定性鉴别混合物中的蒽、芘、屈以及苯并菲分子。不仅对单一组分的蒽、芘、屈以及苯并菲进行了定量检测,还对五种多环芳烃的复杂体系进行了定量检测。并深入地讨论了多环芳烃与环糊精内腔的匹配程度对SERS增强效果的影响。    中国检验检疫科学研究院 邹明强研究员 几种快检新技术及应用   拉曼光谱法具有谱线丰富、无需样品预处理、非接触性、非破坏性、快速、需样量少等特点。邹明强研究员在报告中介绍了课题组研发了可实现简便、快速,准确定量检测乳品微痕量三聚氰胺的便携式拉曼光谱仪,该仪器可拓展用于橄榄油真伪鉴别、果汁真伪鉴别、塑料包装材料材质鉴别、农兽残检测、汽油鉴别等快速检测。同时研发了纳米增敏试剂,突破快检技术瓶颈,发展拉曼技术在食品微痕量有害物检测的应用。   邹明强研究员介绍说,2011年2月,“便携式三聚氰胺速测仪及速测技术”以单项许可的方式转让给威海威高电子工程有限公司。西藏全区质监系统已应用,在蒙牛、伊利等乳业,及北京、辽宁、山西、宁夏检验检疫局等进行了示范应用。   上海大学 尤静林教授   铝氟熔盐结构高温原位拉曼光谱和量子化学从头计算研究   冰晶石是熔盐电解法炼铝的重要助溶剂,氧化铝在高温下部分熔融于冰晶石,具有较好的稳定性和导电性。冰晶石氧化铝熔盐结构与其物理化学性质有着密切的关系,熔盐的微观结构决定了其宏观物理化学性能,而NaF-AlF3二元系是冰晶石氧化铝熔盐结构中一个非常重要的子系。因此,研究该二元系的微结构及其性质是十分必要的。   尤静林教授介绍说课题组测定了NaF-AlF3铝氟熔盐体系不同摩尔比熔盐的常温及高温原位拉曼光谱,同时采用量子化学从头计算方法对该体系的铝氟配位结构及其拉曼光谱进行了计算模拟。结果表明,铝氟四面体和八面体是NaF-AlF3铝氟熔盐体系较为稳定的基本结构单位,其中,铝氟四面体的种类桥氟数还随AlF3含量的增加发生变化。   除会议报告外,本次会议还采用了墙报展示的方法进行学术交流。   据介绍本届大会共收到论文200余篇,收入论文集稿件175篇。为表彰本次学术会议上研究水平高、突出研究内容要点、讲解清楚的“口头报告”和“墙报”,本次会议特别从70多篇墙报中评选出20个优秀墙报奖,20多个口头报告中评选出10篇优秀论文奖,并在闭幕式上为获奖者颁发证书和奖金。 优秀论文奖获奖者及颁奖嘉宾合影 优秀墙报奖获奖者及颁奖嘉宾合影   此外在大会闭幕式上,韶关学院科技处处长陈小康教授对本次大会进行了总结。苏州大学材料与化学化工学部姚建林教授热情邀请新老朋友参加2014年11月在苏州大学举办的第十八届全国分子光谱学学术会议。 韶关学院科技处处长陈小康教授 苏州大学材料与化学化工学部姚建林教授   本届会议得到了赛默飞世尔科技、安捷伦科技(中国)有限公司、岛津国际贸易(上海)有限公司、珀金埃尔默仪器(上海)有限公司、雷尼绍(上海)贸易有限公司、北京凯元盛世科技、天津港东科技发展股份有限公司、上海千欣仪器有限公司、伯乐生命医学产品(上海)有限公司、天美(中国)科学仪器有限公司、堀场贸易(上海)有限公司、布鲁克光谱仪器公司的大力支持。大会期间各公司通过现场仪器展示,以及会议报告的方式向与会人员展示了各自最新的仪器及应用技术,详细信息敬请关注仪器信息网后续报道。 集体合影
  • 2022年第二批行业标准制修订计划公布 多项与仪器仪表行业相关
    工信部编制完成了2022年第二批行业标准制修订和外文版项目计划,并印发公布。2022年第二批共安排行业标准制修订项目计划638项。其中,制定450项,修订188项;重点和基础通用标准352项,其他标准286项。行业标准外文版项目计划40项,其中翻译标准29项,同步制定11项。标准是企业产品生产的重要依据,也是保证产品质量,提高自己产品在市场竞争力的前提条件,为行业的发展提供了依据。行业标准是对没有国家标准而又需要在全国某个行业范围内统一的技术要求所制定的标准,行业标准不得与有关国家标准相抵触。工信部要求,标准起草单位要做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。有关行业协会(联合会)、标准化技术组织、标准化专业机构等主管单位要尽早安排,将文件及时转发至主要起草单位,并做好标准组织起草、征求意见和技术审查等工作,把好技术审查关。本批行业标准制修订计划紧密围绕行业管理,产品设计、生产、检验和使用等活动,以及社会关注的热点和焦点问题,加强市场急需标准的制修订,突出标准对提升产品质量、规范市场秩序和保护消费者合法权益的作用。计划区分专项标准化工程(行动)项目和其他标准项目,着力支持重点和基础通用标准制修订项目,并在备注中予以区分,其中重点标准项目根据项目重要程度用1-5个“★”标注,基础通用标准用“〇”标注。计划编制重点有六个方面,技术标准体系建设方案中重点领域的标准项目;重点产业发展急需的标准,具有创新技术和国际先进性的标准,服务“一带一路”建设的行业标准外文版项目 基础术语、关键共性技术、试验方法等基础类标准项目;工程建设、节能环保、质量安全等通用类标准项目;不适应当前技术进步和产业发展需要,亟需修订的标准项目 其他产业发展和行业管理亟需的标准项目。随着工业互联网的兴起,仪器仪表的智能化、网络化、数字化有了进一步的发展,工业互联网标识解析体系建设具有越来越重要的意义。标识解析就是数字世界的身份证,通过对物联网中的对象名称进行标记,实现跨企业、跨地区、跨行业的数据共享共用,《工业互联网标识解析仪器仪表基础元数据》出现在此次标准制修订计划中。计划中,有的标准针对仪器仪表产品本身,如《化工设备专用振动和温度一体式传感器》《随机翻滚法织物起毛起球性能测试仪》;还有的标准涉及仪器仪表的分析检测方法,如《冰晶石化学分析方法和物理性能测定方法第5部分:钠含量的测定火焰原子吸收光谱法》《铝电解质元素含量的测定x射线荧光光谱法》等。进一步加强重点和基础通用标准制定,提升标准技术水平、创新能力和国际化程度,建立健全满足产业高质量发展的新型标准体系,有利于制造强国和网络强国建设,实现我国标准高质量发展。
  • 清明节追思:深切缅怀中国氮吸附仪开拓者钟家湘教授
    2021年3月26日下午,北京理工大学教授、中国知名材料科学家、精微高博科学技术有限公司创始人钟家湘先生因病医治无效,与世长辞,享年83岁。钟家湘教授开拓了国产仪器的新领域并成功产业化,改变了我国微纳米材料表面测试仪器完全依赖进口的局面。近日,仪器信息网通过采访钟教授生前挚友、精微高博另一位创始人古燕玲女士,回顾其退休后的创业奋斗史。20世纪90年代末,因纳米材料科研工作的需要,钟教授联合北京橡胶研究院葛雄章等人,开启了国产氮吸附仪的研制工作,在老一代科技工作者打下的基础上,于2000年主持完成了新型动态氮吸附仪的改造升级工作。该动态比表面仪样机很快引起了当时的焦作冰晶石厂的极大兴趣,随即被其购买。接下来其团队调研发现,随着超细粉体,尤其是纳米材料的发展,粉体材料表面特性的表征与测量越来越重要,比表面及孔径分布分析测试仪的需求日益增大,而当时国内比表面仪市场还是一片空白,只能依赖国外进口仪器,且价格昂贵。为填补国内市场空白,让科技工作者可以用上国产比表面仪,钟家湘教授决定承担起这份重任,将自主研发的产品推向市场。历经两年多的技术积累,2003年新一代动态比表面仪成品进入市场,开启了中国氮吸附仪产业化的新里程;2004年,钟家湘带领仅5人的团队,租用一间约20平方的办公室,成立了北京精微高博科技开发中心(现北京精微高博科学技术有限公司),同年推出动态BET比表面仪,在测试方法上开始与国际接轨;2005年,研制成功动态常压单气路孔径分析仪,至此形成了具有我国特色的动态氮吸附仪的系列产品,产业化速度快速提高,打破了国外氮吸附仪在中国一统天下的局面。相比动态比表面仪,静态比表面仪技术门槛要高很多,当国外不断推出静态比表面仪产品时,国内还未起步。为了追赶国际先进水平,钟家湘带领团队在努力研发动态氮吸附仪的同时,又致力于研发静态比表面仪,经过近两年千百次的实验,攻克一个又一个的技术难关,于2007年研发成功静态介孔分析仪;之后陆续推出静态微孔分析仪、静态超微孔分析仪,推动中国氮吸附仪的技术向国际先进水平靠近。由于市场的空白,没有成熟的产品和现成技术可供参考,钟教授经常到国家图书馆查阅资料,只能从基础原理开始不断尝试、完善,最终凭借其深厚的学识基础、丰富的实践经验与严密的科学精神,带领精微高博屡创佳绩。在研发过程中,钟教授坚持走产学研道路,积极同高校密切合作,组建该领域权威的专家顾问团队,为公司良好持续发展打下坚实基础。2013年与国内知名教授合作,成功将非定域密度函数(NLDFT)理论应用于国产孔径分析仪,取得可喜的突破;2014年,又研发成功高压吸附仪、真密度仪等。为了帮助用户理解仪器理论模型和技术参数背后的物理意义,以便将仪器的作用发挥到最大化,钟教授还对这些理论模型逐个进行深入研究,多次到国内多所高等院校深入浅出地介绍比表面及孔径分析的原理、方法和应用,为提高中国微纳米材料表面测试水平,推动国产仪器产业化做出了突出贡献,被誉为中国氮吸附仪的开拓者。2015年4月,钟教授荣获第二届“科学仪器行业研发特别贡献奖”。2017年,80岁高龄的钟教授壮心不已,仍身处一线岗位,本是功成身退的年纪,又为何仍在坚持?80大寿之日,钟教授接受仪器信息网采访并给出了自己的答案,“第一,我是为了真正解决国产仪器在这个领域的问题,推动国产仪器发展,我是把它当成事业来做,而不是为了挣钱;第二,科学仪器是一个跨学科的产物,需要团队共同发挥智慧,就我本人来讲,我年纪比较大一点,知识面更广一些,研究的思路方法更丰富一些,能为团队提供帮助,最重要的是我要保持团队的凝聚力。”为进一步提升公司综合实力,更快、更好地与国外仪器竞争,2017年10月,精微高博进行了融资改组,开启了新的征程。至此,钟教授为我国氮吸附仪产业化所做的贡献有目共睹,其创业史代表了中国氮吸附仪技术的发展轨迹,国外同行也给予高度评价,“用十年走过了国外该类仪器五十年的发展道路”。当故人远去,留给后人的是无尽的伤感与思念。在这吹面不寒杨柳风的清明时节,谨以此文纪念刚刚逝去的钟家湘先生。清明将至,行业纷纷表达缅怀之情精微高博总经理马志远:我和钟老师于三年前相识,有幸可以合作,将精微高博品牌传承下去。我非常喜欢精微高博这四个字,也赋予了新的“精深微妙,高远博大”之意,老先生的愿景是:创中国知名品牌,争世界一流产品。这个愿景没有变,被完整继承下来,我们所有人都认可并且为之努力。去年十一月探望老先生时,我说两年多来,精微高博已经有10%多的销售额来自海外了。海外布局已经初具规模,我们这么积极开拓海外,就是希望把这个品牌从中国知名创成国际知名,从中国品质塑造成世界品质。老先生很高兴,这是他老人家的心愿,是我接手时给我的任务。在给老先生的挽联中我是这样写的:工匠精神永存精微,科学素养铸就高博。老先生做科研跟随特种合金泰斗师昌绪先生13年,为国家军事力量的强大贡献了青春。在理工大学带着实践经验,做学术培养人才,理论突出,桃李满园,16年兢兢业业。60岁创业,一次创业做纳米材料研发生产,历时五年,以失败告终,然斗志不减,二次创业成立精微高博,发展至今,开拓了氮吸附仪器之先河。可以说老先生一生奋斗,科研有成、治学有果、创业有功,80年奋斗不止,人虽年迈,壮心不已,实为我辈楷模,当之无愧的榜样。斯人已逝,精神永存!原精微高博员工:钟老师专注认真、待人平和、友善关爱,拥有老一辈科学家坚韧、执着、奉献的精神,是我遇到过的最接近我心目中大师模样的人。他教会我的、带给我的影响,就像是一束光,像一个方向,温暖又清晰地告诉我就应该如此做事,这样去活。谢谢钟老师,您带给这个世界的都正在发扬光大。仪器信息网编辑:仪海钩沉,科匠情更笃;桃李馥郁,木铎声尤闻。三年前得闻教诲,受益不尽,您是那么和蔼乐观,眼神那么明亮,充满了对世间万物最诚挚的热爱,如今念兹,音容笑貌仿佛昨昔。愿钟老一路走好,在彼岸仍是一派锦绣天地。美国麦克仪器许人良博士:科研半世创建精微业,勤奋一生增辉国仪楼。
  • HPLC、IC将成为肥料中三聚氰胺测定国标方法
    仪器信息网讯 日前,国家标准化管理委员会发布对2013年第二批拟立项国家标准项目征求意见的通知。其中提出我国将制定《肥料中多环芳烃含量的测定 气相色谱-质谱法》、《肥料中三聚氰胺含量的测定高效液相色谱法和离子色谱法》、《肥料中游离氟及总氟化物的测定 离子选择性电极法》、《有机肥料中四环素类抗生素含量的测定 高效液相色谱法》等标准,具体内容如下: 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 起草单位 肥料中多环芳烃含量的测定 气相色谱-质谱法 推荐 制定     2014 上海出入境检验检疫局工业品中心,国家化肥质量监督检验中心(上海),上海交通大学。   目的意义:   肥料中持久性有机污染问题正越来越受到国内外的广泛关注。其中,多环芳烃(PAHs)因其毒性、生物蓄积性和环境持久性,对人类健康危害极大,因此,各国都把PAHs列入&ldquo 优先控制污染物&ldquo 名单。本项目针对含有PAHs的肥料施入土壤后存在着被农作物吸收而污染农产品的极大风险,通过对国内外PAHs相关分析方法的查询和研究,以美国EPA确定的16种优控污染物为对象,研究一种适合定性、定量检测肥料中PAHs的气相色谱-质谱法(GC-MS),为保障农产品安全提供技术支撑。   范围和主要技术内容:   范围:适用于肥料中多环芳烃的测定,目标化合物选择目前国内外普遍关注的16种多环芳烃,均属于环境优控污染物,包括:萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)蒽、苯并(a)芘、二苯并(a,h)蒽、苯并(ghi)?、茚并 (1,2,3,-cd) 芘 。 主要技术内容:基于气相色谱-质谱法分析的技术路线,侧重净化方法的研究、仪器分析条件的建立以及质量保证和质量控制,同时兼顾便捷、准确的可操作性。 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 起草单位 肥料中三聚氰胺含量的测定 高效液相色谱法和离子色谱法 推荐 制定     2014 上海出入境检验检疫局工业品与原材料检测技术中心、国家化肥质量监督检验中心(上海)   目的意义:   肥料是现代农业的物质基础,对促进农作物增产起到不可替代的作用。我国化肥使用量占世界的35%,单位面积化肥用量是世界平均水平的三倍、欧美等发达国家的两倍,大量施用的化肥的安全问题也日益突出。有毒有害物质通过肥料这一源头进入土壤、作物而后进入人体或间接通过饲料-动物-食品这一渠道进入人体,对环境安全和人类健康都构成了极大地威胁。开展化肥中有毒有害和潜在危害物质的检测方法标准的制定,具有重大的现实意义。 三聚氰胺(melamine,ME)作为一种三嗪类含氮杂环有机化合物(分子式为C3N6H6),含氮量高达66。   范围和主要技术内容:   范围:肥料中的三聚氰胺含量的测定。 主要技术内容:(1)萃取:采用振荡提取和超声提取等方法进行前处理萃取,并获得化肥及肥料中三聚氰胺的最佳萃取条件 (2)纯化:通过固相萃取法对获得提取液进行纯化处理,并浓缩,带上机分析 (3)仪器分析:使用高效液相色谱(HPLC) 、离子色谱(IC)对上述经过纯化的提取液体进行分析。上述两种方法能够分别满足化肥中微量和常量三聚氰胺的检测,定性定量同时完成,具有灵敏度高、抗干扰能力强等特点,是检测肥料中三聚氰胺的有效方法。 项目名称 标准 性质 制修订 代替标准号 采用国际标准 完成时间 起草单位 肥料中游离氟及总氟化物的测定 离子选择性电极法 推荐制定     2014 山东省产品质量监督检验研究院、国家化肥质量监督检验中心(上海)   目的意义:   在自然状态下,土壤、海水、地面水和地下水都含氟。氟多以化合态存在于自然界中,主要有萤石、氟磷灰石、冰晶石等,它们都是重要的化工原料,广泛应用于炼铝、磷肥、钢铁以及有机氟高级润滑油。在肥料生产过程中,复合肥料生产原料&ldquo 磷酸&ldquo 以及复混、掺混肥料原料磷铵,成为肥料中氟化物的主要来源。随着近年来低品位磷矿资源得到利用,肥料中氟化物的含量也有逐年上升的趋势,氟化物对植物的毒害作用已有报道,氟化物可产生抑制植物光合作用、降低呼吸作用、影响有机物的代谢、引起植物产生遗传变异等不利影响,但是肥料中的氟化物对土壤及作物。   范围和主要技术内容:   本标准拟规定肥料(磷肥、复混肥料、有机肥、水溶肥料)中游离氟及总氟化物的试验方法(离子选择性电极法)。本标准适用于肥料(磷肥、复混肥料、有机肥、水溶肥料)中游离氟及总氟化物的测定,本方法最低检出浓度为0。05mg/L氟化物(以Fˉ计) 氟的最低检测限为0。80&mu g。标准的技术内容主要包括原理、样品制备、仪器设备、试剂材料、分析步骤以及结果计算与表示、准确度、精密度等。 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 起草单位 有机肥料中四环素类抗生素含量的测定 高效液相色谱法 推荐 制定     2014 国家化肥质量监督检验中心(上海),上海出入境检验检疫局工业品与原材料检测技术中心,上海交通大学   目的意义:   四环素类药物是养殖业上应用最为广泛的一类抗生素,长期大量应用已引起动物粪便中的抗生素残留,对以畜禽粪便为主要原料的有机肥料带来了潜在的生态风险,因此,建立有效检测有机肥料中残留抗生素含量的方法,并制定相应的国家标准对规范有机肥料的质量,维护生态环境安全具有重要的理论和实际意义。本项目通过对国内外相关分析方法的查询和研究,以目前畜禽业常用的天然和半合成四环素为对象,研究一种适合定性、定量检测有机肥料中典型抗生素的高效液相色谱法(HPLC),为保障农产品安全提供技术支撑。   范围和主要技术内容:   范围:适用于有机肥料中典型四环素类抗生素含量的测定,主要包括:土霉素、四环素、金霉素和强力霉素等多种抗生素。主要技术内容:基于高效液相色谱法分析的技术路线,侧重净化方法的研究、仪器分析条件的建立以及质量保证和质量控制,同时兼顾便捷、准确的可操作性。
  • 原位电镜确认立方冰
    自然界中常见的降雪大多都是水分子在灰尘矿物质等表面的凝聚生长,是最普遍的晶体生长现象,相应气固、液固相变物理/化学过程对应的物理机制被视为经典相变理论的原型模板。但这一自然条件下常见的宏观相变的微观机理受制于显微技术的发展一直面对着众多争议,其中一个受到气象学、晶体学、以及生物学等多个领域广泛关注但悬而未决的争议问题是:除了常见的六角冰,单晶、纯相的立方冰是否自然存在?以往气象学研究中观察到了一种特殊的日晕,被认为是由于云层中具有立方结构的冰晶对光的折射造成的。诺奖得主Linus Pauling基于剩余熵理论早在1935年预言了立方冰的存在。但在实验室中,不论是样品制备或者是晶体学表征领域,都难以提供纯相立方冰的直观证据。为了回答这一受到广泛关注的争议问题,发展原位冰形核结晶显微成像技术,在原子尺度上对水冰相变的微观行为进行实时观测表征,揭示水结晶的微观物理图像,对于基础的冰晶结构及其形成机理研究和冰晶合成及应用控制具有重要意义。  中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理实验室白雪冬课题组在过去二十多年致力于发展原位电镜技术,在透射电镜内构筑器件单元和微纳测量系统,在外场条件下(光、电、力、超快激光、低温等),观测和调控新物态与新物性 [Nature Commun. 11, 1840 (2020) PNAS 117, 18954 (2020) Rev. Sci. Instrum. 92, 013704 (2021) PRL 129,107601 (2022)]。近年来,该课题组白雪冬研究员、王立芬副研究员团队又发展了原位液体反应池透射电子显微技术,实现了纳米限域生长及其异质形核过程的原位原子尺度的观测表征,在表界面生长动力学研究中取得进展[Angew. Chem. In. Ed. 59,17534(2020) PRL 126,136001(2021)]。  最近,该团队通过发展原位冷冻电镜技术,结合原子分辨像差校正电镜技术和低剂量电子束成像技术,在冰的结晶微观机制研究上取得突破。在分子分辨水平,通过原位实时地观察电镜镜筒中的残存水蒸气在近液氮温度(102 K)的不同衬底上冷凝结冰的微观动态过程,发现水在衬底上首先会形成无定形冰,随后大多会结晶形成纯相的单晶立方冰。在实现单个冰晶颗粒高空间分辨的基础上,通过大量单颗粒实时追踪观察统计,发现在同样的低温、低压热力学条件下,水的气相沉积结晶过程优先形成立方冰,并同时存在六角冰的独立形核生长。这一工作展示了低温低压下冰的异质形核微观动力学的分子过程,揭示了异质界面对立方冰的偏好形核生长,为理解众多相似热力学条件下得到的多样化冰晶提供了依据。基于实空间成像,立方冰内部的常见缺陷也首次被清晰展示,研究表明,立方冰晶中存在两种不同的缺陷结构:密堆积面缺陷和堆垛无序畴。他们还利用电子束作为能量扰动源,系统地调控、观测了立方冰中缺陷相变的结构动力学行为,发现立方冰中密堆积面缺陷倾向于沿面内滑移,展示了与常见面心立方密堆积结构材料缺陷动力学的相似性。  该研究以直观的实空间实验证据展示了低温气相沉积过程中单晶立方冰的形成过程,澄清了关于单晶纯相立方冰能否形成的争议,这一工作以“Tracking cubic ice at molecular resolution”为题在Nature杂志上于2023年3月29日在线发表,中科院物理所王立芬副研究员为文章共同第一作者(2/3)和通讯作者,中科院物理所博士生黄旭丹(1/3)和北京大学博士生刘科阳同为文章第一作者,北京大学陈基研究员、王恩哥院士和中科院物理所白雪冬研究员为共同通讯作者。文章合作者还有北京大学物理学院江颖教授、材料学院刘磊研究员以及中科院物理所许智副主任工程师、田学增特聘研究员和王文龙研究员等。  该工作得到了国家基金委、中科院、科技部、北京自然科学基金委和中科院青促会的资助。  文章DOI: 10.1038/s41586-023-05864-5  线上发表链接: https://www.nature.com/articles/s41586-023-05864-5图1. 原位透射电镜实验设计及单晶立方冰在石墨烯表面经过水蒸气冷凝结晶的微观生长过程。图2. 在石墨烯(a)、六方氮化硼(b)、亲水性无定形碳(c)和厌水性无定形碳(d)衬底上生长的具有不同取向的单晶立方冰。图3.立方冰中存在两种缺陷构型:堆垛面上的面缺陷(类型1)和 堆垛无序畴(类型2)。图4.立方冰中的缺陷结构在电子束辐照下的动态行为。
  • 尖晶石型电催化纳米材料研究成果登上《自然-化学》
    近日,南开大学化学学院教授陈军带领的课题组在尖晶石型电催化纳米材料研究方面取得了重要进展,研究成果以论文形式发表于《自然》(Nature)系列期刊的《自然-化学》杂志(Nature Chemistry)。该研究得到了科技部、教育部、国家自然科学基金委员会、天津市科委和中央高校科研基金的支持。   尖晶石类化合物广泛应用于电、磁、催化、能量储存与转化等不同领域,传统方法制备需要较高的加热温度和较长的反应时间,合成步骤复杂,并且产物粒径大、比表面积小、电化学活性低。南开大学的这项研究将理论与实验有机结合,发展了一种可控的基于还原-转晶新合成方法,在室温和常压条件下实现了锰系尖晶石纳米材料的快速制备。新合成方法步骤简单,有利于节能减排,对氧还原/氧析出反应展现出良好的电化学催化性能,在新能源的金属-空气电池、燃料电池等方面有很好的应用前景。
  • 美国加州考虑修改第65号提案中的警示标语规定
    美国加州环境健康危害评估办公室(Office of Environmental Health Hazard Assessment,OEHHA)于7月30日召开公共研讨会,就某个法规搜集意见,该法规如果正式提出并采纳,将修改第65号提案中警示标语的内容。该举动为加州州长Jerry Brown计划“加强和恢复”第65号提案目的的一部分。其中一些修改预计通过行政手段来实施,而其他则需要采取立法行动。   负责第65号提案项目的OEHHA正在考虑制定一个法规,以提供有更多信息和更有意义的警示标语。法规将向要求提供这些标语的企业提供多种选择,以确保他们的警示标语符合第65号提案要求。目前,OEHHA认为这一法规应包含以下内容:   • 要求警示标语能提醒个人将暴露于化学品列表中的物质   • 警示标语必须包含的最小信息包括:暴露于列表中的化学物会带来健康影响(癌症、男性生殖毒性、女性生殖毒性、发育毒性)、人类如何受到暴露的信息,如适用,还应包括如何避免或减少暴露的简单信息(如洗手)   • 经批准的,供制造商和零售商使用的有关消费品和食品暴露于列表中的化学物质的警示方法和内容,包括零售店和通过互联网销售的产品   • 经批准的环境暴露的警示方法和内容,包括个人进入或长时间位于存在列表中化学物质的区域(包括停车场、食品店、酒店、公寓和其他商业区域)受到的暴露   • 提供额外的与暴露于列表中化学品有关的信息的要求和批准的方法,这将允许个人了解到更多(从一个网站或其他可访问处)所受到的暴露的一些或所有的化学物质,以及其他州和联邦法律的适用性   • 对企业来说符合监管法规和识别现有法律规定的警示标语的合理过渡期。   警示标语例子应满足以下要求:   • “使用该产品将使你受到铅暴露,铅会导致新生婴儿癌症、生育缺陷和其他伤害。接触该产品后请洗手,更多信息请查看www.oehha.com.gov/warnings。”   • “咽下该产品将使你受到铅暴露,铅会导致新生婴儿癌症、生育缺陷和其他伤害。接触该产品后请洗手,更多信息请查看www.oehha.com.gov/warnings。”   • “喝啤酒、酒类、冰镇、蒸馏烈酒和其他酒精饮料会导致新生婴儿癌症、生育缺陷和其他伤害。孕妇避免在怀孕期间喝酒。更多信息请查看www.surgeongeneral.gov/news/2005/02/sg022220 05.html。”   利益相关方可在8月30日之前提交评议意见。
  • 食品包装消费警示发布 不合格仿瓷餐具可致癌
    2012食品包装消费警示昨发布   近日,2011中国食品包装论坛发布会在京举行。会议发布了《2012中国食品包装消费警示》,揭开了与食品安全密切相关的包装存在的行业内幕和安全陷阱。   比如仿瓷餐具,行内称密胺餐具,因其耐摔、易清洗、色彩鲜艳被广大消费者尤其是小朋友所喜爱。然而,由国际食品包装协会与有关方面组成的联合调查组,对北京、广东、浙江共10家连锁超市、10家批发市场及北京20家餐饮企业仿瓷餐具使用情况进行了长达五个多月的全面调查、测试和分析,得出的结论不容乐观。   从市场购买的23种不同企业生产的密胺产品,未获生产许可证的产品竟占47.8%,且部分产品严重超标,如北京市丰台某批发市场销售的商标为祥和的仿瓷碗,甲醛检测值超过标准值近5倍,存在严重致癌隐患。   消费警示   消毒湿巾并不“消毒”   据调查,消毒湿巾的消毒效果有限,而且丢弃后污染环境。有些生产企业为了降低成本使用劣质材料,为了使产品更白净,添加了对人体有致癌作用的荧光增白剂。还有些湿巾打开后有浓烈的香味,其使用的香精也可能是工业级的。   PVC保鲜膜裹肉要不得   现在,市场上常见的食品保鲜膜有聚乙烯(PE)、聚氯乙烯(PVC)等,其中PE材质的保鲜膜比较安全。而PVC材质的保鲜膜,为了增加柔软度和黏附力,生产企业往往都会添加增塑剂。增塑剂和油脂类食品接触时会深入到食物中,从而随着食品进入人体。增塑剂如果在体内长期累积,会引发激素失调、导致人体免疫力下降。   此前,有调查发现,北京、广东深圳地区大型超市鲜肉区、熟食区存在PVC保鲜膜滥用的现象。   小摊彩色吸管隐患大   每天,人们早上喝着小摊上买的热豆浆。摊贩使用的吸管外包装袋上没有任何标识。生产吸管的原料一般是高密度的聚乙烯,而食品级的聚乙烯要比非食品级的贵。于是,一些生产企业会使用工业级的聚乙烯或者废塑料制成吸管,这样的吸管容易产生低分子的有害物质,比如致癌物萘,长期使用会影响人体肝脏,导致血液疾病等。   而且,三无塑料吸管,颜色越鲜艳,安全隐患越大。生产商可能会使用颜料来遮盖废旧等不合格材料,而这些颜料里通常含有铅等重金属。   月饼托增塑剂超标800倍   精美的月饼盒里,都有同样制作精良的月饼托。然而,调查结果显示,根据国家标准对市场上购买的11种月饼托进行检测,10个样品检测出含有增塑剂,有的惊人地超标800倍。
  • 701项有色金属、化工石化等行业标准将制修订
    工信部下达2010年第二批行业标准制修订计划(以下简称计划)。计划共701项,其中制定405项,修订296项 产品类标准700项,节能与综合利用标准1项 涉及通信、电子、机械、轻工等4个行业,其中通信行业标准项目111项、电子行业标准项目173项、机械行业标准项目21项、轻工行业标准项目396项。   计划是根据工信部《2010年标准化工作要点》和行业标准制修订工作的总体安排,继下达2010年第一批2620项行业标准制修订计划后,编制完成的第二批行业标准制修订计划,提出了标准项目的编制原则、重点和具体要求。   计划按照产业发展需求、市场需要、协调配套的三大原则,优先编制有利于实施产业政策,推动行业技术进步,引导产业结构调整和优化,规范市场经济秩序的标准项目 突出做好高新技术推广应用和科研成果产业化,推动产业升级、自主创新、促进新型工业化的标准项目 产业发展规划中确定的重点领域、重点产品、重大装备及先进设计、工艺等方面的标准项目 经复审急需修订的标准项目。   计划要求:标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调 标准化技术归口单位、技术组织等要做好意见征求和技术审查等工作,把好技术审查关。 附件:2010年第二批行业标准制修订计划中部分行业标准,详细请参见“2010年第二批行业标准制修订计划.doc” 序号 申报号 项目名称 性质 制修订 代替标准 完成年限 申报司局 技术委员会或技术归口单位 主要起草单位 备注 9 YSFFZT3933-2010 冰晶石-元素分析 波长色散X射线荧光光谱法 压片法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 多氟多化工股份有限公司 10 YSFFZT3934-2010 采用ICP-MS分析精制三氯氢硅中杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 11 YSFFZT3935-2010 采用高质量分辨率辉光放电质谱仪测定高纯铋中杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 23 YSJCZT3947-2010 电子薄膜用高纯金属溅射靶材的纯度等级及杂质含量分析 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 有研亿金新材料股份有限公司 30 YSFFZT3955-2010 氟化铝-元素分析 波长色散X射线荧光光谱法 压片法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 多氟多化工股份有限公司 33 YSFFZT3958-2010 高纯铋化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 34 YSFFZT3959-2010 高纯铋化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 36 YSFFZT3961-2010 高纯铼化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 37 YSFFZT3962-2010 高纯铝化学分析方法 钴、钼、镉、铟、锡、锑、铂、砷量的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 38 YSFFZT3963-2010 高纯铝化学分析方法 辉光质谱法测定高纯铝中钾、锂、钠、钍、铀、镁、钙、铬、铁、镍、锌、硅、锡、磷等痕量杂质 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 39 YSFFZT3964-2010 高纯铌化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 40 YSFFZT3965-2010 高纯铌化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 41 YSFFXT3966-2010 高纯铅化学分析方法 砷量的测定 砷钼蓝吸光光度法 推荐 修订YS/T 229.2-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 42 YSFFXT3967-2010 高纯铅化学分析方法 锑量的测定 孔雀绿吸光光度法 推荐 修订 YS/T 229.3-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 43 YSFFZT3968-2010 高纯铅化学分析方法 锌、银、铜、铝、镁、镍、锡、铁、镉、锑、砷含量的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 44 YSFFXT3969-2010 高纯铅化学分析方法 银、铜、铋、铝、镍、锡、镁、铁量的测定 化学光谱法 推荐 修订 YS/T 229.1-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 46YSFFZT3971-2010 高纯三氧化二镓化学分析方法 化学光谱法测定杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 47 YSFFZT3972-2010 高纯钛化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 48 YSFFZT3973-2010 高纯钛化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 49 YSFFZT3974-2010 高纯钽化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 50 YSFFZT3975-2010 高纯钽化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 51 YSFFZT3976-2010 高纯铜化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 52 YSFFZT3977-2010 高纯钨化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 53 YSFFZT3978-2010 高纯钨化学分析方法 痕量杂质元素的测定 辉光放电质谱 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 56 YSFFZT3981-2010 高纯铟化学分析方法 苯芴酮-溴代十六烷基三甲胺吸光光度法测定锡量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 57 YSFFZT3982-2010 高纯铟化学分析方法 电感耦合等离子体质谱法测定高纯铟中 Cu、Pb、Zn、Sn、Cd、Mg、Al、Ni、Ag 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 58 YSFFZT3983-2010 高纯铟化学分析方法 电感耦合等离子体质谱法测定高纯铟中 Cu、Pb、Zn、Sn、Cd、Mg、Al、Ni、Ag、Fe 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 59 YSFFZT3984-2010 高纯铟化学分析方法 硅钼蓝吸光光度法测定硅量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 60 YSFFZT3985-2010 高纯铟化学分析方法 罗丹明B吸光光度法测定铊量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 64 YSFFZT3992-2010 硅粉中磷、硼杂质的测定方法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 四川新光硅业科技有限责任公司 69 YSFFZT3997-2010 红土镍矿化学分析方法 多成分的测定 波长色散X射线荧光光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 宁波出入境检验检疫局 70 YSFFZT3998-2010 红土镍矿化学分析方法 分析试样中湿存水量的测定-重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 天津出入境检验检疫局 71 YSFFZT3999-2010 红土镍矿化学分析方法 氟硅酸钾滴定法测定二氧化硅量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 72 YSFFZT4000-2010 红土镍矿化学分析方法 钼蓝分光光度法测定磷量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 73 YSFFZT4001-2010 红土镍矿化学分析方法 重铬酸钾滴定法测定铁量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 74 YSFFZT4002-2010 红土镍矿化学分析方法 灼烧减量的测定 重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 常熟出入境检验检疫局 75 YSFFZT4003-2010 红土镍矿石化学分析方法 化合水含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 鲅鱼圈出入境检验检疫局综合技术服务中心 76 YSFFZT4004-2010 红土镍矿石化学分析方法 镍含量的测定 丁二酮肟光度法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 鲅鱼圈出入境检验检疫局综合技术服务中心 88 YSFFZT4016-2010 铝中间合金化学分析方法 第12部分 铜含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 89 YSFFZT4017-2010 铝中间合金化学分析方法 第13部分 钒含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 90 YSFFZT4018-2010 铝中间合金化学分析方法 第14部分 锶含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 91 YSCPZT4019-2010 慢走丝放电加工用黄铜线 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 宁波博威集团有限公司 92 YSFFZT4020-2010 铌钛合金化学分析方法 电感耦合等离子体发射光谱法测定铝、镍、硅、铁、铬、铜、钽量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 93 YSFFZT4021-2010 铌钛合金化学分析方法 惰气熔融红外/热导法同时测定氧、氮含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 94 YSFFZT4022-2010 铌钛合金化学分析方法 惰性气氛熔融热导法测定氢量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 95 YSFFZT4023-2010 铌钛合金化学分析方法 高频燃烧红外吸收法测定碳量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 96 YSFFZT4024-2010 铌钛合金化学分析方法 硫酸铁铵滴定法测定钛量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 97 YSFFZT4025-2010 镍、钴、锰三元素氢氧化物化学分析方法 氯离子量的测定 氯化银目视比浊法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 98 YSFFZT4026-2010 镍、钴、锰三元素氢氧化物化学分析方法 镍量的测定 丁二酮肟重量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 99 YSFFZT4027-2010 镍、钴、锰三元素氢氧化物化学分析方法 铅量的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 101 YSFFZT4029-2010 镍钴锰三元素氢氧化物化学分析方法 硫酸根离子量的测定 电感耦合等离子体发射光谱法和硫酸钡重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 102 YSFFZT4030-2010 镍钴锰三元素氢氧化物化学分析方法 镍、钴、锰量的测定 电感耦合等离子体原子发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 103 YSFFZT4031-2010 镍钴锰三元素氢氧化物化学分析方法 铁、钙、镁、铜、锌、硅、铝、钠量的测定 电感耦合等离子体发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 104 YSFFZT4062-2010 镍钴锰酸锂化学分析方法 第1部分:镍钴锰总量的测定-EDTA滴定法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中信国安盟固利电源技术有限公司 105 YSFFZT4063-2010 镍钴锰酸锂化学分析方法 第2部分:锂、镍、钴、锰、钠、镁、铝、钾、铜、钙和铁量的测定 电感耦合等离子体原子发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中信国安盟固利电源技术有限公司
  • 明年1月起保健品应标警示语 面积不小于20%
    p style=" text-indent: 2em " 国家市场监管总局20日正式发布《保健食品标注警示用语指南》和《保健食品原料目录与保健功能目录管理办法》。其中,《保健食品原料目录与保健功能目录管理办法》将于2019年10月1日起正式实施,而《保健食品标注警示用语指南》将于2020年1月1日起正式实施。 /p p style=" text-indent: 2em " 保健食品不是药物,不能代替药物治疗疾病。指南指出,警示用语区应当位于最小销售包装包装物(容器)的主要展示版面,所占面积不应小于其所在面的20%,使用黑体字印刷。从明年1月起,保健食品标签要醒目标注警示语、规范保质期标注方式。 /p p style=" text-indent: 2em " 指南中还指出,保健食品经营者在经营保健食品的场所、网络平台等显要位置标注“保健食品不是药物,不能代替药物治疗疾病”等消费提示信息,引导消费者理性消费。 /p p style=" text-indent: 2em " 此外,《保健食品原料目录与保健功能目录管理办法》明确规定了纳入保健品原料目录的原料及纳入保健功能目录的保健功能应当符合的要求。 /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " br/ /p
  • 大尺寸单晶石墨烯制备获突破
    2月28日,《自然—通讯》杂志在线发表了中科院金属所沈阳材料科学国家(联合)实验室成会明、任文才团队在石墨烯制备方面取得的一项新突破,他们通过金属外延生长方法,制备出了具有非常优异场发射效应的毫米级单晶石墨烯及其薄膜。   石墨烯优异的电、光、强度等众多优异性质使其在电子学、自旋电子学、光电子学、太阳能电池、传感器等领域有着重要的潜在应用,但大规模高质量制备技术是制约其进入实际应用的瓶颈之一。   目前制备高质量石墨烯的方法,有胶带剥离法、碳化硅或金属表面外延生长法和化学气相沉积法(CVD),前两种方法效率低,不适于大量制备。而迄今由CVD法制备的石墨烯,一般是由纳米级到微米级尺寸的石墨烯晶畴拼接而成的多晶材料。   对于以金属基体生长的石墨烯,通常以腐蚀金属基体的方法来进行转移,不仅存在金属残存、转移过程破坏石墨烯结构的问题,而且污染环境、成本高、不适合贵金属基体。   成会明等采用贵金属铂生长基体,以低浓度甲烷和高浓度氢气通过常压CVD法,成功制备出了毫米级六边形单晶石墨烯及其构成的石墨烯薄膜。通过该研究组发明的电化学气体插层鼓泡法,可将铂上生长的石墨烯薄膜无损转移到任意基体上。   该方法操作简便、速度快、无污染,并且适于钌、铱等贵金属以及铜、镍等常用金属上生长的石墨烯的转移,金属基体可重复使用,可作为一种低成本、快速转移高质量石墨烯的普适方法。   该方法转移的单晶石墨烯具有很高的质量,将其转移到Si/SiO2基体上制成场效应晶体管,测量显示该单晶石墨烯室温下的载流子迁移率可达7100 cm2 V-1 s-1。   金属基体上大尺寸单晶石墨烯及其薄膜的多次重复生长,为石墨烯基本物性的研究及其在高性能纳电子器件、透明导电薄膜等领域的实际应用奠定了材料基础。
  • 合肥研究院高结晶石墨烯宏观体研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员王振洋团队在高结晶石墨烯宏观体的共价生长及其电学行为调制方面取得系列进展。石墨烯是具有优异力学、电学、热学和光学性能的二维碳材料。石墨烯的高效制备与宏观组装对其规模应用具有重要意义。目前,石墨烯宏观体的常规制备方法如液相自组装、3D打印和催化模板法等,仅能实现石墨烯片层间的非共价弱相互作用连接,导致石墨烯晶体结构的不连续,成为限制石墨烯宏观体电学性质的主要因素。 鉴于此,研究开发了激光辅助的layer-by-layer共价生长方法来制备高结晶石墨烯宏观体。分子动力学模拟从理论上揭示了它的共价生长机制。共价生长法使得材料具有连续的晶体结构,且与非共价组装相比,其跨层电导率实现了100倍的提升。该材料有助于解决石墨烯规模化应用面临的层状堆垛、晶体质量调控、离子输运通道、体积效应等问题,为石墨烯的储能电极应用奠定了基础。相关研究成果发表在《先进功能材料》(Advanced Functional Materials)上。 此外,为了解决石墨烯电极中低自由电子浓度导致的电导率不理想的问题,研究将富含自由电子的铜纳米粒子引入到材料体系,在Cu与石墨烯界面形成了稳定的Cu-C键,从而通过电子注入实现了复合材料超高的导电性能,电导率达到与纯金属接近的0.37×107 S m-1, 是纯石墨烯的3000倍。研究进一步利用X射线吸收精细结构(XAFS)光谱,结合密度函数理论(DFT)模拟揭示了界面结构对电导率的影响,这对石墨烯的电导率调制以满足不同应用具有重要意义。相关研究成果发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家重点研发计划、国家自然科学基金、安徽省科技重大专项和安徽省重点研发计划等的支持。 高结晶石墨烯宏观体的layer-by-layer共价生长及其表征。  (a)不同铜含量的石墨烯电导率;(b)不同铜含量的石墨烯载流子迁移率和载流子密度。
  • 不讲套路,只讲实力——生物科技公司洁净室案例
    洁净室是指将一定空间范围内空气中的微粒子、有害空气、细菌等污染物排除,并将室内温度、洁净度、室内压力、气流速度与气流分布、噪音振动及照明、静电控制在某一需求范围内,而所给予特别设计的房间。不论外在空气条件如何变化,其室内均能俱有维持原先所设定要求之洁净度、温湿度及压力等性能之特性。(洁净室的内部图) 洁净室设计特点:是一个不受外界干扰的空间,以:“封闭、安全、环保”为出发点,综合考虑各种仪器设备的安全操作要求,配置相应实验设备。 上海泰坦科技股份有限公司(以下简称“泰坦科技”)承接的上海漕河泾园区某生物科技公司的洁净室工程项目,包含洁净室规划、布局、洁净室暖通系统、照明系统、门禁系统、气体管路系统建设等,目前,此洁净室已经顺利完工。经过一段时间的体验和使用,该生物科技公司对本项目给予了高度评价,同时与泰坦科技(Titan)达成长期合作协议。细节介绍彩钢板双开门特点:密封性强、稳定性高、防沙尘、防静电、易清洁。照明设施特点:不会释放污染物,并且面板与底盘之间用进口优质硅胶条粘结,密封可靠。气路装备特点:气路系统主要由气源切换系统、管道系统、调压系统、用气点、监控及报警系统组成。安全性高且能实现集中分配供气的系统,完成从气源向仪器的供气。圆弧收边 特点:结构简单、美观大方。 多年以来,【泰坦科技】实验室建设作为科学实验室“整体解决方案”服务理念的倡导者,一直致力于为客户打造实验室“钥匙”工程,从实验室的需求分析、整体规划设计、家具设备安装到实验室的日常维护运营,【泰坦科技】能为您提供全面服务,确保您拥有健康的实验室环境,把精力专注于您的科学事业。 如有实验室建设需求,欢迎垂询【泰坦科技】实验室建设项目总监 范亚平:139 1680 7870(详情请点击图片查看)
  • 德图即将参加2009洁净室研讨会及产品展示
    亲爱的德图仪器的用户: 德图仪器集团将参加在上海举办的&ldquo 2009洁净室研讨会及产品展示&rdquo 。9月23日下午1:30我们将在研讨会上发言,总结并报告德图最新的洁净室测量技术。非常欢迎您参加此次研讨会并关注德图,恭候您的光临! 名 称:洁净室研讨会及产品展示 2009 时 间:2009年9月23日-24日 地 点:上海龙东商务酒店(上海浦东新区龙东大道3000号) 简介:2009年第八届洁净室研讨会暨产品展示将在上海举办。目前尽管全球经济严重放慢,但是在中国,生物医药、半导体、微电子、基础建设仍在不断发展, 对洁净技术的需求与日俱争。另一方面, 全球大力推广节能环保,洁净技术也起关键作用。洁净技术的发展水平直接影响着一个国家在航空航天、信息产业、医疗医药、精密工业制造、生物技术等领域的进步。届时,技术演讲及展商将与洁净室技术及污染控制领域的专业人士分享新技术和行业信息;分析目前行业现状及未来趋势;为您提供直接接触国内半导体、光电子、生物制药等行业终端用户的良好契机。 详情请见 http://www.crcevent.com.cn/
  • 美国博纯获得ISO 8级洁净室认证
    - 全新升级洁净室持续公司对高品质医疗设备生产的承诺美国新泽西州的莱克伍德市传来消息,全球医疗、科研和环境监测应用气体预处理解决方案的优质供应商——美国博纯(permapure.com.cn)宣布公司洁净室已被认证为8级,与国际标准化组织ISO14644-1:2015标准描述一致。洁净室位于博纯新泽西州总部,是一个封闭及环境可控的空间,严格持续控制空气中的悬浮活菌及死菌(灰尘)以确保医疗设备的高品质生产。 “在博纯,‘protect life’ (保护生命)是我们企业DNA的一部分, 它是每天引导我们的根本原则。”博纯总裁Richard Curran说道。“洁净室的ISO 8级认证及持续对先进生产设备的投资是对此承诺的最好证明,通过确保我们提供最高品质的医疗产品来支持全球用户的治疗及呼吸监测”。 博纯具备生产专业管材及医疗采样线能力,为各种医疗设备及患者耗材应用提供呼吸干燥及加湿产品。高选择性渗透管解决方案利用Nafion?帮助在患者监测中为呼出气体去除水汽,在治疗气体应用中加湿治疗气体,如氧气和笑气。公司与世界领先的医疗设备客户紧密合作,支持新研发及现有医疗设备和耗材,保障患者安康。 关于博纯:美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供创新的高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、品质和可靠性产品,是医疗、科研和环境监测用户的信赖之选。博纯通过ISO 9001:2015,13485:2016认证,并获得FDA注册。
  • 完整的洁净室环境监测系统
    美国粒子监测系统发布FacilityPro® 5010 系统:洁净室环境监测的新工业自动化解决方案 2016年7月28日,科罗拉多州博尔德--美国粒子监测系统发布FacilityPro® 5010 系统,是洁净室在线环境监测的新工业自动化的解决方案。FacilityPro 5010建立在先前的FacilityPro 一代的基础上,为完整的洁净室环境系统提供中央集成。系统可以基于当前采样需求来配置,而且同时提供简易的扩容方式来满足未来的需要。FacilityPro 5010可以实现简化粒子和浮游菌采样,提供同一模块既进行粒子采样又进行浮游菌采样。此外,传感器的模拟和数字输入和输出,例如温度、差压和报警灯,都整合到中央处理模块,当简化安装时,可以减少采样模块的数量。另外的模块可连接到更多的粒子计数器,微生物采样器和环境模拟传感器,例如温度或者压强。中央真空架构进一步地简化安装程序。备用的真空泵同样可以安装,当泵故障或者进行维护时,系统可继续运行。基于地图设计,系统结构,审计追踪和数据/趋势报告,新的FacilityPro SCADA提供可更新的界面操作接口。遵循21CFR Part 11系统,软件对所有操作和改动有严格的权限控制,并要求电子签名。系统能包含多客户端,具备故障数据转移功能的二级服务器,多个远程访问的选择。 “FacilityPro 5010提供给我们的客户在快速变化的环境中所需要的灵活性,同时确保数据的安全可靠。” 粒子监测系统的生命科学的副总裁Gianni Scialo说:“该系统在GAMP 5中是4类,并且拥有基于标准验证文件的标准建立的IQ/OQ方案,支持更简洁和更快速的验证。”
  • 北京市食品办消费警示:个别海蜇产品铝超标
    2010年1月1日,北京市食品办发布2010年第一号消费警示,近期对市场监测时发现,个别海蜇产品存在铝残留量超过国家标准限量的问题,消费者须谨慎购买海蜇产品。   市食品办专家分析,我国允许在海蜇加工中使用硫酸铝钾(铵)作为食品添加剂,即俗称明矾。这种添加剂是在海蜇的加工过程中一般作为脱水剂按生产需要适量使用,但在水产品及其制品中,铝的残留量必须符合标准规定的限量。据分析,海蜇铝残留量超标原因可能是过量使用了硫酸铝钾(铵)所引起的。   目前,市食品办已责令相关部门将进一步加大食品安全的监督检查力度,确保食品安全。同时也提醒消费者,选购海蜇等水发产品尽量到正规的超市和批发市场,不要购买市场周边流动摊贩的产品。对表面看起来异常光亮、颜色过白、发得过大或有刺激性异味的水发产品,一定要谨慎购买。此外,消费者不放心,对买到的海蜇充分浸泡,用清水多次冲洗,也是较好的处理方法。
  • 2009年“中国标准创新贡献奖”名单公布
    为贯彻落实科学发展观,大力实施技术标准战略,提高标准化工作自主创新能力,建设创新型国家,国家质量监督检验检疫总局和国家标准化管理委员会决定,对技术水平和编写质量高、实施后经济和社会效益突出的标准主要完成单位和完成人给予奖励。经中国标准化专家委员会评审,国家标准化管理委员会审核公示,授予《GB/T 7635.1?2002 全国主要产品分类与代码第1部分:可运输产品》、《GB/T 7635.2?2002 全国主要产品分类与代码 第2部分:不可运输产品》等82项标准2009年“中国标准创新贡献奖”(名单见附件),其中一等奖9项,二等奖25项,三等奖48项。2009年12月24日,以国质检标联〔2009〕574号文予以公布。   北京纳克分析仪器有限公司等单位完成的《GSB 03—2028—2006 GSB 03—2029~2034—2006 含钼、铜、铌、氮不锈钢光谱分析用和化学分析用系列标准样品》、深圳新三思计量技术有限公司等单位完成的《GB/T 10700—2006 精细陶瓷弹性模量试验方法-弯曲法》、长春试验机研究所等单位完成的《GB/T 15706.1—2007 机械安全 基本概念与设计通则 第1部分:基本术语和方法等2项标准》等榜上有名。   文件号召全国标准化工作者要向获奖的单位和个人学习,继续发扬团结协作、顽强拼搏、求真务实、勇于创新的精神,坚持走中国特色自主创新道路,认真落实《标准化“十一五”发展规划》和《国家中长期科学和技术发展规划纲要(2006?2020年)》对标准化工作提出的各项任务要求,加快我国标准化自主创新步伐,促进科技成果转化,为推动标准化事业健康发展,促进经济社会又好又快发展做出更大的贡献。   附:2009年“中国标准创新贡献奖”获奖项目名单     (标红字体为与科学仪器及分析测试直接相关的标准) 序号 标准项目名称 主要完成单位 主要完成人 奖励等级 1 GB/T 7635.1—2002 全国主要产品分类与代码 第1部分:可运输产品、GB/T 7635.2—2002 全国主要产品分类与代码 第2部分:不可运输产品 中国标准化研究院、国家中医药管理局信息统计中心、机械科学研究总院标准信息研究所、中化化工标准化研究所、卫生部医院管理研究所、中国纺织工业协会 丁雅娴、冯卫、郑亚丽、陈燕南、郭秀婷、俞汝龙、黄承平、张明达、房庆、矫云起 一等奖 2 GB 18564.1—2006 道路运输液体危险货物罐式车辆 第1部分:金属常压罐体技术要求 中集车辆(集团)有限公司、上海华谊集团装备工程有限公司、中国石油化工集团公司经济技术研究院、扬州中集通华专用车有限公司、南通中集罐式储运设备制造有限公司、荆门宏图特种飞行器制造有限公司、哈尔滨建成北方专用车有限公司 刘洪庆、周伟明、寿比南、马凯、孙洪利、孙太平、罗永欣、许子平、陈朝晖、王为国 一等奖 3 GB 8624—2006 建筑材料及制品燃烧性能分级 公安部四川消防研究所、中国建筑科学研究院防火研究所、建筑材料工业技术监督研究中心、阿乐斯绝热材料(广州)有限公司、拜耳(中国)有限公司、上海阿姆斯壮建筑制品有限公司、亚罗弗保温材料(上海)有限公司 李风、赵成刚、钱建民、马道贞 一等奖 4 DB23/T 018—2007 大豆生产技术规程 黑龙江省农业技术推广站 杨微、王国春 一等奖 5 GB 1499.2—2007钢筋混凝土用钢 第2部分:热轧带肋钢筋 中冶建筑研究总院有限公司、冶金工业信息标准研究院、首钢总公司、莱芜钢铁集团有限公司、湖南华菱涟源钢铁有限公司、济南钢铁股份有限公司、昆明钢铁股份有限公司 何成杰、王丽敏、朱建国、冯超、张炳成、杜传治、高建忠、王丽萍、柳泽燕、李志敏 一等奖 6 YD/T 1365—2006 2GHz TD-SCDMA数字蜂窝移动通信网 无线接入网络设备技术要求等35项标准 工业和信息化部电信研究院、大唐电信科技产业集团、中国移动通信集团公司、中兴通讯股份有限公司 徐菲、胡金玲、黄宇红、胡剑、王可、李文宇、刘佳、段玉宏、乌娜、果敢 一等奖 7 CB/T 3000— 2007 船舶生产企业生产条件基本要求及评价方法 中国船舶工业综合技术经济研究院、中国船级社、农业部渔业船舶检验局、江苏省国防科学技术工业办公室、浙江省经贸委机械行业管理办公室、安徽省地方海事局、长江船舶设计院 李传明、陈颖涛、周海生、刘立新、李军、蒋伟平、彭晓华、梅明华、魏华兴、祁超 一等奖 8 GB 20263—2006 导航电子地图安全处理技术基本要求 中国测绘科学研究院、国家测绘局测绘标准化研究所、国家测绘局地图技术审查中心 李成名、印洁、赵园春、苏山舞、张坤、曹晓航、白凤文 一等奖 9 GB 50348—2004 安全防范工程技术规范等4项标准 公安部科技信息化局、公安部第一研究所、公安部第三研究所、北京艾克塞斯科技发展有限责任公司、中国兵器工业集团第二一二研究所西安北方信息产业有限公司、北京联视神盾安防技术有限公司、中国建筑标准设计研究院 李明甫、刘希清、靳秀凤、陈朝武、施巨岭、朱峰、李天銮、牟晓生、李秀林、孙兰 一等奖 10 GB 2760—2007 食品添加剂使用卫生标准 中国疾病预防控制中心营养与食品安全所 王茂起、王竹天、陈君石、张俭波、李晓瑜、陈瑶君、罗雪云、樊永祥 二等奖 11 GB 20688.3—2006 橡胶支座第3部分 建筑隔震橡胶支座等3项标准 广州大学工程抗震研究中心、北京市化工产品质量监督检验站、交通部公路科学研究院 周福霖、沈朝勇、宋宝清、马玉宏、金建敏、武晓星、黄襄云、罗学海 二等奖 12 GB/T 20361—2006 水产品中孔雀石绿和结晶紫残留量的测定 高效液相色谱荧光检测法 中国水产科学研究院、农业部渔业环境及水产品质量监督检验测试中心(舟山)、国家水产品质量监督检验测试中心、农业部水产品质量监督检验测试中心(上海) 郑斌、赵红萍、冷凯良、刘士忠、于慧娟、耿霞、陈雪昌、蔡友琼 二等奖 13 GB/T 21362—2008 商业或工业用及类似用途的热泵热水机 广州中宇冷气科技发展有限公司、合肥通用机械研究院、江苏天舒电器有限公司、广东美的商用空调设备有限公司、合肥通用环境控制技术有限公司 覃志成、张秀平、张明圣、王天舒、舒卫民、李柏、钟瑜、王磊 二等奖 14 GB/T 15468—2006 水轮机基本技术条件 哈尔滨电机厂有限责任公司、中国水电顾问集团昆明勘测设计研究院、东方电气集团东方电机有限公司、中国水利水电科学研究院水力机电所 宫让勤、曾镇铃、陈丁、钟苏、吴培豪、李伟刚、吴新润 二等奖 15 GB/T 15657—1995 中医病证分类与代码 湖北中医学院 毛树松、沈绍武、潘筱秦、金棣生、张奇、杨勤建、邵企红、章如虹 二等奖 16 GSB 11-2232-2008 毒麦标准样品等50项标准 辽宁出入境检验检疫局技术中心 曹际娟、郑江、王有福、吴斌、郑秋月、蒋丹、王秋艳、胡传伟 二等奖 17 DB12/T 294—2006 无公害农产品 蔬菜水果中农药残留多组份测定方法-GC/MS法等5项标准 天津市农业科学院中心实验室 郭永泽、张玉婷、刘磊、邵辉、刘焕禄、程奕、宋淑荣 二等奖 18 GB/T 20711—2006 熏煮火腿 中国商业联合会行业发展部(中国商业联合会商业标准中心)、南京雨润食品有限公司、临沂新程金锣肉制品有限公司 曹德胜、赵宁、张季川、赵榕 二等奖 19 GB/T 21533—2008 蜂蜜中淀粉糖浆的测定 离子色谱法 大连市产品质量监督检验所 潘炜、王春燕、郑顺利、于利军、张明、李鹏、董广彬、李海燕 二等奖20 GSB 03—2028—2006 GSB 03—2029~2034—2006 含钼、铜、铌、氮不锈钢光谱分析用和化学分析用系列标准样品 钢铁研究总院、北京纳克分析仪器有限公司 胡晓燕、唐本玲、薛楠、张翠敏、彭霞、范晓芸、胡修伟、刘晓霞 二等奖 21 HG/T 20201—2007 带压密封技术规范 吉林化工学院、全国化工施工标准化管理中心站、北京巨业华能科技开发有限责任公司、江达扬升企业、平顶山飞行化工(集团)有限责任公司 胡忆沩、王扬昇、孙文华、赵良、匡建钊、李自力、倪行秀、陈考 二等奖 22 GB/T 20173—2007 环氧涂层七丝预应力钢绞线 江阴法尔胜住电新材料有限公司、冶金工业信息标准研究院 赵军、徐钦华、刘礼华、金平、费汉兵、王玲君、戴石锋 二等奖 23 GB/T 10700—2006 精细陶瓷弹性模量试验方法-弯曲法 中国建筑材料科学研究总院、深圳新三思计量技术有限公司 包亦望、周丽玮、马眷荣、仇沱、雷庆安、曹增辰 二等奖 24 JB/T 10678—2006 板料开卷矫平剪切生产线 山东宏康机械制造有限公司、佛山市南海力丰机床有限公司、泰安华鲁锻压机床有限公司 朱洪臣、李世平、潘宪平、杨承寿、王冬兰、田衍新 二等奖 25 GB/T 18182—2000 金属压力容器声发射检测及结果评定方法等6项标准 中国特种设备检测研究院、大庆石油学院、北京科海恒生科技有限公司、北京声华兴业科技有限公司、合肥通用机械研究院 沈功田、李邦宪、戴 光、段庆儒、刘时风、李光海、吴占稳、关卫和 二等奖 26 GB 18613—2006 中小型三相异步电动机能效限定值及能效等级等6项标准 中国标准化研究院、上海电器科学研究所(集团有限公司)、国际铜业协会(中国)、无锡华达电机有限公司、北京毕捷电机股份有限公司 赵跃进、张新、李爱仙、陈海红、周守廉、吴国华、赵凯、陈向东 二等奖 27 GB/T 14951—2007 汽车节油技术评定方法 交通部公路科学研究院 韩国庆、蔡凤田、冯桂芹、刘莉、赵侃、王伟、董国亮、何勇 二等奖 28 ISO 22673:2008 船舶和海洋技术--自由降落式救生艇降放装置 中国船舶重工集团公司第七O四研究所、南京中船绿洲机器有限公司镇江船舶辅机厂 徐跃、童小川、蒋余良、刘震、张海燕、李一飞、盛伟群、谢志龙 二等奖 29 GB/T 19668.1—2005 信息化工程监理规范 第1部分:总则等6项标准 中国电子技术标准化研究所、山东省计算中心、北京交通大学计算机与信息技术学院、北京太极肯思捷信息系统咨询有限公司、新疆天衡信息工程监理有限公司 徐全平、董火民、葛迺康、李刚、赵尔忠、唐尖兵、王宣言、张斌 二等奖 30 ITU-T E.412.1:2007 传送网资源中断对业务可用性影响的评价等3项标准 北京邮电大学、北京市天元网络技术股份有限公司 亓峰、刘会永、王智立、李文璟、高志鹏、刘星、陈兴渝、詹志强 二等奖 31 GB/T 14285—2006 继电保护和安全自动装置技术规程 华东电力设计院、华北电力设计院、东北电力设计院、四川电力调度中心、国电南京自动化股份有限公司 冯匡一、袁季修、宋继成、李天华、高有权、王中元、韩绍钧、孙刚 二等奖 32 FZ/T 94041—2007 浆纱机 郑州纺织机械股份有限公司、中国纺织机械器材工业协会、盐城市宏华纺织机械有限公司、苏州圣元纺织机械有限公司 崔运喜、亓国宏、孙凉远、李远征、顾德新、王国祥、吴茂成 二等奖 33 QB/T 2836—2006 网络家电通用要求 中国家用电器研究院、海尔集团、北京亚都科技股份有限公司、广州美的制冷设备有限公司、珠海格力电器股份有限公司 邴旭卫、赵鹏、曲宗峰、冯承文、戴保平、白东培、金刚 二等奖 34 YZ/T 0128—2007 快递服务 中国标准化研究院 柳成洋、刘铮、于学民、徐华荣、陈军须、郭冬芬、尹彦、丁文兴 二等奖 35 GB/T 5849—2006 细木工板 黑龙江省林科院林产工业研究所、黑龙江省人造板质量监督检验站、浙江省林业厅 曾春雷、徐兰英、王春明、刘乐群、朱海庆、孙朝坤 三等奖 36 GB/T 13079—2006 饲料中总砷的测定 中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)]、成都蜀星饲料有限公司 王彤、田静、高生、范理、李玉芳、苏晓鸥 三等奖 37 GB/T 15104—2006 装饰单板贴面人造板 中国林业科学研究院木材工业研究所、浙江德华兔宝宝装饰新材股份有限公司、浙江裕华木业有限公司 王金林、李春生、丁鸿敏、金月华、程健敏、关绍娴 三等奖 38 DB46/T 44—2005 文昌鸡饲养管理技术规程等3项标准 海南省农业科学院畜牧兽医研究所、海南文昌鸡业协会、海南榕籽文昌鸡食品开发有限公司 林哲敏、黄礼光、叶保国、李汝权、邢漫萍、林大捷 三等奖 39 GB/T 18522.1—2003 水文仪器通则等6项标准 水利部水文仪器及岩土工程仪器质量监督检验测试中心、南京水利水文自动化研究所、水利部国际合作与科技司 陆旭、冯讷敏、刘咏峰、徐海峰、陆建华、李文明 三等奖 40 YC/T 149—2002 烟草及烟草制品 转基因的测定 中国烟草东北农业试验站 焦庆明、郭兆奎、闫新甫、万秀清、于艳华、魏继承 三等奖 41 GB/T 5009.206—2007 鲜河豚鱼中河豚毒素的测定 中国疾病预防控制中心营养与食品安全所 李凤琴、计融、江涛、韩春卉、张靖、罗雪云 三等奖 42 DB52/ 526—2007 酱香型白酒 贵州省产品质量检验检测院、贵州省标准化协会、贵州省食品工业协会 田志强、寻思颖、罗薇、杨黎、吴天祥、王遵 三等奖 43 GB/T 20825—2007 老白干香型白酒 中国食品发酵工业研究院、河北衡水老白干酿酒(集团)有限公司 郭新光、张志民、康永璞、李运普、张蔚、张煜行 三等奖 44 GB/T 18745—2006 地理标志产品 武夷岩茶 武夷山市质量技术监督局、武夷山市茶叶学会、中国标准化协会 周银茂、叶勇、高清火、张雯、王顺明、修明 三等奖 45 GB 21175—2007 危险货物分类定级基本程序等6项标准 国家质量监督检验检疫总局危险品中心实验室、天津出入境检验检疫局 王利兵、李宁涛、张园、李学洋、于艳军、吕刚 三等奖 46 JB/T 10806—2007 偶氮金属络合物类电荷控制剂技术条件等4项标准 湖北鼎龙化学股份有限公司、全国复印机械标准化技术委员会秘书处、天津复印技术研究所 朱双全、朱顺全、兰泽冠、鲁丽萍、苏来泉、安博萍 三等奖 47 GB/T 20621—2006 化学法复合二氧化氯发生器 中海油天津化工研究设计院、山东山大华特科技股份有限公司环保分公司、深圳欧泰华环保技术有限公司 范国强、章艺、王永芳、徐光、綦公文、于文敦 三等奖 48 GB/T 20434—2006 一甲基三氯硅烷 蓝星化工新材料股份有限公司江西星火有机硅厂 陈卫东、刘雪英、吴萍、陈其阳 三等奖 49 ISO 7989-1:2006 钢丝和钢丝产品 钢丝的有色金属镀层 第1部分:一般原则、ISO 7989-2:2007 钢丝和钢丝产品 钢丝的有色金属镀层 第2部分:锌和锌合金镀层 冶金工业信息标准研究院、鞍山钢铁集团公司、首钢集团公司 朱红斌、张晓刚、李凤芸、冯超、王玲君、张炳成 三等奖 50 GB/T 20067—2006 粗直径钢丝绳 贵州钢绳股份有限公司、冶金工业信息标准研究院、郑州金属制品研究院 胡正中、房义萍、杨红英、王玲君、张平萍 三等奖 51 GB/T 4291—2007 冰晶石、GB/T 4292—2007 氟化铝 多氟多化工股份有限公司 侯红军、杨华春、薛旭金、施秀华 三等奖 52 GB 20472—2006 硫铝酸盐水泥 中国建筑材料科学研究总院、唐山北极熊特种水泥有限责任公司、郑州市王楼水泥工业有限公司 张秋英、刁江京、颜碧兰、张大同、郭俊萍 三等奖 53 WH/T 27—2007 舞台机械 验收检测程序 中国演艺设备技术协会、浙江大丰实业有限公司(杭州)舞台设计院、甘肃工业大学机械工厂(甘肃工大舞台设备研究所) 段慧文、魏发孔、丰其云、胡清亮 三等奖 54 JB/T 9752.1—2005涡轮增压器 第1部分 一般技术条件等3项标准 上海内燃机研究所、上海柴油机股份有限公司、无锡市科博机械电器有限公司 江礼蛟、瞿俊鸣、童金菊、惠亚群、周忠清、李廷国 三等奖 55 JB/T 3790.1—2004 机械式自动捆扎机 杭州永创机械有限公司、机械工业包装机械产品质量监督检测中心 罗邦毅、陈润洁、吴圣恒 三等奖 56 GB/T 5616—2006 无损检测 应用导则 上海材料研究所、中国特种设备检测研究中心、上海锅炉厂有限公司 金宇飞、沈功田、阎建芳、史亦韦、徐国珍、罗云东 三等奖 57 GB/T 15706.1—2007 机械安全 基本概念与设计通则 第1部分:基本术语和方法、GB/T 15706.2—2007 机械安全 基本概念与设计通则 第2部分:技术原则 中机生产力促进中心、长春试验机研究所、南京食品包装机械研究所 李勤、聂北刚、王学智、宁燕、张晓飞、富锐 三等奖 58 TB/T 1632.1—2005 钢轨焊接 第1部分:通用技术条件等4项标准 中国铁道科学研究院金属及化学研究所、铁道部标准计量研究所 高文会、李力、丁韦、胡智博、杨来顺、朱梅 三等奖 59 GB/T 17108—2006 海洋功能区划技术导则 国家海洋信息中心、国家海洋环境监测中心 阿东、张东奇、杨新梅、艾万铸、刘百桥、关道明 三等奖 60 MT/T 238.3—2006 悬臂式掘进机 第3部分: 通用技术条件 煤炭科学研究总院太原研究院 刘建平、魏勇刚、余建华 三等奖 61 GB/T 17608—2006 煤炭产品品种和等级划分 煤炭科学研究总院北京煤化工研究分院、山西国阳新能股份有限公司 姜英、任玉明、陈亚飞、丁自安 三等奖 62 GB/T 20828—2007 柴油机燃料调合用生物柴油(BD100) 中国石油化工股份有限公司石油化工科学研究院 蔺建民、张永光、杨国勋、李率 三等奖 63 GB 19269.1—2003 公路运输危险货物包装检验安全规范 通则等3项标准 山东出入境检验检疫局、安徽出入境检验检疫局、江苏出入境检验检疫局 张少岩、陶强、宋振乾、温劲松、汤礼军、房建鹏 三等奖 64 JT/T 281—2007 公路波形梁钢护栏 交通部公路科学研究院、上海佳艺冷弯型钢厂、宁波路宝科技实业集团有限公司 唐琤琤、何勇、朱继昌、张昱、李炎、徐斌 三等奖 65 GB/T 20609—2006 交通信息采集 微波交通流检测器 交通部公路科学研究所、北京华通志远技术有限公司 蔡华、肖迪、杨蕴、侯卫星 三等奖 66 Q/SH 303231—2004(2007) 专用221润滑脂等5项标准 中国石油化工股份有限公司润滑油分公司 王军、赵玉贞、欧阳秋、李霞、李玉平、李杏涛 三等奖 67 GB/T 16833—2002 用于行政、商业和运输业电子数据交换的代码表等18项标准 中国标准化研究院、海关总署政策法规司 胡涵景、李颖、张荣静、孟朱明、石文来、刘颖 三等奖 68 GB/T 5266—2006 声学 水声材料纵波声速和衰减系数的测量 脉冲管法 中国船舶重工集团公司第七一五研究所、中国科学院声学研究所 李水、缪荣兴、王荣津 三等奖 69 Q/GDZJ 0001—2007 重熔铝锭连续铸造自动化生产线 兰州理工大学高新技术成果推广转化中心、兰州爱赛特机电科技有限公司、兰州理工大学 赵俊天、刘满强、刘军、冯瑞成、雷春丽、任丽娜 三等奖 70 Q/02HDZ 002—2007 数字流媒体电视接收机 青岛海尔电子有限公司、海尔集团技术研发中心 喻子达、翟翌立、胡宏祥、崔志龙、王海军 三等奖 71 YD/T 1591—2006 移动通信手持机充电器及接口技术要求和测试方法 工业和信息化部电信研究院、康佳集团股份有限公司 何桂立、刘军、孟梦、张夏、袁伟军、袁园 三等奖 72 DB51/T 851—2008 地震过渡安置房防雷技术规范 四川省防雷中心 徐志敏、季海、魏强、王基全、余勇、王琳莉 三等奖 73 YY 0503—2005 环氧乙烷灭菌器 杭州电达消毒设备厂、国家食品药品监督管理局广州医疗器械质量监督检验中心 周庆庆、高黎、闵捷、黄秀莲、卢子分 三等奖 74 GB/Z 21274—2007 电子电气产品中限用物质铅、汞、镉检测方法 深圳市计量质量检测研究院、中国质量认证中心、浙江方圆检测集团股份有限公司 陈泽勇、董永升、罗美中、李翔、杨万颖、黄小龙 三等奖 75 GB 14023—2006 车辆、船和由内燃机驱动的装置无线电骚扰特性的限值和测量方法 上海电器科学研究所(集团)有限公司、中国汽车技术研究中心 徐立、寿建霞、张君、林艳萍、王昌文 三等奖 76 SN/T 1850.1—2006 纺织品中烷基苯酚类及烷基苯酚聚氧乙烯醚类的测定 第1部分:高效液相色谱法等3项标准 深圳出入境检验检疫局 张伟亚、李丽霞、刘彩明、王成云、樊秀荣、唐莉纯 三等奖 77 GB/T 10802—2006 通用软质聚醚型聚氨酯泡沫塑料 北京工商大学、东莞市圣诺盟控股集团公司、江苏绿源新材料有限公司 陈倩、钱洪祥、林永飞、王珏、叶庆宪、王燕 三等奖 78 GB/T 20211—2006 烟花爆竹用钛粉 国家轻工业烟花爆竹安全质量监督检测中心 黄茶香、罗细、周荣学、邹艳玲、黎建芳 三等奖 79 GB/T 20218—2006 双向拉伸聚酰胺(尼龙)薄膜 佛山塑料集团股份有限公司、北京工商大学轻工业塑料加工应用研究所 吴耀根、施亚琤、陈倩 三等奖 80 GB/T 19425—2003 防伪技术产品通用技术条件 武汉华工科技产业股份有限公司图像分公司 徐继华、陈汝钧 三等奖 81 GB 17733—2008 地名 标志 民政部地名研究所、民政部区划地名司 刘保全、宋久成、庞森权 三等奖 82 GB 17741—2005 工程场地地震安全性评价 中国地震局地球物理研究所、中国地震局地质研究所、中国地震局地壳应力研究所 胡聿贤、张裕明、高孟潭、唐荣余、陈国星、李小军 三等奖
  • 一站式解决方案,VWR洁净室新品重磅发布!
    在受控环境中工作需要最高程度的专业知识和经验,确保产品和人员的安全和控制有害污染。VWR防护服提供五个级别的防护:基本、高级、最大、双标和照射,从头到脚完全保护。此外我们广泛的产品线,从擦拭布、纸到消毒剂,满足您受控环境高效运行所需的一切。 VWR-您受控环境解决方案的供应商VWR熟悉洁净室,我们持续提供新的和更好的产品选择保证环境更干净、工作更高效。 防护产品生产用品圆帽粘尘垫头罩刷子护目镜桶管面罩洁净室标签面具洁净室拖把防护服洁净室笔记本实验服洁净纸隔离长袍洁净室笔袖套洁净室胶带手套洁净卫生间手套衬里合规协助袜子消毒剂-无菌IPA鞋套/靴套手部护理样品袋海绵储物箱棉签擦拭布,1-1000级擦拭布,洁净室无菌洁净室,预浸湿新品!!!VWR® 一次性无菌护目镜 货号:107701-146/152 【产品特点】无菌10-6 SAL重量轻,增加舒适度单独包装防雾,防划伤可佩戴于大多数近视眼镜外带子可调,更贴合面部 VWR® 无菌一次性护目镜舒适,可长时佩戴,单独包装的,有两种类型的通风口:间接和直接。 在严格条件控制下生产,确保每个产品都符合质量水平。 护目镜通过美国国家职业教育个人眼睛和面部防护标准测试,ANSI 287.1:2010。 适用于受控环境中需要无菌穿戴。VWR® 可重复使用实验服货号:10753-934(M号,通用) 【产品特点】按扣可工业洗衣机清洗可自定义刺绣图案 -公司标识-名称 由柔软、耐用的聚棉材质制成,可以工业洗衣机清洗。带翻领和三个口袋(一个胸口袋带铅笔槽,和两个下方袋)。前部有五个卡扣,侧面有通风口可以方便进入裤子口袋。男士和女士有可调按扣。女式实验服带状收腰。男女皆宜的实验室服袖口有松紧带。 VWR® 防静电ESD实验服 货号:10769-338(M号) 【产品特点】有效消散静电荷ESD针织收缩袖口可防止颗粒物掉落 由洁净室涤纶面料制造,面料是在1000级洁净室中生产。涤纶针织收缩袖口,用于操作静电敏感材料,兼顾舒适和防护性。有2%的碳导电栅格用于静电耗散,涤纶针织袖口增加5%碳导电纱线,有效增加ESD控制。 详情参考2017年12月VWR最新目录《VWR® 受控环境解决方案》,或联系我们! 欲了解更多,请联系VWR中国当地授权代理商!
  • 拉曼光谱解密细胞内结冰如何影响细胞活性
    冷冻保存技术是将细胞长期维持在稳定的状态,从而应用于各种疾病的诊断和治疗。据1970年代以来的研究显示,多种类型细胞冷冻保存后的存活率会随着冷冻速率的不同而不同。大多数种类细胞的存活率与冷冻速率呈倒U形关系:即当超过最佳冷却速率后,细胞存活率随冷冻速率的增加而迅速下降,当低于最佳冷却速率时,细胞存活率随冷冻速率的降低而迅速下降。在快速冷冻速率下,细胞内的冰晶形成(Intracellular ice formation,IIF)会对细胞造成损害,并随着冷冻速率的增加导致细胞活性丧失。然而,IIF的机制仍无定论,目前业内存在的主要有以下三个假设:(1)Mazur假设称细胞外冰晶可以穿过膜孔生长进而诱导细胞内冰晶形成;(2)Asahina则认为冷冻直接破坏细胞膜是导致IIF的原因;(3)Toner等人则提出表面催化形成晶核是造成IIF的原因。  传统低温光学显微镜技术是有限的,高速图像采集和双光子显微镜可以提高观察细胞冷冻的空间和时间分辨率,虽然可以在低温下观察细胞反应,却不能与每个细胞的活性相关联。显微拉曼光谱技术可对细胞进行无标记检测,并可用于细胞内水的热力学状态(即液态水与冰)等化学属性进行识别,因此可作为探究细胞冷冻反应的有力工具。此外,显微拉曼光谱的高空间分辨率和可区分细胞膜、线粒体等亚细胞结构的能力意味着该工具可用于进一步探究IIF及其成因,并通过拉曼光谱能够直接表征IIF对细胞活性的影响进而判别冷冻细胞后的活性。  明尼苏达大学研究团队在Biophysical Journal发表题为“CharacterizingIntracellular Ice Formation of Lymphoblasts Using Low-Temperature RamanSpectroscopy”的研究成果(图1)[1]。研究结果表明显微拉曼光谱技术可用于研究细胞在不同冷冻速率和冷冻液成分下的冷冻反应。通过拉曼光谱发现胞内冰晶形成并不一定会导致细胞死亡,但细胞内冰晶的数量及大小会影响细胞活性。另外研究还发现,细胞内冰晶形成靠近于细胞膜并靠近于细胞外冰晶,而通过增加细胞膜和细胞外冰晶间的距离可以减少IIF;实验使用细胞松弛素D破坏肌动蛋白细胞骨架以改变细胞膜的渗透性来增加胞内冰晶形成量,当存在胞内冰晶时,可以显著的观察到细胞内渗透梯度,这些观察结果揭示了细胞膜与胞外冰晶的相互作用是导致IIF的原因。图1 研究成果(图源:[1])  此项研究选用Jurkat细胞作为淋巴细胞的模型细胞,采用的共聚焦显微拉曼系统Alpha 300R配备:UHTS300光谱仪、600 l/mm光栅以及DV401 CCD检测器。激发光源波长为532 nm,100×物镜(NA=0.9),聚焦在被测物上的光功率为10mW,显微分辨率约为296 nm。将细胞冷冻至-50℃,并在成像前保持20分钟。每幅图像有60×60个像素,每个像素点采集的积分时间为0.2秒,因此,对整个细胞进行成像总共需要12分钟。分别在第20、80和140分钟时对相同细胞进行拉曼光谱成像采集,以排除来自激光照射带来的光损伤/光漂白的热量影响。  单细胞中细胞色素c的分布被作为冷冻状态下细胞活性的衡量标准,其拉曼成像结果与台盼蓝染色结果高度一致。细胞色素c的空间分布使用 Moran' s I量化,并被用作细胞活性的标记。Moran' s I是一种基于信号位置和强度的进行空间相关性度量的方法,其值为-1时表示信号完全分散,+1时表示信号完全相关,0时表示信号随机分布。细胞色素c在750、1127、1314和1585 cm-1处具有强烈的拉曼信号,本实验以1127 cm-1作为标记峰用于生成细胞色素c的拉曼成像,并通过吖啶橙/碘化丙啶(Acridine orange/Propidium iodide,AO/PI)染色验证解冻后细胞的活性。根据常见的细胞内、外物质的特征峰位置(表1,图2),整合每个像素的光谱来组合拉曼成像,表征冰晶的大小、冷冻保护剂的细胞内浓度以及外部冰与细胞膜的接近程度。表1 拉曼光谱的波数分布数据来源:[1]∣制表:生物探索编辑团队图2 不同物质的拉曼光谱(图源:[1])  注:1)海藻糖;2)葡聚糖;3)DMSO;4)=细胞色素c;5)冰;6)冷冻保存在10% DMSO中的Jurkat细胞。根据左边的特定信号渲染出右边图像,并以光学显微镜图像为参考。  结果发现:1  细胞色素c的拉曼光谱可表征细胞复温后活性  解冻后细胞复苏率与冷冻速率的之间的函数绘制曲线呈倒U形,可知“最佳”冷冻速率为1-3℃/min,当冷冻速率高于该曲线时认为是过快的,并会与IIF相关(图3A)。在冷冻细胞的不同焦平面上获得的拉曼成像显示,细胞中间(中心)的细胞色素c图像提供了最强的信号(图3B)。台盼蓝染色阴性细胞(活细胞)的细胞色素c局部拉曼信号强且最低Moran' s I值为0.65,而台盼蓝染色阳性细胞(死细胞)没有可区分的细胞色素c拉曼峰(图3C)。因此,可使用0.65的Moran' s I值作为区分活细胞和死细胞的阈值水平。图3 Jurkat细胞活性的拉曼检测(图源:[1])  注:(A)在10% DMSO中冷冻Jurkat细胞后的复苏率与冷冻速率的函数曲线图。(B)冷冻细胞在三个不同深度焦平面上细胞色素c的拉曼成像。(C)通过拉曼光谱检测冷冻后Jurkat细胞的活性并使用台盼蓝进行验证,对应的细胞色素c的拉曼特征、拉曼成像和计算的Moran' s I值。2  拉曼光谱可分析细胞内冰晶的形成  拉曼光谱测定了细胞在1、10和50℃/min冷冻速率下的细胞活性:以1℃/min冷冻保存后的细胞中有80%是活的,以10℃/min冷冻保存后的有60%的细胞是活的,而以50℃/min冷冻保存后的只有20%的细胞是活的(图4A)。每个细胞内冰的相对量可以根据冰的横截面积与细胞的横截面积的比值(Aic)来估计。Aic与不同冷冻速率相关性函数(图4B),Aic随着冷却速率的增加而增加。统计Aic与Moran' s I值的函数曲线图,结果表明活细胞中的冰晶比死细胞少,但存在群体上的差异(图4C)。图4 不同冷却速率下细胞内细胞色素C和冰晶的分布(图源:[1])3  基于拉曼图像可计算IIF的冰晶尺寸及位置  在不同冷冻速率下,大多数细胞仅存在小冰晶。图5 细胞内冰晶的拉曼成像(图源:[1])4  拉曼图像可表征冰晶、细胞膜和IIF的相互作用  分别将细胞以10℃/min的冷冻速率在10% DMSO或10% DMSO+10%葡聚糖中进行冷冻保存。通过拉曼成像分析IIF和Aic,细胞通常存在于相邻冰晶之间的未冷冻溶液中(图6A)。实验观察指定了两个不同的区域:1)细胞外冰晶靠近细胞膜的区域;2)相邻冰晶之间的区域,其中细胞膜远离细胞外冰晶(图6B)。通过测量细胞和细胞外冰晶之间的未冷冻溶液的厚度来表示细胞膜与细胞外冰晶的接近度(图6C)。图6 在10% DMSO或10% DMSO+10%葡聚糖中冰和Aic的拉曼图像(图源:[1])5  拉曼验证破坏细胞骨架增加了细胞内冰晶的形成量  质膜不是孤立地起作用,而是与细胞中的其他结构相互作用,特别是细胞骨架。为了确定破坏膜结构对IIF的影响,将Jurkat细胞放置于50以及250μM细胞松弛素D(Cytochalasin D,CD)中培养30分钟,然后在10% DMSO中以10℃/分钟的速率进行冷冻。对于存在CD的实验,在10个细胞中有2个中观察到大块冰晶(图7A)。约83%的细胞靠近细胞膜存在比例很高的细胞外冰晶,其中带有大块冰晶的细胞确认死亡,而带有小冰晶的细胞部分死亡部分存活。细胞内冰晶与细胞膜的空间定位确证在细胞外冰晶附近(图7B)。在所有实验条件下,IIF的细胞比例相同(100%),但结果显示Aic会随着CD浓度的增加而显著增加(图7C)。图7 细胞松弛素破坏细胞骨架对IF的影响(图源:[1])此项研究证实了拉曼光谱技术可用于研究细胞在不同冷冻速率、不同冷冻保护剂下的冷冻反应。此外研究还表明了IIF靠近于细胞膜,特别是与细胞外冰晶相邻的位置。随着靠近细胞膜且与胞外冰晶相邻的比例增加,IIF比例也会增加,并且随着细胞膜和胞外冰晶之间的距离减小,IIF比例也会随之增加,这些结果表明细胞膜和细胞外冰晶之间的相互作用是造成IIF的原因。该研究还进一步了解了冷冻保护剂的潜在作用机制,但是,研究中无法通过拉曼技术将细胞骨架与细胞内其他蛋白质成分区分开来,因此也无法明确IIF是否会损害细胞骨架。
  • 高端制造业的守护神 | 我们在洁净室里做什么?
    以前有个同学问我知不知道洁净室,一般都在洁净室干嘛。笔者愣了一下,具体做什么我也不知道,肯定不在里面玩游戏看电影了。要想知道这个问题的答案,先来了解一下什么是洁净室吧。什么是洁净室典型的洁净室,图片来自Avantor洁净室又可称作无尘室(Cleanroom),通常用作专业工业生产或科学研究的一部分,包括制造药品,集成电路,CRT,LCD,OLED和microLED显示器等。洁净室的设计是为了保持极低水平的微粒,如灰尘,空气中的生物体,或汽化的微粒。确切地说,洁净室有一个受控的污染水平,该水平由在指定的颗粒尺寸下每立方米的颗粒数来规定。洁净室也可指任何给定的容纳空间,在该空间中设置了减少微粒污染和控制其他环境参数,如温度,湿度和压力。在药学意义上,洁净室是指符合GMP无菌规范(即EU和PIC/S GMP指南附件1以及当地卫生当局要求的其他标准和指南)中定义的GMP规范要求的房间。在我看来,洁净室(Cleanroom)是将普通房间转换为洁净室所需的工程设计、制造、完成和操作控制(控制策略)的组合。很多行业会使用无尘室,只要是小颗粒会对生产过程产生不利影响的地方都会有洁净室的身影。它们的尺寸和复杂度各不相同,广泛应用于半导体制造,制药,生物技术,医疗设备和生命科学等行业,以及航空航天,光学,军事和能源部中常见的关键工艺制造。历史现代无尘室是由美国物理学家威利斯惠特菲尔德发明的。惠特菲尔德作为桑迪亚国家实验室的雇员,于1966年为无尘室设计了最初的设计方案。在惠特菲尔德发明之前,早期的无尘室经常遇到颗粒和不可预测的气流的问题。Whitfield设计的无尘室具有恒定的且经过严格过滤的气流来保持空间内的洁净。硅谷的大部分集成电路制造设施由三家公司制造:MicroAire,PureAire和Key Plastics。他们制造了层流装置,手套箱,洁净室和空气淋浴器,以及用于集成电路“湿法工艺”建造的化学罐和工作台。这三家公司也是将特氟龙用于气枪,化学泵,洗涤器,水枪和其他集成电路生产所需设备的先驱。William(Bill)C.McElroy Jr.曾担任三家公司的工程经理,制图室主管,QA/QC和设计师,他的设计为当时的技术增加了45项原始专利。洁净室气流原理洁净室通过使用HEPA或ULPA过滤器,采用层流(单向流)或湍流(乱流,非单向流)气流原理,来控制空气中的颗粒。层流或单向气流系统将过滤的空气以恒定的流向下或水平方向引导到位于洁净室地板附近墙壁上的过滤器,或通过凸起的穿孔地板板进行再循环。层流空气流动系统通常在洁净室天花板的80%上使用,以保持恒定的空气。不锈钢或其他非脱落材料用于构造层流空气流动过滤器和罩,以防止多余的颗粒进入空气。湍流,或非单向空气流动使用层流空气流动罩和非特定速度过滤器来保持洁净室中的空气在恒定的运动,尽管不是所有的方向相同。粗糙的空气试图捕获可能存在于空气中的颗粒,并将它们驱赶到地板上,在地板上它们进入过滤器并离开洁净室环境。有的地方也会增加矢量洁净室:在房间的侧上角送风,采用扇形高效过滤器,也可以用普通高效过滤器配扇形送风口,在另一侧的下部设回风口,房间的高长比一般在0.5~1之间为宜。这种洁净室也可以达到5级(100级)洁净度。“层流(也叫单向流)洁净室”的气流模式“湍流(乱流,非单向流)洁净室”的气流模式洁净的房间需要大量的空气,并且通常在一个可控的温度和湿度下。为了减少改变环境温度或湿度的费用,大约80%的空气会再循环(如果产品特性允许),循环的气体会先通过过滤系统去除微粒污染,同时保持合适温度和湿度,在通过洁净室。空气中的微粒(污染物)要么漂浮在周围。大多数空气中的微粒会慢慢沉降,沉降速率取决于它们的大小。一个设计良好的空气处理系统应该将新鲜的和再循环的过滤后的洁净空气一起输送到洁净室中,在一起把颗粒从洁净室带走。根据操作对象的不同,从室内取出的空气通常通过空气处理系统再循环,在空气处理系统中过滤器去除微粒。如果工艺、原料或产品的含有大量水分,有害蒸汽或气体就不能再循环回至室内了,这种空气通常被排出到大气中,然后100%的新鲜空气被吸到洁净室系统中,处理后到洁净室内。进入洁净室的空气量是严格控制的,被排出的空气量也是严格控制的。大多数洁净室是加压运行的,通过将比从洁净室排出的空气供应量更高的空气供应量进入洁净室来实现的。较高的压力会导致空气从门下或通过任何洁净室不可避免的微小裂缝或缝隙泄漏出去。良好的洁净室设计的关键是空气引入(供给)和排出(排气)的适当位置。在布置洁净室时,应优先考虑送风和排风(回风)格栅的位置。进口(天花板)和回风格栅(在较低的位置)应位于洁净室的相对侧。如果需要保护操作员不受产品的影响,则风流应远离操作员。美国FDA和欧盟为微生物污染制定了非常严格的指导方针和限值,也可以使用空气处理器和风扇过滤单元之间的增压室以及粘性垫。对于需要A级空气的无菌室,气流是从上到下的,并且是单向的或层流的,保证空气在接触产品之前未受到污染。洁净室的污染洁净室污染的最大威胁来自使用者本身。在医疗和制药行业,微生物的控制是非常重要的,尤其是可能从皮肤脱落而沉积到气流中的微生物。研究洁净室微生物区系对于微生物学家和质量控制人员评估变化趋势具有重要意义,特别是对耐药菌株筛查、清洁消毒方法研究有现实意义。典型的洁净室菌群主要是与人类皮肤相关的菌群,也会有其他来源的微生物,例如来自环境和水,但数量较少。常见的细菌属包括微球菌属,葡萄球菌属,棒状杆菌属和芽孢杆菌属,真菌属包括曲霉属和青霉属。保持洁净室清洁有三个大的方面要注意。1、洁净室的内表面及其内部设备原则是选材重要,日常清洁消毒更重要。为了符合GMP并达到洁净度规范,洁净室的所有表面都应光滑和不透气,并且不产生自身的污染,即不产生灰尘,或掉屑,耐腐蚀,易于清洁,否则会提供微生物繁殖的场所,表面应坚固耐用,不能开裂,破碎或凹陷。有各种各样的材料可以选择,有昂贵的达加德镶板,玻璃等,最好的和最美观的选择是玻璃。按照各级洁净室的要求进行定期清洁和消毒,频次可以是每次操作使用后,每天进行多次,每天,每几天,每周一次等进行清洁消毒。建议操作台面要每次操作后清洁消毒、地板每天消毒、墙面每周、空间每月,根据洁净室等级和设定的标准规范进行严格清洁和消毒操作,并做好记录。2、洁净室内空气的控制总的来说要选择合适的洁净室设计,定期维护保养,做好日常监测。特别要注意的是制药洁净室的浮游菌监测,空间内的浮游菌用浮游菌采样仪抽取空间内一定体积的空气,气流通过灌装特定培养基的接触皿,接触皿会捕获微生物,后将皿放入培养箱培养计数菌落数量,计算出空间内的微生物数量。层流层的微生物也需要检测,用对应的层流层浮游菌采样仪,工作原理跟空间采样类似,只是采样点要放到层流层中。如果无菌室中需要用到压缩气体,也需要对压缩空气进行微生物检测,用对应的压缩空气检测仪,需要先把压缩气体的气压调整到合适的范围,防止微生物和培养基被破坏。PBI浮游菌采样仪3、洁净室里人员的要求洁净室工作的人员要定期接受污染控制理论培训。他们通过气闸,空气淋浴器和/或更衣室进出洁净室,他们必须穿专门设计的衣服,包裹住皮肤和身体自然产生的污染物。根据洁净室的分类或功能,工作人员的着装可能只需实验服和头套简单防护,也可能完全包裹的不暴露任何皮肤的全身防护。洁净服是用来防止颗粒和或微生物从穿着者的身体释放和污染环境。洁净服本身不得释放颗粒或纤维,以防止污染环境。这种类型的人员污染可以降低半导体和制药工业中的产品性能,并且它可以导致例如医疗保健行业中的医务人员和患者之间的交叉感染。洁净防护装备包括防护服、靴子,鞋子,围裙,胡须套,圆帽,口罩,工装/实验服,长袍,手套和指套,袖套和鞋、靴套。所用洁净服的类型应反映洁净室和产品类别。低级别的洁净室可能需要特殊的鞋,鞋底完全光滑,不会站上灰尘或污垢。但是考虑到安全原因,鞋底又不能造成滑倒的危险。进入洁净室通常都需要穿洁净服。10,000级洁净室可以使用简单的实验服,头套和鞋套。对于100级洁净室,需要全身包裹,带拉链的防护服、护目镜、口罩、手套和靴套。此外还要控制洁净室内人员的数量,平均4~6m2/人,操作要轻缓,避免大幅度和快速移动。典型的AB级洁净室防护用品,图片来自Avantor洁净室常用的消毒方法A、紫外灯消毒灭菌B、臭氧消毒C、气体灭菌消毒液有甲醛、环氧已烷、过氧已酸、石碳酸和乳酸的混合液等D、消毒剂常见的消毒剂有异丙醇(75%)、乙醇(75%)、戍二醛、洁尔灭等。我国药厂传统的无菌室消毒方法是用甲醛熏蒸,国外药厂认为甲醛对人体有一定的危害,现普扁采用戍二醛(glutaraldehyde)喷洒,无菌室用的消毒剂必须在生物安全柜中0.22μm的滤膜除菌过滤。VAI洁净室消毒产品洁净室分类洁净室根据每体积空气中允许的颗粒数量和大小进行分类。“100级”或“1000级”等大数字指的是FED-STD-209E,表示每立方英尺空气中允许的0.5μm或更大颗粒的数量。该标准还允许插值;例如,SNOLAB保持为2000级洁净室。离散光散射空气颗粒计数器用于确定指定采样位置处等于或大于规定尺寸的空气颗粒浓度。小数值指的是ISO 14644-1标准,该标准规定了每立方米空气中允许的0.1μm或更大颗粒数的十进制对数。因此,例如,ISO 5级洁净室最多有105个颗粒/m3。FS 209E和ISO 14644-1均假定粒径和颗粒浓度之间存在对数关系。因此,零粒子浓度并不存在。有些类别不需要测试某些粒径,因为浓度太低或太高,无法实际测试,但此类空白不应被视为零。由于1m3约为35立方英尺,测量0.5μm颗粒时,两种标准基本相当。普通室内空气约为1,000,000级或ISO 9。ISO 14644-1和ISO 14698ISO 14644-1和ISO 14698是国际标准化组织(ISO)制定的非政府标准。前者一般适用于洁净室(见下表);后者适用于可能存在生物污染问题的洁净室。ISO 14644-1用以下公式定义了每类和每粒径的最大颗粒浓度。CN表示1立方米内最大颗粒浓度,为等于或大于所考虑的粒径(四舍五入到最接近的整数)的空气颗粒,使用不超过三个有效数字。N是ISO分类号。D是以μm为单位的颗粒尺寸,0.1是以μm为单位的常数。标准粒径的结果如下表格所示。分级最大颗粒/m3a对应FEDSTD 209E≥0.1 μm≥0.2 μm≥0.3 μm≥0.5μm≥1 μm≥5 μmISO 110bddddeISO 210024b10bddeISO31,00023710235bde1级ISO 410,0002,3701,02035283be10级ISO 5100,00023,70010,2003,520832def100级ISO 61,000,000237,000102,00035,2008,3202931,000级ISO 7ccc352,00083,2002,93010,000级ISO 8ccc3,520,000832,00029,300100,000级ISO 9ccc35,200,0008,320,000293,000普通空气a表中的所有浓度都是累积的,例如,对于ISO 5级,在0.3μm处显示的10,200个颗粒包括所有等于或大于该尺寸的颗粒。b这些浓度将导致大量空气样本用于分类。可采用顺序取样程序c浓度限值不适用于该表区域,由于颗粒浓度非常高。d低浓度颗粒的取样和统计限制使得分类不合适。e由于取样系统中的潜在颗粒损失,低浓度和粒径大于1μm的两种颗粒的样品采集限制使得该粒径的分类不合适。f是指洁净室微粒清洁度的水平,以每立方米一定大小的空气粒子数为基础。US FED STD 209E分级最大颗粒/立方英尺对应ISO≥0.1 μm≥0.2 μm≥0.3 μm≥0.5μm≥5 μm1357.5310.007ISO 3103507530100.07ISO 41003,5007503001000.7ISO 51,00035,0007,5003,0001,0007ISO 610,000350,00075,00030,00010,00070ISO 7100,0003,500,000750,000300,000100,000830ISO 8目前的监管机构包括:ISO、USP 800、美国联邦标准209E(以前的标准,仍在使用)药品质量和安全法案(DQSA)于2013年11月制定,以应对药物复合死亡和严重不良事件。《联邦食品、药品和化妆品法案》(FD&C法案)为人类配方制定了具体的指导方针和政策。503A由州或联邦授权机构由授权人员(药剂师/医生)监制503B与外包设施有关,需要由持牌药剂师直接监督,不需要是持牌药房。工厂通过食品和药品管理局(FDA)获得许可证。欧盟GMP分类欧盟GMP指南比其他指南更为严格,要求洁净室在运行时(生产过程中)和静止时(不进行生产过程,但房间AHU开启时)达到颗粒计数。分级最大颗粒/m3静态动态0.5 μm5 μm0.5 μm5 μmA级3,520203,52020B级3,52029352,0002,900C级352,0002,9003,520,00029,000D级3,520,00029,000没有定义没有定义BS 5295BS 5295是英国标准。分级最大颗粒/立方米≥0.5 μm≥1 μm≥5 μm≥10 μm≥25 μm13,0000002300,0002,0003031,000,00020,0004,00030004200,00040,0004,000BS 5295第1类还要求任何样品中存在的最大颗粒不得超过5μm。BS 5295已被取代,自2007年起撤销,替换为“BS EN ISO 14644-6:2007”。USPStandardsUSP 800是美国药典公约(USP)制定的美国标准,生效日期为2019年12月1日。关于洁净室的小白提问1、怎样进出洁净室?人员和货物通过不同出入口进出。工作人员通过气闸(有的设有空气淋浴台)或没有气闸进出,并穿戴防护装备,如头套,面罩,手套,靴子和防护服。这是为了尽量减少和阻隔进入洁净室的人携带的微粒。货物通过货物通道进出洁净室。2、洁净室设计有什么特别的地方吗?洁净室建筑材料的选择不应产生任何颗粒,因此整体环氧或聚氨酯地板涂层是优选的。采用抛光不锈钢或涂粉软钢夹芯隔墙板和顶棚板。通过弯曲表面来避免直角形墙角,墙角到地板,墙角到天花板,所有接缝都需要用环氧密封胶密封,避免接缝处有任何颗粒沉积或产生。洁净室内的设备设计成能产生最小的空气污染。只使用特制的拖把和水桶。洁净室家具的设计也要产生最少的颗粒,并且易于清洁。3、怎样选择合适的消毒剂?首先要进行环境分析,通过环境监测确认污染的微生物类型。下一步需要确定哪种消毒剂可以杀灭已知数量的微生物,在进行接触时间致死率测试(试管稀释法或表面材质法),或AOAC测试之前,需要对已有的消毒剂进行评估并确认是否合适。要杀灭洁净室中的微生物,一般有两种类型的消毒剂轮换机制: ①一种消毒剂和一种杀孢子剂进行轮换,②两种消毒剂和一种杀孢子剂进行轮换。消毒系统确定好后,可以进行杀菌效力测试,为消毒剂的选择提供依据。完成杀菌效力测试后,需要进行对实地现场的研究测试,这是证明清洁消毒SOP 和消毒剂杀菌效力测试是否有效的重要手段。随着时间的发展,可能会出现之前未检测到的微生物,生产工艺,人员等也可能发生变化,所以需要定期对清洁和消毒SOP进行审核, 以确认是否还适用于当前环境。4、干净的走廊还是肮脏的走廊?片剂或胶囊等粉剂是干净走廊,无菌药品、液体药品等采用肮脏走廊涉及。通常,低水分的医药产品如片剂或胶囊干燥且多尘,因此更有可能存在显著的交叉污染风险。如果洁净区与走廊的压差为正,粉末将逸出房间进入走廊,然后很可能被转移到隔壁洁净室。值得庆幸的是,大多数干燥制剂并不容易支持微生物生长,因此作为一般规则,片剂和粉剂是在干净的走廊设施中制造的,因为漂浮在走廊中的微生物找不到能够繁衍生息的环境。这意味着房间对走廊负压。而对于无菌(加工过的),无菌或低生物负荷和液体医药产品,微生物通常会找到支持性培养物,在其中繁衍,或者在无菌加工产品的情况下,单个微生物可能是灾难性的。因此,这些设施通常都设计有肮脏的走廊,因为想把潜在的微生物排除在洁净室之外。回到最初的问题,答案是我们在洁净室里生产芯片及高端器件、制药、做手术等。文章来源:Avantor
  • ICP-AES结合溶剂分析重晶石方法获国家发明专利授权
    近日,“混合溶剂分解电感耦合等离子体光谱仪分析重晶石的方法“获国家发明专利授权,该成果是由中国地质调查局国家地质实验测试中心赵文博、马生凤、孙红宾、张保科、许俊玉研发。重晶石是重要的稀土矿伴生矿物。由于重晶石主要成分硫酸钡的超低溶解度(pKsp为9.96),目前该类伴生矿中难溶矿物重晶石的分析(尤其是分解方法)成为制约元素分析的瓶颈。现有技术中,重晶石分解有碳酸钠半熔法、改进半熔法,过氧化钠碱融法、酸溶过滤法、中子活化法、离子交换法等,检测方法主要以重量法和X射线荧光光谱法为主。普遍存在步骤繁杂,检测精度低等缺陷。针对以上问题,本发明通过研究筛选出一种可以打开重晶石结构的混合溶剂,结合常见的电感耦合等离子体光谱法分析该类重晶石伴生矿物中的元素含量。操作简单快速,具有流程短、成本低、绿色环保等特点,具有重要的科学研究及实际应用价值。电感耦合等离子发射光谱仪,是指以电感耦合等离子体作为激发光源,根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的仪器。待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。另外还可同时测定周期表中多数元素(金属元素及磷、硅、砷、硼等非金属元素),且均有较好的检出限。对电感耦合等离子发射光谱仪感兴趣可直接查看 ICP-AES专场(点击此处查看更多)。
  • 北京师范大学与沃特世公司合作实验室在京正式揭牌
    中国 北京——2012年4月19日,北京师范大学——美国沃特世公司合作实验室揭牌仪式在北京师范大学英东学术讲堂正式揭牌。 北京师范大学——沃特世公司合作实验室正式揭牌   关于沃特世公司   Waters是一家总部位于美国马萨诸塞州Milford的上市公司,其高效液相色谱仪,质谱仪,热分析仪以及流变学产品和服务广泛应用于全球的实验室。   Waters是标准普尔500 (Standard & Poors 500)指数股之一。公司业务全球化,在美国,新加坡,爱尔兰,以及英国的曼彻斯特均有制造工厂。   50年来,沃特世(NYSE:WAT)公司通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。   沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。
  • 248项行标制修订计划征求意见 含37项仪器分析方法
    p   近日,工信部发布通知,公开对《铪化学分析方法 第12部分:痕量杂质元素的测定 电感耦合等离子体质谱法》等248项行业标准计划项目征求意见(见附件)。通知显示,本次计划制定标准196项,修订52项,其中包括37项仪器及仪器分析方法标准。按照通知要求,本次意见征集日期截至2018年3月7日,期间有关公示内容的不同意见可反馈至工信部科技司。 /p p   仪器信息网整理发现,此次仪器分析方法主要集中在有色行业,且以光谱方法居多。具体标准项目信息整理如下表: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 21%" p style=" text-align:center " 申报号 /p /td td width=" 33%" p style=" text-align:center " 项目名称 /p /td td width=" 7%" p style=" text-align:center " 性质 /p /td td width=" 7%" p style=" text-align:center " 制修& nbsp & nbsp 订 /p /td td width=" 15%" p style=" text-align:center " 代替标准 /p /td td width=" 7%" p style=" text-align:center " 完成& nbsp 年限 /p /td td width=" 8%" p style=" text-align:center " 备注 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=HGCPZT11042018" HGCPZT1104-2018 /a /p /td td width=" 33%" p style=" text-align:center " 茂金属聚烯烃催化剂中金属元素的测定 & nbsp & nbsp 电感耦合等离子体发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2019 /p /td td width=" 8%" p style=" text-align:center " 基础 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=HGCPZT11482018" HGCPZT1148-2018 /a /p /td td width=" 33%" p style=" text-align:center " 化工用螺旋双转子流量计 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=HGCPZT11492018" HGCPZT1149-2018 /a /p /td td width=" 33%" p style=" text-align:center " 电磁式酸碱浓度计 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT11942018" YSCPZT1194-2018 /a /p /td td width=" 33%" p style=" text-align:center " 高纯铑化学分析方法 杂质元素含量的测定 & nbsp & nbsp 辉光放电质谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT11952018" YSCPZT1195-2018 /a /p /td td width=" 33%" p style=" text-align:center " 高纯金化学分析方法 杂质元素含量的测定 & nbsp & nbsp 辉光放电质谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT11962018" YSCPZT1196-2018 /a /p /td td width=" 33%" p style=" text-align:center " 高纯铂化学分析方法 杂质元素含量的测定 & nbsp & nbsp 辉光放电质谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT11992018" YSCPZT1199-2018 /a /p /td td width=" 33%" p style=" text-align:center " 银精矿化学分析方法 第17部分:二氧化硅量的测定 钼蓝分光光度法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12052018" YSCPZT1205-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铂化合物分析方法 杂质阴离子含量测定 & nbsp & nbsp 离子色谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12102018" YSCPZT1210-2018 /a /p /td td width=" 33%" p style=" text-align:center " 钯化合物分析方法 杂质阴离子含量测定 & nbsp & nbsp 离子色谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12112018" YSCPZT1211-2018 /a /p /td td width=" 33%" p style=" text-align:center " 钌化合物化学分析方法 铂、钯、铑、铱、金、银、铜、铁、镍、镁、锰、锌、钙量的测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12122018" YSCPZT1212-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铑炭化学分析方法 铑量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT12182018" YSCPXT1218-2018 /a /p /td td width=" 33%" p style=" text-align:center " 冰晶石化学分析方法和物理性能测定方法 & nbsp & nbsp 第9部分:五氧化二磷含量的测定 钼蓝分光光度法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 修订 /p /td td width=" 15%" p style=" text-align:center " YS/T 273.9-2006 /p /td td width=" 7%" p style=" text-align:center " 2019 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12192018" YSCPZT1219-2018 /a /p /td td width=" 33%" p style=" text-align:center " 冰晶石化学分析方法和物理性能测定方法 & nbsp & nbsp 第16部分:锂含量的测定 火焰原子吸收光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2019 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12202018" YSCPZT1220-2018 /a /p /td td width=" 33%" p style=" text-align:center " 冰晶石化学分析方法和物理性能测定方法 & nbsp & nbsp 第17部分:元素含量的测定 ICP-AES法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2019 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12262018" YSCPZT1226-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铝土矿石化学分析方法 第26部分:镧、铈、镨、钕、钪、钇含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2019 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12292018" YSCPZT1229-2018 /a /p /td td width=" 33%" p style=" text-align:center " 拟薄水铝石分析方法 第4部分:氧化钠的测定 火焰光度法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12362018" YSCPZT1236-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铌钨合金化学分析方法 钨、钼、锆、钽、硅、铁、铝、钛、铜量的测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 重点 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12412018" YSCPZT1241-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第1部分:铅量的测定 ?极谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12422018" YSCPZT1242-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第2部分:铀量的测定 极谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12432018" YSCPZT1243-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第3部分:硼量的测定 姜黄素分光光度法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12452018" YSCPZT1245-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第5部分:镉量的测定 极谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12462018" YSCPZT1246-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第6部分:磷量的测定 钼蓝分光光度法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12472018" YSCPZT1247-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第7部分:硅量的测定 钼蓝分光光度法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12482018" YSCPZT1248-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第8部分:钠量的测定 火焰原子吸收光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12492018" YSCPZT1249-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第9部分:氢量的测定 惰气熔融红外吸收/热导法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12502018" YSCPZT1250-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第10部分:氧量、氮量的测定 惰气熔融红外吸收/热导法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12512018" YSCPZT1251-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第11部分:碳量的测定 高频感应炉燃烧红外吸收法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12522018" YSCPZT1252-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铪化学分析方法 第12部分:痕量杂质元素的测定 电感耦合等离子体质谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12882018" YSCPZT1288-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铜磁铁矿化学分析方法 第12部分:硫量的测定电感耦合等离子体原子发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12892018" YSCPZT1289-2018 /a /p /td td width=" 33%" p style=" text-align:center " 铜磁铁矿化学分析方法 第13部分:汞量的测定 固体进样直接测定法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12932018" YSCPZT1293-2018 /a /p /td td width=" 33%" p style=" text-align:center " 粗锡化学分析方法 第3部分:铜量的测定 火焰原子吸收光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12942018" YSCPZT1294-2018 /a /p /td td width=" 33%" p style=" text-align:center " 粗锡化学分析方法 第4部分:铋量的测定 火焰原子吸收光谱法和乙二胺四乙酸二钠滴定法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12952018" YSCPZT1295-2018 /a /p /td td width=" 33%" p style=" text-align:center " 粗锡化学分析方法 第5部分:锑量的测定 火焰原子吸收光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12962018" YSCPZT1296-2018 /a /p /td td width=" 33%" p style=" text-align:center " 氧化亚镍化学分析方法 铜、铁、锌、钙、镁、钠、钴、镉、锰硫含量的测定 & nbsp & nbsp 电感耦合等离子体发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr tr td width=" 21%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT12992018" YSCPZT1299-2018 /a /p /td td width=" 33%" p style=" text-align:center " 镍钴铝三元素复合氢氧化物化学分析方法 & nbsp & nbsp 第3部分:铝、铜、铁、锌、钙、镁、钠、锰量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 7%" p style=" text-align:center " 推荐 /p /td td width=" 7%" p style=" text-align:center " 制定 /p /td td width=" 15%" p style=" text-align:center " & nbsp /p /td td width=" 7%" p style=" text-align:center " 2020 /p /td td width=" 8%" p style=" text-align:center " 一般 /p /td /tr /tbody /table p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201802/ueattachment/abde827e-9eb3-43ea-9078-2e51dd7802b4.docx" 《扩散渗析器》等248项行业标准制修订计划(征求意见稿).docx /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201802/ueattachment/9b891f40-a428-4e15-86ce-bf3ddbb3e8bb.docx" 《智能制造环境下的IPv6地址管理要求》等11项国家标准制修订计划(征求意见稿).docx /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201802/ueattachment/9587dcaa-ed08-407c-8598-9291c84efe53.doc" 标准立项反馈意见表.doc /a /p p br/ /p
  • 信息披露不准确 南华仪器相关责任人被警示
    10月12日晚间,南华仪器发布公告称,近日收到中国证券监督管理委员会广东监管局(以下简称“广东监管局”)《关于对佛山市南华仪器股份有限公司杨耀光、梁伟明、周柳珠、伍颂颖采取出具警示函措施的决定》。  “公司及相关责任人收到上述警示函后高度重视,将严格按照监管要求积极整改,并将以本次整改为契机,引以为戒,深刻反思在信息披露方面存在的问题和不足。”南华仪器董秘办相关人士在接受《证券日报》记者采访时表示。  预告与年报数据差异大  公告显示,2023年1月31日,南华仪器披露《2022年度业绩预告》,预计2022年度实现归属于上市公司股东的净利润为-350万元至-250万元。4月12日,南华仪器披露《2022年度业绩预告修正及致歉公告》,对2022年度业绩预告进行修正,修正后实现归母净利润为-3500万元至-3000万元。4月15日,南华仪器披露《2022年年度报告》,2022年,该公司经审计归母净利润为-3313.38万元。  广东监管局认为,南华仪器业绩预告与年度报告中披露的相关数据相比差异较大,信息披露不准确。上述行为违反了《上市公司信息披露管理办法》(证监会令第182号)第三条等相关规定。南华仪器董事长杨耀光、总经理梁伟明、财务总监周柳珠、董事会秘书伍颂颖未按照《上市公司信息披露管理办法》第四条的规定履行勤勉尽责义务,对公司上述违规行为负有主要责任。  “收到警示函后,公司进行全面自查并认真整改,加强信息披露管理,切实提高公司规范运作水平。”上述南华仪器董秘办人士表示。  “在上市公司信息披露中,准确、真实、完整的披露是极为重要的,因为这关系到投资者的知情权。当信息披露出现前后差异较大不准确问题时,很可能引发投资者的困扰,造成投资损失,影响市场公平秩序,公司高管也可能面临行政处罚、民事诉讼、股东索赔等法律责任。”湖南金州律师事务所合伙人易旭律师告诉《证券日报》记者。  应确保信披准确、可靠  南华仪器在今年前后两份业绩预告净利润亏损额相差10倍的原因,主要是因为该公司对购买的一款信托理财产品进行计提减值准备。  公开资料显示,南华仪器在2021年7月30日以自有资金6000万元认购重庆国际信托股份有限公司发行的“重庆信托昆明融创城项目集合资金信托计划”。2022年4月30日,公司收到重庆信托发来的《重庆信托昆明融创城项目集合资金信托计划的临时公告》,债务人昆明融创城投资有限公司及其担保人资金出现流动性困难,到期未能偿还借款,构成实质违约,信托计划终止。  随后,南华仪器发布《2022年度业绩预告修正及致歉公告》表示,从谨慎性原则出发,“昆明融创城项目集合资金信托计划”理财产品补提减值准备3029.4万元,因此相应对归属于上市公司股东的净利润产生较大影响。  “根据南华仪器披露的理财产品购买与违约时间来看,公司在今年(2023年)第一次年报业绩预告披露前便知悉理财产品的违约,应在今年进行第一次业绩预告时及时披露并判断资产的可收回情况、计提或有损失。”锦华基金总经理秦若涵向记者表示。  易旭认为,上市公司应建立健全内部控制制度,以确保信息披露的准确性和可靠性。公司高管应该对内部控制制度进行有效的监督和落实,以避免信息披露不准确的问题;同时,应建立内部举报机制,这有助于提早发现问题,减少违法违规行为的风险。
  • 安捷伦与北京师范大学珠海校区共建前沿技术实验室
    专注于生命科学和环境科学交叉学科的前沿课题研究2023年5月23日,广东珠海——安捷伦科技公司(纽约证交所:A)今日宣布与北京师范大学珠海校区合作共建前沿技术实验室(下称“实验室”)。双方将依托北京师范大学珠海校区的理工实验平台,在生命科学与环境科学交叉学科的前沿研究课题开展深入合作,并通过应用安捷伦先进的分析测试技术平台,共同开发新型检测研究方法。本次合作将更好地发挥北京师范大学珠海校区在该交叉学科研究方面的软硬件优势,推进该校区环境学科建设,特别推动环境毒理学研究、环境对人体/生物的暴露等研究方向的发展,同时有望对粤港澳大湾区环境行业的发展产生积极的影响。双方签署合作协议(左:北京师范大学珠海校区 理工实验平台主任 刘新会,右:安捷伦科技(中国)有限公司业务发展及应用实验室经理 张之旭)该实验室将建立在北京师范大学珠海校区的理工实验平台之上,而此平台是该校区重点打造的仪器设备共享平台和高技术开发型平台。平台的定位为技术先导型、科学研究型、公共服务型设施,具有布局合理、功能完善、共享高效的特点,努力向国际一流水平看齐。平台的主要功能是有效支撑校区理工学科集群建设、人才培养、科学研究和成果转化,全面服务粤港澳大湾区经济建设和科技创新。目前,平台已经配备安捷伦多种分析设备,包括液相色谱仪(LC)、气相色谱仪(GC)、液相色谱-四极杆飞行时间质谱仪(LC-QTOF)、气相色谱-串联质谱仪(GC-MS/MS)、电感耦合等离子串联质谱仪(ICP-MS/MS)、激光红外成像系统(LDIR),以及 Seahorse 细胞能量代谢分析仪等,在生命科学、环境新污染物检测、代谢组学、暴露组学等多个领域开展工作。此次实验室共建期望能充分发挥双方在新技术研发及推广、国际热点项目追踪、应用技术支持与持续培训等方面的特色和优势,协力构筑世界一流的实验技术人才培养基地,打造开放、创新、引领、智慧的大型综合性研究服务平台。实验室揭牌合影(左:北京师范大学珠海校区 管委会副主任 宁少林,右:安捷伦科技(中国)有限公司 大中华区南大区整机销售总经理 杨亮)该实验室将引入安捷伦细胞分析与基因诊断等技术和产品,为生命科学与环境科学交叉学科研究构建完整的分析测试方案。这种先进技术的引入有望为生命科学和环境科学的交叉学科研究带来新的突破和发展。安捷伦大中华区南大区整机销售总经理杨亮表示:“我们对与北京师范大学珠海分校共建前沿技术实验室感到非常荣幸。创新是安捷伦的 DNA ,而这座实验室将成为我们追求卓越和创新的典范。通过整合我们的化学分析,生命科学以及诊断和基因组学解决方案,我们将不断创新,助力提升北京师范大学珠海校区的科研实力,并加速洞察前沿交叉课题,共同打造服务于大湾区的科技创新平台。”北京师范大学珠海校区理工实验平台主任刘新会教授表示:“过去,在进行环境毒理学研究时,我们大多会使用传统的质谱分析和毒理方法结合来测定污染物的组成和毒性,但这种方法非常耗时。现在,我们与安捷伦共建实验室,结合质谱仪与安捷伦Seahorse细胞能量代谢分析仪等,形成新的研究思路和工作流程,这样能大幅提高分析效率,拓宽研究视野,提供更全面的分析测试方案,并推动技术和方法创新。引入安捷伦的先进技术,有望为环境分析和交叉学科带来新的突破和发展,提升我们珠海校区整体的科研能力,并对环境分析领域提供重要的示范和指导意义。”与会专家参观北京师范大学珠海校区实验室环境变化最终会对人们的生活带来影响,因此,环境科学研究也将与生命科学研究关联。生态环境部于去年七月发布的《“十四五”环境健康工作规划》中就指出,“环境污染对健康的影响具有危害大、隐蔽性强、潜伏期长、影响因素多、因果关系确定难等特点。对具有高健康风险的环境污染因素进行主动管理,从源头预防、消除或减少环境污染,是最大限度地防止健康损害问题的发生或削弱其影响程度的有效手段。[1]”为此,国家也密集出台了相应政策措施,鼓励与支持相关单位开展生命科学相关课题研究。因此,这座实验室的研究成果,对于提升粤港澳大湾区相关行业分析检测将起到重要的示范和指导意义。
  • 农药残留检测仪什么时候会触发警示系统
    农药残留检测仪什么时候会触发警示系统  农药残留检测仪的警示系统通常会在以下几种情况下触发:  农药残留超标:当检测到的样品中农药残留量超过设定的安全标准时,农药残留检测仪的警示系统会触发。此时,仪器会发出声光报警或显示超标信息,提醒操作人员该样品存在农药残留超标的风险。  仪器故障:如果农药残留检测仪本身出现故障或异常情况,如传感器失灵、电源不稳定等,警示系统也会触发。这有助于及时发现和修复问题,保证检测结果的准确性和仪器的正常使用。  操作错误:在使用农药残留检测仪时,如果操作人员未按照说明书或操作规程进行操作,如未正确选择试剂、未正确放置样品等,也可能导致警示系统的触发。此时,仪器会发出提示信息,提醒操作人员检查并纠正错误。需要注意的是,不同品牌和型号的农药残留检测仪的警示系统触发条件和方式可能有所不同。因此,在使用之前,建议仔细阅读仪器的说明书或联系技术支持以获取更详细的信息。同时,操作人员应严格按照操作规程进行操作,确保检测结果的准确性和仪器的正常使用。
  • 安捷伦与北京师范大学珠海校区共建前沿技术实验室
    2023年5月23日,安捷伦宣布与北京师范大学珠海校区合作共建前沿技术实验室(下称“实验室”)。双方将依托北京师范大学珠海校区的理工实验平台,在生命科学与环境科学交叉学科的前沿研究课题开展深入合作,并通过应用安捷伦先进的分析测试技术平台,共同开发新型检测研究方法。本次合作将更好地发挥北京师范大学珠海校区在该交叉学科研究方面的软硬件优势,推进该校区环境学科建设,特别推动环境毒理学研究、环境对人体/生物的暴露等研究方向的发展,同时有望对粤港澳大湾区环境行业的发展产生积极的影响。双方签署合作协议左:北京师范大学珠海校区 理工实验平台主任 刘新会右:安捷伦科技(中国)有限公司 业务发展及应用实验室经理 张之旭该实验室将建立在北京师范大学珠海校区的理工实验平台之上,而此平台是该校区重点打造的仪器设备共享平台和高技术开发型平台。平台的定位为技术先导型、科学研究型、公共服务型设施,具有布局合理、功能完善、共享高效的特点,努力向国际一流水平看齐。平台的主要功能是有效支撑校区理工学科集群建设、人才培养、科学研究和成果转化,全面服务粤港澳大湾区经济建设和科技创新。目前,平台已经配备安捷伦多种分析设备,包括液相色谱仪(LC)、气相色谱仪(GC)、液相色谱-四极杆飞行时间质谱仪(LC-QTOF)、气相色谱-串联质谱仪(GC-MS/MS)、电感耦合等离子串联质谱仪(ICP-MS/MS)、激光红外成像系统(LDIR),以及 Seahorse 细胞能量代谢分析仪等,在生命科学、环境新污染物检测、代谢组学、暴露组学等多个领域开展工作。此次实验室共建期望能充分发挥双方在新技术研发及推广、国际热点项目追踪、应用技术支持与持续培训等方面的特色和优势,协力构筑世界一流的实验技术人才培养基地,打造开放、创新、引领、智慧的大型综合性研究服务平台。该实验室将引入安捷伦细胞分析与基因诊断等技术和产品,为生命科学与环境科学交叉学科研究构建完整的分析测试方案。这种先进技术的引入有望为生命科学和环境科学的交叉学科研究带来新的突破和发展。实验室揭牌合影左:北京师范大学珠海校区 管委会副主任 宁少林右:安捷伦科技(中国)有限公司 大中华区南大区整机销售总经理 杨亮安捷伦大中华区南大区整机销售总经理杨亮表示:“我们对与北京师范大学珠海分校共建前沿技术实验室感到非常荣幸。创新是安捷伦的 DNA ,而这座实验室将成为我们追求卓越和创新的典范。通过整合我们的化学分析,生命科学以及诊断和基因组学解决方案,我们将不断创新,助力提升北京师范大学珠海校区的科研实力,并加速洞察前沿交叉课题,共同打造服务于大湾区的科技创新平台。北京师范大学珠海校区理工实验平台主任刘新会教授表示:“过去,在进行环境毒理学研究时,我们大多会使用传统的质谱分析和毒理方法结合来测定污染物的组成和毒性,但这种方法非常耗时。现在,我们与安捷伦共建实验室,结合质谱仪与安捷伦Seahorse细胞能量代谢分析仪等,形成新的研究思路和工作流程,这样能大幅提高分析效率,拓宽研究视野,提供更全面的分析测试方案,并推动技术和方法创新。引入安捷伦的先进技术,有望为环境分析和交叉学科带来新的突破和发展,提升我们珠海校区整体的科研能力,并对环境分析领域提供重要的示范和指导意义。” 环境变化最终会对人们的生活带来影响,因此,环境科学研究也将与生命科学研究关联。生态环境部于去年七月发布的《“十四五”环境健康工作规划》中就指出,“环境污染对健康的影响具有危害大、隐蔽性强、潜伏期长、影响因素多、因果关系确定难等特点。对具有高健康风险的环境污染因素进行主动管理,从源头预防、消除或减少环境污染,是最大限度地防止健康损害问题的发生或削弱其影响程度的有效手段。”为此,国家也密集出台了相应政策措施,鼓励与支持相关单位开展生命科学相关课题研究。因此,这座实验室的研究成果,对于提升粤港澳大湾区相关行业分析检测将起到重要的示范和指导意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制