当前位置: 仪器信息网 > 行业主题 > >

锑化铋

仪器信息网锑化铋专题为您提供2024年最新锑化铋价格报价、厂家品牌的相关信息, 包括锑化铋参数、型号等,不管是国产,还是进口品牌的锑化铋您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锑化铋相关的耗材配件、试剂标物,还有锑化铋相关的最新资讯、资料,以及锑化铋相关的解决方案。

锑化铋相关的论坛

  • 硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    [color=#333333]最近,合肥微尺度物质科学国家实验室和化学与材料科学学院曾杰教授研究组在拓扑绝缘体二维层状纳米材料硒化铋Bi2Se3的结构设计、合成与生长机理研究方面取得重要进展。研究人员对Bi2Se3晶体的成核及生长进行了动力学调控,通过引入螺旋位错首次实现了二维层状材料的螺旋生长,将材料由分立的层状转变成连续性的螺旋条带,从而获得了一种既不同于单层又有别于传统块体的新型纳米材料。该成果以“Screw-Dislocation-Driven Bidirectional Spiral Growth of Bi2Se3Nanoplates”为题发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014,DOI:10.1002/anie.201403530)。[/color][color=#333333]据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,类石墨烯层状结构的硒化铋Bi2Se3因其简单的能带结构、远大于室温的能量涨落体带隙,被认为是最有前景的拓扑绝缘体材料之一。拓扑绝缘体是一种近几年被发现的新型量子物质态,在能量无耗传输、自旋电子学以及量子计算机等方面有着很大的应用前景。拓扑绝缘体除了奇异的不受缺陷和非磁性杂质散射的拓扑表面态外,若在其中引入一个螺旋位错的线缺陷,还可能会产生一对拓扑保护的一维螺旋态,从而创造一条完美的导电通道。曾教授课题组基于特色的可控制备手段,从晶体生长的动力学理论出发,通过将反应体系维持在极低的过饱和条件下,使Bi2Se3在成核过程中产生螺旋位错的缺陷,从而诱导层状材料进行双向的螺旋生长,打破硒化铋Bi2Se3本征的晶体生长模式。此外,研究人员还通过对螺旋生长速度的控制,合成出不同发展程度的螺旋结构,从中阐明了二维层状材料的螺旋生长机理。这项研究为实现一维拓扑螺旋态提供了材料基础,有助于促进Bi2Se3在拓扑绝缘体、热电以及催化等方面的新发展。此外,探索螺旋生长的方式对于合成其他二维层状材料的螺旋结构,从而调制材料的物理性能也有重要的指导意义。转自[img=,500,263]http://ng1.17img.cn/bbsfiles/images/2017/07/201707051342_01_2047_3.jpg[/img]低维材料在线:[/color]http://www.91cailiao.cn/index.php/news/57.html

  • 硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    硒化铋Bi2Se3二维层状拓扑绝缘体材料的螺旋生长进展

    最近,合肥微尺度物质科学国家实验室和化学与材料科学学院曾杰教授研究组在拓扑绝缘体二维层状纳米材料硒化铋Bi2Se3的结构设计、合成与生长机理研究方面取得重要进展。研究人员对Bi2Se3晶体的成核及生长进行了动力学调控,通过引入螺旋位错首次实现了二维层状材料的螺旋生长,将材料由分立的层状转变成连续性的螺旋条带,从而获得了一种既不同于单层又有别于传统块体的新型纳米材料。该成果以“Screw-Dislocation-Driven Bidirectional Spiral Growth of Bi2Se3 Nanoplates”为题发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014, DOI:10.1002/anie.201403530)。据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,类石墨烯层状结构的硒化铋Bi2Se3因其简单的能带结构、远大于室温的能量涨落体带隙,被认为是最有前景的拓扑绝缘体材料之一。拓扑绝缘体是一种近几年被发现的新型量子物质态,在能量无耗传输、自旋电子学以及量子计算机等方面有着很大的应用前景。拓扑绝缘体除了奇异的不受缺陷和非磁性杂质散射的拓扑表面态外,若在其中引入一个螺旋位错的线缺陷,还可能会产生一对拓扑保护的一维螺旋态,从而创造一条完美的导电通道。曾教授课题组基于特色的可控制备手段,从晶体生长的动力学理论出发,通过将反应体系维持在极低的过饱和条件下,使Bi2Se3在成核过程中产生螺旋位错的缺陷,从而诱导层状材料进行双向的螺旋生长,打破硒化铋Bi2Se3本征的晶体生长模式。此外,研究人员还通过对螺旋生长速度的控制,合成出不同发展程度的螺旋结构,从中阐明了二维层状材料的螺旋生长机理。这项研究为实现一维拓扑螺旋态提供了材料基础,有助于促进Bi2Se3在拓扑绝缘体、热电以及催化等方面的新发展。此外,探索螺旋生长的方式对于合成其他二维层状材料的螺旋结构,从而调制材料的物理性能也有重要的指导意义。[align=center][img=,500,263]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071343_01_2047_3.jpg[/img][/align]

  • 碰到儿童彩色画笔,你如何测试其墨水的可溶重金属?

    碰到儿童彩色画笔,你如何测试其墨水的可溶重金属?

    儿童彩色画笔墨水测试可溶重金属?儿童彩色画笔是可以留下痕迹的材料,其墨水属于液体1 怎么取样? 画在滤纸上称?2 标准上要求应从每种不同材料上移取得到一个测试样品,当然每种不少于10mg,是指如果一盒12支彩笔,要从12支中每支取10mg吗?http://ng1.17img.cn/bbsfiles/images/2012/03/201203311513_358525_1689180_3.jpg

  • 【求购】需购买氧化物粉体

    大家好!在哪儿能买到较纯的和质量可靠的氧化铋和氧化铁呢???买过粉体的哥们儿请多指教!以前听说过有一个专门提供化学试剂的Alpha公司,有人知道该公司的网址吗?谢谢!

  • 【求助】关于生物碱的TLC鉴别问题,新手,见谅!

    新手,见谅!最近在做一个药材的质量标准,其中拟定生物碱的TLC鉴别,使用的改良碘化铋钾作显色剂,但实际操作发现不知道是显色效果不好还是本身药材生物碱含量低的影响,展开后几乎是没有斑点的。就此想提一些问题:改良碘化铋钾与碘化铋钾、稀碘化铋钾的显色效果有差别吗?手上只有现成的碘化铋钾溶液,按药典方法配制改良碘化铋钾溶液倒是比较方便,但配制稀碘化铋钾溶液则有点麻烦,能否直接用现成的碘化铋钾溶液稀释得到?麻烦各位前辈指教!谢谢!

  • 【讨论】氧化物的溶样方法

    求教:粉体基体是氧化锌,含有各5%左右的氧化硅、氧化铋、氧化锑、氧化铅等,单纯用酸溶解总溶不清亮,碱溶又怕ICP分析时干扰大,请问哪位大虾有好的溶样方法?

  • 【求助】生物碱的显色

    本人最近做生物碱的分离实验,用硅胶薄板做分离时,想用碘化铋钾显色,但喷上去发现碘化铋钾已经将原有的斑点都覆盖掉了,根本就观察不了。。我的碘化铋钾的这样配的:7.3g碘化铋钾,冰醋酸10ml,加蒸馏水60ml。是不是浓度太高,所以造成上面结果??谢谢大家了

  • 【求助】高纯氧化铋执行的标准

    目前生产高纯三氧化二铋的厂家执行的是哪种标准,化验又是执行的哪种标准?我怎么在网络中搜索不到这两种标准 哪位达人知道,希望告诉我一下

  • 【讨论】盐酸水苏碱斑点的显色问题

    最近测益母草中盐酸水苏碱的含量,用薄层扫描法做的,结果斑点老是不太显得出来,我试了稀碘化铋钾、改良碘化铋钾都不太好,曾经按文献的方法在上述显色剂中加三氯化铁,斑点倒是能显出来,不过斑点中心的颜色有些发黑,不知哪位高手有什么妙招,先谢过了。

  • 求助文献1篇,谢谢

    【序号】:1【作者】:戴云,刘愚,张定宇【题名】:电子工业用氧化铋生产工艺的开发与实践【期刊】:云南冶金【年、卷、期、起止页码】:2001年,第30卷,第4期,22-25页

  • 【求助】XRD 检测物质出现问题,怎么办?

    急~~哪位大侠能帮我分析下这个XRD图谱啊?我做的是氧化铋,不同的焙烧温度,想知道什么时候形成的?是啥晶形啊?谢谢啊~~~http://ng1.17img.cn/bbsfiles/images/2010/10/201010221011_252919_2163535_3.gif

  • 论文求助

    纳米氧化铋的制备及表征,谁有这个论文吗?

  • 请问这样对SAED指标化是否正确?

    请问这样对SAED指标化是否正确?

    做了一个碲化铋材料,PDF卡片对应15-0863,根据量出的距离进行指标化。不知道对不对,文献中没看到相同patten。请各位专家指点哈。http://ng1.17img.cn/bbsfiles/images/2011/12/201112061651_336092_1780305_3.jpg

  • Bi2S3@ CNT:一种高性能的电化学储锂材料

    Bi2S3@ CNT:一种高性能的电化学储锂材料

    [color=#333333]锂离子电池具有高能量密度、长循环寿命和宽工作温度区间等性能优势,因此在众多储能器件中占有重要位置。近年来,为了提高锂离子电池的能量密度,研究者们开发了一系列的基于转换反应和合金化反应的高容量负极材料。其中,层状结构的硫化铋(Bi[sub]2[/sub]S[sub]3[/sub])是一种潜在的高性能储锂材料。硫化铋具有625 mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]和4250 mAh cm[/color][sup][color=#333333]‒ [/color][/sup][sup][color=#333333]3[/color][/sup][color=#333333]的理论容量,比石墨高出70%和420%,而且由于Bi、S之间的化学键比较弱,因此材料的储锂可逆性比较高。然而,由于本身晶格、电子结构和电学性能的限制,硫化铋在储锂循环稳定性和倍率性能方面还远不能满足实用的需求。[/color][color=#333333]为了解决这一问题,苏州大学物理与光电能源学部的倪江锋博士与合作者发展了一种与纳米碳材料强耦合的技术,来制备高性能的硫化铋复合电极材料。他们在功能化的碳纳米管(CNT)表面负载硫代乙酰胺(TAA),然后加入硝酸铋溶液;通过控制 TAA的水解来调控Bi[sub]2[/sub]S[sub]3[/sub]在CNT表面的存在形式和沉积厚度。Raman光谱和X射线吸收近边结构(XANES)证明Bi[sub]2[/sub]S[sub]3[/sub]和CNT存在着电荷转移(耦合作用)。复合的Bi[sub]2[/sub]S[sub]3[/sub]@CNT材料的表现出优异的储锂稳定性和强劲的倍率性能。在0.2 A g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的电流密度下经过100次循环, Bi[sub]2[/sub]S[sub]3[/sub]@ CNT材料保持了494 mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的容量,而单独的Bi[sub]2[/sub]S[sub]3[/sub]材料只保持了129 mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]。在2 和5 A g[/color][sup][color=#333333]‒ [/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的倍率下,该杂化材料仍然具有429和376 mAh g[/color][sup][color=#333333]‒ [/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的容量。更为重要的是,当测试电流密度降低时,高于500mAh g[/color][sup][color=#333333]-[/color][/sup][sup][color=#333333]1[/color][/sup][color=#333333]的容量仍然可以恢复。他们进一步通过循环伏安和电化学阻抗谱分析了材料的高倍率性能的原因,发现其储锂行为类似于一个赝电容。显然这种赝电容的行为与高导电的CNT与Bi[sub]2[/sub]S[sub]3[/sub]之间的强耦合作用是分不开的。该研究工作为硫化物和相关储锂材料的进一步发展提供了一条可行的思路。相关结果发表在[/color]Advanced Energy Materials[color=#333333]杂志上。[/color][color=#333333]全国纳米技术标准化技术委员会低维纳米结构与性能工作组的专家介绍,层状结构的硫化铋(Bi2S3)是一种潜在的高性能储锂材料。CNT与Bi2S3这些材料的结合,是一种很好的探索思路。[/color][color=#2B2B2B]据低维材料在线91cailiao.cn的技术工程师Ronnie介[/color][color=#333333]绍,他们提供的硫化铋Bi2S3材料具有环境友好、光电导和非线性光学响应等优点,广泛应用于太阳能电池、光电二级管阵列以及红外光谱学等,也可以应用于制其它铋合物、易切削钢添加剂、微电子工业。[/color][img=,690,627]http://ng1.17img.cn/bbsfiles/images/2017/07/201707251452_01_2047_3.png[/img]

  • 【“仪”起享奥运】薄层色谱鉴别中药配方颗粒

    薄层色谱鉴别是中药配方颗粒的主要鉴别方法。由于中药配方颗粒的制备工艺是由药材经水提、浓缩、干燥、制粒而成,为保证对照药材与样品薄层色谱斑点的对应性,对照药材也应尽量先用水煎煮,得到的水溶液再照样品的制备方法处理。但部分品种标准中规定的对照药材前处理方法缺少水煎煮提取的步骤,如板蓝根配方颗粒,标准中规定取板蓝根对照药材直接用稀乙醇提取浓缩点样。此外,炮制品种的薄层色谱,大多使用未经炮制的原药材作为对照药材,上述情况均有可能导致样品斑点与对照药材的斑点不完全一致,给结果判定造成障碍。此外,还有部分品种的薄层方法需要优化,如蜜百部(对叶百部)配方颗粒使用的显色剂是改良碘化铋钾试液,试验中喷该显色剂后对照药材和样品均未出现斑点,改为喷碘化铋钾试液后,斑点出现;黄柏配方颗粒的薄层展开剂含水,斑点展开效果较差,且在日光下观察,斑点信息较少,建议参考《中华人民共和国药典》2020年版第一部中大补阴丸鉴别的方法对该项目进行修订。

  • 【求助】仪器检测样品 怎么看图谱 谢谢!

    急~~哪位大侠能帮我分析下这个XRD图谱啊?我做的是氧化铋,不同的焙烧温度,想知道什么时候形成的?是啥晶形啊?谢谢啊~~~http://ng1.17img.cn/bbsfiles/images/2010/10/201010221012_252921_2163535_3.gif

  • 求高手解谱XRD

    求高手解谱XRD

    以氧化铋渣(Bi40%,Pb40%,Cu10%,Sb2%)为原料,加熔剂(Na2CO3、SiO2、CaF、FeS、[color=#333333]Na2B4O7[/color])和焦炭,高温还原熔炼。熔炼产物从上至下依次为渣层(Si、Fe、Na、B等氧化物)、冰铜层(Cu、Pb、Bi)、合金层(Pb、Bi)。然而,做Na2CO3单因素实验,Na2CO3过量时,渣层上面有一层白色固体生成,将白色固体磨碎后进行XRD检测,用jade6.0多次尝试还是分析不出。求教各位老师帮忙解谱下,谢谢。[img=,690,347]https://ng1.17img.cn/bbsfiles/images/2018/10/201810311549055537_3951_2612947_3.png!w690x347.jpg[/img]

  • 【“仪”起享奥运】中药材草乌叶的鉴别、检查方法

    [size=20px][color=#93c6bc][b]鉴别[/b][/color][/size][size=16px][color=#e2a4a4]|[/color][/size] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体](1)本品表面观:上表皮细胞垂周壁微波状弯曲,外平周壁有的可见稀疏角质纹理;非腺毛单细胞,多呈镰刀状弯曲,长约至468[/font][font=&]μ[/font][font=宋体]m[/font][font=宋体],直径44[/font][font=&]μ[/font][font=宋体]m[/font][font=宋体],壁具疣状突起。下表皮细胞垂周壁深波状弯曲;气孔较多,[color=var(--weui-LINK)]不定式[i][/i][/color],副卫细胞3~5个。[/font] [font=宋体](2)取本品粉末5g,加三氯甲烷25ml,摇匀,加碳酸钠试液2ml,振摇30分钟,滤过,取滤液加[color=var(--weui-LINK)]稀盐酸[i][/i][/color]4ml,振摇;分取酸液,滤过,将滤液分置两支试管中,一管中加碘化铋钾试液2滴,生成棕黄色沉淀;另一管中加硅钨酸试液2滴,生成灰白色沉淀。[/font] [font=宋体][/font]

  • Bi2Se3/MoTe2异质结构中大自旋分裂的宽幅理想二维Rashba电子气

    Bi2Se3/MoTe2异质结构中大自旋分裂的宽幅理想二维Rashba电子气

    能实际应用的理想二维Rashba电子气(几乎所有的传导电子占据Rashba带)是应用半导体自旋电子的关键。研究证实,这样带有大Rashba劈裂的理想二维Rashba电子气可以在拓扑绝缘体Bi2Se3薄膜上实现,该薄膜可在过渡金属硫化物MoTe2基板上按第一性原理计算结果指导生长得到。研究结果显示,Rashba带专处于MoTe2半导体带隙中一个较大的、约0.6? eV费米能级间隔中。如此宽幅的理想二维Rashba电子气具有大的自旋分裂,为实际利用Rashba效应提供了可能,之前从未做到。由于强自旋-轨道耦合,其Rashba分裂强度与重金属(如Au和Bi)表面的差不多,所引起的自旋进动距离小到10 nm左右。近Γ点的内(外)Rashba带平面内自旋极化最大约为70%(60%)。室温下相干距离至少数倍于自旋进动长度,为采用自旋加工设备提供了良好的一致性。这种二维拓扑绝缘体/过渡金属硫化物异质结构中的理想Rashba带,具有能量范围宽、自旋进动长度短、相干距离长的特点,为室温下制造超薄纳米自旋电子器件(如Datta-Das自旋晶体管)铺平了道路。该研究通过计算揭示了纳米自旋电子晶体管在室温下工作的可能性。来自中国台湾清华大学的T. H. Wang和H. T. Jeng通过第一性原理计算,证实了一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底、在室温下生长即可制备。超薄器件中形成的二维电子气表现出大的“自旋分裂”(两种状态的电子自旋间的分离),这正是晶体管之类的设备所需要的特性。采用电子自旋的电子器件来处理信息,用的是电子固有的自旋特性,而不象目前常规电子器件那样用的是电子的电荷特性。这会使设备在更小的空间内存储更多的数据,消耗更少的电能,使用更便宜的材料。据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,异质结构是现在的研究热点,Bi2Se3/MoTe2异质结构,使得一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底,在室温下生长即可制备。[align=center][img=,440,335]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071344_01_2047_3.jpg[/img][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制