当前位置: 仪器信息网 > 行业主题 > >

锑化铋

仪器信息网锑化铋专题为您提供2024年最新锑化铋价格报价、厂家品牌的相关信息, 包括锑化铋参数、型号等,不管是国产,还是进口品牌的锑化铋您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锑化铋相关的耗材配件、试剂标物,还有锑化铋相关的最新资讯、资料,以及锑化铋相关的解决方案。

锑化铋相关的资讯

  • 科学岛团队在碲化铋合金热电性能调控方面取得新进展
    近日,中科院合肥物质院固体所秦晓英研究员团队在近室温碲化铋热电材料热电性能优化研究方面取得了系列进展。相关工作发表在工程技术类期刊Chemical Engineering Journal上。   热电技术作为解决能源问题的有效途径,近年来引起广泛关注。热电技术可实现热能与电能的直接相互转换,具有纯固态、无噪音、无运动部件等优点,在深空探测、废热发电利用(能量回收),如汽车尾气热量回收发电以提升燃油效率等领域已经实现了重要应用。但是,当前N型碲化铋的热电优值ZT和能量转换效率较低,这限制了其商业应用。   针对当前唯一实现商用化的Bi2Te3热电材料,固体所研究人员通过向Bi2Te2.7Se0.3 (BTS)基体中复合无机MnSb2Se4 (MSS) 纳米颗粒,实现材料功率因子(PF)的提高和热导率的显著下降。研究结果表明,功率因子的增加是由于能量过滤效应引起的塞贝克系数的增强;而降低的热导率主要来源于MSS纳米粒子和位错对声子散射的增强。BTS/0.50wt%MSS复合样品的最大热电优值ZT高达1.23 ( 345K),在300-473K温区内的平均ZT达到了1.15,分别比基体BTS提高48%和42%。同时,复合样品的维氏硬度提高了17%,力学性能较好。该研究表明,加入过渡金属硒化物(如MSS)为改善BTS热电性能和力学性能提供了新思路(Chem . Eng. J, 467, 143397(2023))。   此外,研究人员通过复合体系设计与性能调控,向BTS基体复合介观尺度导电聚合物聚苯胺(PANI)纳米粒子,构建介观尺度的载流子输运调控和声子散射(阻隔)基元,研究和探讨超低热导率导电聚合物基元对BTS基复合体系晶格热导率、热电势及PF等的影响。研究发现,复合体系的晶格热导率在300 K时降低了49%,这主要是由于聚合物包裹体增强了声子散射。此外,无机/有机边界处形成的界面势产生了能量过滤效应,导致复合体系的热功率提高8%。1.5wt%BTS基复合样品的最大ZTmax 达到1.22 (345 K) (Chem . Eng. J, 455, 140923(2023))。   以上研究工作通过研究第二相基元种类、尺度、浓度和不同组合等对热电性质的影响,揭示其影响规律和内在机理,为设计和制备高性能n型BTS热电材料提供科学依据,同时也为其他体系热电材料的性能提升提供借鉴和参考。   上述工作得到国家自然科学基金和安徽省自然科学基金以及合肥物质院院长基金的支持。
  • Retsch高能球磨仪Emax机械合金法制备半导体合金
    文章摘要: 机械合金化(Mechanical Alloying,简称MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。本文以硅锗合金和碲化铋半导体材料合金化制备实验为例,介绍了高能球磨仪Emax的使用方法和技术优势,对合金样品制备的应用有借鉴作用。 传统方法制备不锈钢类合金要求高温下进行熔融,如果需求量很小抑或无法熔融,机械合金法就是一个很好的替代方法,传统上会用行星式球磨仪来完成。上世纪60年代末,美国国际镍公司用机械合金法第一次制备成功耐高温镍铁合金并以此申请专利。机械合金研磨需要有强劲的动能把固体粉末结合在一起,行星式球磨仪产生的高能撞击可以提供所需能量。在研磨球的撞击和挤压下,细粉颗粒会发生塑性形变并且焊合在一起。所以机械合金法可以弥补传统高温熔融无法制备的样品的不足,并且可以制备更大自由度混合比的样品。热电合金材料硅(Si)和锗(Ge)都是最通用常见半导体材料—是光电电池和晶体管产业的基石。硅锗合金材料性质如带隙可以由改变硅和锗混合比例来调整。热电合金材料用于制造航天热偶发电机,保证了空间探索和试验设备的动力供应。在商用热电材料领域,碲化铋(Bi2Te3)因其热电效能转化率高,是研究最多的材料,被用来做半导体制冷元件。 高能球磨仪EmaxEmax的转速能达到每分钟2000转,特殊设计的跑道型研磨罐可以产出更大的粉碎能。结合了高速撞击力和密集摩擦力,高能球磨仪的强劲能量输入可以做快速纳米研磨实验和机械合金应用。跑道型的研磨罐和偏心轮运动方式,有效保证了样品的混合,样品最后不仅可以磨得很细,粒度分布范围也会变很窄。内置水冷管路可以快速带走样品子啊研磨中产生的热量,保护样品免受过高温度影响,从而可以不像行星式球磨仪一样需要间歇停转,大大提高研磨工作效率。如果有更严格的控温需要,Emax还可以外接冷水机,进一步降低研磨温度(最低工作温度不能低于5摄氏度)。 图1:研磨前样品XRD 分析结果 Si(红)Ge(绿)整个扫描范围从10-60°,可以看出Si和Ge晶面特征峰。图2:研磨5小时后XRD分析结果 可以看出晶面特征峰已经偏移和合并,机械合金化已有效果图3:研磨5,8,9小时后XRD分析结果 晶面特征峰值会有所变窄和迁移,显示5-6小时的反应后机械合金反应已经基本完成原来硅和锗的机械合金化反应用是用行星式球磨仪进行的,但是会有很多问题导致结果不尽如人意。行星式球磨仪需要至少80分钟才能把样品处理到可以进行机械合金化的初始细度,接下来即使用中低转速400转/分也会导致样品在研磨罐中结块,无法使用其全部能量来进行机械合金反应。另一个问题是研磨罐过热需要间歇,在整个13小时的反应时间中需要额外加入至少90分钟停止时间。而高能球磨仪Emax自带水冷功能,高速运行也无需间歇,没有样品结块的现象,同时还大大提高了反应效率。 图4: 图 5:Bi和Te机械合金反应 1小时后XRD分析结果 图4为球料比10:1 (体积比)图5为球料比5:1(体积比) 机械合金法制备硅锗合金硅锗合金比为SI 3.63克 Ge2.36克,用50ml碳化钨研磨罐,10mm碳化钨研磨球8个(球料比10:1)。硅料和锗料的原始尺寸为1-25mm和4mm。2000转/分20分钟后,样品已经微粉化无结块现象。接下来1200转/分 9个小时(每隔1小时中间间歇1分钟后反转样品以避免样品结块)。机械合金反应前20分钟样品做了XRD定性和定量分析,Si和Ge的特征峰值都可以很清晰地辨认出来,说明碳化钨球几乎没有产生摩擦效应。在整个反应过程中合金始终保持微粉化,Emax的温度没有超过30℃。经过9个小时的反应后,整个样品基本消除了不定形态,呈微晶状态。机械合金法制备碲化铋研究不同球料比(10:1或5:1)对反应的影响,50ml 不锈钢研磨罐, 10mm不锈钢研磨球 10个。 球料比10:1的罐子中加入2.09克Bi和1.91克Te。 球料比5:1的罐子中加入4.18克Bi和3.83克Te。800转/分 70分钟(每10分钟间歇1分钟并反转),结果做了XRD分析。在经过近1小时机械合金研磨,Bi和Te的特征峰都有明显可辨的偏移,显示化合物Bi2Te3开始形成。球料比10:1的样品形成速度比5:1的更快,因为5:1样品中Te的特征峰值强度更大,说明10:1样品中的Te反应地更多。合金反应继续1200转/分3小时后,没有样品结块。和原来用混合研磨仪1200转/分 6.5小时制备相比,高能球磨仪Emax只需要2-3个小时候就能轻松完成任务。
  • 中国对锑相关物项实施出口管制,将带来这些影响
    继去年7月中国商务部决定对镓、锗相关物项实施出口管制之后,8月15日,商务部、海关总署联合发布公告,决定对部分锑、超硬材料相关物项实施出口管制。上述政策将于2024年9月15日起正式施行。商务部新闻发言人表示,对锑、超硬材料相关物项实施出口管制系国际通行做法。中国借鉴国际做法,并根据自身需要,对有关物项实施出口管制,旨在更好维护国家安全、履行防扩散等国际义务。相关政策不针对任何特定国家和地区。出口符合相关规定的,将予以许可。中国政府坚定维护世界和平和周边地区稳定,保障全球产业链供应链安全,促进合规贸易发展。同时,反对任何国家和地区利用来自中国的管制物项,从事损害中国国家主权、安全、发展利益的活动。锑:半导体领域的重要材料锑(Sb),作为第五周期第ⅤA族的类金属元素,类金属元素,是一种银白色、易碎、易熔的结晶固体,导电性和导热性较差,加热时会升华。锑的主要应用包括制造合金、&zwnj 半导体材料、光伏材料、&zwnj 阻燃剂、&zwnj 化工原料等。锑在半导体行业的应用,主要被用作化合物半导体材料、合金材料、半导体掺杂材料和热电材料等:首先,锑可以作为化合物半导体材料。锑化合物半导体属于重要的第四代半导体材料,在开发低体积、轻重量、低功耗和低成本的下一代器件方面具有很大的优势,可以满足极其苛刻的应用要求。如锑化铟(InSb)和锑化镓(GaSb),都属于直接带隙半导体材料,具有禁带宽度较窄、电子迁移率高、量子效率高、响应速度和灵敏的红外响应的特点,在红外探测器、光电器件及高速电子器件中占据重要地位。特别是这些材料在红外光电器件中的应用,使得其在军事领域具备高度的战略价值。例如,锑化镓太阳能电池的高转化效率和低成本,使其备受关注,并推动了光伏材料的发展。国内企业在锑化合物材料的研发和生产上取得了显著进展,如浩瀚全材、光智科技、有研新材等公司成功量产了高纯度的锑化镓和锑化铟晶圆,展示了中国在锑半导体材料领域的实力。其次,锑也可以作为合金材料。比如锑铅合金,锑与铅形成的合金在制造半导体器件中用作电气接触材料,特别是在制造印刷电路板(PCB)和焊料合金中起到增强硬度和提高耐腐蚀性的作用。第三,锑也可以作为半导体掺杂材料。锑可作为掺杂材料引入到硅和锗中,以调节其导电性。掺入锑原子后,硅或锗的导电性将增加,形成n型半导体(富电子半导体),这在制造各种电子器件时非常关键。第四,锑也可以作为热电材料。锑与碲、铋等元素结合,形成的化合物(如碲化铋 (Bi2Te3))被广泛用作热电材料。这些材料可以在温差下产生电压,被用于热电发电器件和热电制冷器件。从终端应用来看,锑在半导体行业的应用主要集中在红外光电器件、高速电子器件、热电材料等领域。随着技术的发展,锑及其化合物的应用前景广阔,特别是在高性能器件和新型材料方面。锑的战略价值与国际地位从全球储量来看,根据USGS的数据显示,截至2023年,全球已知的锑储量共有217万吨,其中,中国储量为64万吨,占比30%,排名第一,远超其他国家。从全球产量来看,中国同样占据主导地位,2023年全球锑矿产量为8.3万吨,其中中国产量为4万吨,占比为48%,贡献了全球近一半的锑矿产量。显然,中国是全球锑储量和产量最大的国家。鉴于锑在半导体及其军事应用中的重要性,中国政府对锑及相关物项实施出口管制,以维护国家安全和利益,这一举措被视为对欧美对华半导体出口管制的反制措施。特别需要指出的是,由于锑在红外光电器件方面的应用很多被用于军事领域,因此,从2009年起,&zwnj 美国就将锑化物半导体相关的材料和器件实施了严格的出口控制。而&zwnj 美国对锑化物半导体技术的封锁和垄断,&zwnj 反映了其在高科技领域的重要性和战略价值。中国对锑出口管制的具体措施与影响商务部、海关总署联合发布的公告明确了锑相关物项的出口管制细则,包括锑矿及原料、金属锑及制品、锑的氧化物、有机锑化合物、锑的氢化物以及高纯度的锑化铟等。这些物项在未获得许可前,均不得出口。同时,公告还规定了出口许可的申请流程、审查标准及处罚措施,确保管制措施的有效执行。中国对锑的出口管制,一方面将进一步提升国内锑产业的竞争力,促进相关企业的技术创新和产业升级;另一方面,也将对国际半导体市场产生一定影响,特别是那些依赖中国锑资源的国家和地区,可能需要寻求新的供应渠道或调整生产计划。总体而言,锑作为半导体领域的重要材料,其战略价值不言而喻。中国作为全球锑储量和产量最大的国家,通过实施出口管制,不仅能够有效维护国家安全和利益,还将在国际半导体市场中发挥更加重要的作用。
  • Bi2Se3/MoTe2异质结构中大自旋分裂的宽幅理想二维Rashba电子气
    能实际应用的理想二维Rashba电子气(几乎所有的传导电子占据Rashba带)是应用半导体自旋电子的关键。研究证实,这样带有大Rashba劈裂的理想二维Rashba电子气可以在拓扑绝缘体Bi2Se3薄膜上实现,该薄膜可在过渡金属硫化物MoTe2基板上按第一性原理计算结果指导生长得到。研究结果显示,Rashba带专处于MoTe2半导体带隙中一个较大的、约0.6? eV费米能级间隔中。如此宽幅的理想二维Rashba电子气具有大的自旋分裂,为实际利用Rashba效应提供了可能,之前从未做到。由于强自旋-轨道耦合,其Rashba分裂强度与重金属(如Au和Bi)表面的差不多,所引起的自旋进动距离小到10 nm左右。近Γ点的内(外)Rashba带平面内自旋极化最大约为70%(60%)。室温下相干距离至少数倍于自旋进动长度,为采用自旋加工设备提供了良好的一致性。这种二维拓扑绝缘体/过渡金属硫化物异质结构中的理想Rashba带,具有能量范围宽、自旋进动长度短、相干距离长的特点,为室温下制造超薄纳米自旋电子器件(如Datta–Das自旋晶体管)铺平了道路。该研究通过计算揭示了纳米自旋电子晶体管在室温下工作的可能性。来自中国台湾清华大学的T. H. Wang和H. T. Jeng通过第一性原理计算,证实了一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底、在室温下生长即可制备。超薄器件中形成的二维电子气表现出大的“自旋分裂”(两种状态的电子自旋间的分离),这正是晶体管之类的设备所需要的特性。采用电子自旋的电子器件来处理信息,用的是电子固有的自旋特性,而不象目前常规电子器件那样用的是电子的电荷特性。这会使设备在更小的空间内存储更多的数据,消耗更少的电能,使用更便宜的材料。据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,异质结构是现在的研究热点,Bi2Se3/MoTe2异质结构,使得一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底,在室温下生长即可制备。
  • 【热电资讯】新一代小型热电转换效率测量系统Mini-PEM成功落户中国科学院物理研究所
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。近期,我们在中国科学院物理研究所成功交付使用了小型热电转换效率测量系统Mini-PEM。该设备可测量热电材料产生的电量及热电转换效率η(通过产生的电量和热流来获得)。为尽快满足用户的科研需求,Quantum Design中国子公司调集技术力量,在满足防疫要求的前提下与用户紧密合作,顺利完成了设备的安装工作,所有技术指标均符合要求,设备正式交付使用。热电材料能够实现热能与电能的直接转换,具有重要的实用价值,而热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,目前小型热电转换效率测量系统是能有效测量该指标的仪器。Quantum Design中国子公司工程师为客户介绍设备传统的热电转换效率测量方法是将所制得的样品(p型或n型)与标准(n型或p型)材料结合制备成器件,通过对器件进行测试得出转换效率。近年来,ADVANCED RIKO公司创新性地研发了全新的小型热电转换效率测量系统Mini-PEM,其能以单腿器件为样品,通过测试样品的热流及发电量再结合理论计算得到热电转换效率,并且对该类产品申请了。Mini-PEM的样品连接方式近期Mini-PEM用户,昆明理工大学材料学院教授葛振华、冯晶等通过将Ru纳米粉体掺杂至商业碲化铋中,实现了细晶强化。通过晶界对电子和声子的散射,有效提高了塞贝克系数,降低了热导率。材料在425K的ZT值达到0.93。使用Mini-PEM对单腿n型碲化铋的热电转换效率进行了表征,相比纯商业样品提升了91%。相关研究成果以Simultaneous Enhancement of Thermoelectric Performance and Mechanical Properties in Bi2Te3 via Ru compositing为题发表在化工领域期刊Chemical Engineering Journal上[1]。该工作中,材料的高温塞贝克系数和电阻率是采用日本ADVANCE RIKO公司生产的塞贝克系数/电阻测量系统ZEM-3测得的;单腿样品的热电转换效率是使用日本ADVANCE RIKO公司生产的小型热电转换效率测量系统Mini-PEM测得。另外,材料在室温(291K)的载流子浓度与载流子迁移率使用Quantum Design公司研发的综合物性测量系统PPMS测得。日本ADVANCE RIKO公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司将日本ADVANCE RIKO公司的先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design China与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:【1】Y-K. Zhu, J. Guo, L. Chen, S-W. Gu, Y-X. Zhang, Q. Shan, J. Feng, Z-H. Ge,Simultaneous Enhancement of Thermoelectric Performance and Mechanical Properties in Bi2Te3 via Ru compositing, Chemical Engineering Journal (2020)
  • 全能!单腿器件能测,多偶也能测!助您实现热电发电器件的精准测量!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 热电转换技术是利用材料的塞贝克(Seebeck)效应与帕尔贴(Peltier)效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。随着研究的深入,特别是对热电半导体输运机制的深入理解及新的调控机理及制备手段的应用,热电材料的性能得到了长足的进步,研究重点也逐渐从侧重基础的材料研究向侧重应用的器件研究转移。热电器件可按用途简单分为热电发电器件(TEG)及热电制冷器件(TEC),一般由n型和p型的热电材料通过热并联和电串联的形式构成,其工作原理见图1。随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。图1、热电发电器件与制冷器件的工作原理日本Advance Riko公司推出的小型热电转换测量系统Mini-PEM(图2)可以测量单腿器件的热电转换效率,该设备为目前商用的可以测量单腿器件热电转换效率的测量系统,热端温度高达500℃,可以测量器件在不同温差条件下的发电量、热流量及大转换效率。在近期的工作中,科研工作者使用小型热电转换测量系统Mini-PEM测量了碲化铋基热电材料制备的单腿发电器件。图2、小型热电转换效率测量系统Mini-PEM碲化铋基热电材料是目前应用广的热电材料,其具有优异的热电性能,且能在近室温附近表现出佳性能,国内外大量的科研团队对于提升其性能进行了大量深入的研究。近日,来自清华大学的研究团队使用放电等离子体烧结法,对碲化铋合金的制备工艺的改良进行了研究。该团队在原料中加入过量碲单质,随后控制放电等离子体烧结温度在共晶点上循环升降。采用此工艺能有效降低晶粒的界面自由能,促进晶粒的快速长大,从而减弱了块体内部晶界对载流子的散射作用,显著改善了电学性能提升了功率因子(PF);在伴随共晶液相的挤出过程中引入大量位错。同时还可形成大量二相,进一步增加了位错密度。这些结构能有效增强声子散射,从而降低晶格热导率(κL)。终,优化工艺参数和组分的p型(Bi,Sb)2Te3材料的ZT值达到1.46,较常规放电等离子体烧结得到的商用(Bi,Sb)2Te3材料提升了50%,采用该材料制备的单腿器件的热电转换效率提升超过80%[1]。图3、单腿器件结构图及实物照片(a),热电转换效率(η)与电流(I)的关系:经过4次SPS循环的Bi0.4Sb1.6Te3.2(b),1C样品:1次循环(c),商用(Bi,Sb)2Te3:标准球磨-烧结制备(d),经过4次SPS循环的Bi0.4Sb1.6Te3.2的理论值(e)作为发电热电材料,p型Bi2Te3基热电材料性能高,但高性能的n型材料相对缺乏,为解决这一问题,科研工作者进行了多种尝试。来自南方科技大学的科研团队在n型Bi2Te3材料中复合过量的碲(Te)单质,通过烧结使碲单质熔化流出,在基体中引入位错。此外,还复合掺杂了锑(Sb)元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高zT值。使用Bi1.8Sb0.2Te2.7Se0.3 + 15 wt% Te 的n型热电腿和Bi0.5Sb1.5Te3的p型热电腿制备的热电转换器件,实现了3.7W的大输出功率及6.6%的转换效率[2]。与上述研究不同,此工作中科研工作者制备了由70对π形结构组成的器件(图4),器件尺寸30 mm×30 mm×3.8 mm,值得注意的是,本工作的发电量及热电转换效率是由日本ADVANCE RIKO公司生产的热电转换测量系统PEM-2测得的。图4、载流子局域化示意图(a),n型Bi2(TeSe)3的zT值与温度的关系曲线(b),热电器件的输出功率(c),热电转换效率(d)热电转换测量系统PEM-2支持多种器件尺寸,热端高温度可达800℃,测量在惰性气体(Ar)中进行。为了模拟热电发电器件在真实工况中的使用,Advance Riko公司新近推出了大气环境下热电材料性能评估系统F-PEM,该系统可在大气环境下,对负荷温差的器件的发电量及热流量进行测量,计算热电转换效率。该系统还可以长时间运行热循环测试,从而测试商用组件在负载和温度下的耐久性。图5、热电转换效率测量系统PEM-2(a),大气环境下热电材料性能评估系统F-PEM(b)此外,上述两篇文章中材料的电输运性能(电导率σ、塞贝克系数S)均使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3(图6)测得。图6、塞贝克系数/电阻测量系统ZEM-3延伸阅读日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。 目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] H. Zhuang et al. / Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase. Adv. Funct. Mater. 2021, 2009681[2] B. Zhu et al. / Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials. Energy Environ. Sci., 2020, 13, 2106-2114
  • nanoart——电子显微镜捕捉的美丽瞬间
    通过电子显微镜可观察肉眼看不到的纳米世界,现已广泛应用于医学、生物、材料开发等领域。我们身处在美丽的自然环境中,生活和谐美满,而只有电子显微镜才能呈现的微观世界,更是魅力四射。“nanoart”是通过电子显微镜真实展现金属、矿物、生物等的微观形态美,并利用计算机软件的伪彩技术制作出的“艺术”影集。以下,将为您展示在日本显微镜学会自1993年主办的“显微摄影大赛”中,日立高新技术公司的优秀参赛与获奖作品。 Crystal Flower Carpet 2016年国立研究开发与日立高新共同作品“铺满花纹的地毯”:非晶InSiO薄膜加热的同时,对其进行SEM的观察。350℃时通道效应引起结构发生变化,随着时间的推移,结晶区域不断扩大至全部结晶。在什么都没有的地方突然产生的结晶对比度。 拍摄条件与样品:InSiO薄膜? 分析仪器:日立热场发射扫描电镜SU5000? 检测信号:背散射电子? 加速电压:15.0 kV? 放大倍率:×10,000© (株)日立高新技术公司 重藤训志© 国立研究开发法人 物质?材料研究机构 WPI-MANA 木津TAKIO、塚越一仁© 国立研究开发法人 物质?材料研究机构 WPI-MANA Foundry 生田目俊秀 小型行星探测机升空 2011年富士化学与日立高新共同作品“宇宙飞船在未知行星着陆”:该样品表面和内部均有微孔空硅颗粒。将二氧化硅和氯化钠混合,且仅溶解氯化钠,制成立方体形状。微孔可捕获目标尺寸的物质,希望将来用于搬运物质的载体。 拍摄条件与样品:介孔硅纳米球? 分析仪器:日立扫描电子显微镜SU8040? 检测信号:背散射电子? 加速电压:0.8 kV? 放大倍率:×22,000© (株)日立高新技术公司 设乐宗史、檀紫© 富士化学(株) 矶部弘 Cross Sectional Observation of the Earth 2000年日立计测工程、日立制作所、东北大学共同作品“超能力外星人准备攻击的地球”:本样品是在Fe颗粒之上分别覆盖两层TiO2及SiO2而形成的高性能分层颗粒。在200kV的加速电压下,可观察到SEM图像的“月球”和STEM-FIB加工制成的薄膜断面像的“地球”。拍摄条件与样品:分层颗粒(反射光干涉着色磁性颗粒)? 分析仪器:日立场发射扫描透射电镜HD2000? 加速电压:200kV © 日立计测工程技术公司 失口纪惠、黑田靖、上野武夫© (株)日立制作所 计测器部 桥本隆仁© 东北大学 本部 中塚胜人、东北大学 田路和幸 微观花束 2009年日立高新作品“美丽的花束形貌”:合成沸石是广受关注的功能性材料之一,图为合成沸石在高分辨SEM下观察到的图像。该合成沸石主要用于催化工业原料合成。样品经过几次重叠而形成的花瓣形状,增加了样品表面积,从而使催化效果增强。 拍摄条件与样品:合成沸石? 分析仪器:日立场发射扫描电镜SU8000? 加速电压:2kV © (株)日立高新制造&服务公司 稻木由纪© (株)日立高新技术公司 西村雅子、武藤笃、檀紫、坂上万里 NanoUniverse 2009年日立高新作品“宇宙中漂浮的小行星”:对玻璃内的添加剂氧化铋颗粒进行树脂包埋处理,并以5nm步进连续进行FIB加工,以观察其SEM图像。对200张SEM图像进行三维重构,观察颗粒的立体分散状态。 拍摄条件与样品:氧化铋? 分析仪器:聚焦离子束装置NB5000? 加速电压:FIB 40 kV、SEM 5kV © (株)日立高新技术公司 森川晃成、工藤美树、藤泽亚希子、今野充 烟花 1998年日立计测工程作品“烟花,烂漫绽放”:这些“烟花”其实是在还原氧化膜过程中产生的膜间水蒸气,大小从3微米到数十微米不等。硅基板因气体反弹到膜中心,隐约可见。 拍摄条件与样品: ? RuO2/Si基板? 分析仪器:日立场发射扫描电镜S-4700 © 日立计测工程技术公司 渡边俊哉、中川美音、山田满彦*: 参赛人公司为拍摄作品时所在公司。*: 本作品为日本显微镜学会主办的“显微摄影大赛”的参赛作品。*: 未经同意严禁转载“nanoart”上刊登的图片和文章。*: 关于著作权与链接详情请后台咨询。*: “nanoart® ”是日立高新技术公司在日本的注册商标。更多日立扫描电镜产品详情:http://www.instrument.com.cn/netshow/SH102446/Product-C7301-0-0-1.htm关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 热电资讯|PEM-2&ZEM-3助力用户文章登上行业顶级期刊
    导读:当今,化石能源短缺和环境污染问题凸显,能源多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等优点。 柔性热电能量转换技术可将环境或人体温差转化成电能并实现电子设备的自供电,在可穿戴等领域具有广阔的应用前景。传统无机热电材料具有优异的热电性能,但不具备柔性功能;而有机热电材料虽具有良好的柔性和弯曲性能,但热电性能低。有机/无机复合热电材料可综合无机材料的热电高性能和有机材料的良好弯曲性能,成为近年来的研究热点。在有机/无机复合热电材料的研究中,研究者经常使用碳纳米管等一维材料,但其塞贝克系数较低,使得复合材料的塞贝克系数难以提高。因此,如何选择合适的无机/有机材料进行搭配从而获得性能较好的复合材料成为关键的问题。近期,中国科学院上海硅酸盐研究所研究员史迅、陈立东等提出了一种维度匹配的复合热电材料设计新思路,即使用具有一维结构的聚偏氟乙烯(PVDF)和Ta4SiTe4无机材料进行复合制备有机/无机柔性复合薄膜。其原型器件在35.5K温差下归一化大功率密度为目前已报道的柔性热电器件中的高值。相关研究成果以Conformal organic–inorganic semiconductor composites for flexible thermoelectrics 为题 ,发表于Energy & Environmental Science上[1]。 近年来,能源危机、环境污染及空间活动的扩大,促使研究人员致力于开发高效、无污染的能源转化利用方式,以满足经济和社会发展的需求。基于热电材料的塞贝克(Seebeck) 效应和帕尔帖(Peltier) 效应,热电转化器件可将热能与电能相互转换,具有无污染、寿命长、易维护、体积小、质量轻、工作中无噪声等优点,多用于空间、核电、废热利用、制冷等领域。碲化铋(Bi2Te3)是一种广泛应用于空间发电、废热利用、制冷等领域将热能与电能直接转换的热电功能材料。增强Bi2Te3的热电性能是扩大其应用的重要途径。研究发现,在热电材料中掺杂适当元素可以有效的提高材料的热电性能。例如,陈立东等人[2]采用区熔法制备了额外Te 掺杂的Bi2Te3 基热电材料(Bi0.15Sb0.85)Te3+x%(x=0~6),并研究了额外掺杂Te 元素对(Bi0.15Sb0.85)Te3性能的影响。段兴凯等人研究了Ga、Na 双元素共掺杂对Bi2Te3热电性能的影响[3]。近期,南方科技大学物理系讲席教授何佳清团队也在n型Bi2Te3材料中复合过量的Te单质,通过烧结使Te单质熔化流出,在基体中引入位错。此外,还复合掺杂了Sb元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高ZT优值。使用此材料制备的热电转换器件,实现了3.7W的大输出功率及6.6%的转换效率,相关成果以“Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials”为题在Energy & Environmental Science在线发表[4]。值得一提的是,以上两篇文章的研究工作中,分别使用了日本Advance Riko公司生产的塞贝克系数电阻测量系统(ZEM-3/ZEM-5)以及热电转换效率测量系统(PEM-2)对材料以及器件的性能进行了表征。*2014年12月,ULVAC-RIKO, Inc.正式更名为ADVANCE RIKO, Inc. 2018年7月,Quantum Design 中国子公司与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商,携手将日本Advance Riko先进的热电相关设备介绍到中国,助力我国热电材料领域不断取得新的突破。 参考文献:[1]. Q. Xu, S.Y. Qu, C. Ming, et al.,Conformal organic–inorganic semiconductor composites for flexible thermoelectrics, Energy & Environmental Science, DOI: 10.1039/c9ee03776d.[2]. 蒋俊, 李亚丽, 许高杰, 等. 额外掺杂量对P 型碲化铋基合金热电性能的影响[J]. 稀有金属材料与工程,2007,36( 增刊2):404-407.[3]. 段兴凯, 胡孔刚, 丁时锋, 等. 温差电材料 Bi0.5Sb1.5Te3双掺杂调控及热电性能研究[J]. 电源技术,2015,9(39) :1926-1928.[4]. B. Zhu, X.X. Liu, Q, Wang, Realizing record high performance in n-type Bi2Te3-based thermoelectric materials, DOI: 10.1039/d0ee01349h.
  • 曼陀罗叶中药材质量标准发布
    近日,云南省药品监督管理局发布中药材曼陀罗叶的质量标准,自2021年01月04日起实施。曼陀罗叶为茄科植物白曼陀罗或毛曼陀罗的叶。具有镇咳平喘,止痛拔脓之功效。常用于喘咳、痹痛、脚气,脱肛、痈疽疮疖。胃肠及胆道绞痛后,用开水冲服叶片粉末,也能起到很好的缓解作用。目前,多用于支气管炎、支气管哮喘、风湿性关节炎等疾病的治疗。曼陀罗叶即可内服也可外用,内服需谨遵医嘱注意用量,如过量摄入,会有中毒危险。具体中药材质量标准如下:云南省药品监督管理局中药材质量标准(云YNZYC-0032-2005-2021) 曼陀罗叶 MantuoluoyeDATURAE STRAMONII FOLIUM 【来源】本品为茄科植物曼陀罗Datura stramonium L.的干燥叶。7~8月采摘,干燥。【性状】本品呈灰绿色至深绿色,多皱缩、破碎。完整叶片展平后呈菱状卵形,长8~20cm,宽4~15cm,先端渐尖,基部楔形不对称,边缘有不规则重锯齿,齿端渐尖,两面均无毛。质脆、易碎。气微,味苦、涩。【鉴别】取本品粉末0.2g,加50%乙醇20ml,浸泡1小时,时时振摇,滤过,滤液挥去乙醇,加水10ml,用氨试液调pH值至8~9,用三氯甲烷振摇提取两次,每次15ml,合并三氯甲烷液,置水浴上蒸干,残渣加甲醇0.5ml使溶解,作为供试品溶液。另取曼陀罗叶对照药材0.2g,同法制成对照药材溶液。再取硫酸阿托品加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(《中国药典》四部附录)试验,吸取供试品溶液和对照药材溶液各4μl与对照品溶液2μl,分别点于同一用羧甲基纤维素钠为黏合剂的硅胶G薄层板上,以乙酸乙酯-甲醇-浓氨试液(10:2:1)为展开剂,展开,取出,晾干,喷以稀碘化铋钾试液。供试品色谱中,在与对照药材和对照品色谱相应的位置上,分别显相同颜色的斑点。【检查】 水分 照水分测定法(《中国药典》四部附录)测定,不得过10.0%。总灰分 不得过13.0%(《中国药典》四部附录)。酸不溶性灰分 不得过1.0%(《中国药典》四部附录)。莨菪碱限度 取本品粉末2g,精密称定,置具塞锥形瓶中,精密加50%乙醇100ml,称定重量,浸渍1小时,超声处理20分钟,放至室温,称重,用稀乙醇补足减失重量,摇匀,滤过,精密量取续滤液50ml,挥去乙醇,用氨试液调pH值至8~9,用三氯甲烷振摇提取3次(20ml、20ml、10ml),合并三氯甲烷液,蒸干,残渣加甲醇定容至1ml,作为供试品溶液。另取硫酸阿托品对照品,加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(《中国药典》四部附录)试验,精密吸取供试品溶液2μl、对照品溶液5μl,分别点于同一用羧甲基纤维素钠为黏合剂的硅胶G薄层板上,以乙酸乙酯-甲醇-浓氨试液(17:2:1)为展开剂,展开,取出,晾干,喷以稀碘化铋钾试液。供试品色谱中,在与对照品色谱相应的位置上,出现的斑点应小于对照品的斑点或不出现斑点。【浸出物】照醇溶性浸出物项下的热浸法(《中国药典》四部附录)测定,用乙醇作溶剂,不得少于13.0%。【含量测定】 照高效液相色谱法(《中国药典》四部附录)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(含0.035mol/L磷酸钠和0.0087mol/L的十二烷基硫酸钠,0.5%磷酸,0.15%三乙胺)(35:65)为流动相;检测波长为216nm;理论板数按氢溴酸东莨菪碱峰计算应不低于3000。对照品溶液的制备 取氢溴酸东莨菪碱和硫酸阿托品对照品适量,精密称定,加流动相制成每1ml含氢溴酸东莨菪碱0.08mg, 硫酸阿托品0.2mg的溶液,即得。供试品溶液的制备 取本品粉末(过二号筛)约1g,精密称定,置锥形瓶中,加入2mol/L盐酸溶液10ml,超声处理(功率300W,频率45kHz)30 分钟,滤过,残渣和滤器用2mol/L盐酸溶液25ml分五次洗涤,合并滤液和洗液,用浓氨试液调PH至9,用三氯甲烷振摇提取4次,每次15ml,合并三氯甲烷液,回收溶剂至干,残渣用流动相溶液溶解,转移至5ml容量瓶中,加流动相至刻度,摇匀,滤过,取续滤液,即得。测定法 分别精密吸取上述对照品溶液与供试品溶液各10μl,注入液相色谱仪,测定,按外标法计算含量。按干燥品计算,本品含硫酸阿托品((C17H23NO3)2.H2SO4)不得少于0.13%,含氢溴酸东莨菪碱(C17H21NO4• HBr)不得少于0.04% ,含硫酸阿托品与氢溴酸东莨菪碱之和应为0.17%~0.40%。【性味与归经】苦、辛,温;有毒。归肺、心经。【功能与主治】平喘止咳,散寒止痛。用于喘咳,脘腹疼痛,痛经,寒湿痹痛。【用法与用量】0.3~0.6g。外用适量。【注意】青光眼忌用。【贮藏】置干燥处。
  • 开工福利 | 畅想未来实验室
    愉快的假期已经结束,小梅在这里给大家拜个晚年。不知道有多少小伙伴这个春节就地过年无法与亲人团聚?疫情下的第二个春节假期有没有get什么新技能?是收到的红包多还是发出去的红包多呢......欢迎您在评论区与我们分享。新春伊始,打工人们已陆续回到工作岗位。虽说新年要有新气象,在经历了漫长的春节假期后,不少小伙伴可能多少都有一点“节后综合症”。尤其是实验猿大大们,做实验的时候有没有觉得手生了一些?再次使用天平时是不是这样的👇相信很多小伙伴开工第一件事就是大扫除和开机调试设备了,您有没有仔细地观察过现在的实验室是什么样子的? 是这样的 还是这样的?不管您的实验室现在是什么样子,这都不妨碍科技的进步对实验室建设的影响。想象一下,未来的实验室会是什么样的?可以这样 还可以这样 当然以上都是一些未来实验室设想的效果图,但是谁又能预测未来会是什么样子呢!关于未来实验室,不知道实验猿们有什么新奇的想法?用画笔描绘出来又是什么样子呢?小梅也非常好奇!用画笔描绘您想象中的未来实验室,扫描下方二维码即可参与。与我们一起分享您对未来实验室的设想,即可获得专属纪念奖一份,快来参加吧!活动分两个阶段1第一阶段:上传画作。扫描上方二维码,上传您的画作,提交即可获得参与奖。画作要求内容主题:未来实验室狂想,整体图或局部图均可画作名字:署名标题《xx的未来实验室狂想》,如《小梅的未来实验室狂想》画作类型:不限(电脑制作除外),油画、水墨、漫画或其他均可
  • 日立场发射扫描电镜摄影大赛初选作品公示
    自从9月末发布“日立场发射扫描电镜图片大赛”通知以来,来自各高校、院所使用日立电镜的老师踊跃参与,积极投稿。挑战电镜拍摄极限的样品,发挥电镜优势的样品,金属氧化物,无机非金属,高分子,生物材料等等形貌各异的样品令我们目不暇接。天美公司电镜应用专家及日立电镜部门历经长时间的层层挑选,激烈讨论,艰难取舍,最终选择20余幅优秀图片作为入围作品,现在此进行公示,以期与广大电镜使用爱好者共同交流、共同学习。并将在11月22日举办的“日立场发射扫描电镜最新技术研讨会”上由与会嘉宾全体投票,决选最终大奖。样品1名称:镍铁氧体简要说明:该样品为未磁化的磁性样品,八面体结晶形态。颗粒较小因此倍率做到80万。采用较大的工作距离以避免磁性材料被物镜漏磁磁化 。推荐理由: 磁性样品,难以拍摄,大工作距离高倍率很难得。 样品2名称:ZnO推荐理由:栉比如林。 样品3名称:硫化铋 推荐理由:图片景深好,形如花。 样品4名称:细胞组织附着在钛片纳米管上。推荐理由:体现了细胞组织在氧化钛纳米管上的附着形态。 样品5名称:生物胶束推荐理由:制样困难,拍摄倍率高。 样品6名称:分子筛推荐理由:减速模式下的高分辨。 样品7名称:集成电路静电击穿点,硅片上的氧化硅推荐理由:使用高加速电压穿过表面不导电钝化层,图片无荷电,且信噪比好,S-4300拍摄。 样品8名称:TiO2表面 推荐理由:初学SEM者拍摄,水平提高迅速。 样品9名称:ZnO 推荐理由:艺术感强,图片漂亮。 样品10名称:石墨稀推荐理由:难拍样品,大工作距离下的高分辨。 样品11名称:硫化钼推荐理由:景深好,视角选择恰当,体现球中球的结构。 样品12名称:聚苯乙烯球推荐理由:极易受电子束损伤的样品,利用极低加速电压拍摄。 样品13名称:多孔二氧化硅推荐理由:介孔材料表面细节清晰,减速模式下的高分辨。 样品14名称:分子筛/静电纺丝 推荐理由:较难做的样品,减速模式下的高分辨。 样品15名称:自组装的纳米金八面体推荐理由:图片细节清楚,艺术感强。 样品16名称:氧化钛多孔膜表面 推荐理由:不导电样品,未喷涂,高倍率。 样品17名称: SnO2 /ZnO推荐理由:构思巧妙,艺术性强。 样品18名称:分子筛/内核为Fe3O4的SiO2纳米球负载了Ce2O3纳米颗粒样品说明:内核为Fe3O4的SiO2纳米球(直径100nm左右)负载了Ce2O3纳米颗粒。 SiO2与Ce2O3导电性差,尽量分散粉体减少团聚、使用4号光镧减少入射电流,同时LA5混合少量BSE信号等方法,可有效减少荷电现象推荐理由:体现减速模式下高分辨优势;样品表面细节清楚,掺入BSE, 突显成分差异。 样品19名称:花粉推荐理由:大工作距离下的大景深,上下探头混合立体效果好。 样品20名称:金属删刻蚀推荐理由:低加速电压高角度BSE,体现微细结构的成分衬度。 再次感谢各位老师的支持与参与,感谢各位老师分享他们的做样技巧及拍摄成果! 声明:1、所有以上所有图片未经天美(中国)科学仪器有限公司批准不得转载。2、本活动的最终解释权归天美(中国)科学仪器有限公司所有。
  • 新品上市丨嘉仪通【便携式泽贝克系数测试仪PTM】,了解一下?
    近日,武汉嘉仪通科技有限公司正式对外推出最新研发的【便携式泽贝克系数测试仪PTM】。该测试仪小巧轻便,可快速测量薄膜、块体等不同形态热电材料的Seebeck系数,能够应用于热电材料初选、均匀性测试、高通量实验、热电教学体验等与热电材料相关的各个环节,为热电材料科研及产业化提供了更专业、便携的测试新选择!便携式泽贝克系数测试仪该款设备是在中国热电材料领域老前辈的建议下,为实现我国热电材料产业化,打造“精品工程”,嘉仪通科技专项研发的便携式热电参数测试产品!一、核心特点1.材料初选可快速筛选薄膜、块体等热电材料样品,提高初选环节的效率,避免无用实验,极大节约实验成本;2.均匀性测试助力高通量实验,快速检测薄膜、块体等热电材料的均匀性,准确找到材料最优配比;3.教学体验完美适用于本科阶段热电材料相关原理教学、实验讲解等教学体验环节;4.企业精品工程打造有助于优化热电材料工艺设计,进一步提升热电产品质量和稳定性,助力企业打造具有优良品质的精品工程。 二、基本特点1.快速测样测试时间低至10s/次,测试结果自动呈现,极大提高团队的实验效率。2.准确测试采用稳定可靠的方法测量,操作简单,性能稳定,数据准确(中国计量院拿NIST标样进行对比测试,测试结果误差在7%以内)3.样品要求低直接测试热电材料的Seebeck系数,对样品形状无特殊要求。4.长时间续航大容量电池,可供全天(大于10h)持续不间断使用。5.小巧安全设备小巧轻便,易于携带,安全性能高三、技术参数型号PTM-2(企业版)PTM-3温差范围≤40K加热功率6 W泽贝克系数量程20~700 μV/K2~1000 μV/K泽贝克系数分辨率0.1μV/K测量误差±7%±7%充电电压220V/5V2A电池容量8000mAh续航时间12 h样品电阻≤1K Ω≤10K Ω样品尺寸薄膜:长≥10,宽≥5,单位mm块体:长≥1.5,宽≥1.5,高≥1.5,单位mm纤维样品:长≥20,直径≥0.2,单位mm四、测试实例碲化铋棒材截面均匀性测量结果 鹏南电子科技提供样品SEEBECK系数测试结果单位名称样品名称测试一(μV/K)测试二(μV/K)测试三(μV/K)平均值(μV/K)标准样品镍带-19.4-19.6-19.5-19.5清华大学热电薄膜16.516.716.616.7四川大学改性导电聚合物11.111.211.311.2太原理工大学硅化镁-102.9-103.1-103.0-103.0合肥工业大学硅化镁168.0168.0168.1168.0【便携式泽贝克系数测试仪PTM】一经推出,就受到了广大顾客的青睐。目前,已经有中国科学院化学研究所、西安耐司科学仪器有限公司、广东雷子克热电工程技术有限公司等三家科研单位和企业已经或正在采购该设备。此外,还有十余家高校、科研院所和企事业单位也非常有意向购买这款便携式设备。嘉仪通的此款新品,在第十次中国热电材料及应用学术会议(2018年5月6-9号,中国杭州)上首次公开展出,吸引了众多热电研究相关老师的注目。部分老师直接将样品带到大会现场进行测试,测试结果准确有效,得到了相关老师的一致好评。大会现场测样与此同时,嘉仪通科技一直非常注重产品的技术研发与换代升级。虽然此款【便携式泽贝克系数测试仪PTM】刚刚推出,但其升级版产品也正在紧锣密鼓的研发当中,将进一步提升产品各方面测试性能,为从事热电材料领域研究的广大客户提供更方便、更精准测试的好产品。
  • 6秒测样,全新一代便携式泽贝克系数测试仪PTM焕新呈现!
    嘉仪通有一款小设备叫【便携式泽贝克系数测试仪PTM】是今年5月份推出,用于测试材料Seebeck系数的新品目前已上市近半年【上市即获关注】嘉仪通的便携式泽贝克系数测试仪PTM首次亮相于第十次中国热电材料及应用学术会议(2018年5月6-9号,中国杭州),吸引了会上众多热电研究相关老师的注目,纷纷上前咨询和测样。【受到广泛关注】上市不到两个月,此款小设备就受到了相关高校、科研院所和热电材料企业等的广泛关注——围观凑热闹的、邮件电话咨询的、申请代理的、免费试用的、下单购买的....络绎不绝!同时也有热心的老师针对问题提出了许多宝贵意见。客户反馈汇总图【不断打磨改进】一款普通的便携式设备,却被市场广泛关注!这让嘉仪通的工程师们既兴奋也倍感压力。为了做出让客户满意的好产品,我们下定决心做好产品的改进升级——收集客户意见、制定可行改进方案、加班加点整改、修改后的测试与验证、客户试用以及收集反馈意见、再一次改进......不断循环往复。改进功能列表(部分)【快速测试】全新升级后的PTM-3,实测开机时间低至4.8 S/次,待完全热机后,实测镍带标准样品的时间为6 S/次(不同材料样品测试时间可能略有不同),能够极大提高团队的实验效率。样品实测图【操作方便】好不好上手操作是测样人员最关心的问题之一,PTM操作简便,用冷热两支探笔直接接触不同形态热电材料样品,系统就可自动运算,并快速呈现测试结果,易学易上手,老师再也不用担心你不会操作仪器了。【样品要求低】无论是块状、纤维状还是薄膜状热电材料样品,都可直接测试其Seebeck系数,对样品形状、结构无特殊限制性要求。不同形态样品测试图片探针直径实测图产品应用【材料初选】PTM测试速度如此之快,可完美应用于薄膜、块体等热电材料样品的筛选工作,在各类样品制成后,快速筛选优质样品,提高初选环节的效率,避免无用实验,极大节约实验成本。【均匀性测试】便携式泽贝克系数测试仪PTM不仅可以快速筛选不同种类热电材料,还可快速检测一种或多种薄膜、块体等热电材料的均匀性,对材料的内外部均匀情况作初步定量评价。【质量检测】在产业领域,PTM可完美应用于热电材料的质量抽查与检测环节,能够直观、快速的判断相关热电材料是否达到相应质量标准,提高产业效率。【本科教学】如此小巧方便的Seebeck系数测试仪,如果作为本科阶段教学设备,用于热电材料相关原理教学、实验讲解等教学环节,将深受师生们的喜爱。产品示意图【不同版本,不同特色】全新一代便携式泽贝克系数测试仪PTM分为两个版本:PTM-3,定位于科研级热电材料市场,具备高配置,在测试误差、量程范围、样品电阻范围等重要方面能够满足热电材料科研要求;PTM-2,定位于热电相关企业与教学仪器市场,性价比更高,不仅能够满足热电材料企业质量检测、生产抽查等方面的需求,而且是教学仪器的不二之选,能够完美适用于本科阶段各类热电材料相关原理教学、实验讲解等教学环节。【合作伙伴】目前,在用客户有:清华大学、北京航空航天大学、中国科学院化学研究所、武汉大学、广东省稀有金属研究所、广东雷子克、河北大学、内蒙古工业大学等十余家热电材料重点科研高校、科研院所以及热电材料企业。【技术参数】【应用实例】碲化铋棒材截面均匀性测量结果鹏南电子科技提供样品【Seebeck系数测试结果】
  • 直播预告!第四届材料表征与分析检测技术网络会议之热性能分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/ 热性能主题专场会议日程:报告时间报告题目报告人专场四:热性能(12月15日下午)14:00--14:30高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周14:30--14:50锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖14:50--15:10高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚直播抽奖:Waters-TA定制三合一数据充电线10个15:10--15:40电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得15:40--16:10反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪16:10--16:50有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮直播抽奖:《2021年度科学仪器行业发展报告》5本嘉宾介绍:中国科学院物理研究所研究员 赵怀周中科院物理所研究员,课题组长。长期从事热电材料、热电输运新机制、热电器件与应用系统研究。在新型高性能近室温热电材料、热电器件和热电应用系统研究方面积累了丰富的经验,取得重要创新成果,在基于镁基新材料的下一代热电制冷模块研究方面形成了国际特色。先后在Joule、Nat. Comm、Sci. Adv 、JACS、ACS Nano、Nano Energy、和Adv. Funct. Mater等著名刊物发表第一或者通讯论文70余篇,申请及授权国际国内专利10余项,文章引用次数2000余次。主持及参与国家自然科学联合重点及面上基金、国家重点研发计划等重要课题10余项。在国内外大型学术会议担任分会场主持人和特邀报告人二十余次,担任第12届中国热电材料大会会议主席。第三届中国发明协会发明创业成果奖二等奖(排序第一位)。【摘要】 报告聚焦热电材料和技术在全固态制冷方面的原理、优势和广泛应用,介绍了物理所热电研究团队近年来在热电新材料、新器件与新型应用系统方面的创新性工作。主要包括: (1)制备出全尺度可服役的基于Mg3(Sb,Bi)2新材料的热电制冷器件,基于新材料在性能投入比方面的显著优势,其有望颠覆一直以来行业上基于碲化铋的传统热电半导体制冷材料体系。(2)助力解决热电领域卡脖子材料与设备问题,在碲化铋缩颈热挤压制造相关设备和工艺方面获得进展,对实现我国热电制冷微器件的国产化有帮助作用。申请及授权发明专利和实用新型专利多项。该技术近期已在广西见炬科技有限公司、河北东方电子有限公司等热电企业获得推广。 (3) 提出地热-热电协同空调系统的思路并制造出原理样机。该系统可以替代现有商业空调的功能,同时具备分立式管理、无震动噪音和零碳排放的优势,有望实现规模应用。沃特世科技-TA仪器部门高级热分析应用专家 林超颖浙江大学高分子材料硕士,现任美国TA仪器高级热分析应用专家。长期从事各类材料的热分析、力学性能表征及失效分析等工作。【摘要】 锂离子电池在使用过程中,一旦正极材料、负极材料、电解液等的分解,或隔膜熔断、破裂导致正负极材料直接接触,或由于热管理设计缺陷导致锂离子电池出现安全性能的问题,会严重危害生命和财产安全。TA仪器从锂离子电池的热性能和力学性能出发,全方位剖析锂离子电池的安全性能。沃特世科技-TA仪器部门服务工程师 陈刚2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有一定了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。【摘要】 磁悬浮天平的发明是重量法应用领域里具有革命意义的里程碑。大大拓宽了重量法的应用范围,并附带了独特的性能优势。磁悬浮天平也为储氢材料研究带来了积极的帮助。中国科学院宁波材料技术与工程研究所研究员 林正得林正得,博士,研究员,博士生导师。入选2014年中国科学院"百人计划"、2013年浙江省"千人计划"等人才项目。2008年博士毕业于台湾清华大学材料科系。2012–2014年于美国麻省理工学院(MIT)电子学实验室和机械系担任博士后,2014年6月加入中国科学院宁波材料所。自加入材料所以来,已发表了ACS Nano、Advanced Science、Biosensors & Bioelectronics等SCI论文149篇,全部文章的引用数高于10,000次。现担任Biosensors & Bioelectronics期刊副主编。团队目前围绕着石墨烯应用开展研究课题,包含:导热应用、热界面材料、以及生医传感器件。【摘要】 近年来,基于氮化镓等第三代半导体的高频率、大功率芯片得到了国家和产业的重点关注与广泛应用;为了提升内核效能,新一代芯片架构正朝向微缩化和3D互联方向发展,致使芯片的功率密度大幅提高,发热量随之迅猛增加。芯片的“热失效”成为了制约5G、航空航天等精密装备内功率器件发展的主要瓶颈之一。要解决目前电子封装的散热难题,需要对既有热管理材料进行升级迭代,并有效连接与统合这些部件,形成从芯片至散热器的最优传热路径。本团队针对电子封装中“芯片–衬底–均热板–热沉”热输运串联系统的关键零部件进行了攻关开发,克服了复合材料中二维材料填料的“定制调控排列取向”与“强化异质传热界面”两个共性难题,研发出“超低热阻碳基热界面材料”、“轻质高导热碳/铝散热器”、“柔性绝缘氮化硼导热膜”等系列新型热管理材料,从而提出面向新一代芯片架构的综合解决方案,实现拥有自主知识产权的创新技术与产品。北京航天航空大学教授 王聪北京航空航天大学集成电路科学与工程学院教授,博士生导师。在Adv. Mater.,Phys. Rev. 系列, Chem. Mater. Appl. Phys. Lett.,等刊物上发表论文超过240篇, SCI收录200篇以上,SCI他引超过3500次,H=33,2020-2021两年连续被国际机构爱思唯尔(Elsevier)评为“中国被高引学者”;授权国家发明专利14项。2012年获得教育部自然科学二等奖。中国物理学会理事,中国晶体学会理事。长期从事固体反常热膨胀行为、自旋电子学反铁磁材料及器件、光学薄膜领域的研究工作。【摘要】 反钙钛矿化合物Mn3XN系列材料由于“晶格-自旋-电荷”的强关联性,发现诸多具有应用价值的物理特性,如零/负膨胀、压磁、磁热、近零电阻温度系数、反常霍尔效应等。在NMn6八面体中, Mn-Mn直接交换作用和Mn-X-Mn间接磁交换作用共存,形成复杂的磁结构, 且其磁结构对成分、温度、压力、磁场等的变化非常敏感,因此在多场耦合下产生丰富的物理特性。我们利用变温X射线衍射,中子衍射技术,结合热膨胀仪、差热分析(DSC)、磁、电测量等解析了这类化合物随温度、压力变化的晶体结构和磁结构,热膨胀系数及其关联的磁、电输运行为等。本报告将重点探讨Mn3XN(X: Ga, Ni, Ag, Zn)系列化合物在温度和压力场下的磁结构演变规律,以及由其诱导的物性变化,如负(零)热膨胀、反常电输运、压磁、压热效应等。中国科学院深圳先进技术研究院研究员 曾小亮中国科学院深圳先进技术研究院研究员,工学博士,中国科学院青促会会员、深圳市“孔雀计划”海外高层次人才(C类),入选2022年“全球前2%顶尖科学家榜单”,Google学术总引用次数7276,h指数47,荣获国际知名学术期刊Composites Part A,2020年“Top 5优秀审稿人”、国际学术期刊《Nanomaterials》(JCR 一区,影响因子:5.076)和《Frontiers in Materials》(JCR 二区,影响因子:3.515)的客座主编。以第一作者或通讯作者在Advanced Functional Materials, ACS Nano, Chemistry of Materials, Small等国际期刊上发表SCI论文50多篇,申请专利30多项,合著书籍《聚合物基导热复合材料》。2010年以来,主持或参与国家自然科学基金项目、科技部重点研发专项、科技部重大科技计划“02专项”,广东省创新科研团队项目等项目。【摘要】 在现代电子元器件中,有相当一部分功率转化为热的形式,耗散生热严重威胁电子设备的运行可靠性。更令人担忧的是,随着后摩尔时代的到来,电子元器件的封装技术由传统的二维封装向2.5维或更高级的三维封装方向发展。三维封装技术虽然提高了电子元器件运行速度、实现了电子设备的小型化和多功能化,但是也导致器件所产生的热量进一步的集中,采用常规的热传导技术已经无法实现热量有效传导。“热管理”的问题已经成为阻碍现代电子元器件发展的首要问题之一。有机硅是制备热界面材料最为常用的基础树脂,本报告将围绕如下三个方面阐述有机硅在热界面材料应用研究现状: 1. 芯片热量来源及趋势 2. 有机硅热界面材料研究现状 3. 热界面材料用有机硅未来发展趋势会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 加拿大对儿童产品涂料铅含量有新规定
    近日,加拿大通过一项铅含量议案,该议案明确两点要求:一是要求某些表面涂层材料的总铅含量限值由600mg/kg降为90mg/kg 二是要求降低用于儿童家具和其他用品、玩具、设备及其他儿童学习用产品、铅笔和画笔的表面涂层材料的总铅含量限值。加拿大当局表示,表面涂层材料90mg/kg的铅含量限值可充分防范铅暴露危害,并且可以确保加拿大儿童得到与美国儿童相同水平的保护。   玩具等儿童用品是宁波地区对加拿大出口的大宗商品,已成为外贸新的增长点。根据议案要求,影响的产品以玩具、家具、文具、儿童饰品等敏感产品为主。统计数据显示,去年宁波约有货值854万美元的上述种类儿童产品出口至加拿大。   检验检疫部门提醒相关企业须做好如下工作:一是积极跟进,必要时可寻求当地检验检疫部门的帮助。二是提前按新标准进行自查,弃用对人体有害的材料。
  • 为产业发展点亮“灯塔”——第四届低维材料应用与标准研讨会在京盛大开幕!
    金秋送爽,丹桂飘香。2021年10月9日,2021年第四届低维材料应用与标准研讨会(简称:LDMAS2021)在北京西郊宾馆盛大开幕。会议由全国纳米技术标准化委员会低维纳米结构与性能工作组(以下简称:工作组)与中国科学院半导体研究所主办,中国科学院半导体研究所与中国科学院大学材料科学与广电技术学院承办,北京化工大学联合承办。来自低维材料与器件相关领域的400余名专家学者与企业代表齐聚一堂,聚焦纳米能源与催化材料等低维材料以及低维半导体电子/光电子器件等领域的研究、应用及标准化,深入交流最新研究成果、探讨产业发展方向,为我国低维材料应用研发、产业化发展和标准制定提供智力支撑和技术支持,促进我国科技创新成果转化、提升产品质量和引领新兴产业快速。仪器信息网作为协办单位将全程参与并报道此次盛会。大会现场会议由中国科学院半导体研究所所长谭平恒主持。全国纳米技术标准化技术委员会副主任、国际标准化组织纳米技术委员会材料工作组召集人、国家纳米科学中心研究员葛广路,中国科学院半导体研究所副所长、纪委副书记张韵,工作组主任、南京大学教授王欣然,国际标准化组织纳米技术委员会ISO/TC229主席Denis Koltsov相继致辞。谭平恒主持开幕式葛广路致辞张韵致辞王欣然致辞开幕式后进入大会报告环节,由国家纳米科学中心副主任唐智勇和南京大学微电子学院院长施毅先后主持。南京工业大学先进材料研究院教授 王建浦报告题目:《面向显示技术的钙钛矿发光二极管》信息显示丰富着现代人类生活的方方面面。信息社会的快速发展,对未来显示技术提出了高效率、高亮度、柔性可穿戴等新的要求。传统无机发光二极管难以获得大面积柔性器件,而有机发光二极管因其激子特性难以在大电流下实现高亮度和高效率。金属卤化物钙钛矿材料兼具无机半导体高导电性和有机材料可溶液法制备的优点,且具有高荧光量子效率、高色纯度、带隙简单易调节等特点。近年来,钙钛矿发光二极管效率提升十分迅速,在下一代显示领域极具竞争力。报告系统介绍了未来显示技术面临的挑战、钙钛矿发光二极管的发明和兴起,以及钙钛矿薄膜与界面的优化、多量子阱钙钛矿发光二极管的发现、光场的调控等。南京大学微电子学院院长 施毅报告题目:《狄拉克量子材料、异质结与光电特性》狄拉克量子材料作为一类新型电子材料,其低能元激发谱由相对论狄拉克方程描述,具有无能隙、电子有效质量为零的线性色散关系,颠覆了传统半导体的能带结构,在理论上具有突破传统光电材料带隙限制的潜力。砷化镉(Cd3As2)是一种性能优越的三维狄拉克量子材料,具有拓扑保护的三维狄拉克体态等新颖物性。报告主要介绍了砷化镉异质结及其光电特性。施毅及研究团队基于超高真空分子束外延技术,在获得高质量的晶圆级砷化镉薄膜基础上,进一步制备了砷化镉薄膜P-N 同质结(Zn-doped Cd3As2/Cd3As2)、砷化镉与碲化铋P-N 异质结(Zn-doped Cd3As2/Bi2Te3)、以及在 GaSb、InAs、InSb 等衬底上外延生长砷化镉薄膜异质结,并通过转移技术方法制备了砷化镉与二维材料、有机半导体等异质结。针对不同的异质结构,研究了其对光生载流子过程的调控特征,为高速、高响应宽频段光电探测器件研发提供了材料基础。国家纳米科学中心副主任 唐智勇报告题目:《自组装超粒子在电催化中的应用》纳米超粒子是指两个以上的纳米粒子,通过非共价相互作用自限制组装而形成的超结构。纳米超粒子具有形貌、尺寸和结构可控的特征,并表现出独特的光电磁和催化性质。唐智勇主任结合过去几年课题组的研究工作,系统介绍了如何通过选择功能基元的种类、调控纳米基元在超粒子中的空间分布、以及纳米基元间的电子偶合,实现高效的电催化水分解反应。复旦大学微电子学院副院长 周鹏报告题目:《The Road to Compatible with and Beyond Silicon Circuits for 2D Materials》随着摩尔定律的终结,硅集成电路(ICs)的发展也逐渐放缓。虽然减小晶体管的尺寸可提高集成电路的性能,然而,随着摩尔定律接近物理极限,硅集成电路的高性能增长变得不可持续,面临能源、区域效率和存储困境的挑战。二维(2D)材料的超薄层、多样的能带结构、独特的电子性能和硅兼容工艺,使其有可能持续推动集成电路的先进性能。二维材料的融合,可以创造出超越硅芯片的一体化感知、内存和计算技术,提高系统效率,消除计算能力的瓶颈。报告综述了二维集成电路的研究进展,以及二维集成电路在材料生长、功能器件和集成工艺等方面所面临的技术障碍。LDMAS2021会期两天,9日下午,《低维材料的制备和微纳加工》、《低维半导体电子/光电子器件》、《低维材料测试与表征》、《纳米能源与催化材料》、《低维材料应用与标准化》5个分论坛同步召开,报告嘉宾围绕前沿热点,从“产、学、研、用”多维视角展开分享与研讨,共同为低维材料产业发展点亮灯塔。参会代表合影
  • 材料中缺陷/氧空位的常用表征方法
    一、X射线光电子能谱(XPS)缺陷会导致材料结构中配位数低的原子,为氧物种化学吸附提供配位的不饱和位点。X射线光电子能谱(XPS)是最广泛使用的表面分析方法之一,可以提供材料表面的化学状态和有价值的定量信息。应用于大多数的固体材料。它可以从表面获得约10 nm深度的信息。材料中的缺陷会改变键合能量,这可以从移位的峰或新出现的峰中观察到。因此,XPS可以作为一种有效的方法来检测材料中的氧空位与缺陷位点。经查阅文献可知,通过低频超声波制备含有氧空位的BiOI,并发现富含缺陷的BiOI(R-BiOI)纳米片表现出优异的光催化性能。富有缺陷的BiOI的O 1s XPS光谱证实了氧空位的存在,如图5所示。529.5 eV的峰可以说是晶格氧,而531.5 eV的峰则是由氧空位的化学吸附产生的。这也表明,氧空位被吸附的氧物种所稳定,这是富缺陷氧化物的一个典型特征。这种现象也可以在其他缺陷金属氧化物(O 1s XPS)中看到,如W18O49、CeO2-X、TiO2-X和缺陷的ZnO。图1. 高分辨率的O 1s XPS光谱二、拉曼光谱分析拉曼光谱是研究分子结构的一种分析工具,可以得到分子振动和旋转的信息。不同的化学键有不同的振动模式,决定了它们之间能量水平的变化。分子振动水平的变化引起了拉曼位移。因此,拉曼位移与晶格振动模式有一定的相关性,它可以被用来研究材料的结构特征。材料中的缺陷,特别是金属氧化物会影响振动模式,导致拉曼位移或出现新的峰值。研究表明,拉曼光谱揭示了在掺杂了Eu的 CeO2纳米片的结构中存在氧空位。与CeO2纳米片相比,掺杂了Eu的CeO2纳米片在600 cm -1处出现了一个峰值,这表明由于Ce 3p和Eu 3p的存在,产生了氧空位。此外,也有研究表明通过掺入IO3,设计了有缺陷的氧碘化铋。通过拉曼光谱显示在98cm -1处出现了一个新的峰值,它与Bi振动模式有关,这表明由于氧空位的存在,Bi的价态发生了变化。图2. CeO2和有缺陷的CeO2纳米片的拉曼光谱。三、扫描透射电子显微镜(STEM)STEM已被用于表征纳米材料的结构,它直接对原子结构进行成像。通过STEM可以观察到晶体结构中的原子序数和每个原子的排列方式,使其在科学研究领域的广泛应用上发挥了重要作用,如表面科学、材料科学、生命科学。然而,这种技术只能观察材料表面的局部区域。对于研究材料的整体缺陷来说,它是非常有限的,并且本身对样品要求较高。2000年,研究人员通过扫描隧道显微镜发现,表面氧空位可以作为反应位点,在这里可以吸收一氧化碳并转化为二氧化碳。后来,Samuel S. Mao等人用STEM研究了RuO2的原子尺度结构,发现了材料表面的缺陷(图7)。图3. 被CO覆盖的RuO2(110)表面的STM图像四、密度函数理论(DFT)计算密度函数理论(DFT)是研究材料电子结构的计算方法。它是通过量子力学模型来研究原子、分子和电子密度。因此,DFT是用于物理学、计算化学和材料的通用方法。Zhao等人利用DFT计算揭示了Vo-MnO2的结构模型,与非缺陷MnO2相比,Vo-MnO2的总态密度和部分态密度都接近费米水平,表明材料中存在氧空位。计算结果与实验结果一致,说明DFT可以用来辅助识别氧空位的存在。尽管DFT计算可以提出材料的电子结构,但它只能作为一种辅助手段。并且,结合实验和计算结果可以提供更有效的数据和证据。但是,使用DFT来描述以下情况仍有困难:分子间的相互作用、过渡状态、激发态等。过渡状态,电荷转移的激发,以及具有铁磁性的材料。五、其他方法由于OV的特殊性质,许多其他方法也可以用来进一步确定OV的存在,如热重分析(TG)。这种方法提供了关于物理现象的信息,包括吸收和分解。氧空位可以被氧气重新填充,特别是在高温下,这表明样品的质量会发生变化。这种细微的质量变化可以在TG曲线中显示出来。例如,大块的Bi2MoO6样品表现出急剧的重量损失,而超薄的Bi2MoO6纳米片在氧气环境下随着温度的升高而缓慢地失去重量。这是由于超薄Bi2MoO6纳米片中的氧空位与氧气反应,缓解了其下降的程度。此外,温度程序还原(TPR)也被用来描述固体材料的表面特性。与无缺陷的材料相比,有缺陷的材料明显增强了对表面晶格氧物种的吸附。参考文献:[1] Ye K , Li K , Lu Y , et al. An overview of advanced methods for the characterization of oxygen vacancies in materials[J]. TrAC Trends in Analytical Chemistry, 2019, 116.
  • QUANTUM DESIGN CHINA独家代理日本ADVANCE RIKO公司热电材料测试设备ZEM和PEM系列产品
    引言热电转换物理效应、热电材料及其应用技术的研究历史悠长。近20 年来,热电材料科学得到快速发展,同时,器件设计方法与集成技术也不断完善。在此背景下,quantum design公司ppms和mpms用户——中科院上海硅酸盐所陈立东研究员等撰写了《热电材料与器件》一书,不仅梳理了热电材料领域的基础知识,而且还涵盖了作者本人在内的研究者们多年来在热电材料设计理论与制备科学、器件设计与集成技术等方面取得的诸多原创性重大成果,形成了有关热电材料与器件较为全面、丰富的知识体系。该书的出版为从事热电材料研究与器件研发的科研人员和工程技术人员以及在相关专业学习的高等院校师生提供了很好的参考价值。正文日本advance riko公司50多年来专业从事“热电材料”相关技术和设备的研究开发,并一直走在相关领域的前端。2018年初,quantum design china代理了日本advance riko公司的新先进热电材料测试设备,将小型热电转换效率测量系统mini-pem、泽贝克系数/电阻测量系统zem、热电转换效率测量系统pem及大气环境下热电材料性能评估系统f-pem引进中国。经过一段时间的愉快合作后,2018年7月,quantum design china与日本advance riko公司正式达成协议,作为其热电材料测试设备在中国的代理商继续合作,并将日本advance riko公司的相关设备在中国大陆、香港和澳门进行进一步推广。同时,quantum design china将在日本advance riko公司的协助下,在北京建立热电材料测试设备演示中心和技术服务中心,更好地为中国热电材料的发展提供产品展示、技术支持和售后服务。1. 泽贝克系数/电阻测量系统zem热电转换技术利用热电材料的泽贝克(seebeck)效应和佩尔捷(peltier)效应实现热能与电能直接相互转化,热电技术的能量转换效率主要取决于材料的本征物理特性,通常可由热电优值来衡量,而热电优值取决于材料的泽贝克系数、电导率、热导率和温度。图1 泽贝克系数/电阻测量系统zem图2 康铜泽贝克系数测试结果泽贝克系数/电阻测量系统zem可实现对金属或半导体材料的热电性能的评估,材料的泽贝克系数和电阻都可以用zem直接测量。该设备采用温度控制的红外金面加热炉和控制温差的微型加热器,因此能实现实验过程中的无污染控温。同时,设备全自动电脑控制,允许自动测量消除背底电动势,拥有欧姆接触自动检测功能。除zem标准配置外,还可根据用户不同需求定制高阻型,增加薄膜测量选件、低温选件等。2. 小型热电转换效率测量系统mini-pem小型热电转换效率测量系统mini-pem可以通过自动测量热流量和发电量来获得热电转换效率,电量是通过四探针法获得;热流是通过热流计获得。mini-pem体积更为小巧,操作更为简单,集成化设计可实现对小型材料块体2-10mm2 x 1-20mmh测量。可广泛应用于:发电量和热流量测量、热电材料模块的热电转换效率计算、单一热电材料发电量及热流测量、热电材料性能和寿命评估等各个方向。图3 小型热电转换效率测量系统mini-pem图4 碲化铋样品热电转换效率测试结果3. 热电转换效率测量系统pem热电转换效率是指热能和电能之间相互转换的程度,通常采用提高热电组件两端的有效温度梯度来提高热电组件的转换效率。热电转换效率测量系统pem通过对热电材料模块提供大温差500℃,可以得到一维热流量q和大发电功率p,从而有效测定热电转换效率η。图5 热电转换效率测量系统pem热电转换效率测量系统pem通过高精度的红外线金面反射炉可完成快速性能评估和耐力测试,可以实现热穿透测量,加热过程中,通过气缸机制可以保持接触表面的热阻稳定。同时在测试过程中,温度稳定性的判断、自动调节热电发电模块的负载以及自动控制温度测量,这些功能仅通过设置软件即可自动完成,操作十分便捷。4. 大气环境下热电材料性能评估系统f-pem该系统可以在大气环境下,实现对负荷温差的热电材料产生的发电量和热流量进行测量,热电转换效率可以通过大发电量和热流量计算出。同时,该系统还可以长时间运行热循环测试,运用于热电新材料的开发,以及商用组件在负载和温度下的耐久性测试。图6 大气环境下热电材料性能评估系统f-pem热电材料泽贝克效应和佩尔捷效应发现距今已有100余年的历史,多年来科学家已对其进行了深入而富有成效的研究,并为如何实现热电材料更大的热电优值不断探索。随着热电领域研究的不断深入,希望zem、pem、mini-pem、f-pem的引入,能够助力更多优异热电材料性能的评估与研究,坚信我国热电材料领域将会进一步发展提高!相关产品及链接:1、 泽贝克系数/电阻测量系统zem:http://www.instrument.com.cn/netshow/c283284.htm2、 热电转换效率测量系统pem:http://www.instrument.com.cn/netshow/c283291.htm3、 小型热电转换效率测量系统mini-pem:http://www.instrument.com.cn/netshow/c283294.htm
  • 逛展会 加微信 赢大奖——奥豪斯与您携手共聚China Lab
    具有重要影响力的2015广州国际分析测试及实验室设备展览会暨技术研讨会将于3月12日-14日在保利世贸博览馆隆重召开,百年品牌美国奥豪斯将重装出击,将最高端产品Explorer准微量天平等新产品重磅呈现,诚邀各位合作伙伴、广大用户莅临奥豪斯展台参观指导,并有机会赢取大奖。奥豪斯展位号:1F09展会举办时间:2015年3月12日-14日展会举办地点:广州保利世贸博览馆(广州市海珠区新港东路1000号)活动参与规则:展会现场扫描“奥豪斯官方微信”二维码并添加至通讯录。 奖品设置:参与奖:数量不限,展会现场关注奥豪斯官方微信即可获得奥豪斯定制拉画笔。幸运奖:6名,3月12日和3月13日各3名,奖品为乐扣保温杯。 礼品: 幸运用户名单公布及奖品领取: 中奖名单公布:中奖用户将在奥豪斯官方微信公布,3月13日公布3月12日的中奖名单,3月14日公布3月13日的中奖名单。奖品领取方式:1、 展会现场待我们核实您的微信号后即可领取,过期视为自动放弃奖品。2、 通过微信把收件人、收件地址、联系电话等信息发给小编,信息核实后尽快把礼品邮寄给您。 展会现场 奖品领取时间:3月13日9:00-16:003月14日9:00-12:00Explorer准微量天平: 奥豪斯展台设计效果图: 展览交通地图: 欢迎关注@奥豪斯中国官方微信!
  • 加拿大提高儿童用品表面涂层材料含铅限量标准
    近日,加拿大通过一项铅含量议案,该议案明确两点要求:一是要求某些表面涂层材料的总铅含量限值由600mg/kg降为90mg/kg 二是要求降低用于儿童家具和其它用品、玩具、设备及其它儿童学习用产品、铅笔和画笔的表面涂层材料的总铅含量限值。加拿大当局表示,表面涂层材料90mg/kg的铅含量限值可充分防范铅暴露危害,并且可以确保加拿大儿童得到与美国儿童相同水平的保护。   玩具等儿童用品是宁波地区对加拿大出口的大宗商品,已成为外贸新的增长点。根据议案要求,影响的产品主要以玩具、家具、文具、儿童饰品等敏感产品为主。统计数据显示,2009年宁波约有854万美元货值的上述儿童用品出口至加拿大。   儿童用品安全问题正不断成为各国技术法规和标准发展的焦点,而铅含量势必成为该类产品进口的一道高门槛。近年来,因涂料铅含量超标而致儿童产品被召回的事件屡有发生,引发媒体关注。需要指出的是,继美国执行新的儿童用品含铅限量标准后,加拿大推出和美国规定一致的标准,表明各国法规的发展步伐正趋于一致。   检验检疫专家告诫,提升铅含量标准后,无疑将增加检测力度和出口成本,出口难度大大增加,相关企业须做好如下工作:一是着眼于加强对加拿大即将实施的铅含量议案的研究力度,仔细分析法规中具体标准,积极跟进法律法规要求,必要时可寻求当地检验检疫部门的帮助,以增强应对该新规的能力 二是提前按铅含量标准进行生产自查,在选材、产品设计、产品检验等方面加强控制风险的能力,提升出口风险的事前防范能力,竭力避免出口损失。
  • 热电领域,多篇Science:热电转换测量系统持续助力客户获取关键数据!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。 日本Advance Riko公司新推出的小型热电转换测量系统Mini-PEM(图1)是一款既可以测量单腿器件,也可以测量多对器件的商用热电转换效率测量系统。该系统热端温度可高达500℃,可以测量器件在不同温差条件下的发电量、热流量及最大转换效率。图1、小型热电转换效率测量系统Mini-PEM 赵立东教授课题组Science碲化铋基热电材料(BiTe)在室温附近具有优异的热电性能,被广泛应用于低温区的制冷及发电,是目前极具前瞻性的热电材料体系,但Te元素的稀缺性(地壳内含量:0.005ppm)使其广泛应用受到限制,因此寻找新的材料体系对于热电材料的广泛应用非常重要。来自北京航空航天大学的赵立东教授课题组对于SnSe体系进行了深入的研究,在2021年的工作中【Science 373 (2021) 556-561】通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能,并制备了基于SnSe晶体材料的热电器件,测试了其温差发电性能(最大发电量及功率),还实现了大温差的电子制冷。这一研究表明了SnSe基晶体材料作为温差发电和电子制冷材料的巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),且SnSe基热电材料具有成本低、重量轻且储量更加丰富的优势,具备巨大的应用潜力[1]。2023年,该课题组通过在SnSe中引入Cu填充Sn空位,有效地提高了载流子迁移率,基于获得的高性能SnSe晶体搭建的热电器件在发电和制冷都表现出优异的性能。发电器件(TEG)在300K温差下能够实现最高12.2%的发电效率,制冷器件(TEC)在室温及高温下也均实现了优异的制冷性能[2]。近期,该课题组通过物理气相沉积的方法制备了PbSe晶体,以及在PbSe晶体中额外引入微量的Pb,观察到了PbSe晶格中的本征Pb空位被填补,其对应的点缺陷散射被削弱,从而显著增加了载流子迁移率。基于获得的高性能N型PbSe晶体在发电与制冷都表现出优异的性能。如图2A所示,单腿器件在420K温差下能够实现 ~ 11.2%的发电效率;如图2B所示,与该课题组2023年开发的高性能P型SnSe晶体(Science 380(2023)841-846)搭配制备的Se基热电制冷器件在热端温度(Th)为室温下能够实现 ~ 73.3 K的制冷温差,其制冷性能优于Bi2Te3基等材料制成的制冷器件[3]。图2、热电转换效率对比图(A);制冷器件温差对比图(B)该工作以《Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3》为题,发表在《Science》上,其中单腿发电器件的发电量及转换效率均使用Mini-PEM测得。与上述工作不同,如果样品为多对p-n结构,ADVANCE RIKO公司则提供热电转换测量系统PEM-2用于发电量及转换效率的测量。热电转换测量系统PEM-2支持多种器件尺寸(最大40mm×40mm),热端最高温度可达800℃,测量在惰性气体(Ar2)中进行。图3、热电转换效率测量系统PEM-2 何佳清教授课题组Science近期,来自南方科技大学何佳清教授课题组的科研工作者,首次发现并验证了空穴载流子捕获和释放机制和其对材料电性能的调控作用,以及调控材料本证铅空位形态的赝纳米结构对材料热输运的抑制作用。课题组在碲化铅材料中构造了大量的纳米级空位团簇,这些团簇在材料中产生了大量的应力和应变,使材料的晶格热导率显著降低了,并且更加有利于热电材料的高服役。同时,热电器件结构设计和转换效率的提升,也有助于推动热电发电器件的发展和应用[4]。该工作以《Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe》为题,发表在《Science》上,其中热电发电器件的转换效率使用PEM-2测得。图4、使用PbTe制备的热电发电器件的热电性能延伸阅读日本ADVANCE RIKO公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前沿,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本ADVANCE RIKO公司先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561[2] Liu Dongrui et al., Lattice plainification advances highly effective SnSe crystalline thermoelectrics, Science 380, 841–846 (2023)[3] Qin Yongxin et al., Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3, Science 383, 1204–1209 (2024)[4] Jia Baohai et al., Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe, Science 384, 81–86 (2024)相关产品1、小型热电转换效率测量系统-Mini-PEMhttps://www.instrument.com.cn/netshow/SH100980/C283294.htm2、热电转换效率测量系统-PEMhttps://www.instrument.com.cn/netshow/SH100980/C283291.htm
  • 山东某终端单位批量采购仪器、试剂、标物
    山东某单位新建RKEF实验室,需采购一批仪器设备、试剂标物及实验室器皿、劳保用品,进口、国产不限,需整包商提供报价,能做的请联系,具体采购清单如下:仪器设备:名称规格(参考型号)数量单位备注鳄式破碎机5E-JC100*603台样品前处理破碎缩分机5E-CD250*3602台样品前处理制样粉碎机5E-PC2*1002台样品前处理台式钻床Z5252台样品前处理切割机J3G-4002台样品前处理导流式二分器5E-MR1/21台代替耗时过久的人工缩分,不考虑备用托盘天平500g2台电子台秤6kg /0.1g4台电子磅称150kg/10g2台数显电热鼓风干燥箱5E-DHG4台智能马弗炉5E-MF6003台碳硫分析仪(自带天平)CS-2800G1台超纯水机AKRY-UP-18401台蒸馏水器型号:YA.ZD-10,出水量 10L/h电耗:N=7.5kw1台作为纯水机补充,平时不用电热恒温水浴锅型号:HHS-11-4,一列式四孔电耗:N=1kw3台阻尼天平型号:TG528B2台电子分析天平型号:AL104电耗:0.2kw4台电光分析天平型号:TG328A1台精度1μg(适用于仲裁分析)原子吸收光谱仪型号:AA400电耗:0.2kw1台电子万用炉型号:电耗:1kw20台或采购炉盘炉丝自行组装,备用一些炉丝玻璃仪器烘干机型号:电耗:0.8kw2台压缩机型号:DA-7002CS附电机:N=1.5kw1台荧光光谱仪MXF-24001台抽风柜尺寸:1500×850×22001套视具体房间摆放确定(包括变频、电机、管道等)分光光度计型号:7224台自动量热仪5E-AC/PL单控1台气相色谱仪型号:GC-2010 Plus1台SANTCK UPSEX-40KS1套荧光配套振动磨ZHM—1 1台荧光配套冷却循环水BLK-8FF1套荧光配套三相隔离变压器30KVA1台荧光配套熔融炉RYTN-011台荧光配套压样机ZHY—6011台荧光配套磁力搅拌器HJ-42台立式药品冷藏柜2~8℃,容积约200L,制冷方式:风冷2台标准品:样品编号样品名称单位数量注:以下标准样品无特殊说明者均为粉状或屑状,100g/瓶。YSBC13708-95铁矿石瓶2W-88304a菱铁矿瓶2GSBD33001-94铬铁矿瓶2GSBH30004-97铁矿石瓶2YSBC13709-95铁矿石瓶2GSB03-2038-2006铁矿石瓶2YSBC28783-01铁矿石瓶2GBW07220a/W-88307a铁矿石瓶2YSBC13836-96炉渣瓶2YSBC13837-96炉渣瓶2GBW 01704a转炉渣瓶2GBW 01705转炉渣瓶2GBW 01707转炉渣瓶2YSBS 19811-2000钒渣瓶2512高炉渣瓶2GBW03207矿渣硅酸盐水泥瓶5GBW03204水泥熟料瓶3GBW03203水泥生料瓶3GBW03201a硅酸盐水泥瓶3GBW11108g烟煤瓶2GBW11103f无烟煤瓶2GBW11104f无烟煤瓶2YSBC 28801b-06焦炭瓶2YSBC28003b-06焦炭瓶2GBW11101n烟煤瓶2GBW11101标煤瓶2GBW11107k烟煤瓶2YSBC20310-2002304不锈钢瓶3YSBC15208-2002低合金钢瓶4YSBC 11342-05不锈钢瓶3YSBC 11907-2003高纯镍瓶2YSBS 11378a-08304不锈钢(块状光谱控样)瓶1YSBC11103-94/9110高磷铸铁瓶2YSBC11106-94/9140高磷铸铁瓶2GSB 03-1372-2000不锈钢瓶3YSBC 11508-93铁合金瓶3YSBC16703-01石灰石瓶2YSBC28706-936#石灰石瓶2试剂、器皿及劳保用品:名称规格数量单位备注注:试剂无特殊说明均为化学纯,试剂可满足前期筹备实验、人员培训及正常生产四个月的用量分样筛200目10个常用,磨损较快分样筛80目5个分样筛18目2个分样筛10目2个分样筛4目2个塑料洗瓶500ml20个不锈钢辅料镊20cm5把不锈钢辅料镊10cm2把封口袋10#50包封口袋7#10包纸质样品袋牛皮纸台头自制取样铲亦可自行焊制标签纸小号1000张不锈钢方盘24cm*31cm20只搪瓷方盘20cm*30cm10只蓝边白色带盘盖搪瓷方盘30cm*40cm4只蓝边白色带盘盖洗耳球大号5个洗耳球小号10个棕色滴瓶125ml10个定性滤纸60cm*60cm500张定量滤纸12.5cm,快速20盒玻璃直管、弯头由供货商提供若干备用表面皿100mm10个不锈钢药匙16cm10把塑料药勺3包输血胶管6*9mm5米输血胶管5*7mm3米油画笔大号10只油画笔小号10只三角烧瓶500ml20个三角烧瓶300ml20个三角烧瓶100ml40个酸式滴定管50ml20个酸式滴定管25ml10个碱式滴定管50ml20个碱式滴定管25ml10个烧杯2000ml5个烧杯1000ml10个烧杯500ml30个烧杯400ml30个烧杯200ml10个烧杯100ml20个放水瓶10L5个放水瓶5L10个放水瓶2.5L10个试剂瓶500ml100个广口试剂瓶,需要PP 还是HDPE 材质?棕色试剂瓶500ml30个广口试剂瓶,需要PP 还是HDPE 材质?棕色试剂瓶30ml50个广口试剂瓶,需要PP 还是HDPE 材质?玻璃量筒1000ml2支玻璃量筒500ml2支玻璃量筒250ml5支玻璃量筒100ml5支玻璃量筒50ml10支可用量杯代替玻璃量筒25ml10支可用量杯代替玻璃量筒10ml20塑料量筒10ml5支塑料量筒25ml5支塑料量杯50ml5支10个橡皮塞00# 带打孔器10个
  • 原位液体环境透射电镜技术初相遇
    p   撰文:王文 /p p   在透射电子显微镜中,搭建nano-lab,原位观察纳米材料在外场,如力、热、光、电、磁等作用下的行为,对于纳米材料研究者已经并不陌生。目前,原位电镜研究进行地如火如荼,并取得了很多令人瞩目的成果。今天,就为大家简单介绍一下原位透射电镜技术中的一种——液体环境透射电镜(Liquid cell TEM)。 /p p    strong 一、为什么要研究液体环境透射电镜技术? /strong /p p   绝大多数的液体,包括水和其他有机溶剂,有着较大的饱和蒸气压,无法在透射电镜的高真空环境中存在,因此在研究液体环境中纳米材料的行为时,需要构建液体存放单元,将液体与电镜中高真空环境隔离开来,这就需要利用Liquid cell TEM。Liquid cell TEM实际上就是通过微纳加工,制作液体存放单元(Liquid cell),然后将它固定在普通样品杆或者专用液体样品杆头部,放入电镜进行观察。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ad89408b-a05e-4162-a393-3ace84a9b2e2.jpg" title=" 1.jpg" / /p p style=" text-align: center "   strong  图 1. Liquid Cell 结构示意图 /strong /p p    strong 二、原位液体透射电镜技术发展史 /strong /p p   In-situ Liquid cell TEM的雏形可以追溯到1934年,比利时布鲁塞尔自由大学的Morton,利用两片铝箔包裹样品的方法首次尝试活体生物样品的透射电子显微学研究,但是由于铝片及液体层较厚,其分辨率仅能达到微米量级。 /p p   近年来得益于微纳加工技术以及微流控技术的进步,Liquid cell的制备得到突破性进展。2003年F. M. Ross设计制作的原位电化学Liquid cell芯片,是近代Liquid cell制备的里程碑。其结构如图2所示,底层硅片沉积一层多晶金电极,与顶层硅片之间通过SiO2环垫片胶合形成电化学反应器,顶层硅片有两个容器,分别引出两个电极用来施加电偏压。使用时将液体注入,通过毛细作用流入观察窗口,然后将Liquid cell密封,放入电镜中观察。由于成像电子束需要透过100nm氮化硅薄膜窗口,以及接近1μm液体层空间分辨率仅为5nm。这种在两层硅片之间形成液体腔室,采用氮化硅薄膜做观测窗口的芯片,是后续很多改进Liquid cell的发展原型。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/472b1387-271a-44da-a837-6d00c56951ea.jpg" title=" 2.jpg" / /p p    strong 图2 (A). Liquid cell示意图,(B)二电极Liquid cell光学照片(Rosset al., Nat. Mater., 2003, 532)。 /strong /p p   目前Liquid cell制作方式主要有两种,一类是closed cell,另一类是包含液体流通管道的flow cell(见图3)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/f501f1c1-4897-4d45-a12b-57c2381ca6f6.jpg" title=" 3.jpg" / /p p    strong 图 3. A.closed cell 三维结构示意图,B. 沿A图中横线横断面结构图(Zhenget al., Science, 2009, 1309)C. flow cell结构示意图(de JongeN et al., PNAS, 2009, 106). /strong /p p   2009年郑海梅报道了一种超薄氮化硅窗口Liquid cell如图3A& amp B,其氮化硅薄膜厚度仅为25nm,上下层芯片之间用超薄铟垫片键合形成Liquid cell室,观测窗口内液体层厚度约为200nm。在此基础上,2014年Liao等人对超薄氮化硅窗口Liquid cell技术进行改进,将氮化硅薄薄膜度进一步减小为13nm,液体层厚度约为100nm,有效地将空间分辨率提高到原子级。 /p p   2009年Neils de Jonge等人设计了开放Liquid cell,如图3C,在无需冷冻和干燥的条件下,原位观察完整细胞中的单个分子。其液层厚度约为7μm,空间分辨率可以达到4 nm。 /p p   除了采用氮化硅薄膜作为观测窗口,2012年Jong Min Yuk首次提出利用石墨烯薄膜制备Liquid cell,并原位研究了钯纳米晶体的生长过程,如图4。利用石墨烯作为观察窗口材料,可以有效较少甚至忽略电子散射进而实现原子级分辨率。随后,利用石墨烯作为电子束透射窗口,衍生出了多种复杂的石墨烯Liquid cell结构。特别的,2014年JongMin Yuk利用Liquid cell观察了硅纳米颗粒表面各向异性锂化过程,使得利用石墨烯Liquid cell进行电化学研究成为可能。但由于石墨烯薄膜很薄,很难放置常规的电化学电极,石墨烯Liquid cell用来研究电化学过程仍然受到很大的限制。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/d7943de3-4150-46a7-b462-f5f785b7233b.jpg" title=" 4.jpg" / /p p style=" text-align: center "    strong 图 4 石墨烯 Liquid cell 示意图(Li et al.,Science 2010,330). /strong /p p   Liquid cell TEM不仅可以用来原位观察液体环境中纳米材料的行为,还可以在Liquid cell芯片和液体杆上集成加热、冷冻元件,用于纳米材料功能性测试,极大地拓宽了透射电镜的研究范围。如Haimei Zheng 课题组Kai-Yang Niu等利用可加热Liquid cell,原位研究了柯肯达尔作用下,氧化铋空心纳米颗粒的形成过程。K.Tai利用冷冻平台,研究了结晶期间冰中的相变,以及结晶前表面与金颗粒的动态相互作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a142ae6e-5b9c-46c5-805d-1c81aab4e20f.jpg" title=" 5.jpg" / /p p    strong 图5. A.Hollownanoparticle growth dynamics via Kirkendall effect (Paul Alivisatoset al., Nano Lett,2013,13). B.The dynamic interactions of Aunanoparticles at the ice crystallization front (Dillon et al.,Microsc. Microanal, 2014, 330) /strong /p p   综上,目前Liquid cell芯片多是基于硅基衬底加工,窗口材料一般采用超薄氮化硅薄膜,Haimei Zheng课题组可以将氮化硅薄膜做到13nm左右,其他课题组以及商业化Liquid cell窗口材料一般做到30nm左右,窗口大小50*50μm。分辨率可以达到原子级,接近电镜固有分辨率。并且可以集成加热和冷冻功能,但对liquid cell稳定性要求较高,并不容易实现。 /p p   strong  三、原位液体透射电镜技术的应用 /strong /p p   利用In-situ Liquid cell TEM可以观察纳米颗粒成核和生长的过程,用实验证明一直存在争议的问题,例如纳米颗粒液相生长过程中主导机制是单体附加,还是颗粒融合。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/deb70f24-dd19-4eba-8290-004651bb1c0e.jpg" title=" 6.jpg" / /p p   strong  图 6. Video images showing simple growth by means of monomer addition (left column) or growth by means of coalescence (right column). (Zheng et al., Science, 2009, 1309) /strong /p p   可以研究异质纳米晶体生长过程 /p p style=" text-align: center" img style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201803/insimg/d3a4a6f9-e362-45d2-9efc-3eb88e58cc1c.jpg" title=" 7.jpg" height=" 246" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图7. Comparison of Pdgrowth on 5 and 15 nm Au seeds. (a, d)Starting dark-field STEM images of a 5 nm(a) and a 15 nm (c) Au nanoparticles in 10 μM aqueous PdCl2 solution (samescale). (b,e) The same two particles after Pd deposition (84 s total beamexposure). (c, f) Schematic illustration of the Pd growth morphology for thetwo sizes of Au seed nanoparticles (E. A. Sutter et al., Nano Lett, 2013, 13) . /strong /p p   可以研究纳米颗粒自组装过程 /p p style=" text-align: center" img style=" width: 450px height: 409px " src=" http://img1.17img.cn/17img/images/201803/insimg/a1977cd7-4f4d-412b-a23d-ae50c19761d1.jpg" title=" 8.jpg" height=" 409" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图8.TEM images of NPassembly formed under electron beam irradiation (a,b) and drop casting (c,d) onSiNx TEM grid. The scale bar is 100 nm (Jungwon Park et al., ACS NANO, 2012, 6) . /strong /p p   可以研究锂离子电池锂化过程。Huang 等人在开放 Liquid cell 中原位研究锂离子电池锂化过程中,氧化锌纳米线的膨胀、伸长和螺旋行为。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/965878a3-55a6-46c9-b846-05e5d30fc04a.jpg" title=" 9.jpg" / /p p    strong 图 9. Schematic of the experimental setup(Li et al.,Science 2010,330). /strong /p p   还可以用来观察一些生物样品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a94ef351-8826-4e37-be8b-e3ff343c362c.jpg" title=" 10.jpg" / /p p    strong 图 10. Image of the edge of a fixed COS7 cell after 5-min incubation with EGF-Au(de Jonge N et al., PNAS, 2009, 106). /strong /p p   当然Liquid cell TEM的研究内容不仅局限于这些,感兴趣的可以阅读Hong gang Liao 2016年发表在Annu. Rev. Phys.Chem.的一篇综述文章Liquid Cell Transmission Electron Microscopy。 /p p   看到这里,估计有人会问,在研究过程怎么排除电子束对反应过程的影响呢?电子束的确是让人又爱又恨的存在,既需要利用它来成像,又不希望它与研究材料发生相互作用影响实验结果。不过,别担心,Liquid cell TEM领域大牛Ross已经为你提供了量化电子束影响的理论依据!说到这里,小编不禁要感叹,Ross是一位学术造诣很深又乐于分享的大牛。某次会议有幸向Ross当面请教,她非常nice地鼓励了我蹩脚的英语和并不成熟的想法,并且很耐心地给我讲解,我们刚入门的科研人需要这样优秀的偶像。 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ef62778c-b47c-42b7-af9f-ca7df8f18d17.jpg" title=" 00.jpg" / /p p   strong  四、国内研究现状 /strong /p p   08年以来国内的透射电镜发展十分迅速,目前国内应该有超过60台带有球差校正的透射电镜,而且这一数字还在迅速增加。其中做Liquid cell TEM相关研究的课题组也有不少,并取得了不少重量级研究成果,鼓掌~~~~目前国内从事Liquid cell TEM研究的课题组主要有:浙江大学张泽院士、厦门大学廖洪刚教授、北京工业大学隋曼龄教授、上海交通大学邬剑波研究员、华东理工大学陈新教授,等。当然,还有弱弱的小编~(如有遗漏,恕小编才疏学浅)。 /p p   那么最后一个问题来了,想做in-situ Liquid cell TEM研究去哪里找芯片呢?目前Liquid cell芯片和液体样品杆已经部分商业化,如Hummingbird 和Protochip等,但其售价比较昂贵,适合土豪课题组。很多课题组仍然在使用自制液体芯片,或与其他国内微纳加工公司合作。 /p p   小编只是抛砖引玉,为大家做一下简单介绍一下,如有兴趣,可以先参阅Frances M. Ross, Honggang Liao, Xin Chen三位的综述文章。没错,其中有两位是中国人,而且目前在国内任职,小编是如此骄傲~~~ /p
  • 测评来了 | EinScan HX 好在哪,听听Develop 3D 怎么说!
    Develop 3D是欧美科技类媒体,杂志在2008年创立,从此致力于以真实且深入的测评辅助企业决策,促使企业有效利用最新科技,提升制造产品的速度与质量。经验丰富的编辑主要对3D数字化、增材制造、3D软件,以及AR、AI等领域的技术进行报道和测评。这些亲身试用之后撰写的深度评论,在业界具有相当高的可信度和权威性。在今年的5月刊中,Develop 3D发布了针对EinScan HX的测评。01Develop 3D:EinScan HX值得购买测评伊始,总编辑AI Dean就直言Develop 3D一直以来都是先临三维扫描仪的忠实粉丝,EinScan HX又是先临三维推出的首款双蓝光光源扫描仪,这次测评势在必行。AI Dean用AMAL汽化器来进行测试,在对整个工作流程进行了记录和评价之后得出测评的结论:原文翻译:他推荐正在选购3D扫描仪的用户将EinScan HX纳入考虑范围之内,因为它功能多样,能涵盖基本的几种用途。02EinScan HX:多种功能满足需求AI Dean在文中展示了全部的工作流程,认为测试过程让结论不言而喻,现在就一起来看看EinScan HX是如何在测试过程中大展身手的吧。工作流程扫描过程AI Dean对结构光模式1,200,000点/秒的速度和激光模式0.04mm的精度大加赞扬。同时他也认为EinScan HX获取物体表面纹理特征的能力在可视化领域会非常实用。数据处理扫描过程不仅采集了汽化器的数据,转盘和一部分桌面数据同样被获取到了,因此AI Dean需要对数据进行处理。他评价软件提供的处理工具十分齐全,认为画笔、套索,和切割工具特别好用。模型拼接AI Dean特别注意到标志点拼接和特征拼接之外的第三种拼接方式——混合拼接。他认为这种方式“特别有意思”,在应对纹理特征并不丰富、或者需要几台扫描仪同时完成的大型物体时会非常实用。模型处理之后对孔洞等数据进行识别,同时需要去除扫描噪声。AI Dean在这个过程中发现系统提供的平滑和锐化工具在去除噪声时特别有效。数据导出在数据导出阶段,AI Dean特别指出了提到了开放系统带来的高兼容性。用户可以根据不同需求与流程来搭配后处理软件。支持建模的CAD软件Geomagic Essentials,用于检测的Geomagic Control X和Verisurf CAD,都可以顺畅地与EinScan HX对接,数据导入无障碍。03成熟产品提升用户体验除了以上种种优点,成熟软硬件对用户友好度的提升也是贯穿AI Dean测评全过程的关键词。除了软件全程引导之外,AI Dean特别指出设备上的指示灯能对扫描状态进行十分直观的反馈:绿色表示距离合适,黄色表示太近,蓝色表示太远,红色表示目标已丢失。图中指示灯呈蓝色,表示距离过远。EinScan功能多样,集成性高,同时配备后处理软件,意味着扫描所得数据可以切实地用来解决问题,对于需要在设计和工程领域使用到三维扫描技术的用户而言,EinScan HX会格外实用,也更加吸引人。因此在亲身试用过扫描仪之后,AI Dean说:“从用户的角度来说,EinScan HX是一款非常成熟的产品。”
  • 感恩社会 爱心无限 ——记盛瀚朱新勇董事长赴盛瀚希望小学
    2015年6月28日,距离腾冲县明光镇盛瀚希望小学落成10个月后,盛瀚色谱董事长朱新勇先生(以下简称朱总)及其他三位公益人士带着“圆梦计划”和“启发梦想活动”再赴盛瀚希望小学。 此次盛瀚希望小学之行,朱总和“蒲公英公益组织”一起为盛瀚希望小学的孩子们开创了“圆梦计划”,帮助104名家庭贫困成绩优异的孩子们实现心中的愿望,孩子们用手中灵动的画笔描绘心中的愿望,“圆梦计划”圆的不只是孩子心中的梦,圆的是社会和爱心人士对孩子们的关爱,体现的是社会的大爱,给于孩子的是满满的希望和正能量。 朱总和其他三位公益人士还带来了“启发梦想活动”,即1对1帮扶活动,朱总一行4人共帮扶18名家庭困难学生直至其小学毕业,朱总一行人还去帮扶对象家中探访,看到这些家庭的“家徒四壁”,朱总心中无限感慨,朱总更加坚定自己现在的做法是正确的而且今后还应该做得更多。 盛瀚希望小学发展进程: 盛瀚希望小学自2012年投入建设,2013年9月落成建设投入使用,盛瀚公司投入30万元用于学校建设,后期陆续为该学校捐助办公用品,体育用品,音响设备等逾3万元用于孩子们的教学专用。盛瀚希望小学建成后合并了附近的6所小学,可为家远学生提供住宿,解决了方圆80里的学生入学难的问题,目前在校生452人(80%是傈僳族),盛瀚公司和其他爱心人士会源源不断的资助盛瀚希望小学,将会建成一座有民族特色的有较高教学质量的边疆小学。近年来,盛瀚参与的公益活动:2008年6月2日 ,盛瀚色谱技术公司向汶川地震灾区捐赠了价值11.8万元的离子色谱设备,用于检测人体腐蚀后的饮用水中丁二胺、戊二胺两种有害物质。2008年11月,由青岛盛瀚色谱技术有限公司与中国分析仪器学会组织并管理运作的旨在鼓励在校学生努力学习奋发成才的“盛瀚----离子色谱技术创新奖学金”举行奖学金发放仪式。2010年12月3日,青岛盛瀚色谱技术有限公司与北京市工业技师学院共建"盛瀚色谱班",培养色谱技术人才,颁发第一届奖学金。2013年3月6日,公司董事长朱新勇先生一行6人于崂山区林蔚小学进行爱心资助活动,此次活动资助品学兼优贫困小学生30余名,同时举办了主题为“有梦想,就有未来”的心理成长课,志在培养孩子们从小有爱心有志向,并将这种正能量传递给他人。2013年3月23日,青岛盛瑞德集团公司第二届“植树绿化,爱心公益”活动于青岛市城阳区举办,盛瀚和盛达利两个公司部分员工参加。本次活动历时4个小时,参与人数40余人,植树近百棵。2013年9月6日,中国仪器仪表行业协会分析仪器分会一行40余人于腾冲县明光镇参加“盛瀚希望小学”揭牌仪式。
  • 3D扫描技术助力古建筑浮雕文物数字化保护
    古建上的浮雕装饰不仅是建筑艺术的独特展现,更是建筑表现力的扩展。这些精美的浮雕记录了历史和传统文化,具有非常重要的历史和文化传承价值。然而因为岁月的侵蚀、自然的风华,这些瑰宝正在逐渐的消亡。古建保护迫不容缓,高精度三维扫描技术的引入为文物保护和研究工作提供了一种新的技术路径。本期我们将分享一则先临三维的伙伴——福建万象三维技术团队,通过EinScan Pro XS雕刻专用手持3D扫描仪采集存档古田临水宫的浮雕群的案例。项目需求&痛点分析客户的需求是对古田临水宫的浮雕群进行精细化的采集制作,数字化存档后可用以后续的研究以及衍生品创作。&bull 古田临水宫项目难点:1. 浮雕装饰在建筑表面,不便移动。2. 采集范围较广,如果贴点扫描,黏贴标志点过程耗时长,效率低。3. 浮雕装饰细节丰富,大场景扫描点距较为稀疏,采集数据细节难以满足浮雕纹饰复刻及研究需求。4. 浮雕离地较高,采集操作限制较大。3D数字化解决方案Step1:基于以上痛点,福建万象三维的技术工程师借助吊车,将工程师和手中的扫描设备托起与文物平行,在吊机师傅和扫描工程师的配合下,采用非接触式的手持三维扫描仪EinScan Pro XS进行采集作业。&bull 浮雕扫描现场EinScan Pro XS雕刻专用手持3D扫描仪小巧轻便,可直接携带到现场作业。它配置了多种拼接方式,支持不贴点扫描,有效避免了对于古建筑的物理接触和人为损伤。该扫描仪的最高扫描精度可0.045mm,最小点距可达0.2mm,能够细致还原浮雕的表面细节。扫描过程快速流畅,扫描速度最高可3,000,000点/秒,在高保真获取雕刻细节的同时,最大限度地提高了扫描效率,更好地满足了该项目复杂的使用场景。◆部分浮雕扫描数据展示&bull 浮雕三角网格细节Step2:基于精准的STL数据建立还原度极高的数字模型,可以在数字环境中永久保留和传播浮雕艺术作品的精准信息,保护文化遗产并促进艺术研究与传承。&bull 浮雕三维扫描模型整体展示Step3:结合3D打印技术来制作浮雕的复制品或模型,让文物不再局限于博物馆、古建之中,普通人也可近距离欣赏传统文化之美。&bull 3D打印浮雕模型Step4:使用细小的画笔和专业颜料,根据文物实际色彩进行仔细绘制。准确还原文物的形态、细节和色彩。文物还原模型以更直观、生动的方式展示文物的魅力,为观众提供更加丰富的历史、文化认知和体验。&bull 文物彩色模型制作&bull 文物还原整体展示文物保护是一项艰巨的任务,但三维扫描技术的出现为文物保护提供了新的可能性。这种技术可以全方位获取文物的详细信息,为高精度模型制作、研究和保护工作提供数据支持。此外,三维扫描技术还可应用于虚拟修复和复原,让历史文化遗产得到更好的传承和保存。这一技术的应用为文物保护注入了新的生命力,提供了更多的技术保障,使保护工作更加精确、高效。随着科技的不断进步,三维扫描技术在文物保护领域的应用将会越来越广泛,带来更多的突破和创新!
  • 高光谱镜头证实《余晖下的干草垛》为莫奈真迹
    图注:&ldquo 夕阳下的干草垛&rdquo ,1891,克劳德· 莫奈   喜欢莫奈作品的人们总有这样一个习惯,当他们看到任何自己中意的画作时都会利用莫奈作品的标准去评价,比如&ldquo 那幅画好有莫奈作品的感觉!&rdquo 。莫奈会在自己的作品角落处签下自己的名字,这也成为后人用来辨别其作品的主要线索。   芬兰于韦斯屈莱大学数学信息科技学院日前正式宣布,确定一幅名为《余晖下的干草垛》的绘画作品出自法国著名印象派大画家克劳德· 莫奈(Claude Monet)之手。《余晖下的干草垛》创作于1891年,在此之前各方都怀疑其是莫奈的作品之一,但一直没有找到相关的证据。   于韦斯屈莱大学数学信息科技学院的研究团队为了证明《余晖下的干草垛》出自莫奈之手,其采用各种办法试图寻找藏在画面角落上的莫奈签名,而经历了几十年的时间之后莫奈的签名早已被画布上的其他物质所掩盖。   《余晖下的干草垛》是一幅彩色蜡笔画,自上世纪50年开始该幅作品一直收藏于芬兰塞拉基乌斯美术基金会。于韦斯屈莱大学艺术研究中心的研究人员使用高光谱镜头检查画作表面的元素,这种镜头能够捕捉到画作表面近红外区域256种不同波长的光线,而上述光线是人类无法用肉眼观察到的。   研究人员在接受记者采访时表示:&ldquo 高光谱镜头在使用过程中发挥了扫描仪的作用,其每次对于画布上的一条线进行扫描。在扫描过程中镜头可以记录下不同波长的光线,而经过预先特殊设置的摄像头可以记录下设置者需要的光线的波长,这样我们就能够掌握画面上一些肉眼看不到的图样颜料数据。&rdquo   在利用高光谱摄像头对画面扫描完毕之后,其获取了大量有关画面表面的颜料图样数据,这是研究人员将莫奈本人签名图样的数据同所获得的数据进行比对,两者的结果显示吻合,这也就意味着《余晖下的干草垛》画面上有莫奈的签名,也就证明了《余晖下的干草垛》是莫奈的作品。   莫奈是法国最重要的画家之一,印象派的理论和实践大部份都有他的推广。莫奈擅长光与影的实验与表现技法。1872年,莫奈创作了扬名于世的&ldquo 日出· 印象&rdquo 。这幅油画描绘的是透过薄雾观望阿佛尔港口日出的景象。直接戳点的绘画笔触描绘出晨雾中不清晰的背景,多种色彩赋予了水面无限的光辉,并非准确地描画使那些小船依稀可见。真实地描绘了法国海港城市日出时的光与色给予画家的视觉印象。由于它突破了传统画法的束缚,有位批评家就借用词画的标题,嘲讽以莫奈为代表的一批要求革新创造的青年画家为&ldquo 印象主义&rdquo ,这一画派以此得名。
  • 精诚合作 续铸辉煌——记岛津天津地区2012新年招待会
    2011年12月23日晚,岛津公司2012天津地区新年招待会在天津日航酒店隆重举办。 &ldquo 欢笑&rdquo 、&ldquo 畅饮&rdquo 、&ldquo 互动&rdquo 、&ldquo 娱乐&rdquo 成为本场招待会的主题词,可谓&ldquo 津门用户聚欢庆,九河下梢岛津情&rdquo 。 会议采用电子签到方式,来自高校、研究院所、企业、政府机关等的两百余位与会嘉宾的头像以及个性化签名均实时呈现在会场大屏幕中,许多嘉宾见到同在津门却因工作忙碌而多年不见的老友头像及签名时,无不感到惊喜与欣慰。 时至18:00,少女们舞动的鼓槌,飞溅雪白的水花,精彩的《女子水鼓》表演掀开了岛津新年招待会的帷幕。&ldquo 遇水则发,以水为财&rdquo ,开场水鼓预示着2012天津地区事业的兴旺发展。 首先岛津企业管理(中国)有限公司华北大区经理张建军先生,为此次盛会致辞。若时间是画笔,2011年将是岛津公司历史上最为浓墨重彩的一笔,岛津公司在中国完成了由&ldquo 日本岛津&rdquo 向&ldquo 岛津中国&rdquo 品牌战略的转变,岛津公司将更加立足于服务中国用户的高端科研需要,以优质服务、尖端产品不断创造新的记录! 大会邀请了天津市色谱研究会秘书长、天津市质谱分会主任范国樑老师作为用户代表为此次招待会致辞。范老师在讲话中充分肯定了岛津的品牌与服务,并对未来岛津产品更多更好地服务于天津科研领域表达了殷切期望。范国樑老师风趣中肯的致辞,博得了在场嘉宾的热烈掌声。 晚宴开始前,由岛津公司吴劲松经理为在场嘉宾致祝酒辞,欢快祥和的晚宴正式开始。 觥筹交错间,伴随着佳肴美食,伴随着炫目效果,一出出一幕幕精彩纷呈的表演不断走到台前,为现场观众呈现了一桌演义大餐。 女子电声小提琴乐队演奏的一曲《舞动心弦》,旋律优美浪漫,将晚会现场的热烈气氛完全引爆。 天津是传统的曲艺之乡,多种的曲艺形式都是在天津形成和繁衍。京东大鼓与快板,又让津门父老听到熟悉的乡音乡曲。 现代舞 群舞,让热烈的现场气氛又融入了青春的元素,动感的旋律与变换的光影都在向人们宣泄着如火热情。互动魔术、川剧表演赢得台下更加热烈的掌声。 现场电子抽奖环节更加吸引眼球,电子签名的不停跳动,拨动着在场每一颗屏息凝神并且期待盼望的心。 精彩纷呈的互动游戏让台上台下都乐不可支,使得在场嘉宾真正体会到放松与惬意&hellip &hellip 最终的幸运大奖由天津市分析测试学会的安树清老师揭晓,南开大学的渠老师作为当晚最幸运的嘉宾,也向岛津公司与众位参会嘉宾表达了深切的祝福。 不知不觉中伴随着欢乐、美酒、惊喜与温情,三个多小时的时间转瞬即逝,很多参会的来宾都已经开始预定下一年度的岛津活动的入场券。最后,在全体嘉宾的祝福声中,在一片惜别珍重声中,岛津2012新年招待会画上了圆满的句号。 会后众多专家一致表示,这是继去年天津新桃园酒店成功举办新春答谢会后,天津地区规模最大、与会专家最多、形式最新颖的答谢会之一。天津市奥佳科技有限公司作为大会组织的中坚力量,也深受了在场来宾的好评。 我们真诚祝愿,在新的一年里岛津与天津各界用户能精诚合作,续铸辉煌! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 阅西藏江南秀色,话光谱应用缤纷—— 2019 HORIBA拉曼• 荧光及光谱搭建技术研讨会圆满落幕
    8月21-23日,2019 HORIBA 拉曼荧光及光谱搭建技术研讨会在林芝成功举办。本次会议,来自厦门大学的任斌教授、中科院半导体所谭平恒研究员等13位行业大咖齐聚一堂。适逢HORIBA Jobin Yvon光学技术创立200周年,我们举办了主题晚宴以纪念这一重要时刻。下面,让我们一起回顾本次会议的精彩瞬间。本次会议涉及生命科学、植物学、材料等多个领域,学科跨度大,报告内容包括二维材料光谱研究、表面增强拉曼光谱研究、光谱搭建技术讨论等等。会议期间,来自地质研究、珠宝鉴定、生物、食品等各个领域的专家学者齐聚一堂,分享科研经验。更有拉曼及荧光资深用户分享实验设计和仪器使用经验,参会者们表示受益颇多。会后与会人员就光谱技术和科研过程中遇到的问题进行沟通交流,现场气氛热烈。以下内容按报告顺序排列▲任斌教授 厦门大学化学系报告:针尖增强拉曼光谱-现状、机遇和挑战▲谭平恒研究员 中国科学院半导体研究所报告:二维范德华异质结的拉曼光谱研究▲张锦教授 北京大学报告:Growth of Single-Walled Carbon Nanotubes with Controlled Structures.▲谢孟峡教授 北京师范大学报告:荧光传感器的构建及应用研究▲刘冰冰教授 吉林大学超硬材料国家重点实验室报告:高压下限域碳材料的新结构▲黄青研究员 中科院合肥研究院技术生物所报告:表面增强拉曼光谱与分子吸附状态的研究▲马波研究员 中科院青岛生物能源与过程研究所报告:拉曼单细胞分析与分选▲马建锋副研究员 国际竹藤中心竹藤生物质新材料研究所报告:植物细胞壁显微拉曼光谱成像研究进展▲董春霞教授 北京大学生命科学学院报告:荧光光谱在蓝细菌研究中的应用▲张峰教授 内蒙古农业大学生命科学学院报告:生命之光——缘起▲赵祖金教授 华南理工大学材料科学与工程学院报告:聚集诱导延迟荧光材料与OLED器件▲茹越高级工程师 北京化工研究院报告:具有AIE效应的聚合物及其衍生物的性能研究▲王丽教授 山西大学环境科学研究所报告:Beyond Your Imagination: What Fluorimeter Can Do For Your Research现场设有Nano-Raman、荧光、粒度应用交流咨询中心和Service Corner,参会者可面对面与HORIBA工程师进行交流,咨询仪器知识,在这期间工程师也更加了解客户需求,为提升后续产品性能和服务质量提供了参考。恰逢HORIBA Jobin Yvon光学技术创立200周年,会议期间我们举办了一系列纪念活动:周年纪念油画笔墨渲染、寄语墙、200周年主题晚宴等。活动中客户的每一笔勾勒、每个留言、每个微笑̷̷都让我们深深感受到大家对HORIBA 产品和服务的信任与支持!相聚短暂,科研路远;预约希望,步履不停。感谢会议期间所有参会人员对会务工作的支持和配合,我们来年再会!HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 化学的创新与发展,能源问题重中之重
    仪器信息网讯 2012年4月13日,由中国化学会主办,四川大学承办的中国化学会第28届学术年会在四川大学隆重开幕。本届年会恰逢中国化学会八十华诞,受到国际国内化学界同行高度重视,来自国内国际的包括50位两院院士和第三世界院士在内的4000多名化学界代表参加了此次盛会。   本届学术年会特别安排了“化学的创新与发展论坛”,清华大学薛其坤院士,中国科学院理化技术研究所陈创天院士,斯坦福大学Richard N. Zare教授,宾夕法尼亚大学Marsha I Lester教授,北京大学张礼和院士,中国科学院化学研究所姚建年院士,中国科学院高能物理研究所柴之芳院士,中科院大连化学物理研究所李灿院士,华东师范大学何鸣元院士,中国科学院化学研究所朱道本院士,中国科学院上海技术物理研究所褚君浩院士,中国科学院大连化学物理研究所俞红梅研究员,中科院长春应用化学研究所王献红研究员,中科院上海硅酸盐所张文清研究员出席了本次论坛。   本次论坛的主题是“化学的创新与发展”,十五个特邀报告中有九个报告与能源问题直接相关,其余六个报告也与能源问题间接相关,可见能源问题是此次论坛主题重点涵盖的,也是化学科学家所密切关注的 我们可以这样认为,能源问题是未来化学家所解决问题中的重中之重。   当前中国的能源结构中化石能源(煤、石油、天然气)占92%以上 在化石能源中 “相对多煤、贫油、少气”,化石能源尤其是煤的燃烧造成了严重的环境污染、能源浪费和大量的碳排放。另外,2012年中国原油对外依存度更是达到了57.9%。据估计,作为“用一点,少一点”的化石能源到2050年基本消耗殆尽,中国对于能源的消耗速度可能更快。因此,如果说19世纪是煤炭的世纪,20世纪是石油的世纪,那么21世纪世界能源将发生根本性的结构调整,各国都在努力发展可替代性能源。   面对能源的严重短缺,科学家在解决能源危机方面可以有多种选择。其一,广泛利用取之不尽的阳光、水、风等自然资源 其二,另辟蹊径,研究新技术、新材料,比如燃料电池、生物质能源、热电材料等 其三,大力发展核电事业 其四,发展循环经济,广泛利用现有的资源,比如二氧化碳的回收和利用,核废料的循环利用。   目前的新能源替代方式都共同面临很大困难:能量转换效率低、使用成本高、严重破坏环境,走向实际民用还有很长的路要走。比如中国是世界上太阳能电池生产大国,几乎提供了世界上所需的60%以上的太阳能电池板,但却是地地道道的太阳能应用小国;另外太阳能电池的热转化效率目前还停留在20%以下,生产成本和能耗也一直高居不下。燃料电池的工作流程属于零碳排放,原料来自取之不尽的氢和氧,具有诱人的前景,主要存在的问题是使用成本较高(30g铂/100kW)。太阳能光催化制氢面临巨大的挑战,需要化学、物理、材料、生物等学科的通力合作,太阳能制氢尚在工业化应用前的探索阶段。热电材料的研究也越来越热,2011年发表的相关论文已经超过了1300篇,但是目前最好的BiTe系列热电材料ZT值在1左右,要想达到成规模的实际应用,ZT值应该达到3以上。   部分报告内容摘录如下。   一、传统化石能源:煤、石油、天然气、核能 华东师范大学何鸣元院士、中国科学院高能物理研究所柴之芳院士   何鸣元院士的报告题目是“在资源更替中,催化技术向何处去?”能源化工技术发展很大程度上依赖于催化过程的发展。在21世纪的能源更替,目前主导的化石能源要变成非主导,我们国家在这些方面也做了很大的努力。煤、天然气的利用,从合成气到合成油,或者直接将煤液化做油品,这些工作的原始的发明虽然不是源于中国,但是首先的工业化是在中国实现的。经济的可持续增长取决于资源和环境,我们在这两方面都有问题。从历史碳排放的积累看,我们对于全球碳排放的历史积累“贡献”比较小,但是我们国家的碳排放从1971年开始逐渐大幅上升。大规模低成本的二氧化碳捕获与二氧化碳的分解或重整一氧化碳和合成气,以及大规模氢气的获得(太阳能、风能和核能)使得从二氧化碳制甲醇成为可能,近期的研究报道表明甲烷直接氧化制甲醇也可望有重大突破。   何鸣元院士多次提到,估计到2050年石油资源用完之后,石脑油就没有了,到时候乙烯从哪儿来?从乙烯的氧化物或者从甲烷制取乙烯?这也是从事催化工作需要面临的一个问题。有报道,甲醇有可能成为解决二氧化碳的终极方案,甲醇经济的实现前提:甲醇的大规模广泛应用,低成本大规模的二氧化碳捕集,大规模氢气的获得,二氧化碳与氢气合成甲醇的工业化。   中国科学院高能物理所柴之芳院士报告的题目是“Some Issues on Nuclear Energy Radiochemistry”。国际原子能机构(IAEA)2011年4月28日发布公告中提到,发展核电的基本推动力没有变,核电仍然是许多国家能源战略的重要选项。中国要想成为制造业大国,能源的问题必须解决,因此核电是“战略必争”。在讲到核燃料循环后段化学时,柴院士提到,未来几十年,Purex为原型的水法流程将在后处理领域占据统治地位,干法后处理技术距离实际应用还有很大距离,但是其在未来燃料循环(快堆增值、ADS嬗变体系和先进核燃料循环)中的作用已初步得到认可。我国在干法技术方面投入少,基础差,队伍匮乏,已经多年未见研究成果。宜从战略高度,适时启动干法后处理技术的基础科研。   在放射性废物处理处置化学方面,以提高我国高放废物处置和核污染环境修复为目标,研究典型放射性核素的化学种态、环境行为和生态效应,重点应关注:Np和Pu等锕系元素在环境中的化学种态及其变化规律 Tc、Ru、Sr等裂变产物在环境中的化学种态变化规律 易迁移核素的化学种态及其变化规律 胶体、腐殖质、微生物对核素迁移扩散的影响 重要放射性核素的地球化学模型。   柴院士提到了非洲加蓬共和国曾经存在一个大型的天然链式反应堆,运转了约50万年,让人吃惊的是这个巨大的反应堆对周围环境的热干扰局限在反应堆周围的四十米范围内,更让人吃惊的是核反应产生的废物并没有扩散,而是局限于矿区周围,迁移距离只有数米。因此,核能放射化学需要新的思想,新方法,新材料。   二、新材料新技术:燃料电池、激光、超导、热电材料 中国科学院化学研究所朱道本院士、中国科学院理化技术研究所陈创天院士   中国科学院化学研究所朱道本院士的报告题目是“关于能源的创新与发展”,着重介绍了热电材料的研发情况。热电材料是一种可以将热能和电能相互转换的功能材料,其理论依据是塞贝克效应和帕尔帖效应。 由于热电材料无机械运动部分、无工作无噪声、无液态或气态介质,因此不存在污染环境的问题。在环境污染和能源危机日益严重的今天,研发新型热电材料无疑具有很强重大意义。 因此,国际社会对于热电材料的研究越来越热,发表的论文也在逐年增加,据ISI统计,2010年发表的论文数量已经超过了1200篇。   一种高效的热电材料必须具有较大的热电势、较高的电导率和较低的热导率,也就是该材料必须“导电如晶体,导热如玻璃”,寻找同时具备这些特点的材料非常困难。   目前已知的性能比较高的电热材料主要有:碲化铋、碲化铅,硅锗合金,锑化物及其合金以及钴氧化物等,这些材料的热电优值ZT可以达到1左右。以上这些材料都是无机材料,那么有机半导体是否具有作为热电材料的潜质呢?朱院士详细汇报了Poly-Dx(M-ett)材料的热电性能,并现场做了演示。最后,该材料的ZT值在最好的情况下可以达到0.2左右,在目前已经发现的有机半导体材料中表现优异,但是作为走向民用的热电材料还有很长的路要走。  来自中国科学院理化技术研究所陈创天院士的报告题目是“KBBF晶体的独特光学性能和应用”。陈创天院士与大家分享了KBBF晶体的设计思路、研发过程以及优异的性能。   非线性光学晶体的一个重要性能是改变激光的波长。物理学规律告诉我们,波长每缩短一倍,存储的密度就会增加4倍。随着集成电路器件密度增加,器件的线度越来越小,随之制作集成电路的光刻技术要求光的波长越来越短。利用非线性光学晶体的倍频效应是产生短波长的重要方法。现在用的最多的非线性光学晶体是BBO、LBO和KTP。高效非线性光学材料属于国家保密技术,上个世纪80年代美国政府把KTP晶体作为高度保密的高科技产品,严格限制对非盟国出口。用于激光的晶体必须具备以下特点:适中的非线性光学效应,大的晶体双折射率,晶体在紫外区域的截止边要小于170纳米。KBBF晶体的研制成功创造了非线性光学性能的三个第一:紫外光谱区最宽的可相位匹配范围,最宽的温度范围以及最高的光损伤阈值,到目前为止KBBF是所有非线性光学晶体中性能最好的。Nature杂志在2009年发表专题评述论文,指出:“中国是目前唯一能够研制此晶体的国家,这真是一块完美的晶体,它确实可以使某些领域向前发展——前提是如果你能得到它”。最后陈创天院士详细介绍了KBBF与目前应用的LBO、BBO相比较,其紫外谐波光输出能力。 清华大学薛其坤院士、中科院大连化学物理研究所俞红梅研究员   清华大学薛其坤院士报告题目是“非常规高温超导到底非常规在什么地方?”。自从1986年发现铜氧化物高温超导电性到今天,超导机理仍然是物理学界未解的最重要的科学难题之一。四年前铁基高温超导的发现,似乎使这一问题变得更加扑朔迷离。之所以把这些材料称之为非常规超导体,简单的原因是其配对波函数不是简单金属超导体的s波,其超导机理不能用狭义的BCS理论解释。究竟这些“非常规超导体”到底非常规在哪里?能用常规的理论去理解“非常规”性质吗?有明确的办法而不是通过“盲目”合成新材料来提高高温超导体的超导转变温度吗?薛其坤院士从原子水平上薄膜材料的控制生长、高灵敏度实验技术的发展与应用、化学家将能起到的重要作用等方面回答这些问题。   中科院大连化学物理研究所俞红梅研究员的报告题目是“低温燃料电池发展中的几个科学与技术问题”。燃料电池车性能已经达到了传统汽车的水平,民用燃料电池在降低成本时使用寿命面临很大的挑战,“低成本+长寿命”是燃料电池民品商业化面临的问题。燃料电池车成本高主要原因是铂用量大,目前的用量是30g/100kW,大规模商业化目标是5-10g/100kW,理想状况是把催化剂有序地组装到基体上。   三、可持续发展能源:太阳能、二氧化碳循环利用 中科院大连化学物理研究所李灿院士、中国科学院上海技术物理研究所褚君浩院士、中科院长春应用化学研究所王献红研究员   李灿院士的报告题目是“催化科学和技术的未来发展,太阳能利用的科学挑战”。催化在能源、环境、资源优化等领域一直发挥着重要的作用,标领着化学的最前沿和发展方向,也是国民经济可持续发展的关键技术之一,因此催化虽然是一门老学科,但是长盛不衰。据不完全统计,欧美国家催化对于GDP里的贡献达到了20-30%,我们国家也至少达到15%左右,这是一个非常了不起的贡献。目前我们国家在催化技术方面仍然落后于发达国家,由于正处于工业生产转型期,所以催化技术的发展空间很大。西方国家传统工业催化技术市场日趋饱和,在这方面的研究投入实际在下降。国内对于催化研究的投入逐年增加,催化基础研究已经达到了发达国家水平,逐渐摆脱了跟踪模仿,不断出现具有自主知识产权的重大应用成果。同时我们要时刻注意发达国家的发展趋势,适时从传统的化石能源相关催化技术逐步向低碳、洁净、可持续能源发展的催化技术转型。   太阳能科学利用是当今世界基础科学的重大前沿难题,也是人类社会可持续发展的必然选择,太阳能光催化制氢面临巨大的挑战,需要化学、物理、材料、生物等学科的通力合作,太阳能制氢尚在工业化应用前的探索阶段,我国应该在基础源头创新方面下更大的功夫。   中国科学院上海技术物理研究所褚君浩院士的报告题目是“太阳能光伏技术发展趋势”。太阳能的发展普遍采用两种方式,一是先提高产品的效率,然后想办法降低成本 另外一种是找低成本的材料,做出来之后想办法提高效率。目前太阳能电池主要有三类:一是硅基光伏电池,约占据光伏电池总量的90%,其次是如CdTe、GaAs等化合物,最后是新材料、新结构等新型光伏电池。硅基材料会逐渐减少,CdTe、敏化染料等会逐渐增加。现在实验室产品的效率要比生产中产品的效率高,大家都努力使生产中的产品的效率也能达到实验室产品的效率(约20%)。多晶硅一方面是提高效率,一方面是降低成本,降低成本就是采用物理的办法。   中国科学院长春应用化学研究所王献红研究员的报告题目是“基于CO2 的新型生物降解塑料-CO2 规模化利用的机遇”。随着世界各国对资源高效利用和环境保护的日益关注,二氧化碳的规模利用正在成为解决二氧化碳问题的主要方案之一,原因在于该方案不仅利用了温室气体二氧化碳,还为石化行业和能源化工品的原料来源多元化提供了重要示范。报告总结长春应用化学研究所在二氧化碳基塑料的高效制备、塑料的改性加工、塑料制品及应用方面的研究和工业化进展。催化剂的活性、选择性和中心金属的毒性是评估催化剂综合性能的三大关键因素,二氧化碳基塑料的低成本改性和合适的应用领域是决定其生命力的核心要素。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制