当前位置: 仪器信息网 > 行业主题 > >

胱氨酸

仪器信息网胱氨酸专题为您提供2024年最新胱氨酸价格报价、厂家品牌的相关信息, 包括胱氨酸参数、型号等,不管是国产,还是进口品牌的胱氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胱氨酸相关的耗材配件、试剂标物,还有胱氨酸相关的最新资讯、资料,以及胱氨酸相关的解决方案。

胱氨酸相关的资讯

  • 科华生物同型半胱氨酸(HCY)定量测定试剂盒取得医疗器械注册证
    2011年1月21日,科华生物研发的同型半胱氨酸(HCY)定量测定试剂盒(液体)(循环酶法)产品,取得了上海市食品药品监督管理局颁发的《医疗器械注册证》,准许准产注册。注册证编号为沪食药监械(准)字2011第2400060号。本产品是心脑血管疾病诊断的参考指标之一。   该项医疗器械注册证的取得,丰富了公司生化试剂产品线,对公司销售将产生一定的正面影响。
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 质谱新技术 | 美CDC 研究人员开发出筛查新生儿代谢性疾病的新方法
    美国疾病控制和预防中心的研究人员已经开发一种检测新生儿高同型半胱氨酸血症的方法,这是一种常被常规新生儿筛查测试忽略的病症,可能导致永久性损害或死亡。在上周发表在 Clinical Chemistry 杂志上的一项研究中描述该测试时,作者指出,高同型半胱氨酸血症影响到婴儿代谢蛋氨酸的能力,导致蛋氨酸和另一种生物标记物——同型半胱氨酸的水平升高。此外,它还会引起眼部和骨骼问题、智力缺陷和血管异常等问题。 传统的病症筛查方法使用的是以蛋氨酸为生物标记物的多重快速流注分析质谱(FIA-MS/MS)测试,但这种方法通常在新生儿筛查时蛋氨酸水平仍然较低。该测试可以检测到该病症但常常会漏诊。 该试验中引入了还原步骤以及使同型半胱氨酸灵敏度提高的衍生化步骤,使得新测试方法可以更准确地检测到高同型半胱氨酸血症,而不受其他生物标记物的影响。该测试可以无缝集成到现有和未来的一级新生儿筛查测试中,具有实际应用价值。 此测试是第一种能在常规的FIA-MS/MS新生儿筛查测试中实现同型半胱氨酸多重定量的测试方法。此前的属于二级筛查,总同型半胱氨酸进行分离、质谱分析,时间较长,并且比FIA-MS/MS测试使用频率低。该试验可能会漏诊低蛋氨酸水平下的同型半胱氨酸血症患儿,因此一般将其作为第二级筛查生物标记物,但有时在新生儿出生后两天内采集的血液样本中蛋氨酸水平还不够高会导致漏诊。同型半胱氨酸更加接近同型半胱氨酸血症代谢途径并且在受影响的新生儿身上更早出现,而且不受管路喂养的影响,因此可以提高新生儿筛查的准确性。 该试验被测试在152位临床标本中,其中有100个被判定为健康样本,50个是在医院接受管路营养治疗的婴儿样本,以及2个被诊断为同型半胱氨酸血症样本,测试结果准确无误。 测试方法可集成现有和未来的一级新生儿筛查测试中,成本低,具有实际应用价值。只需在现有筛查测试中添加额外的化学物质即可无缝集成。该方法需要进一步测试、验证并取得监管批准后方可大规模使用。 研究人员还计划将其他两个生物标记物引入测试中,以区分同型半胱氨酸血症和其他疾病。此外,该测试方法可以为检测使用总同型半胱氨酸作为生物标记的其他罕见代谢性疾病打开大门。在新生儿筛查中,检测其他与同型半胱氨酸水平相关的疾病也被提出作为一种选择。 总之,该测试方法为早期检测同型半胱氨酸血症提供了一种更准确、更快速和更经济的方法。研究人员表示,该方法的适用范围不仅限于CDC实验室,其他新生儿筛查实验室也可以采用该方法,并且这种化学物质成本较低,便于实际应用。 研究人员表示,该测试方法具有重要的临床意义和应用前景。在医学实践中,检测同型半胱氨酸血症很重要,因为它是一种罕见但可能会引起永久性损伤或死亡的疾病。如今,通过该测试方法,新生儿可以接受更及时、更准确的筛查,以确保他们的健康和幸福。此外,这种测试方法还可以进一步提高新生儿筛查的准确性,为其他代谢性疾病的早期筛查提供参考和借鉴。 然而,该测试方法并非百分之百准确,仍存在漏诊和误诊的风险。因此,在实践中,研究人员建议采用多种测试方法相结合的筛查方法,从而最大程度地减少漏诊和误诊的风险。 总之,对于新生儿来说,早期筛查是非常重要的,因为许多疾病在早期就可以通过筛查被发现和治疗,避免造成长期的不可逆损伤。而这项新的同型半胱氨酸血症测试方法的出现,将有助于提高新生儿筛查的准确性和效率,为新生儿健康保驾护航。 研究人员表示,该测试方法是基于最新技术的成果,并得到了现代技术的支持。基于这个方法,他们也在尝试开发其他新的测试方法,以提高新生儿筛查的准确性和覆盖面。同时,他们还将继续研究同型半胱氨酸血症的治疗方法,为患者提供更好的治疗方案。 该新测试方法的出现为新生儿筛查提供了一种更准确、更快速和更经济的方法,有助于预防和治疗同型半胱氨酸血症等代谢性疾病。这是一个非常好的消息,使我们相信,随着先进技术的不断发展和应用,我们能够更好地保障人类健康和幸福。 该测试方法还需要进一步开发和优化。研究人员将继续改进该方法,包括增加生物标记物的数量和灵敏度,并且要将该测试集成到更多实际应用中。此外,他们还将考虑将该测试方法应用于其他人群的筛查中,以扩大其应用范围。 此外,该测试方法的出现也受到了一些限制和挑战。例如,该测试需要采集新生儿的血液样本,这可能会造成疼痛和不适,需要专业医护人员进行操作。此外,该测试方法还需要耗费一定的时间和资源,这将对筛查的效率和成本产生一定的影响。因此,在实际应用中,需要权衡各种因素,并与其他筛查方法一起使用,以最大程度地提高筛查效果。新生儿高同型半胱氨酸血症是一个危险的罕见疾病,早期筛查尤为重要。该研究开发出的测试方法可以提高筛查准确性,有望在实践中应用。这项成果不仅对筛查同型半胱氨酸血症有很大帮助,而且还为其他罕见代谢性疾病的早期筛查提供借鉴。我们期待着更多的科技成果能够为人类健康事业作出贡献。 Petritis也提出了检测与同型半胱氨酸水平相关的其他疾病作为一种选择。将同型半胱氨酸分析加入到基于串联质谱的主要筛查中,“打开了检测使用总同型半胱氨酸作为生物标志物的其他罕见代谢性疾病的大门。”Petritis指出,举例来说,重甲基化障碍是其中之一。该研究小组还在致力于将另外两种生物标志物多重复合到测试中,以区分同型半胱氨酸尿症和其他疾病。 参考文献: https://academic.oup.com/clinchem/advance-article/doi/10.1093/clinchem/hvad007/7068836
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 生物物理所等在GPCR别构调节机制研究方面取得进展
    近日,《美国化学会志》期刊在线发表了中国科学院生物物理研究所王江云课题组与上海科技大学刘志杰和华甜课题组的研究论文。该研究首次通过基因密码子扩展方法,在昆虫细胞表达系统中实现含氟非天然氨基酸(3-三氟甲基-L-苯丙氨酸,mtfF)的插入,并成功用于大麻素受体CB1别构调节机制的研究。  氟原子由于具有对蛋白质环境变化高度敏感、100%天然丰度及没有背景信号等特点,被广泛用于蛋白质动态构象的研究。目前利用19F-NMR检测蛋白质动态构象主要通过蛋白质的半胱氨酸标记含氟原子的基团,进而实现信号检测。但是这需要在目标蛋白表面感兴趣的标记位点存在可接近的半胱氨酸残基,同时要将其他所有暴露在表面的半胱氨酸残基突变掉,这将会影响蛋白质的结构稳定性。半胱氨酸介导的位点特异性标记对于含有少量半胱氨酸残基的蛋白质来说是方便且通用的。然而,近2/3的人类GPCR含有超过10个半胱氨酸残基,并且所有暴露于表面的半胱氨酸残基的突变可能会对目标蛋白造成显著的结构扰动。此外,隐藏在蛋白质疏水核心内的残基不能通过这种方法进行标记。基于半胱氨酸标记方法局限性,发展简单便捷的真核系统蛋白质氟探针标记方法对研究真核生物蛋白质构象十分重要。  大麻素受体CB1是人大脑里表达量最高的GPCR之一,调控多种重要的生理活动,是治疗神经和精神类疾病、肥胖等的重要靶点。刘志杰/华甜课题组一直聚焦于大麻素受体结构与功能的系统性研究,在过去几年中成功解析了大麻素受体CB1和CB2在拮抗状态、类激活和激活状态下的三维结构,揭示了正构调节配体对大麻素受体的作用机制。为了进一步探究别构调节剂对CB1的调控机理以及不同配体如何对GPCR的动态构象进行调控等科学问题,王江云课题组与刘志杰/华甜课题组以及iHuman研究所核磁共振实验室副研究员刘东升合作,利用基因密码子扩展方法,首次获得真核细胞内识别含氟非天然氨基酸的mtfF-氨酰-tRNA合成酶,在昆虫细胞中实现CB1构象变化敏感位点的标记。借助上海科技大学iHuman研究所核磁共振平台,探究了不同正构配体以及别构调节剂Org27569对CB1的动态构象变化的调控,首次发现了Org27569和激动剂如何在CB1激活过程中协同稳定以前未被识别的前激活状态。  通过团队的密切合作和不懈努力,使用19F-NMR破译了受体的动态过程和多态性,同时结合X-射线晶体学方法,揭示了别构调节剂Org27569对CB1的独特调控机理,提出了CB1的激活和别构调节模型,尤其是Org27569和胆固醇分子在CB1激活过程中扮演的角色。基因编码的非天然氨基酸mtfF方法的建立可广泛用于GPCR动态构象变化研究的标记系统,也可以用于其它真核蛋白质动态构象的研究。  该研究得到国家自然科学基金委和国家高技术研究发展计划资助项目的支持。  论文链接
  • 绘云生物质谱试剂盒获医疗注册证,创始人为代谢组学专家、欧洲科学院院士贾伟
    7月3日,深圳市绘云生物科技有限公司的同型半胱氨酸测定试剂盒(液相色谱—串联质谱法)正式获得广东省药品监督管理局二类医疗器械注册证(注册证编号:粤械注准20232401152)。本产品用于体外定量测定人血清中同型半胱氨酸的浓度,临床上主要用于高同型半胱氨酸血症的辅助诊断及心血管病风险的评价。试剂盒由校准品1~4、质控品1~2、内标准品、还原剂、沉淀剂、稀释液、96孔深孔板和96孔V底板、96孔板铝式覆膜、96孔板硅胶垫组成。其中校准品1~4:含同型半胱氨酸和牛血清白蛋白的冻干粉 质控品1~2:含同型半胱氨酸和牛血清白蛋白的冻干粉 内标准品:含氘代同型半胱氨酸和氢氧化钠的水溶液 还原剂:含二硫苏糖醇的固体粉末 沉淀剂:含甲醇 稀释液:含抗坏血酸的水溶液。  仪器信息网进一步查询到绘云生物的相关信息,2017年,贾伟教授创立深圳绘云生物科技有限公司,瞄准大健康及慢病管理的全新领域,运用现代生物技术,开发慢病诊断、预警及干预的创新技术产品。绘云生物曾于2017年获天使轮融资,2021年完成A轮融资。公司专注于医学健康,开展精准医疗和大健康产业相关产品的研发,着力推动个体化医疗服务进展,是一家集科技服务、健康检测及产品研发为一体的高新科技企业。绘云生物科技有限公司致力于研制和生产在医疗领域、研究领域以及商业实验中使用的体外诊断试剂。除了体外诊断试剂,绘云生物科技有限公司还提供诊断检测以及代谢组学技术服务。
  • 助力生物药研发,浅谈ADC药物DAR值测定
    导语从上世纪初德国医学家、诺贝尔奖得主Paul Ehrlich(保罗埃尔利希)提出ADC(Antibody-Drug Conjugate,抗体药物偶联物)的概念至今,ADC药物已经发展至第三代,一系列特异性偶联技术使得生产工艺变得更加稳定,能够得到稳定药抗比的药物,对于ADC药物的疗效和安全性都有很大的贡献,推动了ADC药物的研发。抗体药物偶联物ADC是具有靶向作用的单克隆抗体与具有特定药理学特性(如细胞毒作用)的化合物的结合,两部分通过连接子偶联为一个整体。DAR(Drug-to-Antibody Ratio,药物抗体比值)是抗体药物偶联物的一个关键属性,是ADC药物研发过程重要的质控环节。 ADC药物 带您了解DAR值如何检测 ADC药物从本质上讲是混合物,是由连接不同个数小分子药物的单抗组成,DAR代表的是每个单抗上连接小分子药物的平均数量,DAR直接影响ADC药物的疗效和安全性,药物研发阶段应尽量缩小DAR值的变动区间。 ADC药物的偶联位点分为单抗赖氨酸残基上的氨基和半胱氨酸残基上的巯基。通过赖氨酸偶联的DAR往往比较小,而潜在的偶联位点却很多,偶联反应具有随机性,产物异质性较大;ADC药物研发使用的单抗有4对链间二硫键,抗体通过部分还原使链间二硫键转换成游离的半胱氨酸残基,半胱氨酸残基中的巯基与连接子中的马来酰亚胺基反应形成ADC,一般连接的小分子数量为0、2、4、6和8,如图所示。 半胱氨酸偶联的ADC药物DAR分布 DAR测定的方法有多种,可分为光谱法、色谱法和质谱法,可根据ADC的特性及偶联工艺等因素选择合适的方法,具体如下: 紫外/可见光谱法(UV/Vis)紫外/可见光谱法是检测DAR值最简单稳定的方法,这种方法需要抗体和小分子药物具有不同的最大吸收波长,分别计算二者的浓度进而得到ADC的DAR值,适用于多种ADC。 色谱法色谱法包括疏水作用色谱(HIC)和反相高效液相色谱法(RP-HPLC)两种,适用于测定半胱氨酸偶联的ADC。疏水作用色谱法能将不同DAR值的组分根据疏水性的差异分离开,且保持ADC分子的结构完整性;反相高效液相色谱法需要先将抗体还原得到轻、重链再进行分析,可用于补充验证疏水作用色谱法的结果,并且适用于质谱分析。 质谱法质谱法适用于赖氨酸偶联的ADC的DAR值测定,包括液相色谱串联质谱和MALDI-TOF-MS。赖氨酸偶联的ADC具有较强的异质性,增加了质谱谱图解析的难度,通常在测定前需对ADC进行额外的前处理,如去糖基化和去除C端赖氨酸异质性。 我们能做什么?疏水作用色谱法解决方案我们使用生物兼容液相系统(Nexera Bio)建立了一种疏水作用色谱方法用于抗体药物偶联物(ADC)中药物抗体比值(DAR)和药物分布的测定。 生物兼容液相系统(Nexera Bio) Nexera Bio系统通过对关键部位的惰性化升级,在耐受高压的前提下,升级的惰性表面降低了生物大分子在管路进样针、检测器中的吸附,并且可耐受高盐洗脱体系,更适合于生物大分子样品的分析。通过梯度洗脱,降低盐浓度,增加有机相比例,可将偶联不同药物数量的ADC分离,未偶联药物的抗体疏水性最弱,最先被洗脱,连接8个药物的抗体疏水性最强,最后被洗脱。峰面积百分比代表特定药物数量连接的ADC的相对分布。通过峰面积百分比和偶联药物数量计算加权平均DAR。 我们将此方法应用于实际药物的分析,并进行了重复性考察,发现液相系统稳定,方法重复性良好。 实际样品色谱图 表2. 6次进样数据重复性结果我们还能做什么? 岛津的产品线比较全面,包括紫外-可见吸收光谱、高效液相色谱、LCMS-Q-TOF以及MALDI-TOF质谱,可满足不同用户对于仪器的需求,较全面覆盖ADC药物DAR值测定以及其它生物制品的研发质控。 结语 经历了几十年的发展,ADC药物研究取得了巨大进展,已上市药物数量达到了12个,在研管道300多种。无论是赖氨酸偶联还是半胱氨酸偶联的ADC药物,都是复杂的混合药物,应该通过工艺的改进更好地控制DAR值变动区间,降低ADC药物的异质性。岛津一直关注生物药行业的发展,希望以我们的仪器平台为产品研发助力,推动新药安全、有效地走向临床,造福社会。
  • 质谱从多维度“透视”ADC,为产品质量保驾护航
    ADC药物作为一类新兴的生物治疗药,其结构更为复杂,质量表征挑战也随之升级。在ADC的定量和定性表征中,质谱凭借其独特的能力发挥着不可或缺的作用,可以从完整分子水平、亚基水平、肽段水平和小分子分析等方面对ADC进行多维度的表征(如图1所示)。图1. 质谱多维度表征ADC的方法[1]ADC质谱表征策略√ 丰富的项目经验夏尔巴生物在ADC项目开发方面积累了丰富的经验,涵盖半胱氨酸随机偶联、糖基化定点偶联、半胱氨酸定点偶联、双抗ADC以及双载荷ADC等多种类型。目前,已有5个项目进入临床阶段、多个项目处于临床前阶段。√ 高效的ADC质谱表征流程夏尔巴生物凭借深厚的表征经验和先进的分析平台,成功打造出一套全面、高效的ADC质谱表征策略,可对不同偶联方式的ADC药物进行全方位表征,涵盖分子量、偶联位点、偶联位点占有率、偶联杂质、二硫键和翻译后修饰等,确保分析的全面性和深入性。这套质谱表征流程有效克服了在DAR(药物抗体比)分析、复杂肽段偶联位点的质谱表征研究方面的难题,实现了在完整分子水平的精准分析,充分为产品质量保驾护航。本文聚焦于药物抗体比(DAR, drug-to-antibody ratio)和偶联位点这两个ADC药物的关键质量属性,深入介绍夏尔巴生物的质谱表征方法。药物抗体比(DAR, drug-to-antibody ratio)的质谱表征ADC常用的偶联方式一般分为随机偶联和定点偶联,随机偶联包括赖氨酸随机偶联和半胱氨酸随机偶联;定点偶联方式较多,包括引入反应性半胱氨酸定点偶联、引入非天然氨基酸定点偶联、糖基化偶联、抗体间二硫键桥接偶联、其他酶促反应偶联等。半胱氨酸随机偶联过程如图2所示,由于半胱氨酸随机偶联ADC的轻链和重链以及重链和重链之间的二硫键被破坏,RP-LC/MS方法流动相中的有机溶剂会破坏非共价连接的立体空间结构,无法在完整分子水平分析DAR值和载荷分布情况。图2. 半胱氨酸随机偶联ADC偶联过程和结构展示[2] 而非变性质谱法(Native MS)由于其自身的特性,尤其是体积排阻色谱(Size exclusion chromatography, SEC)和质谱联用,很好的弥补了这种缺陷。SEC-MS法通常选择与质谱兼容的乙酸铵作为流动相体系,液相分离过程中无有机相参与,对柱温要求较低,分子的非共价结构得以保留,从而可以在完整分子水平进行DAR值分析。疏水作用色谱(HIC)通常以含盐的水溶液作为流动相,检测过程中不会引入有机相,也适用于在完整分子水平进行DAR值分析,通常被作为半胱氨酸偶联ADC的DAR值检测放行方法。但是HIC法本身不具备DAR值组分鉴定的能力,所以在HIC方法开发过程中,需要收集不同的组分,借助Native MS鉴定每个峰的组成。HIC法DAR值检测典型图谱见图3A,相应的Native-MS鉴定结果如图3B所示。图3. HIC和Native MS检测DAR值结果[2]定点偶联ADC在偶联过程中一般不会打开分子的链间二硫键,所以传统的RP-LC/MS法可以进行完整水平的DAR值分析。经典的糖定点偶联过程如图4所示,偶联过程中链间的二硫键得以保留,RP-LC/MS法以有机溶剂和水作为流动相,经过反相分离后进行质谱检测,对质谱结果解卷积分析后即可得到平均DAR值和载荷分布。图4. 糖定点偶联ADC的偶联过程[3]双载荷ADC(dual-payload)是在抗体上偶联两种不同的载荷,其自身异质性较强,常规分析方法很难实现两种载荷的DAR值检测,质谱可以根据带有不同载荷分子的分子量差异进行总DAR值以及两种不同载荷DAR值(DAR-A和DAR-B)的表征研究(图5)。图5. 双载荷ADC质谱表征[4]质谱分析DAR相较于常规分析方法的另一个优势在于可以在完整分子和亚基水平分别评估,如图6所示,对完整分子进行DTT还原后,可以检出轻链和重链上分别偶联的linker-payload数量,加权计算得出平均DAR值,与完整分子量检测结果交叉验证,可以得到更准确的ADC结构信息。图6. 质谱在完整分子和亚基水平DAR值检测结果ADC偶联位点的质谱表征研究肽图分析(LC-MS/MS法)是表征大分子药物的强大工具,将ADC样品酶解后,利用LC-MS/MS分析,从而确证氨基酸序列、翻译后修饰、二硫键连接形式,通过一级和二级质谱信号对肽段序列和linker-payload特征碎片进行确认即可获得偶联位点信息。图7. 肽图法质谱分析流程对于含有多个偶联位点的肽段,偶联位点的鉴定会更复杂,如图8所示,铰链区酶切肽段含有两个半胱氨酸偶联位点(~CPPC~),肽段有可能偶联一个或者两个linker-payload,这时就需要通过一级质谱判断肽段偶联的linker-payload数量,结合二级质谱信息判断偶联发生位点。图8. 偶联一个和两个linker-payload肽段质谱鉴定结果综上所述,夏尔巴生物的质谱分析平台具备生物大分子的全面表征分析能力,可以实现抗体、融合蛋白以及随机/定点不同偶联方式的不同分子形式ADC药物的全面表征研究和分析方法开发,可以根据需求为客户提供Top-down、Middle-down、Bottom up等基于质谱的、全面的生物大分子结构表征研究和质量控制策略,助力客户产品提质增效。参考文献1) Zhu X, Huo S, Xue C, et al. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates[J]. Journal of pharmaceutical analysis, 2020, 10(3): 209-220.2) Valliere-Douglass JF, Hengel SM, Pan LY. Approaches to Interchain Cysteine-Linked ADC Characterization by Mass Spectrometry. Mol Pharm. 2015 Jun 1 12(6):1774-83.3) van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjug Chem. 2015 Nov 18 26(11):2233-42.4) Yamazaki C M , Yamaguchi A , Anami Y ,et al.Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance[J].Nature Communications[2024-03-05].关于夏尔巴生物夏尔巴生物专注于提供抗体、融合蛋白、ADC(抗体偶联药物)等药物的开发和商业化生产,致力于“帮助优质客户开发出全球老百姓用得起的高质量生物药”。公司已组建了一支具有丰富经验的国际化人才团队,并助力完成了40多个项目的申报注册以及10个产品的国内外上市,满足了250多万病人的用药需求。目前,夏尔巴生物在苏州已有60,000L的总产能,生产线的建设标准同时符合NMPA、FDA和EMA等GMP要求。同时,夏尔巴生物在杭州基地还有172,000L产能在建,其中4条20,000L的生物反应罐已建成。夏尔巴生物致力于为优质客户提供优质的技术服务,可提供行业领先的一站式解决方案,协助客户加速将创新成果实现商业化,惠及更多患者。“利他以恒,匠心致远”,以分享、帮助、成就、共赢的理念,帮助优质客户开发出全球老百姓用得起的高质量生物药,是夏尔巴生物的理想和目标。
  • 日立:药典明确氨基酸分析检测方法 市场将以15%以上速度增长
    近日,国家药监局发布公告,《中国药典》2020年版第一增补本已编制完成,将于3月12日正式实施,此次增补本,在通则和指导原则部分,对多个分析测定方法进行了新增和修订,在药典四部中,新增了9120氨基酸分析指导原则,并对0713脂肪与脂肪油测定法、0832水分测定法、1421灭菌法、2341农药残留量测定法、2351真菌毒素测定法、9001原料药物与制剂稳定性试验指导原则以及9205药品洁净实验室微生物监测和控制指导原则等做出修订。为了全面了解《中国药典》中分析方法的新进展,促进药物检测检测工作的交流与合作,仪器信息网特别发起“《中国药典》分析方法新进展”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及相关仪器厂商们积极投稿。本文特别邀请日立一起分享,关于氨基酸分析指导原则修订相关内容的解读和解决方案。问题1: 《中国药典》2020年版第一增补本已编制完成,本次增订,对9120氨基酸分析指导原则有哪些方面的更新? 与之前的版本相比,该变化对于制药行业或相关用户会带来哪些影响?目前美国药典、日本药典、欧洲药典等都已经收录了氨基酸分析指导原则,部分药企出口到相应国家的产品也参考这些药典进行氨基酸含量测定或者对原料进行杂质筛查。我国药典也收录了复方氨基酸注射液、多肽类药物和中药等品种都需要采用适宜的氨基酸分析方法进行质控,但之前药典没有收录氨基酸测定指导原则,此次新增氨基酸分析指导原则明确了药典标准的执行过程中如何选择适宜的方法。指导原则要求柱前衍生检测通常使用高效液相色谱仪,柱后衍生法检测一般使用商品化的氨基酸分析仪。指导原则收录了盐酸水解法、碱水解法、氧化水解法、二硫代二乙酸或二硫代二丙酸还原酸水解法、双(1,1-三氟乙酰氧基)碘苯还原酸水解法共计5中样品前处理法。收录了柱前PITC衍生氨基酸测定法、柱前AQC衍生氨基酸测定法、柱前OPA和FMOC衍生氨基酸测定法、柱前DNFB衍生氨基酸测定法、柱后茚三酮衍生氨基酸锂离子交换系统测定法、柱后茚三酮衍生氨基酸钠离子交换系统测定法共计4种柱前衍生法和2种柱后衍生法。按外标法或内标法以峰面积计算样品中的各种氨基酸含量。问题2:新标准实施是否会对相关仪器市场产生拉动?预估市场变化规模有多大?根据相关市场预测,从2020年到2025年,氨基酸分析仪市场每年大概增长10%左右,新的指导原则的实施将有助于药厂明确产品检测方法,有助于产生新的氨基酸分析仪的采购需求,市场需求大概以15%以上的速度增长。2022年日立LA8080高速氨基酸分析仪销售台数实现了超30%大幅增长了,2023年在2022年高速增长的基础上销售台数又实现了双位数增长,同时日立Chromaster全功能氨基酸分析仪销售台数也相应的快速增长。问题3:目前贵公司在氨基酸检测方面有哪些特色的应用方案或仪器产品?具有怎样的技术优势?针对氨基酸检测,日立科学仪器(北京)有限公司可以提供指导原则所列的柱前衍生和柱后衍生两种不同的方案,方便药企和药检所根据实际需求选择。1、日立日立Chromaster高效液相色谱仪柱前衍生法日立Chromaster高效液相色谱仪可以根据用户的实际需求提供灵活的配置:• 10 ml/min双柱塞串联往复泵可以选择40 Mpa或60 Mpa• 紫外可见检测器、荧光检测器、DAD检测器等• 可选配衍生单元进行柱后茚三酮法检测。• 标配第1代700-1500cm的反应盘管衍生技术日立Chromaster全功能氨基酸分析仪以下是使用日立日立Chromaster高效液相色谱仪部分测试示例:1.1、PITC法柱前衍生测氨基酸1.2、依据日本药典测定Val/Ile/Leu样品1.3、测定乙酰半胱氨酸1.4 选配柱后衍生单元后,可以进行柱后茚三酮法测定氨基酸2、日立LA8080高速氨基酸分析仪柱后衍生法日立LA8080高速氨基酸分析仪日立公司也提供LA8080高速氨基酸分析仪测定方法,主要配置:• 1 ml/min双柱塞串联往复半微量泵• 3µm高理论塔板数阳离子交换树脂色谱柱• 全自动色谱柱自行装填程序• 光栅分光检测器• 高压全体积直接进样• 衍生单元提供3种方式可选(第3.5衍生技术灵敏度最高,使用寿命最长):研发于1997年的第2代反应柱研发于2011年第3代TDE2研发于2017年第3.5代TDE3(研发于1962年的第1代700-1500cm反应盘管技术可供对检测结果准确性要求不高的用户选配)日立LA8080高速氨基酸分析仪可选配色谱柱全自动自行装填程序,可实现用户自行装填色谱柱,且柱效可达到原厂色谱柱柱效。以下是使用日立LA8080高速氨基酸分析仪测定样品的示例:2.1、18AA-II复方氨基酸注射中氨基酸测定样品测定难度在于Cys含量非常低,非常考验仪器灵敏度和噪音,LA8080噪音值验收承诺小于25 µV,实测噪音值会比25 µV更小,针对这种含量差异非常大的样品检测对低含量氨基酸检测结果更准确。在前几年的抽检中,在被抽检到的药企中,使用日立LA8080的药企都顺利的通过了抽检,部分抽检未通过的药企重新采购了1-5台日立LA8080。2.2、根据指导原则,部分药企可能会选内标法测定氨基酸,日立LA8080可提供正亮氨酸和正缬氨酸做内标两种方法。2.2.1 正亮氨酸(Nle)做内标正亮氨酸做内标标准分析法仅需要通过调整分析程序即可获得更大分离度正亮氨酸做内标高分离分析法2.2.2 正缬氨酸(Nval)做内标可以在30分钟内实现包含CySO3H/MetSON/Orn/Hypro等氨基酸在内的25种氨基酸分析2.3、指导原则提到“在蛋白质或多肽水解之前,用过氧甲酸氧化样品中的半胱氨酸或胱氨酸和甲硫氨酸,使其转化为稳定的磺基丙氨酸和甲硫氨酸砜,防止半胱氨酸或胱氨酸和甲硫氨酸在水解过程中被破坏”,日立LA8080提供含硫氨基酸测定标准分析和快速分析两种方法。2.3.1 含硫氨基酸标准分析法:2.3.2 含硫酸氨基酸快速分析法:2.4、含丙氨酰谷氨酰胺复方氨基酸注射液的测定,日立LA8080可提供更加多样化的分析方法,仅需调整分析方法即可实现不同目的的测定需求,显示出LA8080洗脱模式的优异性。2.4.1标准60 mm色谱柱的标准分析法2.4.2、标准60 mm色谱柱的快速分析法,仅需要调整分析程序即可2.4.3标准60 mm色谱柱的高分离分析法,仅需要调整分析程序即可2.4.3、80 mm色谱柱的标准高分离分析法2.5、复方氨基酸注射液中氨基酸测定2.6、复方氨基酸注射液中氨基酸测定2.7、脑蛋白水解氨基酸测定2.8、3-氨基丙醇测定2.9、有关物质筛查2.9.1 SST2.9.2 原料如果LA8080色谱柱柱效下降后,可以使用全自动色谱柱装填程序实现一键式自行装填。进口色谱柱对照品图谱自行装填色谱柱对照品图谱通过比较对照品图谱,可以发现LA8080自行装填色谱柱柱效可以达到甚至优于进口色谱柱的柱效。综上,日立公司不仅可以提供指导原则所列柱前衍生法测定方案,也可以提供灵活多样的柱后衍生测定方案,更多的分析示例和方法请联系日立科学仪器(北京)有限公司。
  • OPTON的微观世界|第6期 烫发、染发对发质的影响
    ——不同头发在SEM下的微观分析 前期回顾上期内容我们通过显微分析技术,探究了色彩斑斓的蝴蝶之美,本期在女神节到来之际,我们借助扫描电子显微镜以及能谱研究烫发、染发对发质的影响。序 言3月8日是普天同庆的女神节,爱美之心、人皆有之。随着社会的进步和社交的不断扩展,人们越来越注重自身的外表,女性则更甚之。改革开放以来,做头发作为一种潮流从年轻人群逐渐扩散到各个年龄阶段的人群。很多人频繁出入理发店,做各类各式的头发。在理发过程中,理发师会极力给客户推荐烫发、染发等各种服务。人们通过做头发,改善了自身的外在形象,提高了自我的精神面貌。那么,做头发是否会对发质有不好的影响?这个影响程度有多大?带着这几个问题,小编通过扫描电子显微镜下自然的头发、烫发、染发的显微观察,揭开烫发、染发对发质的影响。本期所选取的头发来自三位健康成人。其中一人的头发自然,未有后天的人为加工;其中一人的头发经过离子烫处理;第三人的头发经过染发的处理。健康成人的自然头发的显微分析——形貌分析以及成分分析从图1可以看出,健康成人的自然头发结构排列紧密。在较大的放大倍数下,可以看出头发表面主要由片层状的结构组成。这些片层状的结构如鱼鳞一般分布,且“鱼鳞”之间间隔约为11um-15um。图1 健康成人的自然头发形貌图从图2可以看出,健康成人的自然头发的成分。头发的成分主要含有Ca、O、Na、S、K等元素。健康成人的自然头发富有弹性,这与氨基酸链间连接的双硫键和数量更多的氢键密切相关。头发的角蛋白由一种颇长的氨基酸链组成,其中大多数是胱氨酸。每条链皆为螺旋形,然后再成束卷或绳索样。每个胱氨酸单位有两个半胱氨酸,邻近的两条链中的半胱氨酸通过二硫键形成强的化学结构。众多的双硫键的连接使角蛋白象一只长梯。双硫键的结合很牢固,远大于氢键的结合力,只有用化学的方法才能使其断开。图2 健康成人的自然头发成分图烫发、染发对头发的微观形貌的影响——形貌分析 从图3可以看出,经过离子烫以及染过的头发与自然的头发在形貌上有一定的区别。自然的头发表面平整,密布着大量的鱼鳞状结构。经过离子烫的头发的表面不平整,有一定的鱼鳞状结构的分布,且有一定量的较大的颗粒状物质分布。这些物质是由于头发经历离子烫的过程中产生的。经过染发处理的头发表面较平整,几乎没有鱼鳞状结构的分布,且有少量的较小的颗粒状物质分布。图3 健康成人的自然头发(a)、烫发(b)、染发(c)的低倍形貌图 从图4可以看出,烫发和染发对头发有一定的损伤。自然的头发表面的鱼鳞状结构有序排列。经过离子烫的头发表面的鱼鳞状结构受到了一定程度的损伤,这些损伤后形成的物质构成了前文中颗粒物的一部分。经过染发的头发表面几乎没有鱼鳞状的结构,只能在头发的局部发现少量未损伤完全的鱼鳞状结构。图4 健康成人的自然头发(a)、烫发(b)、染发(c)的高倍形貌图烫发、染发对头发的成分的影响——成分分析 从图5可以看出,烫发和染发对头发有一定的影响。经过烫发和染发处理的头发的S元素的含量较少、Na元素的含量较多。烫发和染发时,卷发器将头发的角蛋白中的多肽链拉长,这时还原剂很容易使二硫键切断,而氧化剂则在拉长后的位置上形成新的二硫键,理论上头发因而形成和维持新的形态。但实际上仍有相当部分二硫键断开,因而降低发质。图5 健康成人的烫发(a)、染发(b)的成分图后记 通过扫描电镜显微观察以及能谱的成分分析,可以看出染发和烫发对发质有一定的损害。人们在追求外在美的同时,更因该追求内在美。热爱祖国、团结邻舍、爱岗敬业,锻炼自己的体魄和提高自身的修养。古人说修心养性。只要有健康的人生态度和体魄,即使不做头发也可以很美。
  • 微观世界|第6期 烫发、染发对发质的影响
    ——不同头发在SEM下的微观分析 前期回顾上期我们探索了优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上的差别。随着大米放置时间的增长,米粒内部的化学物质发生了变化,复粒淀粉内部的微粒间键合减弱结合力变弱。本期我们借助扫描电子显微镜以及能谱研究烫发、染发对发质的影响。 序 言爱美之心、人皆有之。随着社会的进步和社交的不断扩展,人们越来越注重自身的外表,女性则更甚之。改革开放以来,做头发作为一种潮流从年轻人群逐渐扩散到各个年龄阶段的人群。很多人频繁出入理发店,做各类各式的头发。在理发过程中,理发师会极力给客户推荐烫发、染发等各种服务。人们通过做头发,改善了自身的外在形象,提高了自我的精神面貌。那么,做头发是否会对发质有不好的影响?这个影响程度有多大?带着这几个问题,小编通过扫描电子显微镜下自然的头发、烫发、染发的显微观察,揭开烫发、染发对发质的影响。本期所选取的头发来自三位健康成人。其中一人的头发自然,未有后天的人为加工;其中一人的头发经过离子烫处理;第三人的头发经过染发的处理。 健康成人的自然头发的显微分析——形貌分析以及成分分析从图1可以看出,健康成人的自然头发结构排列紧密。在较大的放大倍数下,可以看出头发表面主要由片层状的结构组成。这些片层状的结构如鱼鳞一般分布,且“鱼鳞”之间间隔约为11um-15um。图1 健康成人的自然头发形貌图从图2可以看出,健康成人的自然头发的成分。头发的成分主要含有Ca、O、Na、S、K等元素。健康成人的自然头发富有弹性,这与氨基酸链间连接的双硫键和数量更多的氢键密切相关。头发的角蛋白由一种颇长的氨基酸链组成,其中大多数是胱氨酸。每条链皆为螺旋形,然后再成束卷或绳索样。每个胱氨酸单位有两个半胱氨酸,邻近的两条链中的半胱氨酸通过二硫键形成强的化学结构。众多的双硫键的连接使角蛋白象一只长梯。双硫键的结合很牢固,远大于氢键的结合力,只有用化学的方法才能使其断开。图2 健康成人的自然头发成分图 烫发、染发对头发的微观形貌的影响——形貌分析 从图3可以看出,经过离子烫以及染过的头发与自然的头发在形貌上有一定的区别。自然的头发表面平整,密布着大量的鱼鳞状结构。经过离子烫的头发的表面不平整,有一定的鱼鳞状结构的分布,且有一定量的较大的颗粒状物质分布。这些物质是由于头发经历离子烫的过程中产生的。经过染发处理的头发表面较平整,几乎没有鱼鳞状结构的分布,且有少量的较小的颗粒状物质分布。图3 健康成人的自然头发(a)、烫发(b)、染发(c)的低倍形貌图 从图4可以看出,烫发和染发对头发有一定的损伤。自然的头发表面的鱼鳞状结构有序排列。经过离子烫的头发表面的鱼鳞状结构受到了一定程度的损伤,这些损伤后形成的物质构成了前文中颗粒物的一部分。经过染发的头发表面几乎没有鱼鳞状的结构,只能在头发的局部发现少量未损伤完全的鱼鳞状结构。图4 健康成人的自然头发(a)、烫发(b)、染发(c)的高倍形貌图? 烫发、染发对头发的成分的影响——成分分析 从图5可以看出,烫发和染发对头发有一定的影响。经过烫发和染发处理的头发的S元素的含量较少、Na元素的含量较多。烫发和染发时,卷发器将头发的角蛋白中的多肽链拉长,这时还原剂很容易使二硫键切断,而氧化剂则在拉长后的位置上形成新的二硫键,理论上头发因而形成和维持新的形态。但实际上仍有相当部分二硫键断开,因而降低发质。图5 健康成人的烫发(a)、染发(b)的成分图? 后记 通过扫描电镜显微观察以及能谱的成分分析,可以看出染发和烫发对发质有一定的损害。人们在追求外在美的同时,更因该追求内在美。热爱祖国、团结邻舍、爱岗敬业,锻炼自己的体魄和提高自身的修养。古人说修心养性。只要有健康的人生态度和体魄,即使不做头发也可以很美。
  • 团标T/SATA 041-2023食品中有机硒含量的测定 高效液相色谱-电感耦合等离子体质谱法4月21日正式实施!
    标准编号:T/SATA 041-2023中文名称:食品中有机硒含量的测定 高效液相色谱-电感耦合等离子体质谱法发布部门:深圳市分析测试协会发布日期:2023-03-21实施日期:2023-04-21 文件规定了食品中有机硒液相色谱联用电感耦合等离子质谱法的测定方法。本文件适用于粮谷、食用菌、酵母、鸡蛋、蔬菜、乳粉、饮料等食品中硒代胱氨酸(SeCys2)、甲基-硒代半胱氨酸(L-SeMc)、硒代蛋氨酸(SeMet)三种有机硒的测定。 在现有的国家标准中食品中有机硒的测定都为电感耦合等离子体发射光谱法,前处理方法复杂,需要对食品进行消解后测定。团标T/SATA 041-2023食品中有机硒含量的测定 高效液相色谱-电感耦合等离子体质谱法中采用酶解法进行前处理。有机硒在蛋白酶合适的条件下酶解,以小分子的硒代氨基酸的形式释放出来,再通过液相色谱分离系统进行组分分离后,电感耦合等离子体质谱仪测定。
  • 岛津质谱成像技术助力超富硒植物单粒种子原位研究
    近日,中科院高能所李玉锋研究员团队,以硒超富集植物-堇叶碎米荠(Cardamine violifolia)单粒种子为研究对象,借助北京同步辐射装置X射线荧光微分析实验站硬件和软件功能升级契机,发展了基于同步辐射X射线荧光二维/三维成像技术(SRXRF)、X射线吸收谱技术、二维质谱成像技术(MALDI-MSI)及微区计算机断层扫描(micro-CT)等技术的空间金属组学(spatial metallomics)研究框架,实现了堇叶碎米荠单粒种子中有机硒和无机硒的原位二维/三维研究,首次发现堇叶碎米荠种皮中存在甲基硒代化合物,加深了对堇叶碎米荠富硒机制的理解,并以Spatial metallomics reveals preferable accumulation of methylated selenium in a single seed of the hyperaccumulator Cardamine violifolia为题发表于 Journal of Agricultural and Food Chemistry(影响因子/JCR分区:5.895/Q1)。该研究工作得到岛津中国创新中心的实验支持。图1 Journal of Agricultural and Food Chemistry原文背景介绍硒(Se)是动物和人类必需的元素。它是硒蛋白和硒酶的重要组成部分,硒缺乏会增加各种神经、内分泌和癌症风险,更严重的是,会导致器官衰竭和死亡。世界卫生组织(WHO)和美国农业部建议成人每日膳食硒摄入量为55 ~ 200 μg。然而,在一些地区,人们的日摄入量明显低于推荐剂量(仅26 μg/天),因此,探索富硒膳食补充剂来改善人们日常硒的摄入是很有必要的。图2 堇叶碎米荠硒在植物生长周期内无法被消耗,一些百合科、十字花科和豆科植物可累积高达几千毫克/公斤的硒元素。原产于中国湖北省恩施市的堇叶碎米荠(Cardamine violifolia)已被证明是硒的超富集植物,已用作膳食补硒剂原料。&bull 单粒种子中硒的原位空间分布和形态分布堇叶碎米荠对于硒元素的耐受性和超积累的机制主要包括:(1)钙蛋白和富半胱氨酸激酶的表达下调和硒结合蛋白的表达上调 (2)体内解毒硒的泛素基因或蛋白的表达 (3) 堇叶碎米荠硒的特定代谢途径。研究发现堇叶碎米荠可以通过硫酸盐转运体和各种S/Se代谢酶来积累硒元素。而堇叶碎米荠中硒元素的主要存在形态为硒代半胱氨酸(SeCys),硒代蛋氨酸(SeMet),硒代羊毛硫氨酸,甲基硒代半胱氨酸(MeSeCys),甲基硒代蛋氨酸(MeSeMet),二甲基硒醚(DMSe)和二甲基二硒醚(DMDSe)等。图3 通过SRXRF和MALDI-MSI研究硒在单粒种子中的原位空间分布和形态研究结果表明,一方面SRXRF结果显示硒元素在整个种子中都有分布,子叶中硒含量相对高于外胚层/种皮;另一方面MALDI-MSI结果显示DMSe (m/z 107.970)、MeSeCys (m/z 184.019)和MeSeMet (m/z 212.983)主要存在于种子外胚层。硒植物毒性的一个突出原因被认为是硒氨基酸(如SeCys)错掺入蛋白质。已有研究表明,甲基化SeCys形成MeSeCys是Se超富集物的一个关键耐受机制之一, 这大大减少了非特异性取代蛋白质中的Cys的SeCys的数量。本研究中MeSeCys的发现证实了这也是堇叶碎米荠的Se耐受的重要机制之一。质谱成像MALDI-MSI方法本研究中的质谱成像部分使用岛津iMScope QT (Shimadzu, Kyoto, Japan)进行。MALDI-MSI在光学显微镜的帮助下确定所需的采集区域,用激光二极管激发的掺钕钇铝石榴石(Nd/YAG)激光(355 nm)照射种子组织切片。激光直径为40 μm,扫描步长为80 μm。对每个像素进行100次激光照射(1000 Hz重复频率)。所有数据均在正负模式下分别采集,采集范围分别为m/z 100 ~ 500和m/z 500 ~ 1000。利用IMAGEREVEAL MS分析软件对所采集的数据进行图像分析,最终得到显示多种形态硒的具体分布。图4 岛津新一代成像质谱显微镜——iMScope QT本文内容非商业广告,仅供专业人士参考。
  • 上海通微最新推出饲料添加剂检测解决方案
    近几年,人类食品安全质量问题层出不穷,成为国内外关注焦点。跟食品安全息息相关的饲料行业也成为重点管控对象。2012年,一系列的饲料、畜牧法规条例相继出台,标志着将对畜牧产品质量安全、饲料行业行为将更加规范。   2012年5月1日生效的国务院令第609号《饲料和饲料添加剂管理条例》明确规定: 饲料、饲料添加剂生产企业应当按照国务院农业行政主管部门的规定和有关标准,对采购的饲料原料、单一饲料、饲料添加剂、药物饲料添加剂、添加剂预 混合饲料和用于饲料添加剂生产的原料进行查验或者检验。   2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须没有饮料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。   上海通微分析技术有限公司依托自身强大的研发团队,利用EasySepTM-1020高性能自动化液相色谱系统为饲料行业开发出多套饲料添加剂检测专用高效解决方案。检测项目包括:   饲料中20种氨基酸的检测:牛磺酸(2-aminoethanesulfonic acid)、甘氨酸(Gly)、丝氨酸(Ser)、天冬氨酸(Asp)、谷氨酰胺(Gln)、苏氨酸(Thr)、丙氨酸(Ala)、半胱氨酸(Cys)、脯氨酸(Pro)、胱氨酸(Cys)、赖氨酸(Lys)、组氨酸(His)、缬氨酸(Val)、甲硫氨酸(Met)、精氨酸(Arg)、酪氨酸(Tyr)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、色氨酸(Trp)   饲料中维生素的检测:烟酸、维生素B5、维生素B6、维生素B1、叶酸、维生素B12、维生素B2、维生素K3、维生素A、乙酸酯、维生素D3、维生素E   饲料中其他添加剂的检测:苏丹红、三聚氰胺   上海通微分析技术有限公司独创未衍生氨基酸的直接测定分析法,比传统的衍生检测法更快速、简便、成本低、准确度高。   详情,请咨询上海通微分析技术有限公司http://www.instrument.com.cn/netshow/SH100522/office.asp   上海通微公司实力   留美博士阎超教授2002年创办,总部位于美国硅谷的美国通微技术股份有限公司。   中国分析仪器行业内唯一一家经国家批准的企业博士后科研工作站。   通微自主研发生产的产品获得国家和行业内无数奖项,也是取得国内外专利最多的科技型企机构   与国内多所著名研究所和高校联合,设有联合实验室,在行业解决方案方面提供强有力的技术支持   上海通微分析技术有限公司是国内一流的集色谱仪器研发、生产、销售为一体高新技术企业,下设有苏州环球色谱有限责任公司、无锡通微检测技术有限公司两个全资子公司。
  • 未来已来:ADC药物精准制导癌症治疗
    抗体药物偶联物(ADC)作为一类新型靶向抗癌药物,近年来在抗癌药物研发领域备受关注。ADC药物由单克隆抗体、细胞毒素、连接子和偶联位点组成。单克隆抗体能够特异性识别并结合癌细胞表面的抗原,连接子则起到将抗体和细胞毒素结合在一起的作用。当ADC药物进入体内并结合靶细胞后,通过内吞作用进入细胞内,连接子在细胞内被降解,从而释放出细胞毒素,最终导致靶细胞的死亡,从而实现高效杀伤肿瘤细胞并减少对正常组织的损伤。据统计截止到今年5月底,全球有超过800款ADC药物处于不同的研发阶段,其中国产ADC新药研发项目占到了519项,充分体现了我国在ADC药物研发领域的强劲实力。一般的,用于ADC生产的偶联方法可分为三类。第一类是天然赖氨酸偶联或半胱氨酸偶联;第二类是通过半胱氨酸残基进行抗体工程和修饰,或结合非天然氨基酸残基作为有效载荷偶联的反应标签;第三类是使用酶催化偶联;目前,商业市场上所有的ADC都是通过化学偶联进行生产的,化学定点偶联的方法有高DAR值偶联、天然半胱氨酸重桥接、Fc亲和肽结合三种。高DAR值偶联在工艺稳健性和跟踪记录方面具有显著优势,天然半胱氨酸重桥接在偶联反应条件方面具有很高的灵活性,Fc亲和肽结合则能够应用于各种抗体和药物接头,该方法能提供位点特异性DAR2的ADC。从ADC药物的发展可以看出,随着技术的变革,ADC药物的开发逐渐从初期的探索性阶段进入到临床应用与优化阶段。以下是目前研究中ADC药物的研究热点内容:新型连接子的开发与优化ADC药物的疗效与安全性在很大程度上取决于连接子的设计。传统的连接子设计较为简单,但在体内稳定性和靶细胞内的释放效率方面存在不足。为了提高ADC药物的疗效,研究者们正在开发更加智能和高效的连接子,例如酸敏感连接子和酶敏感连接子。这些新型连接子能够在肿瘤微环境中或特定酶的作用下被特异性降解,从而提高药物的靶向性与毒性释放效率。抗体工程技术的发展抗体工程是ADC药物开发中的另一项关键技术。通过抗体工程技术,研究人员可以优化抗体的结构,以提高其与目标抗原的结合力,同时减少免疫原性。目前,双特异性抗体和抗体片段等新型抗体形式正逐渐进入ADC药物开发的视野,靶向同一抗原上不同位点的双特异性ADC可以改善受体聚集并导致靶标的快速内化。此外,抗体片段由于其较小的分子量,可以更容易地渗透到肿瘤组织中,增加药物的治疗效果。高效细胞毒素的筛选细胞毒素是ADC药物的核心杀伤成分,其毒性和选择性直接影响药物的疗效与安全性。传统的细胞毒素如卡瑞里霉素和美登素虽然毒性强,但对正常细胞也具有较大的杀伤作用。为了提高ADC药物的安全性与降低耐药性,研究者们使用两种不同的细胞毒性药物作为有效载荷的双有效载荷ADC,通过精确控制两种药物的比例,通过将两种协同有效载荷递送入癌细胞,可以达到更有效的治疗效果。并且随着两种不同机制的有效载荷的应用,耐药性的发生率将大大降低。质谱技术在ADC药物研发中的应用质谱技术是当前ADC药物研究中的重要工具,主要用于分析和表征ADC药物的化学结构及其代谢产物。在ADC药物的研发过程中,研究者将LC-MS/MS技术用于深入表征ADC药物的偶联位点异质性,评估药物抗体比(DAR)和偶联位点的载荷分布,从而保证药物的安全性和有效性。将高分辨质谱技术用于ADC药物的分子量及DAR值检测、肽图分析、HCP的鉴别和定量等方面,为药物的质量控制和表征提供了重要信息。同时,基于高分辨质谱的完整蛋白质谱分析技术,可以在不进行酶解或碎片化的情况下,直接对蛋白类药物进行表征。另外,质谱成像技术还可以用于分析ADC药物在肿瘤组织中的分布情况,从而帮助优化药物的设计和给药方案。单细胞分析技术的引入单细胞分析技术近年来逐渐在ADC药物研究中崭露头角。通过单细胞分析,可以更精确地识别和选择在肿瘤细胞表面高表达、而在正常组织低表达或不表达的靶点,这对于提高ADC药物的特异性和减少副作用非常重要。这项技术有助于更准确地理解药物在肿瘤组织中单个细胞水平上的作用,这对于优化ADC药物的设计和效果至关重要。目前,越来越多的ADC药物进入临床试验,并展现出良好的治疗前景。随着ADC药物技术的不断进步以及研究人员的努力,未来ADC药物在癌症靶向治疗中会展现出更多的惊喜。
  • 椰子水口感哪家好,步琦近红外最知晓 ——近红外光谱对椰子水定性分析
    近红外光谱对椰子水定性分析椰子水又称液体胚乳,是存在于椰子果实中富含营养成分的一种天然植物水。根据一些椰子研究机构发现,椰子水中主要含多种氨基酸、维生素、矿物质和蛋白,其中精氨酸、丙氨酸、胱氨酸和丝氨酸的含量比牛奶中的还要高。因其高营养价值和良好的口感,在近些年的消费市场崭露头角,赢得众多消费者的青睐。市面椰子水种类繁多,不过国内的主要来源还是高株椰子和矮株椰子这两大类。其中高株椰子是在全球都是广泛种植的一个品种,矮株椰子由于其椰子水的特殊口感而被市场关注。通常椰子在 11 至 12 个月成熟,随着时间的变化,可以分为 6 到 8 个月的嫩椰,9 到 11 个月的熟椰,以及 12 个月以上过熟的椰子。在 8 个月左右椰子中的椰子水的口感是最佳的,太早或太晚都会有酸涩感,主要就是因为这个时期的椰子中水分和糖是椰子水的主要成分,而像有机酸和氨基酸等酸性物质的含量普遍偏低。在椰子生长过程中,椰子水也是逐渐填满椰子腔体内部的,等到 11 个月完全成熟后,其含量又会慢慢减少,此时通过晃动壳体发出的声响就能大致判断椰子的成熟度。但对于未完全成熟的椰子,目前没有有效的检测手段去分析其中成分的变化。除了椰子生长时间会影响椰子水口感以外,不同椰子品种以及采摘后保存时间同样对感官评价有着重要作用。我国海南是椰子主产地,有因高产量而闻名的文椰2号到6号五大品种,其中文椰2号和3号分别是从马来西亚引进的马来亚黄矮椰和红矮椰子中经过筛选培养的新品种,4号是从东南亚引进的香味椰子中筛选改良的。通常椰子在采摘后一周以内的口感是最好的,随着储存时间的增加,其中的一些如氨基酸、有机酸、糖、酚类等代谢产物含量就会发生变化,从而影响其风味,存放超过两周的椰子水就难以被大众接受了。暂时也没有比较有效的方法去判断椰子水不同品种来源和存储时间。近红外作为一项快速无损的检测方法,无论是定性鉴别还是定量分析,都能一展拳脚。今天和大家分享的一篇文献便是使用 BUCHI NIRFlex N500 傅里叶近红外光谱仪对椰子水进行定性和定量分析。▲BUCHI NIRFlex N-500 Fiber1实验内容同年同季采摘的文椰 2 号 8 个月、文椰 2 号 10 个月、文椰 4 号 6 个月和文椰 4 号 8 个月分别有 198 个,77 个,63 个和 206 个。每天从 2 号 10 个月与 4 号 6 个月中随机取三个样,从 2 号 8 个月和 4 号 8 个月中随机取五个样,首先进行可溶性固形物和 pH 的快速检测,剩余样品保存在液氮中,随后进行糖含量的测定和近红外光谱的收集。在其它指标测定结束后,将样品水浴平衡至室温,然后在同一天用 NIRFlex N500 光纤探头测量加热至 35 ℃ 的 1mL 样品 3 次,每次测量扫描 32 次,光谱范围10000 – 4000 cm-1,所得光谱用于后续建模分析。2鉴别存储时间实验将存储在 7 天以内的样品定为新鲜的F级,将存储超过两周的样品定为久放的A级,将每天的 5 个随机选取的 2 号 8 个月和 4 号 8 个月中的 3 个样品,以及每天 3 个随机选取的 2 号 10 个月和 4 号 6 个月中的 2 个样品分到校正集,剩余样品分到验证集。通过 PCA 在 95 % 的置信区间下用霍特林统计量 T2 去除建模集中的异常样品。最终各集合中样品数量如下表:表1 定性分析样品集合划分情况:_NO.2-8MNO.2-10MNO.4-6MNO.4-8M校正集97352798验证集65191468通过结合化学计量学方法对上述样品的存储时间建立模型,各类椰子水的最优模型和结果分别由 表2 和 图1 到 图4 所示:表2 基于 OPLS-DA 建立不同类型椰子水的存储时间最优模型结果:▲图1 文椰 2 号 8 个月的存储时间模型统计▲图2 文椰 2 号 10 个月的存储时间模型统计▲图3 文椰 4 号 6 个月的存储时间模型统计▲图4 文椰 4 号 8 个月的存储时间模型统计3鉴别品种考虑市场实际需求,样品从文椰 2 号和 4 号中生长时间均在 8 个月且新鲜程度为F级的样品,其中校正集有 49 个,验证集有 31 个样品,经过相同处理检测到 1 个校正集中的异常值,剔除后建立的最优模型结果如下:表3 基于 OPLS-DA 建立不同类型椰子水品种的最优模型结果:▲图5 文椰 2 号和 4 号品种鉴别模型统计4鉴别成熟度过熟的样品通过简单的物理晃动就能够分辨,并且利用价值不高。实际需求往往是要在完全成熟之前分辨样品的成熟状态,从而鉴定其感官价值。因此实验针对文椰 2 号和文椰4号分别选择 47 个和 48 个样品建模,15 个和 16 个样品验证,最佳的结果如下:表4 基于 OPLS-DA 建立不同类型椰子水品种的最优模型结果:▲图6 文椰 2 号和 4 号成熟度识别模型统计从以上结果不难看出,对椰子水的存储时间、品种和成熟度的定性鉴别都取得了比较理想的结果,除了文椰 2 号 8 个月和文椰 4 号 8 个月的存储时间判断中分别有 3 个和 2 个误判,其模型的总体识别率在 95% 和 97%,剩余的应用模型都达到了 100% 的识别水平。近红外光谱分析在椰子水定性方面展现了十分优异的结果,同时也在水果的快速定性这一应用领域显露出巨大的潜力。5参考文献Foods 2023, 12, 2415. https://doi.org/10.3390/foods12122415
  • 人冠状病毒广谱抑制剂的研究进展及展望
    展鹏教授团队分享了聚焦冠状病毒生命周期中的药物靶点,综述了现有广谱冠状病毒抑制剂的研究进展,以期为研发抗冠状病毒药物提供参考,更好地应对当下及未来的冠状病毒疫情。人冠状病毒广谱抑制剂的研究进展(一)(点击查看)人冠状病毒广谱抑制剂的研究进展(二)(点击查看)4.3靶向冠状病毒多聚蛋白裂解过程的抑制剂SARS-CoV-2进入细胞后完成生命周期并制 造出子代病毒的关键步骤是多聚蛋白的裂解,这个过程依赖的是病毒自身产生的蛋白酶Mpro和 PLpro[84]。测序结果表明,编码SARS-CoV-2和 SARS-CoV蛋白酶的RNA序列显示出高度的一 致性[85]。因此针对上述蛋白酶的抑制剂是阻断各种冠状病毒在宿主细胞内增殖的有效手段。在抗病毒药物治疗中已经有多种蛋白酶抑制剂在临床上用于治疗HIV等病毒感染。随着对 NT。活性催化位点及其周边结构的认识不断深入(图10),基于靶标的合理药物设计也促进了此类 药物的发现与发展。在针对SARS-CoV-2的治疗 中,大多数蛋白酶抑制剂仅处于计算机模拟(in silico)研究阶段,急需进一步的体外与临床研究数据。4.3. 1 主蛋白酶(Mpro)抑制剂洛匹那韦(lopinavir,20,图11)是已经上市的 拟肽类HIV蛋白酶抑制剂[86]。利托那韦 (ritronavir,21,图11)可抑制药物代谢酶,常与洛匹那韦联合应用以起到增效作用[87],二者组成的复方制剂Kaletra相对于单一的洛匹那韦作用时 间更长[88]。2004年一项非盲临床试验显示,在 SARS-CoV感染者中,服用洛匹那韦-利托那韦 (400 mg:100 mg)的试验组产生负面临床结果的风险以及病毒载量明显降低[89]。洛匹那韦针对 MERS-CoV也有抑制作用師如,但仍需进一步的 临床试验确认。洛匹那韦在体外细胞中抑制 SARS-CoV-2 的 EC50值为 26.1μmol• L-1,但单 一的利托那韦无抗病毒活性。洛匹那韦-利托那 韦复方疗法在新冠治疗中受到普遍关注[92-94]。N3(22,图12)是含有迈克尔加成受体的拟 肽类冠状病毒抑制剂[95]。作为共价抑制剂,N3 分子的乙烯基与SARS-CoV-2的Mpro催化中心的 Cysl45共价结合,并通过3个侧链分别结合于催化中心周边的各个口袋,形成额外的作用力。此外,α-酮酰胺片段被看作高效的共价结合基团,可增强分子柔性、提高稳定性和透膜性,常用于病毒蛋白酶抑制剂的设计[96]。基于此,Zhang等[97]设计了一系列以α-酮酰胺为“共价弹头”的广谱主 蛋白酶抑制剂,针对α属、β属冠状病毒与肠病毒Mpro 均有良好的抑制活性。其中代表化合物为 23(图12),其抑制 SARS-CoV 与 HCoV-NL63 主 蛋白酶的IC50值分别为0.71μmol• L-1和12.27μmol• L-1,在 Huh-7 细胞系中针对MERS- CoV的EC50值达到0. 0004 μmol• L-1。为进一步提高酮酰胺类抑制剂针对SARS-CoV-2的抑制作 用,Zhang等[98]对化合物23的结构进行修饰,将疏水性过强的肉桂酰基替换为具有一定亲水性的基团从而得到一系列化合物,其中化合物24(图 12)抑制 SARS-CoV-2、SARS-CoV与MERS-CoV 主蛋白酶的IC50值分别为(0.67±0.18)、(0.90 ±0.29)、(0.58 ±0.22) μmol• L-1。Rupintrivir ( AG7088,25,图12)对肠道病毒 EV71与鼻病毒有突出的抑制作用,但对冠状病毒活性不佳[99]。Dai等[100]通过解析AG7088与EV71 3Cpro的共晶结构,以醛基共价弹头取代了易水解失活的α,伊不饱和酯基,并结合数个蛋白 酶抑制剂的优势结构,设计了 一类靶向肠道病毒 EV71 3C蛋白酶的共价抑制剂。高亲电性的醛 基作为共价弹头,与主蛋白酶Cysl45的疏基结合稳定,广泛用于设计高活性的蛋白酶抑制剂。其中代表化合物26(图12)对各种肠道病毒、鼻病毒有广谱抑制作用。与先导化合物及同时合成的其他修饰物相比,化合物26具有更好的药代动力学特性与广谱抗冠状病毒作用,对SARS-CoV-2 Mpro。及病毒复制均有较好的抑制作用(IC50 = 0.034μmol• L-1 ,EC50 =0. 29 μmol• L-1)。四川大学杨胜勇团队基于SARS-CoV-2的 Mpro催化中心周边结构,结合已上市蛋白酶抑制剂的优势片段,设计了以双环脯氨酸为核心骨架的拟肽分子,部分化合物为27~32(图13)[101]门, 并首次在动物模型中测定了所合成化合物对Mpro 的抑制作用。该类化合物以环状γ-丁内酰胺基团(P1)靶向S1区域,脂肪稠环结构(P2)靶向S2 区域,并以结构多样的取代芳环(P3)靶向S4区域(图14)。在P2提高分子刚性与疏水性、增强 靶标结合力的同时,P3大小合适的疏水芳基有助 于进一步增强分子的活性与代谢稳定性。抑酶活性结果显示,化合物29、30、31的IC50值分别为7.6 ,7.6,9. 2 nmol• L-1。在 Vero E6 细胞中,化合物28,31,32抑制SARS-CoV-2复制的 EC50值分别为 0. 53,0.67,0.54μmol• L-1(表 2)。在体内活性测试中,化合物32的药代动力学性质较好,在鼠体内有效抑制了SARS-CoV-2的增殖,显著降低了病理损伤,经治疗的感染小鼠 未出现任何体重损失与异常状况。4.3.2 PLpro抑制剂PLpro在不同的冠状病毒中具有类似的氨基 酸序列与空间构象,显示出高度相似性(图15)。因此,针对特定冠状病毒PLpro抑制剂也具有开发 为广谱PLpro抑制剂的潜力。Figure 15 The conformation and amnio acid sequence of SARS-CoV PLpro ( PDB:2FE8 ) and SARS-CoV-2 PLpro(PDB:7CMD)Ratia等[102]建立了基于荧光的高通量筛选方法,在包含上万种类药分子的化合物库中发现了先导化合物33(图16),其R型异构体抑制SARS- CoV PLpro的 IC50值为(8.7±0.7)μmol• L-1 此类分子结构按药效团可分为“头部-链接基团-尾 部”三部分,其中,“头部基团”一般是1-萘基或2-萘基,而“链接基团”中的亚氨基作为氢键供体对分子活性至关重要,N-甲基化修饰的化合物34(图 16)活性则明显减弱(IC50=22.6μmol• L-1)。为进一步提高药效,Bdez-Santos[103]结合此 类分子中的先导化合物35(图17-A)与SARS- CoV PL。,。的共晶结构以及构效关系,设计了尾部 含有不同取代苯基的新一代SARS-CoV PL。”抑 制剂36 -39(图17-A)。共晶结构显示,此类分 子结合于Tyr269与活性中心围绕而成的狭长空 腔内(图17-B、C),活性与代谢稳定性均有提高, 活性数据如表3所示。双硫仑(disulfiram, 40,图18)是乙醛脱氢酶抑制剂,用于辅助矫正酒精成瘾[104]。2018年, Lin等[105]发现双硫仑针对SARS-CoV主蛋白酶 具有竞争性抑制作用,针对MERS-CoV PLpro。则具 有变构抑制作用。证据表明,双硫仑通过分子中 的硫原子与金属离子配位,或与蛋白质疏基相互作用,因此可以靶向PLpro和NT。中具有催化作用 的半胱氨酸[106]。在以往的临床实践中,双硫仑 表现出毒副作用小、作用机理明确、成本低的独特优势。但其针对包括SARS-CoV-2在内的多种冠 状病毒的体外实验及临床试验尚待完成。疏瞟吟即6-疏基瞟吟(6-MP,41,图18)早已 广泛用于治疗急性淋巴细胞白血病和急性髓细胞白血病。2008年,Chou[107]等首先报道了疏嚓吟作为SARS-CoV PLpro小分子可逆抑制剂的活性。 在MERS-CoV与SARS-CoV的蛋白酶的相似性 被确证之后,Cheng等[109]质旳又发现了疏瞟吟针对 MERS-CoV PLpro的竞争性抑制作用。但不可忽视的是,PLpro抑制剂的设计与研发 相对存在一定难度。候选分子中的游离疏基可能 与人体内各种蛋白质的半胱氨酸残基发生作用,导致专一性较差以及毒副作用增强[108]。此外, 宿主细胞的去泛素酶与PLpro 的相似性还会带来 抑制剂脱靶的风险。Figure 18 The structures of disiilfiram (40) and6-MP(41)5 结语与展望本文作者总结了靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,对抗击新冠肺炎疫情、预防未来的冠状病 毒传播具有重要意义。针对冠状病毒的高效广谱抑制剂,是疫情爆发初期迅速响应危机、并在第一时间治疗患者的法宝[109]。对冠状病毒广谱抑制剂的发现、评估和修饰,是人类对抗未来的公共卫生危机的重要 战略举措。对于具有“老药新用”潜力的已上市药物,要尽快开展科学严谨的大规模双盲临床实 验,为大范围推广提供最真实可靠的依据,最大程 度保护患者的生命健康。长远看来,从头研发出一款针对新型冠状病 毒的“魔弹”药物需要进行漫长的设计、开发及疗效验证。一方面,不同的冠状病毒生命周期中发 挥关键作用的生物大分子有明显的种间同源性,为基于靶标结构寻找广谱抑制剂提供了重要信息;另一方面,从治疗新型冠状病毒的中药方剂中寻找天然来源的先导化合物,也是开发抗冠状病 毒药物的重要源泉。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 通微公司推出饲料行业最新整体解决方案
    2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须设有饲料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。通微公司依托自身强大的应用研发团队,利用EasySepTM-1020 HPLC系统联用紫外检测器和蒸发光散射检测器产品平台,为广大饲料企业第一时间开发了专业饲料检测用高效液相色谱仪、耗材及应用方法包,应用于饲料中的氨基酸、维生素、三聚氰胺、抗生素等添加剂的检测;同时,我们将不断为您推出饲料中各种添加剂的专用检测方法包。通微公司的唯一的国产蒸发光散射检测仪,是国家“十五攻关”的重大科技成果,获得2007年BCEIA金奖。该检测仪液相色谱联用检测氨基酸,可以省去劳师费时的样品衍生步骤,直接检测。 EasySepTM-1020 HPLC系统平台 国产首台蒸发光散射检测仪ELSD 5000 部分检测范例如下: 1、水溶性维生素检测 仪器型号: EasySepTM-1020 HPLC 检测器类型: UV 柱 温(℃): 室温 检测波长(nm): 270 nm流动相:甲醇/0.1%磷酸溶液=55/45色谱柱:Globalsil C18,5μm,4.6 mm×150 mm进 样 量: 20 µ L 流量:1.5 mL/min 2、三聚氰胺检测 仪器型号: EasySepTM-1020 HPLC 检测器类型:UV 检测波长:240 nm色谱柱:Globalsil C18,5 μm, 4.6 mm×150 mm; 柱 温(℃): 40℃流动相:离子对试剂缓冲液-乙腈(90:10);流速:1.0 mL/min; 进样量:20 ul 3、氨基酸分析 仪器型号: EasySepTM-1020 HPLC 检测器类型:ELSD 色谱柱:Globalsil C18,5 μm,4.6 mm×250 mm 柱温:35 ℃ 流动相:溶剂A,七氟丁酸:三氟乙酸:水=1.0:0.5:500;溶剂B,甲醇;流速:0.8 mL/min;梯度洗脱: 时间(min) 0 8 11 21 30 40 A% 100 100 78 73 45 45 B% 0 0 22 27 55 55 蒸发温度:40 ℃;载气流量:2.5 L/min(推荐使用氮气) 进样体积:10 μL 1、甘氨酸(Gly),2、丝氨酸、(Ser),3、天冬氨酸(Asp),4、谷氨酰胺(Gln),5、苏氨酸(Thr),6丙氨酸、(Ala),7、谷氨酸(Glu),8、半胱氨酸(Cys),9、胱氨酸(Cys),10、脯氨酸(Pro),11、赖氨酸(Lys),12、组氨酸(His),13、缬氨酸(Val),14、精氨酸(Arg),15、甲硫氨酸(Met),16、酪氨酸(Tyr),17、异亮氨酸(Ile),18、亮氨酸(Leu),19、苯丙氨酸(Phe),20、色氨酸(Trp)。 通微公司简介上海通微分析技术有限公司(www.unimicrotech.com.cn)成立于2002年,是总部设在美国硅谷的美国通微技术股份有限公司 (Unimicro Technologies, Inc.,以下简称通微公司)在上海浦东张江高科技园区内创立的子公司;为了业务发展的需要,通微公司分别在2007年、2011年成立的两家全资子公司-苏州环球色谱有限责任公司、无锡通微检测技术有限公司,目前,通微公司北京办事处、西安办事处、广州办事处等全国销售网络相继建成。通微公司,致力于打造国际一流的微分离领域色谱仪器和耗材基地,一直专注于色谱仪器及相关耗材产品的研制与开发;借助美国通微技术股份有限公司雄厚的技术开发实力,致力于中国市场的拓展,为中国的科研单位和科研工作者提供全新、优质的产品和一流服务。通微公司设有中国分析仪器行业首家企业博士后工作站,在毛细管电色谱系统开发及产业化方面取得了重大开创性成果,推动了电色谱技术的进步;先后承担国家科学仪器重大专项、国家 “九五”、“十五” 科技攻关重大项目,国家发改委高科技产业化专项、国家自然科学基金,中国与美国以及中国与比利时等国际合作项目,科技部中小企业创新基金以及上海市的科技攻关项目等30余项,在色谱领域共发表180余篇学术及应用论文,申请和获得30多项国际和中国专利。
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 韩家淮课题组利用质谱技术阐明ROS促进程序性细胞坏死的分子机制
    2月8日,国际知名学术刊物Nature Communications在线发表了韩家淮教授课题组的最新研究成果“RIP1 Autophosphorylation Is Promoted by Mitochondrial ROS and Is Essential for RIP3 Recruitment into Necrosome”,揭示了活性氧簇(ROS)通过直接特异地氧化受体相互作用丝氨酸/苏氨酸激酶1(RIP1)上的三个关键的半胱氨酸,进而特异地增强RIP1在S161上的自磷酸化,从而促进坏死小体的形成和程序性细胞坏死的发生。  程序性细胞坏死是一种高度受调控的细胞死亡方式,它参与到机体的多种病理过程中,因而受到学术界的广泛关注,比如细菌和病毒感染,或者动脉粥样硬化等无菌损伤导致的炎性病变。程序性细胞坏死在生理病理上的重要性决定了它在调控上的复杂性。因此,尽管关于它的机制研究被频繁报道,仍然有许多重要的科学问题尚未解决。其中,线粒体ROS在程序性细胞坏死中的作用和分子机制,是近20年内该领域一个长期存在且有争议的问题。另一个长期存在的问题是,RIP1作为程序性坏死通路上的核心蛋白,它的激酶活性是行使功能所必需的,但是RIP1的激酶活性在程序性细胞坏死中起了什么样的作用仍然未知。  韩家淮教授课题组的这项研究表明,这两个科学问题是相关联的。研究人员利用质谱技术首次证实,RIP1通过其上的三个关键的半胱氨酸(C257,C268和C586)直接接受ROS的氧化调控,进而增强激酶活性,发生第161位丝氨酸(S161)的自磷酸化。他们证实了RIP1的激酶活性在程序性细胞坏死中的主要功能是自磷酸化S161,且S161就是人们长期寻找的RIP1上与坏死相关的功能性磷酸化位点。坏死小体的形成是程序性细胞坏死发生的必要复合物,而S161的磷酸化是RIP1有效募集RIP3形成有功能的坏死小体所必需的。由于ROS的产生依赖于坏死小体里的RIP3的功能,因此ROS介导了程序性坏死通路里的正反馈调控。  韩家淮教授课题组的研究阐明了ROS促进程序性细胞坏死的分子机制,回答了领域内长期存在的两个科学问题,对全面解析程序性坏死机制并协助疾病治疗具有重要意义。  张荧荧和苏晟为该论文的共同第一作者。该项研究得到了973计划和国家自然科学基金委员会重点和重大研究计划项目的经费支持。  论文原文链接:http://www.nature.com/articles/ncomms14329
  • 中科院物理所团队发现小分子药物调控人源电压门控钠离子通道蛋白的结构学基础
    电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为治疗癫痫药物的靶点。  3月11日,中国科学院物理研究所团队在nature communications杂志上发表了题为“Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist”的文章,解析了Nav1.3/β1/β2分别与小分子药物乌头碱A和选择性拮抗剂ICA121431结合的冷冻电镜三维结构,揭示了乌头碱A和ICA121431调节Nav1.3的不同机制。  研究表明,Nav1.3蛋白的整体结构与已报道的其他哺乳动物Nav蛋白结构高度相似。调控Nav1.3蛋白功能的β1亚基通过其N端结构域和Nav1.3蛋白相互作用,同时其C端跨模域的螺旋稳定在Nav1.3蛋白第三个结构域上。调控Nav1.3蛋白功能的β2亚基柔性大,整体分辨率较低,但仍能看到其第55位的半胱氨酸与Nav1.3蛋白第911位的半胱氨酸形成了二硫键。小分子药物乌头碱A结合位点位于Nav1.3蛋白第一个结构域与第二个结构域之间,部分阻挡了离子通道。选择性拮抗剂ICA121431结合位点位于Nav1.3蛋白第四个结构域,增强了“异亮氨酸-苯丙氨酸-甲硫氨酸”模体与该模体的受体的结合,将离子通道稳定在失活状态。  该研究解析了不同小分子调节剂与Nav1.3蛋白结合位点的结构,阐明了这些小分子在Nav1.3蛋白上的作用机制,为后续基于结构开发特异性更高的药物提供支撑。  论文链接:https://www.nature.com/articles/s41467-022-28808-5
  • 日立最新型号氨基酸分析仪LA8080
    1. 前言 1958年,D.H.Spackman,W.H.Stein和S.Moore发明了离子交换分离、茚三酮柱后衍生氨基酸技术,使得氨基酸分析选择性高、分析速度快、准确度高。而且成功实现了自动化,是研究的重要里程碑。自此,氨基酸分析仪被广泛应用到饲料、药物、食物等的氨基酸及其类似物的分析中。 日立从1962年开始潜心研究氨基酸分析仪,并在技术上取得了巨大的进步(图1)。图1 日立氨基酸分析仪的发展史 2. 产品特点 LA8080全自动氨基酸分析仪采用离子交换色谱分离和茚三酮柱后衍生技术,是分析氨基酸的专用仪,主要有以下三大特点: 操作简便设计符合人体工学,充分考虑到用户的视野范围和操作流程。衍生化反应前才将两种溶液进行实时混合,因此茚三酮溶剂无需冷藏。可直接使用市售的缓冲液和衍生溶剂。设计紧凑日立首次采用台式设计。占地空间小,主机体积缩小了约30%。前置设计综合考虑了多种因素,方便放试剂瓶和样品,更换色谱柱和密封配件也十分简便。数据可靠性高秉承了之前型号“L-8900”“L-8800”的优异性能,采用离子交换色谱法,基本分析条件和之前型号一样。茚三酮柱后衍生反应的稳定性高,因此可在蛋白水解和生理体液分析法中获得良好的定量分析数据。3. 应用 图2所示为通过标准分析法来分析蛋白质水解液的色谱图。以0.40mL/min流速输送柠檬酸钠缓冲液,使粒径为3μm的阳离子交换树脂色谱柱(i.d.4.6mm×60mm)保持57℃。然后,以0.35mL/min流速输送茚三酮试剂与缓冲液混合,135℃时衍生,在570nm和440nm的波长处测量吸光度。 分析30分钟后,各成分分离度达到1.2以上。另外,天门冬氨酸(Asp)的检出限为2.5 pmol以下(信噪比=2),峰面积重现性(2 nmol)良好,RSD低于1.0%。图2 蛋白质水解分析实例 在做蛋白质成分分析时,一般我们使用盐酸来水解蛋白,但是半胱氨酸、胱氨酸和蛋氨酸很容易被氧化。因此,目前在分析磺丙氨酸(CySO3H)和蛋氨酸砜(MetSON)时,先用过甲酸氧化,然后再加盐酸水解。如图5所示为仅分析CySO3H和MetSON的短程序分析应用实例。图3 过甲酸氧化水解和短程序分析实例4. 总结 Moore等人发明的氨基酸分析方法能够一直沿用至今,是因为他们在设计分离系统和衍生系统时,经过反复斟酌,精心设计。聚苯乙烯聚合物的离子交换树脂与氨基酸的相互作用十分巧妙,芳香族的中性氨基酸如苯丙氨酸和酪氨酸,增强了与色谱柱填料聚合物之间的疏水相互作用,从而实现了良好的分离。茚三酮的柱后衍生方法对样品中的杂质有较高的选择性,用户只需认真完成去蛋白以及过滤处理,即可获得高可靠性的分析结果。 “前人栽树,后人乘凉”,我十分惊叹于前人的智慧并满怀感激,今后我们会将氨基酸分析技术在日立发扬光大。撰写人*1 伊藤正人,成松郁子,裴敏伶,森崎敦己,福田真人,八木隆,大月繁夫,关一也,丰崎耕作日立高新科学公司 开发设计本部 *2 铃木裕志日立高新科学公司 应用技术部关于日立LA8080全自动氨基酸分析仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/C296474.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 中科院首次发展高选择性检测GSH荧光传感器
    近日,中科院理化技术研究所超分子光化学研究组首次发展了一类在活体细胞中选择性检测谷胱甘肽(GSH)的反应型荧光传感器。相关研究结果日前发表于《美国化学会志》。   自由基损伤是组织损伤的重要分子机制之一,许多疾病,如心脏病、阿尔茨海默氏症、帕金森氏症和肿瘤等的损伤机制中都有自由基的参与。   “含巯基的生物小分子,如半胱氨酸(Cys)、同型半胱氨酸(Hcy)、GSH,会通过清除生物体系内过多的自由基来维持氧化还原平衡。”该研究组副研究员陈玉哲说。   据介绍,作为细胞内含量最多的含巯基生物小分子,GSH不仅参与了细胞抗氧化反应、维持机体的氧化还原平衡,还参与了调节细胞增生、机体免疫应答以及在神经系统中充当神经调质和神经递质的作用。   然而,含巯基的生物小分子结构和反应活性的相似性,往往使得一般检测GSH的荧光探针对Cys和Hcy产生相同或相似的响应。因此,发展高选择性检测GSH的荧光传感器仍然存在巨大挑战。   在文章中,研究组报道了一类基于单氯代BODIPY类衍生物的比率式荧光化学传感器。不同于传统的荧光检测机理,研究组利用了全新的“两步反应”,将GSH与Cys和Hcy区分开来。   “常规的检测,主要是通过巯基和传感器之间发生反应来实现,因而对GSH、Cys和Hcy会产生相似的响应 而我们利用新颖的两步反应机制,Cys和Hcy通过巯基和氨基的协同反应最终生成氨基取代的产物,而GSH生成巯基取代的产物,使其在光谱上产生明显的变化,与Cys和Hcy区分开来。”陈玉哲阐述。   业内专家认为,该成果将为研究肿瘤、心脏病、衰老等疾病的影响及诊疗手段提供新的方法。   据了解,相关研究工作得到了国家自然科学基金委优秀青年科学基金、科技部“973”计划以及中科院“百人计划”的资助
  • 《NY/T 3001-2016 饲料中氨基酸的测定 毛细管电泳法》发布-农业部公告第2466号
    《NY/T 3001-2016 饲料中氨基酸的测定 毛细管电泳法》等83项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准,自2017年4月1日起实施。本分析方法用于测定饲料和饲料原料中的下列氨基酸:精氨酸、赖氨酸、 酪氨酸、苯丙氨酸、组氨酸、亮氨酸和异亮氨酸(总量)、蛋氨酸、缬氨酸、脯氨酸、苏氨酸、丝氨酸、丙氨酸、甘氨酸、半胱氨酸、色氨酸、谷氨酸和天门冬氨酸。 高效毛细管电泳仪是一种快速、简便的分析仪器,可应用于该标准采用LUMEX的毛细管电泳仪及等。多个行业,可进行定性和定量分析。仪器性价比高,无需要色谱柱,维护成本趋于零。俄罗斯已有多家企业顺利应用。农业部标准链接:http://www.moa.gov.cn/zwllm/tzgg/gg/201611/t20161103_5348351.htm
  • 米以“硒”为贵,“硒”乃有机硒
    硒是人体生命活动中必需的微量元素之一,近年来受到人们的广泛关注。它具有使人体抗衰老、预防癌变、保护与修复营养细胞、解毒排毒、提高免疫力等多种生理功能。缺硒会引起克山病、大骨节病及免疫功能障碍等多种疾病。 硒对人体的重要性已十分明确, 有研究表明人体内硒水平的高低和生物活性不仅取决于摄入的总硒量,还与硒的化学形态密切相关。有机形态的硒,如硒蛋白、硒代氨基酸、硒多肽、硒多糖等,在机体内才能转变为生理活性物质,为人体所吸收利用。目前,国内外有关富硒农产品与食品的研究并不多见,对有益硒形态的检测与分析更是涉及甚少,但是有关补硒的保健品不少,盲目宣传效果,导致消费者难以识别产品优劣。因此开展对富硒农产品中有益硒形态分析技术研究十分必要,帮助人们合理明智的选择健康的富硒产品, 评价其营养价值,探索科学补硒,保障人体健康具有重要的现实意义。 近年来随着检测联用技术的发展,高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术因其分离能力强、灵敏度高、分析速度快等优点被广泛应用于硒形态研究,PerkinElmer公司也在此领域进行了大米中硒形态检测的实验。1、样品前处理方法: 将大米样品仔细研磨,过100目筛。准确称取1g左右样品于15mL离心管中,加入2mg/mL的蛋白酶K溶液10mL,于37℃下超声提取5小时,然后以6000 r/ min 离心5 min,取上清液,过0.22μm滤膜后上机测定。同时做酶解空白。2、仪器:PerkinElmer HPLC NexION 350 ICP-MS;碰撞反应气:高纯甲烷。3、四种常见硒形态色谱标准图谱:注:依次为硒代胱氨酸,亚硒酸,硒代蛋氨酸,硒酸4、经酶解后,富硒大米中硒形态色谱图:注:图中亚硒酸和硒酸来自蛋白酶带来的本底5、富硒大米中硒形态结果:样品名称硒代胱氨酸(μg/kg)亚硒酸(μg/kg)硒代蛋氨酸(μg/kg)硒酸(μg/kg)硒形态总量(μg/kg)总硒含量(μg/kg)提取率大米结果-1 12.6ND*67.6ND81.691.189.6%大米结果-2 12.5ND70.5ND大米平均含量 12.6ND69.1ND注:ND代表扣除酶本底后样品中亚硒酸和硒酸含量低于检出限6、结论及展望 本研究采用HPLC-ICP-MS联用技术测定了大米中硒含量,并分析了硒在大米中主要的赋存形态。结果表明,该富硒大米中的总硒含量为91.1μg/kg,达到40μg/kg~300μg/kg的富硒标准(GB/T 22499-2008 富硒稻谷),而且硒主要以有机硒形态存在。 未来的研究一方面会集中于多种硒形态含量检测方法的完善和开发,另一方面针对不同硒形态的生理学功能的研究。
  • ELISA小能手 三分钟带你看懂趋化因子家族
    ELISA小能手 三分钟带你看懂趋化因子家族趋化因子(chemokines),也称做趋化激素、趋化素或是化学激素。趋化因子(来源于希腊语激情、运动)是专门协调免疫细胞向组织运动的小多肽(约8-10 kDa)。趋化因子的理论和应用研究是目前生命研究的热点之一。它们在炎症、淋巴器官发育、细胞运输、淋巴组织内的滤泡形式、血管生成和伤口愈合中起重要作用。趋 化 因 子 结 构在趋化因子的分子中通常有4个保守的半胱氨酸(C),这些半胱氨酸通过二硫键形成特殊的三级结构。根据靠近分子氨基酸(N端)的前两个C间是否插入其他氨基酸,将它们分成4个亚类:CXC类(插入1个氨基酸残基);CC类(不插入其它氨基酸残基);CX3C类(插入3个其它氨基酸);C类(N端仅一个C)。趋 化 因 子 生 物 活 性趋化因子是一类小分子分泌蛋白,参与炎症和免疫应答过程,如诱导淋巴细胞游走到炎症部位、参与天然免疫和获得性免疫应答、刺激或抑制血管的生成、抑制病毒感染和增强细胞毒性T淋巴细胞应答等。趋化因子系统在免疫系统功能行使得各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植排斥等方面都起着重要的作用。家 族 成 员 一 览 表趋化因子被分为四个主要的亚家族:CXC,CC,CX3C和XC。所有这些蛋白质都通过与G蛋白质连接的跨膜受体(称为趋化因子受体)相互作用而发挥其生物学作用,该受体在其靶细胞表面被选择性地发现。
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • Nature:攻克30年挑战 靶向“无药可及”的癌症基因
    在药物设计领域,K-Ras蛋白是一个传奇。作为人类癌症中最常见的突变癌基因,30多年来它一直位列在所有研究人员的&ldquo 靶点&rdquo 清单上。尽管如此的高调,由于许多的制药、生物技术公司和高校实验室都未能设计出一种能够成功靶向这一突变基因的药物,在科学界里K-Ras被视作是&ldquo 无药可及&rdquo 的靶点。 现在,来自加州大学旧金山分校霍华德休斯医学研究所(HHMI)的研究人员,鉴别并利用了K-Ras一个新发现的&ldquo 阿喀琉斯之踵&rdquo (Achilles heel)。这一薄弱点就是HHMI研究人员Kevan M. Shokat和同事们在K-Ras上新发现的一个 &ldquo 口袋&rdquo (结合位点)。Shokat和他的研究小组设计出了一种化合物,证实它可以进入到这一口袋里,抑制突变K-Ras的正常活性,但不会影响正常的蛋白。 Shokat 说:&ldquo 人们将K-Ras视作是癌症中最重要的癌基因,并广泛认为它&lsquo 无药可及&rsquo 。我们报告称发现了K-Ras上一个药物可及的新口袋。我们相信这对于患者将具有真正的转化意义。&rdquo 在发表于11月20日《自然》(Nature)杂志上的一篇研究论文中,Shokat研究小组描述了一种新型的化合物,其能够进入到K-Ras上一个从前未知的口袋中,干扰该酶的功能。Ras蛋白是一种在细胞内负责传送信号的小GTPase。由于它们在细胞生长和存活中发挥核心作用,对于细胞至关重要。 Ras这一名称也用于指代编码这些蛋白质的基因家族。其中的一个基因K-Ras大约30年前被发现,在30%的人类肿瘤,包括90%的胰腺癌、40%的结肠癌和20%的非小细胞肺癌中存在突变。携带Ras突变的癌症具有侵袭性,对标准治疗反应不佳。 尽管靶向突变Ras基因的研究工作一直遭受挫折,美国国家癌症研究所(NCI)近日强调将继续重视这一难对付的药物靶点,并宣布了一项1000万美元的RAS计划。这项计划将汇集研究人员共同开发阻断Ras的新思路,以激励研发出新药或新疗法让癌症患者受益。 Shokat的HHMI研究小组在大约6年前开始启动对Ras的研究工作。利用他们的化学专业知识,Shokat和两个研究小组成员:博士后研究人员Ulf Peters以及博士生Jonathan Ostrem拟定了一些早期的想法:研发一类新的Ras突变体抑制药物。&ldquo 其中一些早期的策略行不通,&rdquo 他说。 &ldquo 我们不得不开发出一种新的筛选方法,其最终推动研发出了这一新抑制剂。&rdquo Shokat说当确定了他们的攻击范围时他们做了一些不一样的事情。他们将焦点缩小,专注于其他科学家们没有采用的策略。他们还选择了研究一种叫做G12C的K-Ras突变体,这种K-Ras突变体广泛存在于大约7%的肺癌患者中。 这一突变使得K-Ras蛋白中第12位的甘氨酸被半胱氨酸所替代。重要的是,这一半胱氨酸处在对Ras正常功能至关重要的一个位置。偏离从前的研究工作,Shokat和同事们没有试图靶向天冬氨酸和缬氨酸突变的Ras版本&mdash &mdash 这些突变相对常见,因此过去许多的科学家们都将焦点放在这些突变上。反之,他们挑选出了G12C突变体,因为这些Ras突变体影响了大批的肺癌和结直肠癌患者。 Shokat说,这一半胱氨酸所赋予的一些化学特性,为他的研究小组提供了一个独特的药物设计把柄。在20种天然氨基酸中半胱氨酸具有一种独特的能力:可以形成共价键。通常两个半胱氨酸之间形成共价键起稳定蛋白质结构的作用,但如果存在游离半胱氨酸,就如同G12C K-Ras,一种特别设计的药物就可以与这一半胱氨酸形成共价键。 Shokat说:&ldquo 其他人一直认为他们必须去追逐所有的Ras突变体。我们寻找的是别人没有做过的,我们挑选出这一特殊突变是因为它的一些化学特性。&rdquo 在三年的时间里,该研究小组对500多个化合物进行了初步筛查,看看他们能否鉴别出一个可以与K-Ras G12C共价结合和&ldquo 连接&rdquo 的化合物。他们的研究导致鉴别出了一种有效的K-Ras抑制剂。为了获得这一化合物与K-Ras互作机制的更好图像,科学家们解析了这一化合物与K-Ras结合的晶体结构。 当他们检测数据时,Shokat和研究小组发现在靠近这一半胱氨酸残基的K-Ras蛋白表面上有一个之前从未描述过的口袋。Shokat说:&ldquo 这个口袋是新发现的,此前从未有人找到它。&rdquo 通过进一步的调查,他们发现化合物是通过改变Ras与底物GTP的自然亲和力从而对其形成干扰的。&ldquo 其中最重要的一个方面就是这一小分子只抑制突变K-Ras,而不影响正常蛋白,&rdquo Shokat说。 接下来的工作包括:继续优化这一化合物,进一步测试了解这一化合物在多大程度上能够杀死具有G12C突变的细胞。Shokat说他和同事们成立了一家叫做Araxes Pharma, LLC的公司,与强生的下属部门Janssen Biotech建立了合作关系,以开发出有潜力应用于临床的化合物。 人透明质酸结合蛋白(HABP)ELISA试剂盒 Human Hya]uronate binding protein,HABP ELISA试剂盒 人Ⅰ型胶原N末端肽(NTX)ELISA试剂盒 Human cross linked N-telopeptide of type Ⅰ collagen,NTX ELISA试剂盒 人幽门螺旋杆菌IgM(Hp-IgM)ELISA试剂盒 Human Helicobacter pylori IgM,Hp-IgM ELISA试剂盒 人细胞毒素相关蛋白A(CagA)ELISA试剂盒 Human Cytotoxin-associated protein,CagA ELISA试剂盒 人胃抑素(GIP)ELISA试剂盒 Human gastric inhibitory polypeptide,GIP ELISA试剂盒 人胃泌素释放多肽(GRP)ELISA试剂盒 Human gastrin-reliasing peptide,GRP ELISA试剂盒 人胃泌素释放肽前体(ProGRP)ELISA试剂盒 Human pro-gastrin-releasing peptide, ProGRP ELISA试剂盒 人胶原蛋白Ⅱ(HCBⅡ)ELISA试剂盒 Human Collagen-like Bioprotein Ⅱ,HCBⅡ ELISA试剂盒 人促胰液素/胰泌素(Secretin)ELISA试剂盒 Human Secretin ELISA试剂盒 人多肽YY(Peptide-YY)ELISA试剂盒 Human Peptide YY ELISA试剂盒 人促胃液素受体(GsaR)ELISA试剂盒 Human gastrin receptor,GsaR ELISA试剂盒 人胆囊收缩素/缩胆囊素八肽(CCK-8)ELISA试剂盒 Human cholecystokinin octapeptide,CCK-8 ELISA试剂盒 人胰蛋白酶原激活肽(TAP)ELISA Human trypsinogen activation peptide,TAP ELISA试剂盒 人&alpha 1酸性糖蛋白(&alpha 1-AGP)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人内皮型一氧化氮合成酶3(eNOS-3)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人丙二醛(MDA)ELISA试剂盒 Human malondialchehyche,MDA ELISA试剂盒 人胰淀素(Amylin)ELISA试剂盒 Human Amylin ELISA试剂盒 人血管活性肠肽(VIP)ELISA试剂盒 Human Motilin,MTL ELISA试剂盒 人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒 Human cholecystokinin,CCK ELISA试剂盒 人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒 Human N-terminal procollagen Ⅲ propeptide,PⅢNP ELISA试剂盒 人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒 Human Collagen Type Ⅱ,Col Ⅱ ELISA试剂盒 人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒 Human Collagen Type Ⅰ,Col Ⅰ ELISA试剂盒 人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒 Human procollagen Ⅲ N-terminal peptide,PⅢNT ELISA试剂盒 人透明质酸(HA)ELISA试剂盒 Human Hyaluronic acid,HA ELISA试剂盒 人Ⅳ型胶原(Col Ⅳ)ELISA试剂盒 Human Collagen Type Ⅳ,Col Ⅳ ELISA试剂盒 人Ⅲ型胶原(Col Ⅲ)ELISA试剂盒 Human Collagen Type Ⅲ,Col Ⅲ ELISA试剂盒 人层连蛋白/板层素(LN)ELISA试剂盒 Human Laminin,LN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人NOGO-A抗体(Nogo-A Ab)ELISA试剂盒 Human anti-Nogo-A antibody,NOGO-A Ab ELISA试剂盒 人抗组织转谷氨酰胺酶抗体IgA(tTG-IgA)ELISA试剂盒 Human Anti-tissue tranGSlutaminase IgA,tTG-IgA ELISA试剂盒 人抗存活素抗体/生存蛋白(Surv)ELISA试剂盒 Human anti-Survivin antibody,Surv ELISA试剂盒 人粒细胞巨噬细胞集落刺激因子抗体(GM-CSF Ab)ELISA试剂盒 Human anti-Granulocyte-Macrophage Colony Stimulating Factor antibody,GM-CSF Ab ELISA试剂盒 人抗肌联蛋白抗体(TTN)ELISA试剂盒 Human Anti-titin Antibody,TTN ELISA试剂盒 人抗突触前膜抗体(PsmAb)ELISA试剂盒 Human anti-presynaptic membrane antibody,PsmAb ELISA试剂盒 人血管紧张素Ⅱ受体2抗体(AT2R-Ab)ELISA试剂盒 Human Angiotensin Ⅱ Receptor 2 antibody,AT2R-Ab ELISA试剂盒 人血管紧张素Ⅱ受体1抗体(ATⅡR1)ELISA试剂盒 Human angiotension Ⅱ receptor 1 Antibody,ATⅡR1 Ab ELISA试剂盒 人血管紧张素Ⅰ受体抗体(ANG-ⅠR)ELISA试剂盒 Human angiotension I receptor Antibody,ANG-ⅠR antibody ELISA试剂盒 人卵清蛋白特异性IgG(OVA sIgG)ELISA试剂盒 Human ovalbumin specific IgG,OVA sIgG ELISA试剂盒 人抗钙调素特异抗体(CAM-ab)ELISA试剂盒 Human anti-calmodulin specific antibody,CaM-ab ELISA试剂盒 人甲状腺非肽激素抗体(THAA)ELISA试剂盒 Human thyroid hormone autoantibodies,THAA ELISA试剂盒 人抗类固醇生成细胞抗体(SCA)ELISA试剂盒 Human steroid producing cell autoantibody,SCA ELISA试剂盒 人粒细胞特异性抗核抗体(GS-ANA)ELISA试剂盒 Human granulocyte specific antinuclear antibody,GS-ANA ELISA试剂盒 人抗信号识别颗粒抗体(SRP)ELISA试剂盒 Human signal recognization particle antibody,SRP ELISA试剂盒 人封闭抗体(BA)ELISA试剂盒 Human Blocking antibody,BA ELISA试剂盒 人抗细胞膜DNA抗体(cmDNA)ELISA试剂盒 Human anti-cell membrane DNA antibody,cmDNA ELISA试剂盒 人抗钙蛋白酶抑素抗体(ACAST-DⅣ)ELISA it Human autoantibodies against the C-terminal domain Ⅳ,ACAST-DⅣ ELISA试剂盒 人卵清蛋白特异性IgE(OVA sIgE)ELISA试剂盒 Human ovalbumin specific IgE,OVA sIgE ELISA试剂盒 人抗核仁纤维蛋白抗体(AFA/snoRNP/U3RNP)ELISA试剂盒 Human anti-fibrillarin antibody,AFA/snoRNP/U3RNP ELISA试剂盒 人系统性红斑狼疮(SLE)ELISA试剂盒 Human systemic lupus erythematosus,SLE ELISA试剂盒 人抗神经节苷脂抗体(GM1)ELISA试剂盒 Human anti-ganglioside antibody,GM1 ELISA试剂盒 人抗髓鞘相关糖蛋白抗体(MAG Ab)ELISA试剂盒 Human anti-myelin associated glycoprotein antibody,MAG Ab ELISA试剂盒 人抗中性粒细胞颗粒抗体(ANGA)ELISA试剂盒 Human anti-neutrophil granules antibody,ANGA ELISA试剂盒 人抗中性粒细胞抗体(ANA)ELISA试剂盒 Human anti-neutrophil antibody,ANA ELISA试剂盒 人抗载脂蛋白抗体A1(Apo A1)ELISA试剂盒 Human anti-apolipoprotein A1 antibody,Apo A1 ELISA试剂盒 人抗胰岛素受体抗体(AIRA)ELISA试剂盒 Human anti-insulin receptor antibody,AIRA ELISA试剂盒 人抗胃壁细胞抗体(AGPA/PCA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-Reticulin antibody,ARA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-mutated citrullinated vimentin antibody,MCV ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗腮腺管抗体(anti-parotid duct Ab)ELISA试剂盒 Human anti-parotid duct antibody ELISA试剂盒 人抗软骨抗体(anti-cartilage-Ab)ELISA试剂盒 Human anti-cartilage-antibody ELISA试剂盒 人抗人绒毛膜促性腺激素抗体(AhCGAb)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗染色体抗体(anti-chromosome Ab)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗脑组织抗体(ABAb)ELISA试剂盒 Human anti-brain tissue antibody,ABAb ELISA试剂盒 人抗麦胶蛋白/麦醇溶蛋白抗体(AGA)ELISA试剂盒 Human anti-gliadin antibody,AGA ELISA试剂盒 人抗磷脂酰丝氨酸抗体(APSA)ELISA试剂盒 Human Anti-phosphatidyl serine antibody,APSA ELISA试剂盒 人抗磷壁酸抗体(TA)ELISA试剂盒 Human anti-teichoic acid antibody,TA ELISA试剂盒 人抗淋巴细胞毒抗体(ALA/LCA)ELISA试剂盒 Human anti-lymphocytotoxic antibody,ALA/LCA ELISA试剂盒 人抗巨噬细胞抗体(anti-macrophage Ab)ELISA试剂盒 Human anti-macrophage antibody ELISA试剂盒 人抗甲状腺过氧化物酶抗体(TPO-Ab)ELISA试剂盒 Human anti-Thyroid-Peroxidase antibody,TPO-Ab ELISA试剂盒 人抗红细胞抗体(RBC)ELISA试剂盒 Human anti-red cell antibody ELISA试剂盒 人28S抗核糖体抗体(28S rRNP)ELISA试剂盒 Human 28S ribosome RNP antibody,28S rRNP ELISA试剂盒 人抗核仁抗体(ANA)ELISA试剂盒 Human anti-nucleolus antibody,ANA ELISA试剂盒 人抗核膜糖蛋白210抗体(gp210)ELISA试剂盒 Human Anti-glucoprotein 210,GP210 ELISA试剂盒 人抗肝细胞胞质1型抗体(LC1)ELISA试剂盒 Human anti-liver cytosolantibody type 1,LC1 ELISA试剂盒 人抗肺泡基底膜抗体(ABM-Ab)ELISA试剂盒 Human alveoli basement membrane zone antibody,ABM-Ab ELISA试剂盒 人抗胸腺细胞球蛋白(ATG)ELISA试剂盒 Human anti-thymocyte globulin,ATG ELISA试剂盒 人抗表皮细胞基底膜抗体(EBMZ)ELISA试剂盒 Human epidermal basement membrane zone,EBMZ ELISA试剂盒 人抗中性粒/中心体抗体(ACA)ELISA试剂盒 Human anti-centrol and centrosome antibody,ACA ELISA试剂盒
  • 茶叶之硒,你品,你细品......
    中国是茶叶的原产地,也是茶文化的发源地。茶已成为全世界最大众化、最受欢迎、最有益于身心健康的绿色饮料。茶叶具有很强的集硒能力,通过茶树生物富集和转化,能把毒性较高的无机硒转化为安全和毒性低的有机硒,是理想的硒源。 硒(Se)是维持人体正常功能和结构不可或缺的微量元素,被科学家誉为“生命的火种”,“抗癌之王”和“天然的解毒剂”,硒与人体健康的关系越来越受到人们的关注。自然界中的硒整体上可分为无机硒和有机硒两大类: 无机硒:硒酸根(SeO42-)、亚硒酸根(SeO32-),具有很强的毒性,不能被人体利用; 有机硒:硒代蛋氨酸(C5H11NO2Se)、硒代胱氨酸(C3H7NO2Se)、甲基-硒代-L半胱氨酸(C4H9NO2Se)等。 有机硒广泛存在于蛋白质中,参与酶的合成,保护细胞膜。所以有机硒具有保护心脏,延缓衰老,预防癌症,修复细胞,提高免疫力等多种用途。那么,茶叶中的有机硒又是如何被测定的呢?请随我们一起踏入茶叶的功能世界,见证有机硒的检测过程。 方法 使用岛津高效液相色谱仪LC-20Ai与电感耦合等离子体质谱仪ICPMS-2030联用系统,混合型离子交换色谱柱,柠檬酸溶液和超纯水溶液进行梯度洗脱(梯度洗脱见表1),分离测定茶叶中多种形态硒含量。 表1 梯度洗脱条件(流动相A:10 mM柠檬酸溶液 流动相B:超纯水) 样品前处理 将茶叶样品放置于离心管中,加入蛋白酶K溶液后使用纯水定容至刻度。然后将含有样品的离心管放入超声仪中超声,然后再将样品离心,取上清液经微孔滤膜过滤后上样分析。 图1 形态硒的色谱图 样品分析 对茶叶样品进行分析并进行加标回收实验,测定加标回收率,测定结果见下表。 表2 样品分析及加标回收率结果结论 将高灵敏度的ICPMS-2030与岛津高效液相色谱LC-20Ai联用,利用阴离子交换色谱分离的机理,实现茶叶中形态硒含量测定。该方法操作简单、快速高效、精密度高和环境友好,可实现茶叶中形态硒的定性和定量分析。岛津多年致力于食品安全和营养物质的分析,欢迎对茶文化感兴趣的同仁们与我们一起交流,通过我们的产品和服务,让您在品茶的同时,也明明白白地品出营养和健康。
  • 原子荧光新标准来啦!
    原子荧光新标准来啦!《GBT 6324.11-2021有机化工产品试验方法 第11部分:液体化工产品中微量砷的测定 原子荧光法》、《NY/T 3947-2021畜禽肉中硒代胱氨酸、甲基硒代半胱氨酸和硒代蛋氨酸的测定 高效液相色谱-原子荧光光谱法》、《SN∕T 4763.2-2021煤中汞含量的测定 氧弹燃烧-原子荧光光谱法》、《SN/T 5350.2-2021硫磺 砷含量的测定 原子荧光光谱法》等原子荧光光度计相关标准即将在本年度内实施。随着分析仪器相关技术的发展,仪器分析新方法、新技术也在不断创新与完善。原子荧光光度计又名原子荧光光谱仪,由于具有灵敏度高、结构简单、操作方便、经济实用等特点被众多检测实验室应用于砷、汞元素的检测。不过仪器要想广泛的应用,也需要相应完善的分析方法做支持。如今,越来越多的原子荧光相关标准被修订与完善。北京金索坤作为专注研发及生产原子荧光光度计的高新技术企业也一直在积极参与各项标准的制修订工作。其中由中国分析测试协会标准化委员会提出,国家粮食局科学研究院和北京金索坤技术开发有限公司共同起草的《谷物中镉的测定 稀酸提取 火焰原子荧光光谱法》CAIA标准已经正式实施了,该标准的实施为谷物中镉的检测提供了又一新的方法,也为火焰原子荧光光度计的发展带来新的机遇。火焰原子荧光光度计(F-AFS)是原子荧光光度计系列的新产品。区别于氢化法原子荧光,其原理为:将待测溶液以气动雾化方式直接引入传输室,在传输室中与燃气混匀形成气溶胶,输送至原子化器,使待测元素原子化。原子化后的原子在高性能空心阴极灯激发下,使待测原子实现能级跃迁,在去活化的过程中释放原子荧光,待测原子荧光信号的强度与其浓度成正比,以此为待测元素的定量依据。火焰原子荧光光度计的原理突破了传统氢化法原子荧光只能检测发生氢化反应的元素。拓展了仪器的检测元素范围,所以金、铁、钴、镍等元素也纳入了原子荧光的检测范围。标准的重要性对于仪器的发展不言而喻。北京金索坤会在不断探索研究原子荧光技术的同时,积极参与相关标准的制订,让优质的产品配有最佳的使用方法服务于更多的检测用户。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制