当前位置: 仪器信息网 > 行业主题 > >

二茂钴

仪器信息网二茂钴专题为您提供2024年最新二茂钴价格报价、厂家品牌的相关信息, 包括二茂钴参数、型号等,不管是国产,还是进口品牌的二茂钴您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二茂钴相关的耗材配件、试剂标物,还有二茂钴相关的最新资讯、资料,以及二茂钴相关的解决方案。

二茂钴相关的论坛

  • 【求助】请问二巯基丙烷对毛细管气相色谱柱固定液有损害吗?

    请问二巯基丙烷对毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱(HP-5)固定液有损害吗?最近用了二巯基丙烷,用过后发现柱效、灵敏度都有所下降。不知道巯基化合物是不是会改变色谱固定液的极性呢?保留时间没有变化,只是灵敏的和峰形变差,需要重新老化才行。但是老化后感觉也没有100%恢复到之前的状态。

  • 【求助】二茂铁试验方法

    GJB 1671-1993 辛基二茂铁试验方法GJB 1714-1993 叔丁基二茂铁试验方法不知道谁能提供这2个标准啊,多谢!!!

  • 【实验】有机实验之乙酰二茂铁的合成

    乙酰二茂铁的合成目的原理实验目的 1 通过乙酰二茂铁的制备,了解用Friendel-Crafts酰基化反应制备非苯芳酮的原理和方法。2 学习柱色谱分离提纯产品和薄层色谱跟踪反应进程的原理和操作方法。实验原理 二茂铁又名双环戊二烯基铁,是由2个环戊二烯负离子和一个二价铁离子键合而成。一般认为,以乙酸酐为酰化剂,三氟化硼,氢氟酸,磷酸为催化剂,主要生成一元取代物;如用无水三氯化铝为催化剂,酰氯或酸酐为酰化剂,当酰化剂与二茂铁的摩尔比为2∶1时,反应产物以1,1′-二元取代物为主。二茂铁及其衍生物的分离最好是用层析法。本实验用柱色谱分离提纯产品,可用薄层色谱法跟踪反应进程,柱色谱和薄层色谱均属于吸附色谱,柱色谱分离提纯是根据二茂铁,乙酰二茂铁和1,1′-二乙酰基二茂铁对活性氧化铝吸附能力的差异而进行分离提纯。用薄层色谱跟踪反应进程,根据二茂铁和乙酰二茂铁的斑点大小可以了解乙酰化反应的进程。仪器药品 5ml圆底烧瓶,克莱森接头,干燥管,电磁加热搅拌器,30cm色谱柱(自制),30×100mm载玻片,离心试管50ml烧杯,玻璃钉漏斗,吸滤瓶,锥形瓶,氮气袋,250ml烧杯二茂铁,乙酸酐,85%H3PO4,25%NaOH,二氯甲烷,棉花,洗净的砂,Ⅲ级活性氧化铝,己烷,醇,硅胶,0.5%羚甲基纤维素,干燥氮气。过程步骤 一、乙酰二茂铁的制备称取100mg(0.54mmol)二茂铁,放入5ml圆底烧瓶中,加入2.0ml醋酸酐。装上带有干燥管的克莱森接头。水浴温热并搅拌使二茂铁溶解。移去水浴,打开塞子迅速加入3ml 85% H3PO4,使反应液变成深红色,室温下搅拌1.5h,在反应期间定期用毛细管在液面上吸取2滴左右反应液放入具塞小试管中,假如10滴二氯甲烷,所得溶液用薄层色谱法展开,以了解反应进程。当二茂铁的斑点很浅时,表示反应基本完成。将反应液滴入盛有1g碎冰5ml烧杯中,滴加25%NaOH中和恰至碱性,得到大量桔黄色沉淀。充分冷却后抽滤,1ml冷水分几次洗涤沉淀,抽干,干燥后称重约110~120mg。二、乙酰基二茂铁的柱色谱法分离(1)干法装柱将粗产品溶于0.5ml二氯甲烷加入300mgⅢ级活性氧化铝,振荡均匀得浆状物。在通风橱中,在干燥氮气下除去溶剂至恒重,得到松散的颗粒状物,精确称取1/2用作柱色谱分离。将自制的1.5×30cm色谱柱洗净,干燥,柱底铺一层玻璃棉或脱脂棉,再铺一层约5~8mm厚的砂,填平。称取5gⅢ级活性的中性氧化铝(60~80目),通过漏斗将氧化铝装入柱管内,轻敲柱管,使之填均匀。将精确称得含有1/2产品重的氧化铝装入柱内,顶部盖一层约5mm厚的砂子,使氧化铝顶端和砂子上层保持水平。(2)洗脱用己烷作洗脱剂从柱顶加入,缓慢滴入己烷逐渐展开得到黄色、橙色分离的色谱带。黄色的二茂铁带首先从柱下流出,用己称重的锥形瓶收集洗脱溶液。当黄色谱带完全洗脱下来时,改用体积比为1∶1的二氯甲烷己烷混合物洗脱,同时橙色带往下移动,逐渐改变溶剂的比例到体积比9∶1二氯甲烷己烷混合溶剂时,则将橙色色谱带完全洗脱下来,用另一只已称重的锥形瓶收集洗脱液。最后改用体积比为9∶1二氯甲烷甲醇洗脱时,可以看到很淡的,很少量的,棕色色带向下移动,将该洗脱液另行收集。(3)收集产品在通风橱内,各组分洗脱液分别在水浴上蒸馏,回收溶剂。浓缩后的溶液放置冷却析出结晶,将产品放在盛有石蜡片的干燥器内至恒重。可回收到未反应的二茂铁20~22mg;得到乙酰二茂铁80~90mg 1,1′-二乙酰基二茂铁少于2mg。分别测定熔点。注意事项1.二茂铁需经升华或用石油醚(30~60℃)重结晶纯化。2.仪器应是充分干燥的。3.乙酸酐是临用前经重新蒸馏的。4.吸附剂的活性与其含水量的关,含水量越低,活性越高。氧化铝放入高温炉中(300~400℃)烘3h得无水物即Ⅰ级氧化铝。Ⅲ级氧化铝可用Ⅰ级活性氧化铝加入重量的6%的水而得到。如所用氧化铝活性过强会使产品不易洗脱,浪费较多的溶剂。5.这里是考虑到柱色谱的容器。一般粗产品重75mg以上都仅取1/2作柱色谱分离。6.二茂铁易升华,故测熔点时要封管。熔点的文献值:二茂铁为173℃,乙酰二茂铁为85℃,1,1ˊ-乙酰基二茂铁为130℃。分析思考1. 二茂铁乙酰化反应的机理怎样?2. 怎样利用薄层层析判断乙酰化反应的进程?3. 乙酰二茂铁在石油醚和乙醚中溶解度哪个更大?为什么?4. 柱层析分离二茂铁衍生物时,如何选择展开的溶剂? [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52002_1632583_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52003_1632583_3.gif[/img]

  • 气相色谱毛细管柱使用知识(二)

    3 色谱柱的选择 选择毛细管柱时需注意的柱参数包括:固定相、内径、膜厚度和柱长。下面按毛细管柱选择中参数的重要性进行排列和讨论。3.1 固定相 对于一个样品的分析,可采用带有固定相的毛细管柱或填充柱。单一样品分析采用填充柱,经济、快速、柱负载高、抗污染,适合企业生产时单机、单一项目检测。而多残留分析或多项目分析更推荐采用毛细管柱,因为毛细管色谱柱适用性和分辨率更好,不像应用填充柱分析时那么专一、严格,例如:多数在100%二甲基硅氧烷固定相上可以进行分析的物质,在5%二苯基+95%二甲基硅氧烷固定相上同样可以进行分析。非极性固定相具有更好的抗氧化性、更高的效率和更高的极限操作温度(最高可达360℃),所以,在可以完成所需分离的情况下,尽可能选择固定相极性弱的色谱柱,这样可以延长色谱柱的寿命。分析强极性物质,如:酸、醛、醇、胺等,为获得较好分离,需选用极性较强的固定相。有时为了缩短分析时间,也选用与被测物极性相反的固定相。在一个色谱分离过程中,溶质与固定相之间存在多种相互作用,因此,最佳固定相的选择很大程度上取决于溶质的性质。在进行样品分析以前,建议先阅读相关的应用文献推荐的色谱柱型号,或者查阅各公司的色谱耗材毛细柱目录,从中获得不同固定相应用分析的化合物种类的相关信息。这对被测物有效分离选择色谱柱很有用。部分常用商品石英毛细管色谱柱生产公司、牌号、型号、用途见表2。3.2 内径在一系列石英毛细管色谱柱中有5种内径较为常用。每种都有其特定的应用领域和适合的使用范围。0.53mm内径毛细管柱。0.53mm内径的色谱柱样品容量很大,可与填充柱相比,进样理想方式是直接在高载气流速下注入,从而减少连接体系的死体积,减少色谱峰的拖尾。0.53mm内径柱还可以配合特殊进样口装置,如:柱上进样或冷柱头进样装置,使用0.47mm外径针头的微量注射器进行柱头或冷柱头进样。0.53mm内径柱的毛细管柱相当于由填充柱到毛细管柱的简单升级,可以自己动手对连接接头进行改造。相对简单的样品在分析时可得到比填充柱要好得多的效果,而不像常规0.25mm和0.32mm内径毛细管柱需要专用的连接装置。0.32mm内径毛细管柱。0.32mm内径柱被认为是最好的全能色谱柱,具有很好的分离能力、样品容量(取决于膜厚度)。而且弹性较0.53mm内径的好,更易安装,是色谱分析中选用最多的一种规格。这种色谱柱也可进行柱头进样,但需要特殊的注射器。0.25mm内径毛细管柱。0.25mm(早期多为0.22mm)内径柱具有低流失量、高分辨率的特性,也是很常用的。气相色谱-质谱联用仪多采用此规格柱,通常在规格后标有ms字符,如表1中的DB 5 ms。0.15mm内径毛细管柱。0.15mm内径是常规气相色谱仪中50m柱的最小内径。就功效而言,它具有最高的分辨率,用于分析复杂化合物和宽沸程样品很理想。0.10mm内径毛细管柱。0.10mm内径柱只在更短柱长及很高分析速度下进行应用,常用于快速色谱分析。由于柱内径较小,所以色谱柱的负载能力也就比较小,只能够容纳较少的样品,使用时要注意进样量,以保证形成尖锐的色谱峰。以上不同柱内径色谱柱相关参数汇总于表3。表3. 柱内径对比参数内径柱有效板数Neff/M柱理论板数NT/M典型流速(氢)0.10mm.7,000 - 8,2009,500 - 12,0000.2 - 0.5ml/min0.15mm.4,700 - 5,5006,400 - 8,0000.4 - 1.0ml/min0.25mm.3,200 - 3,8004,300 - 5,5000.8 - 2ml/min0.32mm.2,200 - 2,6003,000 - 3,7001.7 - 4.0ml/min0.53mm.1,300 - 1,6001,800 - 2,2003 - 50ml/min3.3 膜厚度膜的厚度对所分析化合物的溶解性有比较大影响,因此,正确选择膜的厚度与正确选择柱长同样重要。相比率是表示色谱柱固定相多少的一种方式,相比率是指毛细管柱的内部体积与固定相的体积比。相比率(β)用公式可表示为:β = D/4μf式中D = 柱内径(微米) μf = 固定相厚度较高的相比率色谱柱内固定相较少,较低的相比率则固定相较多。一般较厚的膜(低相比率)相对流失要大些,使用时注意温度尽可能低些,而且这类色谱柱不适合用于气相色谱-质谱联用仪分析。较厚的膜柱容量也较大。使用较厚的膜,样品就会在柱中停留较长时间,分离度较高,特别适合分析低沸点或气体化合物。若样品中含高沸点组分,将这些组分洗脱将需要很高的温度,因此此时不宜用厚膜。薄膜(高相比率)适于分析高沸点组分,而且由于膜薄,被测物在柱内停留的时间较短,在较低温度下洗脱特定组分,从而延长柱寿命。达到或接近最大柱温时,流失率也会较厚膜低得多,所以更适合用于气相色谱-质谱联用仪分析。根据实验多方面的效果,对样品容量、低流失及分离度进行权衡,标准膜厚度:0.10mm、0.25mm柱内径为0.25μm,0.32mm内径0.5μm,0.53mm内径1.0μm。常见柱径单位柱长相比率见表4。表4. 不同膜厚度及内径下的相比率膜厚度(μm)内径(mm)0.10.250.320.530.1250550800 0.25100220320 0.5 1101602651 55801322 40 3 445 16263.4 柱长大多数柱长是15m、30m(过去为12m、25m)和50m的。柱长选择是由样品复杂度或组分的属性决定的。分析复杂的样品或者需要分析多个项目,应选用较长及更高效的色谱柱。需要分离少数几个组分时,为了提高分析效率选择具有适宜特性及/或膜厚度的适当短的色谱柱。通过适当选择其它柱参数,绝大多数操作都可以在很短的色谱柱上完成。较短的色谱柱也具有优势,例如分析时间较短,流失较少,降低高活性溶质的干扰,当然,还有降低了成本。

  • 【资料】二茂铁检验

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=48989]二茂铁检验[/url]

  • 有奖问答4.22:气相毛细柱固定相“14%腈丙苯基86%二甲基聚硅氧烷固定液”对应的是迪马的哪款气相毛细柱?——已完结

    有奖问答4.22:气相毛细柱固定相“14%腈丙苯基86%二甲基聚硅氧烷固定液”对应的是迪马的哪款气相毛细柱?——已完结

    如题:气相毛细柱固定相“14%腈丙苯基86%二甲基聚硅氧烷固定液”对应的是迪马的哪款气相毛细柱?答案:DM-1701PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。【奖励】一等奖(3钻石币):吕梁山(注册ID:shih20j07)-1楼二等奖(2钻石币):dahua1981(注册ID:dahua1981)-2楼三等奖(1钻石币):夏天的雪(注册ID:bingwang228)-4楼幸运奖(2钻石币):千层峰(注册ID:jxyan)http://ng1.17img.cn/bbsfiles/images/2015/04/201504221503_543027_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/04/201504221503_543028_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/04/201504221503_543029_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/04/201504221503_543030_1610895_3.jpg

  • 【转帖】“三明治"化合物— — 二茂铁!

    【转帖】“三明治"化合物— — 二茂铁!

    叶孝轩刘克文(北京师范大学化学学院北京100875)摘要 二茂铁是一种结构很特殊的化合物,它的发现在金属有机化合物研究中具有里程碑意义。简介了二茂铁的发现、结构确定、制备和应用。关键词 二茂铁结构 制备金属有机化合物二茂铁(Ferrocene)是由1个二价铁离子和2个环戊烯基构成,其化学上的学名是二环戊二烯基铁或双环戊二烯基铁。由于在其结构中,亚铁离子夹在配体环戊二烯基之间,形似夹心面包,因此二茂铁也被形象地戏称为“三明治”化合物。二茂铁的发现可以说是有机金属化学研究中具有里程碑意义的事件,它开辟了金属有机化合物研究的新领域,促进了金属有机化学的发展。l 二茂铁的发现1951年,英国化学家鲍森(P.I .Puason)和基利(T.J.Kealy)首先宣布发现了二茂铁。它的发现非常具有偶然性。1949年,鲍森获得博士学位后进人一所大学任助理教授,在那里,他读到了布朗(R.D.Brown)在著名的科学杂志Nature上发表的关于富瓦烯(Fulvalene)的一篇文章。布朗在文中指出富瓦烯可能具有芳香性,这引起了鲍森的极大兴趣。于是,鲍森和合作伙伴基利一起在1951年7月开始进行制备富瓦烯的实验。根据他们的实验设计方案,经过2步反应就可以得到目标产物:首先让两分子的溴化环戊二烯基镁联结生成化合物1(如图1),然后去氢,即可得到富瓦烯。在第一步反应中,他们选择氯化铁作催化剂,这样做是因为反应中使用的溴化环戊二烯基镁是格氏试剂,它的存在要求体系必须是无水的,而无水状态的氯化铁较之其他的过渡金属卤化物更为常见,并且它溶于醚,可用于格氏试剂使用的环境。[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001031052_193775_1643419_3.jpg[/img]

  • 【资料】毛细管气相色谱法分析甲苯二异氰酸酯

    毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析甲苯二异氰酸酯张月琴 张烃 傅若农 范从林摘 要: 寻找分析甲苯二异氰酸酯的毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法。选择典型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液,如SE-30,SE-54,OV-225,芳羧酸酯液晶和环糊精衍生物等涂渍成弹性石英毛细管柱,测定它们对甲苯二异氰酸酯异构体的分离能力。考察流速和温度对分离度的影响,选出分析甲苯二异氰酸酯的最佳[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相。用OV-225作毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相可较好地对甲苯二异氰酸酯异构体进行分离。本方法简单、快速、准确率高,适合用于工业分析和环境监测甲苯二异氰酸酯异构体。关键词: 毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法; 甲苯二异氰酸酯异构体; OV-225色谱固定相http://www.wanfangdata.com.cn/qikan/periodical.articles/bjlgdxxb/bjlg2000/0002/000226.htm

  • 【转帖】毛细管固定相的选择

    人们在选择毛细管柱的时候往往会遇到各种商品名和文献中的固定相化学名不一致的情况,为了便于大家的选择,现在将极性相近进行了归类,方便大家的选择使用. http://www.instrument.com.cn/vip/Paper.asp?DS1_ID=O

  • 关于含二茂铁化合物及含铬的配合物的核磁实验

    我前一段时间做了一些含二茂铁化合物及含铬的配合物的核磁实验,图谱很清晰,只是二茂铁化学位移值及含铬的配合物的苯环化学位移值往低场移动。请问各位,是否可以作这样的实验?做这些实验对机器有何不利影响?

  • 【分享】气相色谱毛细管柱使用知识(二)

    【分享】气相色谱毛细管柱使用知识(二)

    [align=center][b][size=3]3 [b][b]色谱[/b][/b]柱[/size][/b]的选择[/align] 选择毛细管柱时需注意的柱参数包括:固定相、内径、膜厚度和柱长。下面按毛细管柱选择中参数的重要性进行排列和讨论。[b]3.1 固定相[/b] 对于一个样品的[url=javascript: ][u][b]分析[/b][/u][/url],可采用带有固定相的毛细管柱或填充柱。单一样品分析采用填充柱,经济、快速、柱负载高、抗[url=javascript: ][u][b]污染[/b][/u][/url],适合企业生产时单机、单一项目[url=javascript: ][u][b]检测[/b][/u][/url]。而多残留分析或多项目分析更推荐采用毛细管柱,因为毛细管色谱柱适用性和分辨率更好,不像应用填充柱分析时那么专一、严格,例如:多数在100%二甲基硅氧烷固定相上可以进行分析的物质,在5%二苯基+95%二甲基硅氧烷固定相上同样可以进行分析。非极性固定相具有更好的抗氧化性、更高的效率和更高的极限操作温度(最高可达360℃),所以,在可以完成所需分离的情况下,[color=#0000ff]尽可能选择固定相极性弱的色谱柱[/color],这样可以延长色谱柱的寿命。分析强极性物质,如:酸、醛、醇、胺等,为获得较好分离,需选用极性较强的固定相。有时为了缩短分析时间,也选用与被测物极性相反的固定相。在一个色谱分离过程中,溶质与固定相之间存在多种相互作用,因此,最佳固定相的选择很大程度上取决于溶质的性质。在进行样品分析以前,建议先阅读相关的应用文献推荐的色谱柱型号,或者查阅各公司的色谱耗材[url=javascript: ][u][b]毛细柱[/b][/u][/url]目录,从中获得不同固定相应用分析的化合物种类的相关信息。这对被测物有效分离选择色谱柱很有用。部分常用商品石英毛细管色谱柱生产公司、牌号、型号、用途见表2。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006212153_226189_1643329_3.jpg[/img][b]3.2 内径[/b]在一系列石英毛细管色谱柱中有5种内径较为常用。每种都有其特定的应用领域和适合的使用范围。nh:T5o1^hD'q4K0[b]0.53mm内径毛细管柱。[/b]0.53mm内径的色谱柱样品容量很大,可与填充柱相比,进样理想方式是直接在高载气流速下注入,从而减少连接体系的死体积,减少色谱峰的拖尾。0.53mm内径柱还可以配合特殊进样口装置,如:柱上进样或冷柱头进样装置,使用0.47mm外径针头的微量注射器进行柱头或冷柱头进样。0.53mm内径柱的毛细管柱相当于由填充柱到毛细管柱的简单升级,可以自己动手对连接接头进行改造。相对简单的样品在分析时可得到比填充柱要好得多的效果,而不像常规0.25mm和0.32mm内径毛细管柱需要专用的连接装置。[b]0.32mm内径毛细管柱。[/b]0.32mm内径柱被认为是最好的全能色谱柱,具有很好的分离能力、样品容量(取决于膜厚度)。而且弹性较0.53mm内径的好,更易安装,是色谱分析中选用最多的一种规格。这种色谱柱也可进行柱头进样,但需要特殊的注射器。[b]0.25mm内径毛细管柱。[/b]0.25mm(早期多为0.22mm)内径柱具有低流失量、高分辨率的特性,也是很常用的。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪多采用此规格柱,通常在规格后标有ms字符,如表1中的DB 5 ms。[b]0.15mm内径毛细管柱。[/b]0.15mm内径是常规[u][b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/b][/u]仪中50m柱的最小内径。就功效而言,它具有最高的分辨率,用于分析复杂化合物和宽沸程样品很理想。[b]0.10mm内径毛细管柱。[/b]0.10mm内径柱只在更短柱长及很高分析速度下进行应用,常用于快速色谱分析。由于柱内径较小,所以色谱柱的负载能力也就比较小,只能够容纳较少的样品,使用时要注意进样量,以保证形成尖锐的色谱峰。以上不同柱内径色谱柱相关参数汇总于表3。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006212153_226190_1643329_3.jpg[/img][b]3.3 膜厚度[/b]膜的厚度对所分析化合物的溶解性有比较大影响,因此,正确选择膜的厚度与正确选择柱长同样重要。相比率是表示色谱柱固定相多少的一种方式,相比率是指毛细管柱的内部体积与固定相的体积比。相比率(β)用公式可表示为:[align=left]β = D/4μf[/align][align=left]式中D = 柱内径(微米)分析测试百科网(oD-c)GSI2[,d1m k μf = 固定相厚度[/align][align=left]4Tc4aW6w7v0较高的相比率色谱柱内固定相较少,较低的相比率则固定相较多。[color=#0000ff]一般较厚的膜(低相比率)相对流失要大些,使用时注意温度尽可能低些,而且这类色谱柱不适合用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪分析。[/color]较厚的膜柱容量也较大。使用较厚的膜,样品就会在柱中停留较长时间,分离度较高,特别适合分析低沸点或气体化合物。若样品中含高沸点组分,将这些组分洗脱将需要很高的温度,因此此时不宜用厚膜。[/align][align=left]薄膜(高相比率)适于分析高沸点组分,而且由于膜薄,被测物在柱内停留的时间较短,在较低温度下洗脱特定组分,从而延长柱寿命。达到或接近最大柱温时,流失率也会较厚膜低得多,所以更适合用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪分析。[/align][align=left]根据实验多方面的效果,对样品容量、低流失及分离度进行权衡,[url=javascript: ][u][b][color=#000000]标准[/color][/b][/u][/url]膜厚度:0.10mm、0.25mm柱内径为0.25μm,0.32mm内径0.5μm,0.53mm内径1.0μm。常见柱径单位柱长相比率见表4。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006212154_226191_1643329_3.jpg[/img][b]3.4 柱长[/b][/align]大多数柱长是15m、30m(过去为12m、25m)和50m的。柱长选择是由样品复杂度或组分的属性决定的。分析复杂的样品或者需要分析多个项目,应选用较长及更高效的色谱柱。需要分离少数几个组分时,为了提高分析效率选择具有适宜特性及/或膜厚度的适当短的色谱柱。柱长与分离度的关系见图1。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006220937_226260_1632583_3.jpg[/img]通过适当选择其它柱参数,绝大多数操作都可以在很短的色谱柱上完成。较短的色谱柱也具有优势,例如分析时间较短,流失较少,降低高活性溶质的干扰,当然,还有降低了成本。

  • 毛细管气相色谱柱杀手(二)

    [font=微软雅黑]这一篇中,我们将讨论衍生化试剂对毛细管[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱的影响![/font][font=微软雅黑][/font][font=微软雅黑][/font][font=微软雅黑] [/font][b][font=微软雅黑]衍生化试剂[/font][/b][font='Microsoft YaHei UI'][color=#222222][/color][/font][font=微软雅黑]衍生化是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法中常用的方法,通过替换某些官能团,将非挥发性化合物转化为挥发性化合物。衍生化也可用于增加复合热稳定性以及增加检测器响应。[/font][b][font=微软雅黑][/font][/b][font=微软雅黑] 然而,在衍生化之前,需要注意一些事项。样品中过量的衍生化试剂可能对GC柱的固定相造成不可弥补的损害。因此,许多方法都要求蒸干样品提取物以除去过量的试剂。蒸发后,样品残渣在纯溶剂中溶解并稀释,再进行分析。 最具破坏性的衍生化试剂是全氟酸酐酰化试剂(如三氟乙酸酐–TFAA,五氟丙酸酐–PFPA以及七氟丙烷–HFBA)。这些试剂形成酸副产物,会破坏柱的固定相。硅烷化试剂三氟乙酸(TFA)和二甲基二氯硅烷(DMDCS)对聚乙二醇(Carbowax)固定相破坏很大,但对聚硅氧烷固定相基本无影响。许多的硅烷化试剂,会与活性氢原子产生TMS衍生物反应;因此,分析此类样品应避免选用聚乙二醇(Carbowax)固定相色谱柱。 目前不破坏毛细管色谱柱固定相的酰化试剂很少,包括N-甲基双三氟乙酰胺(MBTFA)和全氟酰基咪唑(三氟乙酰咪唑–TFAI,五氟丙酰基咪唑–PFPI,以及七氟丁酰咪唑–HFBI),其它的衍生化试剂大都会损伤色谱柱。还有一点要注意,即使不会损坏色谱柱的试剂,但仍可能造成进样口污染,从而导致鬼峰。[/font][font=宋体][/font][font=微软雅黑][font=微软雅黑]由于没有衍生化试剂[/font][font=微软雅黑]“安全”或“有伤害”的完整数据,我们建议分析任何衍生化处理的样品,应提高警惕。如果分析衍生化样品发现色谱图有任何降解的迹象,最好选择另一个衍生化试剂。[/font][/font]

  • 求帮忙看看二茂铁衍生物的气质联用图谱

    求帮忙看看二茂铁衍生物的气质联用图谱

    [color=#444444]目标产物是二氯二茂铁,杂质是二茂铁。如图是GC-MS分析,正己烷做溶剂。这两个我感觉是同一个物质啊,可是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]质谱的峰又差别有点大。大神帮忙看看,给给意见。[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131124339072_1686_1676638_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131124345108_2747_1676638_3.jpg!w690x517.jpg[/img][/color]

  • 关于GC毛细柱固定相的选择,你们是如何选择的?

    一般来说,我们选择哪一种毛细柱的固定相一般都是参考文献或者标准,可是无从参考怎么办呢?以下是迪马科技总结的经验分享: 如无参考可从非极性固定相(如:DM-1或D M-5)开始,使用极性最小的固定相能提供满意的分离度和分析时间; 非极性(DM-1或DM-5),中等极性(DM-1701,DM-17)和强极性(DM-WAX)各一只,可以以最少数量的色谱柱覆盖最大范围的选择性;对于含有偶极矩和氢键的化合物,选用含腈基或者聚乙二醇的固定相进行分析;“相似相溶”原则,选择极性与分析物极性类似的固定相; 非极性固定相比极性固定相具有更长的寿命;低流失的(‘ms’)色谱柱通常惰性较强并且温度上限较高;尽量避免选择含有能与选择性检测器产生高响应功能团的固定相。例:NPD检测时含氰丙基的固定相出现异常高的基线上升(由于色谱柱流失); PLOT柱用于在高于室温的柱温下分析轻烃或永久性气体样品。各位版友,关于GC毛细柱固定相的选择,你们是如何选择的?分享一下你们的选择经验~~http://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 火了,这根填充柱有能代替的毛细柱么?(分析硫化氢,甲硫醇,甲硫醚和二甲二硫)

    依据标准是GB/T 14678-93 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法。要求的色谱柱是:3m*3mm,硬质玻璃(玻璃太容易碎了,我想换成不锈钢,不知道可以不?)固定相:担体:60-80目的chromsorb- G 固定液:25%β,β氧二丙腈。啥样的毛细柱能取代呢?估计如果没有毛细柱能取代的话,那么chromsorb- G的担体是哪种极性的?有什么样的别的担体能代替???(不巧,供应商有chromsorb- W,没有chromsorb- G),

  • 【原创大赛】认识气相色谱固定相(二)——固定相的适用温度

    【原创大赛】认识气相色谱固定相(二)——固定相的适用温度

    前面的文章已经对常见固定相的种类进行了介绍,详见https://bbs.instrument.com.cn/topic/7247165。本次主要介绍固定相的适用温度范围。.[b][size=12.0pt]1[/size][font=宋体][size=12.0pt]、温度对固定相的影响[/size][/font][/b] [font=宋体]在色谱分析中,柱温是最重要的工作参数之一。我们总是需要通过调节柱温来改善分离效果。但是温度变化对固定相自身的影响常常被忽略。实际上,任何固定相都有一个适用的温度范围,我们在调节柱温时必须要考虑这一范围。如果超出这一范围使用,不仅无法达到预期的效果,还可能对色谱柱造成不可逆的损坏。[/font].[b] [font=宋体]高温对固定相有哪些损害?[/font][/b] [font=宋体]首先是挥发问题。固定相虽然是沸点很高的物质,但是在较高稳定性仍然具有一定的蒸气压,会随载气挥发。因此在检测器中检测到的信号实际上是固定相蒸汽与目标物共同产生的,只有当固定相蒸汽浓度远低于目标物时才能实现准确定量。如果固定相蒸汽浓度太高,就会导致较高的背景信号,噪声也随之增大,此时样品的微弱信号就被淹没在固定相蒸汽产生的背景噪声中,难以识别。[/font] [font=宋体]然后是分解问题。高温下,固定相自身的化学键会发生断裂,随着温度的上升,分解速率呈指数增长。同时样品和载气中的强极性杂质,如水、酸等,都容易与固定相发生反应导致分子链断裂,这种反应也是随温度升高而呈指数增长的。分解产生的气态小分子产物随载气流出,产生的影响与固定相蒸汽类似,都表现为较高的背景信号和较大的噪声,因此统称为“柱流失”或者“固定相流失”。有些分解产物在柱温较低时被保留,随着程序升温过程逐步流出色谱柱,就形成鬼峰,也会干扰测定。[/font] [font=宋体]以上两方面的问题,除了影响低浓度目标物的检测外,同时也是色谱柱寿命损失的主要原因之一。柱流失的直接结果就是使固定相总量减少、色谱柱的容量因子降低。通常容量因子减小[/font]10%[font=宋体]就说明色谱柱已经有明显的损坏了,因为固定相的明显流失意味着柱内壁涂层的破坏,会暴露出活性点从而产生吸附拖尾等问题。而且流失一旦开始,往往会加速发生,因为原有的化学键断裂之后,剩余固定相的稳定性就会越来越差。[/font] [font=宋体]另外,柱流失也是污染检测器的重要原因之一,这在[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]中尤其突出,在使用其他检测器时也时有发生,比如[/font]FID[font=宋体]的喷嘴积碳、[/font]FID[font=宋体]收集极沉积二氧化硅等。[/font][font=宋体].[/font][b] [font=宋体]低温对固定相有哪些不利影响?[/font][/b] [font=宋体]受传质阻力的限制,固定相一般需要为液态(虽然吸附形固定相是固态的,也需要通过多孔结构来实现传质)。如果液态的固定相在较低温度下凝固,将导致传质阻力显著增加,其结果表现为保留能力显著减弱、峰形严重展宽,因此固定相的使用温度必然存在下限。这一现象在使用聚乙二醇固定相时尤其明显,当柱温低于聚乙二醇的熔点时,样品变得几乎不被保留,峰型也会异常变宽。对于一些粘稠固定相,比如分子量极大的[/font]OV-1[font=宋体]、极性很强的氰丙基硅氧烷、丁二酸二乙二醇聚酯等,在较低温度下即使不凝固,也会因粘度大而产生很大的传质阻力,柱效下降很明显,因此也不适合在较低柱温下使用。[/font] [font=宋体]当然,与高温的影响不同,低温产生的不利影响是可逆的,重新恢复正常柱温后,柱效可以完全恢复,不会造成损坏。因此本文后续主要讨论的是最高适用温度,最低适用温度仅作简要叙述。[/font][font=宋体].[/font][font=宋体][b][size=12.0pt]2[/size][font=宋体][size=12.0pt]、如何评价固定相的适用温度[/size][/font][/b] [font=宋体]能用或者不能用,看似很简单的问题,实际上要做出完全客观的判断却不容易。目前关于固定相使用温度的数据极为混乱,各类文献手册和产品资料给出的数据差别极大,究其原因就是缺少一个客观同一的评价标准。[/font] [font=宋体]早期进行的固定相探索实验中,最高使用温度往往通过主观感受来评价。比如有学者使用[/font]FFAP[font=宋体]固定相测定了游离脂肪酸,柱温最高达到[/font]250[font=宋体]度,于是后续文献就说[/font]FFAP[font=宋体]固定相的最高使用温度可达[/font]250[font=宋体]度。但是这种固定相在[/font]250[font=宋体]度使用的效果到底如何呢?是使用数百小时性能没有下降,还是使用一天后就明显变差了?使用时噪声很大,还是小到可忽略不计?这些问题实际上都没有体现出来,因此这个最高使用温度可达[/font]250[font=宋体]度的说法实际上是完全没有意义的。[/font] [font=宋体]又例如最经典的[/font]SE-30[font=宋体]固定相,有的文献报道最高使用温度可达[/font]350[font=宋体]度,在[/font]350[font=宋体]度的柱温下用[/font]TCD[font=宋体]检测器测定聚氧乙烯脂肪醇醚可以获得很好的效果。又有文献认为其最高使用温度不应超过[/font]300[font=宋体]度,在[/font]300[font=宋体]度的柱温下用[/font]FID[font=宋体]检测器测定邻苯二甲酸酯时就已经表现出比较大的流失和噪声了。这种矛盾的报道也是标准不统一引起的,因为[/font]FID[font=宋体]的灵敏度比[/font]TCD[font=宋体]高得多,使用高灵敏度的检测器时对固定相流失敏感得多。[/font] [font=宋体]到了毛细管柱普及的时代,这种不统一也是非常常见的。例如平时经常使用的[/font]PEG[font=宋体]柱([/font]wax[font=宋体]柱),不同厂家标称的最高适用温度从[/font]200[font=宋体]度到[/font]290[font=宋体]度都有,这里面有产品质量的差异,但是更多的是因为质量标准不同得出了不同的指标。而处于商业利益和技术保密等方面的考虑,很多厂家根本没有公开质量标准,这使得各种商业宣传的指标更加扑朔迷离,甚至到了信口开河的地步。[/font][/font][font=宋体] [font=宋体]作为曾经的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术标杆,瓦里安在这方面做得是比较好的,以下是截取的瓦里安毛细管柱关于最高适用温度的质量标准,指标能够被客观的量化。[/font][/font][font=宋体][font=宋体][img=,685,989]https://ng1.17img.cn/bbsfiles/images/2020/06/202006301757436366_4857_2204387_3.png!w685x989.jpg[/img][/font][/font][font=宋体][font=宋体].[/font][/font][font=宋体][font=宋体] [font=宋体]上述质量标准都是根据固定相在高温下流失的程度来定义最高适用温度范围的。一方面是从固定相的总量方面考虑,连续使用[/font]6[font=宋体]个月后固定相流失一半的温度作为普通色谱柱的最高适用温度。也就是说该色谱柱在标称的最高恒温操作温度下连续工作[/font]4[font=宋体]千小时,固定相就会损失一半。显然,固定相损失到这种程度是肯定无法使用的。前面已经说过,固定相损失的程度可以通过容量因子降低的程度反映出来。一般实践表明,固定相损失[/font]10%[font=宋体]的时候柱子的性能就已经有明显缺陷了,需要及时更换,也就是说在标称的最高恒温操作温度下,色谱柱能够稳定工作的时间其实不到[/font]1000[font=宋体]小时。[/font] [font=宋体]另一方面是从固定相流失到载气中的浓度来考虑的。质谱、[/font]ECD[font=宋体]等高灵敏度的检测器对柱流失极为敏感,即使色谱柱的寿命没有受到明显影响,当流失的固定相蒸汽浓度增大到一定程度后,检测器噪声会显著增加,这对于微量物质的分析是不能允许的。因此,这类色谱柱(主要是低流失柱或者称作[/font]MS[font=宋体]柱)的最高恒温操作温度是柱流失水平不超过某一规定值的温度。在这一温度下固定相流失非常微小,色谱柱的寿命很长,连续使用数千小时后固定相总量也不会有显著的减少。柱流失水平一般是在[/font]FID[font=宋体]上测定基流随温度的变化而反映出来的。因为流失的固定相是有机蒸汽,进入[/font]FID[font=宋体]之后会使信号增加,增加的程度与流失的浓度几乎是成正比的。对于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]分析,通常要求柱流失对应的基流在几个[/font]pA[font=宋体]以内。以下是不同色谱柱高温流失产生的基流变化示意图,摘自安捷伦应用资料。[/font][/font][/font][font=宋体][font=宋体][font=宋体][img=,690,366]https://ng1.17img.cn/bbsfiles/images/2020/06/202006301758528671_6760_2204387_3.png!w690x366.jpg[/img][/font][/font][/font][font=宋体][font=宋体][font=宋体].[/font][/font][/font][font=宋体][font=宋体][font=宋体] 以上所列的瓦里安色谱柱的评价标准在行业内几乎是最为严格的。其他厂家的评价标准往往要宽松很多,因此在使用过程中经常会遇到产品标称适用温度很高,但是在低于标称温度的时候流失就已经很明显了。或者有时候遇到A厂产品标称温度比B厂产品高,但是实际使用时A的流失却比B更加明显。因此在比较不同色谱柱热稳定性时不能仅仅看标称的数值,而要在统一的标准下对比。[/font][/font][/font][font=宋体][font=宋体][font=宋体]. 实际应用中应以什么标准来判断色谱柱的适用温度范围? 从以上讨论可以看到,即使按瓦里安比较严格的量化标准,也会出现多个不同的最高适用温度。那么实际应用中要按那个指标进行判断呢?根据我的经验和习惯,倾向于采用最严格的标准,也就是低流失柱(质谱柱)的最高操作温度定义方式。因为,即使在适用FID进行普通的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析时,固定相流失带来的较大的基线抬升和噪声增加也都是非常不利的,应该尽可能避免。而且,按连续工作6个月后固定相损失50%来定义的最高操作温度也并不适用于实际操作,因为这个温度下固定相已经在显著分解,色谱柱可以稳定工作的时间实际上不足1000小时(容量因子变化在10%以内),只有在比这个温度低20度左右使用才能获得长期稳定的使用效果。 其实日常应用中,很多人已经不自觉的在使用这个标准了,我们在询问色谱柱最高可以多少度用的时候,经常会听到这样的回答:比标称的比较低的那个数值再低20度使用。但是需要注意,前提是这个标称的数值一定不能是虚标的。然而遗憾的是,目前各个厂家虚标的现象非常普遍,即使没有恶意虚标,也有不少通过较为宽松的质量标准得到的虚高指标。因此,我在下面对一些常用固定相的适用温度范围进行了大致的整理,并简要归纳了变化规律。给出的温度数值不可能很精确,只能作为大致的参考,但是其基本规律在判断厂家标称的参数是否合理时可以作为佐证依据。.3、聚硅氧烷固定相的适用温度范围 聚硅氧烷固定相的最高适用温度普遍比较高,其影响因素包括分子量、取代基,以及交联情况等方面。 甲基聚硅氧烷的分子链是最为稳定的,因此其耐热性一般是最好的。但是随分子量不同,其性质有明显差异,适用温度也明显不同。低分子量的是油状液体,俗称甲基硅油,适用温度通常在200度左右。高分子量的是黏弹态橡胶状固体,俗称甲基硅酮胶,适用温度可达300度以上,例如OV-1固定相的标称适用温度为350度,是常规固定相中适用温度最高的一种,实践也表明这种固定相确实能在350度柱温下使用一定的时间。但是这种高分子量的固定相在接近室温时粘度非常大,只有柱温较高时才能获得较高的柱效,柱温太低时无法使用。分子量适中的表现为半流态弹性体,以SE-30固定相为代表,最高适用温度约为280~300度,随杂质含量不同略有差异。 对于其他取代基的聚硅氧烷,分子量变化也有类似的影响规律,但考虑到粘度的影响,除苯基取代的聚硅氧烷外,一般只使用分子量中等偏低的型号,因为其他极性取代基会导致粘度的进一步增加,分子量太高不利于使用。除少量苯基取代外,其他强极性的取代基都会使聚硅氧烷的热稳定性减弱,适用温度随极性的增强而降低。5%苯基取代的聚硅氧烷,如SE-52、SE-54、OV-73等,适用温度也可以达到280~300度,而高苯基取代度的聚硅氧烷,如OV-61、OV-17等,适用温度降低较为明显,通常只有250~260度左右。三氟丙基、氰丙基等强极性基团会使聚硅氧烷的热稳定性显著降低,取代度不太高的品种,例如OV-1301、OV-1701等,最高适用温度约为250度,取代度高的时候,适用温度降低更明显。例如OV-210一般在240度以下使用才能比较保险,OV-225、OV-275等品种的最高适用温度大约不超过220度。只有Xe-60这种分子量非常大的固定相才能在更高温度下使用,但通常也不能超过250度。另外,氰丙基取代度高的聚硅氧烷由于极性强、粘度大,因此在低温下柱效较低,最好在100度或者更高的柱温下使用。 总的来说,对于聚硅氧烷这一类固定相,最高适用温度至少应该符合两个规律:一是分子量大的挥发弱,适用温度应该更高;二是极性强的稳定性差,适用温度应该更低。明显偏离这个规律的数据肯定是值得怀疑的。. 这里必须指出,早期文献使用填充柱研究固定相性质,填充柱中固定相总量较大,少量流失也不至于明显损坏;而且当时的色谱仪灵敏度普遍不如现在高,因此对于固定相的流失不甚敏感;这两个因素导致的结果就是,报道的固定相适用温度普遍偏高,我们在查阅早期文献和手册需十分注意。而目前普遍使用了毛细管柱,负载的固定相总量少得多,少量流失就有损坏的可能,同时现在还普遍采用高灵敏度的检测器进行微量分析,对固定相流失问题必须有更加严格的要求。 而且早期文献年代久远,以讹传讹的现象层出不穷,例如著名的OV-17固定相,早期给出的最高适用温度是275度,而之后该数据多次转载,最后讹传成了375度并载入了各大专著和手册的数据表中。要知道,同类固定相的毛细管柱在近十几年才实现了350度左右的使用温度,难道色谱固定相技术开了几十年的倒车?这个显著错误数据在各大专著和手册中堂而皇之的存在几十年却无人指出,实在令人深思。其实这一问题在Walter Jennings的《玻璃毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]》专著中早就有所提及,作者也的指出OV-17固定相用于毛细管柱的最高使用温度实际上约为250度,但是仍然没有明确指出固定相表格中数据的错误。 还比如有的文献中给出的OV系列各种固定相的最高适用温度都是350度,甚至连OV-351这种聚乙二醇类的固定相也标称最高适用温度是350度,这显然也是不合理的。究其原因,可能是不经思考的采纳了产品宣传资料,因为在OV公司的产品介绍中有提到OV系列固定相的最高适用温度可达350度,其言下之意是只这一系列产品中最高的那一种可以达到350度的适用温度,而几经转载就变成了所有的品种都是350度的适用温度。 国产上试厂的固定相也出现过类似的以讹传讹的问题。最典型的是上试产的硅油(III)固定相,其实际使用温度上限为180度,但不知何时被弄错成了280度。为了对这一问题进行验证,我曾经买过数瓶不同批次的该产品进行实验,明确证明280度这一数据是错误的。但是这一错误数据还是一直被收入在《分析化学手册第五分册》和企业标准中,出厂的产品上也一直堂而皇之的写着“最高使用温度280℃,流失实验合格”。. 二十世纪八十年代以来,毛细管柱的一个重大技术进步是固定相的交联键合技术。这一技术使传统的直链聚合物固定相交联为网状聚合物固定相,不仅分子量成指数增加,分子链的锚固点也变得更多,稳定性大大增强。这一技术使原有固定相的最高适用温度普遍提高了20~30度左右。进入二十一世纪以来,各大厂商又基于亚芳基改性、碳硼烷改性等技术生产了低流失色谱柱(MS柱),使原有同类固定相的适用温度又进一步提高了20度以上。其中特别是含有35%亚芳基的固定相,其结构处于稳定性最佳的状态,适用温度提高最为明显,达到340度以上。在瓦里安被安捷伦收购之后,其他厂家也没有停止开发耐高温、低流失固定相的脚步,也纷纷推出了相应的产品,各种固定相的最高适用温度还在继续提高,例如Restek公司的Rxi系列,SGE公司的BPX系列,Phenomenex公司的ZB-plus系列,等。 下表列出了一些常见固定相型号的最高适用温度,温度的判断均以可长期连续使用、且不会检测到明显的柱流失这两个条件同时满足为标准,数据大部分来自于本人或者同行的操作实践,可能存在一定的上下偏差,但应该没有重大差错,可供实践使用中参考。.4、聚乙二醇固定相的适用温度范围 聚乙二醇固定相的适用温度范围一般来说比聚硅氧烷小得多,并且受到自身分子量大小和杂质含量的影响很大。常用的PEG-20M是分子量2万的品种,最高适用温度可达200度以上,少数质量好的甚至可以在220度稳定使用很久,但是有些质量较差的却远达不到这么高的适用温度。同时要注意,分子量2万的聚乙二醇在55度时会凝固并逐渐结晶,因此其最低适用温度通常不低于60度。分子量小一些的聚乙二醇品种具有更低的凝固温度,但是最高适用温度也明显降低,因此使用不多。微量的酸性杂质和金属离子都会催化聚乙二醇链的断裂,这是纯度低的产品适用温度难以提高的主要原因,而向其中添加强碱则是提高其热稳定性的重要方法。 聚乙二醇与硝基对苯二甲酸发生酯化反应生成的缩聚物是针对游离脂肪酸分析的一种固定相,简称FFAP。由于缩聚使分子量进成倍增加,因此这种固定相的热稳定性更好,通常能在220度长期稳定使用。与聚乙二醇一样,FFAP固定相在较低温度下会凝固,最低适用温度约为60度。 交联键合技术在聚乙二醇固定相的毛细管柱中同样有广泛应用,实现交联后,最高适用温度提高了20度以上,达到240度左右。虽然在更高的柱温下也能短时间使用,但是聚乙二醇链断裂的问题是难以克服的,高温导致的寿命减少非常明显。交联限制了分子链的移动与重排,对抑制聚乙二醇在低温下结晶有一定作用,因此交联型的聚乙二醇固定相的最低适用温度也有不同程度的降低,不同产品在20~50度范围内不等。 近十几年在低流失的聚乙二醇柱方面也取得了技术进展,能在250度甚至更高温度下长期稳定使用的聚乙二醇柱已有好几个不同的型号,例如瓦里安的VF-WAXms、安捷伦的DB-HeavyWax等。还有一些厂家也声称开发了耐高温低流失的聚乙二醇固定相型号,但是尚未见到详细的流失测试和寿命测试报告,对其性能还需观望。.5、关于固定相最高适用温度,其他需要说明的问题 以上简要讨论的固定相的最高适用温度,给出了各种固定相的推荐值。但是实际应用中问题还要复杂得多,不能简单套用表中的数值。. 不同厂家的产品质量差异明显 固定相都是高分子材料,其分子量分布和微量杂质对性能影响很明显,不同厂家的产品看似接近,实际使用中却会显著不同。比如前面提到的聚乙二醇固定相,同样是分子量2万的产品,如果用普通分析纯试剂的聚乙二醇来当固定相使用,通常使用温度只能达到160~180℃,再升温就会很快分解殆尽,而使用专门色谱固定相级别的产品则可以在200℃稳定使用。又比如SE-30本来是一种工业硅油产品,低分子量杂质较多,后来有厂家对其进行了纯化得到专用的色谱固定相级别的产品,最高使用温度就有了显著的提高。对于键合固定相和低流失固定相也有类似的问题,不同厂家的同类产品,在同样温度下的流失水平有显著差异。以我自身使用的经验为例,同属5%苯基聚硅氧烷的MS固定相,VF-5ms、HP-5ms、RTX-5ms三者在同样温度下进行比较,VF-5ms的流失比另外两种要低很多。即使同一厂家的产品,不同系列之间也有明显差异。例如同属安捷伦,HP-5的流失明显比DB-5要高不少;又例如SGE公司的产品,AC系列的质量低于BP系列,最高适用温度相应的也会低一些。. 不能只看宣传资料上的数字 浮夸风、放卫星不是中国独有的,卖东西的人都有王婆卖瓜的习惯,因此选择色谱柱的时候一定不能只看宣传资料上的片面之词。还是以我使用过的VF-5ms与RTX-5ms为例,前者标称温度为325/350℃、后者标称温度为330/350℃,看似后者的指标更高,然而实际使用中后者的流失要比前者高数倍。再例如同属安捷伦旗下的HP-innowax和DB-wax,柱规格均为30m*0.32mm*0.25μm的情况下,前者标称温度为260/270℃,比后者高了10度,然而根据我实际使用的情况,二者的热稳定性不相上下,同温度下DB-wax的流失甚至还稍微低一些,而且实践证明HP-innowax想要长期稳定工作且不产生显著的基线噪声,柱温不宜超过230℃,比标称数值更低VF-WAXms还要差很多。那么这个标称的“260/270℃”算不算虚假宣传呢?这个确实很难判定,因为厂家只说可以用,没说能用多久,用三天就报废也算可以用啊(手动滑稽. 要注意柱规格产生的差异 前面讨论的是固定相的适用温度,但固定相都是做成色谱柱来使用的,因此我们更加关心色谱柱的最高适用温度。同样的固定相,只做的色谱柱长度、内径、膜厚不同,最高适用温度会有不少的差异。影响最显著的是膜厚,其他条件不变、膜厚加倍时,固定相的流失水平会增加一到二倍不等。而且膜厚太大的色谱柱制备更困难、容易出现交联不完全的问题。因此使用厚液膜(1.0μm或者更厚)的色谱柱时,允许的最高温度一般要降低10~20℃。柱内径增加、柱长增加时,固定相的流失也会有一定的增加,所以在使用大口径柱(0.53mm)、长柱(60m或者以上)时,也要注意将允许的最高温度适当降低。[/font][/font][/font]

  • 【资料】-毛细管色谱柱固定液的涂渍方法

    [b]毛细管色谱柱固定液的涂渍方法[/b](1)壁开管柱(wall coated open tubular, WOCT)将固定液直接涂在毛细管内壁上,这是戈雷最早提出的毛细管柱。由于管壁的表面光滑,润湿性差,对表面接触角大的固定液,直接涂渍制柱,重现性差,柱寿命短,现在的WCOT柱,其内壁通常都先经过表面处理,以增加表面的润湿性,减小表面接触角,在涂固定液。(2)多孔层开口柱(porous layer open tubular, PLOT)在管壁上涂一层多孔性吸附剂固体微利,不再涂固定液,实际上是使用开管柱的气固色谱。(3)载体涂渍开管柱(support coated open tubular, SCOT)为了增大开管柱内固定液的涂渍量,现在毛细管内壁涂上一层很细的(<2μm)多孔颗粒,然后在多孔层上涂渍固定液,这种毛细管柱,液膜较厚,因此柱容量较WCOT柱高。(4)化学键合相毛细管柱 将固定相用化学键合的方法键合到硅胶涂敷的柱表面和径表面处理的毛细管内壁上。经过化学键合,大大提高了柱的热稳定性。(5)交联毛细管柱 由交联引发剂将固定相交联到毛细管管壁上。这类柱子具有耐高温、抗溶剂抽提、液膜稳定、柱效高、柱寿命长等特点,因此得到迅速发展。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制