当前位置: 仪器信息网 > 行业主题 > >

己硫醚

仪器信息网己硫醚专题为您提供2024年最新己硫醚价格报价、厂家品牌的相关信息, 包括己硫醚参数、型号等,不管是国产,还是进口品牌的己硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合己硫醚相关的耗材配件、试剂标物,还有己硫醚相关的最新资讯、资料,以及己硫醚相关的解决方案。

己硫醚相关的资讯

  • 美国对杀虫剂吡丙醚制定残留许可限量最终法规
    近日,美国环保署发布了吡丙醚(Pyriproxyfen)许可限量最终法规,对杀虫剂吡丙醚制定了残留许可限量的最终法规。   法规规定吡丙醚在叶类蔬菜(芸苔类除外)上的残留许可限量为3.0ppm 根茎块茎叶类蔬菜为2.0ppm 芦笋为2.0ppm。   吡丙醚(Pyriproxyfen)许可限量最终法规具体内容详见:   http://www.epa.gov/fedrgstr/EPA-PEST/2009/October/Day-28/p25689.pdf
  • 月饼硫残留是公开秘密 国家标准无相关限制
    “今年油、面粉、糖和做馅用的各种原料价格上涨,月饼主要生产企业整体市场零售价随之上涨10%,然而市场上仍有相当一部分小的月饼厂家借机大打价格战,为了缩减制作成本,月饼馅料二氧化硫残留有可能发展成产业内的一场'三聚氰胺危机’。”日前,华南月饼制造业资深人士卢超明(化名)告诉本报记者。记者4日在广州某大超市看到,店内至少销售20款月饼,价格参差不齐,以一盒四个普通装双黄白莲蓉月饼为例,最低不到30元一盒,而最高超过200元一盒。卢超明称,国内月饼市场容量达200亿元,而前十名的大企业只占约10%的市场份额,中小品牌众多以及巨大的市场空间给行业的质量监控提高了难度。   原材料价格上涨月饼普涨   “受农副产品市场价格影响,今年生产月饼的主要原材料成本与去年同比大幅上涨,如莲子价格约为4.8万元/吨,同比上涨165% 五仁类原材料同比上涨40%-60% 糖约为5500元/吨,同比上涨30% 花生油约为1.7万元/吨,同比上涨50% 面粉约为5000元/吨,同比上涨15%。”广州酒家集团利口福食品有限公司总经理吴家威告诉本报记者,广州酒家今年中秋月饼原材料成本平均升幅高达30%。由于主要原材料成本大幅上涨,记者发现去年广式月饼主要品牌月饼系列的价格不超过百元的月饼占到六七成,但是今年预计单价超过或接近百元左右的品种占月饼总销量的70%。“从1994年开始,安琪月饼只提过一次价,今年是第二次。”深圳市场月饼龙头老大深圳安琪食品有限公司董事长梁球胜告诉本报记者,今年安琪双黄白莲蓉月饼每盒零售价从原来的108元提高10元,标价118元,产品平均增幅在10%左右。   从制定国内月饼国家标准,到生产企业强制Q S认证,国内月饼市场近年得到较大程度的规范,然而国内月饼市场容量达200亿元,而前十名大企业只占约10%的市场份额。“国内目前月饼的生产巨头有上海杏花楼、广州酒家、深圳安琪、北京稻香村、北京好利来和东莞华美等大品牌,销售额最大的杏花楼不过3亿元左右,广州酒家约2.5亿元,深圳安琪约2亿元,排名前十位的生产企业的市场销售总额接近20亿元,只占200亿的市场整体容量的10%份额。”华南月饼制造业资深人士卢超明(化名)告诉本报记者。   以劣充好,食品安全隐患上升   依据国家月饼标准,包括以莲子为主要原料加工成馅的月饼,除油、糖外的馅料原料中,莲子含量应不低于60%,然而由于今年莲蓉价格大涨,不少企业以“薯粉”冒充莲蓉。然而化学物在月饼中的残留,造成的质量影响更大。“月饼制作过程中不少企业为图价格优势,使用硫化糖,该类糖含有一定的二氧化硫残留,并容易带入月饼馅料中。除此外,莲蓉的制作过程中,为令莲子漂白,行内普遍用食用碱水,但是有不法商家为加快进程,用一种含有二氧化硫的化学物,这无疑增加了莲子硫残留风险。”卢超明称。当前关于月饼的国家标准中,并没有针对硫残留含量限制的相关条款,而月饼的硫残留已成为行业公开的秘密。   乳业三聚氰胺危机令乳业巨头掀起奶源基地兴建热潮,苏丹红风波令食品行业加强对色素的监管,而月饼行业的安全隐患却鲜为人知。“广式月饼的主要原料有莲子、蛋黄、面粉、糖、油等,其中又属莲子和蛋黄最关键。”安琪董事长梁球胜告诉记者。为把控莲蓉的品质监控,今年安琪在湖北仙桃建立逾万亩湘莲种植基地,并与武汉大学开展无公害莲业科研合作,该项合作被列为“十一五”国家支撑计划重大项目。而在湖北仙桃沙湖,安琪也建立了非饲料养殖的养鸭基地。“苏丹红事件后,使用工业色素'上色’的投机行为少了,但市场上不少表面看上去颜色鲜亮的咸蛋黄,其实养殖过程中鸭农仍然喂饲了可食用的胡萝卜素。相比之下富含天然胡萝卜素的麦黄角草是沙湖的特产,以该草料喂养的鸭子所产咸蛋,出油、起沙和色泽都是最出色的。该莲子和养鸭基地一年可以为安琪提供充足的莲蓉和咸蛋黄,这标志着安琪正突破当前月饼产业收购莲子中间存在原料多重购销环节的模式,从莲子种植、莲业研发、莲蓉制作,到月饼产销,开创月饼全产业链时代。”梁球胜称。
  • 肿瘤微环境响应磁共振纳米诊疗剂研究取得进展
    p   近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员吴正岩课题组与上海交通大学医学院教授邹多宏团队合作,利用磁性氧化铁与硅酸锰纳米复合物制备出一种对肿瘤微环境响应的纳米磁共振造影剂和药物递送系统,相关工作已被生物材料期刊Biomaterials 接收发表(DOI: 10.1016/j.biomaterials. 2018.12.004)。 /p p   纳米诊疗一体化是当前研究肿瘤个性化治疗的主要研究方向之一,但是现有的纳米诊疗体系对病灶组织识别度差,对肿瘤微环境响应不足,使纳米诊疗剂难以精确观察和高效治疗肿瘤组织。对此,研究团队基于肿瘤微环境低pH值和谷胱甘肽高表达的特性,合成了对肿瘤组织pH和谷胱甘肽敏感的硅酸锰多孔纳米球,在其表面沉积磁性氧化铁纳米颗粒,制备出磁性氧化铁与硅酸锰的纳米复合物。该纳米复合物在正常组织和血液中,不会发挥造影功能,而一旦进入肿瘤组织,即可释放出锰离子,发挥高效肿瘤T1磁共振造影功能。同时,该纳米复合物装载的抗癌药物顺铂也释放出来,与锰离子和磁性氧化铁协同杀死癌细胞,达到肿瘤协同治疗效果。 /p p   该研究工作得到国家自然科学基金、中科院青年促进会项目、安徽省重大专项、安徽省自然科学基金等的资助与支持。 /p p style=" text-align: center " img title=" W020181219620098020563.png" alt=" W020181219620098020563.png" src=" https://img1.17img.cn/17img/images/201812/uepic/4e531ec7-7d15-4248-b1c2-7d6dec45a79d.jpg" / /p p /p
  • 银纳米粒子或可用于攻击肿瘤细胞
    科学日报报道,近日美国加州大学圣塔芭芭拉分校的科学家们设计了一种具有一对独特且重要特性的纳米粒子。这种球形粒子的组成成分是银,它被包裹在一个涂满缩氨酸的壳内部,后者使得它能够攻击肿瘤细胞。此外,这个壳是蚀刻的,因此那些没有攻击到目标的纳米粒子会自行分解和消除。这项研究被发表在期刊《自然材料》(Nature Materials)上。 两个单独的银纳米粒子(红色和绿色)选中前列腺癌细胞为目标   纳米粒子的核心利用了一种名为电浆子光学(plasmonics)的现象。在电浆子光学里,纳米结构的金属,例如金和银,在被光线照射时会发生共振,且集中在靠近表面的地磁场。通过这种方式,荧光染料被增强,看起来比自然状态&mdash &mdash 也即没有金属存在时&mdash &mdash 要明亮10倍。但当核心被蚀刻时,这种增强效果会消失,粒子也就变得暗淡。   加州大学圣塔芭芭拉分校鲁奥斯拉蒂研究实验室发明了一种简单的蚀刻技术,利用了生物相容的化学制品快速分解和移除活体细胞外部的银纳米粒子。这种方法只会留下完整的纳米粒子用于成像或者量化,从而揭示了那些细胞被定位攻击目标,以及每一个细胞被内在化了多少。   &ldquo 这种分解是创造针对特定刺激物做出反应的药物的一个有趣概念。&rdquo 分子,细胞和发育生物学学院(MCDB)鲁奥斯拉蒂实验室的博士后研究员、斯坦福-桑福德伯纳姆医学研究所的盖里· 博朗(Gary Braun)这样说道。&ldquo 通过分解过剩的纳米粒子并通过肾进行清理,它能最小化偏离目标的毒性。&rdquo   这种移除无法渗透目标细胞的纳米粒子的方法非常独特。&ldquo 通过关注那些真正进入细胞的纳米粒子,我们能够理解哪些细胞是目标,并从更细节的角度研究组织传输通道。&rdquo 博朗说道。   有些药物能够独自穿透细胞膜,但很多药物,尤其是RNA和DNA基因药物,是带电的分子,它们会被细胞膜所阻隔。这些药物必须通过内吞作用进入细胞,在这个过程中细胞会吞没并吸收分子。&ldquo 一般需要纳米粒子作为载体来保护药物并护送它进入细胞,&rdquo 博朗说道。&ldquo 而这正是我们所要测量的:通过内吞作用载体的内在化。&rdquo   由于纳米粒子有一个核心壳结构,研究人员可以实现不同的表面涂层并对比各自肿瘤目标选择和内在化的效率。通过使用不同的目标受体转换表面药剂从而实现不同疾病的目标选择&mdash &mdash 或者细菌的目标生物体。根据博朗表示,这一方法应该能够发展一种药物传输极大化的方法。   &ldquo 这些新的纳米粒子拥有某些了不起的特性,在朝肿瘤传输目标药物相关的研究中它已经证明是一种非常有用的工具。&rdquo 加州大学圣塔芭芭拉分校纳米医学中心和MCDB学院特聘教授埃尔基· 鲁奥斯拉蒂(Erkki Ruoslahti)这样说道。&ldquo 它们在治疗感染方面也有潜在的应用。由可抵抗所有抗生素的细菌导致的危险感染越来越常见,现在急需解决这类问题的新方法。银常被用作抗细菌药剂,而我们的目标技术或可能将利用银纳米粒子治疗体内任何地方的感染变为现实。&rdquo (
  • 色谱图里的秘密:PFPD检测器硫物质分析
    脉冲式火焰光度检测器PFPD5383硫物质分析——杰出的选择性和灵敏度PFPD对于硫物质具有线性的、等摩尔响应,能够选择性地测定从极低的ppb到ppm级的各个独立硫物质的浓度以及各个独立的硫物质峰加和的总硫浓度。单独一台检测器就能够同时得到硫物质和烃类物质的色谱图,这一独特的功能使其远优于其它的硫物质检测技术。PFPD操作原理氢气和空气的混合燃烧气被引入并且从下向上充满检测器的内腔体和上盖(1)。燃烧混合气在上盖位置被点燃(2)。点燃的火焰沿着内部的流路传播,同时消耗氢气和空气的混合气(3)。由气相色谱仪的柱子分离出来的物质在石英燃烧管内燃烧并且发射出元素特定波长的光(4)。当火焰到达检测器的底部时熄灭,激发出来的物质持续发射荧光长达25毫秒。激发出来的物质发射出来的光沿着一根光管传播,选择性发射出来的光穿过一个滤光片到达光电倍增管进行检测(5)。整个脉冲的火焰周期以大约每秒钟3至4次的频率重复。相比于其他的检测器,PFPD提高了长期稳定性并且只需要极少的维护,避免了其他检测器由于烟尘的沉积干扰了硫发射信号的传播。检测和定量气体中的硫污染物对于工业过程的正常运转以及控制产品品质都是格外重要的。GPC-PFPD已经被证明是实现硫物质分析的高效的手段。&bull 液化石油气(LPG)中的硫物质&bull 乙烯和丙烯原料中的羰基硫&bull 天然气中的硫物质&bull 饮料级CO2中的不纯物质&bull 半导体和工业气体的纯度&bull 气体产物和混合过程中的质量控制乙烯和丙烯原料丙烯是乙烯蒸汽裂化的副产品。羰基硫(COS)是丙烯原料中最主要污染物,如果不能够有效地去除,将损坏用于聚合物生产和其它过程中的昂贵的催化剂床。右侧的色谱图显示了在丙烯和乙烯装置分离之前以及洗刷掉硫物质之前,原料气中存在的烃类物质和COS。天然气天然气中含有硫化氢或者甲硫醇,也称作“酸”气。天然气中的硫化氢的浓度范围从几乎检测不到到高达0.30%(3,000 ppm)。CO2中的不纯硫物质尽早地检测和控制H2S和COS的含量是控制食品级CO2品质的一个重要考虑因素,因为这些物质的存在,将在碳酸饮料中产生不希望的气味和口感。石化产品中的硫分析PFPD已经被广泛应用在实验室以及过程气相色谱仪器上,用于分析液态石化产品中的各个独立的硫物质以总硫的浓度。汽油柴油气态和液态的石化产品&bull 丙烯中的羰基硫(ASTM D5303)&bull 天然气中的硫物质(ASTM D5504&D6228)超低硫浓度的汽油(ULSG)&bull 超低硫浓度的柴油(ULSD)&bull 苯中的噻吩(ASTM D4735-02&D7011)&bull 石油醚液体中的硫物质(ASTM D5623)喷气机燃油&bull 萘&bull 原油和合成油燃料油&bull 轻循环油(LCO)
  • 欧盟建议修改除草剂酰嘧磺隆的最大残留限量标准
    2011年7月20日,欧盟建议修改除草剂酰嘧磺隆的最大残留限量标准。   l 将其在猪肉、脂肪、肾脏、肝脏和可食用的内脏中的最大残留限量标准由0.01 mg/kg修改为0.02 mg/kg   l 在牛肉、脂肪、肝脏、可食用内脏和牛奶等中的最大残留限量标准由0.01 mg/kg修改为0.02 mg/kg   l 牛肾脏中由0.01 mg/kg修改为0.15 mg/kg   l 将小麦、大麦、黑麦、燕麦秸秆中限量标准设定为0.05 mg/kg,   l 新鲜草饲料中限量标准为1.5 mg/kg,   l 干草中限量标准为0.05 mg/kg。
  • 从0到1,“厦门智造”福流生物纳米流式仪助力疾病筛查
    福流生物工作人员正在进行设备测试。  福流生物分子实验室研发场景。  文/厦门日报记者 林露虹 通讯员 郭文晨  图/厦门日报记者 张奇辉  纳米有多小?如果将1纳米和1米比较,就好像是高尔夫球和地球作比。1纳米相当于4倍原子大小,比单个病毒的尺寸还要小得多。  厦门创新创业园企业福流生物自主研发的纳米流式检测仪,就好比打开了一扇通往纳米世界的窗口。比如,它可以精准识别出癌细胞分泌的“小囊泡”,助力癌症早期筛查和诊断;再比如,在食品安全领域,它可以快速鉴别致病菌,让危害人体健康的微生物无处遁形。  凭借着灵敏度高的硬核实力,福流生物的纳米流式检测仪热销海内外,成为“中国智造”高端科研仪器走向世界的典型代表,梅奥诊所、美国德州大学安德森癌症中心、约翰霍普金斯大学医学院、美国国立卫生研究院、牛津大学等全球最顶尖研究机构和百时美施贵宝、阿斯利康、武田制药等高科技生物制药公司都是它的客户。  回国创业  实现产业化“从0到1”的突破  福流生物的故事要从创始人朱少彬博士说起。在厦门大学化学化工学院取得博士学位后,朱少彬赴海外从事博士后研究。2014年,他回国创业,立志让研究多年的纳米流式检测技术走出实验室。  起初,产业化之路并不平坦。“纳米流式检测技术是一种流动检测的方法,流体的稳定性决定着设备的稳定性。光流体的设计我们就改了20多个方案。”这是一项艰苦且枯燥的工作,朱少彬用母校厦门大学的校训“自强不息,止于至善”来激励自己,一次次修正、升级方案。  针对光机电一体的研发需要,朱少彬勇攀技术高峰,努力学习机械设计、自动化、软件等相关知识。最终,在他的带领下,团队仅用时一年多就研发了5代原型机。朱少彬事后总结说:“不断学习,在学习中提升信心,用信心支撑创业激情,这对一名创业者来说非常重要。”  功夫不负有心人。2016年夏天,福流生物研发的第一代商品化纳米流式检测仪亮相国际流式细胞大会。起初,参会者们并不觉得这个只有微波炉大小的仪器有什么特别之处。直到有专家和研发机构试用过样机后,他们惊讶地发现,仪器居然蕴藏着“大能量”——可以对细菌、病毒、亚细胞器、细胞外囊泡、纳米药物、功能化纳米颗粒等,在单颗粒水平进行高通量、多参数定量分析,较传统流式细胞仪的散射检测灵敏度提升4-5个数量级,粒径表征分辨率媲美透射电子显微镜,这在行业尚属首创。  2017年,随着福流生物的知名度逐渐提高,公司获得来自外泌体领域的国际领头羊企业Codiak Biosciences的第一张订单,至此,福流生物实现了产业化“从0到1”的突破。  解码细胞外囊泡信息  助力疾病筛查  细胞外囊泡检测是福流生物纳米流式检测仪的高频应用。“细胞外囊泡可以理解为细胞‘吐泡泡’,是细胞间物质通讯的重要介质,相比正常细胞,癌细胞可分泌更多的细胞外囊泡,且在‘吐泡泡’的过程中,会把蛋白核酸等物质带出来,进入血液、尿液等,所以我们可以借由血液、尿液等人体组织液的样本,通过使用纳米流式检测仪,快速实现癌症的早期诊断。”朱少彬说,纳米流式检测仪如同一个“解码器”,能解码人体组织液中的细胞外囊泡的信息奥秘,进而协助疾病筛查以及术前、术后的效果跟踪。  面对突如其来的新冠肺炎疫情,全世界都在与时间赛跑,加强疫苗研究、病毒研究,这也为福流生物带来了新机遇。“我们的仪器可以检测病毒的信息,以及疫苗的纯度、药物承载量等。疫情期间,公司加强病毒应用方面的宣传,得到越来越多的生物医药企业的认可,仪器在国内市场的销量也随之走高。”朱少彬说。  随着福流生物在业界知名度的提升,新的挑战也随之而来。“客户数量的增多,意味着需求变得多元化,技术升级的步伐得跟得上客户及行业的需求,同时还得做好精细化的服务,提升品牌价值。”朱少彬说,公司研发团队持续推动产品的迭代升级,丰富产品线,满足科研、临床、生物制药等领域的客户需求,接下来还将顺应智能化趋势,打造支持自动检测的仪器,提升检测效率,实现“样品进、结果出”的目标。
  • 默克密理博“一机六水”泡泡龙获奖名单公布
    各位仪器信息网用户,新年好! 默克密理博与仪器信息网合作举办的“玩泡泡龙游戏,赢iPOD大奖”活动已于2011年12月16日正式落幕。经过最终参赛成绩的确认,现公布如下获奖者名单*: 优胜奖:奖品iPOD nano 8G一台陈治远,广西中医学院,游戏成绩:166分 幸运奖:奖品 微软无线鼠标一个 姓名 联系电话 倪萍萍 189****1816 吴帅 136****2925 张四军 136****6192 张志伟 087****3106 顾真丹 135****7853 张铁军 130****1315 李敬坤 182****0596 段小鹏 158****9965 马君 023****2578 徐振岳 136****5986 参与奖:奖品 精美鼠标垫一个详见此处 * 默克密理博保留本次活动的最终解释权。 本次活动自上线以来,广大实验室纯水用户积极响应并踊跃参与,其中不乏大量的默克密理博(原密理博)的忠实用户,并且收到了制药、食品、化工、能源、电子、生命科学、环境监测、日用消费品等行业用户的好评(节选如下),以及将近两百条的回复评论。默克密理博非常感谢各位的支持与鼓励,我们将继续开发实验室纯水产品、不断满足分析行业日益增长的对超纯水品质的需求。 仪器信息网ID号 您的通关感言?您对“一机六水”的看法? 1076443939 很好的机器,如果价位合适,希望买一台。 654456 比较有趣味性的一个游戏,寓教于乐,让我们了解了一些列的产品特性! 7336167 一机六水确实不错,对于一些大型实验室来说可以避免需要买多台纯水机, angellovers 算是纯水制造的一次革命吧 效果挺好的 boboenid007 一机多用,很科学、便捷,质检行业很需要这样的仪器! chejinshui 有点意思! clnir 实验室一直在用,做HPLC用水,用着简单,效果好。 gaolingling 有没有全面的介绍啊 genie0925 很长知识。很好,很强大。集成性很强,省空间,实验室寸土寸金,操作简单方便langhuashang 继续加油! lanlan726 一机六水 很好的解决了实验室内各种检测难题 lilongfei14 非常强大,可惜我们知道的太迟了 lirva 通过小游戏,学习了一下关于这方面的知识,有收获! liushuitonghua 在游戏中了解仪器的应用领域,非常好的点子 liwenzhong 之前在原单位用地知识密理博的比较原始的机型,现在发展真快啊,应该会很好地提高工作效率的,大力支持 Mickeylin 挺厉害,但是肯定很贵 mosfet 不愧为行业老大 nankingee 在药物筛选discovery阶段,液质分析工作中,Milli-Q 的水做流动相是可靠的,被信赖的! phillyrin millipore的纯水机很好用。当年的milli-Q50用了好多年,还是很耐用。 qianghua_ustc1 很不错的产品,功能强大,值得关注! shuiqingyin 有机会一定买一台试试 suredt 很好很强大,对多平台、研究方向广的综合性实验室来说是福音。还没看到价格信息,应该是跟强大的功能成正比啦。实验室现在那台小Q,贴着“质谱专用”的纸条,地位已经相当高。如果搞一台一机六水,估计要放进保险柜,每个平台的课题组长配一把钥匙,哇咔咔^ sxjht-123 动画形象,令人记忆深刻! watson022 密理博的产品越来越好了 wumin0930 很强大.各行各业都有接触到. wy9871124 希望Merck越做越好,呈现更多精彩 xmyichenrhm 非常高端的产品,人性化设计 yonglinxu 性能很强大,下回跟领导推荐啊 zghkmj 不错的小游戏,既可以娱乐又有机会可能会拿到点奖励,更重要的是通过游戏真正了解millipore的一些配置的具体功能及应用方面 zhangdp 挺好,一直在用,尽管有一定费用,但水质一直稳定 zhao1hao2985 纯水机的领域原来也是这么复杂的啊。谢谢了!让我增长了见识 zhuyanhua 对于环境样品的分析,水质非常好啦! 关于默克密理博POD革命“一机六水”的常见问题:问:POD是什么?POD革命又是什么?答:POD(Point of Delivery)为新一代Milli-Q纯水/超纯水机的远端取水手柄,该设计为默克密理博独家创新产品,方便用户从实验室不同的地点取用不同品质的纯水/超纯水,最大化利用了Milli-Q水机的强劲产水功能。POD革命意为POD带给实验室用水方式的革命,即积极掌控(Proactive Control),优化流程(Optimal process),惬意体验(Delighted experience),综合在一起,同样被称为POD。 问:“一机二水,超纯六水”是什么?答:“一机二水”指的是POD系列水机均能够同时生产两种品质的实验室用水(纯水、超纯水),“超纯六水”指的是POD系列水机生产的超纯水能够搭配终端精制器(PAK)进一步精制成6种满足各种高要求的分析用水,即“一机六水”。终端精制器与分析用水的对应关系如下: 终端过滤器 功能 应用范围 热点应用 Millipak 去除颗粒和细菌 HPLC分析 颗粒分析测试 AA分析 电子器件冲洗 细菌去除 TOC分析 颗粒物去除 光学镜片冲洗 BioPak 去除热原和核酸酶 RT-PCR实验 热原去除 DNA分析实验 核酸酶去除 细胞培养实验 蛋白质分析 EDS-Pak 去除内分泌干扰素 环境分析实验 双酚A检测 雌激素实验 塑化剂检测   内分泌干扰物去除 LC-Pak 去除痕量有机物 UHPLC分析 皮革奶检测 LC-MS分析 瘦肉精检测 有机物去除 三聚氰胺检测 VOC-Pak 去除挥发性有机物 挥发性有机物检测 空气污染物检测 氯仿去除   甲苯去除   Q-POD Element 痕量元素分析用水 痕量元素分析 单晶硅/多晶硅分析 ICP-MS分析 硼元素分析 点击此处索取终端精制器(PAK)的资料 欢迎联系默克密理博纯水市场部产品热线:400-889-1988Email: china.marketing.online@merckgroup.com
  • 纳米传感器可在几分钟内检出残留农药
    瑞典卡罗林斯卡学院研究人员开发出一种微型传感器,可在几分钟内检出水果上的农药。在《先进科学》杂志一篇论文中描述的该项概念验证技术,使用由银制成的火焰喷涂纳米粒子来增强化学物质的信号。研究人员希望这些纳米传感器可帮助人们在食用前发现农药残留。 卡罗林斯卡医学院微生物学、肿瘤和细胞生物学系首席研究员乔治索特里奥称,在欧盟销售的所有水果中,多达一半含有大量与人类健康问题有关的农药残留。然而,目前用于在消费前检测单一产品上农药残留的技术,相关传感器成本高,制造工艺繁琐,在实践中受到限制。为克服这个问题,研究人员开发了廉价且可重复使用的纳米传感器,用于监测在售水果的农药残留。 新纳米传感器采用了表面增强拉曼散射(SERS)技术,可将金属表面上生物分子的信号增强超过100万倍。研究人员此次通过使用火焰喷涂(一种成熟且具有成本效益的金属涂层沉积技术)创建了一种SERS纳米传感器,将银纳米粒子的小液滴输送到玻璃表面。火焰喷涂在大面积上快速生产均匀的SERS薄膜,消除了可扩展性的关键障碍之一。 然后,研究人员微调了单个银纳米粒子之间的距离,以提高它们的灵敏度。为了测试其检测能力,他们在传感器顶部涂上一层薄薄的示踪染料,并使用光谱仪来揭示它们的分子指纹。研究表明,传感器可靠且均匀地检测到了分子信号,并且在2.5个月后再次测试时其性能保持不变,这证明了它们的耐用性和大规模生产的可行性。 为测试传感器的实际应用,研究人员对它们进行了校准,以检测低浓度的对硫磷—乙基,这是一种在大多数国家被禁止或限制使用的有毒农业杀虫剂。研究人员将少量对硫磷—乙基放在苹果上,随后用棉签收集残留物,棉签浸入溶液中以溶解农药分子。溶液滴在传感器上后,传感器可在5分钟内检测到农药残留,而不会破坏水果。 研究人员希望探索这种纳米传感器是否可应用于其他领域,例如在资源有限的环境中发现特定疾病的生物标志物。
  • 如何1分钟完成厘米级二维材料的载流子迁移率测量
    引言近年来, 石墨烯等二维材料与器件领域的研究和开发取得了日新月异的进展。随着二维材料与器件研究和开发的深入, 研究人员越发清楚地认识到, 二维材料中载流子的传输能力是影响其器件性能的一个至关重要的因素。衡量二维材料载流子传输能力的主要参数是载流子迁移率μ, 它直接反映了载流子在电场作用下的运动能力, 因此载流子迁移率的测量一直是石墨烯等二维材料与器件研究中的重要课题。二维材料载流子迁移率的测量方法迄今为止已有许多实验技术来测量二维材料的载流子迁移率,主要分为四大类, 一是稳态电流方法( 如稳态直流J-V 法和场效应晶体管方法),该方法是简单的一种测量载流子迁移率的方法,可直接得到电流电压特性和器件的厚度等参数。二是瞬态电流方法,如瞬态电致发光、暗注入空间电荷限制电流和飞行时间( TOF) 方法等;三是微波传导技术, 如闪光光解时间分辨微波传导技术和电压调制毫米波谱;四种是导纳( 阻抗) 法。但上述实验方法仍存在一些普遍性问题:1)样品制备要求较高,需要繁杂的电制备;2)只能给出平均值,无法直观的得到整个二维材料面内的载流子迁移率的分布情况,无法对其均匀性进行直观表征;3)测量效率较低,无法满足未来大面积样品及工业化生产的需求。因此,我们亟需进一步优化和开发新的实验技术来便捷快速的获得载流子迁移率。颠覆性的二维材料载流子迁移率测量方法西班牙Das Nano公司采用先进的脉冲太赫兹时域光谱技术创新性的研发出了一款针对大面积(8英寸wafer)石墨烯、半导体薄膜和其他二维材料100%全区域的太赫兹无损快速测量设备-ONYX[2,3],可在1 min之内完成厘米样品的载流子浓度测量。基于反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接测量方法之间的不足和空白。实现了从科研到工业的大面积石墨烯及其他二维材料的无损和高分辨,快速的载流子迁移率测量,为石墨烯和二维材料科研和产业化研究提供了强大的支持。近日,北京大学刘忠范院士团队通过自主设计研发的电磁感应加热石墨烯甚高温生长设备,在 c 面蓝宝石上在 30 分钟内就可以直接生长出了由取向高度一致、大晶畴拼接而成的晶圆高质量单层石墨烯。获得的准单晶石墨烯薄膜在晶圆尺寸范围内具有非常均匀的面电阻,而且数值较低,仅为~600 Ω/□,通过Das Nano公司的ONYX的载流子迁移率测量功能显示当分辨率为250 μm时迁移率依旧高于6,000 cm2 V–1 s–1,且具有很好的均匀性。这是迄今为止,常规缘衬底上直接生长石墨烯的好水平。文章以题为“Direct growth of wafer-scale highly-oriented graphene on sapphire”[4]发表在Science Advances上。图二、电阻及载流子迁移率测量结果 【参考文献】[1] Bardeen J, Shockley W. Deformation Potentials and Mobilities in Non-Polar Crystals[J]. Physical Review, 2008, 801:72-80[2] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[3] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020).[4]Chen, Z., Xie, C., Wang, W. et al. Direct growth of wafer-scale highly-oriented graphene on sapphire. Sci. Adv. (2021).
  • 聚醚醚酮(PEEK)树脂材料的中压恒流泵研制成功
    我公司成功研制泵头、流路材料是聚醚醚酮(PEEK)树脂材料的中压恒流泵。 TBP-k 系列恒流泵(PEEK泵、柱塞泵、耐腐蚀泵、中压泵、输液泵)采用聚醚醚酮(PEEK)树脂这种性能优异的特种工程塑料,PEEK不溶于浓硫酸外的几乎所有溶剂。TBP-k 系列恒流泵可以广泛用于化工、石化、煤炭、染料、精细化工、科研、环保、农药、制药、食品等行业,满足以上行业恒压恒流精确输送酸碱腐蚀性液体。 主要特点 &bull 耐酸碱溶剂腐蚀:采用PEEK特种工程塑料、红宝石、氧化锆陶瓷 &bull 压力脉动小:双柱塞结构,宝石球寿命长; &bull 流量精确:进口宝石柱塞和宝石,误差小; &bull 内建过压保护和流量校正系统 ; &bull 电脑控制:通过 RS232 接口与电脑通讯 &bull 大屏幕液晶显示; &bull 排气装置:有效除去输送液体中的气泡。
  • 刘文清院士谈激光雷达在环境监测中的应用——访中科院安徽光学精密机械研究所所长刘文清院士
    激光雷达的研究起源于上世纪60年代末,起初主要用于军用领域,自1995年正式实现商业化之后,在测绘、资源勘探等领域发挥了越来越多的作用,在最近盛行的“黑科技”无人驾驶技术的开发上,激光雷达更是核心技术之一。随着技术的发展和完善,激光雷达的应用范围也越来越广,其中环境监测领域就是很重要的一个方面,可以用来测量颗粒物、臭氧、温度和湿度的变化等等。  中科院安徽光学精密机械研究所于1991年建立了当时我国最大L625激光雷达系统,用于探测平流层气溶胶分布,该激光雷达系统被美国国家宇航局选为全球10个激光雷达站之一。后来又陆续开发出了探测平流层臭氧的紫外差分吸收激光雷达、可移动式双波长米散射L300激光雷达、车载式拉曼-米散射激光雷达等等,受到了广泛的关注。  近日,仪器信息网编辑专门针对激光雷达在环境监测领域的应用采访了中科院安徽光学精密机械研究所所长刘文清院士。刘院士为我们详细介绍了激光雷达在我国环境监测领域的应用、技术发展以及未来的技术需求。中科院安徽光学精密机械研究所所长刘文清院士  Instrument: 我们知道刘院士在环境光学领域有很多研究成果,今天我们把目光聚焦在空气质量监测上,空气质量监测仪器和技术种类众多,如常规六参数、VOCs监测仪、激光雷达、卫星遥感等等。首先请刘院士谈一谈目前我国空气质量监测仪器的整体情况?国产环境监测仪器与同类进口产品相比有何不同?  刘文清:我国大气环境监测技术现阶段主要还是以点式监测方式为主,如AQI六参数、VOCs等。这些监测设备组成了我国现阶段的地面空气质量监测网,为我国空气质量监测做出了巨大的贡献,逐步形成了具有中国特色的环境监测技术规范、环境监测分析方法、环境质量标准体系。目前采用的标准方法,主要以人体健康为关注重点,测量的是人们日常生活和工作活动范围内的空气质量,可以较为准确的监测空气中气溶胶和污染气体的含量,但它的局限性主要是获得局部低层、较小地域范围内的污染物浓度变化信息,缺乏污染物区域性变化、时空演变等指标的数据演变信息。近年来随着分析仪器的快速发展,结合卫星遥感,探空气球和高塔能够测量一些气溶胶、气体成分的垂直分布特征,但是卫星遥感直接获取的是整层大气污染,反演近地面污染有一定误差,而探空气球及飞机受时间空间影响,此类探空设备仍然存在着不足之处。  对于区域性复合污染监测,需要快速有效的技术手段进行区域范围内时间和空间上的监测。与以上传统点式监测方法相比,激光雷达等光学遥感监测技术的发展改变了传统的由点到线再到面的演绎方法,为大气环境研究提供了一个新的技术手段,克服了传统大气环境研究中的诸多局限性,实现了大空间、长时间、多尺度、多参数的遥感遥测。此类技术已达到了国际先进水平,尤其在业务化应用方面,我们已根据中国环境监测现阶段的需求进行了深入的研发,这是国外进口设备所不能做到的。目前,国产环境监测仪器已基本打破了进口产品的国际垄断地位,全面实现了中国造。  Instrument:颗粒物激光雷达技术被越来越多的用户所接受,请刘院士重点谈一谈颗粒物激光雷达技术。颗粒物激光雷达的核心技术要点是什么?在我国大气环境领域的应用情况?此技术在空气质量监测系统中的独特作用?  刘文清:激光雷达主要由激光器、发射和接受光学系统、探测器、高速数据采集卡和数据分析软件等部件组成,其核心技术在于稳定可靠的激光器和性能优良的反演算法。激光器单脉冲能量大小直接决定了激光雷达的探测高度。保证激光器单脉冲能量,能够有效保证系统信噪比,实现理想高度的探测。国内外不同厂家的激光雷达反演算法存在一定的差异性,应用最为广泛的是Fernald方法,也是我们安光所选择的反演算法。应用该算法,参考点的选择尤为重要,一般须假定一个近乎不含大气气溶胶的清洁大气层所在高度来视作参考点,为保证反演结果的有效性,必须通过明显气溶胶层或者云层的剔除方法来确认合适的参考高度。  随着“说清环境质量、改善环境质量”重大管理需求的发展和监测事权上收等管理机制的改革,地方政府动态精准管理能力支撑成为越来越迫切的要求,尤其是快速说清空气质量监测点数据变化原因、重污染应对、事故应急监测与快速评估等。针对区域性大气污染问题,及监测管理的迫切需求,作为一种成熟的主动遥感手段,颗粒物激光雷达在大气环境监测方面具有重要的意义。其在大气环境监测中的应用可分为以下几点:1)垂直监测:监测边界层变化特征,了解污染来源和变化趋势 2)水平扫描监测:可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献 3)车载移动监测:对污染源进行快速溯源,应对污染突发事件,并对污染气团进行跟踪 4)雷达组网监测:说清区域间污染跨界传输,为短时间空气质量预警预报提供及时、有效、准确的数据支撑。  Instrument:安徽光机所可以说是我国激光大气探测研究领域的先行者,在激光雷达技术的研发上,刘院士主要做过哪些工作?您认为未来还有哪些技术需要突破?  刘文清:激光雷达按照监测方法和监测种类可分为米散射激光雷达、大气成分差分吸收激光雷达、拉曼激光雷达等。我所在颗粒物激光雷达和大气差分吸收激光雷达方面已取得了阶段性进展。在北京奥运会、上海世博会、广州亚运会、北京APEC会议、北京九三阅兵式、南京青奥会、福州青运会、郑州上合首脑会议、乌镇物联网大会的联合环境空气保障工作中交上了令人满意的答卷,相应成果也证实了我们激光雷达在稳定性、有效性方面取得了一定的成绩。但在某些方面还是存在一定的不足,需要我们进一步完善,如:1)拉曼激光雷达方面。由于其监测原理的限制,拉曼激光雷达白天会受到天空背景噪声的严重影响,如何有效提高其信噪比,将拉曼激光雷达成功的应用于环境监测日常业务中,为环境污染的扩散、大气化学过程的演变提供有效的气象数据。2)颗粒物激光雷达方面。雨水消光系数大,颗粒物雷达在降雨天气条件下应用效果不佳,如何去除降雨对颗粒物监测的影响,也是接下来的研究重点。3)细粒子质量浓度空间分布。我们已在无锡中科光电成功产业化了双波长三通道颗粒物激光雷达,应用532nm波长我们已可以反演PM10质量浓度的时空分布。对于细粒子质量浓度的时空分布也是迫在眉急的管理需求,目前我们已加大投入,研究开发应用355nm反演PM2.5质量浓度的时空分布的相应工作。4)大气差分吸收激光雷达方面。应用大气差分吸收原理监测臭氧的时空分布,已被成功运用,为证实其监测准确性,我们也参与了由上海环境监测中心举办的探空联盟比对实验。实验中监测臭氧的差分吸收激光雷达与探空气球、无人飞机等监测技术进行了廓线比对,比对结果令人非常满意。对于差分吸收激光雷达只能监测臭氧不是我们的目的,我们希望应用一种技术可以进行多参数测量,如同时监测二氧化硫、二氧化氮等,此类设想我们已取得了阶段性的成果。  Instrument: 安徽光机所的产业化公司——中科光电最近推出了高能扫描系列的大气颗粒物监测激光雷达,此台仪器的主要特点是什么?其研发目的是什么?其市场竞争力主要体现在哪?  刘文清:高能扫描颗粒物激光雷达是基于快速扫描振镜的激光雷达技术,该技术使激光雷达在保留原有垂直探测的功能上,还可以实现快速多角度扫描功能。如此针对固定安装的激光雷达,高能扫描激光雷达不仅可以监控5KM半径范围内的污染源(本地源以及外来源)变化过程,还可以同时获取垂直的颗粒物时空演变数据、边界层高度变化数据。使一台雷达可以同时获取区域内垂直与水平立体空间数据,为说清区域污染变化提供了更有力的数据支撑。同时,在产品设计中,我们也考虑了车载走航监测获取线源数据的技术要求,在固定加走航监测结合的模式下,可以全面获取“点面域、地空天”一体化数据。  我所张天舒研究员率领的激光雷达团队联合中科光电,组织技术骨干进行技术攻坚,经过近两年的不懈努力,攻克了快速扫描振镜技术、高重复频率激光器技术、多姿态雷达扫描数据分析技术、车载雷达减震避震技术和快速走航观测技术等一系列关键问题。其中,快速扫描振镜技术其核心竞争力在于,可以使扫描及成图时间分辨率达到3分钟,确保了监测数据的时效性(目前国内外采用3D支架扫描方式,完成扫描及成图时间需要2小时,没有时效性保证,无法动态说清变化过程)。  Instrument:在环保领域,标准被认为是一类仪器推广的“利器”,对于激光雷达,有没有正在制定的标准?或者说您认为需要哪些方面来规范此类仪器的生产和应用?  刘文清:激光雷达目前还没有正式的国家规范标准,很多单位对于激光雷达的性能校验也一直存在着疑问。实际上,为了保持激光雷达的有效探测距离及探测精度、保证激光雷达的稳定性及准确性,我们联合合作企业已经编制了相关的企业技术规范标准,希望能够逐步发展为行业和国家标准。  激光雷达标准规范的建立目的是为了保证雷达数据的有效性和一致性,科学的系统测试和校验方法是其重要的技术支撑。完整的系统测试即包括仪器组成部分的性能测试,如激光器的功率、脉冲能量、发散角,光学发射和接受系统与激光准直系统的匹配性,数据采集系统本身的采集速率、电子学噪声,以及雷达数据处理和分析软件性能 也包括功能指标,包括探测成分、探测距离、距离分辨率以及信噪比等。对于激光雷达这样一个复杂的光电探测系统的校验也可以与其他观测设备进行一致性的对比分析。使用激光雷达与能见度仪、太阳光度计等观测仪器进行数据一致性对比分析,采用探空气球数据对激光雷达观测数据产品的准确性进行校验等。  后记:随着我国大气环境治理工作的深入,大气环境质量监测的项目、时间要求和空间要求都在提升,随之而来的是监测手段的多样化。除激光雷达之外,卫星遥感、无人机、探空气球等技术不断被引入大气环境质量监测领域,不同的手段为我们多维度了解大气污染过程提供了依据,也为我们更精准的治理大气环境提供了技术支持。(编辑:李学雷)
  • 探访山东临沂甲流实验室 揭开甲流的秘密
    甲型H1N1流感,让人闻听色变,唯恐躲避不及。而在山东临沂市疾病预防控制中心的国家流感监测网络实验室里,却有9名工作人员半年多来每天都与甲流病毒零距离接触,为一批批疑似甲流样本进行了核酸检测工作。2009年11月10日,记者走近他们,用镜头记录下了他们在抗击甲流工作中鲜为人知的幕后生活。   上午11时许,刚刚从实验室出来的工作人员刚刚倒杯热水,一声熟悉且凌厉的警笛声传来,只见他们立即各就各位,记者经过特许后更换了一套医用三级防护服,紧接着,莒南县疾病预防控制中心送来的一批样本被送到了16楼。记者紧随两名工作人员跨越了三道门才来到流感实验室内的核酸提取区,工作人员首先用提取区的生物安全柜提取核酸。据了解,提取核酸是整套工作程序的第一关,保护措施极其严密,因为在提取核酸的过程中,存在着工作人员被甲流感病毒感染的可能,核酸是病毒的一种遗传物质,通过PCR(分子生物学技术中常规的检测手段)技术来扩增核酸能检测到疑似甲流样本中是否存在甲流感病毒。   半个多小时后,工作人员把提取的核酸送到体系配制区,仔细将作为模板的核酸加入反应体系,又马不停蹄地送到另外一间实验室,用PCR仪进行反应,大约两个小时后,终于检测出了结果。此时,各实验室的工作人员才露出轻松的笑意,赶紧脱下闷热的隔离服,清理个人卫生。   流感监测网络实验室主任季圣翔告诉记者,对流感病毒检测分常规检测和应急检测,常规检测正常情况下检测一批样本要用6个小时,而市疾控中心用的是应急检测,只需4个小时就可得知结果,且应急检测灵敏度高,检测的结果也更精确。季主任称,这个团队一共9人,半年多来一直轮流值班,昼夜战斗在抗击甲流的第一线,最繁忙时一天能检测6批样本。 详细图片请见:http://unn.people.com.cn/GB/14748/10358209.html
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 大动作!12所“双一流”高校党政领导密集调整
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/841a04f3-35a9-4c65-ab4f-c01b83184eda.jpg" / /p p style=" text-align: center " strong 近期履新“双一流”高校党委书记或校长名单(按任职时间先后排序) /strong /p p   近日,教育部网站发布消息,曹雪涛任南开大学校长,张宗益任重庆大学校长,蒋传海任上海财经大学校长。2018年1月份刚过去不到一周时间,已有三所“双一流”高校迎来了新校长。 /p p   在此之前不久,兰州大学、中南大学、华中农业大学、北京航空航天大学、北京理工大学、四川大学、华中科技大学、西北农林科技大学、东南大学等9所“双一流”高校迎来了新任党委书记或校长。严纯华任兰州大学校长,易红任中南大学党委书记,高翅任华中农业大学党委书记,曹淑敏任北京航空航天大学党委书记,张军任北京理工大学校长,李言荣任四川大学校长,邵新宇任华中科技大学党委书记,吴普特任西北农林科技大学校长,左惟任东南大学党委书记。 /p p strong   6名党委书记或校长为本校擢升 5名为外校调任 /strong /p p   在这批履新的12名党委书记或校长中,有6人为本校晋升。他们分别是华中农业大学副校长高翅任华中农业大学党委书记,华中科技大学常务副校长邵新宇任华中科技大学党委书记,西北农林科技大学常务副校长吴普特任西北农林科技大学校长,东南大学党委常务副书记左惟任东南大学党委书记,重庆大学党委常务副书记张宗益任重庆大学校长,上海财经大学副校长蒋传海任上海财经大学校长。 /p p   另有5人为外校调任。他们分别是兰州大学校长严纯华(此前担任南开大学副校长),中南大学党委书记易红(此前担任东南大学党委书记),北京理工大学张军(此前担任北京航空航天大学党委书记),四川大学校长李言荣(此前担任电子科技大学校长),曹雪涛任南开大学校长(此前担任中国医学科学院院长、北京协和医学院校长)。 /p p   此外,新任北京航空航天大学党委书记曹淑敏为跨界任职,她此前担任江西省鹰潭市委书记。 /p p strong   此轮履新均为“60后” 四人为“两院院士” /strong /p p   履新的12人中,有5人为新任高校党委书记,7人为高校校长。其中时任东南大学党委书记易红出任中南大学党委书记之后,东南大学党委常务副书记左惟补缺东南大学党委书记。 /p p   从年龄上来看,此轮履新的12人均为1960年以后出生。其中最年轻的是出生于1970年的上海财经大学校长蒋传海。 /p p   兰州大学校长严纯华、北京理工大学校长张军、四川大学校长李言荣、南开大学校长曹雪涛四人为“两院院士”。严纯华于2011年当选为中国科学院院士。张军、李言荣、曹雪涛三人为中国工程院院士。 /p
  • 国家纳米中心在肿瘤外泌体microRNA高灵敏检测方面取得进展
    p   近日,国家纳米科学中心孙佳姝课题组在肿瘤外泌体microRNA高灵敏检测方面取得新进展。相关研究成果“Thermophoretic Detection of Exosomal microRNAs by Nanoflares”于 2020年3月在线发表于《美国化学会志》(J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.9b13960)。 /p p   外泌体是由细胞分泌的含有蛋白质与核酸等生物大分子的纳米尺度(30-150 nm)脂质囊泡,通过运输活性分子参与细胞通讯,是肿瘤液体活检的靶标之一。microRNA是一种长度约为22核苷酸的非编码单链RNA。肿瘤细胞中高表达的microRNA会被包载在外泌体中,参与肿瘤增殖与转移,是新型肿瘤诊断标志物。现有的外泌体microRNA检测方法面临外泌体microRNA含量低、样本消耗量高以及需要RNA提取等挑战。因此,发展微量样品中外泌体microRNA的高灵敏检测新方法对癌症早期诊断具有重大意义。 /p p   在前期工作中,孙佳姝课题组利用热泳富集与核酸适体标记,实现了细胞外囊泡表面蛋白组测量和癌症分类(Nat. Biomed. Eng. 2019, 3, 183-193, J. Am. Chem. Soc. 2019, 141, 9, 3817-3821, Adv. Mater. 2019, 31, 1804788)。在此基础上进一步开发了结合纳米耀斑(nanoflare)与热泳的检测新方法,实现了0.5 μL血清样本中外泌体microRNA的高灵敏检测,检出限低至0.36 fM,接近qRT-PCR。纳米耀斑通过被动输运进入外泌体后,可以特异性识别靶标microRNA并产生荧光信号。外泌体在热泳作用下快速汇聚,有效放大其中纳米耀斑产生的荧光信号,提高外泌体microRNA的检测灵敏度。临床血清样本中,外泌体肿瘤相关microRNA表达信息可以用于ER+乳腺癌的早期诊断。与常规检测手段相比,该方法灵敏度高,样本消耗量小,排除了非外泌体microRNA的干扰,为外泌体microRNA检测与癌症早期检测提供了新思路,新工具。 /p p br/ /p
  • HORIBA科学仪器发布最新碳硫分析仪EMIA-Pro
    新的高效清扫机构让燃烧炉维护周期达200次检测。元素分析系统及解决方案的全球HORIBA科学仪器在此发布新的碳硫分析仪EMIA-Pro。新的碳硫分析仪EMIA-Pro充分发挥HORIBA在非分散红外检测技术(NDIR)方面的优势,优化了检测范围,碳为1.6ppm—6.0%,硫为2ppm—1.0%。设计的独到之处还在于采用了CO检测器。综合的性能优势让EMIA-Pro可以广泛地用于无机材料,如钢铁、焦炭、催化剂、有色金属锂电池材料等的分析与检测。相比较传统的碳硫分析仪,这一新产品所配备的新型清扫机构大地提升了清扫效率,燃烧炉的免维护周期可达200次检测,这也同时节约了用户大量用于维护和清理的时间。 除了新型的清扫机构所提供的优异的性能,HORIBA还采用的减少部件及优化的设计以实现突出的系统稳健性和耐用性,可靠性得到大幅提高,修理服务的需求大幅降低。EMIA-Pro的另一项优异性能就是大提高检测效率,从检测开始到检测结果给出并完成清扫,整个的检测流程只需要70秒。同时,EMIA-Pro具备强大的导航系统,用户据此可以轻松完成佳分析条件的设定、故障的分析与排除和维护操作。
  • 探秘《止咳药被检出硫磺》的行业“潜规则”!
    今天,关于“止咳药被检出硫磺”的新闻,在朋友圈已经开启了刷屏模式。因为使用了经过硫磺熏蒸的浙贝作为原料,国内多家知名药厂或被牵涉其中。  更让我们痛心的是,硫磺熏蒸浙贝犹如医药行业的“三聚氰胺”,已经成为中药材行业的潜规则,而有关检测的缺失则让这一潜规则发展成为“明规则”!    为您的食品药品安全保驾护航,海能应用实验室运用专业的检测仪器——SOA100二氧化硫残留量测定仪,迅速对止咳常用药中的二氧化硫含量进行测定,提供一手资料,希望对大家有所帮助!  1引言  硫磺燃烧产生二氧化硫,直接杀死虫卵、蛹等,抑制霉菌、真菌滋生,达到防虫防霉作用。二氧化硫与药材中的水分子结合形成亚硫酸。具有脱水、漂白作用。二氧化硫使表皮细胞破坏,促进干燥,特别象产地在南方潮湿地区天麻、 山药等。从毒理学上来说,硫磺属低毒化学品,但其蒸汽及硫磺燃烧后发生的二氧化硫对人体有剧毒。食用二氧化硫超标的食品,容易产生恶心、呕吐等胃肠道反应,此外,还可影响钙吸收,促进机体钙流失。过量进食引起的急性中毒可出现眼、鼻黏膜刺激症状,严重时产生喉头痉挛、喉头水肿、支气管痉挛等。  药典规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg,上述限量标准均在世界卫生组织(WHO)认可的安全标准范围内。测定中药及其饮片成品药中二氧化硫含量是为保障人体健康做的最后一道防线,预防救命药变成毒药。  2参考文献  2015版《中国药典》  3药典原理步骤  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置两颈圆底烧瓶中,加水300-400ml,打开回流冷凝管开关给水,将冷凝管的上端E口处连接一橡胶导气管置于100ml锥形瓶底部。锥形瓶内加入3%过氧化氢溶液50ml作为吸收液(橡胶导气管的末端应在吸收液面一下)。使用前,在吸收液中加入3滴甲基红乙醇溶液指示剂(2.5mg/ml),并用0.01mol/L的氢氧化钠滴定液滴定至黄色(即终点,如果超过终点,则应舍弃该吸收溶液)。开通氮气,使用流量计调节气体流量至约0.2L/min,打开分液漏斗C的活塞,使盐酸溶液(6mol/L)10ml流入蒸馏瓶,立即加热两颈烧瓶内的溶液至沸,并保持微沸,烧瓶内的水沸腾至1.5h后,停止加热。吸收液放冷后,置于磁力搅拌器上不断搅拌,用氢氧化钠滴定液(0.01mol/L)滴定,至黄色持续时间20s不褪,并将滴定结果用空白试验校正。  4反应方程式  SO32- + 2H+→ H2O + SO2  SO2 + H2O2→H2SO4  H2SO4 + NaOH →Na2SO4 + H2O  5仪器  SOA100二氧化硫分析仪(如图1)  T860自动电位滴定仪  pH复合电极  烧杯  6试剂  60%磷酸  3%H2O2  NaOH滴定液(C(NaOH)=0.02mol/L) (图 1)  去离子水  供试品  7试样处理  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置于400ml蒸馏管中。  (取样如图2)    (图2)  测定蒸馏: 开机,设置参数,进行实验。(图3)  参数设置(如图3)  自动测试  稀释水量:50ml  接收液量: 25ml  加酸体积:10ml  蒸馏时间:7min  淋洗水量:10ml  (蒸馏过程如图4)   (图4)  l 滴定  参数设置  终点设置滴定  终点数:1  终点结束体积:10.00ml  终点pH: 6.20  最小添加体积:0.01ml  初次添加体积:0.02ml  终点预控范围:1.50pH  (滴定过程如图5)    (图5)  SO2总含量计算:  二氧化硫残留量(ug/g)=(A-B)*C*0.032*106/W  式中 A---供试品溶液消耗氢氧化钠滴定液的体积,ml  B---空白消耗氢氧化钠滴定液的体积,ml  C---氢氧化钠滴定液摩尔浓度,mol/L  0.032---1ml氢氧化钠滴定液(1mol/L)相当于二氧化硫的质量,g  W ---供试品的重量,g  实验结果  2 中药材:浙贝母    备注:实验结果只用于为验证实验方法  8结果与讨论  实验选取的浙贝母中二氧化硫的平均含量为644.13ug/g(mg/kg),明显超国家规定的400mg/kg。而含浙贝的止咳药中均检出二氧化硫且含量很高,相比同类止咳药川贝类药品中二氧化硫含量明显低于浙贝产品。国家药典委员会规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg。  在使用药典法测试液体类样品中二氧化硫含量时,需剧烈振摇样品或者超声加热除去其中的二氧化碳,因为在滴定过程中二氧化碳会消耗滴定剂氢氧化钠。  在使用SOA100采用药典法进行蒸馏时,建议将6mol/L的盐酸换作60%的磷酸,由于机器蒸馏功率大,易挥发的盐酸很容易蒸馏到吸收液中,造成结果偏大,而磷酸作为中强酸,沸点比盐酸高,不易挥发,效果更好。日本公定法及台湾药典均采用磷酸而非盐酸。  采用药典法进行测试时,由于吸收液过氧化氢不稳定,易分解生成水和氧气,需即用即配。  在使用SOA100采用药典法进行蒸馏时,实验之前需将吸收液H2O2调至pH=6.2,因为过氧化氢显酸性,滴定过程中会消耗氢氧化钠,造成实验结果偏大。  中药中淀粉含量较大,若测试试样为粉末状,在称样前需在蒸馏管中加入20ml蒸馏水,将样品放入后进行摇匀,防止实验时样品结块,造成结果偏低。
  • 一图流:亚米级高分9号卫星最新控温材料的那些事
    p style=" line-height: 1.5em " & nbsp & nbsp span style=" font-family: 宋体, SimSun " 环路热管作为高效的相变传热装置,是卫星和航天飞行器在恒定温度下稳定长寿运行的关键部件,而毛细泵主芯是环路热管中最核心的部件之一。近日,我国首次在高分9号卫星上成功应用多孔陶瓷毛细泵主芯,这是多孔陶瓷作为我国自主研发的最新一代毛细泵主芯材料国际上首次应用于环路热管,其控温精度在国际上处于领先地位。 /span /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "    strong 高分卫星成像质量提升的关键——使用多孔陶瓷材料 /strong /span strong style=" font-family: 宋体, SimSun line-height: 1.5em " 提高卫星控温精度 /strong /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "   高分九号卫星是国家高分辨率对地观测系统中一颗光学遥感卫星,地面像元分辨率最高可达亚米级,已经于近日成功发射。据报道由上海硅酸盐所研制的多孔陶瓷毛细主芯毛细孔径在0.1-10微米可调,最大毛细抽吸力达70KPa,渗透力强,与传统的金属毛细芯相比,多孔陶瓷毛细芯具有密度小、强度高、耐腐蚀、毛细力大以及热导率低等优点,可显著提高环路热管的稳定性和可靠性。安装陶瓷毛细泵主芯的环路热管与传统金属管相比,热源控温精度由(± 3℃)提高到(± 1℃),甚至更优,从而改善了空间相机的热平衡,将我国空间遥感器控温精度提升到新的高度,大幅度提高了相机的成像质量——亚米级,达到国际先进水平。 /span /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "    /span strong style=" font-family: 宋体, SimSun line-height: 1.5em " 揭秘多孔陶瓷的“前世今身” /strong /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "   研制出这样一种高气孔率、高强度、高效率的多孔陶瓷毛细泵主芯产品,需要在材料的制备技术和性能表征方面突破哪些关键技术呢?其中又涉及到哪些仪器设备呢?下图由仪器信息网小编精心整理绘制而成,为您揭秘应用于高分9号卫星核心部件的最新控温材料——多孔陶瓷。 /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/insimg/2a18fb0e-06b0-4faf-a49b-db3c47a4601d.jpg" title=" 多孔陶瓷1.jpg" style=" width: 500px height: 333px " border=" 0" height=" 333" hspace=" 0" vspace=" 0" width=" 500" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/insimg/b70fba64-5e1e-407f-aa3f-88b15ddeee69.jpg" title=" 多孔陶瓷2.jpg" style=" width: 500px height: 105px " border=" 0" height=" 105" hspace=" 0" vspace=" 0" width=" 500" / /p p style=" text-align: left margin-bottom: 10px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 相关仪器: a href=" http://www.instrument.com.cn/zc/157.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 电子天平 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/477.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 高温炉 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/160.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 烘箱 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/168.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 水浴加热器 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/167.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 电动搅拌器 /span /a 等。 /span /p p style=" text-align: center " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 " img src=" http://img1.17img.cn/17img/images/201512/insimg/53739cdc-c4d3-4877-b905-6f700034bb8f.jpg" title=" 多孔陶瓷3.jpg" style=" width: 500px height: 105px " border=" 0" height=" 105" hspace=" 0" vspace=" 0" width=" 500" / /span /p p style=" text-align: center line-height: normal margin-top: 5px text-indent: 0em " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 相关仪器: a href=" http://www.instrument.com.cn/zc/53.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 扫描电子显微镜 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 投射电子显微镜 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/191.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 物理吸附仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/538.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 压汞仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " a href=" http://www.instrument.com.cn/zc/43.html" target=" _self" title=" " style=" text-decoration: underline color: rgb(89, 89, 89) " 核磁共振 /a 、 /span a href=" http://www.instrument.com.cn/zc/73.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " X射线衍射仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/469.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 差示扫描热仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 等 。 /span /span /p p style=" text-align: center " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 " img src=" http://img1.17img.cn/17img/images/201512/insimg/387ce3f8-a8bc-46af-b6e7-3445766100cd.jpg" title=" 多孔陶瓷4.jpg" style=" width: 500px height: 105px " border=" 0" height=" 105" hspace=" 0" vspace=" 0" width=" 500" / /span /p p style=" text-align: center line-height: normal margin-top: 5px margin-bottom: 5px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 相关仪器: a href=" http://www.instrument.com.cn/zc/416.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 压力计 /span /a 、 a href=" http://www.instrument.com.cn/zc/841.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 流量计 /span /a 、 a href=" http://www.instrument.com.cn/zc/373.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 万能材料试验机 /span /a 、 a href=" http://www.instrument.com.cn/zc/375.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 压力试验机 /span /a 、 a href=" http://www.instrument.com.cn/zc/530.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 导热仪 /span /a 、 a href=" http://www.instrument.com.cn/zc/377.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 弯曲试验机 /span /a 、 /span span style=" text-align: center color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" text-decoration: underline " a href=" http://www.instrument.com.cn/zc/66.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) " 热膨胀仪 /a /span /span span style=" text-align: center color: rgb(89, 89, 89) " span style=" font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp 等。& nbsp & nbsp & nbsp /span span style=" font-family: 微软雅黑, & #39 Microsoft YaHei& #39 " & nbsp /span /span /p p span style=" color:#595959 font-family:微软雅黑, Microsoft YaHei" /span /p p style=" line-height: 1.5em text-align: center " span style=" font-family: 宋体, SimSun " & nbsp & nbsp /span /p p style=" line-height: 1.5em " span style=" line-height: 1.5em font-family: 宋体, SimSun " & nbsp & nbsp 随着对多孔材料性能要求越来越高,多孔陶瓷应用范围越来越广,现有的测试表征手段将不能满足要求,发展新的制备技术、表征方法和测试手段势在必行。今后多孔陶瓷材料的发展可表现在如下几方面: /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (1)新能源多孔陶瓷材料的制备,如燃料电池的多孔电极、储氢材料等 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (2)多孔陶瓷机械性能和可靠性的提高 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp (3)环境净化的选择吸收材料 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (4)耐高温高压, 特别是耐高压无机多孔材料的开发 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (5)高孔隙度微孔陶瓷,特别是纳米级和埃级无机非金属多孔材料的开发 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (6)降低生产成木以及产业化生产等。 /span /p
  • 糯米滩电站成柳州最后防线
    柳城县副县长汤振国介绍,糯米滩水电站是处置龙江污染事件的关键点,是唯一能打柳州水质安全保卫战的地方。“过了这里下游就是一马平川,柳州饮用水的安全能否保得住看的就是这里。”   记者从广西柳州市处置龙江河突发环境事件应急指挥部了解到,造成此次镉污染事件的污染源已经被截断。由于主要污染源团还在柳江上游的龙江河段,目前柳州市区饮水水源保护地仍面临威胁。   污染源已被截断   指挥部新闻发言人、柳州市环保局局长甘景林告诉记者,广西壮族自治区环保厅监控表明,此次污染来源地、位于广西河池宜州市的拉浪水库,目前镉浓度监测数据显示已经达标,这说明造成此次镉污染事件的污染源已经被截断,没有新的污染源进入。   专家分析,由于污染带较长,仍有可能对柳江饮用水安全造成较大威胁。   经过科学处置,29日6时的监测数据表明,柳州市饮用水水源保护地各断面的镉浓度仍符合国家标准,但部分断面已接近临界值。   糯米滩镉浓度超标8倍   记者29日从柳江上游糯米滩水电站现场指挥部了解到,截至当天12时,糯米滩水电站镉浓度超标8倍,预计明后两日随着污染团峰值靠近,镉浓度还会有所变化,防治形势趋于严峻。   糯米滩水电站位于龙江柳城段。柳城县副县长汤振国介绍,糯米滩水电站是处置龙江污染事件的关键点,是唯一能打柳州水质安全保卫战的地方。“过了这里下游就是一马平川,柳州饮用水的安全能否保得住看的就是这里。”   柳州自来水未现不达标   甘景林说,柳州市已经做好准备应对水流污染峰值的出现。当取水口镉浓度超标2倍以下时,柳州的自来水厂有能力处理达标,完全可以做到为市民输送达标的自来水。   柳州威立雅水务有限公司29日6时向应急指挥部报告,目前公司供水水量充足,出厂水质符合国家饮用水标准,请市民放心饮用。   广西龙江河突发环境事件应急指挥部专家组组长、环境保护部华南环境科学研究所副所长许振成说,短期摄入镉超标的水对人体造成的影响微小,市民不必过度紧张。综合新华社电
  • 刘忠范院士:于纳米之微,寻家国之大
    1993年的一天,北京大学校园里来了一位从日本留学回来的青年人,他带着六十余箱仪器设备回国,一入燕园,便从头开始建设实验室。几十年后,这位青年学者在世界科研领域享誉盛名,成为世界纳米材料研究领域的先驱。他就是全国政协常委、九三学社中央副主席、中国科学院院士、北京大学纳米科学与技术研究中心主任、北京石墨烯研究院院长刘忠范。“我的人生挺简单,就是在做一件事情,小时候是读书学习,现在是读书研究。”回国参与科研建设的数十年间,刘忠范一次次地锐意进取、开拓创新,以纳米材料之微,寻国计民生之大。从出国到归国:“出国做研究,回国做事业”1983年7月,怀揣着对化学浓烈兴趣的青年刘忠范在母亲的支持下,选择继续深造,从此开启了十年的日本留学生涯。钻研使他在化学的世界里越陷越深,先后在日本横滨大学、东京大学获得硕士、博士学位,并在东京大学和日本分子科学研究所做博士后。留学的第8个年头,刘忠范遇到了他的伯乐——北京大学化学系教授蔡生民。蔡生民教授不止一次对刘忠范发出邀请,希望他能够回国工作。面对蔡生民教授的热情和诚意,刘忠范接受了他的邀请。而彼时的中国尚处在科技腾飞的前夜,科研条件相对落后,“出去”的多,“回来”的少。科学无国界,科学家却有祖国。“在国外做的只是研究,回到国内才是真正做事业,会有更大的天地,更广的舞台。能为祖国作贡献,这就是我回国的最大心愿!”这是他的心声。刘忠范选择了祖国。带着导师送的60余箱实验仪器,刘忠范回到北京大学,亲手建立起光电智能材料研究室。在两间空房子里,他从零开始,既没经费,也没人员,就去工地、工厂找来沙子和锯末,自己动手搭起了防震台。每一个插头放在哪里,刘忠范都会自己设计并找人安装,桌椅板凳也需要他自己一件件购买。每天第一个来实验室的是他,晚上最后一个离开也是他,有时候工作到深夜,楼门已经关闭,只能翻大门回家。寒来暑往,刘忠范做得踏踏实实。1994年,刘忠范申请了科技部攀登计划项目,经费500万。在90年代初期,这是个庞大的数字。凭借着踏实的研究成果,刘忠范成为这个项目的首席科学家,也是当时科技部最年轻的首席科学家。从此,刘忠范开始了纳米攀登之旅。1997年9月27日,刘忠范和吴全德院士一道推动成立了国内最早跨院系、跨学科的纳米研究机构——北京大学纳米科学与技术研究中心。对科研方向的高度敏感,与刘忠范从小对大自然的强烈探求欲不无关系。1962年冬,刘忠范出生在吉林九台的一个农民家庭。小时候家里穷困,父亲务农,母亲是家庭妇女,只有在邻村小学教书的哥哥有文化。受到哥哥的熏陶,刘忠范从小就喜欢读书。凡是书上看到的东西他都想亲自试验一下:给鸡鸭听音乐是否会多产蛋?用凉开水浇地是否比用生水更好?怀着强烈的好奇心,他将这些“突发奇想”付诸行动,并仔细地观察实验结果。在此后的很多年里,对知识的浓厚兴趣总是牵引着他的研究。1998年的一天,刘忠范突发奇想,能不能把碳纳米管也像分子那样一个个排起来。冒出这个想法后,他立刻着手尝试,反复试验下,想法成功落地,碳纳米管首次整齐地矗立在表面上。2000年,他以开拓者的身份发表了国际相关领域的第一篇文章。从碳纳米管到石墨烯 :“要么上书架,要么上货架”石墨烯 —— 被称为“ 会改变世界的材料”——于2004年被英国科学家发现,随之成为世界范围的前沿领域,是目前世界上已知最薄、最坚硬、导电性和导热性最好的新材料。2008年,刘忠范率领团队转而深耕石墨烯领域,开始研究石墨烯的合成方法。2010年的诺贝尔物理学奖,授予了发现石墨烯的两名科学家,世界范围内掀起了竞争石墨烯产业领域的热潮。与此同时,石墨烯的产业应用在国内得到了广泛的关注,各地纷纷兴建石墨烯产业园,成立产业中心。“老实说那个时候,社会上对石墨烯的宣传有点过热,很多有关石墨烯的说法不靠谱。”刘忠范坦言。但他认为,与其指出这种说法不对、这种做法不行,不如尝试一下自己认为正确的做法。“别的一概不做了,只做石墨烯,而且往前走,做‘有用、实用’的石墨烯。”正是这一决定,让他开启了石墨烯产业化研究的新征程。“被其魅力所征服,被其未来所吸引,义无反顾地走到今天,亦将为之奋斗余生。”刘忠范潜心于石墨烯基础理论研究,十年如一日地探索研究,发文无数。2018年,刘忠范一手建立了北京石墨烯研究院,作为院长的他,带领团队全方位开展石墨烯基础研究和产业化核心技术研发,为我国石墨烯研究和应用领域开山探路。“我们现在所做的事情,将来都会变成术语,所以一定要规范。”刘忠范反复告诫学生。他认为,对于石墨烯产业,制备决定未来。因此,他的团队抓住关键两点,一是制备具有全球竞争能力的优质材料,二是研究制备装备领域更高端更上游的技术。“有它行没它也行”不是刘忠范心中杀手锏级的应用。虽然国内市场上出现了许多石墨烯相关产品,但大多还是“三大件”,即石墨烯电热产品,石墨烯改性电池以及石墨烯防腐涂料。这些产品很难给人类生活带来颠覆性的改变,他认为,一个杀手锏级的应用,应当可以让传统产业升级换代,创造出新的产业。因此,刘忠范始终致力于探索更多方向,提供最好的材料与装备。“要做点真正有用的东西,或者上书架或者上货架。”这是刘忠范一贯的理念。上书架,并非简单地发表学术论文,而是真正对科学有用,是能够在教科书里找到;而上货架,并非简单地申请几项专利,而是真正对国计民生有用,是能够在百姓生活里找到。从科研到育人 :“人才决定潜力,文化决定高度”2009年,刘忠范被评为“科学中国人年度人物”,2011年当选中科院院士,2012年获得中国化学会—阿克苏诺贝尔化学奖。在他心里,学者应该专注于学问;院士是一个崇高的称号,选上是件“水到渠成的事情”,而不应是追求的功利目标。他希望自己还是最初的那个“自己”,做好学问,在推动学术发展的同时把年轻一代带起来… … 正因如此,对于奋战在科研第一线的刘忠范来说,三尺讲台更是他的另一个阵地。他认为,“科研跟教书育人并不矛盾,作为一名教师,也有义务承担起培育新人的重任”。“人才决定潜力,机制决定效率,文化决定高度”,这是刘忠范一贯的信条。谈起最自豪的事,不是发表的600多篇学术论文,不是探索出了新领域,而是培养了一批热爱科学、热爱纳米的学生。身教胜于言传,刘忠范的以身作则,点燃了一批批学生对科研的兴趣。他的学生绝大多数都在国内外高校和科研院所从事科研工作,其中已经有60多位教授或研究员,包括一位院士、5名万人计划领军和拔尖人才、5名长江学者和青年长江学者、9名杰青、8名优青,还有10位企业高管,都在各自的领域里为科学研究和国家发展贡献自己的力量。刘忠范始终带着兴趣做科研,兴趣也是他教育理念的第一页。“一个新学生来我这里做科研,我都先问他的特长和爱好是什么,我让他自己找感兴趣的问题。当他不知道对什么感兴趣时,我会问他对哪些不感兴趣,以尽量避免做自己不感兴趣的工作。”作为导师,导引学生找到自己所擅长的兴趣,他认为这同样重要,将两者结合起来,还需要耐得住寂寞的马拉松式的坚持。针对“十四五”时期的人才培养,他提出“要进行兴趣导向,分类支持”,基础研究和应用研发不能混为一谈:基础研究需要的是自由宽松的创新性文化环境和文化土壤;应用研究和高技术研发需要明确的应用目标牵引。每个人精力有限,把它集中于真正的科学问题上,保持一颗安静平和、积极向上的心,不懈努力,才会有所突破。责任二字,同样是他育人理念的重要一页。在谈及2020年政府工作报告时,他认为一句“生命至上”令人动容,这也是他责任心的一个生动体现。静心在科研世界之外,刘忠范深深地感受到越来越多的社会责任。儿时刻骨铭心的经历使他对农村教育和失学儿童问题十分关注,他多方奔走,设立的奖学金帮助了不少濒临失学的儿童。他曾经就读的村小学有了漂亮的新校舍、宽敞明亮的图书室、崭新的桌椅和计算机房。收到学生家长寄来的感谢信,讲述自己的孩子第一次看到和使用电脑时的激动心情,刘忠范感动得落了泪。他还在母校长春工业大学设立“励志奖学金”“烯望之星奖学金”,鼓励母校的年轻学子奋发向上。“有了兴趣,就有了追求;而有了责任意识,就能够把个人的追求与集体乃至国家融为一体。”刘忠范尽自己最大的努力承担起社会的责任,他也将这种勇于担当的精神传递给他的学生。“做好一件事,不负北大人”“矢志不渝家国梦,敢凭烯碳赌人生。”回到祖国怀抱30年,刘忠范用实力为自己的事业开拓了一片广阔的天空,也为祖国的纳米科技领域和人才培养奉献了自己的力量。“科学精神实际是追求真理,追求事实本身,由好奇心驱动, 其实质就是关注、认识和解释自然,没有私心杂念,更无过多功利性虚荣心。只有厚积培植科学精神滋长的土壤,才能孕育和激发出更多的原始创新。”刘忠范这么说,他也是这么做,他还将继续这么做下去。(本文原载于《中国统一战线》2022年第5期总第365期 记者:程佳俊,北京大学融媒体中心)
  • 北航冯林课题组: 磁流体基靶向给药微纳米机器人小鼠体内实现肿瘤杀伤
    近几年具有出色变形能力和可控性的磁流体机器人受到广泛关注。然而,这些研究大多是在体外进行的,将磁流体用于体内医疗应用仍然是一个巨大的挑战。同时,将磁流体机器人应用于人体也需要解决许多关键问题。本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。此外,该研究使用的控制系统能够在复杂的生物介质中实现对机器人的三维磁驱动。利用1064纳米的光热转换特性,磁流体机器人可以在体外杀死肿瘤细胞,在体内抑制肿瘤体积、破坏肿瘤间质、增加肿瘤细胞凋亡、抑制肿瘤细胞增殖。这项研究为基于磁流体的毫米机器人在体内实现靶向治疗提供了参考。近日,北京航空航天大学机械学院冯林课题组提出了一种通过具有生物相容性的磁流体机器人实现肿瘤的光热治疗方法。该方法将磁流体的基载液改为具有生物相容性的植物油,通过三维电磁控制系统实现磁流体机器人的靶向控制,对该种磁流体机器人在体外与体内的生物相容性和光热肿瘤杀伤效果进行了细致的研究。本研究中的所有3D模型均使用摩方精密nanoArch® S140设备打印。相关研究内容以“Biocompatible ferrofluid-based millirobot for tumor photothermal therapy in Near-Infrared II window”为题发表在《Advanced Healthcare Materials》期刊上,冯林教授为通讯作者,硕士生纪易明为第一作者。图1.用于近红外 II 窗口肿瘤光热治疗的生物兼容磁流体液滴机器人(BFR)概念图。图2. BFR表征。(A)Fe3O4纳米粒子的 XRD 图。(B)Fe3O4纳米颗粒的傅立叶变换红外图。(C)油酸包裹Fe3O4纳米颗粒的傅立叶变换红外图。(D) BFRs 中纳米粒子的透射电子显微镜(TEM)结果。(E) 所制备磁流体的磁滞线。(F) 磁流体的紫外-可见-近红外吸收光谱。(G) 不同浓度的BFR在 1064 纳米近红外照射下的温度曲线。(H) 5个加热-冷却循环过程中BFR的光热稳定性研究。该研究制备了一种生物相容性磁流体(BFR),并对其进行了详细表征,如图2所示。该生物相容性磁流体由超顺磁性纳米颗粒(磁响应组分)和生物相容性植物油(基载液)构成。双层的油酸包裹磁颗粒使磁流体获得较好的稳定性。磁滞回线展现出该磁流体良好的磁响应能力。红外吸收光谱和光热升温曲线体现了该磁流体较好的光热转换效率和光热稳定性。图3. BFR在体外模拟血液循环环境中的运动。(A) BFR 可被控制移动到全血环境中三维血管模型的任意分支。比例尺:5 毫米:(B) BFR 在肝门静脉血管模型中的运动控制,显示了 BFR 由于可变形性和分裂能力而在血管中的可移动性。比例尺:2 毫米。(C) 磁流体机器人越过障碍物的侧面示意图。(D) BFR 在磁阻力作用下穿过障碍物和心脏组织表面的沟槽。(E) BFR 超声成像示意图。比例尺:5 毫米:(F) BFR 在一块牛心血管组织的内表面形成一个稳定的球体。(G) 超声成像视频快照,显示运动控制过程中 BFR 在不同时间的位置。比例尺:2 毫米。(H) BFR 在全血环境中逆流而上。比例尺:1 毫米。同时该研究对BFR在针对模拟体内靶向治疗环境的运动控制进行了详细研讨。通过四线圈三维电磁系统,磁流体机器人可以实现高精度三维运动控制。由于其具有极强的变形、分裂和融合能力,BFR可以在更为复杂的血管环境(如模拟肝门静脉模型)中运动,以及逆血流的运动。此外,因所选磁流体基载液材为有机液体,该种磁流体并不会与血管和心脏内壁发生粘连,可以实现在血管中和心脏表面的运动控制。磁颗粒与体内环境的密度差异也使得超声成像对BFR在体内的位置进行实时显示。图4. 体内肿瘤杀伤实验。(A) 各实验组裸鼠在治疗六天后的肿瘤情况,(B) 体重曲线。(C) 肿瘤大小曲线。(D) 六天治疗后离体肿瘤组织的体积统计。(E) 小鼠肿瘤切片的 H&E 染色结果。比例尺:50 微米。(F) 和 (G) 肿瘤切片的 TUNEL 和 KI67 染色结果。黑色背景图像为荧光图像,白色背景图像为特征荧光图像。比例尺:100 μm。此外,该种磁流体对体内肿瘤的治疗效果得到了验证。通过小鼠实验可以观察到治疗组小鼠的肿瘤体积有明显的减小。在染色结果中治疗组也展现出了对肿瘤组织的杀伤和抑制生长效果。
  • 苏州纳米所等开发出可以“看到”载流子的新型纳米成像技术
    目前,纳米材料已经被日益广泛地应用在电子、光电、生物电子、传感以及能源等领域的各种器件中。因此,理解和表征纳米材料的电学性能不仅是基础科学研究的兴趣所在,也是实现其广泛实用化的迫切需求。但是,传统的场效应晶体管(field-effect transistor, FET)方法在纳米材料电学性能的表征中遭遇到器件制备过程复杂、材料-电极欧姆接触不易实现以及检测通量较低等问题。  中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅课题组与合作者共同发展了一种名为介电力显微术(dielectric force microscopy, DFM)的新型功能成像技术来解决上述难题。相关综述发表于近期的Accounts of Chemical Research 期刊(Accounts of Chemical Research 48:1788 (2015) )。  半导体和金属材料对于外部电场介电响应的主要贡献来自于载流子迁移引起的宏观极化。因此,材料中的载流子浓度及其迁移率既决定了该材料的介电响应也决定了它的电导率。借助于扫描探针技术对微小作用力的超灵敏检测(~pN),DFM通过测量材料的诱导偶极与针尖上的电荷之间的相互作用力来表征纳米材料的介电响应。此成像模式无需电极接触即可“看”到纳米材料中的载流子(图a)。以单壁碳纳米管(直径~1nm)和氧化锌纳米线(直径~30-50nm)作为研究模型,DFM成功地实现了对纳米材料介电常数的测量(Nano Letters 7:2729 (2007))、半导体与金属导电性的分辨(Nano Letters 9:1668 (2009))以及半导体材料中载流子类型的判定(Journal of Physical Chemistry C 116:7158 (2012))(图e-g)。更为有趣的是,DFM展现出传统FET方法无法实现的~20nm 的空间分辨率。  此外,陈立桅与合作者通过比对同一单壁碳管的DFM与FET测量结果,证实了DFM与FET互为平行测量手段(Nano Research 7:1623 (2014))。相关研究结果揭示了DFM信号的门控调制比(DFM信号在不同门电压下的比值)正比于FET器件开关比的对数(图b)。这个半对数关系得到微观层面的Drude模型的解释和证实(图c)。这一模型将对未来DFM技术在不同材料与器件体系中的应用提供一个理论框架。  在纳米材料电学性质测量领域中,由斯坦福大学教授沈志勋(Zhi-Xun Shen)开发的扫描近场微波显微术(scanning near-field microwave microscopy)具有与DFM类似的特性与功能(Review of Scientific Instruments 79:063703 (2008))。扫描近场微波显微术与DFM均具有无接触测量和纳米尺度空间分辨率等特性。不同的是,扫描近场微波显微术和DFM分别测量材料的高频和低频介电性质。DFM无需昂贵的高频网络分析器和特制的扫描探针,因而便于应用在多种复杂成像环境中。DFM这一成像模式可能在未来的基础研究与工业在线监测领域获得广泛应用。  相关系列工作由国家自然科学基金、中科院先导专项计划、江苏省自然科学基金、美国化学会石油研究基金会和苏州纳米科技协同创新中心提供资助。  图:(a)DFM二次扫描模式示意图。(b)DFM门控比与FET器件开关比之间的半对数关联性。(c)DFM信号与载流子浓度和迁移率依赖性的数值模拟结果。DFM纳米尺度空间分辨率展示:内部具有金属-半导体结的单壁碳管的形貌像(d)和介电响应像(e-g)。
  • 欧盟拟修改辣椒和茄子中恶醚唑的残留限量
    近日,法国收到一份申请,要求欧盟修改辣椒和茄子中恶醚唑的残留限量,将其在辣椒中的LOQ值改为0.5mg/kg,茄子中改为2mg/kg。
  • 三星宣布3纳米GAA成功流片
    技术论坛时台积电强调3纳米制程将照时程于2022下半年正式量产,竞争对手韩国三星日前也表示,采用GAA架构的3纳米制程技术正式流片(Tape Out),对全球只有这两家能做到5纳米制程以下的半导体晶圆代工厂来说,较劲意味浓厚。外媒报道,三星3纳米制程流片进度是与新思科技(Synopsys)合作,加速为GAA架构的生产流程提供高度优化参考方法。因三星3纳米制程不同于台积电或英特尔的FinFET架构,而是GAA架构,三星需要新设计和认证工具,因此采用新思科技的Fusion Design Platform。制程技术的物理设计套件(PDK)已在2019年5月发布,并2020年通过制程技术认证。预计此流程使三星3纳米GAA结构制程技术用于高性能运算(HPC)、5G、行动和高阶人工智能(AI)应用芯片生产。三星代工设计技术团队副总裁Sangyun Kim表示,三星代工是推动下一阶段产业创新的核心。三星将藉由不断发展技术制程,满足专业和广泛市场增长的需求。三星电子最新且先进的3纳米GAA制程技术,受惠于与新思科技合作,Fusion Design Platform加速准备,有效达成3纳米制程技术承诺,证明关键联盟的重要性和优点。新思科技数位设计部总经理Shankar Krishnamoorthy也表示,GAA晶体管结构象征着制程技术进步的关键转折点,对保持下一波超大规模创新所需的策略至关重要。新思科技与三星战略合作支持提供一流技术和解决方案,确保发展趋势延续,以及为半导体产业提供机会。GAA(Gate-all-around)架构是周边环绕着Gate的FinFET架构。照专家观点,GAA架构的晶体管提供比FinFET更好的静电特性,可满足某些栅极宽度的需求。这主要表现在同等尺寸结构下,GAA的沟道控制能力强化,尺寸进一步微缩更有可能性。相较传统FinFET沟道仅3面被栅极包覆,GAA若以纳米线沟道设计为例,沟道整个外轮廓都被栅极完全包裹,代表栅极对沟道的控制性更好。3纳米GAA制程技术有两种架构,就是3GAAE和3GAAP。这是两款以纳米片的结构设计,鳍中有多个横向带状线。这种纳米片设计已被研究机构IMEC当作FinFET架构后续产品进行大量研究,并由IBM与三星和格芯合作发展。三星指出,此技术具高度可制造性,因利用约90%FinFET制造技术与设备,只需少量修改的光罩即可。另出色的栅极可控性,比三星原本FinFET技术高31%,且纳米片通道宽度可直接图像化改变,设计更有灵活性。对台积电而言,GAAFET(Gate-all-around FETs)仍是未来发展路线。N3技术节点,尤其可能是N2节点使用GAA架构。目前正进行先进材料和晶体管结构的先导研究模式,另先进CMOS研究,台积电3纳米和2纳米CMOS节点顺利进行中。台积电还加强先导性研发工作,重点放在2纳米以外节点,以及3D晶体管、新存储器、low-R interconnect等领域,有望为许多技术平台奠定生产基础。台积电正在扩大Fab12的研发能力,目前Fab12正在研究开发N3、N2甚至更高阶制程节点。
  • 微流控高端学术会议MICRO 2012开幕
    2012年全国微纳尺度生物分离分析学术会议、第七届全国微全分析系统学术会议暨第三届国际微流控分析(西湖)学术论坛隆重召开   仪器信息网讯 由国家自然科学基金委和中国化学会联合主办, 浙江省自然科学基金委、浙江省化学会协办,浙江大学承办的2012年全国微纳尺度生物分离分析学术会议、第七届全国微全分析系统学术会议暨第三届国际微流控分析(西湖)学术论坛(MICRO 2012)于2012年4月23-25日在杭州浙江大学紫金港校区召开。   本次会议旨在为从事相关领域基础、应用和开发研究的学者提供多学科交叉的、可实现广泛学术交流的平台,以促进相关学科的深入发展。会议历时3天,分为国际微流控分析论坛及全国会议两大部分,大会包含大会报告、专题报告、邀请报告、口头报告、墙报等交流形式。仪器信息网作为协作媒体参加了此次会议。   MCRIO 2012之国内会议于4月24日举行,来自国内外近400名专家、学者参加了本届微分析会议。 会议现场   本届国内会议开幕式由浙江大学方群教授主持,南京大学陈洪渊院士和浙江大学理学部李浩然院长在开幕式上致辞。会议邀请陈洪渊院士、大连化物所张玉奎院士、中科院生态环境研究中心江桂斌院士和国家自然科学基金委庄乾坤主任做大会报告。 浙江大学 方群教授主持开幕式 南京大学 陈洪渊院士致辞并作“微流控芯片上电极集成方法及其应用”报告 浙江大学理学部院长 李浩然教授致辞 报告人:中科院大连化物所 张玉奎院士 报告题目:蛋白质组定量新方法及相关技术研究进展 报告人:中科院生态环境研究中心 江桂斌院士 报告题目:新型微纳尺度碳纳米材料在环境样品前处理中的应用 报告人:庄乾坤 国家基金委分析化学学科主任 报告题目:从成像分析看分析化学的创新研究思路   此外,本届会议分设色谱分析、毛细管电泳、微纳分析、多相微流控、微纳反应器、微纳生化分析、细胞微流控微纳系统应用及微流控青年论坛共8个分会场。来自全国高等院校、科研院所等单位的多位教授、学者分别就各论坛主题在学术研究及相关仪器研制和应用方面进行了报告,与会人员进行了热烈的交流。   会议期间,就微流控技术,仪器信息网编辑简短采访了陈洪渊院士。陈洪渊院士谈到,要做好微流控技术,首先要掌握各项原理,再有就是微机的加工技术要精细巧妙。仪器微型化是非常重要的,因为在小进样量的情况下,实现分离、富集的目的就要求所使用的仪器是微型化的。这种加工技术目前在国内掌握的机构还不是很多,主要是由于加工出来的产品在分离过程中使用的结果再现性比较差。   关于微流控技术的应用前景,陈洪渊院士讲到,微流控技术具有高选择性,对单个分析对象来说可能意义较小,但对于数量较多的分析对象来说就具有了统计意义。预计微流控技术未来在生命科学研究方面将具有很大的应用前景,在环境监测方面前景也很广阔,更进一步来说,食品安全检测方面也有可能会使用微流控技术,只要与分析相关的领域,基本上都可能会用到微流控技术,因此,微流控技术的应用前景非常好。
  • 纳米操作机器人治疗淋巴瘤获进展
    近日,在国家自然科学基金、中国科学院和机器人学国家重点实验室的支持下,中科院沈阳自动化研究所微纳米课题组成功利用微电子机械系统(MEMS)工艺加工的微柱阵列对单个细胞进行夹持固定,并进行机器人化探测,这标志着我国纳米操作机器人在淋巴瘤分子靶向治疗方面取得了新进展。该成果发表在《物理化学学报》上。   据介绍,该课题的研究背景来源于医院的现实需求,即在淋巴癌的靶向治疗中存在同一种药对某些患者有效,而对另一些患者无效的现象。这种情况使临床治疗中对症下“对”药变成一件极其困难的事。为此,亟须研究产生耐药性差异的分子机理,进而指导实现临床的个性化用药。   沈阳自动化所联合北京307医院淋巴瘤科开展了此方面的探索研究,其基本出发点是利用纳米操作机器人以单细胞为对象开展研究,并获得了上述进展。   业内专家认为,该思路相比于传统方法具有一定优势。传统的生化实验多在试管中进行,其实验结果反映的是来自许多细胞大量分子的平均活动行为,即集群平均效应。生物体自身之间的差异也由于该效应而被淹没于整体之中,这正是导致药物疗效差异的根本原因。纳米操作机器人则是对单个细胞开展探测,这对传统的集群平均是一种有益补充,更容易发现不同生物体之间的分子个性和细胞个性。   据了解,纳米操作机器人是机器人领域的新分支。传统机器人技术以提高效率、减轻人的工作量为目的,多用来完成人有能力但不愿意干的工作,比如焊接、搬运等枯燥、高重复性劳动 而纳米操作机器人技术则以扩展和提升人的能力为目的,主要去执行极端尺度下人们无法完成的工作,如原子精度定位、分子力测量等任务。利用纳米操作机器人开展淋巴癌靶向治疗差异机理研究正是用机器人技术提升人的能力、在细胞表面进行原位探测和操作的具体表现。
  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 兽药残留检测仪精密程度是多少
    兽药残留检测仪精密程度是多少,兽药残留检测仪的精密程度主要体现在其检测性能和技术特点上。以下是基于参考文章的信息,对兽药残留检测仪精密程度的详细分析:高灵敏度:兽药残留检测仪具有高灵敏度,可以检测出较低的药物残留浓度。这种高灵敏度确保了即使在低浓度下,也能准确地检测出兽药残留。快速检测能力:仪器具有快速检测的能力,可以在短时间内对大量样本进行检测。这提高了检测效率,有助于快速响应食品安全问题。广泛的药物检测范围:兽药残留检测仪可以检测多种药物残留,包括抗生素、瘦肉精、病害肉等。这种广泛的检测范围确保了全面的食品安全检测。具体技术特点:仪器采用高精度光学传感器,如扫描式高精度光学传感器,确保检测的准确性。使用进口特制LED光源,具有良好的波长准确度和重复性,全面提高检测结果的准确性。自动化程度高,具有自动诊断系统故障、波长校准等功能,减少人为误差。仪器设计考虑到了使用寿命,采用LED光源和自动开关节能设计,使用寿命可达10年。数据记录和报告:兽药残留检测仪具有自动硬盘存储测量数据的功能,内置微型热敏打印机,可实时打印检测结果。检测报告可打印样品名称、含量、是否合格、检测日期、检测单位等信息,便于公示和追溯。网络连接和数据处理:仪器内置以太网卡接口,可实现无线传输数据,无线上网,收发邮件等。配备RS-232接口和USB口,可通过计算机进行数据处理、统计分析以及结果上传。综上所述,兽药残留检测仪的精密程度体现在其高灵敏度、快速检测能力、广泛的药物检测范围以及具体的技术特点上。这些特点共同确保了仪器在食品安全检测中的准确性和可靠性。
  • 临床进展!福流纳米流式助力外泌体候选药物进入临床Ⅰ期!
    p style=" text-align: justify text-indent: 2em line-height: 1.5em " 2020年9月15日——科迪亚克生物科学公司(CodiakBioSciences,Inc.)宣布开始外泌体治疗候选药物exoIL-12 Ⅰ期临床试验。exoIL-12通过Codiak专有的engEx& #8482 外泌体平台进行基因改造,在外泌体表面携带IL-12,将IL-12递送到肿瘤微环境(TME)中来增强IL-12的剂量控制,并限制全身暴露和相关毒性。该试验是Codiak的第一项人体临床试验,也是Codiak预期于2020年启动的两个临床开发计划中的第一项。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 339px height: 75px " src=" https://img1.17img.cn/17img/images/202012/uepic/828302fd-8dc7-4287-a32c-cf03769854cc.jpg" title=" 福流生物logo.jpg" alt=" 福流生物logo.jpg" width=" 339" height=" 75" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/51afeb67-be12-40d3-8b69-f238995ec23f.jpg" title=" 002.png" alt=" 002.png" / /p p br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 关于engEx& #8482 平台 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 在Codiak开发的engEx& #8482 外泌体药物递送平台可广泛应用于药物传递和蛋白表达,通过对外泌体进行基因改造,在外泌体表面表达“脚手架蛋白” span style=" color: rgb(0, 112, 192) " strong PTGFRN /strong /span 进而可实现多种蛋白的融合表达。本次临床一期的exoIL-12外泌体就是通过将IL-12基因与PTGFRN蛋白融合,使其表达在外泌体表面,将外泌体递送至所需的细胞和组织。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " “据我们所知, strong span style=" color: rgb(0, 112, 192) " exoIL-12是第一个进入临床开发的工程化外泌体 /span /strong ,这使该试验的启动不仅对Codiak而且对于整个外泌体治疗领域都是一个真正的里程碑,”Codiak首席执行官Douglas E.Williams博士说。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e2bfb26d-bd3c-45ad-9a00-058eee958244.jpg" title=" 003.jpg" alt=" 003.jpg" / /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 福流生物与engEx& #8482 平台 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 福流的纳米流式(NanoAnalyzer)对Codiak开发engEx& #8482 平台时的脚手架蛋白确定发挥了建设性作用。如在Codiak公司2020专利(专利号US20200222556 A1)中提到,他们发现 span style=" color: rgb(0, 112, 192) " strong PTGFRN蛋白 /strong /span 在外泌体中高表达,是其他蛋白融合表达的最佳选择。如下图,对PTGFRN广泛表达于外泌体表面进行验证时,作者检测了融合表达GFP的CD9、CD81、PTGFRN三个蛋白的外泌体,发现CD9阳性率为48%,CD81阳性率为81%,而PTGFRN的阳性率高达97%(Figure38 图左);并且PTGFRN的荧光强度是CD81的两倍多(Figure38 图右);这表明,应用基因工程技术可以在外泌体上几乎100%表达PTGFRN,这也意味着可以将目的蛋白表达于所有外泌体表面,这样就能大大提高蛋白的表达效率,另外也可以用PTGFRN特异抗体对所有外泌体进行高效率纯化回收,最终实现提高治疗效果和外泌体产量的巨大经济效益。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e0619320-7d99-4c0c-ac1d-6fb86daa6be0.jpg" title=" 004.png" alt=" 004.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 值得指出的是, span style=" color: rgb(0, 112, 192) " strong 这是首次在外泌体水平对基因改造后的PTGFRN外泌体进行单颗粒检测 /strong /span ,相较于传统Western Blot只能在总量上对蛋白进行定量,纳米流式可以在单个外泌体水平对蛋白的表达量进行鉴定和分析,与CD9和CD81蛋白相比,PTGFRN几乎在每一个外泌体上都有表达,为目的蛋白高效率表达和外泌体高效率纯化回收奠定了理论基础,显示出纳米流式无可比拟的单颗粒检测优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/44235c80-0bf0-4489-9dea-8b6956f1e8f3.jpg" title=" 005.png" alt=" 005.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" color: rgb(0, 112, 192) " strong 关于福流 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px " 厦门福流生物科技有限公司致力于纳米流式检测技术(NanoAnalyzer)的研发,目前研发的纳米流式是一个高通量、多参数分析检测平台,可在单颗粒水平上对颗粒的粒径、浓度、生化性质进行高通量、多参数的分析,为生命科学和生物医学打开了通往纳米世界的大门。详细参数如下: /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px " 1.检测范围涵盖整个外泌体粒径(30-150nm); /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px " 2.荧光灵敏度可达单分子水平(PE分子); /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px " 3.分辨率与冷冻透射电镜媲美; /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px " 4.前所未有的检测灵敏度:低至7nm纳米金颗粒散射光检测,检测范围7-1000nm; /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px " 5.世界首台纳米颗粒(& lt 100 nm)多参数定量表征流式设备; /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" font-size: 14px color: rgb(165, 165, 165) " (文源:福流生物) /span /p p style=" text-align: center line-height: 1.5em text-indent: 0em " span style=" font-size: 14px " 更多生命科学资讯讲座请扫码 /span /p p style=" line-height: 1.5em text-indent: 0em " span style=" font-size: 14px " /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 126px height: 126px " src=" https://img1.17img.cn/17img/images/202012/uepic/7136a341-7127-41e1-81d4-0d5851c810d4.jpg" title=" 3i生仪社 二维码.jpg" alt=" 3i生仪社 二维码.jpg" width=" 126" height=" 126" / /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制