当前位置: 仪器信息网 > 行业主题 > >

敏玫红

仪器信息网敏玫红专题为您提供2024年最新敏玫红价格报价、厂家品牌的相关信息, 包括敏玫红参数、型号等,不管是国产,还是进口品牌的敏玫红您都可以在这里找到。 除此之外,仪器信息网还免费为您整合敏玫红相关的耗材配件、试剂标物,还有敏玫红相关的最新资讯、资料,以及敏玫红相关的解决方案。

敏玫红相关的论坛

  • 红花红的好,还是没那么红的好?

    今日抽检,冒充专家去看中药材,要人家药库的人拿红花过来,对方解释说:这红花没那么红哦。 我冒充内行:有时候没那么红还好呢,太红了担心是染色的。 对方解释:红花没这么红是因为过了,花期过了才采摘,所以才没那么红,有些红中带黄这样。 不知道上述说法哪些对的,哪些是不全面的? 特抛砖引玉让大家讨论。

  • 关于玫瑰红钠颜色变化

    请问一下。什么菌能使玫瑰红钠变色(颜色变淡,红色几乎全部退去)?或者说什么化学物质能使玫瑰红钠变淡?[img]http://img.foodmate.net/bbs/static/image/smiley/default/cry.gif[/img] [img]http://img.foodmate.net/bbs/static/image/smiley/default/cry.gif[/img] 求助了。帮忙。。。

  • 【求助】伊红美兰琼脂变质分层~~怎么回事?

    这段时间我们配制的伊红美兰琼脂在灭菌冷却后发生变质分层的问题~~ 表现为:配制过程无异常,不灭菌直接冷却,没有任何问题~~ 灭菌冷却后发生变质分层上层是正常的颜色下层则是一种深橙红色,再煮沸溶解后倒至平皿不能凝固~~ 那位专家碰到过这样的问题,如何去解决哈~~ 先谢谢了哈

  • 【资料】玫瑰红B是什么及检测方法

    [color=black][font=宋体]玫瑰红B:也称罗丹明[/font][/color][color=black][font=Arial]B[/font][/color][color=black][font=宋体],俗称花粉红[/font][/color][color=black][font=Arial],[/font][/color][color=black][font=宋体]是一种碱性荧光染料。罗丹明[/font][/color][color=black][font=Arial]B[/font][/color][color=black][font=宋体],经老鼠[b][u]试验[/u][/b]发现,会引致皮下组织生肉瘤,被怀疑是致癌物质。[/font][/color][color=black][font=Arial][/font][/color][color=black][font=Arial] [/font][/color][b][color=black][font=宋体]玫瑰红B[/font][/color][color=black][font=Arial]-[/font][/color][color=black][font=宋体]定义[/font][/color][color=black][font=Arial] [/font][/color][/b][color=black][font=Arial][/font][/color][color=black][font=宋体]罗丹明[/font][/color][color=black][font=Arial]B[/font][/color][color=black][font=宋体]是一种具有鲜桃红色的人工合成的染料;[/font][/color][color=black][font=Arial][/font][/color][align=center][color=black][font=Arial][/font][/color][/align][color=black][font=宋体]英文名:[/font][/color][color=black][font=Arial]Rhodamine B[/font][/color][color=black][font=宋体];[/font][/color][color=black][font=Arial][/font][/color][color=black][font=宋体]分子式:[/font][/color][color=black][font=Arial]C28H31ClN2O3[/font][/color][color=black][font=宋体];[/font][/color][color=black][font=Arial][/font][/color][color=black][font=宋体]分子量:[/font][/color][color=black][font=Arial]479.0175[/font][/color][color=black][font=宋体];[/font][/color][color=black][font=Arial][/font][/color][color=black][font=Arial] [/font][/color][b][color=black][font=宋体]玫瑰红B[/font][/color][color=black][font=Arial]-[/font][/color][color=black][font=宋体]特征及用途[/font][/color][color=black][font=Arial] [/font][/color][/b][color=black][font=Arial][/font][/color][color=black][font=宋体]罗丹明[/font][/color][color=black][font=Arial]B[/font][/color][color=black][font=宋体]亮绿色闪光结晶粉状物,溶于[/font][/color][color=black][font=Arial]70[/font][/color][color=black][font=宋体]份冰水中,[/font][/color][color=black][font=Arial]10[/font][/color][color=black][font=宋体]份乙醇中,[/font][/color][color=black][font=Arial]150[/font][/color][color=black][font=宋体]份氯仿中,呈带强荧光的蓝光红色溶液,易溶于溶纤素,微溶于丙酮;遇浓硫酸呈黄光棕色,有强的绿色荧光,稀释后呈大红色转为蓝光红色和橙色。其水溶液加氢氧化钠后加热,形成玫瑰红绒毛状沉淀。[/font][/color][color=black][font=Arial][/font][/color][color=black][font=Arial] [/font][/color] [color=black][font=宋体]主要用于造纸[b][u]工业[/u][/b]染蜡光纸、打字纸、有光纸等;与磷钨钼酸作用生成色淀,用于制造油漆、图画等颜料、也可用于腈纶、麻、蚕丝等织物以及麦秆、皮革制品的染色。任何染料都有脂团,所以至少可以透过皮肤,所以在高浓度时毕竟会有所谓的毒性,还是要注意,至于低浓度,至少也可以透皮肤的。[/font][/color]

  • 【求助】-苏丹红的“姐妹”-对位红的检测方法

    前不久,继苏丹红之后,又冒出一个对位红(Para Red),有人将其称为苏丹红的“姐妹”,因其与苏丹红一样,也是一种工业用偶氮染料,结构与苏丹红十分相似,仅比苏丹红多一个硝基。 国外多家实验室已建立该染料的检测方法,大多采用RP-HPLC或[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS,但不知方法细节。 请各位大侠相助!

  • 【求助】做大肠杆菌的伊红美兰琼脂出问题怎么办??

    这段时间我们配制的伊红美兰琼脂在灭菌冷却后发生变质分层的问题~~ 那位DX碰到过这样的问题,怎么解决哈~~ 表现为:配制过程无异常,不灭菌冷却,没问题~~ 灭菌冷却后发生变质分层,再煮沸溶解后倒至平皿不能凝固~~  那位DX来救命哈~~

  • CNS_08.149_杨梅红

    CNS_08.149_杨梅红

    [align=center][/align][align=center][font='仿宋'][size=16px][color=#000000]丁磊[/color][/size][/font][/align][align=center][font='黑体'][size=21px][color=#000000]目录[/color][/size][/font][/align][url=#_Toc6221][font='calibri'][size=14px]第1章:食品着色剂的开发和利用[/size][/font][/url][font='calibri'][size=14px]3[/size][/font][url=#_Toc25066][font='calibri'][size=14px]1.1食品着色剂[/size][/font][/url][font='calibri'][size=14px]3[/size][/font][url=#_Toc22488][font='calibri'][size=14px]1.2食品天然着色剂[/size][/font][/url][font='calibri'][size=14px]3[/size][/font][url=#_Toc27630][font='calibri'][size=14px]1.3食品天然着色剂与应用[/size][/font][/url][font='calibri'][size=14px]4[/size][/font][url=#_Toc17278][font='calibri'][size=14px]第2章:杨梅红色素的提取与分析[/size][/font][/url][font='calibri'][size=14px]5[/size][/font][url=#_Toc24833][font='calibri'][size=14px]2.1杨梅[/size][/font][/url][font='calibri'][size=14px]5[/size][/font][url=#_Toc15566][font='calibri'][size=14px]2.2提取实验仪器与方法[/size][/font][/url][font='calibri'][size=14px]5[/size][/font][url=#_Toc27032][font='calibri'][size=14px]2.21实验仪器[/size][/font][/url][font='calibri'][size=14px]5[/size][/font][url=#_Toc19226][font='calibri'][size=14px]2.22实验方法[/size][/font][/url][font='calibri'][size=14px]5[/size][/font][url=#_Toc13728][font='calibri'][size=14px]2.23杨梅红色素组成鉴定[/size][/font][/url][font='calibri'][size=14px]6[/size][/font][url=#_Toc13535][font='calibri'][size=14px]2.3杨梅红色素的组成[/size][/font][/url][font='calibri'][size=14px]6[/size][/font][url=#_Toc30430][font='calibri'][size=14px]第三章:杨梅红色素的理化性质[/size][/font][/url][font='calibri'][size=14px]7[/size][/font][url=#_Toc15645][font='calibri'][size=14px]3.1研究方法[/size][/font][/url][font='calibri'][size=14px]7[/size][/font][url=#_Toc9051][font='calibri'][size=14px]3.1.1[/size][/font][/url][url=#_Toc9051][font='calibri'][size=14px]杨梅红色素的光谱试验取测试液[/size][/font][/url][font='calibri'][size=14px]7[/size][/font][url=#_Toc27803][font='calibri'][size=14px]3.1.2 p[/size][/font][/url][url=#_Toc27803][font='calibri'][size=14px]H值对杨梅红色素稳定性的影响[/size][/font][/url][font='calibri'][size=14px]8[/size][/font][url=#_Toc26656][font='calibri'][size=14px]3.1.3[/size][/font][/url][url=#_Toc26656][font='calibri'][size=14px]温度对杨梅红色素稳定性的影响[/size][/font][/url][font='calibri'][size=14px]8[/size][/font][url=#_Toc20019][font='calibri'][size=14px]3.1.4[/size][/font][/url][url=#_Toc20019][font='calibri'][size=14px]氧化剂对杨梅红色素的影响[/size][/font][/url][font='calibri'][size=14px]8[/size][/font][url=#_Toc14023][font='calibri'][size=14px]3.1.5[/size][/font][/url][url=#_Toc14023][font='calibri'][size=14px]还原剂对杨梅红色素的影响 [/size][/font][/url][font='calibri'][size=14px]8[/size][/font][url=#_Toc32406][font='calibri'][size=14px]3.1.8[/size][/font][/url][url=#_Toc32406][font='calibri'][size=14px]金属离子对杨梅红色素稳定性的影响[/size][/font][/url][font='calibri'][size=14px]8[/size][/font][url=#_Toc27826][font='calibri'][size=14px]3.2结果分析[/size][/font][/url][font='calibri'][size=14px]9[/size][/font][url=#_Toc13106][font='calibri'][size=14px]3.3结论分析[/size][/font][/url][font='calibri'][size=14px]12[/size][/font][url=#_Toc18666][font='calibri'][size=14px]参考文献[/size][/font][/url][font='calibri'][size=14px]13[/size][/font][align=center][/align][align=center][font='calibri'][size=14px]第1章:食品着色剂的开发和利用[/size][/font][/align][align=left][font='calibri'][size=14px]1.1食品着色剂[/size][/font][/align][align=left][font='宋体'][size=16px]食品着色剂(Food Colorant)又称食品色素,是以食品着色为主要目的的一类食品添加剂。食品的色泽是人们对于食品食用前的第一个感性接触,是人们辨别食品优劣,对其做出初步判别的基础,也是食品质量的一个重要指标。食品天然的颜色,可以预见其营养价值、变质与否以及商品价值的高低。食品若具有鲜艳的色泽不仅可以提高食品的感官性质,给人以美的享受,还可以引起人们的食欲。反之,若食品在加工过程中,由于受到光、热、氧气或化学药剂作用等各种原因,使天然色素褪色或造成食品色变而失去光泽,引起色泽失真,会使人产生一种不协调的食品变质的错觉,从而严重影响食品的感官质量。因此,在食品加工中为了更好地保持或改善食品的色泽,需要向食品中添加一些食品着色剂。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]食用着色剂是食品添加剂的重要组成部分,不仅广泛应用于饮料、酒类、糕点、糖果等饮料食品,以改善其感官质量,而且也大量用于医药和化妆品生产中。[/size][/font][font='宋体'][size=16px] [/size][/font][/align][align=left][font='calibri'][size=14px]1.2食品天然着色剂[/size][/font][/align][align=left][font='宋体'][size=16px]食品天然着色剂,也称食品天然色素,主要是指从动、植物和微生物中提取的着色剂,一些品种还具有维生素活性(如β胡萝卜素),有的还具有一定的生物活性功能(如栀子黄、红花黄等)。其品种繁多,色泽自然,无毒性,而且使用范围和日允许用量(ADI)都比合成着色剂宽,但也存在成本高、着色力弱、稳定性差、容易变质,-些品种还有异味、异臭、难以调出任意色等缺点。近年来天然着色剂的开发应用发展很快,一-些国家天然着色剂的用量已超过合成着色剂。天然食用色素按其来源不同,主要有以下三类:①植物色素,如甜菜红、姜黄、β胡萝卜素、叶绿素等 ②动物色素,如紫胶红、胭脂虫红等 ③微生物类,如红曲红等。按其化学结构可以分成六类:①四吡略衍生物(卟啉类衍生物),如叶绿素等 ②异戊二烯衍生物,如辣椒红、β胡萝卜素、栀子黄等 ③多酚类衍生物,如越橘红、葡萄皮红、玫瑰茄红、萝卜红、红米红等 ④酮类衔生物,如红曲红、姜黄素等 ⑤醌类衍生物,如紫胶红、胭脂虫红等 ⑥其他,如甜菜红等。按照溶解性质的不同,天然食用着色剂可分为水溶性和油溶性两类。但是其溶解性是可以改变的,如β胡萝卜素不溶于水,在脂肪为主的食品中溶解较慢,且易被氧化,但经工艺处理后,则可以转变为可溶于水、油,又可延缓氧化。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]在19世纪中叶以前,主要是应用一些比较粗制的天然色素作为食用着色剂 随着化学工业的发展,合成色素相继问世,并以其具有色泽鲜艳、稳定性好、着色力强、适于调色、易于溶解、品质均一、 无臭无味以及价格 便宜的优点,很快就取代了食用天然着色剂在食品中的应用。但随着毒理学研究的进展,合成者色剂作为食品添加剂的安全性问题受到广泛关注,很多国家部分甚至全部禁止了食用合成者色剂,所以,食品着色剂,特别是食品天然着色利的研究与开发有着广蟈的发展前景和很大的市场潜力。[/size][/font][/align][align=left][font='calibri'][size=14px]1.3食品天然着色剂与应用[/size][/font][/align][align=left][font='宋体'][size=16px]食品天然着色剂以植物性着色剂占多数。天然食品着色剂不仅安全,而且许多具有一童说.定的营养价值和生理活性:如β胡萝卜素不仅是食品天然着色剂,同时还是一种重要的营养强化剂,在防癌抗癌和预防心血管疾病方面具有明显作用。目前,许多国家和地区都致力于天然着色剂的发掘和研制。由于食品天然着色剂的安全性较高,因而发展较快,世界各国许可使用的品种和用量都在不断增加,国际上开发出的天然着色剂已有100种以上。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]大力发展天然着色剂已成为食品着色剂的发展方向。缺点:成本高、着色力弱.稳定性差容胃天然着色剂作为食品添加剂的一种已经被人们所接受,而且随着人们对食品添加剂安有些身全性意识的提高,大力开发“天然、营养、多功能”的食用天然色素,如胡萝卜、黄酮类异口.色素等,将越来越得到人们的重视。但天然着色剂来自于天然产物,其成分复杂,而且有难叭的未经完全分离、精制和鉴定,所以研究天然色素中成分的结构、性质以及它们的功能性任常和安全性也是食用天然色素面临的重要课题。[/size][/font][/align][align=center][/align][align=center][font='calibri'][size=14px]第2章:杨梅红色素的提取与分析[/size][/font][/align][align=center][/align][align=left][font='calibri'][size=14px]2.1杨梅[/size][/font][/align][align=left][font='宋体'][size=16px][color=#000000]杨梅:属于[/color][/size][/font][url=https://baike.baidu.com/item/%E6%9C%A8%E5%85%B0%E7%BA%B2][font='宋体'][size=16px][color=#000000]木兰纲[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]、杨梅科、杨梅属小乔木或灌木植物,又称圣生梅、白蒂梅、[/color][/size][/font][url=https://baike.baidu.com/item/%E6%A0%91%E6%A2%85][font='宋体'][size=16px][color=#000000]树梅[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]具有很高的药用和食用价值,在中国[/color][/size][/font][url=https://baike.baidu.com/item/%E5%8D%8E%E4%B8%9C][font='宋体'][size=16px][color=#000000]华东[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]和湖南、广东、广西、贵州等地区均有分布。杨梅原产中国浙江余姚,1973年余姚境内发掘新石器时代的河姆渡遗址时发现杨梅属花粉,说明在7000多年以前该地区就有杨梅生长。该属有50多个种,中国已知的有杨梅、[/color][/size][/font][url=https://baike.baidu.com/item/%E7%99%BD%E6%9D%A8%E6%A2%85][font='宋体'][size=16px][color=#000000]白杨梅[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]、[/color][/size][/font][url=https://baike.baidu.com/item/%E6%AF%9B%E6%9D%A8%E6%A2%85][font='宋体'][size=16px][color=#000000]毛杨梅[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]、[/color][/size][/font][url=https://baike.baidu.com/item/%E9%9D%92%E6%9D%A8%E6%A2%85][font='宋体'][size=16px][color=#000000]青杨梅[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]和[/color][/size][/font][url=https://baike.baidu.com/item/%E7%9F%AE%E6%9D%A8%E6%A2%85][font='宋体'][size=16px][color=#000000]矮杨梅[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000],经济栽培主要是杨梅。杨梅枝繁叶茂,树冠圆整,初夏又有红果累累,十分可爱,是园林绿化结合生产的优良树种。孤植、丛植于[/color][/size][/font][url=https://baike.baidu.com/item/%E8%8D%89%E5%9D%AA/8938060][font='宋体'][size=16px][color=#000000]草坪[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]、[/color][/size][/font][url=https://baike.baidu.com/item/%E5%BA%AD%E9%99%A2/181202][font='宋体'][size=16px][color=#000000]庭院[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000],或列植于[/color][/size][/font][url=https://baike.baidu.com/item/%E8%B7%AF%E8%BE%B9/8962003][font='宋体'][size=16px][color=#000000]路边[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]都很合适;若采用密植方式来分隔空间或起遮蔽作用也很理想。经济用途果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒,有止渴、生津、助消化等功能。[/color][/size][/font][/align][font='calibri'][size=14px]2.2提取实验仪器与方法[/size][/font][font='calibri'][size=14px]2.21实验仪器[/size][/font][align=left][font='宋体'][size=16px][color=#000000]HPLC 仪(waters 600,GBC),UV-1200 仪(USA,PE 公司),723 型分光光度计(上海第三 分析仪器厂),超级恒温水浴锅(±0.2℃,重庆试验设备厂),pHS-3B 精密 pH 计(上海雷磁仪 器厂)。无水乙醇、甲醇、乙醚、石油醚、氯仿、丙酮,Al(NO3)3、Fe(NO3)3 等试剂,均为 AR级。“早红杨梅”、“海红杨梅”(市售)[/color][/size][/font][/align][font='calibri'][size=14px]2.22实验方法[/size][/font][align=left][font='宋体'][size=16px][color=#000000]提取 分别取“早红杨梅”、“海红杨梅”鲜果,洗净、滤干、压榨,各称取干渣 100g, 加 5000mL 1%(V/V)HCl-甲醇溶液,在高速匀浆机中控制 3000r/min 捣碎 5min,移入烧杯, 4℃下存放 12h,以 8000r/min,离心 6min,取上清液,分装入真空旋转蒸发器中于 25℃下浓缩 至 50mL,依次编为Ⅰ、Ⅱ。 [/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#000000] 取浓缩液于定性新华滤纸(50cm×40cm)上点样数次,吹干后在 1%(V/V)HCl 水溶液中层析 5h,取出风干,裁下红色部分,继用 0.01%(V/V)HCl-甲醇溶液解析,然后真空 浓缩至 5mL。浓缩液再点样、层析[展开剂(BAW)为正丁醇:冰醋酸:水=4:1:5]12h,取出 风干,剪取红色部分,用 0.01%HCl 解析,浓缩后点样,再层析[展开剂:15%(V/V)HAc]5h, 取出风干,红色部分用 0.01%HCl-甲醇溶液解析,真空浓缩、干燥,得“早红”杨梅红色素(Ⅰ)、 “海红”杨梅红色素( Ⅱ)。[/color][/size][/font][/align][font='calibri'][size=14px]2.23杨梅红色素组成鉴定[/size][/font][align=left][font='宋体'][size=16px][color=#000000]杨梅红色素组成鉴定 分别取 0.1mgI、Ⅱ杨梅红色素,用 5mL 1mol/L HCl 溶解,100 ±0.2℃保持 40min,冷却后加 2.5mL 戊醇,振荡,静置 15min。取有机相点样、层析[展开剂 为 BAW,1%HCl、Formic(HCOOH:浓 HCl:H2O=5:2:3)],测定 Rf 值;取水相用 HPLC 法鉴定, 标准糖为葡萄糖、半乳糖、阿拉伯糖、鼠李糖和木糖。 光谱分析 分别扫描Ⅰ、Ⅱ溶液及加 1.50mL 0.5%(W/V)AlCl3-CH3OH 溶液后的 UV-VIS 光谱,同时观测 254nm 紫外分析灯下斑点的荧光。[/color][/size][/font][/align][align=left][/align][font='calibri'][size=14px]2.3杨梅红色素的组成[/size][/font][align=left][font='宋体'][size=16px][color=#000000]有机相经纸色谱分析,结果表明:Ⅰ、 Ⅱ均有 6 条谱带,其中 D 谱带分别占 95%、96%, 其余含量甚微;与文献[7]的 Rf 值比较,可推出 D 带为矢车菊花色苷元,其余可能为天竺葵花 色苷、飞燕草花色苷元和芍药花色苷等,详见表 1。 表 1 “早红”、“海红”杨梅红色素的 Rf 值。[/color][/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602003652_6234_1608728_3.jpeg[/img][/align][align=left][font='宋体'][size=13px][color=#000000]([/color][/size][/font][font='宋体'][size=16px][color=#000000])内数据为文献[7]数值,下同。 [/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#000000]水相用 HPLC 法检测,“早红”和“海红”杨梅水解的糖的保留值为 6.18 与 6.19min,而标 准葡萄糖为 6.21min,半乳糖 6.52min,阿拉伯糖 5.24min。由此可推测,“早红”及“海红”杨梅 花色苷中的糖为葡萄糖。 [/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#000000]I 和Ⅱ的 6 条纸色谱带洗脱液的 UV—VIS 光谱数据表明:两种色素于 UV 和 VIS 区均有 最大吸收峰,当有 Al3+存在时,A、B、C、D 谱带在 VIS 区的最大吸收峰发生红移,说明β 环有邻位羟即含有矢车菊、牵牛花和飞燕草花色苷。在紫外灯下除 A 谱带外,无荧光现象, 说明花色苷的α位上无羟基。[/color][/size][/font][/align][align=left][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602003393_3153_1608728_3.png[/img][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#000000]据文献[7],在单苷中 E440/Eλmax=0.24,E1λmax/E2λmax=0.60 者只有矢车菊花色苷元-3-葡萄糖苷和芍药花色苷元-3-葡萄糖苷,从而推测 I、Ⅱ的花色苷组成主要为矢车菊花色苷,少量芍药 花色苷和天竺葵花色苷。[/color][/size][/font][/align][align=center][font='calibri'][size=14px]第三章:杨梅红色素的理化性质[/size][/font][/align][align=left][/align][font='calibri'][size=14px]3.1研究方法[/size][/font][align=left][/align][font='calibri'][size=14px]3.1.1[/size][/font][font='calibri'][size=14px]杨梅红色素的光谱试验取测试液[/size][/font][align=left][font='宋体'][size=16px]在440~560[/size][/font][font='宋体'][size=16px]n[/size][/font][font='宋体'][size=16px]m的波长范围扫描,得到红色素液的光谱图。[/size][/font][/align][align=left][/align][align=left][/align][align=left][/align][align=left]3.1.2 pH值对杨梅红色素稳定性的影响[/align][align=left][font='宋体'][size=16px]取等量的测试液11份于小烧杯中,用稀HC[/size][/font][font='宋体'][size=16px]L[/size][/font][font='宋体'][size=16px]和稀NaOH溶液调节PH值,放置5mi[/size][/font][font='宋体'][size=16px]n[/size][/font][font='宋体'][size=16px]于510[/size][/font][font='宋体'][size=16px]n[/size][/font][font='宋体'][size=16px]m处测吸光值。[/size][/font][/align][align=left]3.1.3温度对杨梅红色素稳定性的影响[/align][align=left][font='宋体'][size=16px]配置p[/size][/font][font='宋体'][size=16px]H值为[/size][/font][font='宋体'][size=16px]3和pH为5[/size][/font][font='宋体'][size=16px]的一定浓度的红色素溶液20mI,分别在25(室温)40.60.80°C[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]沸水的恒温水浴中保存2[/size][/font][font='宋体'][size=16px]h[/size][/font][font='宋体'][size=16px]测吸光度。[/size][/font][/align][align=left][/align][font='calibri'][size=14px]3.1.4[/size][/font][font='calibri'][size=14px]氧化剂对杨梅红色素的影响[/size][/font][align=left][font='宋体'][size=16px]以[/size][/font][font='宋体'][size=16px]和[/size][/font][font='宋体'][size=16px]为氧化剂,在测试液中分别加入10mL[/size][/font][font='宋体'][size=16px]0.[/size][/font][font='宋体'][size=16px]01%、[/size][/font][font='宋体'][size=16px]0.[/size][/font][font='宋体'][size=16px]02%、1.0%(不超过一般食品中的最大安全使用量2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]0% )”的溶[/size][/font][font='宋体'][size=16px]溶液,[/size][/font][font='宋体'][size=16px]或5mL0[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]10、0[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]50、1.00m[/size][/font][font='宋体'][size=16px]g[/size][/font][font='宋体'][size=16px]/mL的[/size][/font][font='宋体'][size=16px]溶液,测定吸光度值。[/size][/font][/align][align=left]3.1.5还原剂对杨梅红色素的影响 [/align][align=left][font='宋体'][size=16px]以[/size][/font][font='宋体'][size=16px]为还原剂,在测试液中分别加入10mL0.01、[/size][/font][font='宋体'][size=16px]0.[/size][/font][font='宋体'][size=16px]06、[/size][/font][font='宋体'][size=16px]0.[/size][/font][font='宋体'][size=16px]20m[/size][/font][font='宋体'][size=16px]g[/size][/font][font='宋体'][size=16px]/mL的[/size][/font][font='宋体'][size=16px]溶液,测定吸光度值。以维生素C为还原剂,在测试液中加入0.2.4[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]6[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]8.10mL1[/size][/font][font='宋体'][size=16px]0.[/size][/font][font='宋体'][size=16px]0mg/mI的维生素C溶液,测定吸光度值。[/size][/font]3.1.6食品基质对杨梅红色素稳定性的影响[/align][align=left][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]取一定浓度PH值为3的红色素溶液各20m[/size][/font][font='宋体'][size=16px]L[/size][/font][font='宋体'][size=16px],加入葡萄糖、蔗糖、淀粉、食盐各0、2、4、6、8、10mL10.0mg/[/size][/font][font='宋体'][size=16px]mL[/size][/font][font='宋体'][size=16px]浓度的基质,放置120min测吸光度值。[/size][/font]3.1.7自然光对杨梅红色素稳定性的影响[/align][align=left][font='宋体'][size=16px]取等量的测试液2份,在25°C[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px](室温)下,1份避光保存,另1份不避光。每隔1d测1次吸光度。[/size][/font][/align][align=left][/align][font='calibri'][size=14px]3.1.8[/size][/font][font='calibri'][size=14px]金属离子对杨梅红色素稳定性的影响[/size][/font][align=left][font='宋体'][size=16px]取等量的测试液8份,1份不添加金属离子,其余分别加入2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]0m[/size][/font][font='宋体'][size=16px]g[/size][/font][font='宋体'][size=16px]/mI.[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][size=16px]2mL[/size][font='宋体'][size=16px]放置30m[/size][/font][font='宋体'][size=16px]in[/size][/font][font='宋体'][size=16px]和测定吸光度。[/size][/font][/align][align=left][/align][font='calibri'][size=14px]3.2结果分析[/size][/font][align=left][/align][align=left][font='黑体'][size=16px]3.2.1杨梅红色素的光谱试验。[/size][/font][/align][align=left][font='宋体'][size=16px]杨梅红色素在可见光范围440~560[/size][/font][font='宋体'][size=16px]n[/size][/font][font='宋体'][size=16px]m处有最大吸收波长为510[/size][/font][font='宋体'][size=16px]n[/size][/font][font='宋体'][size=16px]m[/size][/font][font='宋体'][size=16px]。[/size][/font][/align][align=left][/align][align=left][font='黑体'][size=16px]3.2.2 pH值对杨梅红色素稳定性的影响。[/size][/font][/align][align=left][font='宋体'][size=16px]p[/size][/font][font='宋体'][size=16px]H值对杨梅红色素稳定性的影响结果如表1所示。由表1可知,杨梅红色素在PH值2~6时吸光度变化不大,PH值越小颜色越鲜艳,PH值大于7时,吸光度变化较大且颜色发生变化,所以不宜在碱性条件提取、保存和使用杨梅红色素。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602004818_7713_1608728_3.png[/img][/align][align=left][/align][align=left][/align][align=left][font='黑体'][size=16px]3.2.3 温度对杨梅红色素稳定性的影响。 [/size][/font][/align][align=left][font='宋体'][size=16px]温度对杨梅红色素稳定性的影响试验结果见表2从表2可以看出,杨梅红色素随温度的升高吸光值不断减小。红色素随保存时间的推移,吸光度不断减小,但在60°C以下,变化率较小。所以,红色素在酸性条件下,60°C以下保存2h稳定性较好。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602005590_837_1608728_3.png[/img][/align][align=left][/align][align=left][/align][align=left][/align][align=left][font='黑体'][size=16px]3.2.4 氧化剂对杨梅红色素的影响.[/size][/font][/align][align=left][font='宋体'][size=16px]由表3可以看出,随溶液中氧化剂[/size][/font][font='宋体'][size=16px]浓度的增加和时间的延长,吸光度值递减,表明杨梅红色素耐氧化剂较差,应用中应避免与氧化剂接触。由图1可知,氧化剂[/size][/font][font='宋体'][size=16px]的加入降低了红色素的吸光度值,但影响不大。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602007577_1428_1608728_3.png[/img][/align][align=left][font='黑体'][size=16px]3.2.5 还原剂对杨梅红色素的影响。[/size][/font][/align][align=left][font='宋体'][size=16px]由图2可知,[/size][/font][font='宋体'][size=16px]液对红色素的吸光度值有较大影响。[/size][/font][font='宋体'][size=16px]溶液浓度越大,影响越大。[/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602008407_7557_1608728_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602009501_2891_1608728_3.png[/img][/align][align=left][/align][align=left][font='黑体'][size=16px]3.1.6 食品基质对杨梅红色素稳定性的影响。[/size][/font][/align][align=left][font='宋体'][size=16px]由表4可知,随着食品基质加入量的增大,红色素的吸光度稍有减小,但减小的趋势非常缓慢,说明加入以上基质对红色素的稳定性影响不大。[/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602009203_6063_1608728_3.png[/img][/align][align=left][/align][align=left][font='黑体'][size=16px]3.2.7自然光对杨梅红色素稳定性的影响。[/size][/font][/align][align=left][font='宋体'][size=16px]由表5可知,红色素在避光和不避光的条件下保存,吸光.度值都随着时间的延长而减小,在不避光条件下,吸光度降低得更快,说明自然光对红色素有很大的影响。在试验过程中应该注意避光。[/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602010004_8158_1608728_3.png[/img][/align][align=left][/align][align=left][font='黑体'][size=16px]3.2.8 金属离子对杨梅红色素稳定性的影响。[/size][/font][/align][align=left][font='宋体'][size=16px]从表6可以看出,[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]对杨梅红色素吸光度基本无影响,[/size][/font][font='宋体'][size=16px]的影响较小,[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]响很大,不但吸光度值降低很多,而且溶液的颜色也发生显著变化。加入的溶液,颜色由红色变为浅橙色[/size][/font][font='宋体'][size=16px]。[/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602010824_2046_1608728_3.png[/img][/align][align=left][/align][align=left][/align][align=left][/align][font='calibri'][size=14px]3.3结论分析[/size][/font][align=left][/align][align=left][font='宋体'][size=16px]本研究结果表明,PH值对杨梅红色素的稳定性影响较大。色素在pH值2~6时较稳定,pH值越小颜色越鲜艳,pH值大于7时吸光度变化较大且颜色发生变化,所以该色素不宜在碱性条件下提取、保存和使用。杨梅红色素热稳定性较差,在加工过程中不宜超过60°C,控制在40°C以内效果最佳。自然光对红色素有影响,所以在试验过程中或作为产品,都应该避光保存。氧化剂[/size][/font][font='宋体'][size=16px]、还原剂[/size][/font][font='宋体'][size=16px]对杨梅红色素的影响很大。氧化剂[/size][/font][font='宋体'][size=16px]对杨梅红色素基本无影响。还原剂维生素C对杨梅红色素有一定的增色作用,但增色作用不明显。本试验中加入的4种食品基质对杨梅红色素稳定性的影响甚微。在食品加工中可以不考虑这4种食品基质对杨梅红色素的影响。金属离子[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]和[/size][/font][font='宋体'][size=16px]对色素的影响很大,在加工中应避免接触,不使用铜制[/size][/font][/align][align=center][font='times new roman'][size=21px][color=#000000]参考文献[/color][/size][/font][/align][font='calibri'][size=14px][1] [/size][/font][font='calibri'][size=14px][color=#231f20]中华人民共和国国家卫生和计划生育委员会. [/color][/size][/font][font='calibri'][size=14px][color=#231f20]GB2760-2014[/color][/size][/font][font='calibri'][size=14px][color=#231f20]食品安全国家标准, 食品添加剂使用标准[/color][/size][/font][font='calibri'][size=14px][color=#231f20][s][/s][/color][/size][/font][font='calibri'][size=14px][color=#231f20]. 北京:中国标准出版社, [/color][/size][/font][font='calibri'][size=14px][color=#231f20]2014.[/color][/size][/font][font='calibri'][size=14px][2] [/size][/font][font='calibri'][size=14px][color=#231f20]杨梅果实品质分析和红色素稳定性研究.严和平,陈瑞,刘卫,路俊梅,龙云惠,姚立华[/color][/size][/font][font='calibri'][size=14px][3] [/size][/font][font='calibri'][size=14px][color=#231f20]杨梅红色素的提取,纯化,及其理化性质。林璇[/color][/size][/font][font='calibri'][size=14px][4] [/size][/font][font='calibri'][size=14px][color=#231f20]食品添加剂第二版。孙包国主编[/color][/size][/font][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602011928_9621_1608728_3.png[/img][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106191602013827_479_1608728_3.jpeg[/img][/align]

  • 分光光度计的比色皿能烘吗?

    今天看到新来的同事,拿了一个分光光度计的玻璃比色皿在烘箱里烘干,我就随口说了一句:比色皿能烘吗?他说:为什么不能烘?我还真不知道能不能烘,你知道吗?比色皿能烘吗?

  • 欢迎chenhongmei97担任标准/标物-国家标准GB版主

    欢迎chenhongmei97担任标准/标物-国家标准GB版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 【“仪”起享奥运】烘焙酶助力实现清洁标签--淀粉酶

    [align=left][font=宋体, SimSun][size=16px][b][font=宋体, SimSun]加工助剂在加工过程中发挥改善产品品质的功能,却在最终产品中没有残留,因为它们在加工过程中经常被销毁或移除。依据法规要求,这种物质不需要列在产品标签上,因此,使用加工助剂来代替化学添加剂为食品清洁标签提供了一种新途径。[/font][font=宋体, SimSun]酶制剂是一类最常用的加工助剂,在烘焙过程中,发挥改善功能的烘焙酶被高温烘烤所破坏,所以不必在标签上声明。因此,烘焙酶为烘焙食品带来了实现清洁标签的机会。[/font]淀粉酶可降低烘焙食品糖需求量[/b][/size][/font][/align][font=宋体, SimSun][size=16px]和脂肪一样,降低产品含糖量是许多烘焙师优先考虑的问题。同样,在蛋糕、饼干和糕点的加工过程中,糖也扮演着一些功能性的角色,例如:提供风味、控制面糊粘度、保湿、通过美拉德反应[i][/i]提供色泽等等。然而,过量的糖会改变发酵中的动力学过程,并可能导致自动化过程中出现问题。[/size][/font][font=宋体, SimSun][size=16px][/size][/font][font=宋体, SimSun][size=16px]在人们不断追求健康理念的当今,使用酶在烘焙食品中产生甜味而不是直接添加糖,才属于烘焙食品清洁标签的范畴。例如,酵母利用淀粉酶产生的可发酵糖形成面团的方式更可控,二氧化碳的生成速度较慢,可以防止面筋内脆弱的气泡网络受损。[/size][/font][font=宋体, SimSun][size=16px][/size][/font][font=宋体, SimSun][size=16px]淀粉酶缓慢地工作以维持糖的平衡,直到酵母在55℃左右被灭活。酵母失活后淀粉酶继续产糖,直到淀粉酶在烘烤过程失活,这样,面团里便存在少量的糖,有利于美拉德反应面包皮变成棕色,并提供一些味道。[/size][/font]

  • 【金秋计划】载雷公藤红素结肠靶向-酶敏感纳米粒的制备、表征及药效学研究

    溃疡性结肠炎(ulcerative colitis,UC)是一种病因未明,以腹痛、腹泻、黏液脓血便、里急后重为主要临床表现,于结肠和直肠的表浅且连续的慢性非特异性肠道炎症性疾病[1]。因其病因未明,病程绵长,发病机制复杂的病症特点,属于中医“久痢”的范畴,并且长期的UC是结直肠癌症发生的高危因素[2]。根据最新的专家共识数据推测显示,在我国UC的患病率约为11.6/10万,且近年来医院就诊人数呈现出快速上升的趋势[3]。但目前临床上主要采用激素、氨基酸水杨酸、免疫抑制剂等西医治疗手段,存在不良反应较多、疗效甚微、药物价格昂贵、药物靶向性差等不足,不宜作为长期治疗的最优选择。因此,亟待研究开发一种新型高效低毒且更具有临床价值的UC治疗药物。 近年来关于中医药治疗UC的临床研究逐年增多,因其具有多靶点治疗、复发率低、提高患者生活质量等多项优势,获得越来越多患者的青睐[4-5]。中药雷公藤始载于《神农本草经》,入药部位为卫矛科雷公藤属藤本灌木根的木质部,味苦、辛,有大毒,具有祛风除湿、活血通络、消肿止痛、杀虫解毒等功效。现代药理研究证实,雷公藤具有抗炎[6]、免疫抑制、抗肿瘤等多种作用,临床上多用于治疗类风湿关节炎、紫癜性肾炎皆归因于其可抑制炎症反应[7-9]。而诸多现代研究证实,雷公藤的主要活性成分雷公藤红素(celastrol,Cel),干预UC作用显著,疗效确切[10-13]。研究报道Cel通过降低白细胞介素-1β(interleukin-1β,IL-1β)、IL-6和髓过氧化物酶(myeloperoxidase,MPO)水平,上调E-钙黏蛋白(E-cadherin)的表达水平,抑制核转录因子-κB p65(nuclear transcription factor-κB p65,NF-κB p65)等细胞因子的表达水平,从而发挥抗UC作用[14-15]。但其口服生物利用度差、水溶性差[37 ℃时溶解度为(13.25±0.83)μg/mL]及靶向性差等不足,限制了其临床应用[16]。 纳米递送体系除具有能够提高药物生物利用度、降低用量、提高靶向性、减少不良反应等优势之外,还能够精确递送药物成分抵达病灶部位以及精确控制其释放[17-19]。近年来,越来越多的纳米递送体系用于结肠相关疾病的防治,比如pH敏感、酶敏感、光热敏感等体系[20],但纳米载体材料毒性及结肠靶向等实际问题尚未完全解决。多糖是一类由单糖结构通过糖苷键连接形成的生物大分子,具有原料来源广泛、生物安全性高、成本低及易于功能化修饰等优点,在针对结肠疾病的靶向递送体系开发中具有独特的应用优势和潜力[21]。在生物安全性方面,大多数多糖都存在于人体摄入食物中,具备优异的生物相容性,在医药及食品领域已有成功应用案例[22]。 透明质酸广泛存在于人体中,具有良好的生物降解性和生物相容性、黏附性较好、安全性较高,其特性能够防止所包载的药物被胃肠道破坏[23-25];另一方面,透明质酸能够与炎症部位巨噬细胞表面高表达的CD44受体相结合,提高纳米颗粒的主动靶向作用[26]。此外,随着刺激响应式控释系统在药物传递方面受到越来越多的关注,可以充分利用UC炎症部位的微环境特性,设计药物控释系统。肠道酶是一种独特的刺激物,由于其底物特异性高,在控释系统中日益被用作触发器[27]。环糊精(cyclodextrin)是一种由α-1,4-葡萄糖苷键连接的具有锥形结构的天然环状低聚糖,具有亲水性的外表面和相对疏水的内腔,一方面环糊精的疏水空腔使其可同与之空间匹配的客体小分子[例如金刚烷甲酸(adamantanecarboxylic acid,AD)]形成稳定的“主-客体”包合物,另一方面这种结构的递送优势在于能将疏水客体药物有效装载于环糊精内部[28]。同时,环糊精在结肠微生物发酵和酶解作用下打开环状结构,酯键被水解,包载药物在结肠中释放[11]。 本研究立足于环糊精的“内疏水外亲水”空腔结构特性,充分考虑结肠病变部位的炎症性质,通过酯化反应合成透明质酸-金刚烷甲酸(hyaluronic acid-AD,HA-AD)聚合物,利用环糊精的疏水空腔装载疏水Cel客体药物分子,同时利用AD与环糊精的主客体结合力引入具有CD44靶向的透明质酸,制备出一种新型载Cel结肠靶向-酶敏感纳米粒(Cel/NPs)递药系统,以促进Cel结肠病灶部位的靶向递送和定位释放,为Cel精准递送治疗UC提供新思路。 1 仪器与材料 1.1 仪器 Avance Neo-700 MHz型核磁共振仪,瑞士Bruker公司;Advanyage 2.0 & XL-70型冻干系统,美国SP公司;LC-2030C型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)仪,日本岛津公司;Zetasizer 90型激光粒度仪,英国马尔文公司;JY 92-IIN型超声波细胞破碎仪,宁波新芝生物科技股份有限公司;JEM-1230型透射电子显微镜(TEM),日本JEOL公司;Nikon A1R+SIM型激光共聚焦显微镜,日本尼康公司;Novo Cyte型流式细胞仪,艾森生物杭州有限公司;Leica RM2235型石蜡切片机,成都容信达科技有限公司;Olympus BX41型正置荧光显微镜,日本奥林巴斯公司。 1.2 药品与试剂 AD(批号P1937331)、环糊精(批号P2514301)、α-淀粉酶(批号L2008186)、4-二甲氨基吡啶(4- dimethylaminopyridine,DMAP,批号P1853043),上海阿达玛斯试剂有限公司;透明质酸(相对分子质量8 000),华熙生物科技有限公司;二甲基亚砜(dimethyl sulfoxide,DMSO,批号H2103262)、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺[1-(3- dimethylaminopropyl)-3-ethylcarbodiimide,EDC,批号H2117129],上海阿拉丁生化科技股份有限公司;RPMI 1640培养基、0.25%胰蛋白酶、青-链霉素溶液,美国Gibco公司;Cel,质量分数≥98%,批号DSTDL00350,成都德思特生物技术有限公司;胎牛血清(fetal bovine serum,FBS),杭州四季青公司;苏木精-伊红(hematoxylin and eosin,H&E)染色试剂盒,广州硕谱生物科技有限公司;葡聚糖硫酸钠(dextran sulfate sodium,DSS),上海泰坦科技股份有限公司;香豆素6(coumarin 6,C6),上海阿拉丁生化科技股份有限公司;乙腈,色谱纯,上海西格玛奥德里奇贸易有限公司;磷酸,色谱纯,成都诺尔施科技有限责任公司;其余试剂均为分析纯。 1.3 细胞株及实验动物 人正常结肠上皮NCM460细胞,购自广州赛库生物技术有限公司。雄性ICR(institute of cancer research)小鼠,SPF级,体质量(20±2)g,动物许可证号:SCXK-2019-0010,购于北京斯贝福生物技术有限公司。饲养条件:温度为20~26 ℃,相对湿度为40%~70%。实验期间动物自由进食、饮水,昼夜节律正常。动物实验获得成都医学院动物实验伦理委员会的批准,批准号2023-044。 2 方法与结果 2.1 HA-AD材料的合成及表征 采用酯化反应合成HA-AD聚合物,具体方法如下:准确称取2 mmol AD、3 mmol EDC于20 mL DMSO中,在25 ℃条件下,反应2 h,期间持续通入氮气。然后将2 mmol透明质酸(以透明质酸1个分子单元计)和2 mmol DMAP加入反应液中,继续反应48 h。待反应完成后,采用透析法(透析袋相对分子质量为1 000)除去反应液中的杂质,在规定时间点更换介质,透析3 d后,冻干产物,白色团块即为HA-AD,HA-AD合成路线见图1。 采用核磁共振氢谱(1H-NMR)对合成产物进行表征,在核磁管中加入少量待测样品和适量的氘代DMSO溶剂,通过1H-NMR检测相关样品。结果如图2所示,HA-AD的化学结构通过1H-NMR得到证实。HA-AD聚合物的1H-NMR氢谱中,在δ 3.06~4.90处识别出透明质酸糖环的特征峰;此外与透明质酸相比,δ 1.74~1.81、1.91~1.93、1.60~1.65处的特征峰证实AD与透明质酸的成功结合,综上,该结果表明AD在透明质酸上成功偶联。 2.2 Cel/NPs的制备 采用透析法制备Cel/NPs。按处方精密称取Cel和环糊精,加入2.0 mL DMSO,涡旋超声使其充分溶解。取处方量HA-AD溶解于10.0 mL反渗透水(reverses osmosis,RO)中,将上述DMSO溶液逐滴滴入,磁力搅拌器搅拌2.0 h(400 r/min)。将溶液转移到透析袋中(相对分子质量3 000),透析除去DMSO。待有机溶剂除尽后,用超声波细胞破碎仪冰浴探超5 min(超声5 s、停5 s,功率50%)。 最后用0.45 μm微孔滤膜滤过,得到橘黄色Cel/NPs溶液。 2.3 Cel含量测定方法建立 2.3.1 HPLC色谱条件 色谱柱为DiamonsilTM C18柱(250 mm×4.6 mm,5 μm);流动相为乙腈-0.1%磷酸水溶液(80∶20);检测波长425 nm;体积流量为1.0 mL/min;柱温25 ℃;进样量10 μL。 2.3.2供试品溶液的制备 取2.0 mL甲醇于1.0 mL Cel/NPs溶液中,涡旋、超声破乳,使得制备的纳米颗粒完全破坏,过0.22 μm有机滤膜,即得供试品溶液。 2.3.3 对照品溶液的制备 精密称取Cel对照品10.0 mg于10 mL量瓶中,用甲醇溶液定容,得到1.0 mg/mL Cel对照品母液。 2.3.4 专属性考察 取“2.3.2”项下供试品溶液和“2.3.3”项下对照品溶液,按照“2.3.1”项下色谱条件进样,结果如图3所示,Cel的保留时间为11.76 min,供试品溶液和对照品溶液的出峰时间相同,供试品溶液中的溶剂和辅料对Cel的测定无干扰。 2.3.5 线性关系考察 取“2.3.3”项下Cel对照品溶液,用甲醇稀释成质量浓度分别为500.000、250.000、125.000、62.500、31.250、15.625 μg/mL的Cel对照品溶液,过0.22 μm有机滤膜,进样。以对照品质量浓度为横坐标(X),峰面积为纵坐标(Y),绘制标准曲线,得到标准曲线回归方程为Y=17 130 X+1 714.5,r=0.999 0,线性范围15.625~500.000 μg/mL,结果表明,Cel在定量范围内各质量浓度与峰面积线性关系良好。 2.3.6 精密度试验 分别精密吸取同一对照品溶液(62.500 μg/mL),按“2.3.1”项下色谱条件分别连续进样6次,进样量10 μL,结果Cel峰面积的RSD为0.37%,表明仪器精密度良好。 2.3.7 稳定性试验 按“2.3.2”项下制备一份供试品溶液,分别于制备后0、2、4、8、12、24 h按上述“2.3.1”项下色谱条件进样测定Cel的峰面积,结果Cel峰面积的RSD为2.52%,表明供试品溶液在24 h内具有良好的稳定性。 2.3.8 重复性试验 按照“2.3.2”项下供试品溶液制备方法制备6份供试品溶液,并且按Cel色谱条件分析测定,计算Cel/NPs样品中Cel质量浓度的RSD为2.15%,表明重复性良好。 2.3.9 加样回收率试验 按照“2.2”项下Cel/NPs制备方法制备Cel/NPs溶液,分为6份,每份取500 μL Cel/NPs溶液,加入Cel对照品溶液(1.0 mg/mL)500 μL,涡旋、超声处理,过0.22 μm有机滤膜。平行6份,进样,计算Cel的平均加样回收率为98.72%,RSD为2.19%,表明该方法回收率良好。 2.4 Cel/NPs处方的单因素实验优化 对透析法制备Cel/NPs的处方进行单因素实验,考察Cel加入量、环糊精用量、HA-AD用量、DMSO用量、RO水用量、搅拌时间共6个因素对Cel/NPs包封率的影响。将制得样品加入甲醇破坏纳米颗粒结构释放Cel,HPLC进样分析,计算包封率,结果见表1。根据结果分析,在Cel为2.0 mg、环糊精为30.0 mg、HA-AD为5.0 mg、DMSO用量为3.0 mL、RO水用量为10.0 mL,搅拌时间为2.0 h,所得包封率最好。但DMSO用量、RO水用量以及搅拌时间对包封率影响较小。 2.5 Cel/NPs处方的Box-Behnken设计-响应面法(Box-Behnken design-response surface methodology,BBD-RSM)试验优化 2.5.1 Box-Behnken响应面法试验 在单因素实验基础上,以Cel(X1)、环糊精(X2)和HA-AD(X3)的加入量为自变量,Cel包封率(Y)为因变量,采用Design-Expert V13软件进行响应面试验设计,结果见表2。 2.5.2 模型建立与回归分析 对试验结果进行响应面分析,经过回归拟合后,得出响应值与影响因素X1、X2、X3之间的回归方程为Y=68.34-3.89 X1+18.47 X2-9.08 X3-0.892 5 X1X2+3.73 X1X3-10.59 X2X3+6.79 X12-13.35 X22-7.20 X32,R2=0.987 1>0.8。方程回归分析见表3。 Cel的回归模型F值为59.49(P<0.05),表明所建立的模型具有显著性;失拟项数值为1.75,P值>0.05,说明失拟项对于误差不显著,回归方程拟合度较好。响应曲面图直观地反映了Cel、环糊精和HA-AD添加量的交互作用对响应值的影响结果见图4。 2.5.3 最佳处方工艺确定及其验证 在Design Expert V13软件Responses项输入包封率测定结果并进行分析,得到最佳处方工艺为Cel 2.04 mg、环糊精27.19 mg、HA-AD 7.96 mg,Cel包封率为96.09%,按此工艺下进行验证试验,结果Cel的包封率为(94.18±2.36)%(n=3),与预测值偏差小于±5%,表明该法预测与验证结果基本一致。 2.6 Cel/NPs的表征 2.6.1 粒径、多分散指数(polydispersity,PDI)和电位考察 分别取一定体积的Cel/NPs样品溶液于粒径池和电位池中,采用马尔文粒度仪检测Cel/NPs的平均粒径、PDI和ζ电位。 结果如图5所示,测得Cel/NPs的平均粒径为(152.37±1.42)nm(n=3),PDI为0.262±0.009(n=3);ζ电位为(?32.1±0.8)mV(n=3),表明制得Cel/NPs粒径较小,均一性良好。 2.6.2 形态学考察 将稀释后的Cel/NPs悬浮液适当转移到铜网格上,然后用2%磷钨酸染色,待样品在室温下挥干后进行TEM观察。结果显示,Cel/NPs的形态圆整光滑,分布均匀(图6)。 2.6.3 储存稳定性考察 对制备的Cel/NPs的体外稳定性进行评价。将制备好的Cel/NPs样品溶液密封放置于4 ℃冰箱保存,连续7 d测量其粒径、PDI和ζ电位值变化,结果见表4,其各项值在低温储存条件下变化不大,表明制得的Cel/NPs具有较稳定的性能。 2.6.4 Cel/NPs酶敏感性考察 将Cel/NPs样品溶液与磷酸盐缓冲液(PBS)和含有10 IU/mL α-淀粉酶的PBS溶液共孵育,孵育24 h后,取出样品,检测其粒径分布,并采用TEM观察刺激后纳米溶液的微观形貌特征。结果如图7所示,采用α-淀粉酶处理后的粒径分布不均一,出现了多个粒径不同的峰。从TEM图中可以观察到纳米结构在α-淀粉酶的作用下发生了裂解,由原来圆整光滑变成裂的碎片。因此,结果可以初步表明所制得的纳米具有酶敏感特性。 2.6.5 包封率和载药量的测定 取2.0 mL甲醇于Cel/NPs样品溶液1.0 mL中,涡旋、超声破乳,使制备的纳米颗粒完全破坏,过0.22 μm有机滤膜,用HPLC测定样品中Cel含量,根据公式分别计算包封率和载药量。计算得到Cel/NPs中Cel的包封率为(94.18±2.36)%,载药量为(5.17±0.13)%。 包封率=W0/W1 载药量=W0/(W1+W2) W0为纳米颗粒中药物含量,W1为药物投加量,W2为纳米材料量 2.7 Cel/NPs的体外释放行为考察 2.7.1 Cel/NPs的胃、小肠、结肠释放行为考察 根据模拟胃肠液动态的pH值变化来测试接近生理状态下Cel/NPs的体外释放度。采用透析袋法考察Cel/NPs的体外释放行为,将2.0 mL游离Cel和纳米溶液装于透析袋(截留相对分子质量3 000)中,扎紧袋口,置于30 mL释放介质中,按如下时间点进行。介质A:人工胃液(SGF,pH 1.2),时间0~2 h;介质B:人工小肠液(SIF,pH 6.8),时间2~6 h;介质C:人工结肠液(SCF,pH 7.4),时间6~48 h。分别于0.5、1、2、4、6、8、10、14、18、24、48 h时,取1.0 mL透析液(后补充1.0 mL透析介质,维持透析液体积不变),进行HPLC检测透析液中Cel含量。以透析时间为横坐标,透析液中Cel的累积释放率为纵坐标,绘制体外释放曲线。结果如图8所示,游离Cel在SGF中累积释放1.14%,然而在Cel/NPs释放液中未检测到Cel的释放;游离Cel在6 h内累积释放量达22.87%,而Cel/NPs的累积释放量明显低于游离Cel的释放;当释放时间达48 h,游离Cel的累积释放量高达92.55%,而Cel/NPs的释放量不到40%。通过对比发现,通过HA-AD和环糊精的装载,纳米粒中Cel得到了保护,延缓了药物的释放行为。 2.7.2 Cel/NPs的结肠突释行为考察 进一步考察Cel/NPs在结肠部位α-淀粉酶作用下的药物释放情况,同样采用透析袋法研究Cel的释放行为。分别将2.0 mL纳米溶液装于透析袋(截留相对分子质量3 000)中,扎紧袋口,置于30 mL释放介质中,介质A为含有0.5%聚山梨酯80的PBS(pH 7.4),介质B为含有0.5%聚山梨酯80和10 IU/mL α-淀粉酶的PBS(pH 7.4)。分别于0、2、4、8、12、24、48 h时,取1.0 mL透析液(后补充1.0 mL透析介质,维持透析液体积不变),进行HPLC检测透析液中Cel含量。以透析时间为横坐标,透析液中Cel的累积释放率为纵坐标,绘制体外释放曲线。结果如图9所示,在α-淀粉酶的刺激下4 h内纳米粒的累积释放量达45%,而无α-淀粉酶的PBS组,纳米粒的累积释放量仅为20.09%;当释放时间为48 h时,无α-淀粉酶的PBS组,纳米粒的累积释放量仅升高到36.49%,而在α-淀粉酶的刺激下,纳米粒48 h的累积释放量可达85.94%,远高于无α-淀粉酶刺激组的累积释放量。因此,结果表明在结肠微环境α-淀粉酶的刺激下,可使环糊精迅速解体,从而瓦解Cel/NPs,快速释放Cel。 2.8 Cel/NPs在NCM460细胞摄取能力考察 考虑到Cel无荧光,本研究采用带绿色荧光的C6作为表征药物,按照“2.2”项下方法制备C6/NPs。将NCM460细胞以每孔1×105的密度接种于激光共聚焦培养皿上,37 ℃孵育过夜。待细胞贴壁后,将培养基分别更换为含游离C6、C6/NPs以及C6/NPs(5 mg/mL透明质酸预先孵育细胞2 h,以C6计为100 ng/mL)的无血清新鲜培养基。在37 ℃孵育4 h后,弃去培养基,用冷PBS洗涤2次。加入DIL染色液染细胞膜15 min,冷PBS洗涤2次。然后用4%多聚甲醛固定20 min,冷PBS洗涤2次。加入Hoechst 33342(终质量浓度为10 μg/mL)染细胞核10 min,弃去染色剂,每孔加入1.0 mL PBS洗3次。加入1滴防荧光猝灭剂,采用激光共聚焦显微镜观察NCM460细胞对药物的摄取情况。 结果如图10,C6呈绿色荧光,C6/NPs的荧光强度显著强于游离C6,表明C6/NPs可以增加NCM460细胞对药物的摄取。但当NCM460细胞经过HA预处理2 h后,其对C6/NPs的细胞摄取量明显减少,结果初步表明透明质酸的存在可增加细胞对递药系统的摄取能力。 采用流式细胞仪,定量分析NCM460细胞对各药物的摄取情况。将NCM460细胞接种于6孔板(3.5×105个/孔)。待细胞贴壁后,弃去培养基,分别加入含游离C6、C6/NPs以及C6/NPs(5 mg/mL透明质酸预先孵育细胞2 h)(以C6计为100 ng/mL)的无血清新鲜培养基,恒温培养箱孵育4 h。弃去培养基,PBS洗3次,胰酶消化,离心收集细胞,用PBS重悬细胞,采用流式细胞仪进行检测,定量分析NCM460细胞对药物的摄取情况。结果如表5所示,NCM460细胞对C6/NPs的摄取量显著高于游离C6(P<0.01),当细胞表面受体被透明质酸饱和后,细胞摄取量明显降低,与定性分析结果一致。 2.9 Cel/NPs的体内抗UC作用研究 用DSS溶液(30 mg/mL)ig 7 d建立UC小鼠模型。将ICR雄性小鼠(22~25 g)随机分为4组:对照组、模型组、游离Cel组、Cel/NPs组,每组6只。除对照组外,实验第1天将饮用水换成3% DSS水溶液,自由饮用7 d后停止,换成灭菌水。从第3天开始给药,连续7 d每天定时ig。其中对照组和模型组ig生理盐水,游离Cel组和Cel/NPs组每只小鼠ig 2 mg/kg(以Cel计)不同剂型的药物。每日记录小鼠体质量变化,观察其大便性状,便血情况,计算DAI评分(DAI评分标准见表6)。实验结束后解剖小鼠,取脾脏称定质量,记录;剥离小鼠结肠组织,采用H&E染色法对4%多聚甲醛固定的小鼠结肠组织进行染色处理。 DAI=体质量下降分数+大便性状分数+便血分数 小鼠体质量变化结果(图11)表明,模型组小鼠体质量明显下降(P<0.001),实验结束时体质量下降到75%;相比于模型组,游离Cel组使得小鼠体质量下降明显减轻(P<0.001);Cel/NPs组实验结束时,小鼠体质量呈现增长趋势。 DSS破坏结肠黏膜屏障,导致肠道炎症发生、出现体重减轻、便血便稀等临床症状,DAI评分是UC严重程度的一个指标。如图12所示,Cel/NPs组和游离Cel组均可以不同程度的降低小鼠DAI评分,缓解小鼠便血便稀等病理学特征,其中Cel/NPs组效果优于游离Cel组。 DSS诱导的UC模型容易发生纤维化导致结肠缩短,可通过测量结肠长度评价药物改善UC的效果。实验结果如表7所示,与模型组对比发现,Cel/ NPs组和游离Cel组均可以增加小鼠结肠长度。 脾脏作为机体的免疫器官,当机体发生UC炎症时,脾脏会变得肿大,因此脾脏系数可作为评估药物改善UC的又一指标。结果如表7所示,Cel/NPs组和游离Cel组小鼠的脾脏系数相较于模型组下降显著,且Cel/NPs组效果更好,表明通过纳米载体的递送,可使Cel更有效地改善UC。 图13为小鼠结肠组织拍照结果,模型组肉眼可见结肠组织呈充血肿胀状态,结肠内含血性不成形的粪便内容物,游离Cel组形态相较于模型组有一定的好转,Cel/NPs组与对照组小鼠结肠无明显区别,表明Cel/NPs组恢复结肠组织形态最佳。 从小鼠结肠组织病理切片H&E染色结果(图14)分析发现,对照组小鼠结肠黏膜上皮细胞结构完整,肠绒毛结构完整,杯状细胞含量高;但模型组小鼠结肠

  • 【应用数据库有奖问答11.14(已完结)】梅花点舌丸中胆红素检测,流动相是?

    【应用数据库有奖问答11.14(已完结)】梅花点舌丸中胆红素检测,流动相是?

    [b]Q:[b][b][b][/b][/b]梅花点舌丸中胆红素检测,流动相是?[/b]A:流动相: 甲醇:二氯甲烷:1%磷酸溶液=81:13:6===============================================================【活动内容】1、每个工作日上午10:00左右发布一个关于应用数据库的应用问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);中奖名单:活到九十 学到一百(注册ID:wangboxzzjs)sixingxing(注册ID:v2889187)m3071659(注册ID:m3071659)WUYUWUQIU(注册ID:wulin321)mengzhaocheng(注册ID:mengzhaocheng)[img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/11/201811141512165227_4433_1610895_3.png!w690x388.jpg[/img][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/11/201811141512193337_595_1610895_3.png!w690x388.jpg[/img]积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align][align=center]=======================================================================[/align]方法:HPLC基质:药品应用编号:103623化合物:胆红素色谱柱:[url=http://www.dikma.com.cn/product/details-855.html]Platisil ODS 5μm 250 x 4.6mm[/url]样品前处理:1、游离胆红素制备方法:对照品1:取胆红素对照品适量,精密称定,加二氯甲烷制成每1 mL 含 6.5 μg的溶液,即得。供试品1:取本品适量,研细,取粉末约 33 mg,精密称定,置具塞锥形瓶中,精密加入二氯甲烷20 mL,密塞,称定重量,涡旋至充分混匀,冰浴超声处理(功率500 W,频率53 kHz)10分钟,再称定重量,用二氯甲烷补足减失的重量,摇匀,离心(转速为每分钟 4000 转),分取二氯甲烷液,滤过,取续滤液,即得。2、胆红素制备方法:对照品2:胆红素对照品适量,精密称定,加二氯甲烷制成每1 mL含10 μg的溶液,即得。供试品2:取重量差异项下的本品适量,研细,取粉末 10 mg,精密称定,置具塞锥形瓶中,加入10%草酸溶液2mL,密塞,涡旋混匀,精密加入水饱和的二氯甲烷25 mL,密塞,称定重量,超声处理(功率500 W,频率 53 kHz,水温25~35℃)20分钟,放冷,再称定重量,用水饱和二氯甲烷补足减失的重量,摇匀,离心(转速为每分钟 4000 转),分取二氯甲烷液,滤过,取续滤液,即得。色谱条件:色谱柱: Platisil ODS 250*4.6 mm,5 μm(Cat#:99503)流动相: 甲醇:二氯甲烷:1%磷酸溶液=81:13:6流速: 1.0 mL/min柱温: 30 ℃检测器: 450 nm进样量: 游离胆红素:10 μL;胆红素:5 μL文章出处:天津应用实验室关键字:梅花点舌丸、胆红素、Platisil C18、HPLC摘要:Platisil C18检测梅花点舌丸中胆红素。图谱:[img]http://www.dikma.com.cn/u/image/2015/07/31/1438322198100117.png[/img][img]http://www.dikma.com.cn/u/image/2015/07/31/1438322210124280.png[/img][img]http://www.dikma.com.cn/u/image/2015/07/31/1438322234894372.png[/img][img]http://www.dikma.com.cn/u/image/2015/07/31/1438322234740060.png[/img]

  • 天然色素:番茄红素

    番茄红素(lycopene)是一种天然的红色开链烃类胡萝卜素,纯品为针状深红色晶体,其化学结构是11个共轭双键和2个非共轭双键组成的直链型碳氢化合物。?人类自身和动物都不能产生番茄红素,目前制备途径主要是植物提取、化学合成和微生物发酵。番茄红素是一种功能性 天然色素,具有预防多种癌症、保护心脑血管、保护皮肤、提高免疫力等 生理功能,广泛应用于 保健品、 化妆品和食品饮料等领域。应用1)保健品GNPD数据显示,全球共177种含有番茄红素的补充剂新产品。 国家食品药品监督管理局(CFDA)可查询到,获得 国食健字的番茄红素的 保健品有31种,其中进口保健品2种,其他均为国产保健品。这31种保健品主要用于抗氧化、延缓衰老、增强免疫力、调血脂等,其中有2种是片剂,1种油剂,其余均为胶囊。2)化妆品GNPD数据显示,含番茄红素的护肤新产品有81种,彩妆51种。典型的产品如番茄红素保湿乳液等,有美白和抗衰老效果。国产产品有番茄红素美白精华涂抹针,具有抗氧化、抗过敏、美白的功效。3)食品饮料番茄红素在食品和饮料领域,番茄红素获得了欧洲的“新颖食品”批准和美国的 GRAS(通常被认为是安全的)身份,其中非酒精饮料最受欢迎。GNPD数据显示,有20种新产品:面包、早餐麦片等领域7种;加工肉类、鱼类和蛋类领域7种;奶制品领域7种;巧克力和糖果领域6种;酱料和调味料5种;甜点和冰淇淋5种。中国专利200810017681介绍了一种番茄红素在乳制品中的应用方法,将其应用于乳制品中,既保持了乳制品的营养又丰富了其保健功能。

  • 【“仪”起享奥运】烘焙酶助力实现清洁标签--脂肪酶

    [align=center][size=16px][/size][/align][align=left][font=宋体, SimSun][size=16px][b][/b][/size][/font][/align][font=宋体, SimSun]加工助剂在加工过程中发挥改善产品品质的功能,却在最终产品中没有残留,因为它们在加工过程中经常被销毁或移除。依据法规要求,这种物质不需要列在产品标签上,因此,使用加工助剂来代替化学添加剂为食品清洁标签提供了一种新途径。[/font][font=宋体, SimSun]酶制剂是一类最常用的加工助剂,在烘焙过程中,发挥改善功能的烘焙酶被高温烘烤所破坏,所以不必在标签上声明。因此,烘焙酶为烘焙食品带来了实现清洁标签的机会。[/font][align=left][font=宋体, SimSun][size=16px][b]脂肪酶可降低烘焙食品脂肪需求量[/b][/size][/font][/align][font=宋体, SimSun][size=16px]为了满足消费者需求,烘焙行业一直在设法减少产品中脂肪的含量。然而,在蛋糕、饼干和糕点的加工过程中,脂肪扮演着一些功能性的角色,并为终产品的口感和保质期起关键性作用。所以,如果在烘焙食品中降低了脂肪的含量,就需要添加其他成分来弥补这些功能。[/size][/font][font=宋体, SimSun][size=16px][/size][/font][font=宋体, SimSun][size=16px]脂肪是一种润滑剂,可以帮助面包和饼干的面团在不发粘的情况下软化面团和增强面团流动。在配方中减少脂肪含量会导致面团粘在模具和传质面上,增加面团的浪费,且需要额外的清洗。乳化剂可以用来代替一些脂肪的功能,但乳化剂是食品添加剂,必须列入产品配料表中,容易引起消费者的反感。[/size][/font][font=宋体, SimSun][size=16px][/size][/font][font=宋体, SimSun][size=16px]脂肪酶可以酶解面粉原料中的油脂来获得的脂肪,应用于面包和蛋糕的制作,可以减少食谱中所需的脂肪量。实验表明,气室稳定性越好,气泡的膨胀越快,面包的体积越大。即面团中添加脂肪酶,面包在体积上有改善,面包屑质量也显著增加。[/size][/font]

  • 【求助】[已应助]请问大家2%伊红水溶液~~和~~0.5%美蓝水溶液怎么配啊??

    请问大家2%伊红水溶液~~和~~0.5%美蓝水溶液怎么配啊??是做大肠菌群的~~我看论坛里怎么有的是说伊红       1g70-75%酒精    100ml先将伊红用蒸馏水(少许)调成浆糊状,再加入酒精,边加边搅拌,直到彻底溶解,此时试剂有些混浊,取少许冰醋酸,加入到试剂中去,试剂逐渐转变为清亮,呈鲜红色,染出切片,效果很好。 请指教!

  • 【原创】天啊!怪侠一枝梅(bing_xuhong)来分析化学做版主啦。。。。。

    刚刚看见,怪侠一枝梅(bing_xuhong)来化学版做版主,很高兴很高兴让我们欢迎这位资深版主的到来。有什么化学问题大家可以及时向他请教,顺便再说明下如果大家有个人理财方面的问题也可以向bing_xuhong老师请教[em0814][em0814]好了,我代表化学版散分庆祝bing_xuhong的到来。[em0815][em0815][em0815][em0815][em0815]

  • 【原创】NEW ! 温控型防潮柜防止湿敏元器件烘烤时产生氧化

    【原创】NEW ! 温控型防潮柜防止湿敏元器件烘烤时产生氧化

    [size=3][font=宋体]为了满足[/font][font=Times New Roman]IPC/JEDEC J-STD-033B.1[/font][font=宋体]对湿敏元器件([/font][font=Times New Roman]MSDs[/font][font=宋体])的处理要求,[/font][font=Times New Roman]M-TEMP[/font][font=宋体]系列独特的设计能将烘烤时间降低到最短。装有沸石干燥剂的除湿机芯配合精密的加热系统,最低湿度能达到[/font][font=Times New Roman]2%RH[/font][font=宋体]以下,能有效避免传统烘烤中产生的氧化。同时,温度足够低能够有效干燥盘式送料盒中的盘料,不会对盘料造成损坏。[/font][/size][size=3][font=Times New Roman]MSD[/font][/size][size=3][font=宋体]处理专家和超低湿干燥存储柜生产专家[/font][font=Times New Roman]Super Dry[/font][font=宋体]研发的新型烘烤产品干燥速度可以与传统烘烤速度相媲美,并且能避免传统烘烤中产生的氧化问题。为了满足[/font][font=Times New Roman]IPC/JEDEC J-STD-033B.1[/font][font=宋体]对湿敏元器件([/font][font=Times New Roman]MSDs[/font][font=宋体])的处理要求,新款[/font][font=Times New Roman]M-TEMP[/font][font=宋体]系列防潮柜增加了前所未有的功能,能将初始降湿速度缩短[/font][font=Times New Roman]75%[/font][font=宋体]。所有的[/font][font=Times New Roman]Super Dry [/font][font=宋体]产品均使用自动重生的干燥剂,被广大用户认为是现有的最安全,最可信,节省能源,无需维护的除湿科技。[/font][/size][size=3][font=Times New Roman]M-TEMP[/font][/size][font=宋体][size=3]系列隔热性能良好,耗能仅为普通烘箱或真空烘箱耗能的一部分,同时安装有其他额外的功能,例如精密设定及显示。[/size][/font][size=3][font=宋体]温控型是在[/font][font=Times New Roman]Super Dry[/font][font=宋体]系列超低湿防潮柜的基础上增加了[/font][font=Times New Roman]50[/font][font=Arial]℃[/font][font=宋体]加温干燥功能,水分的排出得以加强,从而使得半导体加工过程中的除湿量保持安定。在半导体加工过程中省却了再加热工序,产品品质更加稳定。[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]若将温控系列产品配置于每一道生产工序,不但可以完全防止因为热应力而产生的不良产品,而且可以简化工序,大幅度降低生产成本。[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]对存放品的三大优点:[/font][font=Arial]①[/font][font=Times New Roman] [/font][font=宋体]无需预烤[/font][font=Times New Roman]: [/font][font=宋体]防止各种潜在不良品的出现 [/font][/size][size=3][font=Arial]②[/font][font=Times New Roman] [/font][font=宋体]温和烘烤[/font][font=Times New Roman]: [/font][font=宋体]除湿时对各种[/font][font=Times New Roman]SMD[/font][font=宋体]不造成任何损失[/font][/size][size=3][font=宋体]保温效果[/font][font=Times New Roman]:[/font][font=宋体]可防止存放品出箱后一小时内吸湿[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]MSD[/font][font=宋体]的车间寿命重置及干燥处理[/font][/size][size=3][font=宋体]对于暴露在普通环境超过其车间寿命([/font][font=Times New Roman]Floor Life[/font][font=宋体])的湿敏元器件[/font][font=Times New Roman](MSD),[/font][font=宋体]甚至是短时间暴露在普通潮湿环境的[/font][font=Times New Roman]MSD, [/font][font=宋体]都需要对齐进行烘烤,以重置其车间寿命,延长存放时间及安全性;然而,随着新的芯片封装形式及贴片工艺的发展,传统的高温烘烤形式已显现了很多不足。[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]传统高温(如[/font][font=Times New Roman]125°C[/font][font=宋体])烘烤的不足[/font][/size][size=3][font=Times New Roman]●[/font][font=宋体]目前广泛使用的卷料及盘料器件,不适于在高温下烘烤,将[/font][font=Times New Roman]SMD[/font][font=宋体]拆掉烘烤后再手工安装到料[/font][/size][font=宋体][size=3]盘上又耗费人力时间[/size][/font][size=3][font=Times New Roman] ●[/font][font=宋体]有些[/font][font=Times New Roman]SMD [/font][font=宋体]器件和主板不能承受长时间的高温烘烤:如一些[/font][font=Times New Roman]FR-4 [/font][font=宋体]材料[/font][font=Times New Roman],[/font][font=宋体]不能长时间承受[/font][font=Times New Roman]125°C[/font][font=宋体]烘烤;一些电池和电解电容也对温度很敏感;又如[/font][font=Times New Roman]OSP PCB[/font][font=宋体],不能承受高温烘烤,高温将导致表面氧化,可焊性下降[/font][font=Times New Roman]PCB [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]●[/font][font=宋体]对于那些可以承受高温的[/font][font=Times New Roman]SMD [/font][font=宋体]器件,长时间在高温下,仍然会发生器件氧化,或在器件内部连[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]接处产生金属间化合物,从而影响器件的可焊性[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]50°C+5%RH [/font][/size][font=宋体][size=3]低湿烘烤[/size][/font][size=3][font=宋体]依据[/font][font=Times New Roman]IPC/J-STD-033[/font][font=宋体]标准,可通过烘烤的方式获得[/font][font=Times New Roman] MSD[/font][font=宋体]车间寿命的重置[/font][font=Times New Roman],[/font][font=宋体]但由于上述的原因,许多类型的[/font][font=Times New Roman]MSD[/font][font=宋体]都不能用高温烘烤,而利用较低的温度,车间寿命重置的时间将很长,效率低下[/font][/size][size=3][font=宋体]而利用[/font][font=Times New Roman]50°C + 5%RH [/font][font=宋体]的环境低湿烘烤,将大大提高车间寿命重置的效率,同时,具备以下优点:[/font][/size][size=3][font=Times New Roman] ●[/font][font=宋体]适用范围广,基本适用于各种类型的[/font][font=Times New Roman]SMD [/font][font=宋体],各种盘料、卷料都可方便的放入烘烤[/font][/size][size=3][font=Times New Roman]●[/font][/size][size=3][font=宋体]相比单纯[/font][font=Times New Roman]50°C[/font][font=宋体]的环境,[/font][font=Times New Roman]50°C + 5%RH[/font][font=宋体]可以更快的进行车间寿命重置,也可用于长期的存储,最大限度[/font][font=Times New Roman]SMD[/font][font=宋体]去除的潮湿[/font][/size][size=3][font=Times New Roman]SMD●50°C + 5%RH [/font][font=宋体]烘烤,不会导致器件氧化,不影响可焊性[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][b][size=3][font=宋体]型号:[/font][font=Times New Roman]MSD-480-02[/font][/size][/b][size=3][font=Times New Roman][/font][/size][table=100%][tr][td][size=3][font=Times New Roman][/font][/size][/td][/tr][/table][size=3][font=宋体]除湿范围:[/font][font=Times New Roman]2-50%RH[/font][/size][font=宋体]温控范围:常温[/font][font=Times New Roman]-50[/font][font=宋体]℃[/font][font=宋体]外尺寸:[/font][font=Arial]W64 x H122x D78[/font][font=宋体]([/font][font=Times New Roman]cm[/font][font=宋体])[/font][font=宋体][size=3]内尺寸:[/size][/font][size=2][font=Verdana]W560XH100XD63[/font][/size][font=宋体]([/font][font=Times New Roman]cm[/font][font=宋体])[/font][font=宋体]有效容积:[/font][font=Times New Roman]400[/font][font=宋体]([/font][font=Times New Roman]L[/font][font=宋体])[/font][font=宋体]重量:[/font][font=Times New Roman]98[/font][font=宋体]([/font][font=Times New Roman]kg[/font][font=宋体])[/font][font=宋体]平均功率:[/font][font=Arial]1050W/hr[/font][size=3][font=宋体]最大功率[/font][font=Arial]1310W/hr[/font][/size][font=宋体]电源电压:220V/50HZ 其它电源可选[/font][font=宋体]可选[/font][font=宋体][/font][font=宋体][size=3]材料:冷轧钢板本体及防静电玻璃门[/size][/font][font=宋体]层板及附件[/font][font=宋体]:[/font][font=Times New Roman]3[/font][font=宋体]块不锈钢层板[/font][font=宋体],[/font][font=Times New Roman]([/font][font=宋体]最大承重量:[/font][font=Times New Roman]50kg[/font][font=宋体])[/font][font=Arial][/font][font=Times New Roman]1[/font][font=宋体]组脚轮[/font][size=3][font=Times New Roman] [/font][/size][table=100%][tr][td][size=3][font=Times New Roman]MSD-480-02[/font][/size][/td][/tr][/table][font=Times New Roman], [/font][font=宋体]加热器[/font][font=Times New Roman]1[/font][font=宋体]组[/font][size=3][font=Times New Roman] [/font][/size][size=3][b][color=blue][font=宋体]设定[/font][/color][color=blue][font=Times New Roman]: [/font][/color][color=blue][font=宋体]温度范围[/font][/color][color=blue][font=Times New Roman] [/font][/color][color=blue][font=宋体]常温[/font][/color][color=blue][font=Times New Roman]~50 [/font][/color][color=blue][font=宋体]℃,湿度范围[/font][/color][color=blue][font=Times New Roman] 5~50%RH[/font][/color][/b][/size][size=3][b][color=blue][font=宋体]低温[/font][/color][color=blue][font=Arial]50°C[/font][/color][color=blue][font=宋体]烘烤:快速重置车间寿命,不影响器件可焊性[/font][/color][color=blue][font=Arial][/font][/color][/b][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]全球众多的顶级[/font][font=Times New Roman]OEM[/font][font=宋体]公司,[/font][font=Times New Roman]EMS[/font][font=宋体]公司以及亚洲欧洲的生产厂商都在使用我们的防潮柜,[/font][font=Times New Roman]Totech Super Dry [/font][font=宋体]除湿性能已经成为超低湿存储的衡量标准。在引入无铅高温焊接之后,按照[/font][font=Times New Roman]IPC[/font][font=宋体]和[/font][font=Times New Roman]JEDEC[/font][font=宋体]标准对湿敏元件([/font][font=Times New Roman]MSD[/font][font=宋体])控湿变得比以往更加重要。[/font][font=Times New Roman]Super Dry[/font][font=宋体]防潮柜控湿能达到[/font][font=Times New Roman]1%RH, [/font][font=宋体]开关门湿度恢复迅速,有多种规格尺寸,优秀的除湿功能可以满足广大客户的低湿存储要求。[/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] Totech Sahnghai Co., Ltd.[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008231456_238236_1810710_3.jpg[/img][/font][/size]

  • 【原创】火焰做镁可以用次灵敏线吗

    我们做镁的分析,按照GB11905配的曲线浓度是0.1,0.2,0.3,0.4mg/L,可是水样的含量一般比较高,在20左右,所以要稀释一百倍,平时做样多,这样稀释一是麻烦,另外误差也很大,我知道做钾和纳可以用次灵敏线减少稀释倍数,曲线可以做高浓度的,请教各位知道镁怎么做高浓度吗ps我用镁276.6nm做了,没有吸收信号,不知道为什么,我们的仪器室日立Z2000

  • 【原创大赛】果蔬重金属之红洋葱中钙镁总量的检测

    【原创大赛】果蔬重金属之红洋葱中钙镁总量的检测

    【生活中的仪器分析】活动原创作品:食品安全——果蔬中农药残留及重金属含量检测 果蔬重金属之红洋葱中钙镁总量的检测前言:红洋葱是洋葱系列中最常见的一种,外包薄色红衣,红衣内所裹洋葱果肉白嫩中含有一点若隐若现的红色,其辛汁丰沛,营养极为丰富,极适合北方人食用。所熟知菜品为洋葱炒鸡蛋,听说西方人爱吃油炸洋葱圈,我没见过是什么样子的。本次所测定红洋葱个头中等,价格便宜,只需要两元钱一斤!http://ng1.17img.cn/bbsfiles/images/2013/09/201309162222_464836_2139979_3.jpg检测依据:国家标准《水质钙和镁总量的测定 EDTA滴定法》(GB7477-87)。分析试剂:标准要求使用公认的分析纯试剂和蒸馏水或与蒸馏水纯度相当的水。本次使用的是分析纯试剂和超纯水。EDTA二钠溶液的标定:取500mg/L钙标准20ml稀释至50ml标定,已知钙的相对原子量为40.078,按常用为40计算,500mg/L钙标准溶液约为12.5mmol/L。欲标定的EDTA二钠溶液的浓度C1(m mol/L)计算公式为C1=(C2V2)/V1。其中:C2为钙标准溶液的浓度,m mol/L;V2为钙标准溶液的体积,ml;V1为标定中所消耗的EDTA二钠溶液的体积,ml。经计算,标定的EDTA二钠溶液浓度C1=9.98m mol/L。样品制备:红洋葱去掉外衣红皮,切去根蒂,取红洋葱嫩果肉榨成汁备用。http://ng1.17img.cn/bbsfiles/images/2013/09/201309162223_464837_2139979_3.jpg临滴定前取用时吸取红洋葱汁100ml于200ml容量瓶内,加超纯水稀释至标线。此样品溶液中纯红洋葱汁含量为百分之五十。样品测定:用胖肚吸管分别吸取50.0ml红洋葱汁试样和50.0ml超纯水空白样各两份与250ml锥形瓶中,依次向4个锥形瓶中加4ml缓冲液和3滴铬黑T指示剂溶液,溶液应变为紫红色或紫色,实际溶液变为暗红色。注意:向一个锥形瓶加完缓冲溶液和铬黑T指示液要立刻滴定并记录滴定量,千万不要四个瓶一起加,每滴定完上一个再向下一下锥形瓶内加缓冲溶液和铬黑T指示液。在不断振摇下,自滴定管向锥形瓶内滴定浓度C1=9.98m mol/L的EDTA二钠溶液,在红洋葱汁暗红色最后一点色调消失时停止滴定,其最后一点暗红色消失时未变为天蓝色或蓝色,却呈色近似海绿色。http://ng1.17img.cn/bbsfiles/images/2013/09/201309162223_464838_2139979_3.jpg本次滴定消耗EDTA二钠溶液均值5.76ml,[/font

  • 欣赏北冰红冰红

    北冰红葡萄酿冰红,如果盲品,很多人会以为是在喝鲜榨的蓝莓汁或桑葚汁。浓郁的果香瞬间抓住我们的味蕾!入口很甜很甜,“甜到心坎”的幸福感便是如此吧!回酸润泽,饱满有厚度,如果不是真切的感受到酒精的存在,我严重怀疑自己是在饮一杯浓缩蓝莓汁,酸度恰到好处,稳稳的拖长回味。

  • 【“仪”起享奥运】烘焙酶助力实现清洁标签--木聚糖酶

    [align=left][font=宋体, SimSun][size=16px][b][font=宋体, SimSun]加工助剂在加工过程中发挥改善产品品质的功能,却在最终产品中没有残留,因为它们在加工过程中经常被销毁或移除。依据法规要求,这种物质不需要列在产品标签上,因此,使用加工助剂来代替化学添加剂为食品清洁标签提供了一种新途径。[/font][font=宋体, SimSun]酶制剂是一类最常用的加工助剂,在烘焙过程中,发挥改善功能的烘焙酶被高温烘烤所破坏,所以不必在标签上声明。因此,烘焙酶为烘焙食品带来了实现清洁标签的机会。[/font]木聚糖酶[i][/i]增加烘焙食品中的纤维含量[/b][/size][/font][/align][font=宋体, SimSun][size=16px]纤维有益于人体健康,所以很多面包师都试图增加烘焙产品中的纤维含量。然而,像麸皮这样的纤维,吸收了大量的水分,且吸收速度比面团中的其他成分较慢。[/size][/font][font=宋体, SimSun][size=16px][/size][/font][font=宋体, SimSun][size=16px]当纤维吸收水分后,面团变紧,导致操作不便。面团无法扩张,限制了酵母的作用,进而会导致面包质劣,且不能很好地成型。针对上述问题,木聚糖酶可切断大纤维链间的糖苷键[i][/i],以释放低分子量的糖和水。这有助于慢慢地软化面团,重新分配水分,增强气室延展性和稳定性,提高面团可操作性。[/size][/font][size=16px][/size][font=宋体, SimSun][size=15px][color=#48494d][/color][/size][/font]

  • CNS_08.150_番茄红

    CNS_08.150_番茄红

    [color=black]番茄红素的性质功能及其应用与检测[/color][align=center][color=black]邓睿[/color][/align]摘要:番茄红素主要存在于红色果蔬中,作为一种功能性天然色素,[color=black]具有淬灭活性氧、消除自由基、预防多种癌症、降脂和提高机体免疫力等多种生理功能[/color]。目前,番茄红素不仅已广泛用作天然色素,而且在多种领域具有进一步的研究价值和良好的应用前景。关键词:番茄红素,性质,检测,应用番茄红素(Lycopene)是一种黄/红色类胡萝卜素,广泛存在于自然界中,主要存在于成熟的番茄、西瓜、番石榴、玫瑰果、木瓜和葡萄柚等果实中。其中含量最高的是成熟番茄,含量为0.03 mg/g ~ 0.14 mg/g,番茄红素有“藏在番茄里的黄金”之美称,并且番茄红素含量与番茄的成熟度呈正相关。此外,海洋嗜盐古菌也可产生番茄红素,而人体不能生成只能从食物中摄取。目前,番茄红素健康相关产品的开发已成为国际上功能性食品和新药研究的一个热点。1 番茄红素的理化性质及生物学功能[1-4]1.1 理化性质番茄红素晶体为红色针状,相对分子质量为536.87,熔点176℃。番茄红素属于异戊二烯类不饱和烯烃化合物,分子式为 C40H56,分子结构中含有11个共轭双键和2个非共轭的碳-碳双键(图1)。在所有类胡萝卜素中,番茄红素的不饱和度最高,在天然果蔬中主要是全反式构型存在,也是最稳定的结构,小部分为顺式构型,以5-顺、9-顺和13-顺构型为主。而番茄红素的顺式与反式异构体在熔点、摩尔消光系数、呈色能力、极性、溶解性、最大吸收波长和生物活性等方面都有着明显差异。番茄红素制品中由于某些辅料的存在,往往能够起到延缓番茄红素氧化和异构化,从而提高番茄红素制品的稳定性,例如,番茄红素的微乳体系、包合物、微胶囊和软胶囊等的稳定性比番茄红素都有明显提高。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110271143013386_6582_1608728_3.png[/img][/align][align=center]图1 番茄红素的化学结构[/align]番茄红素化学结构中的羰基,决定了其不溶于水,难溶于强极性溶剂(甲醇、乙醇),可溶于乙醚、丙酮、正己烷、石油醚等,易溶于二硫化碳、氯仿、苯等。其中,尽管卤代烷烃(如二氯甲烷)是比较理想的溶剂,但因安全性问题,不适用于食品中番茄红素的制备。番茄红素在各种溶剂中的溶解度随着温度的升高而增大,样品纯度越高溶解越困难。番茄红素分子中含有多个双键,因此遇光、酸、氧、金属离子及高温时不稳定,易降解。此外,长时间加热或紫外线照射可使其结构由全反式构型部分转化为顺式构型。番茄红素对光十分敏感,在光照度为 44.2×103~46.4×103 lx的太阳直射光下,番茄红素迅速发生顺反异构,70 min后反式番茄红素完全转化为顺式番茄红素;在11.5×103~18.4×103 lx的室内散射光下放置7 h后,转化率达83%。1.2 生物学功能1.2.1 抗氧化氧化应激被认为是导致多种疾病的主要因素之一,单线态氧和过氧化自由基都是体内生成的活性氧,与癌症、心血管疾病以及与年龄相关的疾病有关,它们均能与体内的生物大分子反应,削弱它们的功能。番茄红素能够接受不同电子激发态的能量,使单线态氧的能量转移到番茄红素中,生成基态氧分子和三重态番茄红素,从而淬灭单线态氧,还可以通过电子转移过程清除自由基,也可以作为诱导剂,激活抗氧化信号通路,提高机体抗氧化系统活性,通过多种机制发挥抗氧化功能,缓解氧化应激损伤。番茄红素淬灭单线态氧的能力与其分子中所含有的共轭双键的数目有着密切的关系。类胡萝卜素是有效的过氧化自由基清除剂,而番茄红素是天然类胡萝卜素中最有效的单线态氧清除剂,其作用是目前常用抗氧化剂β-胡萝卜素的2倍多,维生素E的100倍。1.2.2 抗肿瘤活性研究表明,番茄红素对前列腺癌、口腔癌、结肠癌、膀胱癌、肺癌等均有一定的抑制作用。目前的研究认为,番茄红素的抗肿瘤效应可能包括以下几种机制:①自由基淬灭机制;②降低细胞膜的氧化损伤机制;③诱导间隙连接通讯的机制。细胞间连接通讯功能的抑制或破坏被认为是促进癌变的重要机制,而番茄红素可以有效地诱导细胞间隙连接的通讯。尽管目前关于番茄红素抗癌的研究很有前景,但普遍缺乏临床方面作用机制的研究,仍需要科研工作者更加深入的探索。1.2.3 降脂番茄红素属于脂溶性物质,通过降血脂调节脂质代谢。番茄红素主要存在于细胞膜和脂蛋白中,并且多集中于低密度脂蛋白(LDL)和极低密度脂蛋白(VLDL)。血浆中番茄红素水平与颈动脉和主动脉血管壁的厚度及损伤具有负相关性,可有效预防动脉粥样硬化的形成。LDL氧化是动脉粥样硬化发展过程中的关键因子,番茄红素具有极强的抗氧化能力,因此番茄红素降血脂作用与番茄红素能抑制DNA和脂蛋白氧化,以及阻止LDL胆固醇氧化产物的形成有关。1.2.4 增强免疫力单线态氧和氧自由基是侵害机体免疫系统的罪魁祸首。番茄红素具有非常强的清除自由基和淬灭单线态氧的能力,因此可用于提高机体免疫功能。番茄红素提高机体免疫力主要通过两种途径,一条途径是番茄红素促进T、B淋巴细胞增殖,增强自然杀伤细胞活性,进而提高机体免疫反应。番茄红素可以保护吞噬细胞免受自身的氧化损伤,促进T、B淋巴细胞增殖,对非特异性细胞免疫有明显的促进作用。番茄红素还可促进T淋巴细胞转化和增强 NK 细胞杀伤功能,其机制都是通过保护细胞的DNA,避免增殖过程中 DNA 复制受到损伤同时促进细胞间通信,加强细胞间相互作用。另一途径是番茄红素通过促进白细胞介素分泌,抑制肿瘤坏死因子-α等炎性因子,阻止其对NF-[font=宋体][color=#231f20]κ[/color][/font]B 信号通路的激活。2 番茄红素的应用2.1 在动物生产中的应用[3]2.1.1家禽番茄红素有提高家禽生产性能、改善蛋品质、减轻热应激损害、提高繁殖性能的作用。饲粮中添加适量番茄红素可以显著提高肉仔鸡的初生重和抗氧化能力,增加肝脏和蛋黄中番茄红素含量,同时降低蛋鸡血清总胆固醇和甘油三酯含量,以及肝脏、蛋黄、胸肌的胆固醇含量。还可提高冻融公鸡精子总运动能力、细胞的膜完整性和线粒体活性,以及人工授精的受精蛋孵化率。但目前,番茄红素在家禽饲料中的添加剂量从几十毫克到几百毫克不等,且试验群体较小,因此在大群体中的最优添加剂量还需要进一步研究。2.1.2反刍动物饲粮中添加番茄红素可改善夏季高温环境下巴美肉羊的生长发育和肉质,增加贮藏期羊肉的颜色稳定性和抗氧化物质含量,并且降低脂质和蛋白质的氧化程度。此外,番茄红素可显著提高精液解冻后公牛精子活力、顶体完整性、线粒体活性以及山羊精子的抗氧化酶活性,也可提高体外培养的牛胚胎质量。其机制可能是番茄红素易通过生物膜并迅速进入细胞,在细胞膜和脂蛋白的氧化损伤保护中起重要作用。以上结果表明,番茄红素具有提高反刍动物生产性能、改善贮藏期羊肉品质、提高种畜精子质量的作用,为达到最佳应用效果,在应用过程中要注意添加剂量。2.1.3兔番茄红素具有提高肉兔抗氧化能力、改善肉品质、降低胆固醇的作用。兔饲粮中添加适量番茄红素可降低血清中总胆固醇浓度。另外,还能降低肉兔血浆和肉中硫代巴比妥酸反应物(TBARS)含量,提高维生素A和α-生育酚含量。其机制可能是由于番茄红素能减少自由基的产生并增加抗氧化酶的活性。2.1.4水产动物番茄红素具有改善水产动物生产性能、减轻氧化应激损伤的作用。在高脂饲料中添加 0.2% 番茄红素可提高虹鳟鱼的饲料转化效率、蛋白质效率比和抗氧化功能。番茄红素能够减轻马拉硫磷对鲤鱼以及克百威对非洲鲶鱼的毒性作用,作用机制可能是番茄红素通过清除自由基进而降低了机体丙二醛含量并提高了抗氧化酶活性。这些研究结果为番茄红素减轻药物对水产动物的损害提供了理论依据。但也有研究表明,番茄红素能降低黄金鲈鱼的肝脏超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶的活性,其机制可能是由于番茄红素能够有效清除自由基并防止氧化应激的发生,因此对内源性抗氧化酶的刺激较少。2.2 在社会生产中的应用 人体自身不能合成番茄红素,其摄入量的85%来源于番茄和以番茄为基础的产品。番茄红素产品主要有番茄红素油、番茄红素胶囊、番茄红素片和番茄红素标准物质等。番茄红素已被认定为A类营养素,并被 50 多个国家和地区作为具有营养与着色双重作用的食品添加剂,广泛用于食品、保健品和化妆品等行业。2.2.1 食品将番茄红素添加到肉制品、饮料、面包、糖果、饼干和奶制品等食品中,起着保健、着色或防腐等功能。番茄红素可作为肉制品的保鲜剂、着色剂。另外,富含番茄红素的番茄制品的酸性会降低肉品pH值,会在一定程度上抑制腐败微生物的生长,因此,可以作为肉类食品的防腐保鲜剂,起到部分替代亚硝酸盐的作用。番茄红素具有优越的生理功能,且抗氧化性强,能高效猝灭单线态氧和清除自由基,抑制脂质的过氧化。因此,将其添加到食用油中可缓解油脂劣变。番茄红素生理功能良好,可有效缓解疲劳,且长期食用还能预防许多慢性疾病,因此,开发富含番茄红素的功能饮料具有很好的市场前景。[5]2.2.2 保健品番茄红素也被用于抗氧化,增强免疫力等功能的保健食品,主要有:用于预防前列腺癌的产品,这也是应用最多的产品;用于延缓衰老的产品;用于防止紫外线灼伤,保护皮肤的产品;用于类胡萝卜素复合产品。我国已获批准的含番茄红素的保健食品有几十种以上,主要涉及抗氧化、增强免疫力等,包括片剂、胶囊、油等多种形态。目前,我国在售的番茄红素国产保健品主要原料以番茄红素、番茄红素油或番茄红素油树脂为主要成分。[2]2.2.3 化妆品典型的产品如番茄红素保湿乳液等, 有美白和抗衰老效果。国产产品有番茄红素美白精华涂抹针, 具有抗氧化、抗过敏、美白的功效。3 番茄红素的检测方法[1]3.1 紫外-可见分光光度法一种方法是采用苏丹红?代替番茄红素作为对照品,以485 nm波长下测得的吸光度为纵坐标,苏丹红?对照品溶液浓度为横坐标,绘制标准曲线,同时测定待测样品溶液在485 nm 波长下的吸光度值,通过标准曲线计算样品中番茄红素的含量。国标GB/T 14215-2008就是利用该法来测定番茄酱中番茄红素的含量[6]。该方法简便快捷、稳定准确,适合于番茄红素片剂的含量测定。另外一种方法是在472 nm下测定待测样品溶液的吸光度,利用番茄红素的最大摩尔吸光系数的经验数值(E=18.5×104)计算番茄红素的含量[7]。上述两种方法不需要对照品,且测定方法简单,但都不能排除其它类胡萝卜素的干扰,误差较大。3.2 高效液相色谱法高效液相色谱(HPLC)具有分离效果好、分离速度快、样品用量少等优点,常用于番茄红素等天然色素的分析和半制备。李向荣等[8]利用高效液相色谱法同时测定果蔬和血浆中的番茄红素,其方法:以Ultraphere ODS C18 为色谱柱,乙腈- 四氢呋喃(60︰40)为流动相,流速为1.0 mLmin-1,检测波长为445 nm。该方法能同时测定果蔬食物和血浆中的番茄红素和β-胡萝卜素的含量。薛颖等[9]采用Novapark C18色谱柱,乙腈-三氯甲烷(92︰8)为流动相,检测波长470 nm,流速1.0 mLmin-1,对番茄酱和几种番茄在不同果实成熟度时番茄红素的含量进行了测定。陈向明等[10]在ultimate-C18色谱柱上,以乙腈-乙酸乙酯为流动相,采用梯度洗脱,流速为1.0 mLmin-1,检测波长 475 nm,以外标标准曲线法进行定量,建立了高效液相色谱法测定枸杞子中番茄红素的含量。刘梅芳等[11]采用Waters XBridge C18色谱柱,甲酸水-甲醇-乙腈(2︰18︰80)为流动相,等度洗脱20 min,检测波长475 nm,流速0.2 mLmin-1,建立针对样品的不同处理阶段采用不同的抗氧化剂:水相加水溶性抗氧化剂维生素C,有机相中加脂溶性抗氧化剂焦性没食子酸,使得整个样品处理过程中番茄红素的损失率大大降低,提高了测定结果的准确性。高效液相色谱法测定番茄红素,能够从繁杂的类胡萝卜素组分中较好地分离番茄红素,并定量分析,方法简单易行,干扰因素少,适用于番茄红素提取开发研究的定性、定量分析。3.3 差示扫描量热法差示扫描量热法(differential scanning calorimetry,DSC)是法定的药物纯度测试手段之一,可以快速、方便、准确地测定高纯度化工、医药产品。李伟等[12]利用DSC法对番茄红素晶体进行了纯度测定,并将测定结果与 HPLC 和分光光度法进行比较,结果表明DSC法具有较高的准确度。DSC法测定物质纯度,具有试样用量少、测定时间短、不需要对照品、能测定物质绝对纯度等优点,但该法对试样的纯度有一定的要求(纯度要求高于98%)。番茄红素的限量及标准4.1 安全性与推荐摄入量动物毒理学等试验已经证明,在不同途径化学合成的等同番茄红素中,有一部分具有安全性。Roche、LycoRed等公司生产的天然及合成番茄红素已有获得 FDA 公认安全物质认证,在美国作为食用色素使用。欧盟许可使用从番茄中提取的天然番茄红素作为色素,在果冻、果酱及其他类似水果产品中的最大使用量为100 mg/kg。但现有的研究数据尚不能充分确定每天膳食供给的推荐量(ADI值)。[13]4.2 我国番茄红素的使用标准我国已批准番茄红素(INS No.160d)作为着色剂(GB 2760—2014《食品添加剂使用标准》)。[align=center]表1 番茄红素使用标准[/align][table][tr][td][align=center]食品分类号[/align][/td][td][align=center]食品名称[/align][/td][td][align=center]最大使用量(g/kg)[/align][/td][td][align=center]备注[/align][/td][/tr][tr][td]01.01.03[/td][td]调制乳[/td][td][align=center]0.015[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]01.02.02[/td][td]风味发酵乳[/td][td][align=center]0.015[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]05.02[/td][td]糖果[/td][td][align=center]0.06[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]06.06[/td][td]即食谷物,包括碾轧燕麦(片)[/td][td][align=center]0.05[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]07.0[/td][td]培烤食品[/td][td][align=center]0.05[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]12.10.01.01[/td][td]固体汤料[/td][td][align=center]0.39[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]12.10.02[/td][td]半固体复合调味料[/td][td][align=center]0.04[/align][/td][td]以纯番茄红素计[/td][/tr][tr][td]14.0[/td][td]饮料类(14.01包装饮用水除外)[/td][td][align=center]0.015[/align][/td][td]以纯番茄红素计,固体饮料按稀释倍数增加使用量[/td][/tr][tr][td]16.01[/td][td]果冻[/td][td][align=center]0.05[/align][/td][td]以纯番茄红素计,固体饮料按稀释倍数增加使用量[/td][/tr][/table]5 展望随着我国经济水平的发展,人民生活水平的提高和我国老龄化社会的到来,人们对于自身健康关注度越来越高。番茄红素作为一种功能性天然胡萝卜素,因其抗氧化、抗肿瘤、保护心血管和增强免疫力等方面的独特功效,将会在医药保健等领域具有广泛的发展空间。由于番茄红素本身稳定性较差,不易保存,再加上天然植物中番茄红素的含量很低、化学合成工艺难度较大,使得无论是从天然提取还是化学合成番茄红素成本都较高,这在一定程度上限制了番茄红素的推广和应用。随着现代分离纯化和化学合成技术的发展,天然提取和合成番茄红素的成本将会大大降低。同时,随着基因工程的发展,利用转基因技术可以不断培育出产高含量番茄红素的番茄,应用DNA重组技术构建产番茄红素的基因工程菌,这些技术和手段将会显著地降低番茄红素的生产成本,从而推动番茄红素的应用。[1]参考文献[1]王昆,马玲云,吴先富,肖新月.番茄红素的研究概况[J].中国药事,2015,29(03):266-272.[2]姜雨,王献仁,董诗源,李雅慧,余超.番茄红素的研究及应用[J].疾病控制杂志,2008(01):66-69.[3]左兆云.番茄红素的生理功能及其在动物生产中的应用进展[J].中国畜牧杂志,2021,57(02):40-45.[4]朱原,张永英,朱海波,岳利敏,宋紫玥,吴瑞华,刘冠慧.番茄红素生物学功能研究进展[J].食品研究与开发,2020,41(18):202-207.[5]黄明亮,孙颖,王雪莹,吴文标.番茄红素的提取工艺及在食品中的应用[J].中国调味品,2012,37(06):106-110.[6]中国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 14215-2008番茄酱中番茄红素含量的测定方法[s]. 2008.[7]胡晓波,温辉梁,许全,刘崇波.番茄红素含量测定[J].食品科学,2005(09):548-551.[8]李向荣,方晓,陈青俊,黄百芬.高效液相色谱法同时测定果蔬与血浆中的番茄红素和β-胡萝卜素[J].浙江大学学报(农业与生命科学版),2000(04):101-103.[9]薛颖,武兴德,陈杭.高效液相色谱法测定番茄及其制品中的番茄红素[J].中国食品卫生杂志,2002(05):17-19.[10]陈向明,王萍萍.高效液相色谱法测定枸杞子中番茄红素[J].福建分析测试,2013,22(01):36-38.[11]刘梅芳,李帮锐,王华洪,刘永康,冯家力.测定保健品中番茄红素的高效液相色谱法[J].职业与健康,2013,29(18):2325-2326+2329.[12]李伟,丁霄霖,戴庆平,袁钻云.差示扫描量热法测定番茄红素的纯度[J].食品科学,2002(09):87-89.[13]潘晓威,叶剑芝,苏子鹏,周慧莲,杨春亮.番茄红素生物学功能研究进展及应用前景[J].现代农业科技,2018(01):237-238+240.[/s]

  • 【“仪”起享奥运】苋菜红应用于食品中的着色

    [align=center] [/align] [font=宋体, SimSun][color=#007aaa][b][size=15px]苋菜红[/size][/b][/color][/font] [font=宋体, SimSun][size=15px][color=#48494d]苋菜红,别名酸性红、杨梅红、鸡冠红、食用红色素2号。主要着色成分为苋菜苷和甜菜苷。苋菜红是以红苋菜可食部分为原料,经水提取、乙醇精制获得浓缩液,通过干燥处理后得到紫红色干燥粉状成品。苋菜红易吸湿,易溶于水和稀乙醇溶液。[/color][/size][/font] [font=宋体, SimSun][size=15px][color=#48494d] [/color][/size][/font] [font=宋体, SimSun][size=15px][color=#48494d]溶液在pH值小于7时呈紫红色,澄明,不溶于无水乙醇、石油醚等有机溶剂。对光、热稳定性较差,铜、铁等金属离子对其稳定性有负影响。pH值大于9时,本品溶液由紫红色转变为黄色。[/color][/size][/font] [font=宋体, SimSun][size=15px][color=#48494d]苋菜红常用于腌制小菜等的生产中,最大使用量0.05g/kg。苋菜红对氧化、还原作用敏感,不适用于发酵食品及含还原性的食品,还可用于高糖果汁饮料、碳酸饮料、配制酒、糖果等。[/color][/size][/font]

  • 【原创】二价钴离子的测定(亚硝基红盐比色法)

    (1)基本原理: 样品经处理后,试样中的二价钴离子在弱酸性溶液中(pH=5~6)与亚硝基红盐反应生成红色络合物,其颜色的深度与钴含量成正比,用目视比色法进行钴含量的测定,浓度越高,颜色越深,根据光的吸收定律----朗泊-比耳定律,由已知标准溶液浓度对应的吸光值求算出未知浓度: A=K*b*C(2)仪器及试剂:7200型分光光度计 1.0cm比色皿 100 ml容量瓶 5.0 ml、10.0 ml吸量管 0.50ml吸量管250ml烧杯(带表面皿)电炉10%乙酸-乙酸钠缓冲溶液0.2%亚硝基红盐指示剂1:1硝酸 (3)操作步骤:用0.5ml吸量管准确吸取0.2ml料液置于1号250毫升烧杯中,2号烧杯不加料液(做试剂空白),先各加10ml乙酸-乙酸钠缓冲溶液,置于高温电炉上加热煮沸,后置于低温电炉加入亚硝基红盐指示剂5ml,再煮1~3分钟,最后加入1:1硝酸10ml煮1~3分钟,取下冷却,转移至100ml容量瓶中,用蒸馏水定容至100毫升的刻度,摇匀,放置10分钟左右(天热可放置5分钟左右),用1.0 cm比色皿,以蒸馏水做参比,在530nm波长处进行比色,记下空白样的吸光值A空,样的吸光值A样,当钴标浓度为128.8ug/ml时,其吸光值为0.265。一般很稳定(4)计算公式:C(Co2+)=(A样-A空)* 0.1288÷0.265 单位: 克每升C(Co2+)------料液中Co2+的含量,单位:克每升A样-------样的吸光值A空-------空白的吸光值V取样-------取样量(即毫升数)0.1288-----钴标浓度, g/L0.265---钴标浓度为128.8ug/ml时,其吸光值为0.265

  • 农残分析用无水硫酸钠、无水硫酸镁、氯化钠等高温烘干的意义

    很多农残分析的文献和标准中要求无水硫酸钠、无水硫酸镁、氯化钠进行高温烘干例如:无水硫酸钠 650度烘4小时 无水硫酸镁 500度烘5小时 550-600度烘4小时 氯化钠 350度烘6小时有没有哪位大师出来讲解一下烘干的目的和意义,以及是否需要烘干同时欢迎各位同仁就自己检测中心的实际操作情况发表一下看法

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制