当前位置: 仪器信息网 > 行业主题 > >

氮杂革

仪器信息网氮杂革专题为您提供2024年最新氮杂革价格报价、厂家品牌的相关信息, 包括氮杂革参数、型号等,不管是国产,还是进口品牌的氮杂革您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮杂革相关的耗材配件、试剂标物,还有氮杂革相关的最新资讯、资料,以及氮杂革相关的解决方案。

氮杂革相关的资讯

  • 引领高精度制造业变革的先锋!摩方精密荣登《财富》杂志
    12月8日,重庆摩方精密科技股份有限公司(以下简称“摩方精密”)荣登《财富》,这不仅是对摩方精密在高精度制造业领域引领变革的肯定,也是对其在全球经济中举足轻重地位的认可。此前,摩方精密凭借在超高精度微纳3D打印技术、超高精密制造解决方案的绝对创新优势和商业模式,已入选《财富》“2023年中国最具社会影响力的创业公司”榜单。摩方精密荣登《财富》原文《引领高精度制造业变革的先锋》“摩方精密凭借颠覆性的微纳3D打印技术,以其降本增效的独特优势,助力基础工业制造出精密微小型的零部件。”全球对微纳米级零部件的需求不断增长,涵盖了从电子元件到医疗植入物等多个领域。然而,传统制造方式往往难以完成这些精密加工需求。随着终端产品的日益精密化、精细化和小型化的趋势,模具制作、机械加工以及冲压等工艺制造难题日益凸显,成本也更加昂贵。在此背景下,摩方精密为市场提供了一种独特的解决方案。摩方精密欧美区总裁John Kawola阐述道:“我们的微纳3D打印技术能支持生产微米级的零部件,并且在生产量及生产效率方面,非常具有竞争力和成本效益。”他进一步强调:“在当前制造规模上,尚无其他公司能同时兼具这两点优势。”摩方精密研发的微纳3D打印机,采用了面投影微立体光刻(Pµ SL)技术,可快速制作出原型,并能更高效地生产出高公差控制且高分辨率的零部件。例如,厚度仅为传统产品三分之一的牙贴面,以及能够模拟活体组织的生物芯片。凭借雄厚的资金实力和庞大的全球客户体系,摩方精密立足中国、布局全球,目前已在美国、英国、德国和日本等地设立海外分公司。摩方精密正在从设备、服务、技术创新、终端应用四方面同步推进,致力于研发和生产前所未有的超高精密零部件,以创新为动力,不断探索微纳3D打印技术的边界,用高精密制造为技术赋能,为行业未来发展注入无限可能。自2018年底全球平台启动以来,摩方精密已与世界35个国家,近2000家工业企业和科研机构建立起紧密的合作关系。在全球范围内,公司已安装超过400套打印系统,并为1,800多位客户提供设备及打印服务。摩方精密在2022年3亿元人民币C轮融资的基础上,于今年7月,成功完成了1.7亿元人民币的D轮融资,近12个月的融资总额已达到4.7亿元人民币。JohnKawola表示:“这些融资成果充分展示了投资界对摩方精密的高度信任与支持。”摩方精密的成功,很大程度上得益于其自创立之初便秉持的全球视野。JohnKawola表示:“早在公司创立初期,我们就确定了构建全球业务网络的战略目标,以期加速企业的蓬勃发展。”为实现这一目标,摩方精密在全球各地设立了区域办事处,雇佣当地优秀人才,并为进入每一个新市场量身定制了独特的品牌传播策略。满足医疗保健领域不断增长的需求摩方精密独特的微纳加工技术,因其助力基础工业发展的优势,吸引了众多客户。在电子和光学领域,随着无线电频率的不断增加,减小天线尺寸已成为提高处理能力的关键。与此同时,在医疗器械行业,减少无创手术和药物输送方法的影响也已成为社会大众关注的焦点。JohnKawola表示:“在众多领域,我们都看到了对微型零部件加工的迫切需求。”以药物研究为例,传统方法通常通过昂贵、耗时且颇具争议的动物实验,以评估潜在药物与活组织的相互作用。为了寻求更为高效和安全的研究方法,研究人员不断尝试其他途径,如在体外培养组织,或模拟重建组织和器官的芯片。然而,这些替代方法存在一个根本性问题:细胞仅在类似人体环境的条件下才能茁壮成长,这需要细胞周围提供充足的营养物质,并确保废物的有效排出。这就不得不提及摩方精密的生物芯片。这款芯片内部设计了微孔,模拟了毛细血管壁的物质传输,能够更精确地模拟真实的生物过程,有助于生长活组织,从而为拯救生命创造更多机会,并显著缩短药物筛选、测试和验证新药所需的时间。JohnKawola表示:“我们坚信这个创新概念以及这一系列的终端应用,将有助于细胞和组织生长及相关药物测试的未来发展。”他强调。摩方精密还在微创手术设备领域取得了重要突破。通过与北京同仁医院的持续合作,波士顿分部的中国团队成功设计并生产了一种用于治疗青光眼的眼内支架。据美国疾病控制与预防中心(CDC)数据显示,青光眼是全球第二大致盲原因。这款长度不到3毫米的装置,已在五项一期临床试验中展现了令人满意的效果。它不仅减少了青光眼手术的复杂步骤,还将原本可能需耗时45分钟的过程缩短至仅需3到5分钟。此外,摩方精密还生产了一种厚度仅为传统牙贴面三分之一的极薄强韧氧化锆牙齿贴面,能使患者保留更多牙釉质。对于许多追求牙齿矫正和美白的人来说,这款产品简化了矫正过程,带来了无痛的治疗体验。拓展新市场持续关注各关键行业的创新机遇已成为摩方精密企业文化的一部分。JohnKawola表示:“微电子机械系统(MEMS)传感器、半导体测试与封装,以及微机器人等领域正日益受到广泛关注。”他强调,“摩方精密的每位成员每天都在积极学习了解新技术和新应用。”未来十年,3D打印行业将不断拓展和改进其硬件、软件和材料领域,实现更广泛的应用。当然,摩方精密对自身在下一代产品设计及制造中所发挥的作用充满信心。“我们注重应用开发和技术创新,”JohnKawola表示,“摩方精密将引领这一领域。”摩方精密的中国团队与北京一家医院携手合作,成功设计并生产出一种颠覆性的支架,大大缩短了治疗青光眼的手术过程。摩方精密的牙贴面厚度仅为传统牙贴面的三分之一,能够更大程度地保留患者牙釉质。摩方精密的生物芯片设计了微孔,模拟了毛细血管壁的物质传输过程。相较于其他药物研究方法,这种设计能够更精确地模拟真实生物过程。关于《财富》FORTUNE《财富》杂志(Fortune)是一本全球知名的商业杂志,创刊于1930年,由美国时代华纳公司出版。该杂志以深入报道和权威分析全球商业、财经和经济领域的新闻和趋势而闻名,被誉为“商业圣经”。《财富》杂志每年发布多个重量级榜单,如“世界500强企业”、“美国500强企业”等,这些榜单在全球范围内具有极高的知名度和影响力。它是商界人士了解全球市场动态、把握商机、提升企业管理水平的重要参考资料。
  • 基因分析证明美国是个“大混杂”
    有很高比例的非洲裔、欧洲裔以及拉丁裔美国人的祖先来自于其自我认同以外的种族。图片来源:《美国人类遗传学杂志》 在美国,几乎没有一个人能够追溯到自己的祖先只来自于一个地方。根据一项新的研究,对很多人来说,他们的过去可能会让人感到惊讶。 研究人员已经发现,有很高比例的非洲裔、欧洲裔以及拉丁裔美国人的祖先来自于其自我认同以外的种族。例如,一般而言,非洲裔美国人的基因组包含有1/4的欧洲人血统;而几乎4%的欧洲裔美国人拥有非洲人祖先。 这项研究的高级主管、加利福尼亚州山景城23andMe公司遗传学家Joanna Mountain指出,直到最近,&ldquo 人类种群遗传学家一直倾向于忽略美国&rdquo 。(该公司为此项研究提供了基因测试。) Mountain说,考虑到其来自全世界的悠久的移民史,这个国家&ldquo 被认为在遗传学方面是混乱不堪的&rdquo 。但Mountain和她的同事认为他们可能有一个机会破译美国人复杂的基因血统。研究人员的秘密武器就是23andMe公司的巨大遗传信息数据库。 如果一个人报名参加23andMe公司的基因分析项目,他们便可以选择是否让自己的数据用于研究。当Mountain的团队为这项研究编辑数据库时,23andMe公司已拥有50万名客户,并且大约80% 的人同意将自己的信息用于此类研究。新论文第一作者、23andMe公司人类遗传学家Katarzyna Bryc指出,这使得用于该项研究的数据集比通常用于分析人口混合的数据量&ldquo 大了一个数量级&rdquo 。 研究人员从美国3个最大族群&mdash &mdash 欧洲裔、非洲裔和拉丁裔美国人&mdash &mdash 的遗传祖先入手。这些分类基于23andMe公司的客户对自己的定义。但就像人们预期的那样,在一个国家中,数百年来,不同的族群相遇并繁衍,种族之间的遗传界限已相当模糊。 Bryc解释说:&ldquo 你会在一个种族中看到所有不同的祖先。&rdquo 例如,一般一个非洲裔美国人的基因组包含73.2%的非洲人、24%欧洲人及0.8%印第安人 的血统。与此同时,拉丁裔美国人平均有18%印第安人、65.1%欧洲人(主要来自伊比利亚半岛)及6.2%非洲人的血统。 研究人员日前在《美国人类遗传学杂志》网络版上报告了这一研究成果。 尽管平均值可能存在变化,但至少3.5%的欧洲裔美国人拥有非洲祖先。在南卡罗来纳州和路易斯安那州,约12%的欧洲裔美国人至少有1%的非洲血统。同时在路易斯安那州,约8%的欧洲裔美国人至少拥有1%的印第安人祖先。 并未参与该项研究的加利福尼亚州帕洛阿尔托市斯坦福大学人口遗传学家Andres Moreno-Estrada认为,新研究是&ldquo 一项非常出色的工作&rdquo 。他说:&ldquo 与美洲的其他国家相比,美国拥有一个非常特殊的遗传印记。&rdquo
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • 仪器情报,科学家利用HAADF-STEM成像技术揭示超晶格微结构的复杂细节!
    【科学背景】氮化镓(GaN)是一种重要的半导体材料,其在蓝光发光二极管等领域的广泛应用使得其成为了研究的热点。然而,尽管镁(Mg)掺杂对于实现p型GaN的成功合成至关重要,但GaN和Mg之间的相互作用细节仍然是未知的。这导致了在利用GaN进行掺杂和构建半导体器件时存在诸多挑战,尤其是关于提高载流子迁移率的问题。为了应对这一挑战,日本名古屋大学(Nagoya University)Jia Wang,Hiroshi Amano等研究者提出了一种全新的方法:通过在大气压下对镁薄膜和GaN进行退火,实现了单原子镁片自发插入到GaN中,形成了二维Mg插层GaN超晶格结构。这一方法为实现高弹性应变的GaN提供了可能,从而改变了其电子能带结构,极大地增强了其载流子传输性能。此外,这项研究还揭示了插层Mg对GaN极性的独特调控效应,为半导体掺杂和材料工程领域带来了新的思路和方向。【科学亮点】(1)本研究首次观察到在大气压下退火镁薄膜在GaN上的情况下,形成了Mg插层GaN超晶格结构,这标志着二维金属插层到体块半导体的首次实例。这一现象被称为2D-Mg掺杂。(2)通过高角度暗场扫描透射电镜(HAADF-STEM)成像技术,作者逐步放大的图像揭示了Mg插层GaN超晶格结构的复杂细节。每个连续的Mg插层片具有数十纳米的直径,并且每对Mg插层之间观察到5-10层GaN。进一步的原子分辨集成差分相位对比(iDPC)-STEM成像证实了插层片由单原子层组成,而能量色散X射线光谱(EDS)和元素分布图证实了这一单层完全由Mg组成。(3)此外,插层Mg(Mgi)到原子片中的分离不会破坏六角形GaN的原始晶格对称性。具体地,每个Mg原子被六个N原子包围,占据八面体间隙位,形成了ABCAB注册,而相邻的GaN层则遵循ABAB堆叠序列。这一结构的形成导致了在插层层之间垂直方向上的实质性单轴压应变,超过了薄膜材料中记录的最高值之一。【科学图文】图1:Mg插层的GaN超晶格。图2. 2D-Mgi插层片诱导的极性转变。图3. 在间隙插层的GaN超晶格MiGs纳米结构中,高单轴压缩应变。图 4:n型和p型GaN上,GaN超晶格MiGs电学性质。【科学启迪】本研究揭示了一种全新的现象,即在大气压下,通过在漏磁性氮化镓(GaN)表面退火镁(Mg)薄膜,自发形成了Mg插层GaN超晶格结构。这一发现开辟了一条新途径,可以将二维金属插层到体块半导体中,从而为材料科学和纳米技术领域提供了全新的研究方向。此外,通过对Mg插层GaN超晶格结构的详细表征,作者发现了这种结构具有极高的单轴压应变,超过了薄膜材料中记录的最高值之一。这为弹性应变工程提供了新的可能性,有望在半导体器件设计和制造中发挥重要作用。、另外,Mg插层还导致了GaN极性的周期性转变,并产生了极化场诱导的净电荷,这为半导体掺杂和导电性增强提供了新的思路。原文详情:Wang, J., Cai, W., Lu, W. et al. Observation of 2D-magnesium-intercalated gallium nitride superlattices. Nature (2024). https://doi.org/10.1038/s41586-024-07513-x
  • 兰州化物所开发出氮掺杂多孔石墨烯制备新方法并用于稀土分离
    近日,中国科学院兰州化学物理研究所手性分离与微纳分析课题组开发出一种多重限域的一步可控合成掺杂方法,制备出对稀土离子具有高分离选择性的氮掺杂纳孔石墨烯膜(专利申请号:CN 202010861481.0)。该研究在吸附了苯丙氨酸的氧化石墨烯膜的二维层间空间限域生长层状锌类水滑石,从而构建类水滑石/苯丙氨酸/氧化石墨烯三明治型复合材料。由于锌类水滑石层间夹层可作为密闭反应器,通过限域燃烧,可将苯丙氨酸中的氮原子掺杂到石墨烯晶格中。同时,形成的多孔锌类水滑石可作为模板,通过孔区域内限域燃烧在氧化石墨烯上蚀刻出孔径可控的纳米孔(图1)。  科研人员将获得的氮掺杂纳孔石墨烯(图2)制备成膜用于稀土元素的分离,获得了良好的分离选择性,最高膜分离因子达到3.7。理论模拟表明,氮掺杂纳孔石墨烯中的吡咯氮原子,在稀土离子的选择性分离过程中起到主要作用。该制备方法简单高效、膜分离稳定性优异。该研究不仅为杂原子掺杂纳孔石墨烯材料的制备开辟了新途径,而且为实现稀土离子的高选择性膜分离提供了新思路,具有潜在的工业应用前景。相关研究成果发表在Cell Press旗下综合类子刊iScience上,博士生谭洪鑫为论文第一作者,研究员李湛和邱洪灯为论文共同通讯作者。  此外,研究人员在自主研发的纳孔石墨烯/氧化锌纳米复合材料的基础上,利用固相合成策略,使均苯三甲酸与纳孔石墨烯表面的氧化锌纳米颗粒直接反应,原位绿色合成出纳孔石墨烯/MOF复合纳米材料,并发现该材料适合于水溶液中稀土离子的选择性固相吸附分离,该研究成果发表在Analytical Chemistry上。  研究工作得到国家重点研发计划、国家自然科学基金、中科院和甘肃省人才计划项目的支持。 图1.多重限域策略可控合成氮掺杂纳孔石墨烯示意图 图2.氮掺杂纳孔石墨烯表征图
  • Environ. Sci. Technol新成果!mIRage助力复杂道路灰尘内微塑料检测
    微塑料在我们的空气、水和土壤中无处不在,存在于生态系统的各个层面。其主要来源于城市灰尘、船舶涂料、个人护理产品、塑料产品、道路标志、合成纺织品和轮胎等,并以不同的形态如:纤维、微粒、颗粒和碎片存在。 近年来,已有研究表明微塑料对人类、动物、植物和环境的健康影响取决于塑料颗粒的大小、浓度、化学性质和相互作用的方式。但由于微塑料尺寸过小和其混合存在的复杂性,传统方法针对这些颗粒的检测往往勉为其难。尤其是降解后的次级微塑料,其尺寸往往小于5μm,传统分子仪器分析方法如傅里叶红外光谱难以有效的对其化学成分进行表征。 非接触亚微米分辨红外拉曼同步测量系统-mIRage的出现有效解决了上述受限问题。设备基于光学光热诱导共振(O-PTIR)技术,突破了传统红外光谱衍射极限,空间分辨率可达500 nm,有效解决了基本全尺寸微米和纳米塑料(MNPs)样品的化学成分信息、大小和形态表征问题。 图1 非接触亚微米分辨红外拉曼同步测量系统-mIRage原理图 近期,来自美国圣母大学的Kyle Doudrick等人[1]使用非接触亚微米分辨红外拉曼同步测量系统-mIRage对我们日常生活中时时接触的道路粉尘中的微塑料进行了表征。 道路灰尘含有由轮胎退化产生的微纳米塑料(MNPs),它们由天然橡胶、合成橡胶和尼龙组成合成橡胶用于增强轮胎缓冲和弹性,而尼龙用于轮胎内层。道路灰尘还含有来自燃料添加剂的含氮硝基化合物。作者首先通过传统FTIR光谱来表征大块道路粉尘(图2a黑色谱线),在1100 cm&minus 1和1750cm&minus 1之间存在广泛的未解跃迁,表明粉尘中存在复杂的混合物质。而粉尘内混杂的微塑料颗粒却因为尺寸问题无法分析。 随后,作者使用采用基于OPTIR技术的mIRage系统,对粒径仅1μm的两个颗粒——颗粒1和颗粒2(图2d和图2e)进行成像分析,可以看到密集的道路尘埃聚集体和单个颗粒,并在1450cm-1和1650cm-1波数处出现强红外光谱吸收峰(图2f)。 图2表明,颗粒1主要由合成橡胶组成,在1451±4 cm&minus 1和1493±4 cm&minus 1处具有主要特征峰,并存在特征吸收在1500 cm&minus 1和1550 cm&minus 1之间的硝基化合物。颗粒2具有尼龙中常见的酰胺I和酰胺II过渡指示峰。同时具有与含硝基化合物如硝基甲烷(1383 m&minus 1和1573cm&minus 1)一致的振动(图2a)。 图2 粉尘内混杂的微塑料颗粒红外成像表征图 最后,作者对图2a中突出显示的单个颗粒1和2进行了分析。图2d、e分别为1450 cm&minus 1和1650cm&minus 1光谱特征的5×5 μm2 OPTIR显微图像。在1450 cm&minus 1和在1650 cm&minus 1处,颗粒1的化学性质与颗粒2不同。综上所示,作者推断出粒子1和粒子2可能分别由橡胶和尼龙组成,体现了OPTIR量化MNPs的能力,有效监测降解过程中发生的化学变化,并表征复杂样品(即道路粉尘)中单个和聚集MNPs的化学特性。这款创新设备有效克服了目前许多产品对MNP表征的限制,即同时量化颗粒丰度和形态的能力,致使mIRage系统成为分析复杂环境中MNPs的有效工具。非接触亚微米分辨红外拉曼同步测量系统-mIRage优势: ☛ 可达500 nm左右的空间分辨率 ☛ 基本无需样品前处理,样品即放即测 ☛ 光源“探针”对样品无损伤 ☛ 同时、同位置进行红外和拉曼光谱测试,提供相互佐证的分析结果 ☛ 同时获得样品成分、形貌、大小等信息 样机体验: 为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,欢迎各位老师垂询!参考文献: [1]. Kirill Kniazev, Ilia M. Pavlovetc, Shuang Zhang, Junyeol Kim, Robert L. Stevenson, Kyle Doudrick,and Masaru Kuno.Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices: Environ. Sci. Technol. 2021, 55, 15891&minus 15899
  • 格哈特小课堂-凯氏定氮测不了的几种氮
    格哈特的解决方案 ——凯氏定氮测不了的几种氮Kjeldahl Nitrogen Method凯氏定氮法是公认的作为(粗)蛋白质含量的最终仲裁方法,是因为我们人类100多年来已经认定蛋白质含量就是用凯氏定氮法并用凯氏因子计算处理的结果,还由于凯氏定氮对某些生物物质(可能包含外来物质)中一些“氮(Nitrogen)”是没有包含的,这是我们做品质分析时应该了解的情况,也就是如果使用杜氏定氮(Dumas Nitrogen Method)法时必须清楚的,因为杜氏定氮会把所有的氮全都测定出来,在某些情况就可能出现结果略高于凯氮法,我们做氮的分析时都必须十分清楚的。凯氏定氮法对下面的这些氮可能测定不了,但不排除有部分测定,而这些物质基本都不是蛋白质的组成,一般仅在含量很高时会给杜氮产生干扰:硝氮(硝基化合物)Nitrate/ Nitrite/Nitro/ Nitroso重氮Diazo叠氮Azide偶氮Azo杂环氮Azacycle硝氮就是氧化态的氮(N-O),通常是硝态氮(Nitrate),即硝酸根(NO3-)中所含有的氮。也涉及到:亚硝态氮(Nitrite),即亚硝酸根(NO2-)中的氮;硝基(Nitro)氮,是硝基化合物即硝基(-NO2)与其他基团相连的化合物中的氮;亚硝基(Nitroso)氮,是亚硝基化合物即亚硝基(-NO)与其他基团相连的化合物中的氮。因为凯氏定氮是用硫酸来把样品中的氨态氮(N-H)转化成为硫酸铵来分析氮的,硝氮的键合力大于硫酸的氧化力,如硫酸不能消化硝酸,所以凯氏消化的结果,硝氮会气化跑掉。如果要用凯氏定氮法测定硝态氮,要先把硝态氮还原成为氨态氮,就是这个道理。重氮化合物(Diazo)是一类由烷基与重氮基相连接而生成的有机化合物,是两个氮原子相互连接组成的二价原子团,结构式为-N=N-或N≡N=。也包括其它重氮盐(-N+≡N)。两个氮的键合力比较稳定,不容易被硫酸所分解。叠氮化合物(Azide)是一类由叠氮基即含有三个氮相连结构的化合物,一般用RN3表示。可想而知,其键合力更强。偶氮化合物(Azo)是偶氮基两端连接烃基的一类有机化合物,是重氮盐偶联的化合物,有单偶氮、双偶氮、三偶氮和多偶氮,有顺反异构。其结构可能比重氮还稳定,但有可能发生分解,但不太能分解成氨态氮。杂环氮(Azacycle)是在杂环化合物(Heterocyclic compounds)即分子中含杂环(非碳)的有机物的杂环中的氮。氮杂环时杂环化合物中最多的,这个氮也是难以转变成氨态氮的。中国格哈特竭诚“给用户一个无忧无虑的实验家园”,这是一些小Tips,更多的small tips,欢迎垂询。
  • 2020药典 |化药杂质检测有大变化:与国际接轨,监管更加严格
    p style=" text-indent: 2em text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 化学药品的质量直接关联用药安全。而化药中的杂质是影响药品质量的关键原因。这些检测杂质所应用的仪器在药品质量控制环节中发挥了举足轻重的作用。2020年是新版药典颁布的年份。关于化学药品杂质检测技术有哪些新变化?安捷伦可以提供哪些解决方案呢?仪器信息网邀请安捷伦市场与应用团队来介绍有关化药杂质的相关内容。 /span /p p style=" text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 2020新版药典中关于化学药品杂质检测技术的内容有哪些新变化? /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 我们注意到2020版药典相对于2015版在化学药品杂质检测这一部分有了较大的程度的修订和增加,总体上来说体现为与国际标准更加接近、更适应行业发展需求以及对于药品安全性的监管更加严格。 /p p style=" text-align: justify text-indent: 2em " 本次涉及到的变动主要体现为以下几方面: /p p style=" text-align: justify text-indent: 2em " 1. strong 《9102药品杂质分析指导原则》 /strong 的修订:杂质的确定、研究和检查分析增加了参考ICH Q3A、Q3B、Q3D、Q2A、Q2B部分,体现了我国加入ICH之后积极与国际标准接轨的意愿,也为本土药企更好的开拓海外市场奠定基础。另外,确定了原料药和制剂质量标准应包括已鉴定杂质外、未鉴定杂质、非特定杂质以及杂质总量,对整体药品杂质的质量控制非常严格,这同时也要求药企建立完善的杂质全面检测控制方案,保障药品的安全性。 /p p style=" text-align: justify text-indent: 2em " 2. strong 《0861 残留溶剂测定法》 /strong 的修订:主要体现为对药品常见的残留溶剂列表及其限度进行了增加和修改,增加了三乙胺、异丙基苯和甲基异丁基酮及其限度,降低了乙二醇的限度;同时,增加了使用“中等极性色谱柱”时常见有机溶剂在等温法测定时相对于丁酮的保留参考值,充分适应行业发展的趋势。 /p p style=" text-align: justify text-indent: 2em " 3.增加了 strong 《遗传毒性杂质控制指导原则》 /strong :本指导原则弥补了我国药品安全检测指导文件方面的缺失。原则中包含遗传毒性杂质的分类及限度制定方法,以及危害评估方法,包括数据库文献检索评估、(Q)SAR评估以及AMES实验评估等。 /p p style=" text-align: justify text-indent: 2em " 4. 增加了 strong 《元素杂质限度和测定指导原则》 /strong :本原则明确了需要检测的金属元素杂质以及其不同机型允许的元素杂质浓度和每日允许暴露量。是对药物安全检测管理的进一步完善,为行业质控提供了指导意见。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 关于化学药品中杂质的检测项主要有哪些? 对于这些检测项,目前药典中规定的检测方法是什么? /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 药物杂质是活性药物成分(API,原料药)或药物制剂中不希望存在的化学成分。原料药物中的杂质可能源于合成过程或起始物料、中间体、溶剂、催化剂,以及反应副产物等其它来源。在药品开发过程中,杂质可能由于原料药物成分不稳定、与辅料不兼容,或者是与包装材料发生反应而产生。药物中各种杂质的数量将影响最终药品的安全性。因此,杂质的鉴别、定量、定性和控制已成为药物开发过程的关键组成部分。 /p p style=" text-indent: 2em text-align: justify " span style=" background-color: rgb(255, 192, 0) " strong 许多监管机构都在关注杂质的控制: /strong /span 如国际协调会议(ICH)、美国食品药品管理局(USFDA)、欧盟药管局(EMA)、加拿大药品与健康管理局、日本药物和医疗器械管理局(PMDA),和澳大利亚健康和老龄化的治疗用品部。除此之外,很多官方药典,如英国药典(BP)、美国药典(USP)、日本药典(JP)和欧洲药典(EP)也越来越多地加入了对原料药和药品制剂中杂质限量水平的规定。 /p p style=" text-align: justify text-indent: 2em " 化学药品中杂质的主要检测项为有机杂质、无机(元素)杂质以及残留溶剂如原料药、辅料检测相关项目,基因毒性杂质检测等。 span style=" color: rgb(255, 0, 0) " 药典中描述对于残留溶剂一般采用色谱法,对于其他杂质并未明确规定或建议用那种检测方法。 /span 目前根据我们国外和国内研发和应用团队的经验总结,大致如下: /p p style=" text-align: justify text-indent: 2em " 1. span style=" color: rgb(0, 112, 192) " strong HPLC /strong /span : 非挥发性杂质分析,安捷伦 1200 Infinity系列,其中1290 Infinity可以进行二维液相分析,对于复杂的难分离的成分有很好的分析作用; /p p style=" text-align: justify text-indent: 2em " 2. span style=" color: rgb(0, 112, 192) " strong LC-MS /strong /span : 对已知杂质的确认和未知杂质初步结构评估的有效分析工具。如安捷伦 6100系列,6500系列Q-TOF,6400三重四级杆系列。 /p p style=" text-align: justify text-indent: 2em " 3. strong span style=" color: rgb(0, 112, 192) " GC & amp GC-MS /span /strong : 试分析大量杂质的首选技术,如卤化物、磺酸盐和环氧化合物。如安捷伦 7690 GC系列等。 /p p style=" text-align: justify text-indent: 2em " 4. span style=" color: rgb(0, 112, 192) " strong ICP-OES & amp ICP-MS /strong : /span 强大的多元素分析技术,用于分析金属杂质。如安捷伦 700系列ICP-OES以及7700系列ICP-MS。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(255, 0, 0) " 对于遗传毒性物质不同的检定限,有以下方法: /span /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 450px height: 309px " src=" https://img1.17img.cn/17img/images/202006/uepic/6a57d1be-d421-48b9-a115-275a5a6e3c0e.jpg" title=" 1-基因毒性药物的检测方案.png" alt=" 1-基因毒性药物的检测方案.png" width=" 450" vspace=" 0" height=" 309" border=" 0" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " (注:主要综合参考目前药典委公布的征求意见稿。) /span /p p style=" text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 仪器信息网: /strong /span 安捷伦在化药杂质检测方面可提供哪些仪器产品和解决方案? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 安捷伦市场与应用团队: /strong /span 安捷伦是生命科学、诊断和应用化学市场领域的领导者,为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。作为能够为医药行业提供最广泛解决方案产品组合的公司之一,从疾病研究和药物发现到药物开发、制造和质量管理,安捷伦的解决方案为医药行业的各个环节提供了精确的分析结果。贯穿整个流程的完整解决方案意味着客户可以让产品更快进入市场,同时确保客户的仪器和流程符合最严格的法规要求。 /p p style=" text-align: justify text-indent: 2em " ICH 指南将原料药物相关杂质分为三个大类:有机杂质,无机杂质和溶剂残留。安捷伦现有产品线可完美覆盖上述主要的杂质检测需求,例如: /p p style=" text-align: justify text-indent: 2em margin-top: 10px " strong 1.顶空+气相色谱检测器(FID),顶空+气相色谱检测器和质谱检测器组 /strong strong 合。 /strong 后者可以更好地对溶剂残留相关化合物定性。安捷伦公司最新一代智能化GC产品提供了更加可靠便利的分析平台,顶空自动进样器独特的背压控制技术可精确控制顶空加压和充满定量环压力至0.001 psi,二者合体为化学药物的溶剂残留分析提供完美的解决方案。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " strong 2.化药无机元素检测仪器方案有:方案一ICP-MS;方案二ICP-OES+GFAAS的组合。 /strong /p p style=" text-align: justify text-indent: 2em " 相比于同类产品,安捷伦ICP-MS的优势在于: /p p style=" text-align: justify text-indent: 2em " 1)标配耐高盐进样系统,可以耐受各类化药的盐度,包括NaCl注射液直接进样; /p p style=" text-align: justify text-indent: 2em " 2)可以实现一个碰撞模式完成ChP/USP元素杂质测试要求,方法简单快速,干扰去除彻底; /p p style=" text-align: justify text-indent: 2em " 3)100%有机溶剂溶解化药直接进样,前处理方法简单,分析稳定。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 安捷伦ICP-OES+GFAAS组合的优势在于: /p p style=" text-align: justify text-indent: 2em margin-top: 5px " 1)全新一代ICP-OES对于化药中限量较低的Pb,Cd等元素具有高灵敏度,可以满足口服类药物全元素分析; /p p style=" text-align: justify text-indent: 2em margin-top: 5px " 2)安捷伦 GFAAS(石墨炉原子吸收)化药分析具有单个样品分析速度快,分析成本低(石墨炉损坏小),灵敏度高等特点。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 3.以目前热门的 strong 基因毒性杂质检测 /strong 为例,国内外权威监管部门如中检院、FDA、EMA同时采用安捷伦GCMS与LCMS进行了二甲双胍、沙坦类药物、雷尼替丁等相关基因毒性杂质的检测。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 4.此外, strong 安捷伦具备完善的信息学、色谱柱与耗材、售后服务与培训支持体系 /strong ,可帮助用户有效面对复杂的药品杂质分析挑战。 /p p style=" text-align: justify " & nbsp /p table style=" border-collapse:collapse " width=" 648" align=" center" tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " width=" 324" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 293px height: 414px " src=" https://img1.17img.cn/17img/images/202006/uepic/c452a724-363f-4d28-9469-a3353fff1a3c.jpg" title=" 2A.png" alt=" 2A.png" width=" 293" vspace=" 0" height=" 414" border=" 0" / /p /td td style=" border: 1px solid rgb(255, 255, 255) " width=" 324" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 293px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/79bebd34-4573-4dae-b0e2-bcf003f09b59.jpg" title=" 2B.png" alt=" 2B.png" width=" 293" vspace=" 0" height=" 413" border=" 0" / /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(255, 0, 0) " 基于安捷伦GC产品平台和色谱柱等消耗品产线,提供预调试的药物残留溶剂分析仪系统和详实的应用资料可供参考: /span /p p style=" text-align: justify text-indent: 2em " 1. 5990-7625CHCN 使用安捷伦 7697A 顶空进样器进行 USP& lt 467& gt 溶剂残留的高精度分析 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 2. 5991-0616CHCN 使用安捷伦特殊设计和测试的针对USP& lt 467& gt 的J& amp W DB-Select 色谱柱进行溶剂残留分析 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 3. 5991-1834CHCN 采用配有 安捷伦 7697A 顶空进样器的 安捷伦 7890B 气相色谱仪分析 USP& lt 467& gt 残留溶剂 !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- !--467-- /p p style=" text-align: justify text-indent: 2em " 4. 5991-9029ZHCN 使用 安捷伦 Intuvo 9000 气相色谱系统进行残留溶剂分析 /p p style=" text-align: center margin-top: 15px " br/ /p table style=" border-collapse: collapse " data-sort=" sortDisabled" align=" center" tbody tr class=" firstRow" td rowspan=" 1" colspan=" 2" style=" border-color: rgb(255, 255, 255) border-left-width: 1px border-top-width: 1px word-break: break-all " width=" 77" valign=" middle" align=" center" strong [Aglient] Gas Chromagraphy br/ /strong /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " rowspan=" 1" colspan=" 2" width=" 578" valign=" top" p style=" text-align: center" strong img style=" max-width: 100% max-height: 100% width: 518px height: 389px " src=" https://img1.17img.cn/17img/images/202006/uepic/14fcdde2-00f1-4c19-90d2-1868efb9d91b.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 518" vspace=" 0" height=" 389" border=" 0" / /strong /p /td /tr tr td rowspan=" 1" colspan=" 1" style=" border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width=" 266" valign=" middle" align=" center" a href=" https://www.instrument.com.cn/netshow/SH100320/C170097.htm" target=" _blank" textvalue=" Aglient 7890B气相色谱仪" style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " span style=" color: rgb(255, 0, 0) font-size: 14px " strong Aglient 7890B气相色谱仪 /strong /span /a span style=" color: rgb(255, 0, 0) font-size: 14px " strong br/ /strong /span /td td rowspan=" 1" colspan=" 1" style=" border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width=" 296" valign=" middle" align=" center" a href=" https://www.instrument.com.cn/netshow/SH100320/C122881.htm" target=" _blank" style=" color: rgb(255, 0, 0) font-size: 14px text-decoration: underline " span style=" color: rgb(255, 0, 0) font-size: 14px " strong Aglient 7697A顶空自动进样器 /strong /span /a span style=" color: rgb(255, 0, 0) font-size: 14px " strong br/ /strong /span /td /tr /tbody /table p style=" text-align: center" br/ /p p style=" text-indent: 2em " 欲了解更多相关信息,请点击进入 span style=" color: rgb(255, 255, 0) font-size: 18px background-color: rgb(255, 255, 255) " strong /strong /span span style=" font-size: 18px background-color: rgb(255, 255, 255) color: rgb(0, 112, 192) " strong 专题页面《化学药物杂质与检测》 /strong /span 浏览。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 95px height: 39px " src=" https://img1.17img.cn/17img/images/202006/noimg/1779e9c9-3b79-4d88-ab7c-b723c1fbceba.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 95" height=" 39" / /p p style=" text-align: center margin-top: 15px " a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/53e42e2e-6a23-4911-89b4-90bed3d5fc35.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 利用超高空间分辨单分子表征技术,怀柔科学城新成果登上《科学》杂志
    落户于怀柔科学城的中科合成油技术股份有限公司联合北京大学、中科院,共同攻克了乙烯聚合可视化的难题,首次以分子电影形式展示了表面乙烯聚合的反应过程,让这一微观反应原理具有了“眼见为实”的证据支撑。该成果于近日登上了全球顶级学术期刊《科学》杂志。当下,乙烯聚合反应用于生产聚乙烯塑料,其每年产量超过一亿吨,是全球产量最大的塑料制品原料,被广泛应用于制造薄膜、容器、纤维和管材等生活用品,但其在催化剂作用下的微观反应过程一直没有被影像捕捉到,也因此,其反应机制一直存在着学术争议。“如果能将乙烯聚合的反应过程用分子电影记录下来,那么对于解释其如何实现分子链引发将有了‘眼见为实’的证据。”中科合成油公司总经理李永旺介绍。为何这么多年始终无法用视频捕捉表面乙烯聚合的微观反应过程?李永旺告诉记者,这是由于当下的聚合反应很多催化剂的成份较为复杂,很难拍下单纯的分子链引发机制。如何找到一个成份相对单一的催化剂来进行乙烯聚合反应拍摄?中科合成油表面科学实验室周雄研究员等人敏锐地发现,有一个现成的拍摄对象。那就是利用公司目前主营业务中的费托合成技术。通过这一技术,公司实现了将液态煤转化成合成油。“费托合成也可视为聚合体系,费托合成催化剂碳化铁极有可能也能活化乙烯聚合,因而解决了乙烯聚合体系模型化的困难。”周雄表示。有了“演员”,实验室找到北京大学吴凯教授团队来做“摄影师”,利用超高空间分辨的单分子表征技术,从而得以在微观尺度上直观观察到这一经典聚合反应。研究团队综合多种实验手段和理论计算,确定了在没有引发剂存在时碳化铁表面的乙烯聚合机理。3月11日,这一成果以《表面乙烯聚合乙烯插入机制的可视化》为题发表在世界学术顶刊《科学》杂志,杂志还将其列为当期置顶论文。德国慕尼黑大学Joost Wintterlin教授撰写专文评论,认为该工作“不仅会引发学术兴趣,还可以对工业应用产生重要影响,相关过程决定了合成聚合物的物理性质和质量”。值得一提的是,该成果也是少有的以企业为第一完成单位的顶刊论文,体现了怀柔科学城鼓励产学研合作的理念。
  • 我国荧光原位杂交新技术使膀胱癌确诊提前三到六个月
    中国目前男性膀胱癌的年发病率已达十万分之八,呈逐年上升趋势。临床诊断普遍使用膀胱镜有创检查,给病人造成极大痛苦,而细胞学检测因敏感性低易造成漏诊。卫生部医药卫生科技发展研究中心十月二十二日公布的基因检测新技术研究成果则有效解决了这一问题。   由国家卫生部组织内地五十二家大型综合医院进行的这项名为“荧光原位杂交技术在膀胱癌检测中的临床应用研究”,为期两年,采用国产探针,对四千八百零九例患者开展了临床检测实验。结果表明,该技术比临床应用的常规检查,可使膀胱癌确诊提前三到六个月。   专家称,荧光原位杂交技术是一种检测遗传学改变的分子细胞技术,具有操作简单,重复性好、灵敏性及特异性高的特点 比传统方法可更早发现细胞异常,能大幅度降低漏诊率 其检测快速无创,非常适合膀胱癌的早期检测和复发监测。   专家指出,中国男性膀胱癌年发病位居泌尿系统肿瘤第一位。目前大部分膀胱癌患者可通过手术治疗,但手术后两年内复发率达到百分之四十到七十,因此早期诊断和复发监测尤为重要。新技术可显著提高膀胱癌的诊断水准,对复发监测有很好的应用前景。   据知,此次课题研究使用的荧光原位杂交探针和检测试剂全部实现国产化,质量稳定可靠,价格比进口产品降低近七成 为该技术的临床推广应用奠定了基础 目前已获国家食品药品监督管理局的生产批准。
  • 纺织品和皮革禁用偶氮染料检测将迎来一场革命
    受浙江省科技厅委托,嘉兴市科学技术局于2010年12月31日组织浙江大学、浙江工商大学、浙江省检验检疫科学技术研究院、上海应用技术学院、嘉兴学院的专家在嘉兴主持召开项目验收、鉴定会。嘉兴检验检疫局主持的一项省科技厅面上工业项目“纺织品和皮革禁用偶氮染料生物检测技术的研究”(计划编号:2009C31014)顺利通过了验收、鉴定。   中国是全球纺织品和皮革制品的生产和出口大国,在国际市场上作用举足轻重。1994年德国颁布《食品及日用消费品法》第二修正案后,禁用偶氮染料的检测就由此展开。目前,国内外禁用偶氮染料的检测方法标准主要有国家标准、德国标准、欧盟标准和国际标准。所有这些标准方法基本类似,均采用常规的仪器分析方法。这些方法有很大的不足:一是前处理复杂,工作强度大 二是消耗大量的化学试剂,不仅成本高,而且污染环境 三是分析检测速度慢 四是所需仪器设备价格昂贵,维护修理费用也很大。因此,迫切需要一种操作简单、成本低、绿色环保、快速方便的新型检测方法。   由嘉兴检验检疫局、浙江清华长三角研究院、中科院嘉兴中心应用化学分中心联合承担的省科技厅面上工业项目“纺织品和皮革禁用偶氮染料生物检测技术的研究”,针对上述问题进行了开创性的探索。以其中一种芳香胺为例,经过半抗原的修饰与合成、全抗原的合成、抗体的制备与纯化等一系列工作,成功研制出该芳香胺的试剂盒,独创性地将免疫分析方法引入纺织品和皮革禁用偶氮染料的检测,取得了良好的效果。该项目通过验收、鉴定,填补了该领域国际空白。   该项目通过验收、鉴定,为下一步研制出可测试所有芳香胺的试剂盒奠定了基础。一旦取得成功,那么纺织品和皮革禁用偶氮染料的检测将迎来一场革命,原来需要复杂的前处理、大量的化学试剂、昂贵的仪器、长时间的分析将被简单的前处理、少量的缓冲液、普通的96孔板所代替,其分析时间将大大缩短。
  • 珀金埃尔默收购Geospiza公司
    2011年5月5日,专注于提高人类及环境的健康和安全的全球领先公司——珀金埃尔默公司宣布已经收购了Geospiza公司,Geospiza是一家提供基因分析和实验室工作流程管理方面的、基于Web的云计算环境安全软件系统的供应商。   收购Geospiza对珀金埃尔默日益增长的新一代DNA测序和分析业务起到支持的作用,使研究人员能够更有效的探索疾病的基因起源,并帮助解决客户不断增长的知识管理和推动科学生产力的需求。收购Geospiza除了对PerkinElmer的测序和分析服务有益之外,通过能力显著的云计算,还将有益于为科学家们提供一个终端解决方案,包括测序服务、强大的分析、可视化软件。该解决方案能够“随时、随地”的解释和分析基因组数据,而这些全部以珀金埃尔默的专业、高质量标准技术为后盾。   “基因组信息在了解和治疗疾病方面起到越来越重要作用。在提高疾病诊断和药物发现过程中,利用新一代测序和其他生物测量手段获得的前所未有大量的有意义的数据是关键,” 珀金埃尔默新兴技术总裁Richard Begley博士说到,“收购Geospiza之后,再加上我们现有的各种诊断业务的软件,将一起为珀金埃尔默打造一个提供核酸检测产品的强有力的平台。Geospiza是其行业的领导者,将增加PerkinElmer生物信息学方面的能力。我们期待着扩大我们在科学研究、药物发现和医疗诊断遗等基因分析的产品系列。”   Geospiza的客户包括生物技术和制药公司、大学、研究人员、基因测试和制造生物治疗所涉及的诊断服务实验室等。   关于 PerkinElmer, Inc.   PerkinElmer,Inc.,是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司2010年收入约为17亿美元,拥有约6,200名员工,为超过150个国家/地区的客户提供服务,同时该公司也是标准普尔500指数的成员。有关其它信息,请访问www.perkinelmer.com。   About Geospiza, Inc.   Designed by biologists for biologists, Geospiza is the developer of GeneSifter® software, providing integrated solutions for Next Generation Sequencing analysis and. For over 10 years, Geospiza has set the industry standard for high value, low cost, “out of the box” solutions serving the life sciences market. You can find more information on Geospiza and its products at www.geospiza.com.
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • GE给您完全的蛋白印迹方案
    GEWestern Blot实验相关产品秋季开学特惠 活动日期: 2012年即日起至10月31日 GE从蛋白制备、电泳、转印及杂交到显色、成像,为您带来完全的蛋白印迹方案。 详情请见www.reagent.com.cn 细胞组织裂解 -- 样本研磨试剂盒 蛋白抽提 -- 蛋白抽提缓冲液试剂 蛋白稳定化 -- 混合蛋白酶抑制剂及核酶 混合物 蛋白分级化 -- 蛋白分级试剂盒 蛋白定量 -- 蛋白定量试剂盒 垂直电泳 -- SE250/SE260 电泳试剂 蛋白Marker -- 彩虹分子量标准 蛋白Marker -- Amersham ECL DualVue 免疫 印迹标准
  • 还在为元素杂质担心吗?微波消解系统助力药品质量控制
    微波消解系统助力药品质量控制由于药品中的元素杂质不仅构成患者的毒理学风险,而且可能影响药物产品的质量和功效。因此,元素杂质分析在药物开发和质量控制中起着重要作用。与药品质量控制相关的法规有哪些? 国际人用药品注册技术协调会(ICH) 在ICH 指导手册中 Q3D生效以前,重金属分析采用的是硫化物沉淀法,是根据 USP, Ph.Eur.2.4.8 规定中的限制测试。这项超过100 年的旧版操作规程是不明确的,而且不能确定具体的量化结果。终于经过这么久的发展后,在相关的法律法规中,过时的湿法化学分析已逐步被现代仪器分析取代。由于 ICP-OES 和 ICP-MS 的使用,随之相关的样品前处理技术,例如微波辅助消解,目前已成为定量元素分析的主流前处理方式。自 2014 年 12 月起,ICH 指导手册中 Q3D 步骤 4 生效,并且市场中的所有产品都必须遵循遵循该步骤(从 2018 年 1 月开始,新的提案已提交并且已获批准)。指导手册中根据元素杂质的毒性和它们在药物中产生毒性的可能性,将其分为四类 – 1, 2A, 2B 和 3,并且详细说明了元素的种类,剂型(口服,注射以及吸入)以及允许日常接触量(PDE)。值得注意的是,等级1中的Cd、Pb、As、Hg 和等级2中的Co、V、Ni 是人体致毒物,所含 PDE 较低。对于这些元素,即使这些金属没有人为添加,也必须进行风险分析,以防超过其 PDE。根据评估结果,定义一个合理的控制策略,从没有任何分析到定期研究,再到最终成品的理性测试。 美国药典-USP2015年12月,USP 232章节中元素杂质—限制和233章节元素杂质—规程正式生效,并在 2018年1月,取代了所有对旧版USP的引用。232章节中所规定的限制完全符合ICH Q3D的要求。对于膳食补充剂而言,USP章节从2013年8月开始正式生效,它参考了 USP关于全元素污染物的分析规程,自 2018 年1月起开始执行。欧洲药典-Ph.Eur.欧洲药典委员会决定重新逐字修订Ph. Eur. chapter5.20中的ICH Q3D指导方针,自 2018年1月开始,欧盟市场上的所有现有产品都需考虑此问题。2020版中国药典2020版中国药典,9102药品杂质分析指导原则,无机杂质参照ICH Q3D进行研究,并确定检查项目。为什么以上法规都对元素杂质含量进行了限定?元素杂质可能会存在于原料药、辅料、制剂中的催化剂或环境污染物中。这些杂质可能是自然生成的,也可能是人为加入或不可逆引入的(例如与生产设备的相互反应)。当我们知道元素杂质有产生的可能性时,就必须保证杂质符合指定的限度。要注意的是,砷、镉、铅和汞在自然中普遍存在,所以我们在采用基于风险的控制策略时必须包括对这四种元素的考虑。不论采用何种方式,由于元素杂质并不给患者提供任何治疗益处,在药品中的水平应被控制在可接受限度以内。 微波消解技术成为元素杂质定量的技术 由于2020版中国药典、美国药典(USP 和),欧洲药典(Ph。Eur。5.20)和国际协调会议(ICH Q3D)的新规定,使用ICP—OES或ICP—MS与可靠的样品制备技术(例如基于加压消解腔(PDC)的超级微波消解仪)已成为元素杂质定量的技术。例如易挥发元素铂元素Os,已知Os在某些活性药物成分(API)的生产链中被用作催化剂。样品基质的消化主要是通过氧化无机酸(例如HNO3)来完成的,这将在确定Os痕迹时引起问题。原因是在这种条件下,Os元素形成了不同种类的挥发性氧化物,导致了Os的失控。四氧化锇不仅具有高度挥发性,还可通过吸入、食入和皮肤接触从而产生剧毒。 安东帕Multiwave 7000可一次性消解所有类型的样品。针对不同元素的特性,您可以根据待测的元素选择压力密封样品管或密闭石英管,同时也可以根据所需样品的处理量、样品量、样品体积和反应混合物等进行支架选择。如上图所示,不仅可选择石英管用来应对Os元素易挥发的状况,同时使用压力样品密封管对其他样品进行消解。满足所有药典,完美助力药品质量控制!
  • 全柱成像等电毛细管电泳技术与高分辨质谱联用,助力复杂蛋白治疗产品深入表征
    近年来,随着人们对医疗健康行业需求的不断增长,生物制药行业也在随之蓬勃发展。近两年的新冠疫情quan球大流行,在改变人们日常生活的同时更是催生了生物制药行业对于先进分析技术的需求。蛋白质分离、纯化和分析是生物zhi疗药物开发中的关键组成部分,但该过程可能复杂且极具挑战性。而全柱成像等电毛细管电泳(whole column imaged capillary isoelectric focusing, WC-iCIEF)技术,可以根据蛋白质的等电点(isoelectric point, pI)差异将其分离,在此基础上,将iCIEF与高分辨质谱联用,可以借助质谱的高灵敏度、高分辨率和高质量精度使各种蛋白质变异体的鉴定更容易、更准确。从2021年6月开始,我们与蛋白质成像技术专家 Advanced Electrophoresis Solutions Ltd (AES)宣布达成协议,将蛋白质分离技术与质谱相结合,通过简化表征来推进zhi疗性蛋白质药物的开发。 到目前为止,通过将iCIEF技术与高分辨质谱联合使用,我们已经对单抗、ADC和融合蛋白等多种产品进行了各种层面的表征。下图1~3展示了iCIEF技术对单抗\ADC\融合蛋白的分离结果,可见对于不同种类的重组生物zhi疗性产品,均可根据pI差异将其电荷变异体进行分离,且系统具有优异的稳定性与重现性。图1 iCIEF-UV分析帕博利珠单抗电荷变异体,8针平行进样(点击查看大图)图2 iCIEF-UV分析恩美曲妥珠电荷变异体,3针平行进样图3 iCIEF-UV分析依那西普电荷变异体,3针平行进样我们使用的CEInfinite iCIEF平台(AES)除了高质量的iCIEF-UV功能外,还可以与高分辨质谱直接在线串联,直接测定电荷变异体的分子量,无需额外转换接口。下图4展示了我们使用iCIEF-MS直连技术分析帕博利珠单抗的结果,可见即使是pI仅差0.02的碱峰B1和主峰,也可以在iCIEF上得到基线分离,随后的高分辨质谱分子量测定结果显示该碱峰与主峰相比,主要差异是其中一条重链的N端未发生焦谷氨酸环化。另外观察原始质谱谱图不难发现,得益于Orbitrap高分辨质谱的灵敏度,即使是强度比主峰低2~3个数量级的碱峰B3,仍可得到糖型分布清晰的谱图。图4 iCIEF-MS在线直联分析帕博利珠电荷变异体。上,iCIEF-UV分离图谱。中,碱峰B1与主峰解卷积结果镜像图对此。下,主峰与所有碱峰原始质谱图对比。(点击查看大图) 与市面上其他供应商相比,AES的CEInfinite iCIEF平台具有一个独特优势:可以实现全自动的馏分收集。我们选择了帕博利珠单抗,对其电荷变异体的每个峰离线收集后进行酶解,随后上样至高分辨液质联用平台进行肽图分析。图5展示了酸/碱峰中各种CQA含量的变化,可见轻重链末端、重链糖型和侧链常见PTM的变化趋势。另外通过表1中分离之前/之后特定CQA含量对比可以很明显的发现,经iCIEF分离后,酸/碱峰中特定修饰的比率有明显zhen高,可见基于pI差异,将生物zhi疗性产品的电荷变异体进行分离后,接下来采用肽图进行深入表征的分析策略,能够帮助研究人员将导致电荷异质性的修饰精确定位到氨基酸位点的层面。
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • Sigma-Aldrich荣登《企业责任杂志》“最佳企业公民100强”榜单
    公司排名跃升至第5位 2015年4月20日, Sigma-Aldrich公司(纳斯达克股票代码:SIAL)宣布荣登《企业责任杂志》(Corporate Responsibility (CR) Magazine)“最佳企业公民100强”榜单,该排行榜旨在公布并表彰企业在社会责任领域的卓越表现。Sigma-Aldrich已四次入选该榜单,此次更是以第五名的成绩跻身榜单Top 5。“我们对于在企业责任方面的努力付出能够再次得到认可感到荣幸之至,对公司的最新排名非常满意,”公司总裁兼CEO Rakesh Sachdev评价道,“我们全球9,000多名员工始终将可持续发展放在工作的首位。对于公司所取得的长足进步及其对周围世界所产生的积极影响,我倍感自豪。”此次第16届“最佳企业公民100强”榜单根据300多项公开披露的数据以及业绩指标进行评定,包括七大类公共信息:环境、气候变迁、劳工关系、人权、公司治理、财务、慈善和社区服务。该榜单根据Russell 1000指数进行公司排名,并由企业社会责任长协会 (CROA) 下属的分级和排名委员会确定评选方法。完整企业榜单见:www.thecro.com。Sigma-Aldrich公司位列第五,名次较2014年上升23位。“我们将通过充分调动员工的积极性,持续改进工作来不断发挥公司在可持续发展和社会责任领域的领导性作用,”Sigma-Aldrich 企业公民经理Jeffrey Whitford表示,“我们在内部的长足进步是一个良好的开端,而通过使用绿色化学技术帮助超过140万客户降低其研发对环境的影响,这则将带来真正意义深远的影响。” 关于Sigma-Aldrich:Sigma-Aldrich是世界领先的生命科学与高科技公司,专注于提高人类的健康与安全。Sigma-Aldrich生产销售250,000多种化学品、生物化学品和其他必需产品,服务全球超过140万来自科研和应用实验室、工业和商业市场的客户。Sigma-Aldrich公司有三个不同的业务部门研究,应用和SAFC商业,致力于让科学提高生活质量。Sigma-Aldrich在37个国家设有营运机构,雇员超过9,000名,2014销售额达到27.9亿美元。 关于Sigma-Aldrich更多信息,请访问:http://www.sigmaaldrich.com 。Sigma-Aldrich是Sigma-Aldrich Co. LLC.在美国和其它国家的注册商标。
  • 全柱成像等电毛细管电泳技术与高分辨质谱联用,助力复杂蛋白治疗产品深入表征
    近年来,随着人们对医疗健康行业需求的不断增长,生物制药行业也在随之蓬勃发展。近两年的新冠疫情全球大流行,在改变人们日常生活的同时更是催生了生物制药行业对于先进分析技术的需求。蛋白质分离、纯化和分析是生物治疗药物开发中的关键组成部分,但该过程可能复杂且极具挑战性。而全柱成像等电毛细管电泳(whole column imaged capillary isoelectric focusing, WC-iCIEF)技术,可以根据蛋白质的等电点(isoelectric point, pI)差异将其分离,在此基础上,将iCIEF与高分辨质谱联用,可以借助质谱的高灵敏度、高分辨率和高质量精度使各种蛋白质变异体的鉴定更容易、更准确。从2021年6月开始,我们与蛋白质成像技术专家 Advanced Electrophoresis Solutions Ltd (AES)宣布达成协议,将蛋白质分离技术与质谱相结合,通过简化表征来推进治疗性蛋白质药物的开发。到目前为止,通过将iCIEF技术与高分辨质谱联合使用,我们已经对单抗、ADC和融合蛋白等多种产品进行了各种层面的表征。下图1~3展示了iCIEF技术对单抗\ADC\融合蛋白的分离结果,可见对于不同种类的重组生物治疗性产品,均可根据pI差异将其电荷变异体进行分离,且系统具有优异的稳定性与重现性。图1 iCIEF-UV分析帕博利珠单抗电荷变异体,8针平行进样(点击查看大图)图2 iCIEF-UV分析恩美曲妥珠电荷变异体,3针平行进样(点击查看大图)图3 iCIEF-UV分析依那西普电荷变异体,3针平行进样(点击查看大图)滑动查看更多我们使用的CEInfinite iCIEF平台(AES)除了高质量的iCIEF-UV功能外,还可以与高分辨质谱直接在线串联,直接测定电荷变异体的分子量,无需额外转换接口。下图4展示了我们使用iCIEF-MS直连技术分析帕博利珠单抗的结果,可见即使是pI仅差0.02的碱峰B1和主峰,也可以在iCIEF上得到基线分离,随后的高分辨质谱分子量测定结果显示该碱峰与主峰相比,主要差异是其中一条重链的N端未发生焦谷氨酸环化。另外观察原始质谱谱图不难发现,得益于Orbitrap高分辨质谱的灵敏度,即使是强度比主峰低2~3个数量级的碱峰B3,仍可得到糖型分布清晰的谱图。图4 iCIEF-MS在线直联分析帕博利珠电荷变异体。上,iCIEF-UV分离图谱。中,碱峰B1与主峰解卷积结果镜像图对此。下,主峰与所有碱峰原始质谱图对比。(点击查看大图)与市面上其他供应商相比,AES的CEInfinite iCIEF平台具有一个独特优势:可以实现全自动的馏分收集。我们选择了帕博利珠单抗,对其电荷变异体的每个峰离线收集后进行酶解,随后上样至高分辨液质联用平台进行肽图分析。图5展示了酸/碱峰中各种CQA含量的变化,可见轻重链末端、重链糖型和侧链常见PTM的变化趋势。另外通过表1中分离之前/之后特定CQA含量对比可以很明显的发现,经iCIEF分离后,酸/碱峰中特定修饰的比率有明显增高,可见基于pI差异,将生物治疗性产品的电荷变异体进行分离后,接下来采用肽图进行深入表征的分析策略,能够帮助研究人员将导致电荷异质性的修饰精确定位到氨基酸位点的层面。图5 iCIEF-MS离线收集馏分,酶解肽图分析酸/碱峰中各种CQA含量的变化。上,末端修饰变化。中,重链糖基化修饰变化。下,侧链修饰变化(点击查看大图)表1 iCIEF分离前/后特定CQA含量变化情况对比(点击查看大图)这部分工作已经在2021年的美国质谱年会上发表,有兴趣的读者扫描一下二维码下载原文:在精zhun医疗概念兴起的推动下,对生物治疗性产品表征的需求不断增长,将高分辨质谱与基于电荷异质性的iCIEF蛋白质分离技术相结合,将支持我们的客户实现更精确的分析,在持续开发生物治疗性产品的进程中发挥重要作用。如需合作转载本文,请文末留言
  • 盘点氮的测定技术,一个长盛不衰的分析技术
    盘点氮的测定技术,一个长盛不衰的分析技术——致敬定氮技术百来年给人类带来的贡献写在格哈特175周年庆典之际 定氮,氮的测定,我们从事生物化学分析者接触到的最基础分析技术之一。定氮,太熟悉了!——我们真的很清晰吗?我们既然熟知定氮分析,怎么又有那么多可以纠结的事情?如:这个结果可信吗?这个仪器好吗?这个标准怎么这样的?… … 让我们一起来盘点一下定氮技术,看看我们是否全都认知无疑吧!内容提纲:(文章篇幅有点长,可以分提纲查看喜欢的内容)l 氮循环——大自然活动的基本循环l 人类对氮的认识,经历了250年,有将近100年氮被认为是无用的东西l 有机化学的发展,引发了人类对生命的研究,氮开始成为生命至关重要的元素l 定氮技术让我们认识了蛋白质,蛋白质的发现锁定了定氮技术l 凯氏定氮法之所以伟大,在于其方法原理清晰无疑,无以比拟l 当今的定氮,凯氏定氮法和杜氏定氮法并驾齐驱,共担参比方法n 现代的凯氏定氮法,终极参比方法n 现代的杜氏定氮仪,3-5分钟完成一个样品的分析,结果精度比凯氏定氮高一个数量级 ============== (本文撰稿人,陈奕,cy@cgerhardt.net,个人文责自负!)氮循环——大自然活动的基本循环 这是大自然活动的基本循环,周而复始,生生不息,一图尽述,搞定氮者不可不知。 人类对氮的认识,经历了250年,有将近100年氮被认为是无用的东西 我们在做定氮,可曾经想过,我们是怎么认识氮的? 1772年,丹尼尔卢瑟福(Daniel Rutherford,苏格兰化学家),在经过了50年的探究,否定了之前的认识:1722年,他与其老师做了一个实验:在一个密封容器中放进老鼠和蜡烛,一段时间后蜡烛熄灭,老鼠死亡(我们现在都很清楚是怎回事),但容器还有很多气体残留,他用石灰水吸收了已知的一种燃烧后的气体(我们现在都知道是二氧化碳)后还有很多气体。本来这个结果是与“燃素论”很不相符的结果,可他们那时就没有正确认知,一起受“燃素论”错误引导,认定是“燃烧剩余的废气或者有害毒气”。 否定意味着新的认识。卢瑟福重新认定,原来以为的“废气”是空气中一种可以分离的成分,而不是燃烧后的废气。但是,他那时候还不知道是什么气体,只能对其性质做个描述:不能维持动物的生命,既不能被石灰水吸收,又不能被碱吸收,还不支持燃烧,并把这种物质定义为“浊气”。250年前就有这么深奥的研究,我们确实应该纪念,卢瑟福是第一个确定氮这种物质的先辈。 1787年,“近代化学之父”的法国化学家,元素命名发明者,安托万洛朗拉瓦锡(Antoine Laurent de Lavoisier,历史上最伟大化学家之一)首先给“浊气”定义为一种“无活性气体”的元素“氮”,后人重新定义为“硝石素”Nitrogen。 拉瓦锡除了给元素命名,更重要的是提出“质量守恒定律”而开创了定量化学。这里我们特别要提他,还在于他提出的“燃烧氧化学说”。这个学说可是现代化学研究的基础方法,我们第一个定氮技术就是燃烧氧化学说引发而来的。1777年拉瓦锡发现了Oxygen(氧,酸素),继而发现“水”不是元素,是氧元素和另一种“成水素”Hydrogen(氢)所构成,因此有了“通过氧气燃烧的方法形成氧化物,然后再分析氧化物”这样的化学研究方法,并且发现了物质是元素的不同组合转化,其总质量是不变的。他也因而想到:植物是以空气和水为生,动物是以植物或素食动物为生,而每一种生物最后仍把吸收的东西归还尘土。发酵,腐败,以及燃烧,是一切东西归还尘土的过程。生命是循环不已而前进的。 有机化学的发展,引发了人类对生命的研究,氮开始成为生命至关重要的元素 19世纪初,后来被誉为“有机化学之父”的德国化学家尤斯图斯冯李比希(Justus von Liebig,历史上最伟大化学家之一)沿着拉瓦锡(见上)的推断,优化了燃烧实验设备,形成了燃烧法分析的基本设备,研究有机物的燃烧产物。那时侯,大家认为这类物质是碳、氢、氧三种元素组成,而组成比例的不同,物质的性质就不同。拉瓦锡是第一个开展有机物研究的科学家,他用测量燃烧产生的气体的体积,然后通过冷却的水分和吸收了二氧化碳后体积的减少等办法,测定出有机物含有碳氢的比例,并测算出有机物的组成。 因为气体的体积测量很难准确,1831年,李比希根据产生的二氧化碳和水的量能够精确的确定碳和氢的含量,发明了用固体吸附剂吸收燃烧后的水分和二氧化碳,而用重量变化代替气体检测,李比希发明了5联瓶的燃烧装置成了研究有机物成分的基本设备。 人们在应用李比希的燃烧法测定有机物的碳、氢、氧比例时,发现经常有些误差,尤其是存在一些意外的气体,人们因此开始发现有些有机物还含有氮。1833年,法国化学家让-巴蒂斯特安德烈杜马斯(Jean Baptiste André Dumas)在李比希的燃烧装置中加入铜粉烧红以使氮氧化物还原成氮,然后在后面连接了一个集气量筒,量取集气量筒中收集的气体就知道有多少氮气产生,因此建立了世界上首个氮的测定方法——杜马斯燃烧法(杜氏定氮法)。杜马斯定氮法的基本原理,至今没有变化,只是设备化并应用了各种新的处理技术、检测技术来实现,并且发展成为五大有机元素CHONS(碳、氢、氧、氮、硫)的基本分析方法。 大家有没有想到,在杜马斯发明这个定氮方法的时候,人们还没有认识蛋白质。这个时候,人们仅认识几种含氮的有机酸——氨基酸,但已经知道自然界的生物样品中含有氮。经过系列研究,人们发现碳氢比、碳氧比、乃至碳氮比对某些具体的物质其比例基本一定,并与某些物质有很好的相关性,这些发现大大地加快了人们研究生物物质的进度。化学界在之后的近百年间,几乎都是围绕着氮这个元素发展的,人们发现了蛋白质,发现了生命的基本物质,进而发现了生命的遗传物质,进而开始了维持生命生活的营养,定氮技术也就成为了研究生命活动的重要手段。 定氮技术让我们认识了蛋白质,蛋白质的发现锁定了定氮技术 在18世纪,安东尼弗朗索瓦德福克罗伊(Antoine François de Fourcroy)等就从动植物材料中发现了一类独特的生物分子,用酸处理能够使其凝结或絮凝,但还不知道是什么东西。 1820年法国H.布拉孔诺 (H. Braconnot)发现甘氨酸和亮氨酸,这是最初被鉴定为蛋白质成分的氨基酸,以后又陆续发现了其他的氨基酸。 荷兰化学家格利特马尔德(Gerhardus Johannes Mulder)对之前发现的有独特性质的生物物质深入研究。他观察到有生命的东西离开了它就不能生存,那是生物体内一种极重要的高分子有机物,占人体干重的54%。他对其进行元素分析,发现几乎所有的物质都有相同的实验公式。1838年马尔德(Mulder)的合作者,瑞典化学家永斯雅各布贝采利乌斯(Jöns Jakob Berzelius,历史上最伟大化学家之一)用“Protein(蛋白质)”这一名词来描述这类分子。Protein来源于希腊语,是“唯一的最为重要”的意思。这个时候,人们还不知道蛋白质的真谛,但已经发现蛋白质的组成中大约为:碳50%, 氢7%, 氧23%, 氮16%,硫0~3%,其他元素很少,这个比例对于所有蛋白质都基本一致,且都含有NH2这个基团。伟大的化学家李比希是首先认定这类天然物质是由碳氢氧元素组成的,但他当初并不认为那是一类化合物。1814年伟大的化学家贝采利乌斯命名“有机物”时的定义也只是一类来自于生物体的“有生机的物质”,并不认为是自然界的一大类物质。 这个观点是燃烧定氮法发明者杜马斯首先破除的,他是首先提出“基团论”,并形成“结构化学”学科和有机化学学科奠基人。他发现“有机物”并非李比希等所认为的“物质都是矿物元素为基本组成而具有相关元素相关的性质”,而是另外的一类物质,多个元素组成“基团”,而产生完全不同于元素所具有的性质这个“有机物的真谛”,那是有机化学,乃至生物化学的重大发现,他的“反动发现”(他作为一个年轻人挑战李比希等权威专家)和研究,后来都证明是对的。他于1838年给葡萄糖(1747年有分析化学之父德国化学家马格拉夫(Andreas Sigismund Marggraf)所发现)定名,随后有了“氨基酸”,因为该类物质都含有氨基(NH2)——一个有活性的基团。所以我们说李比希是有机化学之父,而杜马斯是有机化学的奠基人,甚至是“有机化学学科的创始人”——法国著名有机化学家查尔斯-阿道夫武尔茨 (Charles-Adolphe Wurtz,有机化学极重要的“武兹反应”的发明者)的评语。 “有一类有机物不仅含有碳、氢、氧,还含有氮,而且是所有生物都具有的活性物质”这样的结果,在化学界、科学界乃至人类史上具有极其重要的意义。因此,荷兰科学家格利特马尔德在1838年发现了蛋白质,他观察到有生命的东西离开了蛋白质就不能生存,蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。后来的研究才发现蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质,光人体内估计就有10万种以上的蛋白质,而用于构建蛋白质的氨基酸只有20种(还有2种氨基酸是特定情况才有的)。这个结果也引发了李比希、杜马斯等有机化学科学家为首的大批人对蛋白质含量分析的研究。 杜马斯定氮法(Dumas Nitrogen Method)无疑是最重要的分析手段,但当时燃烧法是极其麻烦和耗时且很难做好的方法。1841年之后的很多年,杜马斯等都在开发化学的方法,他是首先提出把有机物中的氮转变成氨来测定的,但他和其他多个同行试验了很多年,未能找到合适的方法,他们的实验思路基本上是用碱法处理样品,把燃烧后的氧化氮用碱还原成为氨,这是一条非常麻烦的思路,方法上就没有对路。杜马斯等的化学定氮方法探索,包括“Nessler试剂法”、“Biuret法”、“Berthelot法”等蛋白质测定方法的开发,更有后来对非蛋白质氮的研究并产生出“氮转换因子”NCF(Nitrogen Conversion Factor)等,都可能是凯道尔提出“酸消化方法”的前期基础。 奥洛夫哈马斯滕(Olof Hammarsten),著名的瑞典生理生化学家,数十年研究酶和蛋白质的作用,尤其是系统的研究了蛋白质的组成,非蛋白氮和总氮的关系,基本形成了通过蛋白质中氮含量的相对稳定比例,提出了用定氮方法,用NCF的换算,可能测定蛋白质含量的思路,并在1883年,在他的新论文中系统的提出了6.25作为蛋白质的NCF换算系数 [O. Hammarsten,“Zur Frage ob das Casein ein einheitlicher Stoff sei”, Zeitschrift fu ̈r Physiologische Chemie, “酪蛋白是否为单一物质”,生理化学杂志(德国),vol. 7, pp. 227– 273, 1883.],这给同年凯道尔报告他的定氮方法在啤酒发酵上的蛋白质定量分析,提供了计算依据。把6.25叫做“凯氏定氮系数”其实是我们后人“张冠李戴”。 凯氏定氮法之所以伟大,在于其方法原理清晰无疑,无以比拟 1883年3月7日,嘉士伯啤酒厂的老板,丹麦著名酿酒师雅各布克里斯蒂安雅各布森(Jacob Christian Jacobsen)在丹麦化学学会年度会议上,邀请其引以为荣的嘉士伯基金会实验室化学部主任,约翰古斯塔夫克里斯托弗托尔萨格凯道尔(Johan Gustav Christoffer Thorsager Kjeldahl)博士介绍其在嘉士伯啤酒厂搞的科研成果,利用“酸消化后蒸馏滴定”检测啤酒酿造过程中跟踪发芽期间谷物中蛋白质的变化的技术方法。 同年,这一方法用“测定有机物中氮的新方法”标题发表在德国分析化学杂志《Zeitschrift für Analytische Chemie》[Kjeldahl J. Neue methode zur Bestimmung des Stickstoffs in organischen Körpern. 1883 22:366–382],并在嘉士伯实验室的通讯中用法语和丹麦语书写。因为雅各布森非常敬重法国著名的微生物学家路易斯巴斯德(Louis Pasteur,,微生物学鼻祖,巴氏消毒法发明者——首创用于解决啤酒变酸问题的办法),以及他为法国葡萄酒行业所做的贡献,法国人也大量发表了“嘉士伯论文”的摘要。在1883年8月的《化学新闻》上刊登了“凯氏定氮法论文”的扩展摘要[Kjeldahl J. New method for the determination of nitrogen. Chemistry News. 1883 48(1240):101–102],使得该方法很快被广泛传播。 尽管布莱思(Blyth)曾简要提到过该方法,但给出的凯氏定氮法名称错误地称为Vijeldahl[Blyth AW. A method of determining organic nitrogen in liquids. Analyst. 1884 9(7):115–116],凯道尔实则在1885年首次在《分析家》[Analyst Ed. On Kjeldahl method for determination of nitrogen. Analyst. 1885 10(6):127–128]和《分析学报》给出了该方法的细节。在极短的时间内,凯氏定氮法在欧洲和美国众多新闻出版物上转载了这一主题。在如此惊人短暂的时间内,没有一种分析方法像这种评价氮的“凯氏定氮法”那样被广泛选用。“凯氏定氮法”造就了凯道尔,一个化学家的名字能够流芳千古并且其方法能够用其名字来冠名已经少见,而能够成为一个动词使用,如“这个样品凯氏一下”、“这个结果是凯氏来的”这样的表述,后来更是成为一门“学科”,凯道尔时代是绝无仅有的。 凯道尔为“凯氏定氮法”专门设计了一个反应容器,称为“凯氏烧瓶”,他从纯粹化学处理的角度出发,采用加热浓硫酸消煮样品直至样品澄清,此时样品中的蛋白质被消煮为留在硫酸中的硫酸铵,而碳被消煮为二氧化碳、氢和氧被消煮为水,后两者都变成气体跑掉,可能含有的硫、磷等其他元素不是变成可溶物就是气化掉,然后硫酸铵就被“凯氏定氮装置”加上苛性钠变为碱性环境,硫酸铵就变成氨(气),很容易就被加热用的蒸汽“蒸馏”带出来,氨和水蒸汽形成氨水是碱性,用一个定量的酸(硫酸溶液)就可以收集,再检测酸溶液残余的浓度(用准确的碱来滴定),就可以计算出含氮量。 这样的方法原理及其清晰无疑,所有搞化学的人一看就明白,而且清楚如何操作。人们发现原来用杜马斯等的定氮方法极难操作的定氮方法(大家都清楚用氮的转化因子NCF=6.25折算就可以获得蛋白质含量),自己在实验室就可以完成。世界顿时沸腾。 凯道尔本人并没有在凯氏定氮法上做深入的研究,他的兴趣是酿造化学,所以后来的“凯氏化学”可以说与凯道尔没有关系。 因为凯道尔的方法还很原始,工作效率很低,最长的消化时间可能达到两周时间(消化“焦煤”样品),蒸馏滴定需要两种标准溶液的操作,和现代的方法先比较,还是费时繁琐,但原理清晰,方法可靠,随后数十年,科学界(不仅仅是化学界,物理学界、仪器界等都加入)把凯氏定氮法变成一门“学科”——凯氏化学,并盛行至今不衰,“凯氏粗蛋白含量”也成为不二的参比方法结果。随着现代仪器科技的发展,古老的凯氏定氮法“脱胎换骨”成为当今近乎“傻瓜式”的定氮方法,一般样品基本一个多小时(批量样品5分钟左右)就可以获得确切的结果,越来越受青睐。定氮技术毫无疑问,是人类化学史乃至生物科学史最伟大的技术方法。 当今的定氮,凯氏定氮法和杜氏定氮法并驾齐驱,共担参比方法 分析方法属于专业技术,和我们这样的科普性内容有点相悖,因此这里尽量不讲述得太专业和太细致。如果需要深入了解,我这里欢迎大家随时随地的联系我,或者中国格哈特仪器公司,这是一家拥有175年历史的德国分公司并具有40年本地服务经验,格哈特见证了凯氏定氮技术发展的全过程,参与了凯氏定氮技术发展的全过程,同时拥有最顶级凯氏定氮分析仪器和杜氏定氮分析仪器,相信能解决目前社会上遇到的所有相关定氮的问题。如果大家对技术概要都没有兴趣了解,这一段内容其实是可以不费精神的。 现代的凯氏定氮法,终极参比方法: 现代的凯氏定氮方法:样品+浓硫酸+凯氏催化剂,400度1小时加热消化,可以全自动完成;蒸馏分析采用硼酸做吸收液,仅需一种标准溶液,5分钟分析,可以有标定好的标准溶液,全自动分析,符合GLP要求。最高级的方法近乎“傻瓜式”,“自动化”的仪器技术方案已有40多年,科技的发展带来的先进性无容置疑。 凯氏定氮,也早已变成万用的定氮方法,不仅是测定蛋白质,所有需要定氮分析的样品,全都可以按凯氏定氮的法定标准方法。如果任何其它直接或者间接的定氮分析方法有任何争议,最终以“直接法测定”的凯氏定氮为仲裁。近140年的凯氏定氮发展,NCF(氮的转换因子)也变成了“凯氏因子”,在精细测定蛋白质含量是还可以有多种和凯氏定氮相对应的NCF(需要明示),获得更加精准的蛋白质评价。所有的分析过程产生的废气废物都可以有合理简单的处理防范措施,仪器设备技术越来越精准、可靠,最精准的仪器技术已经可以很精确的测定精准到0.05mgN的水平(一般要求达到0.1mgN以下)。仪器维护技术和服务方案更可以做到“给您一个无忧无虑实验家园”的水平,服务质量可以做到7x24小时在线、视频指导、微信服务等及时到位的本地服务质量… … 现代的凯氏定氮仪,已经没有多少原理技术可以改良,毕竟那是100多年已经定型无疑的原理和技术方案。所以如果有谁告诉你他的定氮仪技术多先进,能够做得更好,那一定是不懂凯氏定氮的技术。凯氏定氮方法,不管是最简单的纯手动纯手工搭建的定氮装置,抑或是最高级的最专业的系统,所得到的结果必须都是一样准确,一样稳定,一样的好,那才叫合格的做凯氏定氮,这一点我希望能够获得大家的共鸣。当然,一分钱可能就有一分价值,可一定不是在结果的准确性和精确性上(那不可能差异太大),最多就是稍微稳定、重现性好点,例如能够控制到0.05mgN的检测精度(凯氏法综合测定已经不可能低于这样的检测限,除非是直接测定标准品并且是不做消化过程的。这个只要懂得凯氏定氮的方法原理,就必须懂得这个道理!),检测误差或者重现性低到0.5%相对误差(这个也是直接标准品测试的结果),正常化学分析的有机样品是基本不能保证低于这样的误差的,因为那是全过程的操作基本误差,化学分析技术告诉我们,不高于1%的误差(普通含量的样品)那是合理的操作误差,凯氏定氮因为有人工操作的部分,非常专业的水平和非常专注的操作,才能控制在低至0.5%的操作误差这个层面。但作为凯氏定氮的样品分析,是绝对不可能保证到0.5%的误差水平的,也没有必要,只要不高于1%的水平就可以。如果确实需要更高的检测误差,那就应该采用检测精度高一个数量级以上,大部分都是仪器自己完成的杜马斯燃烧法定氮,而不要对凯氏定氮做这种无知的要求。 那现在的凯氏定氮,有什么技术上的差别?严格来说就两个方面:一是持续稳定性,二是操控便利性,当然可以有一些细微的技术应用,但对价值不会有太大影响。这个方面要论述可能太长篇,也不适宜,这里只是给大家分享一点常识性知识。l 持续稳定性是现代仪器品质、档次的基本表现,其实就是仪器硬件综合性能的表现。调试好的仪器,都必须是精准的,但能够持续稳定较长久的保持精准,那就是技术、品质的保障,这些方面千万
  • 我司技术总监唐涛博士担任《色谱》杂志青年编委
    4月20日,《色谱》杂志编委会2019年工作会议在上海成功召开,会议由主编张玉奎院士主持,来自全国各地的32位编委和19位青年编委出席会议。 本次编委会上正式成立青年编辑委员会,并针对青年编委会提出新一年的工作计划。主编张玉奎院士和副主编江桂斌院士为首批青年编委颁发了聘书。我司技术总监唐涛博士当选首批青年编委。唐涛博士毕业后一直在大连依利特分析仪器有限公司就职,主要从事液相色谱仪器的研制、色谱分析方法的建立、色谱填料基质的研究开发工作,参加了多项国家、省、市的科技研发项目;负责研制的色谱产品,销售额上千万,并多次获得行业内各种奖项;参与多项国家、企业标准起草工作;在国内外刊物上发表论文数十篇,参加撰写专著二部。 会议上,《色谱》编辑部主任侯春彦还回顾了期刊第六届编委会在过去4年聘期中所做的工作,介绍了新一届即第七届编委会。左一张玉奎院士,右一江桂斌院士,右五唐涛博士
  • 实验室的智能革命:智慧诞生之路
    实验室的智能革命:智慧诞生之路当前,全球经济正向数字经济加速转型。新一代信息技术引领和带动传统产业向高端化、绿色化、数字化升级,数据、知识等新型要素正替代资本等传统要素成为关键驱动力,为组织创新和产业变革带来重要历史机遇,这,就是第四次工业革命。或者我们也可以将其称之为,第一次智能革命。# 一智慧实验室:从智能革命中诞生实验室是科技前沿领域的排头兵,一向与技术转型变革同频共振。“智慧实验室”是智能革命与实验室发展理念融合的产物,前者侧重前瞻引领,后者侧重科学系统。作为现代实验室加速发展的关键路径,厘清“智慧实验室”的价值导向、能力主线和数据驱动方式有助于我们发现问题、分析问题、解决问题,最终走向智能革命前沿,实现科学发展。但要说清楚智慧实验室是什么,我们必须从源头讲起。过去,实验室是作为人类在自然科学技术方面活动的场所,即保障研究者的知识、经验、方法等验证无误的执行;但随着社会快速变化,需求和竞争环境决定了实验室需要缩短技术创新迭代周期、按需匹配、提高效率,传统方式已越来越力有未逮。于是在进入数字时代后我们开始利用信息技术把研究者的知识、经验、方法转化为计算机的知识,再由计算机来辅助执行,这就是智慧实验室的源头。# 二实验室“智慧”发展的三个阶段然而,人的智慧不仅仅包括人类在自然科学技术方面的巨大成功,也包括在体制、机制创新等方法论层面进行的探索与实践,所谓智慧实验室如果仅仅是承载人类科学技术知识方面的经验显然是不够的。按照管理学的理论:组织可分为三层架构,第一层是决策层,第二层是管理层,第三层是执行层。一个使用大量机器人的实验室,管理者不去适应新技术的变化,依旧采用以往的经验管理,它的智能依然只体现在执行层,它的智能依然局限于自动化范畴,在决策层和管理层的智能化仍有缺陷。简单理解,工具没有智慧,新的价值与空间,仍需要领航者自己去开辟。所以,一个实验室发展到了什么程度,关键因素取决于主导者在何种层面上,适应融入了智能化的驱动方式——以数据驱动。初级阶段:业务数据化建设信息系统,实现实验室业务管理的数据化,业务相关表单和信息流转以数字方式存储,达到业务数据可利用、可溯源、可改进,业务数据化带来的好处是实现更为精细的运营。中级阶段:数据业务化基于大量的运营数据分析,对实验室的运作逻辑进行数学建模,优化之后,反过来再指导实验室日常运行。数据业务化打通各个信息孤岛,让数据得以连接,让数据产生价值。通过对这些数据进行综合地、多维地分析,对实验室的运作逻辑进行数字建模,指导并服务于实验室的日常运营。最终目标:智能化智能化重塑“人、机、料、法、环、测”实验室全要素:“人” 不再只指向实体世界的人,同时不断延伸数字人、AI等;“机” 不再只指向科学仪器设备,同时不断涵盖跨领域复合型智能设备等;“料” 的运行不再有复杂的环节和管控,需求端和供应端将呈网状协同,高效而又安全;“法” 将形成业务生产数据、数据反哺业务的局面,不断衍生出融合型和细分方向的全新成果;“环” 成为实验室彻底无感的要素,环境与资源友好,虚拟仿真与现实实验互补,处处皆可控,也就不再需要关注;“测” 将增加数据维度的新标准、新体系,如数据可信度、知识库等;所有要素都不是静态不变的,而是形成与时俱进、动态优化的战略闭环。概而论之,实验室智能化将超脱解决实验室内部问题的藩篱,专注于将智能科技转化为实验室生产力。# 三智慧实验室不是什么?是什么?从智慧实验室的发展阶段中我们发现,智慧实验室是一个系统性的工程,智能化不可能一蹴而就。主导建设者不必从一开始就高屋建瓴:实验室建设就好像是一个人的成长,十几岁的时候长身体,二十几岁的时候长心智,每个阶段,有每个阶段的长势。点击图片查看大图▲ ▲ ▲ 智慧实验室不是遥不可及的远景而是一步一个台阶的风景如果我们继续深入探究,当我们连接所有的场景建立数字化实验室,是否就意味一个无人的实验室?事实上,智慧实验室或许会部分替代执行层和管理层需要的人员,但对流程设计、设备操作、创新等方面的智能化人才反而提出了更高的要求,我们需要组建跨部门、跨专业、跨领域的新型团队,以挑战更复杂也更有价值的不确定问题。可以说未来实验室人员思维模式和能力的智能化,才是智慧实验室的关键根基。▲ ▲ ▲ 智慧实验室不是无人实验室而是更要“以人为本”在智慧实验室动态发展的过程中,涉及到个体、部门、组织、行业等多个层次,以及技术、管理要素、业务等各个方面,智慧实验室建设依赖每个个体的参与,也有助于赋能每个个体挖潜、提质、增效,绝不是顶层受益、底层受累的运动,主导建设者应有主线思维:转型本质上是为了优化创造、传递和获取价值的系统,面向智慧实验室发展需要以价值为导向。▲ ▲ ▲ 智慧实验室不是价值再分配而是价值的创造综上所述,智慧实验室在每一个方面都有新的可能,这让我们无法具体的描述智慧实验室最终会成为什么样子。唯有我们都将智慧实验室作为一个动词而非形容词,或许才能恰当的回答智慧实验室是什么。正如今天大海上航行的船长什么样,是大海说了算的,我们看不见别的样子的船,是因为那些船都沉了。真正塑造船的不是造船师,而是大海。可以说,智慧实验室就是一艘行驶在智能革命的星辰大海上的舰船。中国载人航天科学实验空间站是智慧实验室最佳蓝本/ 以人为本 / 创新价值 / 高度智能化 // 数据驱动 / 生态共享 / 探索未知领域 /研一实践研一根据智慧实验室发展演进规律和实验室用户发展现状,从物资管理入手,构建产品+技术+服务一站式解决方案,借助与用户、行业的密切交流,与项目建设的全环节跟进,与实验室用户共建共享智慧实验室建设总体布局和整体设计的经验,以期在“人、机、料、法、环、测”各要素上逐步加速向更高层级跃升。立足实验室用户视角,从智慧赋能、技术突破、多维管理、业务增益等多角度为用户创造价值,帮助用户提升物资运转效率和质量,取得智慧实验室发展成效。天下难事必作于易,天下大事必作于细。智慧实验室建设既要实验室的老师们敢大胆尝试,也要研一这样的建设者小心实践;既要实验室一线工作者贡献经验,也要幕后设计者主动技术交流;需要研一这样的建设者专注产品研发,更要融入主导建设者的指导和建议。以推动者与创新者的觉悟踏实实践智慧实验室建设是研一智控矢志不渝的使命与时代担当研一愿与智慧实验室发展同生长、共呼吸期待与您共话未来!路漫漫其修远兮,吾将上下而求索。
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 安捷伦科技推出的全新自动化蛋白样品前处理解决方案可提高复杂工作流程的精密度和通量
    安捷伦科技推出的全新自动化蛋白样品前处理解决方案可提高复杂工作流程的精密度和通量 2014 年 6 月 17 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日宣布推出两种自动化蛋白样品前处理解决方案:AssayMAP 磷酸化肽富集解决方案和 Affinity 纯化工作流程解决方案。它们是安捷伦整套产品系列的一部分,可帮助客户优化最具挑战性的蛋白样品前处理工作流程。 传统的样品前处理方法在手动操作时间和重现性方面往往表现出难以维持和不稳定等不足。相反,AssayMAP 磷酸化肽富集解决方案为质谱分析提供高重现性且自动化的磷酸化肽富集。利用 Affinity 纯化工作流程可直接纯化目标抗体或通过固定化抗体进行纯化,以捕获其抗原。 安捷伦生命科学解决方案分部的副总裁兼总经理 Yvonne Linney 说道:“安捷伦正在全面改善基于液质联用系统的蛋白质分析,包括样品前处理、分离和分析型质谱。我们将仪器研发工作与 AssayMAP 样品前处理解决方案相结合,提供从样品到分析的更完善的端到端工作流程解决方案。AssayMAP 是一种平台技术,能够帮助分析科学家最大程度提高工作效率,以此取得更大的成功。” AssayMAP 平台采用当代先进的方法来克服样品前处理所面临的挑战。此款简便易用的解决方案包含由软件进行直观操作的经过验证的自动化方案(AssayMAP Bravo 液体处理仪器),以及一套经优化适用于蛋白分析工作流程的 AssayMAP 小柱。可结合各项应用执行功能强大的一体化工作流程。AssayMAP 帮助客户充分利用这种分析方法的优势对多肽进行可靠的鉴定,从而使完成大型质谱分析项目成为可能。 要了解更多信息,请访问 Agilent AssayMAP 多肽样品前处理网站。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 李侠:科技体制改革弹性有多大
    时至今日,科技体制改革面临的最大理论问题就是变革的弹性:即集中与自由是以二元形式存在,还是集中为主,自由为辅?或者反之,自由为主,集中为辅。其实,这个问题也是国际科学界长期以来没有根本解决的问题。个人和组织常常会陷入某种既有的观念框架中,以至于无法想象出其他的选择模式,这就是典型的&ldquo 认知路径依赖现象&rdquo 。人是自己所拥有的观念的奴隶,作任何决策时我们都不应该忽略认知模式所施加的影响。   回首即将过去的一年,新一轮科技体制改革的大幕已经徐徐拉开,一些关键信号已经释放出来。例如,在今年由科技部、财政部共同起草的《关于深化中央财政科技计划(专项、基金等)管理改革的方案》中,最引人关注的就是方案提出的&ldquo 科技计划体系主要包括国家自然科学基金、国家科技重大专项、国家重点研发计划、技术创新引导专项(基金)、基地和人才专项5个方面&rdquo 。这5方面的科技计划都要纳入公开统一的国家科技管理平台,中央财政加大支持力度。这则信息内涵丰富:一方面,其界定了未来研究类型的划分 另一方面,明确提出了资源的重新集中化。这实在是近年来科技体制改革少见的大动作。   资源的集中管理解决了前期宏观管理上的&ldquo 九龙治水&rdquo 局面,在微观实践层面则解决了个体重复申报等问题。但现在的问题是,未来政府将不再直接管理科研项目,那么资源集中后将由谁来管理?按照2013年的科技统计公报数据,这笔中央财政拨款达2728亿元之巨,即便5个平台均分也各有约540多亿元。这无疑是一个庞大的资源平台。就目前口碑最好的国家自然科学基金委来说,它的资源总量也就200亿元左右。很难想象500多亿元的平台要拥有怎样的气概?如果仍用原班人马、原有管理模式,那些曾经的&ldquo 973&rdquo &ldquo 863&rdquo 换个名义重新出现在新的机构里,那么这些平台的权力实在太大了,完全有可能演变为霍布斯意义上的新的&ldquo 利维坦&rdquo 。如果这种可能性不能得到有效防止的话,那么只能说此次改革未来将充满不确定性。而且,如果试验失败的话,其后果将是灾难性的。举国科研被SCI牵引的局面就是一个典型例子,终结一项有问题的政策的成本将是巨大的。   其实,资源配置方式从分散到集中,只解决了表面问题,而未触及科技体制改革的实质,即&ldquo 状态&mdash &mdash 结构&mdash &mdash 绩效&rdquo 的根本性改变。集中是我们所熟悉的管理模式,并且凸显了权力的自信,而分权恰恰是我们所不熟悉的。对于以往的&ldquo 集中型分散&rdquo 模式带来的问题,国家作为委托人的极度不满是可以被体会到的:投入与期望的产出严重不对称,同时各种不端行为发生,这种状况必须得到改变。历史的吊诡之处在于,当改变成为所有人的共识时,恰恰意味着谁都不知道该怎么改。但是&ldquo 变&rdquo 又成为双方可化解尴尬局面的唯一出路。改革的潜在陷阱在于,我们所解决的问题远远不及我们所带来的新问题多。那么,如何预防这些潜在的风险?这就是我们所关注的改革的弹性问题,即收与放的问题。   在决定放与收的边界时,要考虑到科技事业的固有特点:科学与自由探索有关,而技术与目标导向与关。前者的产出具有公共物品的属性,适合国家支持,而后者的产出具有商业价值,因此与市场机制匹配。如果完全被市场模式主导,就会出现遏制科学发展的情形。另外,两者的研究属性也不同,前者崇尚自由,后者则是集中约束下的目标定向行为。这些特点决定了科技体制改革的弹性问题,而改革弹性约束了改革的潜在边界。基于此,科技体制改革就是要解决好实践层面的资源分配与激励机制。只有如此,才能带来国人期盼的&ldquo 状态&mdash &mdash 结构&mdash &mdash 绩效&rdquo 的根本性改变,否则片面追求绩效与状态只能是缘木求鱼。   在具体措施方面,我们不妨把资源的竞争性分配与保障性分配区分出来。以往的项目申报都属于竞争性的分配模式,这方面已有很多研究,不再多谈。这里只谈保障性供给模式的建设。科技界不能搞平均主义,保障性供给如何避免吃大锅饭并实现激励机制?笔者曾建议,中国科技界应向国际体育界学习,对各领域的科研人员实行排名制,而排名是定期动态调整的。该项工作可由行业协会与第三方独立机构完成。只有进入排名的才可以申请保障性供给,这样就解决了吃大锅饭与激励机制的问题。   客观地说,如果完全采用竞争模式,其危害主要有两点:其一,带来整个科技界的急功近利与浮躁气息 其二,落后的管理体制无法有效分配资源,只能靠简单地增加资助额度来化解新增资源带来的日益增大的评审成本,从而导致资源的边际效用递减。实行各学科人才排名制,其优点有二:其一,管理部门能时刻掌握人才家底的库存,便于关键时刻解决国家之需 其二,排名制提供的激励机制,最大限度地集聚了当下的智力资源,并能永续地成为国家储备人才的蓄水池。   中国科技已到了从量的扩张到质的提升阶段,如何提升质恰恰是当下破题的关键所在。众所周知,知识产品的生产是有周期的,让科技工作者安静下来,有时间打磨自己的知识产品,就需要从制度层面入手,塑造群体的质量偏好。美国政治学家盖伊· 彼得斯曾说:市场模式的胜利只是意味着市场取向的解决方法已经取得了合法性。问题在于大科学时代,科技内在结构是非常复杂的,任何单一模式都不是包治百病的万能胶囊,我们必须在集中(举国体制)与分散(市场体制)之间寻找一种建设性的均衡。(作者系上海交通大学教授)
  • 数字化改革“成绩单”⑥丨桐乡“田保姆”
    在数字化改革的浪潮下,托普云农全资子公司——浙江森特信息围绕桐乡市粮油、杭白菊、水果等主要农产品生产过程,以政策补贴为抓手,强化农技推广,整合社会化服务资源,构建“田保姆2.0”,实现了农户“零接触”、监管“多方位”、服务“全托管”。 在2021年11月浙江省委全面深化改革委员会推出的“我的数字化改革故事”征集活动中,浙江森特信息(托普云农全资子公司)打造的“田保姆”为农服务应用从全省80多个申报案例中脱颖而出,成功入选为数字化改革9个优秀案例之一。且自上线以来,注册农户超4万人,发放补贴2503万元,提供社会化服务1.2万人次,好评率100%。 一、需求分析 桐乡是浙北重要粮食生产基地,粮食总产稳定在13万吨以上,种植面积稳定在30万亩以上,种粮农户1.6万多户。生产过程中发现缺少快速服务入口、惠农政策申办繁琐、流程审批复杂以及找技术困难等问题。 ①数字化改革的必要进程 随着时代的发展,人民生活水平的提高,信息技术日新月异。对政府的监管能力提出了更高的要求,为了更好的落实“最多跑一次”指导思想,政府需要对信息获取渠道,信息反馈模式有更为现代化的手段,所以“种粮一件事”是政府数字化转型中的必然进程。 ②落实三农服务的长效窗口 “田保姆”定位在农民最关心的“一件事”上。土地、气象、农技、农资、农机、金融、保险、补贴等都是解决农民最着急的问题。想民所想,供民所需,只要农民还要种田,“田保姆”的服务就不会中断。 ③管理规划标准的迫切需要 通过“田保姆”的建设与管理,就是要实现精细化、动态化、标准化管理,通过建章立制、细化标准、优化流程,实现农户通过使用“田保姆”全程在线上政策补贴申请、流转、审核,能够充分有效利用现有资源,提高服务效率和水平。 二、改革创新 田保姆围绕桐乡田间种植产业,以政策补贴为主要抓手,强化业务服务,整合社会化服务资源,从生产销售、风险防控、资金物质保障三方面进行数字赋能,解决农民切实存在的问题和需求。 ①全国首创种粮补贴一次通办 通过GIS地理遥感信息,结合田保姆线上种粮补贴应用,实现农户补贴线上申报,乡镇线上材料审核,农业农村局线上数字统计、财政线上补贴发放。 ②全国首创粮食种植一键托管 整合全桐乡农机、农资、农技社会化服务资源,围绕种粮育苗、耕种、飞防、采收、烘干、存储、粮食订单等全过程实现农户线上一键预约,服务组织一键响应。 ③全国首创农田信息一码查询 构建数字农田专题数据库,整合地理信息、主体信息、地块信息、地力信息、种植信息等相关信息资源,通过数字化管理系统实现农田一码查询、一码感知、一码预警等码上集成应用。 三、应用成效 “田保姆”为农服务应用主要取得了以下三大成效: ①坚持需求导向,解决了农户关心、企业关注的问题 在“田保姆”服务平台上推出了集政府、银行、保险、担保等部门协同多跨的“田易保”和“田易贷”两大功能模块。为全方位满足农事生产需要,又推出了耕、种、管、收、储、销一体化服务,以全市统防统治为例,目前已开展“田保姆”特色化服务17.9万亩,无人机使用率较去年同期增长了4.7倍。 ②坚持目标导向,拓宽了农业增效、农户增收的渠道 运用地理信息、卫星遥感技术,实现全市粮食作物长势、灾害监测、产量预测的定量评价,确保田间管理更加科学精准,农作物丰产丰收。打通生猪精密智管、桐乡农安、低收入数字化帮促等系统,实现互联互通。 ③坚持问题导向,提升了资源保护、生态修复的能力 建立耕地“非农化”“非粮化”监管机制,运用卫星遥感技术,实现全市耕地每月遥感动态监测,通过影像数据自动分析预警占用耕地情况。为了高效推动土壤资源的永续利用,构建土壤健康管理一张图,精准指导农户科学施肥用药,每亩肥药施用量同比减少23.7%。 “田保姆”为农服务,不仅局限于此。未来,浙江森特信息(托普云农全资子公司)将会深耕该服务品牌,在做大做强数字平台的同时,不断优化与健全为农服务体系,助推桐乡市在乡村振兴、共同富裕的道路上加速前行。
  • 蛋白测序技术革新崭露头角!未来可期实现大规模、高通量
    p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/aab48e25-87ad-48f7-bf9a-b2ebac0fa992.jpg" title=" 蛋白.jpg" alt=" 蛋白.jpg" style=" text-align: center width: 522px height: 348px " width=" 522" height=" 348" / /p p style=" text-indent: 2em " 蛋白质是生物功能的主要载体。许多无法从基因层面解释的疾病,蛋白质可以给出我们想要的答案,为此,蛋白质组学应运而生。科学家们预测,随着人类基因组测序工作的完成,21世纪生命科学的研究重心或将从基因组学转移到蛋白质组学。蛋白质组学是后基因组时代生命科学研究的核心内容,想要深入了解蛋白质,进一步认识生命活动和疾病发生的分子机制,首先要有合适的蛋白质测序技术做支撑。为完善蛋白质测序技术科学家做出了许多尝试,如Edman降解,荧光染色、质谱测序等。然而已有的测序方法都存在各种技术不足与应用局限性,不利于蛋白质组学在整个生命科学和生物医学研究中的应用推广。 br/ /p p   近日, strong 瑞士苏黎世联邦理工学院分子生物学研究所的Ben C Collins博士和Ruedi Aebersold博士在Nature Biotechnology发表了蛋白组学平行测序的评论文章“Proteomics goes parallel” /strong ,小编将文章进行了翻译整理分享给大家。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/29198ff0-12dc-4a8b-9f43-a535e065d874.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 目前,蛋白质组测序技术尚不如基因组学和转录组学那么强大。核酸测序技术的表现之所以令人印象深刻,是因为它能利用荧光作为读数进行短寡核苷酸的大规模平行测序。在这个问题上, strong Swaminathan等证明了肽类也可以进行平行荧光测序 /strong 。他们的创新方法将经典的蛋白质测序技术与核酸光学测序系统进行了整合。虽然该方法仍需进一步优化,但这让我们看到了一种普遍可行、可靠和真正通用的蛋白组学测序技术的发展前景。 /p p   蛋白质对于生命系统来说是必不可少的,它们可以作为化学催化剂、结构成分以及生理过程的媒介,能够准确识别和量化蛋白质的研究技术可极大地促进人们对生物学的理解。如今,蛋白质组已经可以由转录组被预测或推断出来。有充分的研究证据表明,蛋白质与mRNA水平之间的联系是复杂的,通过一种组学来预测另一种是不精确、不可靠的。那么, strong 为什么在许多情况下,人们会优先选择通过mRNA预测蛋白,而不是直接进行蛋白质测序呢 /strong ?答案在于两种组学测序技术的发展和物质本身的可检测性。目前,生物学家可以通过已有的核心技术和商业公司获得基本完整的转录组信息及分析结果,而蛋白组分析仍只限于专业实验室研究使用,在通量、稳定性和重现性方面还不能达到转录组分析水平。 /p p   第一代DNA测序仪绘制了具有突破性意义的基因组图谱,其原理是对分离DNA片段进行连续测序。尽管该仪器采用了自动化技术,但整个测序过程也是缓慢而昂贵的。只有开发可平行测序数百万个核酸片段,能够高通量、高覆盖率、低成本生成完整基因组图谱的方法,才能进行广泛的基因组分析。这些具有商业价值的测序技术已经改变了生物医学研究,并成为实验生物学研究的中流砥柱。 /p p   虽然“自上而下”的蛋白质组学研究方法正在逐步发展,但传统的蛋白质定量和测序仍是采用“自下而上”的方法进行。正如基因测序原理一样,这些方法是通过检测酶促反应切割蛋白质产生的肽链,以分析蛋白组成。在20世纪50年代,Pehr Edman发明了一种通过循环化学反应测定肽链氨基酸序列的方法,被称为Edman降解。该方法通过异硫氰酸苯酯与可接近的氨基偶联,然后从肽链的N-末端释放氨基酸并生成新N端,不断重复这一过程,对释放的氨基酸进行鉴定就可以得到肽链的氨基酸序列。 strong Edman降解过程缓慢,需要大量的高纯度肽 /strong ,尽管如此,直到20世纪90年代早期,所有已知的蛋白质序列都是使用该方法确定的。 /p p   20世纪90年代,随着质谱(MS)技术逐渐成为蛋白质测序的首选方法,Edman降解在该领域退居二线。质谱是通过检测质荷比和肽段的断裂模式来推断蛋白质组成和定量。因具有先进、强大和多样化特点,MS已经被广泛应用。仿效基因组学技术的发展路径,MS已经从特定寡聚体的人工测序发展到高通量的肽链自动测序,并发展到通过独立数据分析进行多肽的平行测序,如SWATH-MS。虽然这些方法的通量、准确性和重现性都很出色,但想要与基因组分析一样,实现相似的大样本队列常规、完整的蛋白质组量化目标仍难以实现。 /p p   随着当前数据独立采集MS检测系统的不断发展,最终取得与基因组学研究技术相似性能的蛋白测序技术也有可能实现。此外,要深入了解蛋白质组的复杂性,也需要颠覆性的新技术。虽然蛋白质的纳米孔测序技术显示了很好的发展前景,但StimaaNet等研发的肽荧光测序方法有着明确的常规应用途径,可以看作是这类颠覆性技术最先进的一个例子。 strong 肽荧光测序方法堪称跨越时代的结合,它将几乎被遗忘的Edman降解,与为下一代DNA测序开发的大规模平行荧光成像技术进行了整合 /strong (图1)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/462c7540-6c36-4ddd-8cd7-7b62240980c2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图1. Swaminathan等人所描述的肽荧光测序 /span /p p style=" text-indent: 2em " 复合肽混合物,最有可能来源于酶或化学切割的蛋白质提取物,每种氨基酸残基都有不同的荧光标记(左)。在这种情况下,我们描述了一种双色方案,其中赖氨酸和半胱氨酸残基用不同的荧光标记。利用氨基硅烷的的酰胺键将标记肽的C末端固定在玻璃板。然后通过Edman降解和荧光成像(中)对肽进行N-末端氨基酸残基切割的迭代循环。在每个位置(即肽)的荧光强度被跟踪为Edman循环的函数。荧光强度下降模式为肽的部分序列提供了注释,得到的荧光信号可以与蛋白质序列数据库进行匹配和评分,推断样本中最有可能存在的一组蛋白质(右)。 /p p   肽荧光测序的第一步是在特定的氨基酸侧链上进行荧光标记,并将其C端固定在测序系统的流通槽中,以生成测序底物阵列。然后将固定化肽平行地进行Edman降解,在每一步降解后对固定化底物的集合进行成像。与经典的Edman降解不同,该方法在每个步骤对消除的苯硫代内酰脲-氨基酸结合物进行了鉴定,降解步骤仅用于测定由消除标记氨基酸引起的荧光强度下降。基于该原理开发的软件工具,可以将观察到的荧光信号与蛋白序列数据库结合起来,进而推导出每种固定化底物的序列,也就是肽链的序列。 /p p    strong 该研究已经证明肽荧光测序的可行性 /strong 。具体而言,作者(i)描述了在严格条件下,与Edman降解兼容的成像系统 (ii)测定了模型肽中荧光标记的赖氨酸或半胱氨酸残基的精确位置 (iii)描述了该系统中误差和低效的来源 (iv)研究了从更复杂蛋白质组鉴别蛋白质的潜力,并提供了一种从观察到的荧光信号推断肽序列的计算框架 (v)从含有多个丝氨酸残基的肽中定位特定的磷酸化丝氨酸残基。 /p p   Swaminathan等人开发的肽荧光测序方法是令人兴奋的,因为它开辟了一条通向肽的新研究路径, strong 并使高通量、高重现性和潜在低成本的蛋白质组测序成为可能 /strong 。 strong 该方法的一个显著优点是,它整合了其他研究方法的优势,如Edman降解、大规模DNA平行测序和基于MS的蛋白序列数据库检索计算框架 /strong 。这种策略或有助于加快相关研究方法从证明概念到常规适用的转化速度。此外,该方法产生的数据与基因组学和转录组学的大规模平行先导数据有相似之处。MS蛋白组学技术在技术和计算方面仍存在较大的门槛,应用较为缓慢,与基于MS的蛋白组学技术相比,该方法有助于加速更多的生物体使用肽荧光测序技术。 /p p   正如Swaminathan等人所指出的, strong 在新方法发挥其全部潜力之前,还必须克服一些技术和概念上的挑战 /strong 。这些问题主要源于Edman降解的性质和人类蛋白质组的复杂性,包括以下内容:(i)尽管在研究中每个降解步骤的产率为91-97%,但可检测的肽链长度也是有限的 (ii)由于测序产率与蛋白序列本身有关,具有挑战性的序列,如富含脯氨酸的蛋白序列,可能会影响荧光信号的清晰度 (iii)可被荧光标记的功能基团仅限于肽链中可产生化学反应的基团,主要是氨基、羧基和巯基,因此荧光信号代表的信息量也会受限制 (iv)经修饰的残基通常不能被识别,除非经过特异荧光标记,这种特殊标记仅对氨基酸进行小部分修饰 (v)人类细胞蛋白质组的动态范围较大(~107),每种蛋白质也会通过酶消化产生大量的肽(~102),每个细胞会表达大量的开放阅读框(~104),在不考虑蛋白质多样性的前提下,这已经构成了巨大的分析挑战。对于肽荧光测序来说,满足这些挑战需要提高底物复用(substrate multiplexing)的水平,但目前尚未实现。 /p p   虽然作者开发的系统目前仅限于分析相对简单的混合物样本,但发展前景很好,是一种值得尝试的蛋白质测序方法。 /p
  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • GE推出全新一代预制胶水平蛋白电泳系统
    作为世界上第一个在western blot实验中使用的化学发光试剂,AmershamTM ECL品牌自1990年推出以来,一直不断地进行着技术的改良,为科研工作者提供着高品质的western blot检测产品。继2010年10月18日最新推出ECL prime化学发光检测试剂盒,AmershamTM ECL家族再度创新,于2011年6月,荣耀推出全新一代预制胶水平蛋白电泳系统,为您的电泳实验助力! AmershamTM ECLTMGel system预制胶水平蛋白电泳系统由Amersham ECL预制胶及Amersham ECL电泳槽组成。预制胶结合独特水平设计的电泳槽,方便用于高质量的蛋白电泳分离。 Amersham ECL预制胶稳定性好,可用于分离复杂蛋白样品,实现高质量、可重复的电泳结果: 无需灌胶,省时方便 预制胶保质期长达12个月 实验更安全,避免了灌胶时接触丙烯酰胺 实验结果更稳定性,预制胶为高质量、可重复的电泳保驾护航 Amersham ECL电泳槽独特水平设计,使得电泳操作更加方便: 上样更轻松 仅需200ml电泳缓冲液 特殊设计有效避免缓冲液漏液 配合预制胶,完成8x7.5cm电泳分离 详情请询当地销售代表及经销商
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制