当前位置: 仪器信息网 > 行业主题 > >

硼双环

仪器信息网硼双环专题为您提供2024年最新硼双环价格报价、厂家品牌的相关信息, 包括硼双环参数、型号等,不管是国产,还是进口品牌的硼双环您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硼双环相关的耗材配件、试剂标物,还有硼双环相关的最新资讯、资料,以及硼双环相关的解决方案。

硼双环相关的资讯

  • 国家发改委环资司副司长:中国“双碳”目标带来三大机遇
    11月1日,以“聚焦二十大 共谋新发展”为主题的国家发展改革委与美在华跨国企业高层圆桌会在北京举行。会上,国家发展改革委环资司副司长赵鹏高介绍了碳达峰碳中和工作进展以及“1+N”政策体系的有关情况。  中共二十大报告明确提出,积极稳妥推进碳达峰碳中和。实现碳达峰碳中和是一场广泛而深刻的经济社会系统性变革。立足我国能源资源禀赋,坚持先立后破,有计划分步骤实施碳达峰行动。  赵鹏高指出,自2020年9月以来,中国坚定不移推进碳达峰碳中和工作取得了良好开局。建立了统筹协调机制,推动能源清洁低碳高效利用,推动产业优化升级,巩固提升生态系统碳汇能力,完善绿色低碳政策体制,同时积极参与和应对全球气候变化全球治理,积极履行应对气候变化国际义务。11月1日,以“聚焦二十大 共谋新发展”为主题的国家发展改革委与美在华跨国企业高层圆桌会在北京举行。圆桌会由国家发改委国际司、中国新闻社主办,中国新闻网承办。赵鹏高说,我们提前超额完成第一阶段国家自主贡献目标,2021年全国能耗强度、二氧化碳排放强度又分别降低了2.7%、3.8%。在全球气候治理中积极发挥建设性作用,推动各方就《巴黎协定》实施细则等核心问题达成共识。深入推进绿色“一带一路”建设。开展应对气候变化南南合作,加强在落实《巴黎协定》等方面的务实合作。  赵鹏高表示,碳达峰碳中和“1+N”政策体系是中国深入实施碳达峰碳中和战略的制度保障。在各部门的努力下,目前碳达峰碳中和“1+N”政策体系已经建立。  其中,“1”是中国实现碳达峰碳中和的指导思想和顶层设计,由《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《2030年前碳达峰行动方案》两个顶层设计文件构成,明确了碳达峰碳中和工作的时间表、路线图、施工图。  “N”是重点领域、重点行业实施方案及相关支撑保障方案,包括能源、工业、城乡建设、交通运输、农业农村等重点领域实施方案,煤炭、石油天然气、钢铁、有色金属、石化化工、建材等重点行业实施方案,以及科技支撑、财政支持、统计核算、人才培养等支撑保障方案。  赵鹏高指出,中国“双碳”目标是非常广泛而深刻的经济社会系统性变革,这个变革过程中有巨大的市场商机、市场机遇。具体有三个方面:第一是低碳、零碳、负碳技术的交流合作;第二是开展绿色低碳贸易与投资合作;第三是开展第三方市场合作,中国承诺将大力支持发展中国家能源绿色低碳发展,中外企业具有广阔的合作空间和巨大的合作潜力,希望跨国公司发挥自身优势,与中国企业携手开拓第三方实践,实现合作共赢。
  • 国家发改委环资司副司长:中国“双碳”目标带来三大机遇
    11月1日,以“聚焦二十大 共谋新发展”为主题的国家发展改革委与美在华跨国企业高层圆桌会在北京举行。会上,国家发展改革委环资司副司长赵鹏高介绍了碳达峰碳中和工作进展以及“1+N”政策体系的有关情况。中共二十大报告明确提出,积极稳妥推进碳达峰碳中和。实现碳达峰碳中和是一场广泛而深刻的经济社会系统性变革。立足我国能源资源禀赋,坚持先立后破,有计划分步骤实施碳达峰行动。赵鹏高指出,自2020年9月以来,中国坚定不移推进碳达峰碳中和工作取得了良好开局。建立了统筹协调机制,推动能源清洁低碳高效利用,推动产业优化升级,巩固提升生态系统碳汇能力,完善绿色低碳政策体制,同时积极参与和应对全球气候变化全球治理,积极履行应对气候变化国际义务。11月1日,以“聚焦二十大 共谋新发展”为主题的国家发展改革委与美在华跨国企业高层圆桌会在北京举行。赵鹏高说,我们提前超额完成第一阶段国家自主贡献目标,2021年全国能耗强度、二氧化碳排放强度又分别降低了2.7%、3.8%。在全球气候治理中积极发挥建设性作用,推动各方就《巴黎协定》实施细则等核心问题达成共识。深入推进绿色“一带一路”建设。开展应对气候变化南南合作,加强在落实《巴黎协定》等方面的务实合作。赵鹏高表示,碳达峰碳中和“1+N”政策体系是中国深入实施碳达峰碳中和战略的制度保障。在各部门的努力下,目前碳达峰碳中和“1+N”政策体系已经建立。其中,“1”是中国实现碳达峰碳中和的指导思想和顶层设计,由《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《2030年前碳达峰行动方案》两个顶层设计文件构成,明确了碳达峰碳中和工作的时间表、路线图、施工图。“N”是重点领域、重点行业实施方案及相关支撑保障方案,包括能源、工业、城乡建设、交通运输、农业农村等重点领域实施方案,煤炭、石油天然气、钢铁、有色金属、石化化工、建材等重点行业实施方案,以及科技支撑、财政支持、统计核算、人才培养等支撑保障方案。赵鹏高指出,中国“双碳”目标是非常广泛而深刻的经济社会系统性变革,这个变革过程中有巨大的市场商机、市场机遇。具体有三个方面:第一是低碳、零碳、负碳技术的交流合作;第二是开展绿色低碳贸易与投资合作;第三是开展第三方市场合作,中国承诺将大力支持发展中国家能源绿色低碳发展,中外企业具有广阔的合作空间和巨大的合作潜力,希望跨国公司发挥自身优势,与中国企业携手开拓第三方实践,实现合作共赢。(完)
  • 「专访」国家发展改革委环资司副司长赵鹏高:中国要建100个碳达峰试点,该如何开展?
    今年10月20日,国家发展和改革委员会(以下称国家发展改革委)资源节约和环境保护司(以下称环资司)发布《国家碳达峰试点建设方案》(以下称《试点方案》),提出在全国范围内选择100个具有典型代表性的城市和园区开展碳达峰试点建设。12月6日,国家发展改革委发布《关于印发首批碳达峰试点名单的通知》,确定张家口市等25个城市、长治高新技术产业开发区等10个园区成为首批碳达峰试点城市和园区。日前,界面新闻双碳频道就《试点方案》和中国碳达峰进展,专访了国家发展改革委环资司副司长赵鹏高。在采访中,赵鹏高对《试点方案》的政策定位、部署要求和激励措施等作了解读。他表示,中国的“双碳”工作取得了积极成效,从当前的进展看,中国定能顺利实现碳达峰目标。此外,他对各地开展碳达峰建设提出了有关建议。国家发展改革委环资司副司长赵鹏高图片来源:环资司《试点方案》是国家发展改革委首次从城市、园区层面出台的碳达峰政策。与此前各地以省(市、自治区)为单位开展的碳达峰建设相比,新方案的出台有哪些意义?赵鹏高:《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》提出,要组织开展碳达峰碳中和先行示范,探索有效模式和有益经验。国务院《2030年前碳达峰行动方案》明确要求,加大中央对地方推进碳达峰的支持力度,选择100个具有典型代表性的城市和园区开展碳达峰试点建设,在政策、资金、技术等方面对试点城市和园区给予支持,加快实现绿色低碳转型,为全国提供可操作、可复制、可推广的经验做法。各地区能源结构、资源禀赋和发展阶段不同,推进碳达峰碳中和工作也面临着不同的困难挑战。虽然31个省区都制定了省级碳达峰实施方案,但在城市和园区层面还有不少需要进一步细化和探索的工作。开展碳达峰试点城市和园区建设,将有效激发城市和园区主动性和创造性,围绕绿色低碳转型开展探索,为全国提供行之有效的经验做法,助力实现“双碳”目标。相比省(市、自治区)级层面开展的碳达峰建设,环资司期望各地在试点建设碳达峰城市或园区时,具体在哪些方面更加细化或创新?赵鹏高:城市和园区是集聚人口、经济活动的主要载体,也是能源消耗、污染物和二氧化碳排放最集中的区域。中国常住人口城镇化率已突破65%,城镇人口达到9.21亿。伴随着中国新型工业化、新型城镇化深入推进,城市和园区在中国经济社会发展格局中的地位将更加凸显,资源能源消耗和碳排放也将更加集中,毫无疑问是碳达峰行动的主战场。建议各地按照《试点方案》有关部署,结合自身实际做好五个方面的工作:确定试点任务方面,既要与国家和省级要求对标对表,又要体现特色,谋划若干务实管用的举措。组织重点工程方面,既要聚焦重点领域、突出降碳导向,又要促进形成新的产业竞争优势。强化科技创新方面,既要注重关键技术研发,又要完善绿色低碳技术推广应用机制,引导企业采用先进适用技术。完善政策机制方面,要坚持“降碳”导向,夯实碳排放统计核算基础,推动能耗双控转向碳排放双控,探索有利于绿色低碳发展的财政、金融、投资、价格政策和标准体系。开展全民行动方面,要充分调动群众的积极性,大力宣传绿色低碳生活理念,建立绿色生活激励约束机制。《试点方案》提到,国家发展改革委将会同有关方面统筹现有资金渠道,对符合要求的试点建设项目予以支持。该项资金支持措施预计何时推出?资金规模大致在怎样的水平?赵鹏高:对于试点城市和园区的项目,只要符合有关条件,并且能够对试点工作形成有效支撑的,我们都将通过现有渠道积极支持。同时,我们也会将符合条件的项目推送给金融机构,鼓励金融机构支持试点项目建设。《试点方案》还提到,有关省区发展改革委要对试点成效突出的城市和园区予以通报表扬。除此之外,国家发展改革委或地方政府还可能推出哪些新的政策,以激励试点城市和园区的碳达峰积极性?赵鹏高:试点不是政策洼地,重在激励地方先行探索。对于试点建设成效突出的地方,我们将推动试点建设过程中好的经验做法上升为国家政策制度和法规,予以通报表扬的同时,也将在全国生态日、全国节能宣传周、联合国气候大会等国内外重大场合进行宣传,打造“双碳”行动的示范样板。《试点方案》统筹考虑各地区碳排放总量及增长趋势、经济社会发展情况等因素,选取了河北、山西、内蒙古等15个省(自治区)作为首批试点地区。可否以某些省(自治区)为例,谈谈当地碳达峰面临的特殊挑战,以及期望这些地方如何以《试点方案》为契机,探索做法和经验?赵鹏高:首批试点的15个省(自治区)资源禀赋、发展阶段、功能定位各异,也具有一定代表性。以内蒙古自治区和广东省为例:内蒙古自治区是典型的资源型地区,能源结构偏煤、产业结构偏重的特点突出,新能源资源也比较丰富。推进试点工作中要大力提升煤炭清洁高效利用水平,加快新能源开发利用。同时,要优化升级产业结构,坚决遏制“两高一低”项目盲目上马,引导企业开展节能降碳改造、工艺革新和数字化转型。广东省是国内高质量发展的动力源,能耗总量大,用能结构调整和产业升级仍面临困难挑战。推进试点工作中要把科技创新摆在更加突出的位置,加快绿色低碳先进技术研发和推广应用,积极推进新能源替代化石能源,大力发展战略性新兴产业,培育新的产业竞争优势。同时,积极开展制度创新,探索和完善有利于绿色低碳发展的政策机制。距国务院发布《2030年前碳达峰行动方案》已满两年,全国及地方在碳达峰建设上取得了哪些成绩?还面临哪些困难和挑战?赵鹏高:习近平总书记作出碳达峰碳中和重大宣示以来,国家发展改革委和各地区、各部门坚持以习近平新时代中国特色社会主义思想为指导,深入贯彻习近平生态文明思想,认真落实习近平总书记关于碳达峰碳中和重要指示批示精神,强化系统观念、加强统筹协调、狠抓工作落实,推动“双碳”工作取得良好开局和积极成效。一是构建完成碳达峰碳中和“1+N”政策体系。党中央、国务院印发《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》,国务院发布《2030年前碳达峰行动方案》,各有关部门出台12份重点领域、重点行业实施方案和11份支撑保障方案,31个省(区、市)制定本地区碳达峰实施方案。二是能源绿色低碳转型稳步推进。加强煤炭清洁高效利用,累计完成煤电机组节能降碳改造、灵活性改造、供热改造超过5.2亿千瓦。大力发展可再生能源,截至今年9月底,全国可再生能源装机规模达到13.84亿千瓦、装机占比达到49.6%。三是产业结构持续优化升级。“十四五”以来压减粗钢超4000万吨。大力发展战略性新兴产业,今年前三季度,新能源汽车、锂离子电池、太阳能电池等“新三样”产品出口同比增长41.7%。四是重点领域绿色低碳发展成效显著。截至2022年底,城镇新建绿色建筑面积占比达91.2%,累计建成节能建筑面积超300亿平方米。截至今年9月,新能源汽车新车销量占比达31.6%,保有量达1821万辆,占全球60%。五是生态系统碳汇稳步提升。“十四五”以来年完成国土绿化超1亿亩,中国森林覆盖率达24.02%,森林蓄积量194.93亿立方米,成为全球森林资源增长最多最快的国家。六是“双碳”工作基础能力显著增强。推动能耗双控逐步转向碳排放双控,实施“十四五”百项节能降碳标准提升行动,启动国家碳达峰试点建设,推动绿色低碳先进技术示范工程。开展干部教育培训和专业人才培养。七是绿色低碳政策机制更加完善。2020年以来,中央财政累计安排生态环保相关资金1.78万亿元。推出碳减排支持工具和支持煤炭清洁高效利用专项再贷款。截至今年6月,两项工具贷款余额分别为4530亿元、2459亿元。建立健全绿电交易和碳市场体系,截至今年10月底,全国绿电交易878亿千瓦时,全国碳配额交易3.82亿吨。八是积极参与全球气候治理。推动中德签署政府间《关于建立气候变化和绿色转型对话合作机制的谅解备忘录》、中美发表《关于加强合作应对气候变化的阳光之乡声明》。举办第三届“一带一路”国际合作高峰论坛绿色发展高级别论坛。积极参加《联合国气候变化框架公约》缔约方会议等多双边议程,推动构建公平合理、合作共赢的全球环境治理体系。中国实现“双碳”目标时间紧、任务重,能源和产业转型升级压力大,在取得积极成效的同时,中国的“双碳”工作也面临着一些新的困难、挑战:一是乌克兰危机等地缘冲突导致全球能源供需失衡,中国能源保供面临更大挑战,推动能源绿色低碳转型的压力进一步加大。二是有的国家以应对气候变化为名,构筑“碳壁垒”,对国内优势产业进行打压,产业转型升级难度进一步加大。三是“双碳”工作基础薄弱、专业人才匮乏,绿色低碳创新投入总体偏低,发展方式绿色低碳转型的动能有待进一步加强。距离“2030年前碳达峰”目标渐行渐近,中国目前整体碳达峰的进展如何?赵鹏高:虽然国内“双碳”工作仍面临一些困难和挑战,但只要按照党中央、国务院决策部署,持续落实碳达峰碳中和“1+N”政策体系,稳步推进“碳达峰十大行动”,就一定能够顺利实现碳达峰目标。从几个关键指标看:一是非化石能源消费比重。2022年,中国非化石能源消费比重已达到17.5%,预计可稳步完成2030年非化石能源占比25%左右的目标。二是风电、太阳能发电装机容量。截至今年9月,中国风电、太阳能发电装机总容量已达到9.2亿千瓦,预计可顺利完成2030年风电、太阳能发电总装机容量达到12亿千瓦以上的目标。三是森林蓄积量。2021年中国森林蓄积量已达到194.93亿立方米,提前九年完成2030年森林蓄积量190亿立方米的目标。四是碳排放强度。2022年中国碳排放强度较2005年已累计下降超过51%,完成2030年碳排放强度较2005年下降65%以上的目标虽面临困难和挑战,但经努力是可以实现的。总结过去两年的经验,环资司对地方开展碳达峰建设有何建议?赵鹏高:在推进碳达峰试点建设的过程中,建议各地着力做好三个方面的工作:一是探索绿色低碳转型路径。结合自身特点和实际情况,探索能源和产业重点领域绿色低碳转型路径,为全国提供可参考、可借鉴的经验做法。二是探索培育新的产业竞争优势。减排不是减生产力,也不是不排放,要在落实碳达峰碳中和目标任务过程中培育新的产业竞争优势,实现经济高质量发展和“双碳”工作的协同并进、相互促进。三是探索构建有利于绿色低碳发展的政策机制。充分发挥城市和园区层面工作的灵活性,积极探索、先行先试,为国家层面和其他地区绿色低碳发展政策机制的构建完善提供支撑和参考
  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380
  • 全在线双冷阱大气预浓缩飞行时间质谱VOCs监测系统 成功落户上海环科院
    2016年7月,磐合科仪推出的全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统在上海市环境科学研究院(简称:上海环科院)安装成功。众所周之,上海环科院是上海设立较早、规模大、专业齐全的综合性环境科研机构,长期致力于区域环境问题研究、环境战略咨询、环境技术开发和示范应用 ,为政府环境管理和决策以及环境污染防治提供了有力的技术支撑。全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统作为全国重量级的环境科研机构,上海环科院对数据采集、分析灵敏度、分析时间及定性准确性等要求非常严格。本次安装成功的全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统,为业界高端大气vocs监测系统,配有双冷阱交替采样浓缩系统,搭载先进的高灵敏度飞行时间质谱。可无盲点采样,实时分析环境空气中从c2至c12范围内烃类、含氧、含氮挥发性有机化合物和有机硫化合物,可同时得到定性定量结果。全自动热脱附系统应用于环境空气中半挥发性有机化合物(svocs)如多环芳烃的检测,能满足分析超痕量化合物、需要大体积样品浓缩的应用要求。两套仪器的完美搭配可对环境大气中vocs 和svocs进行在线和离线分析检测,两种进样方式可自动切换,操作方便,充分满足上海环科院多种科学研究及各项应用分析的需求,为环境空气雾霾成因和成分研究分析提供有力工具。为了更好地服务用户,磐合科仪特邀英国技术专家提供专业技术安装和培训,配合用户进行数据分析,帮助用户更快更好地使用该系统,为vocs在线监测提供可靠的科学数据。磐合科仪专注于环境监测领域,近年来通过不断加大研发投入,先后推出多个系列的环境监测新产品以及应用方案,在大气vocs在线监测、土壤有机污染物监测、水质监测等方面取得了重要突破。本次全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统在上海环科院的成功启用,为上海环境用户、全国环境科研机构乃至全国在线监测用户树立了新榜样,将在线监测技术及产品推上一个新台阶,同时也让更多vocs监测与治理工作者认识了磐合科仪,更加增强了我们在环境监测领域发展的信心。
  • 钱塘江畔的“蓬勃绿”,杭州首个“双碳”技术产业园落子滨江
    日前,主题为“科技创新绿色低碳”的2022中国绿色低碳创新大会在浙江湖州开幕。大会就如何加快推动绿色低碳创新发展、扎实推进碳达峰专项行动等进行了深度探讨。其实早在“双碳”战略发布之后,一座“双碳”技术产业园就已在杭州高新区(滨江)悄然扎根。历经五年的规划设计与建造装修,预计今年11月,作为杭州首个提出打造“双碳”技术产业园的科创园区,兴耀科创城将为助力实现“双碳”目标正式发力。  “双碳”战略既展现了推动构建人类命运共同体的大国担当,也是我国构建全球竞争力的“国运之战”。我国先后出台《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《2030年前碳达峰行动方案的通知》等相关文件,要求把碳达峰、碳中和纳入经济社会发展全局,推进经济社会发展全面绿色低碳转型。  培育绿色低碳产业  “双碳”目标与“高质量”协同发展  充电技术和高性能充电产品开发、离网式污水处理系统研发、植物生产绿色重组生物药攻关… … 不久的兴耀科创城,将成为一家又一家聚焦新一代信息技术、生命健康、新材料、新能源、高端装备等绿色低碳关键领域企业成长的沃土,新技术、新产品、新模式、新业态将一次又一次点亮人们的眼球。  “兴耀科创城始终把聚焦科技创新平台资源导入、科技企业孵化、科技成果转化和产业化作为发展方向。”兴耀科创集团总经理卢晨霞向记者说,目前兴耀科创城已经计划引进一批创新性、战略性新兴企业入驻。  实现“双碳”目标与经济高质量发展协同,科技创新是关键引擎,绿色低碳产业是重要载体。“培育发展绿色低碳未来产业,迈向绿色低碳循环经济,形成绿色经济新增长点,兴耀科创城将全力打造具有引领和示范作用的杭州双碳技术产业园和创新型绿色低碳技术高能级科创平台。”  选址就是选圈层  落子滨江经过深思熟虑  “选址就是选圈层,杭州高新区(滨江)积极培育支持绿色低碳企业,鼓励绿色低碳核心技术攻关,为浙江省‘双碳’目标落地提供有力支撑。”卢晨霞表示,“兴耀科创城落子滨江,我们经过深思熟虑。”  全球首家以低碳为主题的大型科技馆——中国杭州低碳科技馆,浙江省目前唯一一家由省属国企牵头、高校共建和各创新主体相互协同的能源领域高能级科创平台——白马湖实验室(能源与碳中和浙江省实验室)等聚焦“双碳”战略的重量级“选手”相继落户于此。“以点带面、串珠成链,不久的将来,一个双碳未来技术展示中心也将在科创城呈现,成为展示‘双碳’技术产业的重要窗口。”  事实上,从规划建设之初起,该科创城就制定了“五个一”发展计划。打造一个基地、设立一支基金、培育一批高科技企业、集聚一批创新人才、塑造一个重要窗口。“杭州‘双碳’产业是片蓝海,我们有信心将科创城打造成区域性创新高地。后续我们将对科研院所、高校、企业资源进行优化配置,加强产学研深度融合发展,提高创新链整体效能。”  找准“双碳”发力点  借助人才引领产业发展  优美、高效、舒适的工作环境,健康、宜居的生活空间,配套、合适的政策扶持,更能发挥个人和企业的创新潜力。构建理想的园区生态是为了帮助企业形成竞争优势。为此,兴耀科创城构建了一套独特的“1+985”创新生态服务体系,即1个核心战略、9大创新服务平台、8大创新服务场景、5大发展蓝图,为企业提供全方位的精准服务,构建协同发展的生态圈。  创新驱动实质上是人才驱动,兴耀科创城的“硬核”之处在于实现了从“产业集聚人才”向“人才引领产业”的转型。该科创城确定了一系列人才创业就业支持政策,包括启动资金和研发创新资助、研发场地补贴等。  “在相关政策支持之外,兴耀科创城自筹设立1亿元孵化基金,希望高层次人才能够借助自己的专业优势、智力优势、资源优势融入这场广泛而深刻的变革之中,找准‘双碳’结合点、发力点。”卢晨霞在介绍“1+985”创新生态服务体系时对人才模块进行了详细讲解。  兴耀科创城兼顾绿色与发展、兼顾生产和生态,形成了创新链、产业链、资金链、人才链、服务链的闭环模式。以产聚才、以才兴产、产才互融,在钱塘江畔,那座占地64亩、建筑面积达18.92万平方米的“双碳”技术产业园正在挖掘科技创新的“富矿”,扬帆绿色低碳发展的“蓝海”,为全球可持续发展提供绿色低碳的“兴耀方案”。
  • 彭练矛:20年专注碳基芯片,让中国芯“换道超车”
    彭练矛,电子和材料物理学家,目前主要从事碳基电子学领域研究。1982年毕业于北京大学无线电电子学系并获学士学位,1988年于美国亚利桑那州立大学获博士学位,后赴英国牛津大学,1994年底回国。2019年当选为中国科学院院士。现任北京大学电子学院院长、北京碳基集成电路研究院院长。 受访者供图从2000年至今,北京大学电子学院教授彭练矛坚守在国产碳基芯片研究一线。在他看来,目前中国芯片产业链面临着被“卡脖子”的状况,关键因素是中国在芯片技术领域没有核心技术和自主研发能力,从材料、设计到生产制备的全套技术中任何一个环节都没能发挥主导作用。 2022年3月23日,中国科学院院士彭练矛在谈自己的科研经历。从2000年至今,北京大学电子学院教授彭练矛坚守在国产碳基芯片研究一线。在他看来,目前中国芯片产业链面临着被“卡脖子”的状况,关键因素是中国在芯片技术领域没有核心技术和自主研发能力,从材料、设计到生产制备的全套技术中任何一个环节都没能发挥主导作用。而碳基电子将有望打破这种局面,实现由中国主导芯片技术的“换道超车”。20年来,他带领团队研发出了整套碳基芯片技术,首次制备出性能接近理论极限,栅长仅5纳米的碳纳米管晶体管,实现了“从0到1”的突破,为中国芯片突破西方封锁、开启自主创新时代开辟了一条崭新的道路。“启用新材料是解决芯片性能问题的根本出路”作为电子产品的“心脏”,全球每年对芯片的需求已达万亿颗。“大家都希望电子设备的芯片速度更快、续航时间更长。”彭练矛告诉记者,碳基芯片技术的发展对于大众生活有着广泛而深远的影响,5G技术的来临将使城市变成“智慧城市”,健康医疗、可穿戴电子设备、物联网和生物兼容性器件… … 这些都离不开海量的数据运算,需要有强大处理能力的芯片做支撑。在传统工艺下,这些芯片有着统一的核心材料,那就是硅。当前,硅基芯片已经进入5纳米时代,甚至在向2纳米、1纳米探索,这意味着,硅基芯片性能逼近物理极限。步入21世纪以来,寻找能够替代硅的芯片材料,成为热门话题。“当时整个学界都感觉到,硅基微电子实际上在走下坡路。学界会提前考虑,未来取代硅的材料会是什么?”彭练矛表示,传统硅基芯片材料的潜力基本已被挖掘殆尽,无法满足行业未来进一步发展的需要,启用新材料是从根本上解决芯片性能问题的出路。时值上世纪末,纳米科技正在兴起,碳纳米管晶体管引起了不少科学家的关注。碳纳米管是1991年由日本科学家饭岛澄男(S.Iijima)发现的。“碳原子按照六角排布,形成一个单原子层,这就是石墨烯。而一个矩形的石墨烯条带,长边对接卷成一个卷,就变成碳纳米管,直径一般是一纳米左右。碳纳米管具有一些奇特的量子效应,使其电子学性能变得非常好,速度快、功耗低。”彭练矛这样描述这种新材料。饭岛澄男在上世纪70年代初师从考利(J.M.Cowley)进行博士后研究工作,从师门来讲是彭练矛的大师兄,彭练矛就这样认识了碳纳米管。在这之前,彭练矛在电子显微学研究方面已经积累了大量经验。1978年,高考恢复的第二年,年仅16岁的彭练矛走进燕园,成为“文革”后北大无线电电子学系招收的首届学生。在恩师西门纪业教授的带领下,他与电子显微学结下了不解之缘。1982年,彭练矛考取了北大电子物理硕士研究生,1983年,在西门纪业教授的鼓励下,彭练矛前往亚利桑那州立大学美国国家高分辨电子显微学中心攻读博士学位,师从考利(J.M.Cowley)教授。随后,彭练矛又先后前往挪威奥斯陆大学和英国牛津大学继续从事电子衍射相关研究工作,在电子显微学领域崭露头角。1994年,彭练矛回到祖国。2000年,北京大学“组队”,着手研究面向未来的电子学。当时彭练矛还不到40岁,他觉得自己“还有精力再做一件新的事情”。于是彭练矛带领研究团队,从零开始,探究用碳纳米管材料制备集成电路的方法。最初几年是在不断摸索中度过的。他们发现,碳纳米管是做芯片最好的材料,“它的物理性能和化学性能、机械性能都非常适合做电子元器件。虽然没有现成工艺可以遵循,但理论预测碳纳米管芯片性能可以比现在硅基集成电路的综合性能成百上千倍地提高。”在摸索中,彭练矛团队提出了用碳纳米管来做集成电路的完整方案,“碳纳米管拥有完美的结构、超薄的导电通道、极高的载流子迁移率和稳定性。基于碳纳米管的电子技术有望成为后硅时代主流的集成电路技术。”“已研发出目前世界上最好的芯片材料”用碳纳米管制备的碳基芯片的综合性能可以比硅基集成电路提高成百上千倍,这已成学界的共识。但这只是理想状态,如何让它变为现实?对团队来说,这个过程中碰到的大部分问题都是新的,“只能自己一一想办法来解决。”彭练矛坦言。首先是突破材料瓶颈,掌握碳纳米管制备技术。经过十年的技术攻坚,课题组放弃了传统掺杂工艺,研发了一整套高性能碳纳米管晶体管的无掺杂制备方法。碳纳米管材料非常微小,肉眼不可见。彭练矛形容,人的一根头发丝直径差不多是几十微米或几万纳米,而这种材料的直径是头发丝的几万分之一。光学显微镜看不到,只能用电子显微镜来看,同时,还要操纵它,让它按照一定秩序排列。怎么办?还好,彭练矛之前做过大量电子显微镜相关研究,对于观察和操纵“小东西”有一定经验。2017年,团队首次制备出栅长5纳米的碳纳米管晶体管,这一世界上迄今最小的高性能晶体管,在本征性能和功耗综合指标上相较最先进的硅基器件具有约10倍的综合优势,性能接近由量子力学测不准原理决定的理论极限。2018年,团队再次取得重要突破,发展出新原理的超低功耗狄拉克源晶体管,为超低功耗纳米电子学的发展奠定了基础。同年,团队用高性能的晶体管制备出小规模集成电路,最高速度达到5千兆赫兹。2020年,该团队首次制备出达到大规模碳基集成电路所需的高纯、高密碳纳米管阵列材料,并采用这种材料首先实现了性能超越硅基集成电路的碳纳米管集成电路,电路频率超过8千兆赫兹,跻身国际领跑行列。事实证明,团队20年来的坚持是对的。“目前我们基本掌握了碳纳米管集成电路制备技术,能够在实验室把碳纳米管集成电路加工出来,性能是目前为止世界上最好的,电路频率比美国研发的高了几十倍。”今年3月,彭练矛坐在办公室里向记者谈起研究的最新进展,底气十足。在彭练矛看来,碳基芯片无疑将成为支撑基于这些技术运行数字经济的最佳选择。“我们的最终目标是要让碳基芯片在10-15年内成为主流芯片,广泛应用在大型计算机、数据中心、手机等主流电子设备上。”“拥有自主技术才不会被西方卡住”彭练矛告诉记者,目前学校实验室已可以采用碳纳米管材料制备出一些中等规模甚至大规模的集成电路,“做个计算器之类没问题。”“但是,要用它做超大规模集成电路还不行。”彭练矛说,目前研发出的碳基芯片的集成度仍和当前世界上普遍使用的硅基芯片相比还差很远。差在哪?彭练矛解释称,要实现超大规模高性能集成电路,首先就需要在大面积的基底上制备出超高半导体纯度、顺排、高密度和大面积均匀的单壁碳纳米管阵列。此外更困难的就是需要有专用的工业级研发线,而这样一条研发线是北大团队所不具备的。在学校现有的实验条件下,能够制作出的最复杂的碳纳米管芯片的集成度只有几千、最多几十万个晶体管,尺寸还是微米级的;而当下全球最先进的硅基芯片中有五百亿个晶体管,每个晶体管的面积大小只有100纳米左右。“差太远了。”“尖端碳基芯片的专用设计工具我们同样缺乏。”彭练矛认为,目前,基于碳纳米管的无掺杂CMOS技术已经不存在原理上不可克服的障碍,但仅在实验室完成存在性验证和可能性研究和演示,并不意味着碳基芯片技术就可以自行完成技术落地,具备商业竞争力。把学校的技术变成一个可规模生产的工业化技术,中间还要做很多工作。目前,碳基芯片的工程化和产业化还有许多问题亟待解决,还需要很长的时间和大量的投入。“精密生产是很难的。”彭练矛称,虽然我国是制造大国,但离制造强国还有距离。实际情况是,如果要实现碳基集成电路规模扩大,哪怕在实验室里也需要大量资金,更不用说建设工厂、添置先进设备、每一步的精加工。彭练矛指出:“相比之下,我们的投入还是太少。因此,社会各界的支持对于碳基芯片的发展至关重要。”谈及未来,彭练矛表示,在国家重视且科研经费充足的情况下,预计3-5年后碳基技术能够在一些特殊领域得到小规模应用;预计10年之后碳基芯片有望随着产品更迭逐渐成为主流芯片技术。过去几十年,我国在芯片产业发展上还处于相对落后的状态。在“中兴事件”、“华为事件”之后,中国“芯”问题引起重视。“整个硅基芯片的研发上,我们落后很多,硅基芯片在美国已经发展了60多年的时间,我们国家在其中没有重要贡献,材料、设备、计算机软件、制造工艺等都是购买别人的。实际上这不光是‘卡脖子’,而是完完全全受制于人。”在彭练矛看来,目前想在硅基的路上“弯道超车”不太现实,“我们需要换道开车,换到碳基的道路上。这对全球来说都是一条新的道路,目前我们还处于相对领先的位置。”“我们要发展自己的集成电路技术,拥有自主技术才不会被西方卡住。”彭练矛称,我国应抓住历史机遇,在现有优势下扬长避短,从材料开始,全面突破现有的主流半导体技术,研制出中国人完全自主可控的芯片技术,通过发展碳基芯片,实现中国芯的“换道超车”。同时,彭练矛也很清醒:“距离实现在芯片技术上超越欧美还有很长的路要走。”他已做好继续长期奋战的准备。匠心解读如何理解匠心精神?匠心精神如何坚守,如何传承?彭练矛:匠心精神一般指常年专注一件事情,能够把事情做到极致,成为某一专业的专家、冠军。这无疑是需要的,但目前我们所面临的许多问题,特别是芯片问题,光发挥匠心精神是不够的。芯片问题不仅需要相关行业的人努力工作,发挥匠心精神,更需要有前瞻视野的大师来把控和平衡各行业协同进步,不断将全产业链稳步推进。匠 人 心 声在你的生活和工作中,哪些东西是你一直坚守的?彭练矛:将事情做到最好,不分大小,养成一个习惯,以最高标准要求自己。就像学校学生考试一样,拿到90分达到优秀并不难,但坚持要拿100分,始终都要求自己拿出全力去拼100分就不一样。可能需要拿出200%或更多的努力才能多拿3-5分,但坚持下来,必能受益。什么时候是你认为最艰难的时候?能够坚持下去的原因是什么?彭练矛:大概是2017年,开始认识到光在学校做芯片相关的研究已经不够,不足以推动相关领域继续向前走,需要走出学校,争取更多资源,开展碳基电子的工程化和未来的产业化研究。这些需要去接触更大的世界,去求之前不熟悉的人,都是我之前不太擅长且极力避免的,当时觉得非常困难。但想起了一句名言,大意是失败并非末日,失去向前的勇气才是最可怕的。国家需要有自己的芯片技术,现在这个历史机遇出现了,不论多么困难,都得坚持下去。你希望未来还取得怎样的成就,对于未来有怎样的期待?彭练矛:希望最终将我们研发的碳基芯片技术推至主流,大家的生活因我们的努力而变得更美好。你感觉你获得的最大的快乐是什么?彭练矛:没有虚度时光,为国家和人类进步做出了应有的贡献。
  • 香港浸会大学蔡宗苇团队研究发现:双酚S暴露或增加患癌风险
    香港浸会大学环境与生物分析国家重点实验室近期的科学研究有新发现。实验室主任、化学系教授蔡宗苇教授带领团队公布最新科研成果:双酚S暴露,会使乳腺肿瘤增大,为罹患乳癌带来风险。通过蔡教授团队此前的研究发现,牙膏中存在的三氯生成分会损伤肠道,成为引发炎症性肠道疾病的元凶。蔡宗苇教授表示:“在工业生产中,双酚A被较少研究的化学物质双酚S所取代。由于我们的研究显示,双酚S或与乳腺肿瘤增生有潜在关联,故此有必要做进一步研究,了解这种化学物对人体健康的潜在影响。长远而言,业界或需寻找较为安全的双酚A和双酚S替代品。决策者也应就使用双酚S制定相关的安全标准和规划。”众所周知,双酚A是一种过往被广泛应用于生产婴儿水壶、食物及饮料容器及餐具的塑化剂,以及打印收据的感热纸中做显色剂等,由于被证实与人体内分泌系统失调、代谢疾病及乳癌风险增加有关,近年来,工业界较多改用双酚S作为替代品。双酚S是人们日常生活中经常接触到的工业化学物质接替双酚A的双酚S是否对人体健康安全、无害?对于令广大女性谈及色变的乳癌,暴露的双酚S是否对其产生、恶化也会带来影响?科学界仍然知之甚少。2022年1月18日,蔡宗苇教授在新闻发布会上介绍基于双酚S的最新研究成果。研究团队通过小鼠实验发现,双酚S同样会有令乳腺肿瘤增生及增加患癌风险。不同剂量的双酚S(BPS)暴露,与乳腺肿瘤增生和恶化相关。蔡宗苇教授在新闻发布会上上介绍双酚S的最新科研成果研究团队将人的乳腺癌细胞移植至三组小鼠身上进行试验,在对小鼠乳腺肿瘤造模后,第一组(BPS-10组别)小鼠每天被注入较低剂量的每公斤体重10微克双酚S,为期8周;第二组(BPS-100组别)小鼠每天被注入较高剂量的每公斤体重100微克双酚S;剩余属于对照组的小鼠则被注入橄榄油。研究团队通过小鼠实验观察双酚S对乳腺肿瘤的影响经过八周的实验,BPS-10组别小鼠的肿瘤平均体积和重量,分别多对照组13倍和11倍,而BPS-100组别小鼠肿瘤的平均体积和重量则多对照组4倍和4.5倍。实验结果显示,双酚S会增加肿瘤体积及重量。研究团队随后分析了三组小鼠乳腺肿瘤的坏死区和癌细胞聚集区,他们观察到两组被注入双酚S的小鼠,其肿瘤体积增加的同时,与肿瘤增生和恶化有关的细胞排列和分布也出现了变化。BPS-10和BPS-100组别的坏死区的平均面积,分别占肿瘤的54.7%和11.5%。低剂量双酚S加快肿瘤生长,高剂量双酚S或最终令肿瘤恶化。实验证明双酚S暴露会引发乳腺肿瘤增生及恶化实验证明双酚S暴露会增加乳癌风险蔡教授介绍说,在团队的研究实验过程中识别出六个调节肿瘤生长的脂质生物标志物以及十二种蛋白质生物标志物的分布,包括与乳腺肿瘤增生和恶化密切相关的蛋白质。在脂质分布研究中,团队推断出有双酚S暴露,调节肿瘤生长的脂质的代谢会受到干扰。脂质和蛋白质标志物的发现有望日后应用于乳腺的分析检测。此次双酚S研究团队除了香港浸会大学的科学家外,还包括中国科学院深圳先进技术研究院及西安交通大学的研究人员。研究成果已刊登于国际科学期刊《journal of Hazardous Materials》。2022年1月,国际著名学术期刊《自然 通讯》刊发了题为“Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract”的文章,揭示了一种应用于牙膏、化妆品、瑜伽垫以及其他运动服装中具有抗菌功能的添加剂三氯生,会造成肠道损伤,从而引发肠道炎症疾病。该项研究同样由蔡教授带领实验室科研人员,与美国马赛诸塞大学和北卡罗莱纳大学教堂山分校的学者们共同进行。研究人员将特定的肠道微生物酶,特别是肠道微生物β-葡萄糖醛酸苷酶(GUS)蛋白与三氯生连接,并表明这些酶驱动三氯生在肠道中制造严重破坏。在知道哪些细菌蛋白是罪魁祸首后,研究小组利用一种微生物靶向抑制剂来阻断肠道中的三氯生作用。在小鼠中阻断这一过程可防止结肠损伤和结肠炎的症状。该研究为越来越多的被诊断为炎症性肠病的人群提供了治疗的新线索。基于三氯生和相关化合物可能造成肠道损伤,学者们建议应该重新考虑三氯生应用的安全性,并需要更好地理解环境化学物质对肠道健康的影响。
  • 中科院:先进核能技术支撑“双碳”战略行动计划
    不久前,中科院发布科技支撑“双碳”战略行动计划,先进核能技术是重点攻关的关键技术之一。在各类减少碳排放的清洁能源中,核能是令人又爱又惧的存在。作为清洁能源,核能可以有效减少碳排放,成为替代化石能源的希望,但它也是悬在人们头顶的达摩克利斯之剑,美国三英里岛核事故、苏联切尔诺贝利核事故、日本福岛核泄漏,一次次核事故给核电发展蒙上阴影。怎样在助力“双碳”目标实现的同时,让核电技术更安全可靠、更可持续?这是中科院的科学家们一直在探索的问题。核裂变能技术:榨净核废料,丰富核燃料2016年,中科院院士詹文龙曾前往美国华盛顿州哥伦比亚河畔的汉福德镇参观。那里是美国发展核武器后最大的放射性核废料处理厂区。那里存放着含强化学腐蚀、强放射性核废液的锈迹斑斑的大罐子。詹文龙至今记得当时触目惊心之感:“美国现在一年要用20亿美元去维持那里的安全。”这让他更加坚定了一个想法:在我国发展一种能够更安全、更经济地处理核废料的技术。在科学家眼中,核废料并不是“废料”,而是可以继续利用的“乏燃料”。早在2011年,中科院就启动了“未来先进核裂变能—ADS嬗变系统”战略性先导科技专项(简称ADS先导专项),目标是利用加速器产生高能质子,驱动乏燃料继续“燃烧”。由于加速器停止运行时,燃料就能停止“燃烧”,这一技术也被国际公认为最有前景的利用嬗变安全处置长寿命核废料的技术途径。到2016年詹文龙赴美参观时,科学家们已经突破了一些ADS的关键核心技术,并且完成了一种新方案的设计,即一种能把乏燃料“吃干榨净”的、具有更高性价比的“加速器驱动先进核能系统”(ADANES)。新方案由两部分组成,一是将已有的ADS技术工业化,二是研制乏燃料再生循环利用系统(ADRUF)。前者相当于“造炉子”,后者相当于“造燃料”。詹文龙介绍,根据这一方案,铀资源的利用率将由目前的不到1% 提高到超过95%,最终只需处置少于5%的核废料,其放射性寿命将由数十万年缩短到五百年内,还可燃烧30%的钍资源,这将支撑核电发展成千上万年。在实现碳中和目标的同时,还能产生可用于精准靶向放疗及核移动电源的珍贵同位素。就在ADANES方案如火如荼地推进之时,与ADS先导专项同时启动的“未来先进核裂变能—钍基熔盐堆核能系统”(TMSR)先导专项也初见成效。“在2011年启动‘未来先进核裂变能’先导专项前已经明确,中科院要做核能领域的科技创新。我们分析形势之后认为有两个切入点,一个针对核废料安全隐患和环境影响的问题,研发核废料安全处理处置技术,将需要地质处置的核废料最少化;另一个针对铀—235核燃料匮乏问题,研发将钍—232用作核燃料的技术,以实现核燃料来源的多样化。”中科院重大任务局材料能源处时任处长、中科院赣江创新研究院纪委书记彭子龙在回忆先导专项立项经过时对《中国科学报》说。TMSR先导专项计划用20年左右的时间,在国际上首先实现钍基熔盐堆的应用,同时建立钍基熔盐堆产业链和相应的科技队伍。2017年11月,中科院与甘肃省签署四代先进核能钍基熔盐堆战略合作框架协议。至2021年5月,TMSR主体工程已基本完工。核聚变能技术:东方超环与神光在发展核裂变能的同时,中科院还有一批科研人员在探索另一类未来先进核能技术——可控的核聚变能技术。“聚变能是核能发展的最终目标,聚变能可以为碳中和的实现作出重大贡献。”中科院合肥物质科学研究院副院长、等离子体物理研究所所长宋云涛说。核聚变相当于用力把一堆原子捏到一起,然后释放出能量。核聚变反应条件苛刻,不仅需要达到千万甚至上亿摄氏度的高温,还需要巨大的压力。因此,如何触发反应,是核聚变能技术的一大难点。彭子龙告诉《中国科学报》,中科院科研人员在核聚变能技术上有两个努力方向,一是磁约束的核聚变,二是惯性约束的核聚变。磁约束核聚变,是通过托卡马克装置产生强大的磁场,把等离子体约束在尽可能小的范围内并将其持续加热并维持在数千万甚至上亿度的高温,以达到核聚变对温度的要求。早在上世纪70年代,位于合肥的中科院合肥物质科学研究院等离子体物理研究所就开始了核聚变相关研究,并于上世纪90年代启动磁约束的核聚变能技术——超导托卡马克的研究。2006年,被誉为“人造太阳”的东方超环正式建成,成为我国自行设计研制的国际首个全超导托卡马克装置。同年,以中科院为主导的中国团队加入国际热核聚变实验堆计划,成为全球探索“人造太阳”新能源队伍中的重要一员。2021年12月30日,东方超环实现7000万摄氏度下长脉冲高参数等离子体持续运行1056秒,这是人类首次实现人造太阳持续脉冲过千秒。惯性约束核聚变,是将聚变材料制成仅约一两个毫米的靶丸,然后从四面八方均匀射入高能激光束以持续压缩并最终引爆小球,形成微型“氢弹”爆炸,产生热能。为了验证这种原理,美国在2009年建成了国家点火装置(NIF)。在我国,上世纪60年代,中科院上海光学精密机械研究所开启了我国激光惯性约束核聚变能的研究历程。上世纪80年代,为了追赶国际研究的步伐,上海光机所开始了大型综合性激光装置——“神光”的预研工作,并于1986年建成,1994年装置退役后被称为“神光—I”。2000年和2015年,我国又先后建成神光—II激光装置和神光—III主机激光装置并投入使用。面向2060:科学家们的梦想从2011年至今的10多年里,“未来先进核裂变能”先导专项的发展历程与现状让彭子龙看到了中科院在开展先进核能技术方面的优势。“当初,我们酝酿研讨先导专项的时候,内心瞄准的是30年以后的事情。”彭子龙说,作为国立科研机构,中科院必须更加前瞻分析需求和挑战,基于科学本源、科学规律思考解决方案。在明确目标之后,中科院动员起了规模大、学科全的综合创新力量。“每个先导专项都是十几个研究所共同参与的。”彭子龙回忆。他感慨,作为国家战略科技力量,中科院的使命定位决定着其具有更强的创新能力和欲望。“国家要创新,中科院能创新。”彭子龙说。面向碳中和目标,科研人员又一次鼓足了干劲。作为先进核裂变能的研究者,詹文龙有一个梦想:在广袤无人的沙漠戈壁滩上,建一片清洁能源的绿洲,将太阳能、风能与更安全可靠的核能技术整合在一起,源源不断地向千家万户输出清洁无污染的电力能源。詹文龙介绍,他们已突破ADS关键核心技术,2020~2027年将高标准高质量按计划建成国家重大科技基础设施“加速器驱动嬗变研究装置”(CiADS);针对ADRUF,同期建成模拟燃料示范的乏燃料干式处理生产线。同时,实现ADANES整体方案优化;突破强辐照下稀有同位素量产关键技术与工艺,开展精准放疗同位素的量产。按技术进展,到2032年,他们将突破ADRUF关键核心技术,完成热室系统建设并进行再生核燃料研发,并完成基于CiADS的燃烧示范;争取国家重大科技基础设施“高密度能源燃料研究装置”完成立项,建设超强宽谱辐照设施及相关核材料研发平台。到2035年后,他们将完成ADANES集成优化与工业应用示范,为碳中和提供硬科技支撑,并实现产业化。作为先进核聚变能的研究者,宋云涛也有一个梦想:10年内建成未来核聚变发电站的示范工程,真正实现聚变堆发电。“时间紧迫,中国有自己的‘时间路线图’。按照现有技术,用10年时间建成核聚变发电示范工程是完全可以实现的,用不了多久,人类就可以点燃核聚变这个‘大煤球’。”宋云涛说。无论是过去、现在还是未来,中科院的科研人员一直向着更安全、更可靠、更经济的核能技术努力。正是这些延续了10年、20年、半个多世纪的坚持,让中国先进核能技术的发展前景有望,让中国碳中和目标的实现未来可期。
  • Nature Communications | 杜平武与杨上峰两课题组合作,成功研发聚集可调双发射手性碳纳米环
    作者:王敏 来源:中国科学报中国科学技术大学杜平武教授课题组与杨上峰教授课题组合作,合成了首个具有聚集可调双发射性质的手性双环分子。研究成果近日发表于《自然-通讯》。a)传统AIE发光体示例;b) 具有聚集可调双发射性质的手性双环分子(SCPP[8]) 中国科大供图“这种新型手性分子在聚集态和溶液态可以发射不同波长的荧光,通过控制聚集程度,调节两个发射峰的比例,获得多种颜色的荧光发射。”化学与材料科学学院材料科学与工程系博士生张新宇说,该分子可以应用在光传感器、3D电影及视频、数据存储以及探针领域。在传统系统中,聚集诱导猝灭发光体通常在溶液状态强烈发光,但在聚集时,荧光会显著减弱甚至完全消失。另一种独特的发光体具有与之相反的光物理现象,其在溶液中几乎不发光,而在聚集时可以发射出强荧光,这种发光体称为聚集诱导发光分子。这也意味着目前绝大多数的发光体具有单一的发射性质,只在溶液中发光,或只在聚集态发光。而同时具有聚集诱导发光和聚集诱导猝灭效应的双发射有机材料在文献中很少报道。基于前期研究工作,合作研究团队通过将具有聚集诱导发射活性的1,2,4,5-四苯基苯用对苯撑单元固定,成功合成了首个具有聚集可调双发射性质的手性有机双环分子,称之为SCPP[8]。此外,团队在含有不同水体积的四氢呋喃和水混合物中研究了SCPP[8]的荧光现象。SCPP[8]展现了出乎意料的多色荧光发射、单分子近白光发射,稳定的固有手性和增强的圆偏振发光性质,将在聚集诱导发射传感器、白光发射器件和手性材料中具有潜在应用。审稿人认为,新型纳米环同时展现了令人意外的光物理现象和出色的圆偏振发光性质。这是一个有趣且不寻常的发现,优异的光物理性质使其拥有技术应用的潜在价值。相关论文链接:https://doi.org/10.1038/s41467-022-31281-9
  • 华东师大吴鹏团队成功创制高效丙烷脱氢催化新材料
    近日,华东师范大学化学与分子工程学院吴鹏教授团队在分子筛孔道限域金属催化剂高效催化丙烷脱氢领域取得重要进展。面向丙烷脱氢制丙烯这一重要工业反应对高活性、高选择性和高稳定性贵金属催化剂的实际需求,课题组创制了超大微孔硅锗沸石孔道内限域锚定铂(Pt)团簇催化剂,利用沸石骨架金属与Pt的强相互作用,实现了丙烷脱氢高选择性制丙烯反应的长周期运行。2023年6月12日,研究成果以《Germanium-enriched double-four membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation》为题在线发表于Nature Catalysis上。丙烯是化学工业中最重要的烯烃之一,用于生产多种大宗化学品,包括聚丙烯、丙烯腈、丙烯酸、丙酮和环氧丙烷等。广泛用于丙烷脱氢制丙烯的铂基催化剂面临着制造成本高、容易团聚烧结和高温下催化性能快速失活等诸多问题。因此开发兼具理想催化活性、高选择性及长期耐久性的新型催化剂具有重要的学术和应用价值。吴鹏教授团队开发了一种UTL型硅锗沸石孔道限域的Pt亚纳米团簇型金属催化剂,巧妙利用UTL型分子筛中特殊的富锗双四元环结构(d4r)诱导锚定客体Pt,形成特异性限域于14元环孔道内的亚纳米Pt团簇,构建的主客体双金属结构Pt4-Ge2-d4r@UTL催化剂极大地提升了丙烷脱氢的催化性能,并具有高活性、高丙烯选择性和高耐久性,极具工业应用前景。Pt4-Ge2-d4r@UTL催化丙烷脱氢反应的性能课题组以热/水热结构稳定的Ge-UTL为载体,H2PtCl6为Pt源,采用湿法浸渍制备得到催化剂Pt@Ge-UTL。该催化剂在500oC的反应温度下获得了超过54%的丙烷稳定转化率,99%以上的丙烯选择性。催化剂在不同的丙烷分压,空速以及反应温度下持续稳定催化4200小时。为了满足工业应用需要,课题组还评价了纯丙烷进料、580oC/600oC高温条件下长时间的丙烷脱氢性能,结果表明催化剂具有工业应用前景。亚纳米Pt团簇在UTL孔道内的落位课题组利用积分差分相位衬度成像扫描透射电子显微镜,证实了亚纳米级的Pt团簇特异性地落位在UTL的14元环孔道内,表明Pt在UTL孔道中占据了特定位置,这与14元环孔道具有较大孔尺寸以及骨架Ge在双四元环结构单元的局部富集有关。Pt和Ge的化学状态和配位环境的表征原位XAFS研究表明,最优催化剂Pt-A-2h(31)-R中的Pt物种价态介于0-1之间,线性组合拟合给出了Pt的平均价态为0.576。该催化剂拥有几乎可以忽略的Pt-Pt键散射路径贡献,说明高Ge含量的样品中Pt的尺寸极小(Pt-Pt键配位数大约为3)。重要的是,可以明显观察到位于2.93 Å位置的Ge-O-Pt键的散射路径,且强度很高,证明了Pt是通过Pt-O-Ge键的形式锚定在Ge-UTL沸石上。此外,没有观察到Ge-Ge键的散射路径信号,表明骨架Ge未被还原,仍为原子分散的骨架Ge位点。Ge原子在载体和催化剂中的位置采用19F MAS NMR技术对双四元环结构中的元素组成进行了表征,确认了各种组成的双四元环所占比例并计算出了双四元环结构中Ge含量占整个UTL晶体中Ge含量的95 %左右,表明经酸处理稳固后,样品中的Ge主要位于双四元环结构单元。确定了Pt的定向锚定和落位是通过与双四元环结构中的骨架Ge的化学相互作用来实现的。证明了一种全新的活性位点Pt4-Ge2-d4r@UTL的形成,其可以高效催化丙烷脱氢制取丙烯。丙烷脱氢过程的理论计算结果DFT理论计算和微观动力学模拟结果表明Pt4-Ge2-d4r@UTL结构的计算活化能接近实验值,且远低于Pt(111)的活化能。这归因于Pt4-Ge2-d4r@UTL结构可以有效降低第一步脱氢的能垒,这是整个PDH反应的速率决定步骤,从而提高丙烷脱氢反应速率。吴鹏教授课题组长期聚焦于新型沸石分子筛催化材料的设计及环境友好石油化学化工过程的研究。华东师大化学与分子工程学院博士后马跃为论文的第一作者,华东师大化学与分子工程学院吴鹏教授、徐浩教授、关业军教授,以及中国石油大学(北京)宋卫余教授、内蒙古大学张江威研究员、阿卜杜拉国王科技大学韩宇教授为共同通讯作者。合作单位包括石油科学研究院、崇明生态研究院、重庆大学、中国石油大学(北京)、内蒙古大学、华南理工大学以及阿卜杜拉国王科技大学。
  • Science:科学家测定超高热导率半导体-砷化硼的载流子迁移率
    中国科学院国家纳米科学中心研究员刘新风团队联合美国休斯顿大学包吉明团队、任志锋团队,在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得进展,为其在集成电路领域的应用提供重要的基础数据指导和帮助。相关研究成果发表在《科学》(Science)上。 随着芯片集成规模的进一步增大,热量管理成为制约芯片性能的重要因素。受到散热问题的困扰,不得不牺牲处理器的运算速度。2004年后,CPU的主频便止步于4GHz,只能通过增加核数来进一步提高整体的运算速度,而这一策略对于单线程的算法无效。2018年,具有超高热导率的半导体c-BAs的成功制备引起了科学家的兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs具有高的热导率以及超弱的电声耦合系数和带间散射,理论预测c-BAs同时具有颇高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中颇为罕见,有望将其应用在集成电路领域来缓解散热困难并可实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有重要意义。 虽然c-BAs已被制备,但样品中广泛分布着不均匀的杂质与缺陷,对其迁移率的测量带来困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,而电极的大小制约其空间分辨能力,并直接影响测试结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。 通过大量的样品反复比较,科研团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数)、接近0的拉曼本底、极微弱带边发光的高纯样品。进一步,科研团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到10-5量级,空间分辨能力达23 nm。利用该测量系统,研究比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约1550 cm2V-1s-1,这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究还发现长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。 立方砷化硼高的载流子和热载流子迁移速率以及超高的热导率,表明可广泛应用于光电器件、电子元件。该研究厘清了理论和实验之间存在的差异的具体原因,并为该材料的应用指明了方向。 研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金、国家重点研发计划与中科院仪器设备研制项目等的支持。  图1.c-BAs单晶的表征。(A)c-BAs单晶的扫描电镜照片;(B)111面的X射线衍射;(C)拉曼散射(激发波长532 nm);(D)极微弱的带边发光(激发波长593 nm)及荧光成像(插图,标尺为10微米)。 图2.瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm;(B)不同时刻的瞬态反射显微成像(标尺1微米);(C)典型的载流子动力学;(D)0.5 ps的二维高斯拟合(E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。
  • 丹纳赫“创升中国”战略升级,“双创新加速引擎”框架正式发布
    2023年11月7日,在第六届进博会上,丹纳赫宣布“创升中国“本土战略升级,发布“双创新加速引擎”框架,加速临床创新转化,赋能产业发展。丹纳赫“双创新加速引擎“围绕医疗机构创新策源和产业园区企业赋能,深度链接政府、医院、高校、研究机构、企业、资本,打通政策链、产业链、人才链、创新链、资金链和生态链。丹纳赫全球副总裁、中国区集团总裁彭阳表示,二十大后,国家对于创新提出更高层次的要求。丹纳赫“创升中国2.0”战略致力于激发医疗机构创新转化活力,推动临床创新溢出效应;助力全产业链深度链接融合,积聚协同发展势能,从而推动中国医疗健康事业的高速发展。丹纳赫全球副总裁、中国区集团总裁彭阳创新策源之临床创新转化丹纳赫布局临床创新转化加速器,与精准医学研究与产业发展联盟、北京市医药卫生科技促进中心合作,联合业内兼具实业和投资属性的知名企业及专业机构,形成紧密型产业联盟,针对肿瘤、脑健康、自身免疫性疾病等疾病领域加速临床创新转化,服务更多患者的健康。精准医学研究与产业发展联盟副主席黄钢表示,丹纳赫的“创升中国”战略将在生命科学事业未来的发展中产生积极的不可替代的作用。联盟期待与丹纳赫合作,推动从理论到实践,从模型到技术的落地创新,为中国人民和世界人民的健康带来更加显著的影响。精准医学研究与产业发展联盟副主席黄钢由左至右:精准医学研究与产业发展联盟副主席黄钢;丹纳赫中国政府事务副总裁韦春艳;精准医学研究与产业发展联盟副主席兼秘书长王波;丹纳赫全球副总裁、中国区集团总裁彭阳北京市医药卫生科技促进中心(北京市医疗机构药品使用监测评价中心)主任张静波表示,在临床转化领域中,医疗机构是重要主体之一,既是研发和验证者,也是使用和推广者。临床创新转化将对提升患者的医疗质量和医疗安全起到非常重要的作用,惠及更多患者。北京市医药卫生科技促进中心(北京市医疗机构药品使用监测评价中心)主任张静波丹纳赫中国政府事务副总裁韦春艳(左)北京市医药卫生科技促进中心(北京市医疗机构药品使用监测评价中心)主任张静波(右)赋能产业发展之1+3+X园区合作丹纳赫布局产业创新转化加速器,在长三角、京津冀、粤港澳、成渝和更多战略城市,携手政、产、学、研、医、投等多领域,共同打造“创新链+产业链+生态圈”的闭环链条。在进博会之际,丹纳赫分别与商务部投资促进局、植恩生物、火石创造宣布合作,推动产业创新转化。商务部投资促进局副局长于广生表示,中国生命健康产业展示出强大活力,已经成为全球第二大健康经济市场,正逐步走向源头创新,从进口转向国产、从国内走向国际。商务部投资促进局积极搭建生命健康跨境产业投资促进平台,为产业转型升级、创新发展注入资源与动能。商务部投资促进局副局长于广生签约人:丹纳赫中国政府事务副总裁韦春艳(左)商务部投资促进事务局医药化工部主任宋雷(右)见证人:丹纳赫全球副总裁、中国区集团总裁彭阳(右)商务部投资促进局副局长于广生(左)丹纳赫宣布将与植恩生物技术股份有限公司共建丹纳赫中国西部中心,助力该区域生物医药产业创新发展,强强联手,充分发挥领军企业和链主企业的带动作用,聚力共建。双方将致力于以“丹纳赫中国西部中心”为核心赋能成渝经济带及西部地区医药研发,建成科学、开放、共享的研发、生产、检验平台,吸引一大批供应链企业聚集,构建优质闭环产业链,推动产业链、创新链、服务链“三链融合”,建成以医学诊断、生物制品、精准疗法为标志的产业集群。植恩生物技术股份有限公司董事长黄山表示,我们的目标是在实现双方共赢的同时,充分发挥“丹纳赫中国西部中心”影响力,持续助力中国医药健康事业的高质量发展。植恩生物技术股份有限公司董事长黄山签约人:丹纳赫中国政府事务副总裁韦春艳(左)植恩生物技术股份有限公司发展部负责人陈红(右)见证人:丹纳赫全球副总裁、中国区集团总裁彭阳(右)植恩生物技术股份有限公司董事长黄山(左)火石创造董事长金霞表示,火石创造以独特的视野、强大的产业生态能力为园区产业发展提供产业大脑,深耕生命健康产业,用数据驱动产业发展,将与丹纳赫一同服务园区,进而服务产业。火石创造董事长金霞由左至右:丹纳赫中国政府事务副总裁韦春艳;火石创造董事长金霞;丹纳赫全球副总裁、中国区集团总裁彭阳;火石创造产业运营负责人刘加玉
  • “碳”索未来 “双碳与新能源”主题展会与专题高峰论坛在蓉举行
    展馆现场。主办方供图7月12-14日,第四届中国环博会成都展期间,四川省绿色发展促进会等联合举办“双碳与新能源”主题展会及专题高峰论坛。国内双碳与新能源领域知名专家、学者及企业家云集成都,共商“双碳”建设,共谋“新能源与碳中和”未来。本次论坛以“积极应对气候变化、推动绿色低碳发展”为主题。与会人员聚焦双碳与新能源发展背景,就面临的机遇挑战、产业与行业发展路径、当前碳中和与新能源发展中的热点、难点问题进行了深度的研讨,为观众带来一场“双碳与新能源”知识的盛宴。活动现场,为展示“双碳与新能源”领域内先进的工艺技术、产品、设备、解决方案、成功案例等,创新性地采用“统一承租、统一策划、统一布展、统一宣传、统一推广、统一跟踪”的参展模式。除节能降碳、新能源开发利用产业展区外,现场还将开展多场围绕绿色低碳的主题活动。在双碳与新能源技术产品展上,12家企业解读了在资源节约利用、减污降碳协同、生态修复建设等12个方向的案例及项目优势,并以PPT“路演”的方式,向参加博览会的观展人员轮流进行宣讲。通过重点介绍解决问题的技术原理和工艺、投资运行成本、国内同行业比较优势、风险防控措施、达到的效果效益、商业合作模式等,力求在交流联接中形成合作。“当前,环境行业正面临集体转型和升级,我们将继续坚持创新是引领发展的第一动力,加快工艺优化和成果转化,为工业废水处理开辟新途径。”中广核达胜科技有限公司刘鹏在展会上说。据悉,四川省绿色发展促进会还通过申请“点点碳中和”,实现了“论坛”的碳中和,为活动划上了一个圆满的句号。
  • 聚焦高端仪器 双措力保领先——访牛津仪器中国区总经理张鹏
    p    strong 仪器信息网讯 /strong 4月24--25日,中国科学仪器行业“达沃斯论坛”——2017 (第十一届)中国科学仪器发展年会(ACCSI 2017)在南京国际青年会议酒店如期召开。 /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201705/insimg/fe07747f-64be-4bc7-9cc5-be4ada2ed795.jpg" title=" 0.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 牛津仪器中国区总经理张鹏 /strong /p p   作为ACCSI 2017赞助商之一,牛津仪器(上海)有限公司(以下简称“牛津仪器”)代表出席了本次大会。借此机会,仪器信息网视频采访了牛津仪器中国区总经理张鹏,请其就参会感受、牛津仪器2016年市场表现及2017相应市场规划进行了介绍。 /p script src=" https://p.bokecc.com/player?vid=B12DD55E6FAB379E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script p   采访中,张鹏表示:“自己参加的会议并不多,但记忆中,差不多参加了每一届ACCSI。ACCSI信息量充分、内容有广度及深度,每次都很有收获。刚才两位院士报告中关于生命科学技术前沿的讲述就颇有受益。”为此,采访特安排在了大会报告间隙,也尽量对采访时间进行了缩短。 /p p   问及牛津仪器在2016年的业绩表现及2017年的市场规划,张鹏表示:“牛津仪器在去年有不错的表现,实现近两位数的增长。尤其是在高校、科研院所等比较高端的科研领域,相关仪器设备包括低温超导、等离子体沉积、等离子刻蚀、Andor科学级相机、原子力显微镜等都取得了比较大的增长。2017,牛津仪器将更加聚焦高端科研仪器设备,从通过加大研发投入等增加有机增长和兼并收购领先公司两大措施,来保证牛津仪器在高端仪器领域的领先优势。” /p p   就在大会结束的第二天, 4月26日, a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/news/20170426/218185.shtml" span style=" color: rgb(0, 176, 240) " 牛津仪器发布公告,将其工业分析业务出售给日立高新技术公司(HHT) /span /a 。也许正如张鹏所言:“通用仪器不是我们的特长也不是我们的目标,我们会把更多精力放在在性能比较强大、比较领先的高端仪器上,这是我们关注的重点,也是牛津仪器始终追求的目标。” /p
  • 大连化物所实现半导体光催化硼化反应
    近日,大连化学物理研究所精细化工研究室有机硼化学与绿色氧化创新特区研究组(02T6组)戴文研究员团队在多相光催化硼化方面取得新进展。团队选用易于制备的硫化镉纳米片作为多相光催化剂,利用光生电子—空穴的协同氧化还原作用,通过选择性硼化反应,实现了烯烃、炔烃、亚胺以及芳(杂)环的高值转化,合成了硼氢化和硼取代产物。氮杂环卡宾硼烷(NHC-BH3)由于其化学性质稳定且制备方法简单,近年来作为一种新型硼源,被应用于自由基硼化反应中。然而,大量有害的自由基引发剂或昂贵且无法回收的均相光催化剂的使用仍然阻碍其广泛应用。因此,发展一种通用、廉价且可循环的催化体系对NHC-BH3参与的自由基硼化反应的发展具有重要意义。在上述研究背景下,戴文团队发展了一种简单、高效的多相光催化体系。该体系利用易于制备的硫化镉纳米片作为多相光催化剂,NHC-BH3为硼源,在室温光照的条件下,实现了多种烯烃、炔烃、亚胺、芳(杂)环以及生物活性分子的选择性硼化反应。由于该转化过程充分利用了光生电子—空穴对,从而避免了牺牲剂的使用。进一步研究发现,该催化体系不仅能够实现克级规模放大,且催化剂多次循环后依旧保持稳定的收率,同时,该催化体系作为一个可循环的通用平台,回收后的催化剂仍可继续催化不同种类底物的硼化反应,这些结果可为以NHC-BH3为硼源的自由基硼化反应的发展提供新思路。此外,该工作还对所得到的有机硼化物进行了衍生化,合成了含有羟基,硼酸酯和二氟硼烷反应活性位点的合成砌块。  戴文团队一直致力于多相催化大宗化学品(烯烃、炔烃、有机硫化物和醇等)的高附加值转化并取得了一系列研究成果:在前期的工作中,分别发展了钴基氮掺杂介孔碳催化醇的氧化酯化制备酯(Angew. Chem. Int. Ed.,2020)、廉价锰氧化物催化醇的氧化氨化制备酰胺和腈(Chem,2022)、铁单原子纳米酶催化酮的氧化氨化制备腈(Science Advances,2022)、锰氧化物催化不饱和碳氢资源的氧化氨化制备酰胺和腈(JACS Au,2023)、钴纳米颗粒和钴单原子协同催化有机硫化物制备酰胺和腈(Nat. Commun., 2023)。  相关研究成果以“Facile Borylation of Alkenes, Alkynes, Imines, Arenes and Heteroarenes with N-Heterocyclic Carbene-Boranes and a Heterogeneous Semiconductor Photocatalyst”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)上,并被选为热点文章(Hot Paper)。该工作的共同第一作者是大连化学物理研究所02T6组博士后谢复开和科研助理毛展。上述工作得到了辽宁省优秀青年基金的资助。
  • 2016圣诞、元旦双节联欢活动
    2016圣诞、元旦双节联欢活动2016-12-23 普析 普析 不必通关过境,无需脚踩刹车,岁月就这么平滑地驶入新的一年。抬望眼,2017悄然来临,惊回首,2016一去不返。岁月悠悠,步履匆匆,没有一点儿迟疑。 也许你会眷恋徘徊,也许你会惆怅失意。这一本叫做2016年的时光手册,在人类的历史上不会再版。请你毅然合上它,并赋予它一页壮丽的封面,温暖的封底。 封面上写着荣誉。荣誉链接着你的忠诚、你的执着、你的追求、你的坚守、你的殚精竭虑。封底上也可以保留你的缺憾。缺憾中渗透的,是你的留恋、你的忧虑、你的憧憬、你的悱恻、你的神思遐想。让它们慢慢地与光阴一起,幻化为我们集体的记忆。让所有的这一切都凝结成新的积淀,积淀在普析事业的参天大树上,从此多了一道深刻的年轮。 2016年即将结束,2017年正向我们走来,在欢乐圣诞、喜庆元旦双节到来之际,综管部联合总经办,精心策划筹备了一场联欢活动:五彩缤纷大放异彩的现场,有趣欢乐的小游戏,小巧精致的礼物,畅饮不断的饮料小食......让职工带着一颗尽情放松的心,带着无忧无虑少年般的心情,在打造成童话世界般的现场,在这里欢唱、尽情玩耍、融洽交流! 2016年12月22日,新年前夕,由普析工会主办,总经办、综管部策划组织,各部门积极参与的双节联欢会热闹开场。新年庆祝活动近些年已经成为普析迎接新年的固定节目,今年的新年联欢会主要以轻松活泼的游戏为主,让职工逐渐适应并愿意积极参与集体活动。 有趣活泼的开场舞蹈打开了热闹的联欢序幕,推开2017年的大门,我们跨进了2017年,轻松的舞步、灿烂的笑脸,让我们看到了2017的朝气蓬勃,充满希望的2017,我们普析人来了! 晚会刚刚开幕,现场的气氛相当轻松诙谐。游戏开始,现场观众们场上场下互动、爆笑连连,笑声爆满现场。看得精彩、听得轻松,引得观众们哈哈大笑。如果说活动组筹备的是一场庆祝新年的联欢活动,不如说活动组编制了一条通往2017的彩虹,带着普析员工承载着欢声笑语滑过匆匆岁月,迈进了欢乐的2017年,晚会时间是有限的,但是留下的记忆,或许是一个笑容的定格、或许是一声欢快的笑语,它就深深的印刻在你我心中,保留并延续着这种欢乐,我们走进2017,2017,给我们的印象,也就是欢乐的! 活动结束,主持人连同活动筹备组人员来到场中一同谢幕,声声祝福中,欢乐的活动暂告一段落,但是欢乐是没有谢幕的,带着无限憧憬的普析人已经走进2017,带着期盼,带着坚毅,一起走出精彩的2017年! 北京普析通用仪器有限责任公司 以下为活动精彩花絮活动现场现场抽奖,吃瓜群众踊跃参与挤爆气球游戏嘿呦!嘿呦!挤气球。嘿呦!嘿呦!挤气球。这气球质量怎么这么好,怎么挤都不爆!!!把买气球的拖出去打!!!模拟时钟比赛小羊、小羊几点啦?也许,也许,快到吃饭的点啦:-)口口接力比赛第一名传给第二名第二名传给第三名第三名传给第四名第四名传给第五名获奖选手现场吃瓜群众一现场吃瓜群众二毛绒小鸡礼品,祝大家新年快乐!!!小鸡,小鸡,各种小鸡......花生、瓜子、饮料、矿泉水啦......反正各种好吃哒!!!质量好好的气球!!!广告走一波准备好的活动现场一准备好的活动现场二无名英雄,幕后工作人员,来给他们点个赞 :-)
  • 天虹环仪、禾信仪器、鹏宇昌亚瓜分1094万VOCs分析仪采购大单
    p style=" text-indent: 2em text-align: justify " 进一步提升全站环境监测的整体水平,福建省环境监测中心站于2018年11月22日就环境空气在线VOCs分析仪采购项目公开招标。近日,已完成相关招标工作。天虹环仪、禾信仪器以及北京鹏宇昌亚环保等品牌最终以1094.8万元成功中标。 /p p style=" text-indent: 2em text-align: left " 中标详情: /p p style=" text-indent: 2em text-align: left " 项目名称:福建省环境监测中心站环境空气在线VOCs分析仪采购项目 /p p style=" text-indent: 2em text-align: left " 项目编号:[3500]ZXFZ[GK]2018110 /p p style=" text-indent: 2em text-align: left " 采购人名称:福建省环境监测中心站 /p p style=" text-indent: 2em text-align: left " 项目负责人:张福旺 /p p style=" text-indent: 2em text-align: left " 联系电话:张福旺,83571018 /p p style=" text-indent: 2em text-align: left " 总中标金额 & nbsp & nbsp ¥1094.800000 万元(人民币) & nbsp & nbsp /p table style=" border-collapse: collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 60" valign=" top" 合同包 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 118" valign=" top" 设备名称 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 数量 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 规格型号 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 品牌 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 中标金额 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 60" valign=" top" 1 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 118" valign=" top" 环境监测仪器及综合分析装置 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 2 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" TH-300B /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 天虹环仪 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 3200000元 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 60" valign=" top" 2 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 118" valign=" top" 环境监测仪器及综合分析装置 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 2 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" AC-GCMS 1000 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 广州禾信仪器股份有限公司 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 3898000元 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 60" valign=" top" 3 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 118" valign=" top" 环境监测仪器及综合分析装置 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 2 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" ZF-PKUVOC1007 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 北京鹏宇昌亚环保科技有限公司 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 89" valign=" top" 3850000元 /td /tr /tbody /table
  • 在这里读懂“绿色”“双碳”
    “油气氢电服”综合加能站、“深海一号”超深水大气田、太阳能汽车、竹缠绕复合材料… … 走进位于国家会议中心二期的环境服务专题展,绿色的布展色调,让观众眼前一亮。  在国家“双碳”战略背景下,今年服贸会首次新增环境服务专题展,设立低碳能源、气候与碳经济、碳中和与绿色技术、创“双碳”示范城市、环保产业等五大专区,集中展示了全球环境服务领域的最新成果和技术应用。  一进展区,尺寸不一的管道层层嵌套,给人强烈的视觉冲击。在今年服贸会上展示的直径3.6米的管廊、各类尺寸的管道,均由竹缠绕复合材料制成,为竹制品开发应用的可能性提供了更多想象。  “竹缠绕复合管强度高、耐腐蚀、成本低,已应用在浙江、黑龙江、湖北、山东等多地的供水、排水、农田灌溉等工程中。”中林集团展台工作人员刘佳会正在为观众介绍,“竹缠绕产业不仅生产过程节能环保、产品可固碳储碳,还能够推进竹林管理、循环利用,推进林业碳汇交易。”  与竹材料展台一路之隔,长达四五米的沙盘上,2022年冬奥会延庆赛区国家雪车雪橇中心像一道白色“游龙”,吸引了不少观众驻足。  国家雪车雪橇中心是我国建设的第一条雪车雪橇赛道,自北向南蜿蜒在延庆赛区入口西侧的山脊之上。“为避免阳光照射影响冰面,设计团队结合赛道形状、自然地形、遮阳屋顶等,建立了‘基于地形的人工地形气候保护系统’,与遮阳帘、遮阳背板一起有效保护赛道冰面,最大限度降低能源消耗。”展台工作人员介绍说。  在低碳能源方面,“油气氢电服”及“碳中和”一体的综合加能站模型,展示了加油站未来的转型发展方向;明黄色的“深海一号”模型矗立在蓝色的“海面”上,展现着这座创下三项世界纪录的国之重器的宏伟面貌… …   一批绿色技术的突破和应用,让观众看到了低碳发展的更多实现路径。  中国首台100kA、160kA、170kA大容量发电机断路器等电气装备产品,打破了这一领域的国外垄断,填补了国内空白。据展台工作人员介绍,目前,这一产品已经服务于三峡、白鹤滩等水电站以及一些火电站。一旦发电站遇到故障,断路器能够为发电机、变压器及线路上其他大容量设备提供保护。  各类新能源汽车展现出汽车行业未来发展方向。在展厅中,几辆流线型车身、前部被整面玻璃覆盖的太阳能汽车,吸引了不少观众的目光。“这几款太阳能汽车,应用了一套光伏发电和储能的解决方案。”江苏振发控股集团有限公司副总裁张柱介绍说,“在车顶加装的光伏发电装置,可以作为对汽车动力的补充,将续航里程提高20%至30%。”  气候变化是当前人类共同面临的严峻挑战之一。在气候与碳经济专区,相关企业展示了如何提供更有针对性的气象服务。  在电视屏幕上,实时变化的生态、双碳、海洋地图显示着全国各地的数值信息。“这是全球首个基于近实时模型的全景碳排放数字地球产品,可以监测电力、工业、居民消费以及航空、航海、陆路等交通运输中,碳排放的准实时数据。”在一款“碳星球”可视化产品前,中科星图维天信展台相关负责人陈昌硕介绍说,“平台为关心碳排放情况的用户提供了准实时数据,也有助于唤起人们绿色出行、节能减排的意识。”  当下,随着科技迅速发展,天气服务应用领域日益广泛,除了天气预报,还有基于农业、交通、零售等领域特殊需求的定制化功能。墨迹天气市场负责人张杰卿为观众演示了交通航运方面的定制化服务,她表示:“平台可以根据天气状况为国际海运提供更优化的线路规划,帮助用户降低燃油能耗,降本增效。”  除了展示环境服务领域的最新成果,服贸会期间,环境服务专题还围绕“碳达峰碳中和”、“双碳”赋能产业发展、碳交易、绿色城市等热点话题,举办了一系列论坛活动。  当下,“双碳”经济在全球正处于蓬勃发展阶段,带来前所未有的发展机遇。中国气候变化事务特使解振华指出,全球绿色低碳转型的大趋势不可阻挡,全球正迎来一场以绿色低碳为特征的产业和技术变革。实现绿色低碳转型创新将会催生各类新技术、新业态,创造巨大的绿色市场,释放强大的经济增长新动能。
  • 发力医学!这所双一流高校正式成立生命科学与医学部
    近年来,双一流高校建设医学院(部)的消息一直受到广泛关注。在国家双一流建设启动的背景下,发力医学已经成为促进学校发展的重要途径。 今天,又有一所双一流高校成立生命科学与医学部。 今天(5月22日)下午,西北大学生命科学与医学部成立大会在西北大学长安校区举行。中国科学院院士杨焕明、顾东风,中国工程院院士李佩成、陈志南、张生勇,陕西省委高教工委书记董小龙,西安市副市长强晓安,陕西省人民政府学位委员会秘书长袁宁,陕西省卫计委副主任陈昭,西安市卫计委党委书记、主任刘顺智,华大基因集团执行副总裁杨爽,西安交通大学医学部副主任王子明,空军军医大学口腔医院院长邓中荣、西京医院副院长赵文彬、唐都医院副院长孙飙,西北大学校长郭立宏,校党委副书记、副校长贾明德,校党委副书记雷忠鹏、赵作纽,校党委常委、纪委书记李邦邦,校党委常委、副校长王正斌,校党委常委李鹏、吕建荣等出席。省市有关部门、部分三甲医院负责人,兄弟院校、科研院所、生物医药企业和师生干部代表600余人参会。大会由西北大学党委常委、副校长常江主持。 西北大学生命科学与医学部的成立,是西北大学落实健康中国战略、推进科教深度融合、实现创新驱动发展的重要举措,标志着西北大学医学学科建设取得了实质性进展,翻开了崭新篇章。同时,这也是西北大学学部制改革的首例试点。生命科学与医学部将下设生命科学学院和医学院,在生命科学学院框架下,积极推进生态学院、药学院、华大学院建设。 西北大学医学院将立足“小规模、高起点、有特色”的办学定位,充分发挥西北大学综合性大学的优势,借助生物基础理论、基因测序技术、生物医学分析工具和生物医学大数据平台,聚焦“精准医学”研究,开启具有“未来医学”视野的医学研究和临床治疗范式,使医学学科成为学校推进“学科+”计划、提升学科集群发展实力的重要引擎,以医学大发展全面助力“双一流”建设,服务“大西安”发展,为陕西“五新”战略实施和地方经济社会发展作出新的更大贡献。 成立大会上,刘顺智、贾明德分别代表西安市卫计委和西北大学签署合作协议。双方将在直属附属医院建设、医学教育人才培养、科学研究、人才队伍建设和临床诊疗等方面深化合作,促进医教研融合发展。 杨爽、贾明德分别代表华大基因有限公司和西北大学签订《共建西北大学华大学院暨秦岭基因库协议》。双方将致力于为生物产业领域培养国际一流高端人才,培育重大科研成果,助推生物产业健康发展。 杨焕明、董小龙、强晓安、郭立宏、袁宁、陈昭、刘顺智共同推动启动杆,宣布西北大学生命科学与医学部正式成立。 与会嘉宾分别为 “西北大学医学院”“西北大学药学院” “西北大学生态学院”和“西北大学华大学院”揭牌 刘顺智、郭立宏分别为“西北大学附属医院”“西北大学附属第一医院”授牌。两所附属医院由西安市卫计委与西北大学共建共管,其中,西安市第一医院命名“西北大学附属第一医院”,西安市第三医院命名“西北大学附属医院”。 郭立宏为杨焕明颁发了西北大学生命科学与医学部筹委会主任、西北大学华大学院院长聘书。杨焕明为徐勇勇、谭庆荣颁发西北大学特聘教授聘书,为田晔、赵朝等16人颁发西北大学研究生导师聘书。王子明代表兄弟院校对西北大学生命科学与医学部的成立表示祝贺,他介绍了西安交通大学医学部与西北大学的渊源,表示将传承历史情谊,与西大医学学科携手共进。陈富林对西北大学生命科学与医学部组织架构、运行机制、建设发展愿景等方面进行介绍。 王正斌宣读了学校关于相关机构成立和研究生导师、教授的聘任文件,常江主持大会。 董小龙在讲话中指出,西北大学立足新时代新任务新要求创建生命科学与医学部,是学校认真学习贯彻习近平新时代中国特色社会主义思想,聚焦“双一流”建设,推动内涵式发展,助力追赶超越的重大举措,将为推动陕西高等教育和医疗事业发展注入新的活力,也将为加快实施“健康陕西”战略,满足三秦百姓日益增长的美好生活需要发挥新的更大作用。他希望学校坚持办学正确政治方向,精准把握新时代高等教育和改革发展的战略机遇与历史使命,立足陕西、面向西部、服务全国,打造西部新的医学中心。 强晓安在致辞中指出,此次签约和授牌是西安支持西北大学复办医学学科、打造高水平区域医学中心的一项重要举措。随着市校合作共建的广泛开展,市校间各类优质资源将得以更好结合,合作交流内容将更加丰富深入,合作模式将不断创新。西安市将会大力支持并认真做好市校合作共建协调服务工作,不断推动、落实、拓展、深化合作,实现共同发展、共同进步。 郭立宏在致辞中对省市各级领导和相关部门对学校的关心和支持表示感谢。他深情回顾了西北大学医学学科的办学历史,介绍了学校近年来为复办医学学科所做出的努力。他强调,西北大学将以复办医学学科为契机,积极落实“健康中国”战略,在人才引育、学科建设、科学研究、平台共享等方面持续发力,切实增强服务地方经济社会发展能力,为落实“五新”战略任务,助力“大西安”建设发展提供“西大方案”、汇聚“西大智慧”、贡献“西大力量”。 西北大学医学学科历史与复办 西北大学肇始于1902年的陕西大学堂和京师大学堂速成科仕学馆,是一所有着116年历史和文化积淀的综合性大学。西北大学医学学科起源于上世纪早期的北平大学医学院。抗战全面爆发后,北平大学医学院改为西北联大医学院。1939年,西北联大改为西北大学,并将原西北联大医学院独立设置,改称西北医学院。抗战胜利后,1946年,西北医学院并入西北大学,成为西北大学医学院,直到1950年再次独立出来,复名西北医学院,后并入西安交通大学。 西北大学学科门类中一直有医学药学类的学科专业。从“十二五”开始,学校针对筹建医学院事宜陆续开展相关调研论证,并将其作为学校重点工作予以推进。“十三五”以来,学校围绕“双一流”建设目标,梳理各种办学资源,积极报请省市领导支持医学学科复办工作。在各级领导、省市各部门的关心和支持下,学校吸纳附属医院、承接医学学科人才等工作取得了重大突破,与秦汉新城等政府部门和企业签订了医学领域科学研究的合作协议,为复办工作打下了坚实基础。2018年4月23日,西北大学与西安市签署战略合作协议,作为主要内容之一,双方将按照“资源共享、优势互补、共建共管、医教协同”的原则,共建“西北大学(西安)医学院”,翻开了西北大学医学复办的新篇章。
  • 第21届中国环博会,Temtop乐控人气爆棚
    2020年第21届中国环博会于今日在上海国际展览中心如期举行,中国环博会由德国慕尼黑国际博览集团、中国环境科学学会、全国工商联环境商会、中贸慕尼黑展览(上海)有限公司等单位联袂举办,秉承德国IFAT母展50年优良品质,是亚洲有影响力、高品质的环境技术交流盛会之一。美国Temtop乐控携团队亮相本届展会,于E5展馆-A06与大家见面! 美国Temtop乐控作为一家致力于提供环境颗粒物及关键环境指标监测仪器的研发和生产的美国企业,依托硅谷科技优势,以创新为先、全球服务为基石。在现场用多功能展区为新老客户带来产品展示和服务体验,与来自世界各地的知名企业共同解锁扬尘在线监测解决方案。 Temtop乐控在全球拥有众多环境监测专家、工程师、销售代表及现代化工厂,致力于环境监测领域高端精密仪器的研发、生产与销售。目前已有数万台Temtop环境监测设备和技术服务于全球各地环境监测、生产制造、环保咨询、实验室及科研机构等行业。以国际化组织为全球环境监测市场提供创新、先进的环境监测产品和服务。 展会期间,Temtop乐控的多款产品吸引了众多拥趸咨询体验,小编也专门到现场,采访工作人员,为大家深度解析Temtop乐控的产品线!一类是在线粉尘颗粒物监测仪,其中包括了专为中国扬尘在线监测系统设计的产品——在线粉尘监测仪PMS 10型号,是现场的焦点,它全面取代了风扇式传感器,因风扇式传感器,其结构设计及激光器及风扇等元器件配置,针对网格化等大气监测场景有很大不足。比如说风扇的流量小、流速不稳,无法对大粒径颗粒物进行有效采样,数据自然无法太准确;另外,其扩散式的采样方式无法进行前端预处理,导致内部积尘污染严重,采样效率会逐步下降,数据也会引起很大的偏移。这也是很多使用风扇式传感器的用户所反馈的难题。PMS 10则很好的解决了这个问题,它主要采用1.1L/min无刷真空气泵, 可测量PM1、PM2.5、PM10、TSP(PM100),在国内市场好评无数;升级的PMS 20产品,主要增加至2.83L/min流量的气泵,内置是鞘气及多道过滤结构可有效提升运行寿命 同时开放校零、校准、模式选择等功能,可供用户自行设置;针对洁净空间的应用场景,Temtop乐控PMS 7粒子计数器,可测量0.3至10μm的粒子数,主要应用于洁净室、净化车间、过滤器滤料测试等行业。 那么第二类手持式的气溶胶监测仪表,包括了PMD 351系列,主要测量PM1、PM2.5、PM4、PM10、TSP五通道颗粒物质量浓度,这款产品不止配有大屏幕及按键操作,而且重量比较轻巧、还支持U盘直接导出两百万组数据量, 非常适用于点源及现场快速监测;而针对洁净室的应用场景,Temtop乐控还有PMD 331粒子计数器型号,主要测量单位体积0.3至10μm的粒子数。PMD 351、PMD 331这两款型号均配置了8G内存以及通讯端口,可以更广范围的满足专业人士的不同需求。 对于未来的发展,Temtop乐控也充满了信心,借助美国品牌的国际化团队, 并根据中国市场的特性及需求,会打造更适合中国市场的监测生态圈,与此同时,Temtop乐控在国内全新投资的生产工厂也即将完成, 未来成本也会有一定的空间。根据中国随着当下“智慧城市”的快速发展,Temtop乐控也制定了针对中国区的物联网优化方案,会不断推进联网化、数字化进程,以多元化市场需求为导向,推动TEMTOP的进一步发展,也为全球环境健康安全贡献一份力量。 2020年中国环博会仍在火热进行中,Temtop乐控也会在8月13日——8月15日持续为中国新老客户带来专业的产品体验及温馨的洽谈区域,Temtop乐控期待与更多的专业人士在E5展馆-A06展位再次相遇。
  • 中国半导体十大研究进展候选推荐(2022-015)——超高热导率半导体-砷化硼的载流子扩散动力学研究
    以下文章来源于国家纳米科学中心 ,作者刘新风课题组1 工作简介——超高热导率半导体-砷化硼的载流子扩散动力学研究国家纳米科学中心刘新风研究员团队联合休斯顿大学包吉明团队和任志锋团队在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得重要进展,为其在集成电路领域的应用提供重要基础数据指导和帮助。相关研究成果发表在Science杂志上。随着芯片集成规模的进一步增大,热量管理成为制约芯片性能越来越重要的因素。受散热问题的困扰,人们不得不牺牲处理器的运算速度。从2004年后,CPU的主频便止步在了4 GHz,只能通过增加核数来进一步提高整体的运算速度,然而这一策略对于单线程的算法却是无效的。2018年,具有超高热导率的半导体c-BAs的成功制备引起了人们极大兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs不仅具有高的热导率,由于其超弱的电声耦合系数和带间散射,理论预测c-BAs还同时具有非常高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中是非常罕见的,有望将其应用在集成电路领域来缓解散热的困难并且能够实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有非常重要的意义。虽然c-BAs被制备出来,但样品中广泛分布着不均匀的杂质与缺陷,为其迁移率的测量带来极大的困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,然而电极的大小制约着其空间分辨能力,并直接影响到测试的结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。通过大量的样品反复比较,研究团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出了具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数),接近0的拉曼本底,极微弱带边发光的高纯样品。进一步,研究团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到了10-5量级, 空间分辨能力达23 nm。利用该测量系统,详细比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约 1550 cm2V-1s-1, 这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究团队还发现了长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。立方砷化硼高的载流子和热载流子迁移速率,以及其超高的热导率,表明其可以广泛应用在光电器件、电子元件中。该研究工作厘清了理论和实验之间存在的巨大差异的具体原因,为该材料的应用指明了方向。图1. 瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm (B)不同时刻的瞬态反射显微成像(标尺1微米) (C)典型的载流子动力学 (D)0.5 ps的二维高斯拟合 (E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。国家纳米科学中心副研究员岳帅为文章第一作者,刘新风研究员为通讯作者。文章的共同第一作者为休斯顿大学田非博士(现中山大学教授),共同通讯作者为休斯顿大学包吉明教授和任志锋教授。该研究工作得到了中国科学院战略性先导科技专项(B类)、国家自然科学基金委项目、万人计划青年拔尖人才计划、科技部重点研发计划、科学院仪器研制项目等项目的大力支持。2作者简介通讯作者刘新风,国家纳米科学中心研究员,博士生导师。2004年获东北师范大学学士学位。2007年获东北师范大学硕士学位。2011年获中科院大学博士学位。2015年中科院海外人才计划加入国家纳米科学中心。2021年获中组部人才计划支持。目前担任中国科学院纳米标准与检测重点实验室副主任。研究方向为半导体材料微纳尺度光与物质相互作用光谱和物性研究。近年来在Science, Nat. Mater., Adv. Mater., Nano Lett.等期刊上发表论文210余篇,总引用15000余次,H因子61。担任Nat. Nanotech., Sci. Adv., Nano Lett., Adv. Mater. 等国际学术期刊审稿人。任Journal of Physics: Photonics, Nano Materials编委会委员,InfoMat, Materials Today Physics, Materials Today Sustainability, Frontiers of Physics青年编委。通讯作者包吉明,美国休斯顿大学电子与计算机工程系教授,博士生导师。美国物理学会会士,美国光学学会会士。2003年于密歇根大学获得博士学位,导师Roberto Merlin,2003年-2008年在哈佛大学做博士后研究,合作导师为Federico Capasso。2008年加入美国休斯顿大学电子与计算机工程系。主要研究方向为新型纳米材料的制备与纳米光电子学研究。发表文章250余篇,引用量19000,H因子62。通讯作者任志锋,教授,博士生导师。现为美国休斯顿大学物理系M.D. Anderson讲席教授,德克萨斯州超导研究中心主任。1984年在西华大学获得本科学位,1987年在华中科技大学获得硕士学位,1990年在中科院物理所获得博士学位。他的研究集中在具有高ZT值和高功率系数的热电材料、极高热导及载流子迁移率的砷化硼单晶、用于提高石油采收率的纳米材料、电解水产制氢催化剂、用于捕获和消灭SARS-CoV-2冠状病毒的加热过滤器、碳纳米管、太阳能转换材料、柔性透明电子器件和超导材料及其应用等。第一作者岳帅,国家纳米科学中心副研究员。2016年于中科院物理所获理学博士学位,导师翁羽翔研究员。2017年-2020年在电子科技大学-美国休斯顿大学从事博士后研究,合作导师王志明教授和包吉明教授。2020年加入国家纳米科学中心。长期从事超快光谱研究。在Science, PNAS, Nature Materials 等期刊上发表论文20余篇,申请专利5项。第一作者田非,中山大学材料科学与工程学院教授,博士生导师。2012年本科毕业于南开大学物理科学学院,2013年进入美国休斯顿大学物理系攻读博士学位,导师是任志锋教授。2018年获得博士学位后,继续在任志锋教授课题组从事博士后研究。2020年起加入中山大学材料科学与工程学院。长期从事新型散热材料的合成和制备,基本性质的表征和分析,以及相关应用的设计和开发。目前已在国际主流学术期刊发表论文三十余篇。
  • 环保部公示2010年环境保护科技奖名单
    根据《环境保护科学技术奖励办法》的有关规定,2010年度环境保护科学技术奖项目已经奖励评审委员会全体会议投票产生。为体现环境保护科学技术奖公开、公平、公正的原则,加强社会对环境保护科学技术奖励工作的监督,现将2010年度环境保护科学技术奖获奖项目予以公示,向全社会广泛征求意见。   自11月10日起30日内,任何单位和个人对公布的获奖项目及其内容持有异议的,应采取书面形式,写明提出异议的事实依据、本人真实姓名、工作单位及地址(含邮政编码)等,向环境保护科学技术奖励工作办公室(通讯地址:100082 北京市海淀区红联南村54号 中国环境科学学会)提出异议。   2010年环境保护科学技术奖获奖项目公示名单 获奖等级 项目编号 项 目 名 称 完 成 单 位 完 成 人 一等奖 1 环境一号小卫星星座及应用关键技术研究 环境保护部卫星环境应用中心、中国环境科学研究院、南京师范大学、中国科学院地理科学与资源研究所、中国科学院遥感应用研究所、中国科学院对地观测与数字地球科学中心、中国环境监测总站 王桥、罗毅、魏斌、王昌佐、王文杰、张峰、韩梅、厉青、吴传庆、申文明、杨一鹏、刘晓曼、孙中平、熊文成、许全文 2 北京及周边大气污染形成机制、区域联控及奥运空气质量保障研究 北京大学、中国气象科学研究院、中国环境科学研究院 朱彤、徐祥德、柴发合、邵敏、唐孝炎、周秀骥、胡炳清、张世秋、胡敏、丁国安、卞林根、王淑兰、曾立民、王雪松、陈义珍 3 洱海富营养化综合防治成套技术 中国环境科学研究院、大理白族自治州环境保护局 金相灿、何金平、许映苏、叶春、尚榆民、胡小贞、徐南妮、庞燕、杜宝汉、刘文祥、李文朝、舒俭民、王圣瑞、卢少勇、储昭升 4 国家中长期环境经济综合模拟系统研究 环境保护部环境规划院、国家信息中心、四川大学、四川省环境保护科学研究院、山东省环境保护科学研究设计院 王金南、蒋洪强、曹东、於方、祝宝良、高树婷、严刚、祁京梅、周颖、牛坤玉、张战胜、徐玖平、王丽娟、彭岩波 二等奖 1 极端嗜盐菌在三聚氯氰废水净化回用工程上的应用 中国环境科学研究院、海南晟泰环境工程有限公司、德固赛三征重庆精细化工有限公司 李捍东、冯世骥、朱宇同、李霁、刘纯新、于云江、席北斗、刘征涛、张广涛 2 环渤海区域大气颗粒物污染特征和灰霾天气的形成机制 山东大学、中国环境科学研究院、香港理工大学 张庆竹、王韬、王文兴、杨凌霄、孙孝敏、丁爱军、周学华、王新峰、许鹏举 3 国家环境技术管理体系建设 北京市环境保护科学研究院、清华大学、天津市环境保护科学研究院 王凯军、何星海、易斌、赵淑霞、闫静、王家廉、余杰、张国臣、宋秀杰 4 难降解废水的电催化氧化处理技术与设备 江苏省环境科学研究院、常州大学、南京赛佳环保科技有限公司 王志良、李国平、孔泳、夏明芳、刘秀宁、陆继来、陈智栋、邓延慧、王彧 5 珠江三角洲河网与河口水质模型连接计算研究 环境保护部华南环境科学研究所 曾凡棠、萧洁儿、李、汪中洋、郑淑颖、余宏邦、赵远宏、房怀阳、林澍 6 新型危险废物焚烧处置工艺的研究与应用 北京机电院高技术股份有限公司 赵传军、白金玉、于淑芬、许靖平、汪洪伟、王开西、高大方、崔天鑫、杜燎原 7 青海三江源区生态系统综合监测与评估关键技术研发及其应用 中国科学院地理科学与资源研究所、青海省环境监测中心站、青海省水文水资源勘测局、青海省水土保持局、青海省草原工作总站 刘纪远、邵全琴、任杰、樊江文、葛劲松、徐新良、李其江、王军邦、王立亚 8 北京市大气环境污染现状和污染源研究 北京市环境保护监测中心 陈添、于建华、赵越、华蕾、石爱军、孙峰、陶蕾、金蕾、邹本东 9 新型污泥喷雾干化-回转窑焚烧技术集成及一体化装备开发与应用 清华大学、浙江环兴机械有限公司、北京市环境保护科学研究院 王凯军、俞其林、俞金海、俞林明、潘小成、张国臣、阎中、郑明霞 10 低能耗污水污泥同步处理一体化设备 江西金达莱环保研发中心有限公司、深圳市金达莱环保股份有限公司 廖志民、熊建中、杨圣云、周佳琳、袁志华、蒋幸福、万爱国、何凌云、张小雄 11 河口-近海生态系统变异及环境污染调控技术与应用 中国环境科学研究院、中国海洋大学、江苏省环境监测中心、上海市环境科学研究院、浙江省环境监测中心 孟伟、郑丙辉、翟世奎、雷坤、刘录三、孔福生、林卫青、刘志刚、秦延文 12 YPL 压力盘式过滤机 汶瑞机械(山东)有限公司 陈全兵、陈永林、王涛、李明芹、刘炳贞、张立勋、陈长征、张林涛、谭芬芬 13 新型生态修复功能材料技术与产业化应用 中国农业科学院农业资源与农业区划研究所、烟台五洲施得富肥料有限公司、广东深圳市芭田生态工程股份有限公司、内蒙古国投环境治理有限公司、天津康龙生态农业有限公司 张夫道、王玉军、张建峰、张树清、杨俊诚、吕明磊、赖涛、张俊清、史春余 14 新型在线水质分析系统研制与产业化 聚光科技(杭州)股份有限公司、杭州电子科技大学、浙江大学 王健、项光宏、王静、韩双来、叶华俊、陈生龙、吴坚、王建华、闻路红 15 内外双循环流化床烟气脱硫技术 中国科学院过程工程研究所、中国石油大学(北京)、北京正实同创环境工程科技有限公司 朱廷钰、荆鹏飞、叶猛、徐文青、单晓昌、何京东、魏耀东、宋健斐、戎海立 16 超磁分离水体净化技术 四川德美环境技术有限责任公司 倪明亮、周勉、胡尚英、葛加坤、周生巧、刘显明、黄光华、徐波 三等奖 1 高寒地区生活污水处理工艺及回用技术研究与示范工程 哈尔滨工业大学 赫俊国、李建政、袁一星、孙慧丽、许春生 2 制药行业恶臭气体治理技术集成及优化 河北科技大学 郭斌、任爱玲、杜昭、赵文霞、周保华 3 新型膜生化反应器处理垃圾渗滤液技术及示范研究 江苏维尔利环保科技股份有限公司、江苏省环境科学研究院 李月中、王惠中、吴海锁、朱卫兵、黄娟 4 LHJ型螺旋干燥机 潍坊天洁环保科技有限公司 李见成、许崇庆、殷常峰、李金华、卢秀江 5 油田采出水深度处理与回用工艺技术集成研究与应用 中国石油集团安全环保技术研究院、中国石油天然气股份有限公司华北油田分公司、中国石油天然气股份有限公司冀东油田分公司 刘光全、吴百春、邓皓、刘生瑶、吕鹏 6 电子废弃物有价成分脉动气流分选及应用 中国矿业大学、徐州浩通新材料科技股份有限公司 何亚群、段晨龙、夏军、王海锋、王帅 7 构建海洋化工类生态工业园的关键技术及示范 山东大学、潍坊滨海经济开发区环境监测站、山东省国合循环经济研究中心 崔兆杰、齐大凯、王艳艳、孙晓梅、张新端 8 农产品产地环境控制与安全技术标准研究 环境保护部南京环境科学研究所 林玉锁、江希流、华小梅、张胜田、张孝飞 9 新型高效节能型煤粉工业锅炉系统技术研发及应用 山西蓝天环保设备有限公司 郎凤娥、郎鹏德、王欢、杜铭华、郝泽 10 微压清灰袋式除尘技术在大型燃煤锅炉超细粉尘高效控制方面的开发与应用 北京赫宸环境工程有限公司、山西平朔煤矸石发电有限责任公司 彭志民、赵健飞、张培华、尉万里、董淑玲 11 油田用新型水处理剂及废弃物的高值化应用 中国科学院长春应用化学研究所 王丕新、张文德、徐昆、谭颖、宋春雷 12 活性炭有机废气高效吸附回收装置 泉州市天龙环境工程有限公司 傅太平、陈殿忠、张步芳、黄平 13 乡土植物在珠三角城镇生态绿地构建中的研究与应用 中国科学院华南植物园、佛山市高明区园林管理处 任海、卢琼、张倩媚、简曙光、范炳标 14 固定污染源烟气排放连续自动监测质量管理规范体系建设 中国环境监测总站、上海市环境监测中心、中日友好环境保护中心 杨凯、王强、胡敏、孙毅、滕恩江 15 制药工业水污染物排放标准研究 河北省环境科学研究院、中国环境科学研究院、哈尔滨工业大学 邢书彬、王路光、陈艳卿、任南琪、修光利 16 含油废弃钻井液资源化利用技术研究 中国石油集团安全环保技术研究院、中国石油天然气股份有限公司辽河油田分公司、大庆油田有限责任公司勘探分公司 许毓、邓皓、邵奎政、王蓉沙、刘光全 17 烟气脱硫石灰石活性分析及测试技术 中电投远达环保工程有限公司、重庆大学 杜云贵、刘艺、刘清才、杨翼、张金伦 18 FZ-12振动式固液分离机 泉州市丰泽华兴建筑机械设备有限公司 苏和睦、苏建华 19 《声环境质量标准》等环境噪声系列标准 中国环境科学研究院、中国环境监测总站、北京市劳动保护科学研究所 张国宁、李孝宽、刘砚华、任文堂、周扬胜 20 麦秸机械还田治理环境污染技术集成与应用 江苏里下河地区农业科学研究所、扬州市邗江区农作物技术推广中心、扬州市环境保护局 张洪熙、徐蕾、黄年生、孙江、景明仪
  • 环博会现场直击——“软硬兼施”,磐诺仪器人气爆棚!
    2018年5月3日,第19届中国环博会在上海新国际博览中心举行,作为亚洲最具影响力、最高品质的环境技术交流盛会,共有来自15个国家和地区的1500多名优质展商参展,迎接超过10万观众观展。此次展会,磐诺携A91PLUS实验室高端气相色谱仪、AMD10气相色谱质谱联用仪、PGC-80在线气相色谱分析系统等五款产品精彩亮相;并为现场用户带来了更全面的应用方案。从硬件到软件,一次性满足了现场众多观众的实际需求,引来众多参观者驻足。八年来,在磐诺的精耕细作下,越来越多的人了解到了“磐诺GC”,磐诺的技术实力也得到了市场的认可。现场参观、咨询仪器设备的观众络绎不绝。与此同时,磐诺的“现场福利”也非常的给力,各式精致的常州特产吸引了超多人气~
  • 徐州经开区主任臧晓鹏一行调研无锡中科光电
    4月24日,徐州市经开区主任臧晓鹏一行在无锡市发改委主任周文栋及新区相关领导的陪同下到聚光科技旗下子公司无锡中科光电技术有限公司(以下简称:中科光电)调研,公司负责人进行了热情接待。总经理万学平向调研团介绍了中科光电发展历史和业务方向,汇报了公司在院士科研团队的指导下,围绕开展大气污染防治、改善环境空气质量的主线,潜心钻研技术创新,推出颗粒物监测激光雷达、大气臭氧探测激光雷达等一系列核心产品和大气环境立体走航观测车、大气环境光化学监测方舱等集成装备,先后参与了大气重污染成因与治理攻关等多项国家级科研项目,并支撑江苏、山东、福建等地在蓝天保卫战中取得优秀成绩。调研团赞许中科光电助力江苏省打赢蓝天保卫战的服务业绩随后,臧主任一行参观了生产车间,详细了解激光雷达设备的应用,并观看了中科光电信息化平台“爱蓝网”所做的现场演示。臧主任一行了解大气颗粒物激光雷达在立体监测中的应用科学、智能、高效的爱蓝网信息化平台实时展示徐州市空气质量现状看到徐州市空气质量总体情况和主要污染物浓度实时更新,各国控站点PM2.5浓度、排名清晰明了,污染事件管控任务一键直达,臧主任点头称赞。 得知中科光电的技术团队正驻守徐州经开区、丰县开展大气污染防治管控服务,臧主任勉励中科光电继续为徐州市空气质量改善贡献力量。 小贴士——“爱蓝网”简介面对大气污染治理日益精细化的需求,中科光电重磅打造了用于大气环境数据研究的信息化平台“爱蓝网”,拥有大数据融合、管理闭环、AI识别三大核心优势,真正双路协管闭环。“爱蓝网”融立体监测、精准锁源、动态调度、管控评估、预警预报、多证据链联动、科学研判、绩效考核为一体,是真正解决大气污染问题的“环保医生”。 已广泛应用于江苏各地,并助力镇江市、淮安市分别取得2019年度PM2.5改善幅度全省第一、第二的好成绩。
  • 南京农业大学资环学院汪鹏教授课题组建立基于天然微生物传感器的稻米无机砷高通量检测分析平台
    近日,南京农业大学资源与环境科学学院汪鹏教授课题组开发了一种稻米iAs检测新方法,利用天然微生物传感器E. coliAW3110 (pBB-ArarsR-mCherry) 结合淀粉酶水解提取砷形态,实现稻米中iAs的高通量和定量检测。本研究将该生物传感器制成了操作便捷的试剂盒,包括酶标板、α淀粉酶,以及生物传感器细菌冻干粉。生物传感器被制成冻干粉可以提高该方法的使用范围、延长保质期、简化操作步骤和缩短测试时间。用该试剂盒在12 h内能检测超过200个稻米样品,而常规方法HPLC-ICP-MS在同样的时间内仅能测定40个样品。   稻米是无机砷(iAs)的主要膳食来源,iAs是一种剧毒砷,会在稻米中积累,对以稻米为食的人群构成巨大健康风险。然而,目前可用于稻米iAs检测的方法比较少,迫切需要开发一种简单、经济、准确和高通量的稻米无机砷检测方法。   该生物传感器的传感系统来源于天然细菌砷抗性操纵子。微生物自诞生以来就一直生活在含砷环境中,并进化出了砷抗性ars操纵子,参与不同的砷解毒途径,比如ArsB为细胞As(III)外排蛋白,ArsC为As(V)还原酶,ArsM为As(III)S-腺苷甲硫氨酸甲基转移酶,ArsK为MAs(III)外排蛋白,ArsH为MAs(III)氧化蛋白。在没有As的情况下,ArsR蛋白与启动子上游的DNA结合区ABS结合,阻止ars操纵子转录。然而,在As存在的情况下,As(III)与ArsR蛋白结合,诱导其构象变化,从而降低ArsR蛋白对ABS的亲和力,ars操纵子的表达被激活。在本研究中,将mCherry基因连接到带有启动子的arsR基因(来源于对As(III)高灵敏的土壤细菌Arsenicibacter roseniiSM-1的ars操纵子)下游,并导入E. coliAW3110,mCherry基因的表达水平受ars操纵子的活性控制,与iAs浓度成正比,从而实现砷浓度信号到红色荧光蛋白mCherry的转换。该生物传感器对砷表现出高度特异性,只响应无机砷,不响应有机砷,并通过调节检测体系中PO43-浓度来区分亚砷酸盐[As(III)]和砷酸盐[As(V)]。   用该试剂盒测定了19个总砷浓度不同的稻米样品的iAs浓度,表现出出色的重现性和高信噪比,检测限低至16 μg kg-1[As(III)]和29 μg kg-1[As(V)],这些值远远低于欧盟制定的婴儿稻米的最大允许水平(100 μg kg-1)。这种简单的生物传感器试剂盒为检测食品样品中的iAs提供了一种很有前景的工具。   相关研究成果在国际权威期刊Analytical Chemistry上发表了题为Natural microbial reactor-based sensing platform for highly sensitive detection of inorganic arsenic in rice grains(2023)的论文,其中,博士生葛占标为论文第一作者,汪鹏教授为通讯作者,前沿交叉研究院陈明明副教授以及资环院黄科副教授、谢婉滢副教授和赵方杰教授也参与该研究工作。该研究得到了国家重点研发计划项目和江苏省重点研发计划项目的资助。
  • 安徽财经大学组织“双碳”背景下经济高质量发展论坛
    11月20日,安徽财经大学在龙湖东校区艺术楼报告厅组织“双碳”背景下经济高质量发展论坛。蚌埠市委副书记、市长操龙灿,著名经济学家、中国人民大学原副校长、一级教授吴晓求,中国工程院院士、安徽理工大学校长袁亮,中国工程院院士、合肥工业大学教授杨善林,中国工程院院士、中国科学院合肥物质科学研究院研究员李建刚,中国工程院院士、中国建材集团有限公司总工程师、中建材玻璃新材料研究总院院长彭寿,安徽工业大学党委书记陆林,安徽工业大学党委副书记、校长魏先文,安徽科技学院党委书记蒋德勤,蚌埠学院党委书记陈国龙,安徽财经大学党委书记虞宝桃,安徽省政协经济委员会副主任、安徽财经大学原党委书记、校长丁忠明,安徽财经大学党委副书记、常务副校长朱红军, 安徽财经大学党委常委、副校长周加来,安徽财经大学副校长张焕明、学术副校长何贤杰出席开幕式。朱红军主持开幕式。操龙灿在致辞中指出,实现碳达峰碳中和是贯彻新发展理念、构建新发展格局、推动高质量发展的内在要求,是一场广泛而深刻的经济社会系统性变革。近年来,蚌埠市委、市政府深入贯彻落实习近平总书记关于碳达峰碳中和的重要指示精神,全面理解、准确把握实现碳达峰碳中和的内涵发展、目标建设、实施路径及重点任务等各个维度,取得显著成效。未来蚌埠市将进一步推动产业结构、能源结构和相关技术的深刻变革,推动地方经济社会高质量发展。操龙灿指出,安徽财经大学扎根蚌埠六十余年来,将学校发展与地方发展紧密结合,为蚌埠经济社会发展作出重要贡献。本次活动围绕推动绿色低碳经济发展、探索“双碳”背景下经济高质量发展新路径、进一步提升经济发展新动能等主题开展高层次交流研讨,对推动地方、企业、高校之间的交流合作具有重要作用。彭寿在致辞中充分肯定了安徽财经大学为国家和区域经济社会发展作出的重要贡献。他表示,安徽财经大学始终秉承“诚信博学、知行统一”的校训精神,围绕“绿色金融”“绿色经济”“绿色发展”不断深化新文科、改革新工科、探索新经管,成为国家和地方高质量人才输送的摇篮,书写了新时代服务安徽的创新答卷。本次论坛紧紧围绕“双碳”背景探讨经济高质量发展,正是安徽财经大学不断深化新文科、探索新经管的重要表现。彭寿希望中国建材集团继续与安徽财经大学等省内高校聚焦“双碳”发展,深化产学研协作,做优创新链,打造一流原创技术策源地;做强产业链,打造新兴产业集聚地;做实人才链,打造国家重要人才中心和创新高地,为实现国家高水平科技自立自强贡献安徽力量,为建设现代化美好安徽贡献央企和高校的力量。虞宝桃代表学校向参加论坛的各位专家学者表示诚挚欢迎,向一直以来关心支持学校建设发展的各位领导嘉宾表示衷心感谢。他介绍了学校学科建设、人才培养、队伍建设、科学研究、社会服务等方面情况,他指出,党的二十大报告对于“碳达峰碳中和”和“经济高质量发展”作出了重要战略部署,“双碳”与经济高质量发展是辩证统一关系。本次论坛是学校贯彻落实党的二十大精神的生动实践,也是学校服务国家战略,为推动绿色低碳经济高质量发展贡献力量的应有之义。虞宝桃表示,学校将以党的二十大精神为指引,深入实施“安财新经管”发展战略,沿着“走出去、建平台、上水平”发展路径,坚持学科引领、人才强校、育人为本、科研兴校与开放办学,完整、准确、全面贯彻新发展理念,聚焦聚力服务国家战略与地方经济社会高质量发展,不断强化责任担当,为全面推进中国特色社会主义现代化国家建设,加快推进新阶段现代化美好安徽建设贡献“安财智慧”与“安财力量”。虞宝桃希望学校以本次论坛为契机,进一步深化与蚌埠市委、市政府及兄弟高校、科研院所的交流合作,加强对绿色金融、投资政策、财税政策等方面的理论和应用研究,增强推动绿色低碳发展的本领,把低碳发展纳入办学治校全过程,以实际行动助力“双碳”目标的实现。专家主旨报告环节,吴晓求教授作了主题为“中国式现代化的经济基础与金融的作用”的报告。他从“如何理解中国式现代化”“中国式现代化的经济基础”“中国式现代化实现过程中金融的作用”三个层面分别论述,他认为中国经济要进入现代化的关键在于推动中国经济结构的转型,推动科技进步、产业升级和产业迭代。李建刚院士作了主题为“对未来清洁能源发展的思考”的报告。他从能源创新发展、聚变发展现状、聚变技术转化与未来发展等方面进行了阐述,指出我国聚变实现了从跟跑、并跑到部分领跑的跨越。杨善林院士作了主题为“人工智能与管理变革”的报告。他从节约优先战略、能源安全战略、非化石能源替代战略、再电气化战略、资源循环利用战略、固碳战略、数字化战略、国际合作战略等八个方面阐述实现碳达峰碳中和的战略规划举措以及实现碳达峰碳中和基础研究相关安排。他用“智能网联汽车变革与管理创新”的案例,提出了“管理将引领人工智能的发展”观点。他认为科学技术的高速发展不仅促进了经济社会的高质量发展,也促进了人的思维方式和综合素养的不断提升;在智能经济时代,基于数据的人工智能必将对管理产生颠覆性的变革,管理必将引领人工智能的发展。袁亮院士作了主题为“我国碳达峰碳中和战略及路径思考”的报告。他从“双碳”发展的现状与面临的挑战、“双碳”战略思考与战略路径、“双碳”对策建议与创新实践三个方面进行了详细阐述。他表示,高校要以习近平生态文明思想为指导,贯彻落实党的二十大报告中关于“积极稳妥推进碳达峰碳中和”重要部署精神,强化“双碳”目标顶层设计,布局重大科技创新平台,开展绿色低碳技术攻关,创新“双碳”人才培养机制,继续为服务经济社会高质量发展作出更大贡献。袁亮、李建刚、操龙灿、虞宝桃、丁忠明共同为安徽财经大学“低碳发展与碳金融”安徽省哲学社会科学重点实验室揭牌。
  • "双碳"产业的成都样本:为我国提供碳中和解决方案
    当前温室效应和全球变暖加剧,不断威胁着全人类发展,如何实现碳达峰、碳中和?通过长期研究,四川成都为世界提供了“全球首创、改写历史、世界领先”的“双碳”解决方案。  “直接将‘空气中的二氧化碳’捕获并变废为宝是实现‘双碳’战略目标最直接有效的策略之一。”业内专家表示,这也是《麻省理工科技评论》分别在2019年和2022年将“空气中的二氧化碳”捕获技术及相关技术列为全球十大突破性技术之一的原因。在其他国家仍困于科研瓶颈之时,2022年,中国成都青年科学家成功在全球率先研发出从空气中高效循环捕获二氧化碳技术,并率先实现了“空气中的二氧化碳”产业化再利用,填补了世界空白。由此诞生出一个新的百万亿级超级绿色生态产业,形成新经济产业赛道。  当前,我国距离“碳达峰”还有不到10年时间,“十四五”时期是关键期、窗口期,同时也是机遇期。“双碳产业的成都样本”对我国生态文明建设,提升自主创新能力,落实“双碳”战略和“双碳”经济发展具有深远意义。同时也为构建“人类命运共同体”作出了较大贡献。  在党的二十大召开之际,2022年10月16日,我们来到该科研团队位于成都双流区电子科技大学成都研究院的项目实验室,独家揭密这项世界壮举背后的故事。  全球首创空气中的二氧化碳应用于绿色生态灭蚊  公共卫生工作一直是关系到我们整个国家人民大众健康的重大公共事业,2020年2月14日,习近平总书记在中央全面深化改革委员会第十二次会议中强调,从体制机制上健全国家公共卫生应急管理体系,把生物安全纳入国家安全体系,显示出重大改革的超强力度。  目前世界上近一半的人口,约35亿人,处于蚊媒疾病的威胁中。据统计,每年全球有超过100万人死于蚊媒传播疾病,蚊子是全球范围内对人类致病致死最多的生物。蚊子叮咬传播的疾病或病毒主要有疟疾、登革热、黄热病、寨卡病毒等,每年世界各地都有多个地方暴发大规模的蚊虫传播疾病疫情,对人类健康威胁巨大。2014年,WHO更是将世界卫生日的主题定为“远离虫媒传播疾病”。蚊子叮咬以及导致的蚊媒疾病是全球性的重大健康问题。  为解决公共卫生和民生问题,成都首次将“空气中的二氧化碳”捕获技术应用于生态灭蚊领域,开发出了世界上首台“仿生呼吸式捕蚊机系统”,通过仿生技术和新材料的融合,模拟人体呼吸,循环捕获并释放自然空气中的二氧化碳等分子诱杀蚊子,此技术在世界范围内首次实现了只利用自然空气来引诱并捕杀蚊子,实现健康、高效的革命性捕蚊。从源头上减少疟疾、登革热、黄热病等疾病疫情传播,改写了世界灭蚊历史。  2022年7月,成都活水公园率先引进了先进的“仿生呼吸式捕蚊机系统”,推出了全球首个无蚊公园,引起了全国广泛关注。  2022年10月17日,我们走进成都活水公园,看到一个个绿色的“方盒子”伫立于草坪中,单个盒子面积仅20平方厘米,有半人高,“方盒子”名为“猎蚊者仿生呼吸式捕蚊机系统”,几乎听不到机器声音,侧面装有收集蚊虫的收集器,蚊子飞近设备周围会从底部被吸入,人的体感完全感受不到蚊虫叮咬。  据了解,成都活水公园共安装了捕蚊机50台,目前应用3个月,共捕获成蚊超过5万只,公园区域蚊虫密度由最初的3.46只/台小时下降到0.18只/台小时,基本实现园区无蚊环境。  这项先进的“猎蚊者仿生呼吸式捕蚊机系统”正是采用了世界领先的“空气中的二氧化碳”捕获技术,它由我国青年科学家、绿碳未来(四川)科技有限公司(以下简称“绿碳科技”)董事长唐成康博士带领科研团队研发,“空气中的二氧化碳”捕获技术也是“十四五”规划“碳达峰”核心基础技术。唐成康曾师从麻省理工学院资深学者并获得博士学位,具有国际先进的科研项目创新理念和研发经历,其团队是一支汇集了一批博士、硕士的高科技人才队伍,包含海外知名大学教授、“千人计划”学者、国内顶尖学府博士后等海内外高层次人才,为科技创新提供了强有力的支撑。  科研团队带头人唐成康博士介绍,“蚊子之所以会咬人,是因为人呼出的二氧化碳气体是吸引蚊子最主要的引诱源。‘猎蚊者’是通过模仿人体呼吸,循环捕获、富集并释放自然空气中的二氧化碳等强诱蚊分子,引诱并捕杀蚊子,颠覆了传统灭蚊方法,实现了高效灭蚊和健康灭蚊的革命性捕蚊新方式。”  “猎蚊者仿生呼吸式捕蚊机系统”不仅让成都市市民惊喜,同时也震惊了业界。该系统将二氧化碳释放浓度量提升到30000PPM,从而真正达到高效地仿生诱蚊效果,在世界范围内首次实现只利用自然空气来引诱并捕杀蚊子。实现在公共区域24小时全时段捕蚊、吸血蚊子种类全覆盖捕捉的特殊优势,有望改变全球数千年以来低效、有毒的传统灭蚊方式,打造城市无蚊区域,比如无蚊公园、无蚊学校等。  “猎蚊者仿生呼吸式捕蚊机系统”与人民大众健康、民生改善息息相关,该技术的出现对于打造“健康中国”,有效、健康、可持续解决公共卫生问题,减少世界蚊媒疾病具有重要意义。  改写历史 率先实现产业化落地应用  “取于自然、还于自然”是对“空气中的二氧化碳”捕获技术及再利用的深刻诠释。2020年,全球二氧化碳排放总量为319.8亿吨,其中,中国二氧化碳排放量达到98.935亿吨,排名世界第一,占比30.93%。“双碳”战略事关中华民族永续发展和人类命运共同体的构建,如何早日实现“双碳”战略目标,是我国科学家的责任和使命。  此前世界已有的碳捕获技术缺陷明显,化学固碳成本高、耗费资源大、材料不稳定、不容易普及。空气中的二氧化碳量多但浓度低,很难直接捕获、应用和落地推广,这也是过去学界研究的难点和热点。而唐成康科研团队的“空气中的二氧化碳”捕获技术,率先实现了直接从空气中捕获二氧化碳及再利用的产业化落地。  为揭示其中奥秘,我们跟随唐成康博士来到位于成都双流区的项目实验室。不大的楼层分布着材料研发室、蚊虫培育室、产品试验室、会议室等,每个房间虽然干净但堆满了试验材料、迭代产品、科研资料等,办公环境极度紧凑。科研人员正认真、严谨地进行研发、试验和收集数据等工作。  就是在这样艰苦的环境下,凭着一股对科研的热情和对社会的奉献精神,唐成康博士带领10多名研发人员坚守了7年,经过一次次地失败,自主研发出新型纳米级二氧化碳捕获材料,终于成功实现在常温常压下,从空气中高效循环捕获并利用二氧化碳,且能产业化落地应用,填补了世界空白。这是我国科研人员不畏艰辛、刻苦钻研的真实写照。  “猎蚊者仿生呼吸式捕蚊机系统”仅是“空气中的二氧化碳”捕获技术在公共卫生领域试点的应用产品之一。  据了解,“猎蚊者仿生呼吸式捕蚊机系统”能做到使用24小时不超过1度电,拥有11项专利(8项实用新型、1项外观、2项发明专利)。全球首款“猎蚊者”呼吸式捕蚊机等项目获得多个大奖,包括2016成都创意设计周金熊猫文创设计奖商用及日常用品类金奖、2016第六届中国国际版权博览会金慧奖、2017“虫洞计划—全球找寻未来的独角兽”成都潜在独角兽、2018创交会中以创客大赛中国创业团队冠军、2018“创客中国”大健康创新创业大赛二等奖,唐成康博士也被评为2018“四川企业技术创新突出贡献人物100强”。  目前,该系统已在成都的公园、酒店、住宅区、赛马场、景区等区域投放,在整个四川地区,还进入了绵阳、青白江、雅安、新津等地,仅成渝地区的需求量就超过100万台。除了基本的防蚊灭蚊功能,该系统还能提供路灯照明、二氧化碳检测站点等功能,可广泛应用于学校、医院、社区、景区、家庭等场景。业内人士分析称,未来公共卫生领域的绿色健康灭蚊将形成千亿级的市场。  相比于其他国家,我国从空气中直接捕获并去除二氧化碳,是最直接、最有效、最可行的减少二氧化碳排放和阻止灾难性气候变化的方案。同时加以二次利用,不仅实现了零污染、零排放,还有效解决了公共卫生问题、民生问题,并产生巨大的经济价值。  世界领先 推动双碳经济全产业链发展  如期实现碳达峰、碳中和目标是一场硬仗,更是一场大考,必须增强自信、保持战略定力,扎实做好打持久战的思想准备和工作准备。“双碳”经济是我国国家战略,也是大国崛起的战略机遇。  唐成康博士表示,除公共卫生领域,“空气中的二氧化碳”捕获技术还可以广泛应用于“双碳”产业的其他方面,如富碳农业、工业碳减排、粮食仓储、新能源等领域,每个领域都将形成至少千亿级的市场。  针对富碳农业,唐成康博士科研团队研发的新型二氧化碳捕获装置,可安装到农作物温室大棚外,直接捕获并富集空气中的二氧化碳,并根据各农作物丰产的二氧化碳浓度需要,将调节后的二氧化碳泵入大棚内,能够显著促进农作物增收增产。同时,实现了二氧化碳的固化和再利用,实现了标准意义上的碳减排。例如提高大棚中二氧化碳的浓度至正常空气中二氧化碳浓度的3-4倍,草莓的亩产可提高40%-50%,黄瓜的亩产可提高60%-70%,葡萄的亩产可提高40%-50%,等等。  针对工业碳减排领域,唐成康博士科研团队正致力于研发“新型工业二氧化碳捕获装置”,有望大幅度降低工厂二氧化碳的排放。根据我国二氧化碳排放统计数据分析,在细分行业中,2020年碳排放前三的行业分别是燃煤电厂、钢铁和水泥。其中,燃煤电厂排放量高达35.39亿吨,占总量的34.11%,是碳排放最大的行业;其次是钢铁、水泥行业,这两个行业分别排放了15.98亿和11.12亿吨二氧化碳。实现以上工厂的二氧化碳减排对降低中国碳排放总量,减少温室气体排放具有重要意义。相比传统二氧化碳捕获技术及装置,唐成康博士团队开发的新型二氧化碳捕获技术及装置具有高吸附-脱附速率、良好循环稳定性,运行成本低于目前常规的胺吸附技术捕获成本,所捕获的二氧化碳还可直接再利用,有望真正实现二氧化碳排放——二氧化碳低成本捕获——二氧化碳生态再利用的碳生态循环。  在粮食储存领域,唐成康博士科研团队正致力于研发“新型二氧化碳气调储粮技术系统”。粮食安全是国之根本,目前全国共有粮食仓储企业1.9万家,容量超过3.9亿吨。传统粮仓主要通过自然通风储存。两到三年后,储存的粮食变成陈粮,不能再食用,只能用于工业。现今粮食仓储采用的传统“二氧化碳气调储粮技术”会加剧温室效应,且存在一定安全隐患。将新型二氧化碳捕获技术运用于粮食仓储,通过捕获空气中的二氧化碳,来替代传统的“二氧化碳气调储粮技术”中添加的二氧化碳,最终将实现绿色、环保、高效、安全的粮食零碳储存目的。  在“十四五”发展关键时期,“绿碳科技”计划通过点、线、面结合,率先建立国家级碳中和先导示范区、打造“双碳”经济产业园、建设“双碳”经济新产业链、构建“双碳”经济生态圈等,让企业成为“双碳”经济先锋,发挥产业集群效应的方式,打造绿碳循环生态体系,在世界独创一条“二氧化碳再利用全产业链”发展路径,为地方政府推动绿色低碳可持续发展提供技术支撑,助力我国落实“双碳”战略,为实现经济高质量发展贡献力量,为全球“双碳”事业提供了“成都样本”和“中国方案”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制