当前位置: 仪器信息网 > 行业主题 > >

吡啶鎓

仪器信息网吡啶鎓专题为您提供2024年最新吡啶鎓价格报价、厂家品牌的相关信息, 包括吡啶鎓参数、型号等,不管是国产,还是进口品牌的吡啶鎓您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡啶鎓相关的耗材配件、试剂标物,还有吡啶鎓相关的最新资讯、资料,以及吡啶鎓相关的解决方案。

吡啶鎓相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 瓮福质检技术中心获国家级认可
    贵州瓮福(集团)公司质量检测中心日前获得中国合格评定国家认可委员会颁发的CNAS认可证书, 表明瓮福的检测技术能力已得到国际同行认可。   获得该证书标志着瓮福的检测结果不仅赢得社会各界信任,还得到了签署互认协议方国家和地区认可机构承认,可参与国际间合格评定机构认可的双边、多边合作交流。在认可的范围内使用CNAS国家实验室认可标志和ILAC国际互认联合标志,有利于消除国际贸易中的技术壁垒,进一步提高企业产品及检测中心的知名度。
  • 祝贺冠亚水分仪公司与瓮福集团携手磷化工科研工作
    ----近日深圳冠亚水分仪科技有限公司和瓮福(集团)有限责任公司签订磷化工科研合作关系。 瓮福(集团)有限责任公司的前身是贵州宏福实业开发有限总公司,其主体贵州省瓮福矿肥基地是**“八五”、“九五”期间建设的五大磷肥基地之一。瓮福(集团)有限责任公司是集磷矿采选、磷复肥、磷煤化工、氟碘化工生产、科研、贸易和国际工程总承包为一体的国有大型磷化工企业。 深圳冠亚水分仪公司从1998年开始一直致力高端水分测定仪研发、生产、销售,目前国内一家专业的水分仪生产厂商,拥有自主知识产权产品已达几十项,同时拥有10项专利。冠亚快速水分测定仪于2005年已经获得外观专利保护,专利号2005301013706,该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代快速水分测定仪器。产品以其过硬的产品质量已经获得通过ISO 9001:2008质量管理体系认证,SFY系列水分测定仪引进进口自动称重显示系统,人性化系统操作, 自动校准功能、自动测试模式,取样、干燥、测定一机化操作。应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。 瓮福集团通过科研团队对测土配方,开展农化服务,提供科学、适宜的各种配方肥,进一步提高农作物生产效率。
  • 翁开尔2011汽车测试展圆满闭幕
    历时三天,2011汽车测试展终于降下帷幕。 本次展会上,翁开尔携手世界一流的老化专家美国Q-Lab公司共同展示了QUV、Q-SUN、Q-FOG等产品,同时一并展示的ANSEROS的臭氧老化箱、BINDER的温湿度环境模拟箱、SITA的表面清洁度测试仪、柯尼卡美能达的三维扫描仪、TABER的磨耗仪以及翁开尔的多功能砂砾冲击测试机等设备,深受观众的青睐。
  • CPSA上海2012现场采访——Janssen公司翁乃栋博士
    仪器信息网讯 2012年4月26日,第三届化学和药物结构分析上海研讨会(CPSA Shanghai 2012)在上海淳大万丽酒店隆重举行,会议为期3天,来自北美、欧洲和亚太地区生物制药领域的著名学者,全球知名制药厂家和CRO企业代表共计300余人到会。仪器信息网作为特邀媒体参加了此次研讨会。   CPSA是关于药物开发和分析的国际学术会议,2010年开始在中国上海举办,对中国制药工业的发展和加强中国与世界的联系方面起了积极的推动作用。   CPSA上海2012的主题是“从基准到决策-从基础到应用”,旨在为东西方的药物研发领域的科学家们建立一个交流、互动的平台。通过这一平台,将科学家们和制药工业企业组织在一起,分享药物领域的新发明、新应用以及实践经验,探讨对药物研发新技术、新方向、新政策的看法,以实现药物研发前沿科学与制药工业之间对接。   作为特邀媒体,仪器信息网全程参与报道了CPSA上海2012,并在会议举办期间,仪器信息网编辑(以下简称为:Instrument)采访了Janssen公司翁乃栋博士。 Janssen公司翁乃栋博士   Instrument:CPSA会议会在哪些方面对中国的药物研发产生影响?   翁乃栋博士:一方面,CPSA会议带来国外的一些理念,特别是国外的药物研发方面一些相关标准,像GLP、法规等;第二个方面,将国外药物研究的前沿课题带到中国;第三个方面是给国内与国际的科学家提供更多的交流机会。从首届举办到现在,从规模上看,每年都在不断的扩大,这也说明了大家对这个交流机会的重视,这也是CPSA会议成功的一个方面。   Instrument:美国的CPSA会议和中国的CPSA会议有什么异同点?   翁乃栋博士:美国的CPSA会议和中国的CPSA会议都是国际性的会议,美国的CPSA会议可能更多的面对全球性的药物研发市场,而中国的CPSA会议目前定位在亚洲,重点是中国。针对中国的特殊情况,在会议议题设定上可能会有所不同。   Instrument:翁博士,您好!作为“青年科学家奖”的评委,请您简要介绍一下这一奖项的发展情况。   翁乃栋博士:“青年科学家奖”从第一届到第二届,参与人员规模差不多,但是参与评选作品的质量有所提高。“青年科学家奖”是为年轻的科学家提供一个沟通交流的平台,中国人本身的英语写作水平很好,但是沟通交流方面还需要鼓励,通过这样一个奖项,将会吸引越来越多的年轻科学家来交流自己的学术成果。
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • 翁开尔公司获德国VMA中国区代理权限
    2015年12月21日,翁开尔有限公司正式获得德国VMA-Getzmann 公司中国区代理的权限。负责德国VMA公司高速分散机、实验室砂磨机在中国区产品的宣传、销售工作及推广事宜。  德国VMA-Getzmann 公司自成立以来,一直是高质量和创新分散系统的代名词。德国VMA-Getzmann 公司将先进的技术和功能设计整合到高质量的分散机产品中。凭借丰富的行业经验为涂料和油墨行业精细研磨和分散提供完善的解决方法。  作为知名的检测仪器代理商,翁开尔公司一直致力于把国外先进的仪器设备和检测方法介绍到中国,截至目前为止,现有与40多个国外知名品牌建立合作关系,包括美国Q-Lab公司,德国SITA公司,美国Taber公司,德国Anseros公司等,服务于涂料、汽车、电子电器等行业客户以及各质检机构的客户。
  • 2011年翁开尔公司展会计划
    2011年度翁开尔公司展会计划信息,届时欢迎各界朋友莅临。 时间 项目 地点 5.17~5.20 2011中国国际涂料展 Chinaplas 广州进出口商品交易会琶洲展馆 9.14~9.16 2011汽车测试及质量监控博览会 上海光大会展中心西一馆 11.23~11.25 2011中国国际涂料展 Chinacoat 上海新国际博览中心
  • 2012翁开尔公司展会计划
    2012翁开尔公司展会计划 2.27~2.29 化妆品原料展(PCHi) 上海世博展览馆3号馆 4.18~4.21 中国国际橡塑展 上海新国际博览中心N3馆 9.18~9.20 汽车测试及质量监控博览会 上海光大会展中心西一馆 11.28~11.30 中国国际涂料展 广州国际会议展览中心(琶洲展馆) 届时欢迎各界朋友莅临参观交流,谢谢!
  • 北京大学翁诗甫高工逝世 奉献我国分子光谱事业
    p style=" text-align: center " strong 讣告 /strong /p p   北京大学化学与分子工程学院教授级高工翁诗甫先生因病医治无效,不幸于2018年5月7日20 时15分在北京逝世,享年72岁。& nbsp /p p style=" text-align: center " img title=" 翁诗甫.jpg" src=" http://img1.17img.cn/17img/images/201805/noimg/845323d2-0a3a-44d2-a414-dfc4261720c9.jpg" / /p p   翁诗甫先生于1946年6月生于海南琼山县,1970年毕业于北京大学化学系并留校任教直至退休。多年从事普通无机化学(生物类本科生)和分子光谱(研究生)的教学工作。1978年起从事红外光谱分析测试和分子光谱的基础研究。1985年3月~1986年10月在加拿大国家研究院化学所分子光谱研究室作访问学者。1995年4 ~10月在美国尼高力仪器公司总部进行合作研究。 /p p   翁诗甫先生长期从事红外和拉曼光谱分析测试和分子光谱的基础研究工作,在分子光谱研究方面有很深的造诣,开发了多种分子光谱测试新方法、新技术,受到广大用户的好评,对我国分子光谱科学和技术的发展做出了贡献。曾获中国高校科学技术奖一等奖、北京市科技进步一等奖、中国分析测试协会一等奖。他撰写的《傅里叶变换红外光谱分析》受到广大读者的好评,多次再版。 /p p   翁诗甫先生为人正直,教书育人,无私奉献。他坚守科学精神,不畏艰难,积极进取,不断创新,以踏实严谨的作风兢兢业业地努力工作。我们为失去这样一位良师益友而万分悲痛。翁诗甫先生的治学精神和音容笑貌将永远活在我们心中。 /p p   翁诗甫先生千古! /p p   兹定于2018年5月9日(星期三)上午9时在北京大学第三医院遗体告别厅举行翁诗甫先生遗体告别仪式,以缅怀翁诗甫先生的业绩,寄托我们的哀思。 /p p   参加仪式乘车地点:化学院北门内,乘车时间:5月9日上午8:15。 /p p style=" text-align: right "   北京大学化学与分子工程学院 /p p style=" text-align: right "   2018年5月8日 /p p & nbsp /p
  • 翁开尔2011年汽车测试及质量监控博览会展品信息
    欢迎光临2011年汽车测试及质量监控博览会翁开尔展台 2011年中国汽车测试及质量监控博览会(Automotive Testing Expo 2011 China)将于9月14日至9月16日在上海光大会展中心举行。 我公司展位号1000,与1006展台的Q-Lab公司一同,拟展示以下产品: 美国Q-Lab公司的Q-SUN氙灯老化机、QUV紫外光耐候试验机及Q-FOG盐雾箱; 美国Taber公司的磨耗测试仪; 美国Defelsko公司的涂层测厚仪; 日本柯尼卡美能达公司的分光测色仪和三维扫描仪; 德国Lau公司的便携式抗石击仪; 德国Anseros公司的臭氧试验箱; 德国Binder公司的MKF环境模拟箱 德国Sita的金属表面清洁度仪 翁开尔公司的MTG耐碎石冲击试验机; 以及提供更多的我公司代理的应用于汽车行业的新的仪器资讯 我公司展台位于正门入口处,欢迎各界朋友届时莅临。 关于展会详情,请登陆:www.testing-expochina.com
  • 翁开尔公司MTG机已通过CE认证
    翁开尔生产的MTG多功能耐碎石冲击试验机(Multi-Test Gravelometer for stone chip resistance of coating)已经获得欧盟公告号机构(NO.1128)&mdash &mdash EUROCERT(欧证)检验认证有限公司颁发的CE证书
  • 翁开尔拜访德国RJL公司交流学习之行
    德国RJL(中文名字:安捷莱)公司是一家专注于颗粒物检测的技术公司,多年以来在产品清洁度检测方面积累了丰富的经验,不仅参与了ISO 16232以及VDA 19标准的制定工作,并且成功研发了扫描式的颗粒物清洁度检测仪器,大大的改进提升了汽车行业零部件清洁度检测的效率 。  作为德国RJL公司在中国的唯一代理。迎春三月,翁开尔公司产品规划部经理协同技术工程师到德国RJL公司参观,并就产品清洁度检测技术以及方法交流学习。德国RJL公司交流学习之行德国RJL公司交流学习之行德国RJL公司交流学习之行德国RJL公司交流学习之行德国RJL公司交流学习之行
  • 生物制药及仪器公司TOP40富翁高管
    2013年9月23日,GEN网站发布了&ldquo 全球生物制药及仪器公司TOP40富翁高管&rdquo 排行榜。榜单中所列40位高管均来自公开上市生物制药及药物研发仪器公司,按照各公司股东签署的委托书或20-F表所显示的高管拥有普通股票的价值排名。   Danaher(丹纳赫)公司两位联合创始人位列榜单前两位,拥有的财富近30亿美元,位列第三的是Regeneron Pharmaceuticals公司总裁兼CEO,财富值约11亿美元。   详细榜单如下: (编译:杨娟)
  • 法实验室制假名酒富翁被骗三千万
    据英国《每日邮报》12月8日报道,近日,一批假冒伪劣的波尔多葡萄酒被法国海关查获,其造假程度几乎可以乱真。报道称,此次诈欺事件的曝光不仅反映仿冒技术日益先进,同时也暴露出那些自称&ldquo 专家&rdquo 的鉴赏家们其实对品酒知之甚少。   此事曝光后,不少富裕的葡萄酒鉴赏家惊觉上当受骗,其中一名亿万富翁花费300余万英镑(约合人民币2982万元)收藏了500多瓶假葡萄酒。其他一些富商也在酒品收藏上投资不少,但碍于面子,不愿承认受骗。假酒生产商通过在酒瓶上激光雕刻和使用条形码大发横财,以至于波尔多八大红酒庄之一的白马酒庄的酒瓶竞拍价一度飙升到11.5万美元(约合人民币69.9万元)。   据悉,这些仿冒的葡萄酒出自法国波尔多市一家专业实验室。对于那些没有受过专业鉴赏训练的人来说,这些商标看似与真品并无二致。然而,其中一些仿冒的葡萄酒简直假得离谱,同时贴有&ldquo 卢森堡&rdquo 和&ldquo 法国制造&rdquo 的标签。而另一些则以普通葡萄酒替代法国顶级葡萄酒让消费者&ldquo 过把瘾&rdquo 。
  • 你的去屑洗发水用对了吗?去屑剂吡硫翁锌含量的检测(电位滴定法)
    一、吡硫翁锌简介 吡硫翁锌(Zinc pyrithione , ZPT),可用作防腐剂、防污剂、抗真菌药和去屑剂等,广泛用于农业、工业、医药卫生以及化妆品等领域。ZPT可抑制革兰氏阴性、阳性细菌以及霉菌生长,有较强的杀菌能力,能杀死产生头屑的真菌,作为去屑剂已有60多年的历史。《卫生部化妆品卫生规范》(2007年版)中规定洗发剂中含有的ZPT不得高于1.5%。 ZPT难被皮肤吸收,可达到有效去屑效果的同时不会对人体产生较大影响。ZPT本身具有一定的毒性,且洗发用品的使用频率较高,使用人群广泛,故使用的安全性不容忽视,我们需要有效可靠准确的检测方法确定洗发用品中ZPT的含量。 ZPT的结构式:
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • “血液检测女王”独家揭秘:我如何从辍学者成为亿万富翁?
    Theranos公司首席执行官兼创始人伊丽莎白&bull 霍尔姆斯很快就承认,作为一个企业家,她的生活方式不适用于所有人:她每周工作七天,刻意限制睡眠时间,戒除了咖啡因、肉类&mdash &mdash 以及假期。她的生活就是工作。   这位上大一那年就获得人生第一项专利的斯坦福大学辍学生表示,这种犹如激光般专注的献身精神是必要的,因为Theranos公司试图改变的是一个规模数十亿美元的行业。她的公司发明了一种方法,化验时只需刺破手指取一点血,而不是用针扎进手臂来抽几小瓶。Theranos正在8200家沃尔格林药店推广这种尚不流行的方法。霍尔姆斯希望,这种价格实惠、几乎无痛的验血手段能够普及全球。   霍尔姆斯认为,她的工作能帮助人们尽早发现疾病。她透露说,即便有80%的临床决策都是基于实验室的测试数据,但美国依然有40%至60%的患者并未遵照医嘱去做测试(一家竞争对手认为,这一比例是30%)。而在医疗系统中,医生要求通过传统放血方式进行实验室测试的旧模式已然根深蒂固,在一些州甚至受到法律保护。   这家初创公司成立于2003年,现有700名员工,总部设在加利福尼亚州帕洛阿尔托市,目前的估值为90亿美元。   在&ldquo 高端视野&rdquo (View From the Top)系列讲座上,她身穿标志性的史蒂夫&bull 乔布斯式高领毛衣,对一群斯坦福大学商学院学生说,她的公司&ldquo 才刚刚起步&rdquo 。她分享了自己创业历程中的思考和体会,正是这段旅程让她成为&ldquo 福布斯美国400富豪榜&rdquo 中最年轻的白手起家的亿万女富豪。   评估你所处的位置。   霍尔姆斯说:&ldquo 我认为,如果人们扪心自问自己为什么要做某些事,一定能从中受益良多。&rdquo 对她而言,这意味着在斯坦福读大二时认真评估自己的状况。作为化学工程专业的学生,她说服了钱宁&bull 罗伯特森教授让她与博士学生一起做研究,还成为了一名斯坦福总统学者。她利用这个学者项目提供的研究经费飞赴新加坡,对呼吸道疾病SARS进行了一番深入研究。返回学校后,她对罗伯特森说,自己想开一家公司。她说:&ldquo 我拥有了足以让自己走出校门、做出一番事业的谋生手段,所以对我来说,到了该这么做的时候了。&rdquo 罗伯特森随后成为这家公司的首位董事会成员,目前的董事包括两位前美国国务卿:乔治&bull 舒尔茨和亨利&bull 基辛格。   童年获得的支持很重要。   当其他女孩收到芭比娃娃的生日礼物时,霍尔姆斯收到的却是建筑工具箱。霍尔姆斯表示:&ldquo 我认为,告诉儿童他们没有什么做不到,并以这样的方式看待他们,能带来难以想象的影响。&rdquo 她回忆起自己小时候绘制了时光机的设计图,而父母并未将它当作儿戏。&ldquo 我认为,在一个不断鼓励我相信自己无所不能的家庭中长大,是一件十分幸福的事。&rdquo   做好计划:以及不要准备后备计划。   霍尔姆斯表示:&ldquo 我认为,当你做好后备计划的那一刻起,就承认了自己无法成功。&rdquo   准备好应对彻底的失败,但从错误中吸取教训。   霍尔姆斯说,想要做出革命性的改变,你得知道风险跟你试图创造的改变成正比。&ldquo 如果你没有不断拥抱失败,就做不出这样的壮举。&rdquo 她和员工用了一个棒球的比喻来说明这点:&ldquo 我们的方案就是要得到场上的最高分。我们会得到最多的全垒打,但也会得到最多的三振出局,我们只要不犯同样的错误就好。&rdquo   雇佣那些愿意一起经历风雨的员工。   Theranos会挑选那些打算长期待在公司的员工,以及那些专业技能与想在这家公司工作的理由相统一的员工。霍尔姆斯说:&ldquo 我们不要那些抱着&lsquo 在这家公司试着干两年,然后去其他地方&rsquo 这类心态的人。这关系到主人翁感和使命感。&rdquo 为了给公司的高标准定位打下基础,霍尔姆斯表示,自己会大量提拔公司内部的员工,把那些不仅可以完成工作,还认可公司价值观的员工安排到领导岗位上,让他们把价值观&ldquo 体现在工作中&rdquo 。   让你的工作成为你的使命。   霍尔姆斯说:&ldquo 我一直相信我们到这里是有原因的,生命的目的就是改变世界。我认为,当你了解自己以后,你就会知道自己喜欢什么,真正享受什么,即便没有报酬你也愿意做什么。这就是你永远要寻找的东西。&rdquo   找一个榜样,自己也成为榜样。   霍尔姆斯回忆了她与女童子军(Girl Scouts,美国最大的女孩团体)全国负责人进行的一番对话。该组织曾经将最优秀的女生代表聚集在一起,并问她们当中有多少人想在科技公司成为领袖。霍尔姆斯说,当时没有一个女孩举手。在进一步的研究中,女童子军批评说这类榜样过于短缺,无法帮助女孩们认识到这也是一种选择。她表示:&ldquo 我认为,如果能够在孩子小时候就引导这种观念上的转变,我们将会看到更多的女性成为科技公司领袖。那种&lsquo 我不能&rsquo 或是&lsquo 我不该这么做&rsquo 的观念,是不会影响我的。&rdquo   衡量和复制成功。   霍尔姆斯表示,公司获得的高估值并非她判定成功的标准。她第一次参观公司在沃尔格林药店的验血中心时,遇到了一位癌症患者,她的静脉已经饱受穿刺性针头的摧残,那是她第一次进行手指针刺的实验室测试。这位女士十分感激,以至于开始哭泣。霍尔姆斯说:&ldquo 那天我开车回家时,想到这个人的生活因为我们的努力而变得美好,觉得这才是成功。随后,我们就不断这样做,并问自己:&lsquo 我们达到了优秀的标准吗?&rsquo &rdquo
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 全新涡旋搅拌器国内首次亮相 安全、抗腐蚀创新面板为最大亮点——视频采访四亿科学内销经理翁乃聪
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2019年10月23日-26日,第十八届北京分析测试学术报告会暨展览会(BCEIA 2019)在北京国家会议中心召开。会议期间,仪器信息网特别采访了 strong 四亿科学内销经理翁乃聪 /strong ,请他向大家介绍四亿科学最新的行业应用和解决方案。 /p p style=" text-align: justify text-indent: 2em " 详细内容请查看视频: /p p br/ /p script src=" https://p.bokecc.com/player?vid=E8552F9185981A2C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script
  • 科创板鸣锣开市 6家仪器公司催生32个亿万富翁
    p    strong 仪器信息网讯 /strong 历时八个多月,250多天,科创板终于在7月22日鸣锣开市,首批25家企业上市交易,中国资本市场进入“科创板时代”。 /p p   从股价表现来看,科创板开市即大涨。截至22日午间收盘,首批25家公司的平均涨幅达到160%,平均换手率约为62%,半日成交额合计近400亿元,25家企业催生了124位亿万富翁。 /p p   首批亮相的25家企业汇聚在时下热门的新经济领域,覆盖了新一代信息技术、高端装备、新材料、生物产业等领域。在行业分布上,25家相对集中在计算机、通信和其他电子设备制造业与专用设备制造业两大行业,具体而言有芯片、半导体、光学仿真、物联网、智能制造等。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/66ef3ea2-0213-43db-bcc2-58635b0405cc.jpg" title=" 科创板_副本.jpg" alt=" 科创板_副本.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 截至午间收盘25家公司股票行情,图片来源同花顺 /strong /span /p p   25家企业中还有来自仪器仪表制造业的福光股份。截至午间收盘,福光股份曾两次触发临停,公司股价涨幅一度超过150%,总市值曾将近83亿元。仪器信息网梳理后发现,华兴源创、天准科技、瀚川智能、睿创微纳、新光光电等另外5家公司的主营业务与产品也与科学仪器直接相关。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/e36e6b41-6d6e-447d-9a21-13bd8f2f31a7.jpg" title=" 2019-07-22_170244_副本.jpg" alt=" 2019-07-22_170244_副本.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 科学仪器相关的科创板上市仪器公司 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" font-size: 16px color: rgb(255, 0, 0) " strong 福光股份 /strong /span /p p   福光股份成立于2004年,总部位于福建省福州市,专业从事特种光学镜头及光电系统、民用光学镜头、光学元组件等产品的科研生产,是全球光学镜头的重要制造商,产品广泛应用于航天工程、空间观测及各种军事装备领域以及安防监控、物联网等民用领域。 /p p   2017年公司安防视频监控镜头市占率11.8%,全球排名第三 其中优势产品变焦镜头市占率8.9%,全球排名第二 4K高清镜头全球市占率达到65.8% 2018年公司率先开发出25-300mm、8K高清连续变焦镜头。 /p p   财务数据显示,2016年、2017年、2018年福光股份营收分别为4.69亿元、5.80亿元、5.52亿元,归属于母公司所有者的净利润分别为7198.86万元、9125.60万元、9138.64万元。 /p p style=" margin-top: 10px margin-bottom: 10px " span style=" color: rgb(255, 0, 0) " strong   华兴源创 /strong /span /p p   华兴源创成立于2005年,坐落于苏州工业园区东坊产业园,从事液晶模组信号检测系统研发生产,同时覆盖测试、设备、产品、智能、通讯五大领域,具有年产近5万台套液晶模组检测设备的能力,苹果、三星、LG、夏普、京东方为其主要客户。2016~2018年报告期内,公司营收分别为5.12亿元、13.9亿元、10.05亿元,净利润分别为1.80亿元、2.1亿元和2.43亿元。 /p p   华兴源创的创始人为陈文源、张茜夫妇,是科创板此次申报公司中少有的“夫妻店”,二人通过直接和间接方式合计持有公司93.15%的股份,为公司的实际控制人。截至中午收盘,华兴源创半个交易日上涨155.56%。今日科创板一开锣,为陈文源、张茜夫妻带来超过208.75亿元的身家,稳坐科创板富豪榜冠军宝座。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 天准科技 /strong /span /p p   天准科技成立于2005年,以机器视觉为核心技术,主要从事工业视觉装备研发及应用。其主要产品包括精密测量仪器、智能检测装备、智能制造系统、无人物流车等。2016年、2017年、2018年分别实现营业收入1.81亿元、3.19亿元、5.08亿元,对应的净利润为3163.59万元、5158.07万元、9447.33万元。 /p p   天准科技成立曾于2015年8月挂牌新三板。2018年它从新三板退市,称这是公司长期战略规划及业务发展的需要。今年4月2日,公司科创板上市申请获上交所受理。 /p p   近三年来,天准科技在中国机器视觉行业的市场占有率依次为2.61%、3.99%和4.89%。各类产品技术指标达到或超过基恩士、康耐视、海克斯康等国际知名企业同类最高产品水平,服务了超过3000家工业客户,包括苹果公司、三星集团、富士康、博士集团等企业。 /p p style=" margin-top: 10px margin-bottom: 10px "    span style=" color: rgb(255, 0, 0) " strong 瀚川智能 /strong /span /p p   瀚川智能创立于2007年1月,总部位于苏州工业园区,是一家专业的智能制造装备整体解决方案供应商,主要从事汽车电子、医疗健康、新能源电池等行业智能制造装备的研发、设计、生产、销售及服务,产品涵盖装配、检测、校准、包装等单项或者一体化的柔性化、个性化的智能生产线。 /p p   2016年至2018年,公司营业收入分别为1.5亿元、2.44亿元、4.36亿元,对应的归母净利润分别为216.87万元、3219.68万元、7025.66万元。瀚川智能为医疗健康行业提供的解决方案中包括全自动细胞深低温存储设备,公司在嵌入式开发、功能测试(FCT)、在线检测(ICT)、软件平台开发方面也具有丰富经验。 /p p style=" margin-top: 10px margin-bottom: 10px "   span style=" color: rgb(255, 0, 0) " strong  睿创微纳 /strong /span /p p   睿创微纳成立于2009年,总部位于山东烟台,专注于非制冷红外热成像领域,主要产品包括非制冷红外热成像MEMS芯片、探测器、机芯、热像仪及光电系统。2016年到2018年期间睿创微纳实现营业收入分别为6025万元、1.56亿元、3.84亿元,同期实现归母净利润分别为969万元、6435万元、1.25亿元。 /p p   睿创微纳有两大技术特点,一是公司专注于非制冷红外探测器,而可比公司均有制冷型红外热像仪产品,二是公司技术研发布局重心在偏前端的核心器件探测器、机芯等。公司能够实现三年业绩连续翻番,主要受益于高性能红外焦平面探测器技术的突破。 /p p style=" margin-top: 10px margin-bottom: 10px "   span style=" color: rgb(255, 0, 0) " strong  新光光电 /strong /span /p p   新光光电成立于2007年,公司控股股东、实际控制人为康为民。 其主要服务于军工企业,近些年开始向市场上推广民用科技产品。公司研制的光学目标与场景仿真系统可用于武器装备研制的全过程,产品覆盖紫外、可见光、红外和激光波段等。 /p p   新光光电2016年、2017年和2018年实现营业收入分别为15,856.55万元、18,204.89万元和20,840.99万元,实现归母净利润分别为5,614.32万元、4,019.80万元和6,530.51万元。自2014年起,新光光电积极将军用高新技术应用于民用市场,在大型燃煤锅炉炉灰检测系统、机载低空遥感智慧农业监测系统、森林防火监控、多光谱生物大数据等领域研发了系列产品。 /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   科创板刷屏,成为今天整个A股最靓的崽。公司上市,股东和高管的收入相应地水涨船高,新晋的124位亿万富豪中,上述6家仪器公司也占据了32席。巧合的是,睿创纳微的亿万富翁最多,达到23个 市值最高者为陈文源,两家公司的业务均涉及到科学仪器。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   另外,截至2019年7月18日,上交所披露的科创板受理公司已经有148家,其中包括国产质谱仪器制造商广州禾信与科学服务提供商泰坦科技。目前已有28家在证监会注册生效。科创板引得众多企业与券商竞相追逐,还有更多的公司在赶来的路上。 /span /p p style=" text-align: center " strong 科创板科学仪器相关公司股东市值 /strong /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/4d0d8c74-39ca-4382-bf1f-1e126fa432c5.jpg" title=" 福光1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/3f6ea48f-002c-47a8-902f-c5f7eab5b742.jpg" title=" 福光2.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/f72af7ec-42a5-4da0-b99b-1b8fbca6d559.jpg" title=" 华兴1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/f8abb994-3e30-4845-ade7-e005499ba798.jpg" title=" 华兴2.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/a3e1f5c9-dd0e-4b20-9aaa-b6bfebc90afa.jpg" title=" 天准1_副本.png" alt=" 天准1_副本.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/99150268-dd07-4c6f-92ff-afaf95022c24.jpg" title=" 天准1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/f77a117a-3b7b-4152-8178-302516ae7fc0.jpg" title=" 瀚川1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/42cb0c33-16b9-4086-ab35-9e8650809d32.jpg" title=" 瀚川2.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/7cf42310-afae-4102-94a9-54ce51dbe12d.jpg" title=" 瀚川4.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/374fef17-bfa3-448f-985f-f7baa51695b4.jpg" title=" 瀚川5.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/697190ff-f701-4453-bb9d-c30d80abdacf.jpg" title=" 瀚川6.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/39313b31-4410-40c8-80ac-4b6b44c56ea9.jpg" title=" 新光1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/e120149f-e8fb-49e4-8278-988cf5d90664.jpg" title=" 新光2.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/a9983754-d529-4da2-97fc-274e8ad45385.jpg" title=" 新光3.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/7cb33ded-50a3-43d2-9a8e-78784c11c872.jpg" title=" 新光4.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/59443ae7-a3cc-4519-b202-6df6eca396e2.jpg" title=" 睿创1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/9c4beec7-13ec-4a23-a943-0b8ef186531e.jpg" title=" 睿创2.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/c2f8606d-c9fd-4d93-8df2-f7cc2a87adff.jpg" title=" 睿创3.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/c60717aa-8001-4f6b-97af-0b4a6ecce3fb.jpg" title=" 睿创4.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/22944666-5ff8-4744-a52a-95752ad01ccc.jpg" title=" 睿创5.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/e475720f-e729-4a9b-82d4-70a6265f368f.jpg" title=" 睿创6.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/add68186-6252-4e71-8ac5-4deca5623719.jpg" title=" 睿创7.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/77d982c2-d685-4553-aef3-1c9c7610bf82.jpg" title=" 睿创8.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/10b67be8-8f0c-436a-9876-a49c6404682e.jpg" title=" 睿创9.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/7e12906e-e957-4007-aa6b-946242cf7b73.jpg" title=" 睿创10.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/02333241-9e93-402f-b7ff-eb83d16e51d2.jpg" title=" 睿创11.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/57ca741e-400c-42b9-b1d7-a2cf0b6510c5.jpg" title=" 睿创12.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/9ecc845d-d27b-4a47-bccf-d09821d38331.jpg" title=" 睿创13.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/ed468eba-bca7-460e-a853-ef3755adb26c.jpg" title=" 睿创14.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/2a2c5929-f55a-4675-b4ca-6b9d09491f31.jpg" title=" 睿创15.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/87d781b7-67cd-4e32-b7c1-1ee6b346b8a2.jpg" title=" 睿创16.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/773045bd-0b04-4306-ab0f-e006e0ec8322.jpg" title=" 睿创18.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/e127980f-d256-4254-96c7-c2e9e63351bf.jpg" title=" 睿创19.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/55972819-0374-46ac-aac5-fc5eb67cd2ac.jpg" title=" 睿创20.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/8f412120-2ea2-4620-9b32-acd803530df6.jpg" title=" 睿创21.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/7b7c5aba-1cf8-4fe4-be15-23bd043f5960.jpg" title=" 睿创22.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/8c26ed00-4f30-4611-b650-d40c57ba35b5.jpg" title=" 睿创23.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201907/uepic/459c2daf-93a1-453f-8c67-fd2448f2c482.jpg" title=" 睿创24.png" / /p p br/ /p
  • 引领化学吸附技术前沿-美国麦克仪器公司AutoChem II 2920
    自美国麦克仪器公司AutoChem系列研究级高性能全自动程序升温化学吸附仪问世以来,凭借其过硬的技术优势引领化学吸附技术发展方向,解决用户化学吸附测试中的难题,并逐渐成为化学吸附分析的领导者。麦克仪器公司始终追随客户的需求,不断升级改进自己的技术, AutoChem 系列仪器已经经过了几代的升级演变。自AutoChem II 2920发布至今,它已经成为全球各个著名大学以及研究结构的首选仪器。其中不乏中国知名学府和研究院,华东理工、华南理工、天津大学、复旦大学、厦门大学、北京科技大学、北京工业大学、北京化工研究院、中石化石油化工科学研究院、中科院大连化物所、中海油天津化工研究院、兰州石油化工研究院、上海石油化工研究院等等都是AutoChem II2920的用户。 AutoChem II 2920具有如下技术特征: 4个内部温度控制区可独立加热,最高达250 ℃(TCD)。这样可以防止气体在流动过程中凝结与吸附。 小体积的内部管路保证了高分辨率与快速探测器响应,并在计算气体体积时减少错误。 高度敏感的线性热传导检测器(TCD )确保校准体积在整个峰范围内保持恒定,从而峰面积与反应气体体积成正比关系 四个高精度的质量流量控制器提供非常准确、可程序控制的气体流量控制,保证了稳定的基线和气体体积的准确测定。 镀金TCD具有超强抗氨腐蚀性和抗氧化性,从而尽可能降低检测器损耗。 开合式加热炉能加热石英样品反应器到1100℃ 。可设定任意数量的升温速率和内置方法,方便定制的实验。 KwikCool功能冷却炉可使炉内温度迅速下降到环境温度,减少分析时间,提高测试量。 分别用于制备、载气和LOOP气的十二路进气口允许连接更多的气体,进行更为复杂的实验。例如TPR / TPO循环。 质谱仪端口和集成软件允许同时在热导检测器和质谱仪上进行检测。 蒸汽发生器允许蒸汽吸附反应,例如吡啶、苯和水。 CryoCooler冷浴槽可以在-110℃低温条件下开始进行反应,满足贵金属催化反应研究。 同时AutoChem II 2920也可以根据客户实际需要进行各种定制。 AutoChem II 2920被引用的文章列表(注:由于篇幅的限制,只列出一小部分供参考) 文章标题 作者 刊物 Supported bimetallic AuRh/γ-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene Licheng Liu, Xiao Guan, Zhimei Li, Xuehong Zi, Hongxing Dai, Hong He Applied Catalysis B: Environmental,90(1-2), Pages 1-9, 2009 Catalytic combustion of styrene over copper based catalyst: Inhibitory effect of water vapor Hongyan Pan, Mingyao Xu, Zhong Li Chemosphere,76(5),721-726,2009 Thermally Stable CeO2–ZrO2–La2O3 Ternary Oxides Prepared by Deposition–Precipitation as Support of Rh Catalyst for Catalytic Reduction of NO by CO Fulan Zhong, Yihong Xiao, Ximing Weng, Kemei Wei, Guohui Cai, Yong Zheng and Qi Zheng, Catalysis Letters,133(1-2), 125-133, 2009 Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream Qinghong Zhang, Xianhong Liu, Wenqing Fan, Ye Wang Applied Catalysis B: Environmental, 102(1-2),207-214,2011 Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid Licheng Liu, Ting Wei, Xuehong Zi, Hong He Hongxing Dai Catalysis Today, 153(3-4),162-169,2010 Co/Pillared Clay Bifunctional Catalyst for Controlling the Product Distribution of Fischer− Tropsch Synthesis Qing-Qing Hao, Guang-Wei Wang,hao-Tie Liu, Jian Lu, and Zhong-Wen Liu Ind. Eng. Chem. Res., 49 (19), 9004–9011, 2010 Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: Effect of metal loading Guoqi Cui, Jifeng Wang, Hongfei Fan, Xiaoyan Sun, Yan Jiang, Shaojun Wang, Dan Liua, Jianzhou Gui Fuel Processing Technology,92(12), 2320-2327,2011 Influence of Noble Metals on the Direct Oxidation of Ethylene to Acetic Acid over NM/WO3-ZrO2 (NM = Ru, Rh, and Pd) Catalysts Lixia WANG, Shuliang XU, Wenling CHU,Weishen YANG Chinese Journal of Catalysis, 30(12), 1281-1286,2009 Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface Zhijuan Zhang, Shikai Xian, Hongxia Xi, Haihui Wang, Zhong Li Chemical Engineering Science,66(20), 4878-4888,2011 Highly efficient Pd/Al2O3-Ce0.6Zr0.4O2 catalyst pretreated by H2 for low-temperature methanol oxidation Yongjin Luo, Yihong Xiao, Guohui Cai, Yong Zheng and Kemei Wei Catal. Sci. Technol., 1, 1362-1366,2011 Palladium-Based Catalyst without Interlayer Film Prepared by Electroless Plating for Catalytic Combustion of Toluene Yong Feng Li, Yu Li, Yan Ting Huang, Lin Yu, Qian Yu, Rong Jian Mai Advanced Materials Research, 957,197-198, 2011 Hydrodealkylation of C9+ Heavy Aromatics to BTX over Zeolite-Supported Nickel Oxide and Molybdenum Oxide Catalysts Qunbing Shen, Xuedong Zhu, Jiaojiao Dong and Zibin Zhu Catalysis Letters , 129(1-2), 170-180, 2009 Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst Guangquan Yia, Zhongning Xub, Guocong Guob, Ken-ichi Tanakac, Youzhu Yuan Chemical Physics Letters,479(1-3), 128-132,2009 Palladium supported on hierarchically macro–mesoporous titania for styrene hydrogenation Tian-Ying Zeng, Zhi-Ming Zhou , Jun Zhu, Zhen-Min Cheng, Pei-Qing Yuan, Wei-Kang Yuan Catalysis Today,147(S41-S45), 2009 Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts Min Jia, Guili Chena, Junhu Wangb, Xinkui Wanga, Tao Zhang Catalysis Today,158( 3-4), 464-469, 2010 Diffusion-enhanced hierarchically macro-mesoporous catalyst for selective hydrogenation of pyrolysis gasoline Zhiming Zhou, Tianying Zeng, Zhenmin Cheng,Weikang Yuan AIChE Journal,57( 8), 2198–2206, 2011 Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts Weiping Deng, Mi Liu, Xuesong Tan, Qinghong Zhang ,, Ye Wang Journal of Catalysis,271(1), 22-32 2010 Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane Jizhe Zhang, Miao Sun, Chuanjing Cao, Qinghong Zhang , Ye Wang, Huilin Wan Applied Catalysis A, 380(1-2),87-94,2010 Dimethyl Ether Catalytic Combustion over Manganese Oxides with Different Structures Lin Yu, Gui Qiang Diao, Fei Ye, Ming Sun, Yue Liu, Qian Yu Advanced Materials Research, 1482, 146-147,2010 更多产品详情,请咨询400-630-2202或登录我们的网站www.micromeritics.com.cn www.micromeritics.com
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • 迷人的年轻女富翁与神一般的血检颠覆者Theranos
    去年九月上旬的一个下午,伊丽莎白· 福尔摩斯(Elizabeth Holmes)在旧金山艺术宫登上了TEDMED大会的舞台,就血液问题发表了演讲。TEDMED年会作为TED大会的组成部分,主要关注医疗健康领域的问题。这个舞台上的演讲人来自多个细分领域,既有探讨合成生命的基因科学家克雷格· 文特尔,也有讨论获取全部基因组序列的奥齐· 奥斯本。在TEDMED大会上,&ldquo 颠覆性技术&rdquo 和&ldquo 医学的未来&rdquo 这样的话题经常出现。   福尔摩斯今天三十岁,是硅谷创业公司Theranos的CEO。现在,血液检测是一个有利可图的商业领域,而Theranos力求颠覆这种局面。血液分析是医学不可分割的组成部分,当你的医生想要检查你某一方面的健康状况(比如胆固醇指标或者血糖水平),或者寻找肾脏或者肝脏出现问题的适应症时,他就需要对你进行血液检测。一般而言,医生需要使用长针头和几个装血液的试管瓶完成血液采集,然后将样本送往实验室进行分析。在美国,诊断性实验室检测工作主要由两家公司垄断,他们分别是Quest和Laboratory Corporation of America。这项业务领域每年的产值大概在750亿美元左右。   但是福尔摩斯告诉听众,人们可以以一种更快速、更便利和更便宜的方式完成血液检测。采用这种模式,能够拯救无数条生命。演讲时,福尔摩斯穿着她日常的制服&ndash 黑色西服和黑色的棉圆领毛衣,这不禁让人想起了乔布斯。她于2003年创办Theranos,那时她只有十九岁。第二年她从斯坦福退学,专注于自己的事业。她告诉听众,Theranos已经研发出可以发现数十种疾病(比如高胆固醇和癌症)的血液检测方法, 需要的仅仅是从患者手指采集一到两滴血液而已。目前,Theranos正在努力向几个医院系统推销自己的检测方法,并与克利夫兰诊所进行了深入的商谈。同时,该公司还在41家美国沃尔格林药店(美国最大连锁药店)开设中心,并计划将这一模式推广到其他成千上万的药店。病人只需要向药剂师出示身份证、保险卡和医嘱就可以在药店完成血液采集工作,接着药店会将所有样本送到Theranos的实验室进行分析。福尔摩斯说,他们可以用一份血液样本完成很多种检测,每一种检测都比标准检测方法要便宜。有的时候,Theranos检测的价格甚至比Medicare公布的费率要便宜90%。比如,传统实验室检测胆固醇需要55美元或者更贵,但是Theranos仅仅收费2.99美元。   在私下对话中,福尔摩斯的声音低的几乎像是耳语。可是在台上,她却铿锵有力地描述着自己的事业。在TEDMED大会上,她清楚的描述了现有血液检测业务的弊端。在她看来,目前的血液检测花费太高,病人仅能在不方便的时间或者地点完成血液采集。同时,现有血液检测采用静脉抽血,这让很多人感到不愉快。福尔摩斯本人讨厌注射器和针头,而她的母亲和祖母更是晕针晕血。她告诉记者:&ldquo 如果我们来自外星并打算寻找一种折磨别人的方式,那么抽血一定是最好的选择。把针扎进血管,缓缓的抽血出来,而这时病人还要亲眼目睹这一切。&rdquo   福尔摩斯认为血液检测不应该是痛苦的,反而这应该是一种&ldquo 美好的&rdquo 体验。因此,Theranos目标就是扫除实现&ldquo 美好血液检测&rdquo 过程中的一切障碍。她告诉听众,大约40%~60%的人拿到医生要求进行血液检测的医嘱后没有去验血。我们可以通过血液检测诊断出糖尿病和其他常见疾病,并更早的对患者进行治疗。要想实现这个目标,血液检测工作就要更简化、更便于病人完成。   Theranos目前是一家私人公司,既做硬件研发又进行医学研究。在过去的很多年中,该公司与硅谷很多公司一样秘密的运作着。斯坦福大学化学工程专业教授钱宁· 罗伯森是该公司第一位董事会成员,他说:&ldquo 在很长一段时间里,我甚至不会告诉我妻子我在做什么。&rdquo 最近几个月,福尔摩斯在全国多个演讲和采访中讲述了她在TEDMED大会上的演讲内容。投资人认为她的公司估值大约为90亿美元,这几乎同两大诊断实验室巨头身价相当。   福尔摩斯拥有超过50%的公司股份,而《财富》和《福布斯》更是在2013年春天将其评选为&ldquo 全世界最年轻的白手起家女性亿万富翁&rdquo 。在她公司的董事会中有着各种杰出的前任政府官员,其中包括乔治· 舒尔茨、亨利· 基辛格、山姆· 纳姆和CDC(疾控中心)前任主任威廉· 福奇。另外,克利夫兰诊所CEO兼主席德罗斯· 克斯格罗夫对她的公司也是鼎力支持。他说:&ldquo 我认为Theranos有潜力成为一家取得突破性成功的公司,它代表了我们提供医疗卫生保健服务时进行的主要变革。&rdquo   随着消费者对个人健康数据需求的不断增加,Theranos也开始慢慢发展起来。基因测序费用的不断下降使得类似23andMe这样的公司能为个人直接提供遗传信息。这样一来,消费者就可以省略过去医生授权的环节。智能手机应用使得用户可以查看心率、睡眠周期和每天走的步数,并允许用户将这些数据与医生和朋友分享。在演讲中,福尔摩斯说:&ldquo 过去,人们需要有了生病的症状之后才能通过检测了解自己的健康信息。我创立Theranos的目的就是为了改变这种局面,重新定义诊断的范例。无论贫富,不管居住何方,我要让每个人都可以在需要的时候获取自己需要的健康信息。&rdquo 克斯格罗夫预测,未来病人和医生都可以主动要求进行诊断常规疾病(比如高胆固醇和糖尿病)的血液检测。&ldquo 未来,CVS和沃尔格林药店将承担更多职能,其中一些职能目前只有初级医疗护理医生才能提供。这一改变对产业的影响将会是巨大的。&rdquo   但是,未过滤的医疗数据并非都能发挥积极作用。2013年底,FDA叫停23andMe部分业务,原因是担心消费者会误读或误用这些数据。有些观察人士认为Theranos服务的保密性存在隐患:目前,该公司的血液检测方法也许是具有开创性的变革,但他们很少在同行审阅的期刊上发布数据,描述他们设备的工作原理或者证明自己检测结果的质量。   拉克什曼· 拉马穆尔蒂是一位分子生物学家,也是FDA前任副主管。他说:&ldquo Theranos试图复制乔布斯的方式,就像他当年那样在iPhone发布前那样不透露任何信息。可是,相比于消费性电子产品而言,健康测试服务要更加重要。我们需要在临床中证明其有效性,并获取有用的信息加以分析。&rdquo   福尔摩斯解释称,Theranos之所以保密是为了保护自己免受竞争对手的打击。同时,他们试图研发的是一个独特的产品,自然需要保密。她说:&ldquo 此前没有别的公司能做到我们做到的事情,我们开创了新的领域。为那些不喜欢静脉抽血的人提供服务,这是我们耕耘出的新市场。&rdquo   福尔摩斯生活简朴。虽然她热爱文学,但是创业后就不再有时间阅读文学作品、与朋友聚会了。她甚至没有时间约会,十几年来也没有休过一次假。她是一位素食主义者,主要在办公室就餐。   福尔摩斯在不断奔波迁移中成长。她的父亲克里斯为政府机关工作,先后任职国际开发署、国务院等部门。她的母亲诺埃尔在国会工作了十几年,直到生下伊丽莎白和小她两岁的弟弟克里斯蒂安。这个家庭因为工作原因总是在不断搬家,因此伊丽莎白没什么机会与朋友形成长久的友谊。她形容自己为快乐的孤独者,小时候经常同父亲一起钓鱼和捉虫子。   &ldquo 我可能注定不会平庸。在我九岁的时候我就读完了《白鲸》,之后又读了大量其他书籍。我七岁的时候设计过时光机器,至今仍保留着当年的那个本子。在我成长中没有人告诉我什么事不能做,这可能是最美好的事情了。&rdquo   伊丽莎白的爷爷当年从丹麦移民美国学习工程学,后来在辛辛那提定居当了一名医生。八岁的时候,爷爷带伊丽莎白去了自己工作的本地医院,而这所医院是以他的名字命名的。后来,爷爷娶了一位病人的女儿&mdash &mdash 查尔斯· 弗莱施曼。弗莱施曼是倡导使用包装酵母的先驱,她在这个基础上建立了一个烘焙帝国。伊丽莎白觉得这样的童年经历对自己影响很大,她说:&ldquo 我听着祖辈们的传奇故事和伟大事迹长大。这样的经历对我的性格和生活质量产生了影响。&rdquo   1993年时全家因为父亲工作的原因迁往休斯敦,父亲因此很是愧疚。小福尔摩斯为了安慰父亲写了一封信,信中说:&ldquo 我想要的生活是发现新事物,发现那些人类不知道的东西。&rdquo 高中时她曾经自学中文,并计划参加斯坦福大学暑假的中文课程。可是,学校负责人表示这门课程不招收高中生。福尔摩斯没有气馁,她一次又一次尝试,终于获得了一次面试机会。面试中,她用流利的中文回答了考官的问题。就这样,她还在高中时就修读完了三年的大学中文课程。   2001年,福尔摩斯申请就读斯坦福大学并获得录取。接着,学校给她颁发了校长奖学金,允许她选择自己的实验项目。她的父母给她记了一本马可· 奥里斯乌斯的《沉思录》,希望告诉她做人要有目标和理想。福尔摩斯选择了化学工程专业,并被当时工程学学院院长钱宁· 罗伯森的研究工作所吸引。罗伯森回忆说,在福尔摩斯大一的一天,她来到院长办公室要求与博士学生一起参与他实验室的工作。罗伯森犹豫了,但是由于福尔摩斯的坚持,他最终还是同意了。春季学期结束时,福尔摩斯计划前往新加坡Genome Institute进修。罗伯森警告她这个项目要求学生掌握中文,可是他惊讶的了解到福尔摩斯已经可以熟练使用中文了。   大一结束时,福尔摩斯已经能同博士一起参加研究小组的会议。罗伯森表示,她经常汇报实验进程和计划,甚至比博士参与度还高。那时候,他意识到这个姑娘有些与众不同。   在新加坡进修期间,福尔摩斯主要研究检测严重呼吸道疾病(比如SARS)。测试一般以传统方法展开,也就是用注射器抽血,用棉签收集鼻腔粘液。这种方法可以检测出谁被感染,但人们依旧需要其他独立的系统来分发药物并检测药效。福尔摩斯对这种检测方法存疑,因为她在斯坦福时研究过一个名为芯片实验室的技术。该技术利用单一微芯片上的少量液体就可以完成多元检测。她说:&ldquo 如果利用我在斯坦福了解到的工程学项目和系统,我们有更好的办法检测疾病。&rdquo   离开新加坡前,福尔摩斯设想了一种一次性完成多种检测的方式。这种检测仅需要一滴血,并可以以无线方式将结果数据传输给医生。那年夏天,她为这种创意申请了专利。该专利于2007年11月最终获得批准。回到斯坦福后,福尔摩斯来到罗伯森的办公室,宣布她要退学去创业。罗伯森被她的创意打动,但却力劝她最少先完成本科学业。   &ldquo 为什么?我知道自己想要做什么。&rdquo 福尔摩斯回答说。   在父母的经济支持下,福尔摩斯于2004年3月从斯坦福退学。一个月后,她组建了Theranos,公司的名字由&ldquo therapy&rdquo (疗法)和&ldquo diagnosis&rdquo (诊断)两个词组成。接着,她又说服罗伯森每周来公司担任一次技术顾问,并给与了他第一个董事会成员的回报。最终,罗伯森从终身教职的岗位退休,开始在Theranos担任全职顾问。   罗伯森为福尔摩斯介绍了几位风险投资人。她坚持自己要对公司有控制权,并要求把盈利全部投入公司发展。2004年12月时,她从风投处成功融资600万美元。随着工作的开展,她坚信公司可以实现五个方面的突破:拜托静脉抽血方式采集血液、利用几滴血液完成诊断、自动化检测流程以减少人为失误、更快地进行检测并获得结果、降低血液检测费用。   Theranos能够成功的关键之一就是雇佣了桑尼· 巴勒沃尼。桑尼是一位现年49岁的软件工程师,福尔摩斯在高三后暑假前往北京的过程中认识了他。那时候,桑尼还在加州伯克利大学读MBA。之后,他先后在莲花集团和微软工作,并于2004年正式开始在斯坦福计算机科学学院的研究生学习。桑尼和福尔摩斯经常聊天分享对于软件的信念和看法,这至关重要。如果Theranos想要利用几滴血液完成分析,那么工程师就需要研发一套软件已完成工作。2009年,桑尼以首席运营官和主席的身份加盟公司。他说:&ldquo 我们研发的是自动化平台,整个血液分析工作自始至终都是由机器自动完成。&rdquo   Theranos之所以能在过去十几年中一直对其技术保密,很大一部分原因是他们处于监管的灰色地带。其他诊断实验室(包括Quest和Laboratory Corporation of America)都利用从制造商处(比如西门子和罗氏诊断)购买的设备完成血液检测。在这些设备进入市场销售之前,制造商必须通过FDA的审批。如此一来,审批流程就使得检测操作技术变得更加透明。但是,Theranos生产自己需要使用的检测设备。只要他们不销售这些设备,也不将其搬离实验室,那么FDA就没必要对其进行审批。福尔摩斯表示,长久以来人们一直在议论他们的技术,也诋毁他们通过避免给潜在竞争对手透露技术信息的方式赚钱。   现在,Theranos的雇员达到了700人,并在加利福尼亚州纽瓦克设立了制造血液检测设备的总部。福尔摩斯说,Theranos持有正向现金流,目前正处于扩张阶段。在过去的多年中,他们通过与辉瑞和葛兰素史克这样的大型制药企业合作获取利润,而这些制药企业则利用他们的检测技术对新药开展临床试验。同时,设立于沃尔格林药店的&ldquo 健康中心&rdquo 、与医院和美国军方的合作也带给Theranos不错的利润。不过,福尔摩斯拒绝透露公司与军队合作的具体协议。   2013年,Theranos宣布与沃尔格林公司达成&ldquo 长期合作伙伴关系&rdquo ,并在全国大多数沃尔格林连锁药店(共计8200家)里建立在自己的健康中心。福尔摩斯设想能在大多数沃尔格林连锁药店和杜安里德药店中设立健康中心,这样就能让Theranos遍布美国的每一个角落。同时,Theranos还可以同合作伙伴的竞争对手CVS连锁药店达成协议,而这家企业在全美有7800家分店。   当有患者需要在健康中心进行血液检测时,受过训练的药剂师会用温暖的套筒包裹着患者手指以促进血液流动,然后用酒精进行擦拭消毒。之后,药剂师会用很小的正方形设备(配有刺针)扎破患者手指,然后将两滴血液收集到十美分硬币大小的容器中。整个过程耗时大约两分钟。血液样本在经过条形码标记后会被放入冷冻箱,然后集中送完几里之外的Theranos实验室。每天,Theranos会安排三次这样样本的收集和返送工作。   Theranos实验室是一个巨大且复杂如迷宫一般的建筑,里面有着大量化学家、技术人员和成排的机器。这些机器都很轻便,一个人就能搬动。血液样本被放入机器后,下面的流程有如国家机密一般不为人知。福尔摩斯对这一分析检测过程的描述也是含糊不清:&ldquo 我们加入了一种化学物质,从而引起化学反应,生成一种信号。接着我们把信号翻译成化验结果,然后交由具备资质的实验室工作人员进行审核。正是因为采用了微型化和自动化技术,我们才能够处理这些很小的样本。&rdquo   Theranos成功的一部分原因在于董事会人员能力出众,而福尔摩斯认为是乔治· 舒尔茨凝聚了大家的力量。乔治四度担任内阁,其中包括财政部长和国务卿这样的职位。现年93岁的乔治是斯坦福大学胡佛研究所的研究员,他在2011年结识了福尔摩斯。福尔摩斯表示:&ldquo 我们本来计划通过10分钟的会面相互认识,但是之后会面变成了长达两个小时的深入了解。&rdquo   那之后,舒尔茨同意加入董事会,并每周与福尔摩斯见面一次。他还引荐了几位现任董事会成员:比尔· 弗里斯特,心脏外科医生、前任参议院共和党多数派领袖 亨利· 基辛格,前任国务卿 山姆· 纳姆,前任民主党参议院、三军委员会主席 威廉· 佩里,前任国防部长 理查德· 科瓦西维奇,前任富国银行CEO兼主席。所有这些人都接受了公司的股票期权和其他形式的酬金。91岁的基辛格表示:&ldquo 福尔摩斯有一种优雅的品质,看起来好像十九岁一般。她好像青春永驻,不会衰老。不过,她的美丽还是比不上智慧。&rdquo   董事会成员都被福尔摩斯所折服。她是一位仔细的倾听者,有着异常的平静。员工说他们从来没见过福尔摩斯大声说话。佩里与乔布斯熟识,他说:&ldquo 有时候我们叫她乔布斯第二,但我认为这个比喻不恰当。她拥有乔布斯不具备的社交意识:乔布斯是个天才,福尔摩斯则拥有一颗大心脏。&rdquo   福尔摩斯说,她在选择12个董事会成员时希望挑选不同类型的人。董事会成员大多具有从政或者从军的背景,所以有人认为这样设计的目的是为了吸引政府与其签订合同。   她回答说:&ldquo 我们没有和政府签订任何合同。我从来没试图与政府合作,以后也没这个计划。&rdquo 不过,Theranos的确与军方有合作关系,而福尔摩斯称这种合作能&ldquo 在很重要的潜在领域&rdquo 拯救生命。而且,她表示公司的政策就是尽可能普及自己的血液检测方案。她认为别人将其董事会成员视为游说者是一种&ldquo 侮辱&rdquo ,因为她视这些人为能帮她制定策略的合作伙伴。   科瓦西维奇说他给董事会带来了商业经验:&ldquo 我认识大多数大型连锁公司的CEO,其中就包括沃尔格林的CEO乔治· 沃森。&rdquo 同时,科瓦西维奇建议福尔摩斯在进驻发展中国家之前先集中精力在美国发展好Theranos的业务。他认为,这不代表公司是拿美国人民在做实验。   福尔摩斯和董事会成员一致强调他们的技术非常先进,同传统诊断实验室公司相比具有优势。弗里斯特说:&ldquo 做一系列检测用不了四管血液,这是1940年的技术了。&rdquo   Quest公司高级科学主管奈杰尔· 克拉克并不认同这一观点。Quest在全国有30家提供全方位服务的大型实验室,每年进行6亿次的各类检测。相比之下,Theranos在2015年的目标才是达到100万血液检测的业务量。同时,Quest公司旗下还有4000量用于运输样本的交通工具。工作人员会将收集而来的样本放在机器作业线上,而设备会在传送带移动试管的过程中完成检测分析。接着,机器上的仪器会用质谱分析法技术识别血液中化学物质的特征。克拉克说,在过去的数十年中,血液分析需求的样本从两整管血液下降到1/5管血液,已经有了明显进步。   的确,大型诊断实验室的流程比弗里斯特描述的更加自动化,可它依旧是一个劳动力密集型工作。抽血工作人员会在医院和医生办公室里将血液样本贴上标签并封装,接着有人会将样本运输到中心实验室。在那里,工人手动将样本分类然后放上传送带。福尔摩斯表示,Theranos的运作模式更加自动化,但也不是完全不需要人工。他们的样本比Quest公司的更小,而且采用了电子化标签方式。不过,样本的收集运输和处理仍然需要人工完成。这对于后勤而言是个不小的工作量,而且经常容易出错。   Quest与Theranos的分歧还表现在其他方面。福尔摩斯认为人们想要更加便利的完成血液检测,证据就是5成的人拿到医生要求进行血检医嘱后没有去验血。不过,她也承认这一数据是公司通过消费者调查内部得出的。Quest公司战略和投资部门副总裁德莫特· 谢尔顿表示实际数字没这么高。他说:&ldquo 我们得出的实际数字大概是30%左右。这是个不小的数字,可我们没听说有谁是因为害怕扎针才放弃验血的。&rdquo   克拉克提出,扎手指采血的血液检测对于临床诊断测试而言并不可靠,因为这样做时血液并不是从血管中流出来的。同时,血液还有可能被割开的毛细血管或者受到损伤的组织污染。福尔摩斯非常不认同这一观点,她说:&ldquo 我们的数据显示,指尖采集的血液和静脉穿刺采集的血液具有完全相关性。&rdquo 为了证明自己的观点,她给出了担任Theran交付医生吗?病人会想要让自己的医生知道检测结果吗?&rdquo 他指出,医生在法律上有义务跟进并处理病人不正常的血液检测结果。如果血液检测过程没有医生参与,Theranos是否也会坚持这一原则?不过,他也指出让病人参与到自己的会工作能取得更好的医疗护理效果。   部分专家认为,类似Theranos设想这样的医疗护理变革是不可避免的,而且绝大多数变革都是好的。安迪· 埃尔纳是哈佛医学院初级护理中心的医生和主任,他说:&ldquo 不管医生或者别人怎么感觉,这种变更注定要发生,而且实际情况也需要变革的发生。医疗健康数据的控制权会从医生转移给病人。&rdquo 不过他也指出,少有证据表明重视血液检测或者普及各类血液检测能影响人们的健康。&ldquo 仅有少量证据表明,干预特定人群的生活方式能帮助他们缓解糖尿病。知道某人患有亚糖尿病的主要价值在于确定一个我们都知道的共识:人们应该健康饮食,多加锻炼。&rdquo   为了实现Theranos公司的目标,福尔摩斯面临诸多挑战,其中之一就是后勤问题。她的弟弟克里斯蒂安三年前加入公司,现在担任产品经理主管。他表示:&ldquo 你不得不扩展后勤能力。如果失败了,我们就完了。&rdquo 另一个挑战则是竞争问题。随着微型化逐渐成为行业标准,研究人员正发明发现各种帮助人们直接完成医学检测的方式。很多公司在研发不需要针头就能完成的各类检测手段,比如依靠激光、血氧定量法、生物传感器和MRI等医学成像技术。   福尔摩斯表示她知道新的技术发展会导致Theranos失败。&ldquo 我们时刻准备自我颠覆,这是我们运作的一个核心原则。硅谷是颠覆性技术最好的代表,它既能改变世界,也能使得企业落伍。&rdquo