当前位置: 仪器信息网 > 行业主题 > >

生长释素

仪器信息网生长释素专题为您提供2024年最新生长释素价格报价、厂家品牌的相关信息, 包括生长释素参数、型号等,不管是国产,还是进口品牌的生长释素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生长释素相关的耗材配件、试剂标物,还有生长释素相关的最新资讯、资料,以及生长释素相关的解决方案。

生长释素相关的资讯

  • 重磅!赛默飞助力金域医学开创国内生长激素精准检测新纪元
    广州金域医学检验集团股份有限公司(以下简称金域医学)是一家以第三方医学检验及病理诊断业务为核心的高科技服务企业。经过多年发展,现已成为国内第三方医学检验行业的市场领先企业。 开拓精准检测服务新市场近日,金域医学宣布与美国最大的第三方医学实验室Quest联合开发了采用高分辨质谱检测的IGF-1精准检测项目,旨在为广大患者提供更精准的生长激素检测服务。此项目,正采用了赛默飞带有在线样品前处理功能的Transcend多通道液相和Orbitrap高分辨质谱联用仪。金域医学成为国内第一家将多通道液相和高分辨质谱联用技术引入临床检测的实验室,开拓了精准检测服务新市场。关于生长激素和IGF-1生长激素对于儿童生长发育非常重要。若生长激素不足会导致身材矮小、发育迟缓、侏儒症;生长激素过多会导致巨人症、肢端肥大症等疾病。生长激素临床上常用类胰岛素生长因子1(Insulin like growth factor 1, IGF-1)来评估青少年的生长发育和营养水平,因为IGF-1在体液内的浓度受到生长激素的调控,是反应生长激素生物功能的灵敏指标。 提高通量 效率飞升在临床检测中,实际样品数量多,对仪器通量要求较高。赛默飞多通道液相Transcend系统就是为这种需求量身定制的。对于IGF-1的检测,金域医学选择了Transcend II TLX-4四通道在线固相萃取前处理液相来进行。这套系统配备4台上样泵,4台洗脱泵,1台CTC双臂自动进样器和一个阀箱(图1),可提高至四倍通量,真正实现高通量检测。图1.Transcend II TLX-4四通道在线前处理液相系统实物图 智能自动优化 硬件和软件完美结合得益于Transcend系统的Aria OS智能化控制软件,使用者不需要考虑通道之间的复杂阀切换,只需设置色谱梯度和质谱采集的时间窗口,软件即会自动优化通道切换,从而实现四通道同时检测。在进行UHPLC分离和MS分析之前,Transcend在线固相萃取技术可进行全自动的在线样品前处理,从而使得高通量、低成本和减少样本处理时间得以并存。 多通道液相结合Orbitrap临床IGF-1检测的首选IGF-1是一个蛋白质,其三对二硫键非常靠近自身的N端和C端,因此难以碎裂产生特异性高的碎片离子来进行传统的三重四极杆液质联用的定量。2011年开始,美国的第三方独立医学实验室Quest就开始探讨利用超高分辨质谱定量IGF-1的可能性,并在长期的临床实践中证明了其可靠性。在金域医学大量的生物样品检测中,赛默飞多通道液相结合Orbitrap的解决方案经受住了考验,成为了IGF-1检测的固定合作伙伴。 新品速递赛默飞多通道Transcend液相色谱系统赛默飞2019年全新推出的Transcend系统,相比前一代Transcend II系统,采用了耐用性强、稳定性好和完全生物兼容的Vanquish UHPLC平台,可用于临床样品高通量检测或食品等分析。采用了TurboFlow® 技术的Transcend TLX-1/TLX-2/TLX-4系统 高通量在线固相萃取技术:采用专利TurboFlow® 技术,对样品进行选择性的净化处理。 无需前处理:生物样品或食品等直接进样 有效降低离子抑制:样品在线净化,特异性高 节省时间:简化复杂样品制备过程 简化方法开发:可将相同方法应用于不同基质 独一无二的多通道技术:多通道技术采用多个平行的UHPLC通路,增加质谱利用率,可数倍提升通量。 提高生产力:每小时分析更多的样本 提高效率:二倍或四倍提升质谱通量 增强灵活性:同一时间可运行2/4个不同的实验方法 基于Vanquish平台的Transcend Duo LX-2 赛默飞高通量自动化智能化的仪器平台,帮助金域医学实现了IGF-1高效精准的临床检测,降低了时间、成本投入。赛默飞也通过和金域医学的合作,践行了自己的使命,帮助客户让世界更健康、更清洁、更安全。
  • 日立高新SU8010观察氧化铝晶体上外延生长的氧化铁晶体
    本例是氧化铝晶体上外延生长的氧化铁晶体的观察例。这个样品是给陶瓷品上彩用的颜料(红褐色),主要成分是刚玉(Al2O3)和氧化铁(Fe2O3)。为了弄明白它为什么能成长出如此漂亮的结构和其生长原理,用SEM进行观察就变得非常重要。  左图是用Upper探头拍的背散射电子的照片,通过成分对比度可以判断出Al2O3的周围存在着Fe2O3。另外,对Al2O3处放大后(右图)可以发现很细微的台阶结构。本例采用日立高新SU8010场发射扫描电子显微镜进行观察,关于此仪器请参考:http://www.instrument.com.cn/netshow/SH102446/C138451.htm 关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合n性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • 欧洲药品管理局审查生长激素药物安全性 辉瑞受审
    欧洲药品管理局10日宣布,开始审查在欧洲联盟市场销售的生长激素药物的安全性。法国药物监管机构经过观察研究发现,服用这类药物可能增加死亡风险。美国辉瑞制药有限公司、美国礼来公司、瑞士诺华公司的相关药物将受到审查。
  • Nature发表!单颗粒冷冻电镜技术助力中国科学家阐明生长素极性运输的分子机制
    近日,浙江大学团队联合湖北大学,实现了植物生长素极性运输研究的重大突破,让植物向性这一百年科学难题的关键一环得以解决,为生长素极性运输的进一步调控打下基础。 近日,相关论文发布在 Nature 上。担任共同通讯作者的浙江大学医学院生物物理系长聘副教授/附属第四医院双聘教授郭江涛 表示:“对于弄清楚 PIN 蛋白(pin-formed protein)介导生长素转运的分子机制,学界早已翘首以盼,而该工作终于揭晓这一机制。这为开发基于结构靶向 PIN 家族蛋白的新型小分子抑制剂奠定了基础。这些抑制剂既能作为工具,去研究生长素的极性运输机理;也可作为农业除草剂,助力于作物改良。”图 | 浙江大学研究团队主要成员合影。前排左起:郭逸蓉、张素芬、张艳、苏楠楠、竺爱琴、杨帆 ;后排左起:周晨羽、叶繁、郑绍建、郭江涛 、常圣海同时,作为共同作者单位的湖北大学,也借此迎来该校第一篇 Nature 论文。审稿人评价称:本文报道了一个重要的结构,为植物生长素运输提供了新的研究思路;这些发现是开创性的,真正为 PIN 蛋白的功能提供了新的见解,从而为研究打开了许多新的途径。此外,PIN 蛋白与胆汁酸/钠转运蛋白的结构也存在有趣的相似性,这可能有助于更好地理解 PIN 蛋白的起源及其转运机制。另据悉,通过比对拟南芥其他生长素转运蛋白序列,课题组发现生长素转运位点是保守的,这种保守性也会延伸到其他的植物物种中。因此,可以认为此次研究结论,也能被推广到其他植物中。近日,相关论文以《拟南芥生长素转运蛋白 PIN3 的结构与机制》(Structures and mechanisms of the Arabidopsis auxin transporter PIN3 )为题发表在 Nature 上[1]。图 | 相关论文(来源:Nature)共同通讯作者分别为郭江涛 、浙江大学医学院生物物理学系研究员杨帆 、以及湖北大学生命科学学院&省部共建生物催化与酶工程国家重点实验室吴姗 教授。郭江涛 团队的博士后苏楠楠、杨帆 课题组的博士生竺爱琴、以及吴姗 团队的博士生陶鑫为论文共同一作。PIN 蛋白在拟南芥中介导生长素极性运输机制据介绍,生长素对植物的生长发育起核心调控作用。一般来讲,低浓度的生长素促进生长,高浓度的生长素抑制生长。生长素主要合成部位是在芽、幼嫩的叶和发育中的种子,然后被运输到作用部位。其中,生长素调控植物生长发育与其在植物各个组织中的不对称分布有着密切的关系。而这种不对称分布,主要由于在细胞与细胞之间的生长素运输具有一定的方向性,这也被称为生长素极性运输(Polar Auxin Transport,PAT)。那么,PIN 蛋白缘何能导致植物具有向光性?植物的向光性,是指植物受到单侧光的刺激而引起的生理弯曲现象。而植物体内生长素的不对称分布,和这种向光性息息相关。生长素在植物体内运输有两条途径:一是通过韧皮部完成长距离运输的非极性运输;二是需要转运蛋白参与的单方向极性运输。其中,对于生长素的不对称分布,极性运输起着关键作用。PIN 蛋白可以将生长素转运至细胞外。PIN 蛋白在细胞膜上的极性定位,决定着植物体内生长素极性分布,从而会导致植物的向光性。至于为何要采用拟南芥作为研究对象?郭江涛 表示,拟南芥作为模式植物,其基因组已于 2000 年由国际拟南芥基因组合作联盟完成测序,是第一个实现全序列分析的植物基因组。目前,人们已在 30 多种植物中鉴定出了不同数量的 PIN 基因。作为模式植物,拟南芥中有 8 个 PIN 蛋白成员(PIN1-PIN8)。学界在这方面的生物学功能研究,也比针对植物其他物种的研究更透彻,这能帮助该团队更好地认识 PIN 蛋白的生化、生理以及遗传等特征。同时,鉴于本研究旨在研究植物生长素的极性运输机制,因此其选择拟南芥为研究对象。据介绍,生长素极性运输主要依赖于三种膜定位转运体:AUX/LAX 家族蛋白、 PIN-FORMED 家族蛋白和 ABCB 家族蛋白。通过调控这些家族蛋白,植物可以调节生长素的极性运输和分布。研究发现,拟南芥 PIN 与 ABCB 蛋白可以共同定位。而通过酵母双杂交和免疫共沉淀的实验表明,PIN 和 ABCB 蛋白存在直接的物理互作。PIN蛋白在极性胚胎发育和器官形成等需要定向生长素极性运输的过程中其决定作用,而 ABCB 则在顶端组织生长素转运及长距离运输中起重要作用,二者在调控生长素的转运上具有一定的独立性。AUX 蛋白为生长素转入蛋白,PIN 蛋白为生长素外排蛋白。它们通过协同工作,一起维持植物体生长素平衡。(来源:郭江涛 课题组)解析三个高分辨率冷冻电镜结构本研究最开始且关键的一环是课题选择,首先通过大量的文献调研,课题组确定了研究对象——PIN 蛋白。PIN 蛋白是生长素转运蛋白,在植物的生长素极性运输方面发挥了巨大作用。因此,研究人员希望通过结构生物学的手段解释PIN蛋白介导的生长素极性运输的分子机制。而拟南芥 PIN 蛋白家族被分为两个亚家族,一类是定位在质膜上的 long PINs (PIN1–PIN4、PIN6 和 PIN7),另一类是定位在内质网上的 short PINs (PIN5 和 PIN8),这两大家族通过共同工作,一起维持着植物生长素的内稳态。研究中,该团队首先对 7 个 AtPINs (AtPIN1–5, AtPIN7–8)进行表达纯化筛选,最终选择 AtPIN3 作为研究对象。原因在于,AtPIN3 与其他 long AtPINs 有至少 54% 的序列同源性,可作为 PIN 家族结构和功能分析的模型。随后,通过哺乳动物细胞 HEK293 外源表达系统、对 PIN 蛋白进行过表达并纯化后,课题组得到了均一且稳定的蛋白样品。借助单颗粒冷冻电镜技术,该团队解析了三个高分辨率冷冻电镜结构,分别处于三种状态:PIN 蛋白未结合底物状态、底物 IAA 结合状态以及抑制剂 NPA 结合状态。接下来是功能实验验证阶段。研究团队建立了体外放射性 3H-IAA 转运实验体系,针对底物 IAA 与抑制剂 NPA 结合位点突变体的生长素转运活性和抑制活性,进行相关的测试。随后又通过表面等离子体共振技术,测试底物 IAA 与抑制剂 NPA 结合位点突变体分别与 IAA 和 NPA 的结合能力。然后,通过功能实验的多重验证,课题组阐明了 PIN 转运蛋白对 IAA 的识别和转运机制,以及抑制剂 NPA 抑制生长素转运的分子机制。最终解释了 PIN 蛋白介导的生长素极性运输的分子机制。(来源:郭江涛 课题组)将探索开发新型农药除草剂在整个研究过程中,研究人员遇到了很多困难。AtPIN3 二聚体的分子量仅为 140 kd,蛋白颗粒取向优势严重,从结构上来看几乎只有跨膜区,这对冷冻电镜数据处理带来了极大的挑战。郭江涛 表示:“从拿到均一稳定的蛋白样品到拿到较好的密度图,经历了大半年的时间。我们通过尝试改善蛋白颗粒的取向优势问题,采用不同的电镜数据处理方法,总结经验,最终得到高分辨率结构。”AtPIN3 与底物 IAA 复合物结构的解析,同样是本研究的一大难点。由于 IAA 与 AtPIN3 亲和力相对较弱,研究团队在前后多次对 AtPIN3 与 IAA 的复合物样品进行单颗粒冷冻电镜数据收集,但是 IAA 的密度一直不是很清晰,这让其无法准确判断 IAA 与 AtPIN3 准确的结合模式。后来,通过提高样品中 IAA 的浓度、更换蛋白样品缓冲液体系、更换冷冻电镜样品载网、制样条件、以及改善样品进孔问题,课题组终于成功拿到复合物高分辨结构。(来源:郭江涛 课题组)通过功能实验对 IAA 和 NPA 的作用机制进行验证也是本研究的难点之一。建立一个准确有效的检测生长素转运的实验体系,对他们来说是一个全新的尝试,经过不断摸索学习总结,最终也成功建立了放射性 3H-IAA 外排实验体系。“从最开始的困难重重到最后柳暗花明的整个研究过程中,我们认识到做研究要有决心,有破釜沉舟的勇气,始终要有把工作做到极致的信念,有做世界最一流工作的信念。”郭江涛 总结称。后续,其计划以 PIN 蛋白为靶点筛选新型小分子抑制剂,并通过体外放射性 3H-IAA 转运实验体系对小分子进行功能验证,也将通过冷冻电镜技术手段解析复合物结构,并在此基础上对筛选的小分子化合物进行优化,进而开发新型除草剂农药。
  • 多省长江野生鱼被测出环境激素 可致性早熟
    8月25日,一家国际环保组织发表了24页纸的题为《“毒”隐于江——长江鱼体内有毒有害物质调查》的报告。调查报告显示,在取自长江上、中、下游不同城市的鲤鱼和鲶鱼体内,均测出了被称为“环境激素”的壬基酚和辛基酚,这两种物质可导致雌性性早熟等性发育和生殖系统问题。   28日,记者从整篇调查报告中发现,该组织在来自重庆、武汉、南京以及马鞍山四市的野生鲤鱼与鲶鱼体内,检测出了广受国际关注的持久性有机污染物全氟辛烷磺酸,部分鱼体内还检测出了汞、铅和镉等重金属。   样本检验:   野生鲶鱼、鲤鱼“有毒”   “今年1月到3月,工作人员在长江沿岸的重庆、武汉、马鞍山、南京四座城市采集长江中野生的鲤鱼与鲶鱼,所有样本都是由当地渔民提供的新鲜活江鱼。样本在收集到之后均由锡箔纸包装,冷冻避光保存,随后被运送至位于英国埃克塞特大学的研究实验室。”检验显示长江中野生的鲶鱼和鲤鱼体内都不同程度地累积了有毒有害物质,包括有机化学物质和重金属。   记者在报告中发现,马鞍山除一条鲤鱼样本外,其他所有两类鱼样本中,均检测出含有壬基酚和辛基酚,还被检出全氟辛烷磺酸。报告中还写到,汞在所有的肌肉样本和除一条重庆鲤鱼肝脏样本外,所有样本中均被检出。所有的鲶鱼肝脏样本均被检测出含有镉,在马鞍山提供的鲶鱼样本中,部分肝脏样本被检测出含有铅,但肌肉样本中铅的含量均小于最低可测出值。   研究发现:   环境激素是性早熟诱因之一   “壬基酚和辛基酚是洗涤剂、纺织产品和皮革涂饰中极为常见的化学原料,属于环境激素,即可以干扰内分泌并影响性发育水平的内分泌干扰素。全氟辛烷磺酸则被广泛用于纺织品、地毯、造纸、防水涂料等产品之中,属于持久性有机污染物”。记者在报告中了解到,被测有毒物质,均为化学用品,被大量地用于工业生产之中。   “这些有毒有害物质在生物体内具有累积性,因而可以通过食物链进入人体,形成健康隐患。”在报告中,该组织水污染防治项目主任武毅秀介绍了这些物质的危害性,“由于这些有毒有害物质对环境和健康有巨大的负面影响,许多发达国家和地区已经将其列为禁止或限制使用的化学物质,因而其产量在这些国家已大幅减少。”   环保专家:   加强水质监测   长江流域大面积水域为什么会“中毒”如此之深?长江流域现在“毒情”已到了什么程度?   “目前,环保部门正在大力治理汞、铅和镉等重金属引发的污染问题,但是国内的法律法规还没有对壬基酚和辛基酚的生产、使用和排放进行管理,也没有对壬基酚和辛基酚的检测、排放、产量控制和质量控制及毒性设定相关规定,另外,也未对制造和使用全氟辛烷磺酸和其他全氟化合物作出规定。正是如此,导致了这些化学物质在我国肆虐‘生长’”。安徽大学生命科学院教授、博导孙庆业告诉记者,对于这些污染物包括壬基酚、辛基酚及全氟辛烷磺酸,以及水污染方面,发达国家早在多年以前,就已经开始关注并采取了相关措施防治,而我国目前监管漏洞还是很大。希望尽快加强水质监测,同时应尽快立法。   新闻链接:   防范环境激素,专家支招   早在32年前,日本学者就提出了“环境激素”一词,但未引起重视。   所谓“环境激素”,是指由于人类的生产和生活活动而释放到环境中的、影响人和动物内分泌系统的化学物质,由于它具有“类似”雌激素的作用,学术上称之为“外源性内分泌干扰物”。   如何来防范环境激素的危害,专家给出了一些建议:比如,不要用泡沫塑料容器泡方便面,方便面容器90%是泡沫苯乙烯产品,它是一种致癌的环境激素 不要将聚氯乙烯包装食品放在微波炉中加热,因为在高温条件下,环境激素双酚A会从中渗出 对含有激素的药要慎用 食用糙米、荞麦、菠菜、萝卜等,容易使环境激素二噁英从体内排出 多饮用茶水也有助于内脏中的环境激素排出体外。
  • 便携式光合速率测定仪了解植物的生长状况【恒美仪器】
    便携式光合速率测定仪是一种先进的仪器,用于测量植物的光合速率。光合速率是反映植物光合作用能力的重要指标,对于了解植物的生长状况、评估环境因素对植物生长的影响以及提高农业产量等方面都具有重要意义。 产品链接https://www.instrument.com.cn/netshow/SH104275/C309618.htm 该仪器采用先进的光合作用测量技术,能够实时、准确地测量植物叶片的光合速率。通过与计算机连接,用户可以方便地获取测量数据,并进行数据处理和分析。此外,该仪器还具有操作简便、易于携带等特点,可以随时随地进行植物光合速率的测量,不受时间和地点的限制。 便携式光合速率测定仪的应用范围广泛。在农业生产中,它可以用于监测作物的生长状况,指导合理施肥和灌溉,提高农作物的产量和品质。在生态研究中,它可以用于评估环境因素对植物生长的影响,了解植物对环境的适应性和生态系统的平衡。此外,该仪器还可以用于植物生理学、园艺学、林学等领域的研究。 综上所述,便携式光合速率测定仪对于了解植物光合作用能力、提高农业产量和生态研究等方面都具有重要作用。通过使用该仪器,可以更好地了解植物的生长状况和环境因素对植物生长的影响,为农业生产和生态研究提供科学依据。
  • 半导体情报,科学家揭示二维材料外延生长的挑战与前景!
    【科学背景】二维(2D)材料家族在过去二十年显著扩展,包括近2000种理论预测和数百种实验室可接近的物种。这一演变与材料制备技术的进步密切相关。传统的机械剥离从体块晶体中开创性地发现和分离了石墨烯,提供了高质量材料,但在大规模生产中面临挑战。溶液基剥离等替代方法虽然提供了2D材料的可伸缩性,但可能引入缺陷、杂质和化学修饰。与此相比,外延生长技术通过在各种基底上组装原子或分子成为2D材料,无需晶格匹配要求,并能精确控制成分和晶质,展示了制造大面积高质量单晶薄膜的潜力。二维材料外延的概念可以追溯到20世纪60年代,当时John May在高温金属基底上的烃类中发现了未指定的低能电子衍射图案,并将其归因为‘单层石墨’的生长。1984年,Koma等人提出了“范德瓦尔斯(vdW)外延”这一术语,用于在剥离的MoS2表面上制造亚纳米NbSe2薄膜。然而,这些初探一直局限于表面物理学领域,未能引起广泛关注。随着2004年石墨烯的发现和分离,这一领域经历了转变,激发了一系列探索和特征性2D vdW材料及其同质结构外延生长的突破性‘浪潮’。第一波浪由2009年在铜箔上合成单层石墨烯开启,随后十年揭示了外延机制,推动了单晶薄膜的工业化生产。接连而来的浪潮归因于二维六角硼氮化物(hBN)和过渡金属二硫化物(TMDCs)的外延,最近实现了英寸大小的单晶。此外,人工多层系统中的扭转电子学和moire光子学推动了另一波,用于直接生长具有控制堆叠和扭转角度的垂直同质结构。北京大学刘开辉团队最新论文表示,新兴二维材料外延的前景广阔,可能涵盖单元素物种(如黑磷、硼烯和碲烯)以及各种化合物如硫化物、硼化物、碳化物等。每一波浪都带来独特的挑战,但普遍的外延原则在这些进展中是潜在且必要的。随着科学家们不断提出新的技术和策略,如何有效应对这些挑战并推动新材料的应用和工业化成为了当前研究的关键焦点。【科学亮点】(1)在二维材料研究领域,实验揭示了机械剥离技术从体块晶体中分离出石墨烯,并且成功实现了高质量材料的获得。(2)替代的溶液基剥离方法被引入以扩展2D材料的可伸缩性,但引入了潜在的缺陷和杂质,同时也进行了化学修饰。然而,外延生长技术通过在各种基底上组装原子或分子成2D材料,无需晶格匹配要求,为制造大面积、高质量的单晶薄膜提供了精确的成分和晶质控制。(3)二维材料外延的历史可以追溯到1960年代,当时John May首次在高温金属基底上观察到未指定的低能电子衍射图案,推动了“单层石墨”生长的初步探索。(4)1984年,Koma等人提出了“范德瓦尔斯(vdW)外延”概念,用于在MoS2表面上制造亚纳米NbSe2薄膜。这些探索初期局限于表面物理学界,未引起广泛关注。(5)随着2004年石墨烯的发现和分离,二维材料外延领域经历了转变,激发了一系列在探索和外延生长典型2D vdW材料及其同质结构方面的突破性‘浪潮’。(6)外延技术的进步推动了二维六角硼氮化物(hBN)和过渡金属二硫化物(TMDCs)的生长,最近实现了英寸大小的单晶,展示了制造大面积、高质量单晶薄膜的潜力。【科学图文】图1:二维2D 范德华 van der Waals,vDW材料及其同质结构外延生长的代表性进展。图2:单畴的成核控制。图3:多域定向控制。图4:均匀多层膜的制备。图5: 转角同质结构的制造。【科学结论】在过去的十年中,二维范德瓦尔斯(vdW)材料外延生长取得了显著进展,从平面单晶单层发展到垂直多层结构。一些典型材料的制备已经达到了先进阶段,例如工业规模生产石墨烯单晶薄膜,英寸尺寸的hBN单晶单层合成,以及TMDC半导体达到标准300毫米晶片大小,与主流硅技术对接134。此外,具有平行堆叠或精确扭转角度控制的同质结构多层外延也有了一定的阶段性进展。我们在本综述中总结了这些案例背后的策略,并相信它们可以进一步扩展到其他外延技术或二维系统中。复杂vdW化合物如金属氧化物或氢氧化物的单晶外延生长,目前正处于探索阶段,遵循这些已建立的策略。在器件应用场景中,二维结构理想情况下应在材料制备过程中启动和形成。对绝缘晶片上的二维薄膜进行直接生长或晶片规模的转移技术是将二维场效应晶体管纳入未来大规模集成器件至关重要的。需要制定经济实惠的热预算解决方案,以适应材料生长和随后器件制造与后端线路工艺的兼容性。下一步是建立从材料设计到封装和器件集成的工业链桥梁。最终,一旦二维材料的生长准备水平和生产复制性达到硅晶片的水平,它们从研究(实验室)到设计和制造(工厂)的转变将指日可待。原文详情:Liu, C., Liu, T., Zhang, Z. et al. Understanding epitaxial growth of two-dimensional materials and their homostructures. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01704-3
  • 222万!自然资源部第四海洋研究所计划采购植物培养生长监测系统、碳同位素分析仪等仪器设备
    一、项目基本情况项目编号:0633-2240126E4297项目名称:海洋自然资源开发利用与保护修复平台建设项目-植物培养生长监测系统、碳同位素分析仪采购预算金额:222.0000000 万元(人民币)最高限价(如有):222.0000000 万元(人民币)采购需求:标项名称:海洋自然资源开发利用与保护修复平台建设项目-植物培养生长监测系统、碳同位素分析仪采购数量:2套预算金额(元):人民币贰佰贰拾贰万元整(¥2,220,000.00)简要规格描述或项目基本概况介绍、用途:本项目需采购植物培养生长监测系统1套、碳同位素分析仪1套;如需进一步了解详细内容,详见招标文件。合同履行期限:国产设备自签订合同之日起1个月内交付安装使用并验收合格。进口设备自签订合同之日起3个月内交付安装使用并验收合格。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)资质要求:无。(2)业绩要求:无。(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本项目同一合同项下的政府采购活动。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目的采购活动。(4)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。(5)按照招标公告规定获得招标文件。招标文件有规定时按要求提交投标保证金。三、获取招标文件时间:2022年04月27日 至 2022年05月06日,每天上午8:30至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:广西机电设备招标有限公司北海分公司(广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508)现场获取或线上邮箱(下载)。方式:潜在供应商可以自行选择以下方式之一获取招标文件:方式一:现场购买招标文件,潜在供应商应于本公告有效期内到获取招标文件地点购买招标文件,招标文件以纸质版发放或以电子邮件形式发送至供应商邮箱。方式二:线上购买招标文件,将材料以电子邮件(邮件标题注明供应商名称+所投项目名称;邮件内注明联系人及联系方式;因未按要求发送邮件而导致的后果由供应商自行承担)发送到zhengshuxin@gxbidding.cn。资料审核通过后,供应商以电汇、转账等非现金形式将标书款交至以下银行账号,并将汇款底单以电子邮件发送至上述邮箱,代理机构在核查完毕后把招标文件以电子邮件发送至供应商邮箱。银行账号信息:开户名称:广西机电设备招标有限公司开户银行:广西北部湾银行南宁市金湖支行账号:1705012090027723联行号:313611017053 资料需提供以下文件(以下资料未注明原件的均为复印件,要求加盖公章):(1)主体资格证明(如营业执照、事业单位法人证书、执业许可证、个体工商户营业执照等);(2)法定代表人及委托代理人身份证;(3)法定代表人授权书原件。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年05月17日 09点30分(北京时间)开标时间:2022年05月17日 09点30分(北京时间)地点:广西机电设备招标有限公司北海分公司(广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508)开标室。投标文件递交方式:邮寄或现场方式,具体要求详见供应商须知前附表。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.公告发布媒体:中国政府采购网(http://www.ccgp.gov.cn/)、中国招标投标公共服务平台(http://bulletin.cebpubservice.com/)、广西壮族自治区招标投标公共服务平台(http://ztb.gxi.gov.cn/)。2.需落实的政府采购政策:本项目适用政府采购促进中小企业、监狱企业发展、促进残疾人就业、节能环保、信息安全产品等有关政策,具体详见招标文件。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:自然资源部第四海洋研究所     地址:北海市银海区海景大道海洋科研创新园自然资源部第四海洋研究所联系方式:刘老师 0779-2260528      2.采购代理机构信息名 称:广西机电设备招标有限公司            地 址:广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508联系方式:吴仁晖、郑舒心、李妍茜 0779-3900996             3.项目联系方式项目联系人:吴仁晖、郑舒心、李妍茜电 话:  0779-3900996
  • 生物传感器监测植物生长
    日前,德国拜罗伊特大学和图宾根马克斯普朗克发育生物学研究所科学家开发出一种新型传感器,可以实时显示植物细胞中生长素的空间分布,并可快速检测环境变化对植物生长的影响。这种传感器为研究人员打开了观察植物内部运作的全新视角。相关研究成果发表在最近的《自然》杂志上。  无论是种子的胚胎发育、根系生长,还是植物对阳光方向的反应,生长素都具有协调植物对外界刺激反应的功能。为了触发对外部刺激的反应,它必须存在于所需的细胞组织中。迄今为止,人们还无法在细胞分辨率上直接确定生长素的时空分布。  此次,研究人员开发出一种新型基因编码的生物传感器,可将植物体内生长素的分布定量可视化。其特殊之处在于,它是一种植物经改造后可自己产生的人造蛋白质,而不必经由外部引入。他们利用这种传感器实时观察了细胞组织需要生长素的时空间分布动态过程。  在开发这种生物传感器时,研究人员发现大肠杆菌中有一种蛋白质可与两种荧光蛋白偶联,并在这些配对蛋白非常接近时发生荧光共振能量转移(FRET)。这种蛋白可与氨基酸色氨酸结合,但与生长素的结合要差得多。他们希望通过基因改造,使其能更好地与生长素结合,并使其FRET效应只在蛋白质与生长素结合时发生。  研究人员对植物进行了基因改造,使其在某种刺激下可在细胞组织中产生满足这些要求的蛋白质。于是,新型生物传感器诞生了:强烈的荧光信号表明了细胞组织中生长素的位置,提供了细胞内生长素分布的精确“快照”,且不会对生长素控制过程造成永久影响。  “传感器的发展是一个漫长的过程,在这个过程中,我们已经获得了关于蛋白质如何被选择性地改变以结合特定小分子的基本见解。”拜罗伊特大学蛋白质设计学教授比尔特哈克说,“预计在未来几年,新的生物传感器将发现更多关于植物内部运作以及它们对外界刺激反应的新见解。”
  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • Nature:翻转新陈代谢开关,减慢癌症生长
    来自加州大学圣地亚哥分校的一项新研究表明,丝氨酸棕榈酰转移酶(serine palmitoyl-transferase)可以用作减少肿瘤生长的代谢反应“开关”。这一发现公布在8月12日的Nature杂志。研究小组通过限制饮食中的氨基酸——丝氨酸和甘氨酸,或在药理上靶向丝氨酸合成酶磷酸甘油酸脱氢酶,成功诱导肿瘤细胞产生了有毒脂质,从而减缓小鼠的癌症进程。研究人员表示,之后还需要进行进一步的研究,确定如何将该方法是否可以用于患者。在过去的十年中,科学家们发现从动物饮食中去除丝氨酸和甘氨酸会减缓某些肿瘤的生长。但是,大多数研究团队都集中研究了这些饮食如何影响表观遗传学,DNA代谢和抗氧化活性上。而来自加州大学圣地亚哥分校和Salk生物研究所的研究人员发现,这些干预措施对肿瘤脂质,特别是在细胞表面的脂质产生了巨大的影响。文章作者Christian Metallo说:“我们的工作凸显了新陈代谢的复杂性,以及在考虑采用这种新陈代谢疗法时,跨多种生化途径理解生理学的重要性。”在这种情况下,丝氨酸代谢是研究人员的重点。丝氨酸棕榈酰转移酶(SPT)通常使用丝氨酸制造称为鞘脂的脂肪分子,这对于细胞功能至关重要。但是,如果丝氨酸水平较低,则该酶的作用发生变化,可以使用其他氨基酸(如丙氨酸)作为底物,从而产生有毒的脱氧神经鞘氨醇。研究小组在检查了某些酶与丝氨酸的亲和力,并将它们与肿瘤中丝氨酸的浓度进行比较后,决定了这一研究方向。Metallo说:“通过将丝氨酸限制与鞘脂代谢联系起来,这一发现可能使临床科学家能够更好地确定哪些患者的肿瘤对靶向丝氨酸的疗法最敏感。”这些有毒的脱氧神经鞘氨醇在“anchorage-independent”条件下能最有效地减少细胞的生长,在这种情况下,细胞无法轻易粘附在体内肿瘤生长的表面上。为了更好地了解脱氧神经鞘氨醇对癌细胞有毒的机制,以及它们对神经系统的影响,研究人员认为有必要进行进一步展开研究。在最新这项研究中,研究小组向异种移植模型小鼠喂了低丝氨酸和甘氨酸的饮食。他们观察到,SPT转化为丙氨酸时,会产生有毒的脱氧神经鞘氨醇而不是正常的鞘脂。此外,研究人员还使用氨基酸类抗生素myriocin抑制了饲喂低丝氨酸和甘氨酸饮食的小鼠的SPT和脱氧神经鞘氨醇合成,结果发现肿瘤的生长得到了改善。Metallo指出,长期剥夺丝氨酸生物会导致神经病变和眼部疾病。去年,他领导了一个国际团队,确定降低的丝氨酸水平和脱氧神经鞘氨醇的积聚是一种罕见的黄斑病(称为2型黄斑毛细血管扩张症,MacTel)的关键驱动因素。这项工作发表在《新英格兰医学杂志》上。然而,丝氨酸限制或用于肿瘤治疗的药物治疗不需要长时间的诱导动物,或与年龄有关的疾病的神经病的治疗。
  • 高精度高通量植物生长观测仪
    成果名称 高精度高通量植物生长观测仪 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 该项目设计搭建一个用于观测植物表型的实验仪器,其中包括多个组件:高分辨率CCD和可调镜头组用来拍摄图片;平面光源用来提供不同波段的单色光照;气瓶和阀门等装置用来控制气体(如乙烯)的浓度;电动平移台用来实现实时观测过程中植物位置和观察角度的连续变化。以上所有组件与电脑相连接,在电脑软件&ldquo MatLab&rdquo 中编写程序,控制各组件的开关和运行,并在&ldquo MatLab&rdquo 中对拍摄得到的图片进行加工和处理,从而实现对拟南芥早期生长发育过程的高精度、高通量、自动化的实时观察和测量分析。 主要的研究环节包括:1)使用高分辨率CCD、可调镜头组和平面光源作为图像采集系统,使用台式电脑和MatLab软件编写程序作为控制系统,实现对单一植物样品的自动化连续图像采集;2)使用MatLab软件编写图像处理程序,实现对植物图像中胚轴和根长度、顶端弯钩角度、子叶颜色变化的自动化识别和测量;3)在图像采集系统中加载电动平移台,在自动化的基础上,实现同时对多个植物样品的高通量图像采集;4)在图像采集系统中加载气流控制系统,实现气体处理(如植物激素乙烯)的加入和去除;5)在MatLab软件中改进和完善图像处理程序,在自动化的基础上,进一步提高识别和测量结果的精确度和可重复性。 目前,基于以上设计的高精度高通量植物生长观测仪按期研制完成。自主开发了两种全新的图像处理程序,使电脑对植物图像中幼苗的长度和角度实现了自动化智能化的识别和测量,并达到了很高的精确度和可重复性,为关键技术突破。 应用前景:样机已经在拟南芥黄化苗对植物激素乙烯的动力学反应研究中投入应用,取得相应成果,并在SCI期刊上发表文章。
  • 创伤弧菌的培养特性与生长环境及感染途径!
    创伤弧菌的培养特性与生长环境及感染途径! 创伤弧菌(vibrio vulnificus),或称为海洋弧菌,是一种栖息于海洋中的细菌。如果伤口暴露在含有这种细菌的海水中,创伤弧菌会在伤口上繁殖,可能引发溃烂,甚至导致组织坏死。若食用了遭污染的海鲜,也有罹患肠胃炎的可能。在2003年12月,中国台湾卫生研究院主导的基因体定序团队,完成了创伤弧菌的基因体定序与分析工作。 一、形态特性 创伤弧菌属革兰氏阴性弧菌。在液体培养基中菌体大小为0.7*2-3μm,稍弯曲。在固体培养基中呈多样性。有极端单鞭毛。 二、培养特性 营养要求一般,最适生长温度为30℃,兼性厌氧。在无NaCl及超过8%NaCl的培养基中不生长,可在0.5%NaCl及3%NaCl的蛋白胨水中生长,在含6%NaCl的蛋白胨水中生长良好。 三、流行病学 创伤弧菌广泛分布在海水中,可从牡蛎等海产品中分离得到。本菌主要通过伤口接触海水造成感染,也可经口感染。 经伤口感染时可导致蜂窝织炎及骨髓炎等多种炎症,经口感染时常迅速导致菌血症或败血症。 感染本菌后如不及时治疗,病死率很高。 四、临床表现 感染后的症状包括呕吐、发烧、腹泻、低血压、肿胀和疼痛等,需要尽快使用抗生素治疗。 若感染此弧菌,临床最常出现的两种表现为伤口感染以及原发性败血病。如果伤口接触到海水、贝壳或鱼类,便有可能感染到此弧菌。一般来说这样的感染多半很轻微,但在高风险的族群上,此类弧菌感染可以很快速的传播,并导致严重的肌炎和肌膜炎引发严重的坏疽。 五、感染途径 美国佛罗里达海滨爆发“吃人肉细菌”致死率超过30%,引起人们的极大关注。据悉,感染吃人肉细菌后,会发生呕吐、发烧、腹泻、低血压、肿胀和疼痛等症状,另外,吃没有煮熟的贝类(如牡蛎)也可能造成感染。 这种名为创伤弧菌(Vibriovulnificus)的细菌可通过人体表面伤口,或者是游泳者吞咽海水而进入人体内繁殖作乱。 虽然多数游泳者不会受上述细菌影响,可一旦感染,患者体表伤口附近的肌肉组织将被细菌“杀死和吃掉”。免疫系统功能低下的人(如肝肾功能不全者)最容易感染这种致命的细菌。另外,吃没有煮熟的贝类(如牡蛎)也可能造成感染。 其实海产品很易受副溶血型弧菌以及其他致病性弧菌的污染,根据2003年中国部分沿海地区零售海产品中副溶血性弧菌污染状况的主动监测,38.6%的海产品检出VP(副溶血性弧菌),浙江省试样的VP阳性率最高。甲壳类、贝类和鱼类试样VP阳性率分别为49.3%、37.9%和25.5%,生食海鲜尤其不推荐。 当被虾枪刺伤以后,伤口小而深,创口不容易暴露,也就不容易冲洗干净,在这个相对封闭的小环境里,海鲜上携带的创伤弧菌会趁虚而入,积累到一定数量,就会伺机入血,形成菌血症 。在免疫细胞的攻击下,细菌裂解释放出脂多糖LPS,LPS会引起免疫细胞释放细胞因子,如肿瘤坏死因子、白细胞介素6,甚至引起细胞因子风暴,导致败血症性休克。由此可能会引起重要脏器如脑干血液灌注不足,严重甚至可导致死亡。 六、生长环境 创伤弧菌和嗜水气单胞菌是海洋中最常见的弧菌科细菌,广泛分布于近岸海域的海水、海洋生物的体表和肠道中。其中,海洋弧菌是海水和许多海洋生物的正常或有益菌群成员,有许多海洋弧菌是养殖虾类和鱼类的重要病原菌。 创伤弧菌大多生长在热带及亚热带的海洋地区,且自然生存于河海交界处,需要一定盐分(0.7%~1.6%)和适宜的温度(20~40℃)才可生长。人感染创伤性海洋弧菌和海水污染无关。 所致感染多在夏秋两季,一方面夏秋季水温较高,适合海洋弧菌的生长和繁殖;另一方面,人们和海洋接触的机会增加,感染的风险增加。 北京百欧博伟生物技术有限公司的微生物菌种查询网提供微生物菌种保藏、测序、购买等服务,是中国微生物菌种保藏中心的服务平台,并且是集微生物菌种、菌种,ATCC菌种、细胞、培养基为一体的大型微生物查询类网站,自设设备及技术的微生物菌种保藏中心!欢迎广大客户来询!
  • 世界首条转基因鱼将上餐桌 生长速度快一倍
    据英国《每日邮报》网站12月24日的报道,美国食品和药物管理局(FDA)近日公布了一份针对转基因鲑鱼(又称三文鱼)的评估草案,草案认为由美国AquaBounty公司研制的“转基因大西洋鲑鱼”不会对人类构成重大健康或环境方面形成威胁,这意味着转基因鲑鱼有可能将会成为世界上首个可食用的转基因动物。 两条年龄相仿的大西洋鲑鱼,较小的为正常鲑鱼,较大的则是转基因鲑鱼。   据了解,转基因鲑鱼是一种融合两种鱼类基因、生长速度是普通鲑鱼两倍的特殊鱼类,由于体内的生长激素能让其维持长达一年的生长期,所以16到18个月的转基因鲑鱼的体型基本与30个月左右的普通鲑鱼相当。FDA在对其经过严格的食品安全检查之后,认为目前并没有发现有力的科学证据来禁止转基因鲑鱼的生产,所以它可能很快就会投入商业养殖。FDA将在未来60天内征询公众意见之后才会给出最终的结论。   转基因鲑鱼体内的生长激素能让其维持长达一年的生长期。   FDA的这一结论在美国当地引起了各方讨论,支持者认为转基因鲑鱼由于成长速度快,同时对环境条件要求不高,所以能够有效提高养殖效率,并降低养殖场的运营成本。但反对者却认为引进转基因鲑鱼会对人类健康和环境带来威胁,此外它们还有可能会逃到野外与野生鱼杂交,让本已濒临灭绝的大西洋鲑鱼的生活处境雪上加霜。   AquaBounty公司表示所有的转基因鲑鱼为雌性,绝大部分不具备繁殖能力。   AquaBounty公司表示,到目前为止,还没有任何迹象显示转基因鲑鱼在味道、质地、颜色和气味上与普通鲑鱼存在区别。   据AquaBounty公司的介绍,到目前为止,还没有任何迹象显示转基因鲑鱼在味道、质地、颜色和气味上与普通鲑鱼存在区别,同时由于转基因鲑鱼全部为雌性,体内拥有3条染色体(普通鲑鱼只有两条),再加上大部分转基因鲑鱼并不具备生殖能力,所以它们与野生鲑鱼交配成功的概率非常低,但英国“冻结转基因组织”的皮特雷利(Peter Riley)却认为:“即便大部分转基因鲑鱼不具备繁殖能力,也难以保证那些具备生殖能力的不会逃到大自然中进行繁殖,此外如果转基因鲑鱼在销售时被标注出来,人们会不会购买或许还是个疑问。”
  • 即将实施! GB/T 42954-2023《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》
    近期,国家市场监督管理总局(国家标准化管理委员会)公示431项推荐性国家标准和2项国家标准修改单。其中GB/T 42954-2023《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》为首次制定,该标准将于2024年3月1日正式实施。本标准描述了肥料中7种植物生长调节剂测定的气相色谱-质谱联用法的原理、试剂和材料、所用仪器、样品制备及提取过程、色谱及质谱参考条件、测定及试验数据处理过程。 01 标准编号及标准名称GB/T 42954-2023《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》。 02 标准制定背景植物生长调节剂是经人工提取或合成的,能调节植物生长发育和生理功能的一类小分子物质,具有作用面广、针对性强、见效速度快、效益高等优点,目前广泛应用于大田作物、果树、蔬菜、花卉等方面。植物生长调节剂属于农药,需要严格按照登记批准标签上规定的使用剂量、时期和方法进行使用。如果肥料中隐形添加植物生长调节剂,可能造成与植物生长调节剂产品重复使用,导致农产品的质量显著下降,同时造成对农作物种植环境的残留危害,给百姓健康造成安全隐患。近年来,农业农村部动员部署全国农资打假专项治理行动,重点查处叶面肥等肥料中非法添加农药,尤其是植物生长调节剂的违法行为。针对肥料中植物生长调节剂的检测,国内已陆续制定GB/T 36204-2018、GB/T 37500-2019、GB/T 40459-2021,GB/T 40460-2021等多个国家标准,已发布的标准中胺鲜酯、多效唑、烯效唑已有气相色谱或液相色谱定量方法,但检出限相对较高;氯苯胺灵、噻节因、仲丁灵、氟节胺尚无检测标准。检测技术的缺失,成为隐形添加植物生长调节剂肥料产品质量安全监管工作的技术难题。制定肥料中植物生长调节剂的气相色谱-质谱联用检测技术标准,可进一步完善肥料中植物生长调节剂检测技术体系,为保障农作物质量安全提供技术保障。 03 标准主要内容(一)明确了肥料中7种植物生长调节剂测定的气相色谱-质谱联用法原理。本标准明确了肥料中7种植物生长调节剂的气相色谱-质谱联用法由气相色谱和配电子轰击离子源的质谱仪串联完成,通过气相色谱将待测样品分离后直接导入质谱进行检测,外标法定量。采用串联质谱选择离子扫描模式能在一定程度上降低化学噪音,提高信噪比,用色谱保留时间结合化合物的指纹质谱图鉴定组分,极大提高了对混合物分离、定性、定量效率。(二)建立了肥料中7种植物生长调节剂的高效净化技术。一是对液体和固体样品的制备过程分别进行了描述:液体样品混匀后直接称取,固体样品粉碎后全部过1.0 mm试验筛;二是明确了提取试剂类别和纯度:提取试剂为色谱纯丙酮;三是对样品提取过程进行了详细描述:称取样品于离心管中氮吹至近干,加入提取剂丙酮10 mL,室温下超声10 min;四是规定了提取液的净化过程:提取液经5000 r/min条件下离心5 min,上清液过0.22 μm有机相微孔滤膜。 (三)建立了肥料中7种植物生长调节剂的气相色谱分离技术。本标准明确了气相色谱参考条件:1.色谱柱类型为石英毛细管柱,长30 m,内径0.25 mm,膜厚0.25 µm,固定相为5%-苯基-甲基聚硅氧烷;2.程序升温:初始温度60℃,以 20℃/min升到280℃,保持5 min。3.载气(氦气)流速:1.0 mL/min;4.进样口温度:280℃;5.进样方式:不分流;6.进样量:1μL。(四)建立了肥料中7种植物生长调节剂的质谱确证技术。本标准明确了质谱参考条件:1.离子源类型为电子轰击离子源;2.电子轰击源电离能量:70 eV;3.扫描模式:选择离子扫描;4.质量扫描范围:50 u至550 u;5.离子源温度:280℃;6.传输线温度:280℃;7.四级杆温度:180℃。本标准详细描述了7种植物生长调节剂的质谱分析参考参数,包括目标物定性离子、定量离子,另外还规定了相对离子丰度的最大允许偏差。 04 标准实施意义《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》适用于肥料中胺鲜酯、氯苯胺灵、噻节因、仲丁灵、氟节胺、多效唑、烯效唑的测定。根据目前肥料中违禁添加或过量添加植物生长调节剂的现状,研究目标物的性质,筛选、优化肥料产品中各违禁组分的前处理方法,对肥料产品中的胺鲜酯、氯苯胺灵、噻节因、仲丁灵、氟节胺、多效唑、烯效唑进行测定,确定了稳定性好、准确度高、回收率高、易于操作的检测方法。该标准的发布和实施有如下意义:一方面,可以避免因植物生长调节剂使用不当或过量使用带来的“药害”损失,保证农产品的产品质量安全,保障农民的合法利益;另一方面,完善了国内肥料中植物生长调节剂检测技术标准体系,提升了肥料检测行业标准化工作的能力水平,为打击在肥料中违法添加植物生长调节剂行为及开展肥料产品质量安全风险评估工作提供技术支撑;同时提高了检测及监管信息反馈工作效率,对于规范肥料产业健康发展、推动生态环境安全具有重要意义。 05 相关标准下载GB_T 40460-2021 肥料中植物生长调节剂的测定 气相色谱法.pdfGB_T 34764-2017 肥料中铜、铁、锰、锌、硼、钼含量的测定 等离子体发射光谱法.pdfGB_T 40459-2021 肥料中多种植物生长调节剂的定性筛选 液相色谱-质谱联用法.pdfGB_T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法.pdfGB_T 40462-2021 有机肥料中19种兽药残留量的测定 液相色谱串联质谱法.pdfGB_T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法.pdfGBT42954-2023.pdfGB_T 42958-2023 肥料产品使用说明编写指南.pdf 质谱仪涉及所有的分析测试行业,国际竞争的技术壁垒较高、是科学研究的基础工具、也是高科技产业共性技术。随着关系人类健康的生命科学、生态环境、食品安全等学科的发展,质谱应用领域不断拓展,同时也推动了质谱技术与仪器的快速发展。2023年仪器信息网联合北美华人质谱学会(CASMS),于12月12-15日联合举办第十四届质谱网络会议(iCMS 2023),会议中设立了质谱在食品分析领域的技术应用进展专场,聚焦质谱技术在食品领域的最新研究进展。点击图片,免费报名参会!
  • 科学家发现调控儿童生长速度和青春期发育时间的关键蛋白
    黑素皮质激素3受体(MC3R)一直被认为在新陈代谢和能量平衡中发挥着重要的作用。20年前,MC3R基因被发现,并被证明这种基因的缺失会导致小鼠生长减缓。  近期,英国剑桥大学的研究团队发现,MC3R是调控人类儿童生长速度和青春期发育时间的关键蛋白。该研究结果在《Nature》上发表,题为:MC3R links nutritional state to childhood growth and the timing of puberty。  大脑可以通过调节行为、生长、营养分配和发育等调控体细胞能量储存状态,比如中枢黑素皮质素系统通过黑素皮质素4受体(MC4R)控制食欲、食物摄入以及能量消耗。研究人员发现,MC3R可以调节性成熟的时间、线性生长速度和去脂体重的增加,这些过程都与能量有关。对MC3R功能缺失突变的人进行跟踪,他们青春期开始的时间比正常人晚,与之前在小鼠中的研究结果一致,他们的线性生长、去脂体重和胰岛素样生长因子1(IGF1)的水平都有所下降。缺乏MC3R的小鼠性成熟延迟,生殖周期长度对营养补给不敏感。MC3R基因在控制生殖和生长的下丘脑神经元中大量表达,发育过程中表达增加,与性成熟的调节作用一致。  这些发现表明,中枢黑素皮质素途径通过MC4R信号控制能量的获取和储存,而通过MC3R信号主要调节能量向生长、去脂体重和性成熟时间的分配。   论文链接:  https://www.nature.com/articles/s41586-021-04088-9
  • 北方华创“碳化硅晶体生长装置”专利公布
    天眼查显示,北京北方华创微电子装备有限公司“碳化硅晶体生长装置”专利公布,申请日期为2023年2月8日,公开日为2024年8月9日,申请公布号为CN118461121A。背景技术随着第三代半导体材料使用领域的扩大,碳化硅单晶材料作为第三代半导体的代表材料,因其特性具有禁带宽度大、热导率高、饱和电子漂移速率高和击穿场强高等性质。在多个领域具有广阔的应用前景,尤其电动汽车、轨道交通和电机驱动(Motor driving)领域增长迅速,占比逐年增大。碳化硅单晶材料普遍采用物理气相传输(Physical Vapor Transport,PVT)法生长,在PVT法中,采用碳化硅粉料作为生长单晶的原料,将碳化硅籽晶粘接在石墨坩埚顶部(石墨盖)作为籽晶,通过电磁感应线圈加热石墨坩埚,石墨坩埚通过热传导将碳化硅原料加热至升华,气相碳化硅在轴向温度梯度作用下输送到籽晶位置开始生长,在特定温度下可生长单晶碳化硅。碳化硅晶体生长中,坩埚是主要的发热源,粉料通过吸收坩埚壁的热量实现升华。由于热量通过粉料间热传导的方式从石墨壁向粉料中心传递,这导致粉料中心的温度始终低于边缘温度。发明内容本发明提供了一种碳化硅晶体生长装置,涉及碳化硅单晶材料的制造技术领域,为解决坩埚内的粉体温度均匀性差的问题而设计。碳化硅晶体生长装置包括坩埚、感应线圈组件和盖设于坩埚上方的盖板,盖板用于在盖板的中心设置籽晶,坩埚内设置有至少一个的感应加热件;感应加热件具有封闭连续的外周面,且能够在感应线圈组件的作用下产生感应涡电流。本发明提供的碳化硅晶体生长装置可以改善坩埚内的粉体温度均匀性。
  • 惊喜!Cell:沉默“垃圾”基因,阻止肿瘤生长
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/0ee0a08a-6a80-49d2-a59e-fe63466cafe8.jpg" / /p p   12月14日,《Cell》期刊最新发表一篇题为“Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA”的文章揭示了一个长非编码RNA——THOR,虽然不编码蛋白质,但是却对癌细胞有“直接影响”。科学家们最新发现,沉默THOR,可以阻止肿瘤扩增。 /p p    strong “垃圾”DNA /strong /p p   人类基因组约含有超30亿个DNA碱基对,组成约2-2.5万个基因,只占据不到2%的基因组序列,剩余的近99%的DNA都位于非编码区,曾被认为是“垃圾序列”(没有实际作用),被称为基因组中的“暗物质”(因为了解甚少)。 /p p   近年来,随着基因测序技术的发展,越来越多的“垃圾”DNA被证实并不“垃圾”。科学家们发现,这些非编码基因虽然不表达蛋白质,但是会生成非编码RNA——含有丰富的信息,具有重要的生物学功能,包括一系列由超200个核苷酸构成的长非编码RNA(lncRNA)。 /p p    strong 找到高度保守的“暗物质” /strong /p p   在最新的研究中,科学家们发现了一个长非编码RNA,且证实它在斑马鱼、小鼠和人类中都是一样的。考虑到在不同物种间发现“保守”的RNA很罕见,研究团队猜测:它在进化过程中发挥着某种重要的作用。 /p p   研究人员将这一非编码RNA命名为“Testis-associated Highly-conserved Oncogenic long non-coding RNA”(THOR)。 /p p strong   THOR在癌细胞中高度表达 /strong /p p   文章作者、密歇根大学的病理学教授Arul Chinnaiyan曾带领团队筛选了数千种潜在的lncRNAs,试图绘制暗物质的图景。最终他们选定THOR有两个原因:首先,THOR高度保守 其次,THOR在睾丸组织中高度表达。 /p p   而且,在包括黑色素瘤、肺癌在内的一些癌症中,THOR表达量异常高。当沉默该基因后,肿瘤生长速度会减缓。对于健康细胞而言,缺乏THOR并不会受影响。这意味着,THOR只对癌细胞有影响。 /p p strong   沉默THOR,抑制细胞增殖 /strong /p p   在进一步的试验中,研究团队发现,THOR与胰岛素样生长因子结合蛋白(IGFBPs)相互作用,后者被认为有助于维持RNA稳定。当沉默THOR后,IGFBPs活性会被抑制。这意味着,如果扰乱THOR,RNA稳定性会受到威胁,进而抑制细胞增殖。当THOR过度表达,细胞生长速度会加快。 /p p   研究人员认为,THOR有望成为抗癌药物的新靶点,因为它们不会影响健康细胞。 /p p strong   参考资料: /strong /p p   Silencing & #39 junk& #39 gene could halt tumor growth /p p /p
  • 稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
    菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导数曲线在DGP处理后呈现出“红移”现象。上述因素的改变可导致株高平均增加4.7%,干物质重量平均增加15.0%,每平方米穗数平均增加10.6%,千粒重平均增加2.3%,最终籽粒产量增加10.2%。 DGP诱导的籽粒增产可以通过降低稻田水的pH值和温度来实现,从而提高SPAD值和叶片的光合作用,刺激水稻植株生长。这些成果可以通过水稻和浮萍之间的生物协同作用,为未来农业和环境的可持续发展提供有价值的理论支持。图形概要图1. 实验地点((a),用红点标记)和浙江省(b)和江苏省(c)的样地。 (d,e)分别显示了浙江省和江苏省的样地水稻生育期的温度变化。浙江地块整个生育期水稻抽穗前和抽穗后的平均气温分别为29.3℃和24.1℃(蓝色),而江苏地块的平均气温为27.8℃和22.3℃(蓝色)。水稻冠层的光谱数据是在预灌浆、灌浆中期和成熟期的 10:00 至 14:00 晴朗无风的天气条件下使用ASD FieldSpec 4 便携式地物光谱仪收集。波段范围为350~2500 nm,其中350~1350 nm光谱分辨率为3 nm,1001~2500 nm范围为8 nm,光谱数据采集间隔为1 nm。测量每个地块中的五个代表性区域,每次进行六次测量。然后将平均值用作绘图的光谱反射率曲线,并在每次测量之前进行白板校准。为避免光强干扰,尽可能在短时间内采集同批次样品。图 2. 稻田浮萍 (DGP) 对水稻冠层光谱特征的影响。 Control-R,控制中的反射光谱数据; DGP-R,稻田浮萍的反射光谱数据; Control-D,对照中的导数光谱数据; DGP-D,稻田中浮萍的导数光谱数据。 NJ5055和YY1540在预填充阶段的光谱特性分别由(a)和(b)表示; NJ5055、YY1540、JFY2在充填中期的光谱特性分别用(c)、(d)、(g)表示。 NJ5055和YY1540成熟期的光谱特征分别用(e)和(f)表示。DGP显著增加了干物质重量、植株高度(见图3)和谷物产量(见表5),分别增加了15.0%、4.7%和10.2%。对粳稻NJ5055的产量影响较大(增加了12.3%),而对其他两个杂交水稻品种的影响较小(平均增加了9.1%)。无论是粳稻还是杂交品种,均未检测到对收获指数的显著影响。在DGP处理下,三个品种的抽穗期平均提前1.6天,其中粳稻的影响更大(提前了2.4天),而杂交品种的影响较小(平均提前了1.2天)。籽粒产量的增加主要是由每平方米穗数的增加(增加了10.6%)引起的,其次是千粒重的增加(2.3%)。 然而,DGP对每穗的小穗数或结实率影响不大。除结实率外,这些指数均未检测到显著的交互作用效应。表 1 稻田种植浮萍(DGP)对水稻产量及其构成的影响图3. 稻田中生长的浮萍(DGP)对水稻植株生长的影响。(a)每株的干物质重量(克);(b)收获指数;(c)植株高度(厘米);(d)抽穗天数(天);浙江,浙江省;江苏,江苏省;** p ≤ 0.01,* p ≤ 0.05,+ p ≤ 0.1,ns,不具有统计学意义,p 0.1,由 t 检验确定。本研究对三个代表性水稻品种进行的稻田浮萍(DGP)种植试验表明,DGP 显着提高了籽粒产量,这解释了 DGP 导致水稻植株生长的增加,特别是在植株高度、每平方米穗数和干物质重量方面。DGP 导致稻田水的 pH 值和温度降低,同时提高了叶片的 SPAD 值和光合速率。 此外,它还优化了冠层结构,提前了水稻抽穗期,最终促进了水稻的生长。这些发现为实施可持续的水稻生产提供了实用的基础。然而,在广泛的时空背景下全面理解DGP对水稻生长和谷物品质的影响模式尚不清楚。因此,未来应进行跨数年的研究,以探讨DGP影响水稻的机制。
  • 《Nano Letters》新成果:原位发现石墨烯在限域空间里的反常刻蚀、再生长行为
    作者:朱汉斌 来源:中国科学报华南师范大学物理与电信工程学院研究员徐小志与上海科技大学教授Zhu-Jun Wang、北京大学教授刘开辉、韩国蔚山科学技术学院教授丁峰合作,在低维材料的限域催化研究方面取得重要进展,原位发现了石墨烯在限域空间里的反常刻蚀、再生长行为。相关研究近日发表于Nano Letters。二维限域空间具有原子尺度的间隙、强的物质相互作用和独特的纳米微环境。这种限域空间里往往可以允许常规条件下不能发生的反应,因此,在材料科学和催化等领域具有巨大的潜力。为了进一步探索其在催化领域中的应用,研究和理解二维限域系统中的真实催化行为是极其必要的。然而,到目前为止,对受限催化过程的理解仍然是基于结果反馈的后期分析,缺乏原位可视化研究技术及体系。研究人员采用双层石墨烯与铜基底构成的二维限域系统作为研究模型,原位可视化地研究了其反常的刻蚀与生长行为:一是,被铜和上层石墨烯限制的下层石墨烯出现了有趣的反常刻蚀行为(比上层石墨烯的蚀刻速度快十倍以上);二是,在较低的温度下(~530 ℃),下层被蚀刻的碳可以在受限的界面内传输,并以非常高的效率(约12%)转移到上层石墨烯晶格,实现了在无碳源供给情况下的石墨烯生长。该研究工作揭示了二维限域空间中反常催化的动态过程,为受限体系下的催化研究提供了直接证据,从而为未来高效催化剂的设计铺平了道路。Zhu-Jun Wang教授、华南师范大学硕博连读研究生梁智华、韩国基础科学研究院孔潇为该论文共同第一作者,徐小志研究员、刘开辉教授、丁峰教授为共同通讯作者,华南师范大学为第一单位。据悉,徐小志是华南师范大学物理与电信工程学院2019年引进青年拔尖人才,主要从事低维材料与表面物理研究。相关论文信息:https://doi.org/10.1021/acs.nanolett.2c00549
  • 半导体晶体生长设备供应商南京晶升装备29号上会
    南京晶升装备股份有限公司(以下简称“晶升装备”)9月21日正式发布上会稿,9月29号上会。晶升装备聚焦于半导体领域,向半导体材料厂商及其他材料客户提供半导体级单晶硅炉、碳化硅单晶炉等定制化的晶体生长设备。其产品半导体级单晶硅炉下游行业为硅片厂商,下游应用行业具有技术壁垒高、研发周期长、资金投入大、下游验证周期长等特点,市场集中度较高。根据 Omdia 统计1,全球硅片市场份额主要被日本信越化学、日本胜高、中国台湾环球晶圆、 德国世创和韩国 SK 五大企业占据,五大企业占全球硅片市场份额约为 90%,由于国内半导体硅片行业起步较晚,国内硅片市场份额不足 10%,相对较低,增速及进口替代空间巨大。中国大陆半导体硅片厂商技术发展相对落后,国内主要硅片厂商以生产 200mm(8英寸)及以下抛光片、外延片为主,300mm(12英寸)产能规模占比相对较低,仅有沪硅产业(上海新昇)、TCL 中环(中环股份)、立昂微(金瑞泓)、奕斯伟等少数厂商可实现12 英寸半导体级硅片批量供应。目前国内自产12英寸产能仅为54万片/月,总需求为150万片/月至200 万片/月,自产供给和需求之间存在较大差距,主要依赖进口。从全球趋势来看,由于成本和制程等原因,国内12 英寸需求也将越来越大。因此,12英寸半导体级硅片成为未来国内硅片市场主要增长点,带动上游晶体生长设备行业实现规模化增长。晶升装备在三轮问询回复中表示,公司已于2018年率先实现了12英寸半导体级单晶硅炉国产化。虽然产品设备规格指标参数、晶体生长控制指标参数与国外厂商基本处于同一技术水平,但因产业应用时间较短,验证经验相对不足,目前与国外厂商的竞争中还处于相对劣势。以国内12英寸硅片龙头企业沪硅产业(上海新昇)为例,其采购国外厂商S-TECH Co., Ltd半导体级单晶硅炉产品占采购同类产品比例超过85%,采购晶升装备12英寸半导体级单晶硅炉产品占采购同类产品比例约为10%-15%。然而,相比国内厂商,晶升装备具有先发及领先优势。其12英寸半导体级单晶硅炉产品技术水平、市场地位及市场占有率国内领先,随着产业应用时间及下游认证的逐步推进,晶升装备将在半导体级单晶硅炉国产化替代进程中具备较强的竞争优势。根据三轮问询回复,目前晶升装备在半导体级单晶硅炉的国内竞争对手主要为晶盛机电及连城数控。晶盛机电及连城数控的的晶体生长设备下游应用领域主要为光伏级硅片领域,晶升装备产品聚焦于半导体级单晶硅炉领域。晶升装备的12英寸半导体级单晶硅炉已实现为国内领先半导体硅片企业沪硅产业(上海新昇)、立昂微(金瑞泓)的批量化销售。其产品的定制化能力、可应用制程工艺、下游量产进度较国内竞争对手具有领先性。晶升装备根据国内硅片行业整体预计新增产能对公司半导体级单晶硅炉市场空间进行测算,预计未来2-3年,公司半导体级单晶硅炉市场空间可达约9-29亿元。
  • 利用动态学分析方法为您揭秘细菌生长-Molecular Devices
    利用动态学分析方法为您揭秘细菌生长细菌,一种非常微小的细胞生物,它既可以在生物科技领域中广泛运用,造福于人类,也会给人类带来许多致命的疾病。抗生素的出现帮人类解决了很多问题,肺结核、炭疽等疾病统统都被消灭了,但抗生素是一把双刃剑,过度依赖和滥用抗生素,导致越来越多耐药菌的出现,已经引发了一个全球性的巨大的健康危机。目前,许多制药公司都在研发对抗这些耐药致病菌的有效化合物,而如何筛选和鉴定这些化合物的功效是微生物学家们面临的挑战。本篇技术文章中我们将以粪肠球菌为例,为您讲述如何利用动态学分析方法监测细菌生长。我们使用SpectraMax i3x 多功能微孔板读板机对含有GFP蛋白表达质粒的粪肠球菌菌株OG1RF进行长时间的细菌生长曲线的动态监测。本篇文章中,我们使用 SoftMax® Pro7.0( 或更高版本 ) 数据采集和分析软件进行细菌生长曲线的检测。在SoftMax® Pro7.0软件中可以同时读取细胞生长密度值和 GFP 荧光信号值,然后进行各种动力学数据分析和数据转换,如将GFP信号值归一化为细菌密度。值得一提的是,SoftMax® Pro7软件在做长时间动态监测时支持“暂停”和“恢复”动力学读数功能,从而这个功能方便您在进行长时间实验中,将微孔板取出进行加药处理或其它实验的检测,然后再将微孔板放回仪器内继续之前的长时间监测实验,并且所有数据将会自动以时间序列进行排列。下载请联系美谷分子仪器
  • 拉曼光谱助力珠宝玉石真假鉴定及珍珠生长机理研究——访同济大学宝石中心专家亓利剑教授及主任周征宇博士
    p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 璀璨耀眼的珠宝,让人着迷,但是鱼龙混杂的市场,又让人望而却步。那么该如何有效快速科学鉴定珠宝呢?实际鉴定过程中会用到哪些现代技术?它们各自有什么利弊?这其中,拉曼光谱在宝石鉴定中如何应用?它的优势是什么?未来的发展空间有多大呢? /span /p p style=" TEXT-ALIGN: left" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   日前,同济大学宝石中心(TGI)与HORIBA科学仪器事业部举行了合作实验室的揭牌仪式。同济大学宝石中心资深珠宝学术权威级专家亓利剑教授不仅为我们分享了拉曼光谱在宝石鉴定中的应用知识,还对其正在从事的珍珠生长机理研究课题做了详细介绍。同时,周征宇主任带我们参观了同济大学宝石中心(TGI),详细介绍了作为一个国家级顶尖珠宝鉴定机构,TGI的发展历程和日常运作情况。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" img title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/2ca6eb6f-30b2-43c1-af73-8a812c0a6664.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKaiFONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong 同济大学宝石中心(TGI)与HORIBA科学仪器事业部合作实验室揭牌仪式现场合影 /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong 从左至右依次为:亓利剑教授、HORIBA科学仪器事业部中国区总经理濮玉梅女士、周征宇博士 /strong /span /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 拉曼光谱在宝石鉴定中的应用 /strong /span /p p   据亓利剑教授介绍,目前常规珠宝鉴定实验室多用红外光谱仪、宝石光谱仪,可以说这两类仪器已经成为常规机构的基本配置,但是由于红外光谱样品制备较为复杂,而宝石光谱仪因其自身分辨率低的局限,仍然存在无法对宝石成分进行有效鉴定的问题。这时,拉曼光谱技术作为一种微区无损分析技术,已被成功地应用于宝石学研究和宝石鉴定领域,更因其无需制备样品、方便快捷的优势获得珠宝鉴定专家的肯定。 /p p style=" TEXT-ALIGN: center" img title=" 02.jpg" style=" HEIGHT: 401px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/insimg/dd3cd816-2000-4e9c-8ddf-6cd853d94ebe.jpg" width=" 500" height=" 401" / /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 亓利剑教授与周征宇博士在实验室拉曼光谱仪前合影 /span /strong /p p   亓利剑教授向我们介绍说 “利用拉曼光谱仪,可以迅速获取宝石中成分、晶体结构、分子配位基结构等信息,从而鉴定宝玉石品种及真假鉴别;另外,通过对宝石包裹体成分进行分析,可以借此判定宝石原产地及其是否经过人为处理;而通过测试宝石光致发光光谱(PL),还可以分析宝石的晶体缺陷及其原因等......可以说拉曼光谱相较于其他两种常规检测手段是一种非常有效的分析手段,而且发展空间非常巨大。” /p p   介绍过程中,亓利剑教授也给大家进行了典型的案例分析: /p p    strong 案例一 金色珍珠和CaCO sub 3 /sub 的拉曼谱图 /strong /p p   在金珠上除了碳酸钙之外,还有类胡萝卜素存在,说明此金珠是天然的。 /p p style=" TEXT-ALIGN: center" img title=" 03.png" style=" HEIGHT: 360px WIDTH: 600px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/insimg/eee9713f-6dc7-493b-97f1-549061bdcc48.jpg" width=" 600" height=" 360" / /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 天然金色珍珠拉曼谱图(蓝色)和CaCO sub 3 /sub 的拉曼谱图(红色) /span /strong /p p    strong 案例二 绿柱石中的CO sub 2 /sub 和水包裹体的拉曼成像图 /strong /p p style=" TEXT-ALIGN: center" img title=" 04.jpg" style=" HEIGHT: 215px WIDTH: 600px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/insimg/50b83a2b-6bc2-4a2b-a725-8a9537b9405b.jpg" width=" 600" height=" 215" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 包裹体拉曼成像图:从左至右分别是显微图像(蓝色框为成像区域)、拉曼成像图(红、绿、蓝分别代表CO sub 2 /sub 、水和绿柱石,谱图见下图)、 CO sub 2 /sub 强度分布图和水的强度分布图 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" /span & nbsp /p p style=" TEXT-ALIGN: center" img title=" 05.png" src=" http://img1.17img.cn/17img/images/201711/insimg/468e1257-201d-4c49-8625-51cbc22eb4ee.jpg" / /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 包裹体各成分对应拉曼谱图 /span /strong /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 拉曼光谱助力珍珠生长机理研究 /strong /span /p p   除了珠宝玉石鉴定工作外,亓利剑教授目前也在研究珍珠层的生长过程。日本的珍珠长的非常好,而中国珍珠养殖要想赶超日本,首先得找出差异。亓教授向我们介绍说:“研究整个珍珠层的生长过程需要用到多种分析仪器,拉曼光谱在其中扮演着重要的角色,比如细胞团聚形成是蛋白质还是已经相变到无定型的碳酸钙,或是已经进一步相变到无机矿物?最后形成的是文石、方解石还是球文石?这些问题都可以通过拉曼光谱仪来解决。” /p p   下图是珍珠截面的拉曼成像图及对应的两个特征光谱图。光从显微图像的形貌上难以判断出哪些地方是球文石,哪些地方是文石,通过拉曼成像,可以获得成分的分布图。 /p p style=" TEXT-ALIGN: center" img title=" 06.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/f9abf819-86a6-4348-8c04-ae7c256de748.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong 球文石和文石拉曼谱图,内附珍珠截面拉曼成像图 /strong /span /p p   此外,亓教授也向我们分享了他在实践研究中的心得,在研究该课题时,除了规避荧光还要特别注意考虑空间分辨率的问题,因为形成的团聚体小球有些在亚微米级别,此时拉曼光谱仪的高空间分辨率对于区分亚微米级别的研究就非常重要了,这也是当时TGI 在选择拉曼光谱仪时考虑的一个重要因素。 /p p style=" TEXT-ALIGN: center" img title=" 07.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/4ea66134-665b-4539-bc4b-0f77096f5adf.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong 亓利剑教授正在展示目前的研究课题 /strong /span /p p   通过研究珍珠层的整个生长过程,亓利剑教授课题组的这项研究将为改善珍珠养殖技术提供科学依据,对于深层次探索生物矿化机制、拓展并完善生物矿化理论具有重要科学意义,也为生命科学、生物医学新材料、纳米仿生新材料研发等方面提供科学依据。 /p p   虽然拉曼光谱分析技术在珠宝检测行业有重要的作用,但是作为前沿研究手段,目前仍有一些问题需要解决。一是目前行业内的数据库资源缺乏,二是普及程度仍然有待提高。目前亓利剑教授团队已经开始着手行业内数据库的建立工作,这是一项非常繁琐、复杂的长期工作,不过大家相信凭借亓利剑教授丰富的拉曼研究经验,以及TGI在珠宝鉴定领域的领先地位和强大的平台支撑,这项工作将会取得快速进展,并将大大有助于拉曼检测手段的普及,最终对行业检测水平的发展起到推动作用。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 建立 /strong strong 合作实验室助力珠宝玉石研究 /strong /span /p p   作为资深珠宝学术权威级专家,亓利剑教授目前受聘于同济宝石中心(TGI)——自成立以来,世界各顶尖珠宝机构,如GEM-A(英国皇家宝石协会)、AIGS(亚洲珠宝学院)和HRD(比利时钻石高阶层议会),均将TGI视为重要的合作伙伴。同济大学宝石中心主任周征宇博士自豪的向我们介绍,TGI曾先后投入近八百万元配备了涵盖红外、紫外可见、能谱仪以及激光拉曼光谱在内的大型仪器以及相关设施设备,比肩世界级权威宝石实验室配置。 /p p style=" TEXT-ALIGN: center" img title=" 08.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/ff5009c3-9510-485a-ac55-5e17394c73cb.jpg" / /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 同济大学宝石中心主任周征宇博士向我们介绍TGI的历史和发展 /span /strong /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" TGI目前配备的全自动共聚焦显微拉曼光谱仪LabRAM HR Evolution,主要用于珠宝玉石的鉴定、包裹体检测及相关科学研究。这款长焦长拉曼光谱仪(焦长达800mm)具有极高的光谱分辨率(0.35cm sup -1 /sup ),有助于鉴定宝石成分的微小差异。共聚焦设计保证亚微米级别的空间分辨率,有助于鉴定宝石中的极微小的包裹体。目前这台仪器已开放给学生自己操作,全自动化(尤其是325nm和可见激光器的全自动切换)不仅方便操作,还有助于维持仪器的稳定性,提高检测效率。 /span /p p   珠宝鉴定评估现在已经被国家列为资产评估六大系列之一,已成为一个全新的行业。随着世界珠宝市场的重心逐步向中国转移,以及国内市场经济的快速发展,对珠宝鉴定、评估专业人才的需求将不断增加。2010年TGI被中国教育部评为唯一的国家级宝石学教学团队, 这支拥有GIA、FGA、HRD、ASA以及IGI等国际宝石鉴定师/评估师资质的教学团队,几乎囊括了包括国家级精品课程,国家级宝石学规划教材、国家级教学成果奖等在内的所有国内顶级奖项。时至今日,TGI已成为涵盖珠宝鉴定、首饰设计、玉石雕刻、珠宝评估和产业管理等多领域的综合性专业机构,因此同济宝石中心(TGI)在行业人才培养方面有着举足轻重的作用。 /p p   HORIBA科学仪器事业部与同济宝石中心(TGI)合作多年,为进一步加深彼此间的交流,今年双方协议建立合作实验室,结合TGI丰富的科研经验和HORIBA优质的产品,期望达到优势互补、合作共进的目的,通过合作实现促进行业发展,助力我国珠宝鉴定事业进入新时代。 /p p style=" TEXT-ALIGN: center" img title=" 09.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/45d40304-c817-416a-b8ec-e4ee25bd7294.jpg" / /p p style=" TEXT-ALIGN: center" strong 合 /strong strong 作实验室揭牌仪式全体访问人员合影 /strong /p p strong    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 附: /span /strong /p p strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   亓利剑教授基本介绍 /span /strong /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   长期从事宝玉石及矿物材料学的教学与科研工作。获FGA、DGA、CGC证书,兼任中国宝玉石首饰类检验技术专家委员会委员 香港政府实验室认可处专家评审员 香港 J-ID 咨询委员会委员 《宝石和宝石学杂志》副主任委员,《中国宝石》杂志编委。近年来,负责完成与宝石材料学方向相关的国家自然科学基金项目、省级自然科学基金项目3项,负责完成和参与省部级科研项目及国家重点开放实验室项目5项,负责完成横向科研项目4项。擅长为珠宝玉石鉴定领域的疑难杂症提供解决方案,目前为国家级实验室评审员,连续五年受聘为国家珠宝玉石注册检验师继续教育课程的主讲,国内珠宝鉴定领域公认的权威专家。 /span /p p strong span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   周征宇博士介绍 /span /strong /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   长期从事宝玉石鉴定与开发专业的教学与培训工作,是全部三本国家“十一五”宝石学规划教材《宝石学概论》、《中国玉石学概论》等的主编之一 主持多项宝玉石研究项目,参与各类科研项目20余项 发表宝玉石科研论文30余篇。目前为英国皇家宝石协会珠宝鉴定师认证(FGA)、同济大学珠宝鉴定师认证(TGI)课程主讲之一。2008年入选“晨光计划”,2009年入选上海市宝石学教学团队,2010年入选国家级宝石学教学团队。 /span /p
  • 《Nano Letters》北工大等:首次实现工况条件下对固态电池锂枝晶生长行为的原位观察
    第一作者:曹天赐,许荣,程晓鹏通讯作者:程晓鹏*,刘显强*,张跃飞*论文完成单位:北京工业大学,西安交通大学,浙江大学【研究背景】 固态锂金属电池充放电过程中锂枝晶的形成,是目前电池安全性关注的重点,然而目前关于锂在实际电池运行状态下是如何在固态电解质中形核,以及对体相内部锂枝晶的具体生长行为的认知仍然不清晰,影响到针对性改进措施的实施。因此有必要发展一种新的基于工况条件的原位方法来分析固态电池运行过程中内部锂的动态生长机制。【成果简介】近日,北工大程晓鹏等科研人员采用原位电化学扫描电镜,实现在工况条件下实时观察固态电池电解质内锂枝晶的生长与扩展,并一步建立了无机固态电解质中锂离子输运的电化学-机械应力耦合模型,相关研究成果以《Chemomechanical Origins of the Dynamic Evolution of Isolated Li Filaments in Inorganic Solid-State Electrolytes》为题,在国际权威期刊《Nano Letters》在线发表,此项关于锂枝晶生长机理的基础研究,对合理设计和安全生产固态电池提供了重要的理论指导。北京工业大学为论文第一完成单位,北京工业大学博士生曹天赐、西安交通大学许荣教授和北京工业大学助理研究员程晓鹏为论文共同第一作者,北京工业大学程晓鹏、刘显强,浙江大学教授张跃飞为通讯作者。该研究得到国家自然科学基金和北京市教委科技计划等项目资助。【图文导读】图1 (a) 原位观测SSE内锂枝晶生长的实验装置,(b-c) 电化学曲线中电流-电压变化和所对应的原位SEM中观测到的无机固态电解质锂镧锆钽氧(LLZTO)截面形貌演变过程。(d) 原位实验过程中SSE内部锂“细丝”演化具体过程的示意图。图2 (a-b) 分别经历了0.05mA cm-2和0.01 mA cm-2电沉积过程后,LLZTO中的锂“细丝”分布状态变化和LLZTO深度方向内部微结构的形貌变化。(c) 0.05 mA cm-2电沉积过程后锂“细丝”生长导致的电解质撕裂以及0.01 mA cm-2电沉积过程后锂“细丝”溶解导致的电解质内部裂纹闭合。(d) LLZTO内部缺陷,裂纹和锂“细丝”演变的对应关系。图3 (a-b) 在迭代放电电流下,电池的电流-电压响应的演变和相应的LLZTO截面形貌的SEM图像变化过程。(c) 原位SEM实验过程中SSE中内部锂“细丝”生长和溶解演变具体过程示意图。【总结和展望】锂枝晶问题仍然是影响固态电池性能安全运行的关键因素,本文利用原位电化学扫描电镜,构建了Li|LLZTO|Au“面对面”型电池结构,对锂枝晶生长行为在真实循环条件下进行了实时观察分析。实验发现锂在LLZTO中的生长呈现出一种动态特征,该特征受到电化学和机械应力之间相互作用的调控。基于实验数据分析,我们建立了电化学-力学耦合模型以理解在锂“细丝”的动态演化过程中机械应力和电化学循环之间的复杂相互作用,定量的数值结果可以为高性能锂金属固态电池的合理设计提供指导。本文所提供的方法为在工况条件下原位表征不同体系固态电解质界面演化行为提供了新思路,助力固态电池的商业化应用进程。论文链接:Tianci Cao†, Rong Xu†, Xiaopeng Cheng*†, Mingming Wang, Tao Sun, Junxia Lu, Xianqiang Liu*, Yuefei Zhang*, Ze Zhang,Chemomechanical Origins of the Dynamic Evolution of Isolated Li Filaments in Inorganic Solid-State Electrolytes, Nano Lett. 2024, 24, 6, 1843–1850. https://doi.org/10.1021/acs.nanolett.3c03321 本文研究团队采用的是浙江祺跃科技有限公司研制的原位电化学扫描电子显微镜测试系统。祺跃科技有限公司,面向市场推出了一系列原位扫描电镜科学仪器,为广大科研人员提供了力、热、电、电化学以及多场耦合环境下材料结构演化过程纳米尺度原位观测手段。
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 2000亿贴息贷款值得入手的好物——新芝微生物生长曲线分析仪MGC-200
    9月28日,中国人民yin行宣布设立设备更新改造专项再贷款,额度2000亿元以上,支持金融机构以不高于3.2%的利率向10个领域的设备更新改造提供贷款,配合中央财政贴息2.5%的政策,今年第四季度内更新改造设备的贷款主体实际贷款成本不会高于0.7%。  专项再贷款政策支持领域包括教育领域,其中重点支持高校科学研究所等单位的重大设备购置与更新改造。  新芝生物一直致力于生物样品前处理领域发展,不断创新、突破、提升为各位提供丰富多样的优质产品。    微生物生长曲线分析仪MGC-200  新芝微生物生长曲线分析仪MGC-200是一款完全自动化的仪器,它主要集成了两大功能:1、实现高通量微生物培养 2、定时检测样本光能量吸收值,在线绘制微生物生长曲线。    01  微生物高通量培养  MGC-200兼容多种规格的微孔板,包括12孔板、24孔板、48孔板和96孔板,最高可实现192个孔位同时培养。分组设置参考孔使得可以在一次实验内同时实现微生物和培养基的多种组合检测。    高精度控温和持续振摇为微生物培养提供了合适的生长环境条件,气路控制能满足需氧菌和厌氧菌对气体环境的不同需求,光照功能使得藻类得以生长。    02  实时绘制微生物生长曲线  MGC-200提供了300-850nm区间的全光谱扫描和标准曲线分析功能,可以为新的微生物或新的培养基组合寻找合适的检测波长。    确定检测波长后,客户可自定义间隔时间,MGC-200自动定期进行吸光度检测,实时生成微生物生长曲线,根据微生物生长状况,可以中途变温、或提前结束实验、或延长培养时间。    PART01  大肠杆菌是实验室最常见的微生物之一,属于革兰氏阴性短杆菌,大小0.5×1~3微米,周生鞭毛,能运动,无芽孢。其在MGC-200中培养的生长曲线如下图。    △图1大肠杆菌在96孔板中培养的生长曲线(间隔时间10min)  PART02  裂殖酵母是细胞分裂的典型生物模型,被广泛应用于细胞生物学研究,大小4~5×8~15微米,易沉降,需要较高的转速才能混匀。其在MGC-200中培养的生长曲线如下图。    △图2裂殖酵母在48孔板中培养的生长曲线(间隔时间30min)  PART03  鼠李糖乳杆菌是厌氧耐酸、不产芽孢的一种革兰氏阳性益生菌,一般为静置培养,易团聚。其在MGC-200中培养的生长曲线如下图。    △图3鼠李糖乳杆菌在12孔板中培养的生长曲线(间隔时间30min)    01  高校研究院  微生物所、生工所、生科院、药物研究、食品工程、肠道微生物研究、侵袭性微生物研究、食源性微生物研究、发酵工程、合成生物学中心、生物能源研究  02  医院与疾控  食源性微生物检验、医院微生物检测中心(部门)、肠道微生物筛查、致病菌抗生素筛查、致病菌耐药性筛查、疾病与防控中心    不同因子对微生物的的复合效应,如pH、温度、水分活度、盐度、化学品等。  生物法测量维生素、氨基酸、抗生素、消毒剂、毒素、生物刺激素、生长阻滞剂的含量。  生物法测量维生素、氨基酸、抗生素、消毒剂、毒素、生物刺激素、生长阻滞剂的含量  连续报告多个培养物中生长参数  污染物生物降解条件的优化  研究噬菌体生长动力学曲线  酵母菌等菌种的研究  研发新的抗菌剂  微生物单细胞蛋白SCP生产工艺的提高(发酵条件优化)  研究酸奶、酒类、食品等生产工艺  酶、蛋白、脂肪酸或其他物质的生产(发酵工业优化)  污水处理、生物膜和活性污泥处理工艺的提高  确定抗菌剂的最小抑制浓度  确定抗生素或其他化合物最小致死剂量  测定不同物质的毒性和潜在诱变性  内毒素的LAL测试  制作微生物、噬菌体、细胞生长的数学模型  研发特征性微生物  研发微生物和细胞的选择性和非选择性培养基  细菌尿的检测  微生物防腐剂的鉴定(耐药性鉴定类似)
  • 微生物(细胞)生长阶段时期监测
    菌种是微生物培养的前提条件。优良的菌种,是微生物高效培养的前提。无论是摇床培养还是发酵培养,优良的菌种对培养的效果都有至关重要的意义。 微生物在生长过程会经历迟缓期、对数生长期、稳定期和衰亡期。微生物在培养和传代过程中会发生变异,次生产物,细胞活力变化等。微生物在生长过程 微生物对数期生理状态相对稳定,较稳定期次生代谢物少,且生命力旺盛。对数生长期是保持菌株优良性状不退化和存活率的阶段,也是最佳菌种保存期。 如何对培养过程中的微生物处于某个生长阶段进行判断?目前较多采用的方法是取样检测。取样检测会产生培养间断,染菌风险,无法连续获取数据等制约。无法获得准确的微生物生长过程信息取样检测 WIGGENS生物生长量在线监测设备CGQ系统,可以通过外置式光学传感系统,对培养的微生物生长状况进行实时监测。数据收集器会根据光学传感器的数据值,反应微生物生长情况,准确的把握微生物的生长状态。通过显示器直接读取生长曲线,可以判断微生物在当前培养条件的所处的生长时期。摇瓶培养在线监测 | 发酵罐培养在线监测 CGQ系统实时监测生长曲线,能够让操作者及时掌握微生物生长状况。举例:在发酵中,一般要控制发酵条件时,控制在微生物生长曲线稳定期结束前,比如酸奶发酵,时间过短,微生物还处于繁殖期,发酵效果不好;发酵时间过长,微生物处于衰退期,衰退期将产生很多代谢物,使产品风味发生变化,甚至影响质保;在污水处理中,需要根据不同稳定期选择不同菌种;酿造工业中,发酵时间的选择尤为重要。生物量实时监测 CGQ系统对微生物生长状态的监测,也直接反映了微生物的生长条件变化。通过对微生物生长状态的监测,对培养基成分优化,培养条件改进,工艺流程探索等具有重要指导性作用。 CGQ系统适用于原核细胞和真核细胞培养物实时监测。
  • 泽泉科技应邀参加作物生长模型高级研讨会2016
    2016年10月27日-29日,上海泽泉科技股份有限公司应邀赴南京参加了“作物生长模型高级研讨会2016”。此次研讨会由江苏省农业科学院农业经济与信息研究所/数字农业工程技术研究中心、中国农业大学资源与环境学院/系统模拟与软件技术实验室、西北农林科技大学水利与建筑工程学院共同主办。会议以作物模型与智慧农业为主题,特邀国内外知名作物模型专家作学术报告,旨在交流和讨论国内外模型建立与发展的经验。 来自南京农业大学、中国农业科学院、中国科学院地理科学与资源研究所、扬州大学、西北农林科技大学等40多家高校和科研单位的百余位专家学者参加了此次研讨会。与会专家围绕水稻、棉花、小麦、玉米、油菜等我国主要的粮食作物和经济作物模型构建及应用进行了深入讨论。模型对作物产量和品质的预测一直是建模工作讨论的热点,近几年来,模型在气候变化对作物的影响等方面的应用备受关注。 会议期间,泽泉科技展示的样机吸引了广大参会人员的眼球,技术人员演示了CI-110数字植物冠层图像分析仪、CI-203手持式激光叶面积仪、CI-690 ROOTSNAP根系分析系统等科研仪器设备的使用操作过程,并与我们的老用户和感兴趣的科研工作者交流了最新研究技术及相关设备的使用技巧和心得等。科研人员现场分享了高通量植物表型-基因型-育种平台AgriPheno的建设及科研服务内容和流程,与会人员反响热烈。泽泉科技的样机、海报以及工作人员的专业素养得到与会人员的一致好评,会议期间收到多位客户的详细咨询和留言。 本次参会得到了会议主办方和与会专家的鼎力支持,上海泽泉科技股份有限公司在此表示衷心的感谢。
  • KBr溴化钾人工晶体是如何生长的?
    据2020年6月19日本司动态新闻发布关于KBr溴化钾人工晶体的概念是什么?受到很多大咖的关注。借此要求我司会履行为大咖们续写关于溴化钾相关知识,为大咖们在选择仪器或者仪器耗材时做好准备。 今天恒创小编深入解读一下KBr溴化钾人工晶体生长过程是怎样的呢? 所谓生长,对于生物体而言,就是一个从小到大,从幼稚到成熟的过程。生物体生长需要养料,需要空气、阳光等环境。同样,对于“晶体的生长”,也是一个晶体从小到大的不断变化的过程,也需要养料(原料)和合适的环境,如生长炉、合适的温度等。 不同的生物体的生存环境、生长发育各不相同,同样,对于晶体而言,不同的晶体有不同的生长过程,需要不同的生长条件,有相应的不同的晶体生长技术和方法,其晶体生长的过程和要求也有所不同。 下面,我们将以提拉法晶体生长为例,介绍晶体生长的过程。 提拉法是一种从熔融原料中生长晶体的方法,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。提拉法生长晶体的过程大致分为多晶料烧结(含称料、混料、烧料、二次烧结等)、提拉晶体(含化料、下籽晶、放肩、生长等)以及晶体出炉几个步骤。对于上述晶体生长的概念和过程,您可以在后面的页面后找到详细的描述。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制