当前位置: 仪器信息网 > 行业主题 > >

天冬氨酸

仪器信息网天冬氨酸专题为您提供2024年最新天冬氨酸价格报价、厂家品牌的相关信息, 包括天冬氨酸参数、型号等,不管是国产,还是进口品牌的天冬氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合天冬氨酸相关的耗材配件、试剂标物,还有天冬氨酸相关的最新资讯、资料,以及天冬氨酸相关的解决方案。

天冬氨酸相关的资讯

  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 食品安全标准与监测评估司关于假肠膜明串珠菌等28种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对假肠膜明串珠菌申请新食品原料、聚天冬氨酸钾等16种物质申请食品添加剂新品种、环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物等11种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件: 假肠膜明串珠菌等28种“三新食品”的公告文本.pdf国家卫生健康委2023年2月7日附件 1新食品原料假肠膜明串珠菌 假肠膜明串珠菌中文名称假肠膜明串珠菌拉丁名称Leuconostoc pseudomesenteroides其他需要说 明的情况1. 批准列入《可用于食品的菌种名单》,使用 范围包括发酵乳、风味发酵乳、干酪、发酵 型含乳饮料和乳酸菌饮料 ( 非固体饮料),不包括婴幼儿食品。2. 食品安全指标须符合以下规定:铅(Pb,干基计),mg/kg ≤1总砷(As,干基计),mg/kg ≤1.5沙门氏菌,/25 g ( mL)0金黄色葡萄球菌,/25 g ( mL)0单核细胞增生李斯特氏菌,/25 g ( mL)0附件 2 聚天冬氨酸钾等 16 种食品添加剂新品种一、食品添加剂新品种序号名称功能食品分类号食品名称最大使用量 (g/L )备注1聚天冬氨酸钾PotassiumPolyaspartate稳定剂和凝固剂15.03.01葡萄酒0.3—二、食品工业用酶制剂新品种序号酶来源供体1氨基肽酶Aminopeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae2蛋白酶 Protease李氏木霉 Trichoderma reesei樟绒枝霉 Malbranchea sulfurea3磷脂酶 A2Phospholipase A2李氏木霉 Trichoderma reesei烟曲霉Aspergillusfumigatus4麦芽糖淀粉酶 Maltogenic amylase酿酒酵母Saccharomycescerevisiae嗜热脂解地芽孢杆菌Geobacillusstearothermophilus5木聚糖酶 Xylanase地衣芽孢杆菌Bacillus licheniformis地衣芽孢杆菌 Bacillus licheniformis6乳糖酶 (β-半乳糖苷 酶 ) Lactase(beta-galactosidase )Papiliotrematerrestris—7羧肽酶Carboxypeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae8脱氨酶 Deaminase米曲霉 Aspergillus oryzae—三、食品用香料新品种序 号名称功能食品分类号食品名称最大使用量备 注12- 己基吡啶 2-Hexylpyridine食品用香料—配制成食品用香精应用于各类食品中( GB 2760-2014 表 B. 1食品类别除外)按生产需要适量使用—
  • 时空分辨药物代谢组学——中枢神经系统新药研发的可视化利器
    中国医学科学院北京协和医学院药物研究所贺玖明研究员团队以封底文章在《药学学报》英文刊(APSB)2022年第8期(IF:14.903)发表了题为“A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging”的研究论文,建立了一种时空分辨的代谢组学方法(基于AFADESI-MSI的时空药物代谢组学),可全景式描绘脑中药物代谢和效应的时空特征,为中枢神经系统作用新药研发提供了一种有力的可视化工具和新的视角。  封底图 | 表征鼠脑中中枢神经药物的微区域药代动力学和药效学的时空代谢组学方法策略和工作流程  研究背景  中枢神经系统(CNS)具有复杂而脆弱的结构,在大脑的许多微区域之间具有高度的互连性和相互作用。大脑是人体复杂的器官,可以细分为许多微区域。脑中多种内源性功能代谢物在不同的微区分布不均匀。脑微区的代谢酶、受体、配体、蛋白和血流的功能差异也会导致药物的空间分布和疗效差异。大脑是中枢神经系统疾病的靶点,大多数中枢神经系统药品只有在进入大脑后才会发挥作用。因此了解药物及相关内源代谢物在大脑中的原位分布的信息对于评估药物疗效、毒理学和药代动力学具有重要意义。  目前研究大脑的常用功能性脑成像技术(包括组织化学标记、免疫荧光、MRI、PET、全身放射自显影等),仅提供脑组织结构的图像,不能在分子水平上进行分析,可监测的物质种类也有限。另一方面,脑内药物分析通常使用的基于组织匀浆或微透析采样的高效液相色谱-质谱(HPLC-MS)技术获得的结果仅能反映采样微区的平均代谢水平,而缺乏分子在整个大脑中的空间分布的信息。质谱成像技术(MSI)不需要复杂的预处理和特殊的化学标记,具有高通量、高灵敏度和高分辨率的特点,可检测已知或未知小分子代谢物的定性、定量和空间分布信息。  本研究使用AFADESI-MSI空间代谢组学研究表征了临床中枢神经系统药物奥氮平(OLZ)和大鼠脑内内源性代谢物,并进行了给药期间的时空变化以及脑微区药物动力学和药效学研究,成功地展示了OLZ及其作用相关代谢物的时空特征,并为中枢神经系统药物作用的分子机制提供了新的见解。  研究思路  研究方法  1. 实验分组/研究材料:饲养一周的雄性 Sprague-Dawley 大鼠  (1) 实验组:4组(3只/组),口服OLZ溶液(50mg/mL)后 20 分钟、50 分钟、3 小时和 12 小时用高浓度乙醚。  (2) 对照组:1组,3只/组  2.技术路线  2.1. 鼠脑的微区划分:15个微区,包括尾状壳核(CP)、大脑皮质(CTX)、海马(HP)、下丘脑(HY)、丘脑(TH)、小脑皮质(CBC)、小脑髓质(CM)、髓质 (MD)、脑桥 (PN)、大脑导水管 (CA)、中脑 (MB)、穹窿 (FN)、梨状皮质 (PC)、嗅球 (OB) 和胼胝体 (CC)。  2.2 质谱成像:AFADESI-MSI分析(全扫描及MS2扫描)  2.3代谢物定性:人类代谢组数据库 (www.hmdb.ca)、Metlin、MassBank和LIPID MAPS  研究结果  1.通过AFADESI-MSI绘制大鼠大脑中的内源性代谢物和药物图谱  无论是正离子模式还是负离子模式,使用AFADESI-MSI空间代谢组学均可从治疗组和对照组脑组织切片中获得内源性代谢物信息。在100-500 Da的低质量范围内,可以检测到氨基酸、核苷、核苷酸、有机酸、脂肪酸等极性小分子代谢物和γ-氨基丁酸 (GABA)、肌酸、肉碱、乙酰肉碱和磷脂酰胆碱等神经递质类代谢物;在500-1000 Da的高质量范围内,可以检测到一些脂质,包括鞘磷脂(SM)、磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、溶血磷脂酰胆碱(LysoPC)和磷脂酰肌醇 (PI) 等。原型药物 OLZ 及其代谢物 2-羟甲基 OLZ 在正离子模式下被检测,结果如图1C1和D1所示。这些结果表明,非靶向质谱成像的方法可以在一次实验中同时绘制外源性药物和内源性代谢物的图谱,并可以获得它们的空间分布特征和微区域丰度变化。  图1 | 使用 AFADESI-MSI 从脑组织切片获得的外源性药物和内源性代谢物的质谱成像结果  2.鼠脑中奥氮平(OLZ)及其代谢物的时空变化  OLZ是一种用治疗精神分裂症的药物,大脑是其主要靶器官。本实验为探究给药时间药物在大脑各功能微区的分布情况,分别在给药后20 min、50 min、3 h和12 h收集治疗组和对照组大鼠脑组织进行MSI分析。OLZ 及其代谢物 2-羟甲基 OLZ 的在鼠脑分布结果如图2A所示。  这些结果表明,OLZ 可以很容易地穿透脑血屏障,主要分散在脑室和脑实质组织中,但并不是均匀分布在大脑的所有微区域中。给药后20分钟发现OLZ主要分布在大脑皮质中。50分钟后,OLZ的水平显著增加。随着时间的推移,大脑中的药物信号迅速下降到成像检测限以下。同时作者发现,2-羟甲基OLZ主要分布在穹窿中,其在各个微区的分布格局与OLZ不同。  这些结果表明,OLZ药物的吸收、分布和代谢的速率在大脑的不同微区不同,表明微区对药代动力学有影响。它还证明了所提出的基于AFADESI-MSI 的时空药物代谢组学方法能够同时说明药物及其代谢物在大脑复杂微区域中的水平和空间分布的变化。  图2 | 脑微区OLZ和其代谢产物2-羟甲基OLZ的时空变化  3.OLZ 对神经递质类代谢物的的微区调控  OLZ药物治疗精神分裂的作用机制是阻断多巴胺 D2 受体或血清素 2A 受体调节神经递质类代谢物(NTs)。然而OLZ的微区效应和分子作用机制仍不清楚。因此作者分析了与OLZ生理活动密切相关的NTs的时空变化,包括GABA、Glu、谷氨酰胺 (Gln) 和腺苷。NTs的AUC变化率如图3B1-B7所示。  GABA(γ-氨基丁酸)是中枢神经中的一种神经递质,可抑制神经中枢。空间代谢组检测结果显示GABA(m/z 104.0706)主要分布在下丘脑中,药物干预后下丘脑的 GABA 受到轻微调节。但同时在梨状皮质和嗅球中观察到药物干预后GABA显著上调。Glu 是中枢神经中的一种主要神经递质,对神经细胞具有兴奋作用。在药物干预后,Glu及其代谢物Gln的时空动态模式在脑部微区中呈现出相对一致的变化趋势。腺苷广泛分布在中枢神经系统中,是大脑中的一种兴奋性和抑制性神经递质,并在脑中不均匀分布。并且在给药3小时后海马和下丘脑中的高水平腺苷显著增加,表明当药物积累时腺苷的上调会更加明显。组胺、乙酰胆碱(Ach)、牛磺酸等神经递质类物质都有各自特征的微区分布,以及在给药后具有上调的趋势。  上述神经递质类物质的靶向成像分析结果表明,该方法可以检测到与中枢神经药物作用机制相关的大量原型药物及其代谢物和内源性代谢物的空间分布和变化。这对于阐明中枢神经系统药物的作用机制和了解精神分裂症及相关疾病具有重要意义。   图3 | 药物对脑内NTs分布和AUC变化率的影响  4. OLZ 药物干预的微区代谢调控  组织和器官的内源性代谢变化可以反映药物刺激的效果。为探索药物干预后的微区代谢效应,通过药物代谢组学测试研究了内源性代谢物的分子谱及其动态变化的分布信息。分别在OLZ和生理盐水给药后 50分钟采集每组治疗和对照大鼠的三个脑组织样本进行微区域分析。  OPLS-DA结果表明,基于正离子模式和负离子模式下脑微区的定量分析,对照组和治疗组分别明显分开。总共筛选和鉴定了 90 种差异内源性代谢物,作为药物作用相关效应物,它们在大脑微区域中发挥了巨大作用。其中81种被MS2鉴定,9 种被同位素模式鉴定。差异代谢物包含了很多种类型的代谢物,包括氨基酸、脂肪酸、甘油磷脂、有机酸、多胺和酰基肉碱。  经过分析确定了治疗组和对照组之间显著差异的七种代谢途径,包括丙氨酸、天冬氨酸和谷氨酸代谢、D-谷氨酰胺和D-谷氨酸代谢、牛磺酸和亚牛磺酸代谢、淀粉和蔗糖代谢、甘油磷脂代谢、精氨酸和脯氨酸代谢、精氨酸生物合成、嘌呤代谢和柠檬酸循环(TCA循环)。下面对影响较大的丙氨酸、天冬氨酸、谷氨酸和甘油磷脂代谢的异常代谢途径进行重点分析。  图4 | 对照组和治疗组中鉴定的差异代谢物的层次聚类分析 (HCA)  4.1 丙氨酸、天冬氨酸和谷氨酸代谢紊乱  异常的Glu-Gln循环在精神分裂症的病理生理过程中起重要作用。丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物在老鼠脑的时空分布如图5所示。柠檬酸在大脑大部分微区分布均匀;与对照组相比,表达显著提高,结果提示药物干预加速了TCA循环的代谢,为机体提供了更多能量。Glu也均匀分布在各个微区,药物干预后呈下调趋势。它的代谢物Gln 和 GABA,主要在下丘脑和的多个微区中上调。  根据通路分析和代谢谷氨酸脱羧酶(GAD)酶反应,推测OLZ直接激活GAD促进GABA合成。GABA可增加糖酵解中己糖激酶的活性,从而加速葡萄糖的代谢。空间分布结果表明葡萄糖分布在大脑的所有微区,但给药后主要分布在梨状皮质和嗅球中,给药后20分钟血糖水平显著升高。  图5 | 丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物的时空分布  4.2.甘油磷脂代谢途径的紊乱  甘油磷脂有助于控制肝脏脂质代谢,促进记忆力,增强免疫力,延缓衰老。甘油磷脂代谢途径代谢物的时空分布如图6。这项研究的结果表明,在给药后,大多数脂质在大多数微区域中显示出上调。OLZ在临床应用中具有代谢副作用,如体重增加、血脂异常、高甘油三酯血症和胰岛素抵抗。实验结果证明,脂质代谢的上调可能导致OLZ治疗期间的副作用。  图6 | 甘油磷脂代谢途径代谢物的时空分布  相关讨论  作者开发的时空药物代谢组学方法,使用质谱成像技术MSI来表征大脑中枢神经药物的药代动力学和药效学。结果表明,该方法可有效识别与药物作用相关的内源性分子效应物。评估OLZ药物对脑组织的微区域效应,并证明其穿过血脑屏障后的微区域药代动力学和药效学方面的有效性。该方法清楚地展示了原型药物及其代谢物 2-羟甲基OLZ在大鼠大脑不同微区的药代动力学。也在脑部微区现一些神经递质类物质和其它小分子极性代谢物,并显示出与药物干预相关的多种代谢途径。发现天冬氨酸、谷氨酸和甘油磷脂代谢途径的调节可能与 OLZ 临床使用观察到的治疗和不良反应有关,为了解其作用的分子机制提供了关键信息。  小鹿  与基于LC-MS的常规药物代谢组学分析手段相比,基于AFADESI-MSI的时空药物代谢组学技术具有同时检测内源性和外源性物质的静态水平变化,并提供大脑不同微区的动态时间依赖性趋势和空间分布信息的优势,能够非常准确地呈现原位和微区域分子变化规律。在此基础上将药代动力学和药效学与代谢途径相关联,有利于获得关键信息,从而更深入地了解药物作用的分子机制。基于AFADESI-MSI 的时空药物代谢组学技术不仅是阐述中枢神经系统药物的原位药代动力学和药效学全面有效的工具,也可为脑组织内源性代谢物的变化以及其它动物组织的原位代谢研究提供重要信息。  该研究工作,药物所2017级硕士研究生刘丹为作者,贺玖明研究员为独立通讯作者。工作得到国家自然科学基金和医科院创新工程项目的资金资助。
  • 婴幼儿食品和乳品中乳清蛋白的测定
    乳清蛋白是采用先进工艺从牛奶中分离提取出来的珍贵蛋白质,以其具有高生物价、高消化率、高蛋白质功效比和高利用率等优点,被誉为“蛋白zhi王”,是公认的人体优质蛋白质补充剂之一。其含量的高低决定了婴幼儿奶粉的品质,相关国标通过酸水解以后的氨基酸来评价乳清蛋白的含量,月旭科技推出的检测方法检测更加快捷可靠。样品前处理称取0.1g试样(含蛋白质7.5mg-25mg的样品),于水解管中,在冰水浴中冷却 30min后加入2mL已经冷却的过甲酸溶液,盖好瓶塞后置于0℃±1℃冰箱中,冰浴16h。向各水解管中加入0.3mL氢溴酸,振摇后冰浴 30min,在60℃±2℃氮吹仪上浓缩至干。向水解管内加入6moL/L盐酸10mL,冲入氮气1min 后,拧紧螺丝盖,将水解管放在110℃±1℃的恒温干燥箱内水解24h后取出冷却至室温。将水解液用超纯水转移并定容至25mL容量瓶中,混匀,滤纸过滤。吸取滤液1mL于60℃±2℃氮吹仪上浓缩至干,残留物用1mL超纯水溶解,待衍生。标准品溶液用超纯水配置磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL,待衍生。衍生方法分别将月旭科技氨基酸衍生方法包中 A、B两种衍生试剂用稀释剂稀释至原来浓度的 1/5;精密量取混标溶液及样品溶液各160μL,加入稀释后的衍生溶液 A、B 各100μL,混匀,室温反应60min;然后加入正己烷溶液 400μL,旋紧盖子后振摇10s,室温静置分层,取下层液200μL,加入800μL水中,混匀;再移取200μL加入到800μL水中,混匀,用0.45μm 有机滤膜过滤,即得。色谱条件色谱柱:月旭Ultimate® AQ-C18(4.6×250mm,3μm)。柱温:40℃;紫外检测器:254nm; 流速:1.0mL/min; 进样量:5μL。谱图和数据1. 磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL。2. 样品水解结论用月旭Ultimate® AQ-C18(4.6×250mm,3μm)色谱柱,在该色谱条件下测定,能满足实验需求。
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 离子交换层析 DEAE Tanrose 6FF
    离子交换层析填料广泛用于生物制药和生物工程下游蛋白质、核酸及多肽的分离纯化。主要包括强酸性阳离子交换层析填料、弱酸性阳离子交换层析填料、强碱性阴离子交换层析填料和弱碱性阴离子交换层析填料四种。蛋白质之所以能够在离子交换层析填料上发生吸附是由于其表面带有电荷。蛋白质分子中的带电基团来源有两种:一种来自于特定的氨基酸;另一种是蛋白质在修饰过程中引入的。蛋白质由氨基酸组成。组成蛋白质时,氨基酸的α-氨基和α-羧基形成肽键而不再发生解离。但很多氨基酸的侧链带有可解离基团,其中有的能进行酸性解离而带上负电荷,如天冬氨酸和谷氨酸的侧链羧基、酪氨酸的酚羟基、半胱氨酸的巯基;有的能进行碱性解离而带上正电荷,如赖氨酸的侧链氨基、精氨酸的胍基、组氨酸的咪唑基。此外,在肽链的N末端还有一个游离氨基,C末端还有一个游离羧基,两者都能发生解离反应。这些基团的pK’值与游离氨基酸中的pK’值是不完全相同的,一般来说,它们比游离氨基酸中的pK’值向靠近中性的方向偏移 。此外,侧链可解离基团在蛋白质三级结构中的位置在很大程度上也会影响到pK’值。如果是结合蛋白质,则辅基中可能也含有可解离基团。月旭DEAE Tanrose 6FF是一种弱阴离子交换层析填料,离子交换基团是二乙基氨基乙基。基本参数应用实例
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 培安公司成功参加第十一届中国国际多肽学术会议
    应第十一届中国国际多肽学术会议主办方的邀请,美国CEM公司的多肽产品经理Giorgio Marini博士于2010年7月5日~8日在兰州大学参加了此次兰州多肽会议并做了学术演讲。 Grace在会上提出十年前,微波照射已经解决传统SPPS合成中片段不完整、合成缓慢的这些常见问题!近年来对于如消旋体、天冬氨酸的构型这些问题,微波技术已经可以应用设置好的序程轻易的控制,而这一点也已经被证实。CEM最近的研究集中在了微波辅助多肽改进合成。这样的修改包括N端、C端修饰,环化、非天然氨基酸融入。在微波环境下合成这些多肽只用很少的时间,而且不需要特别的试剂,得到产物纯度高,并且可以自动的完成大量产物的生产。 Grace的发言引起了在场老师的关注,老师们都觉得CEM公司的微波多肽合成仪给多肽合成方面提供了新的工具。为合成更高难度的多肽成为可能。更短的合成时间为多肽合成节约了时间。全自动化的合成方法使得科研工作者得以解放。CEM的微波多肽合成仪为科研工作提供了一个良好的平台。 在会议期间老师们还特意参观了CEM公司设在会场的展位。纷纷表示了对微波多肽合成仪的兴趣。 美国CEM全自动流动多肽合成系统(全自动微波多肽合成仪) 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 上海通微最新推出饲料添加剂检测解决方案
    近几年,人类食品安全质量问题层出不穷,成为国内外关注焦点。跟食品安全息息相关的饲料行业也成为重点管控对象。2012年,一系列的饲料、畜牧法规条例相继出台,标志着将对畜牧产品质量安全、饲料行业行为将更加规范。   2012年5月1日生效的国务院令第609号《饲料和饲料添加剂管理条例》明确规定: 饲料、饲料添加剂生产企业应当按照国务院农业行政主管部门的规定和有关标准,对采购的饲料原料、单一饲料、饲料添加剂、药物饲料添加剂、添加剂预 混合饲料和用于饲料添加剂生产的原料进行查验或者检验。   2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须没有饮料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。   上海通微分析技术有限公司依托自身强大的研发团队,利用EasySepTM-1020高性能自动化液相色谱系统为饲料行业开发出多套饲料添加剂检测专用高效解决方案。检测项目包括:   饲料中20种氨基酸的检测:牛磺酸(2-aminoethanesulfonic acid)、甘氨酸(Gly)、丝氨酸(Ser)、天冬氨酸(Asp)、谷氨酰胺(Gln)、苏氨酸(Thr)、丙氨酸(Ala)、半胱氨酸(Cys)、脯氨酸(Pro)、胱氨酸(Cys)、赖氨酸(Lys)、组氨酸(His)、缬氨酸(Val)、甲硫氨酸(Met)、精氨酸(Arg)、酪氨酸(Tyr)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、色氨酸(Trp)   饲料中维生素的检测:烟酸、维生素B5、维生素B6、维生素B1、叶酸、维生素B12、维生素B2、维生素K3、维生素A、乙酸酯、维生素D3、维生素E   饲料中其他添加剂的检测:苏丹红、三聚氰胺   上海通微分析技术有限公司独创未衍生氨基酸的直接测定分析法,比传统的衍生检测法更快速、简便、成本低、准确度高。   详情,请咨询上海通微分析技术有限公司http://www.instrument.com.cn/netshow/SH100522/office.asp   上海通微公司实力   留美博士阎超教授2002年创办,总部位于美国硅谷的美国通微技术股份有限公司。   中国分析仪器行业内唯一一家经国家批准的企业博士后科研工作站。   通微自主研发生产的产品获得国家和行业内无数奖项,也是取得国内外专利最多的科技型企机构   与国内多所著名研究所和高校联合,设有联合实验室,在行业解决方案方面提供强有力的技术支持   上海通微分析技术有限公司是国内一流的集色谱仪器研发、生产、销售为一体高新技术企业,下设有苏州环球色谱有限责任公司、无锡通微检测技术有限公司两个全资子公司。
  • 默克Supelco® 液相色谱柱全产线应用案例
    拥有300多年历史的默克公司,作为较早进入色谱产品研究和生产的厂家,从1969年推出色谱柱产品以来,一直不断推陈出新。不仅如此,随着对Sigma-Aldrich的收购,两大品牌强强联手,默克现拥有丰富的液相色谱柱产品,每个系列色谱柱各具特色。 Supelco液相色谱柱全产线 Supel™ Carbon系列是一款新型石墨化碳基质的色谱柱,填充单分散全多孔石墨化碳填料,采用石墨极性保留效应(PREG)机理,允许反相条件下,提高极性和带电化合物的保留,有助于几何异构体分离。色谱柱粒径2.7 µm,孔径200 Å,比表面积155 m2/g,可与任意溶剂兼容,pH耐受范围宽1-14,耐温上限250摄氏度,耐压上限700bar,适于U/HPLC分析。此前,我们分享了如何采用Supel™ Carbon液相色谱柱对维生素D2/D3代谢物和 苯甲酸异构体进行分析。那除此之外,Supel™ Carbon还能分析哪些化合物呢?本期就为大家揭晓其在核苷、氨基酸分析中的广泛应用。 应用案例1:非衍生法检测12种核苷类化合物核苷类化合物是核酸的组成部分、抗逆转录病毒药物的活性药物成分、某些疾病的生物标记物,结构相近,极性非常大,在常规反相色谱柱上很难保留,给检测带来很大挑战。在非衍生条件下,采用新型石墨化碳基质的Supel™ Carbon系列色谱柱可同时识别12种核苷化合物,为客户提供更好的分析方法。 序号化合物名保留时间 (min) 1ß-假尿苷 (25 µg/mL)5.34623-甲基胞苷甲基硫酸酯 (100 µg/mL)5.7913胞嘧啶核苷 (50 µg/mL)5.9824尿嘧啶核苷 (25 µg/mL)7.32852' -O-甲氧基胞苷 (20 µg/mL)8.28365-甲基胞苷 (100 µg/mL)9.30771-甲基腺苷 (25 µg/mL)9.53085-甲基尿苷 (50 µg/mL)11.6419肌苷 (25 µg/mL)12.130107-甲基鸟苷 (25 µg/mL)12.725112-硫代胞苷 (10 µg/mL)13.57112鸟苷 (25 µg/mL)14.203 应用案例2:非衍生法检测17种氨基酸:氨基酸在常规反相色谱柱上很难保留,分子中大部分取代基团无紫外吸收,因此对氨基酸分析存在巨大挑战。常用的分析方法是将氨基酸衍生后进行分离,但检测结果受衍生过程、样品基质影响较大。采用新型石墨化碳基质的Supel™ Carbon系列色谱柱,在非衍生条件下,可同时识别17种氨基酸,提高柱寿命,降低客户分析成本。 分析物:1甘氨酸 (GLY)、2丝氨酸 (SER)、3丙氨酸 (ALA)、4苏氨酸 (THR)、5天冬酰胺 (ASN)、6半胱氨酸 (CYS)、7天冬氨酸 (ASP)、8脯氨酸 (PRO)、9谷氨酰胺 (GLN)、10谷氨酸 (GLU)、11缬氨酸 (VAL)、12赖氨酸 (LYS)、13亮氨酸 (LEU)、14甲硫氨酸 (MET)、15异亮氨酸 (ILE)、16组氨酸 (HIS)、17精氨酸 (ARG) 产品列表产品规格货号Supel™ Carbon分析柱2.1mm*50mm59984-USupel™ Carbon分析柱2.1mm*100mm59986-USupel™ Carbon分析柱2.1mm*150mm59987-USupel™ Carbon分析柱3.0mm*50mm59991-USupel™ Carbon分析柱 3.0mm*100mm59993-USupel™ Carbon分析柱 3.0mm*150mm59994-USupel™ Carbon分析柱4.6mm*50mm59997-USupel™ Carbon分析柱4.6mm*100mm59998-USupel™ Carbon保护柱套装2.1mm*20mm59982-USupel™ Carbon保护柱套装3.0mm*20mm59989-USupel™ Carbon保护柱套装 4.0mm*20mm59996-USupel™ Carbon保护柱芯2.1mm*20mm59981-USupel™ Carbon保护柱芯3.0mm*20mm59988-USupel™ Carbon保护柱芯4.0mm*20mm59995-USupel™ Carbon保护柱套/59999-U了解更多Supel™ Carbon色谱柱
  • 手性印迹表面增强拉曼散射检测技术获进展
    a) SERS-CIP检测策略示意图;b)含SERS标记物的SERS-CIP玻璃毛细管照片,识别区域用红色圆圈表示;c)在SERS-CIP上实现手性氨基酸识别检测原理 课题组供图近日,中国科学院烟台海岸带研究所研究员陈令新团队在手性印迹表面增强拉曼散射(SERS)检测技术领域取得重要进展,研究成果“基于手性分子印迹的表面增强拉曼散射检测策略用于绝对对映体区分”发表在最新一期的《自然—通讯》。手性是自然界中普遍存在的现象。手性分子是与其镜像不能重合的分子,对映异构体间很多理化性质相同,但生理活性往往有很大的差别,因而,对单个对映体的选择性识别与检测在生命科学、环境监测和食品安全等领域至关重要。然而,单个对映体的识别存在很多挑战。首先,理想的手性区分策略需要外消旋体中的绝对对映体识别方法和高灵敏度的传感器件,并且保证对多种手性分子广泛适用,如何抑制对映体在手性区分传感器上的非特异性结合是关键。其次,对映体间具有相同的分子大小和官能团,仅结构呈现镜像对称,因此,不能根据一般传感器上的主-客体相互作用结果一概而论。此外,大多数手性识别策略高度依赖手性分子的细微结构特征,无法适用于复杂多样的手性化合物。海岸带是关乎人类社会发展的地球关键带。人类活动通过多种途径影响海岸带生态,使其被开发利用的同时,也造成了生态脆弱、灾害较多等问题,发展海洋生态固碳、保护生态环境是海岸带可持续发展的关键之一。氨基酸是海洋有机碳和有机氮的重要组成部分,氨基酸的手性转化是海洋微生物固碳的重要过程,了解手性氨基酸的结构和功能对于海洋固碳机制研究非常重要。然而,海岸带区域环境中的手性氨基酸含量很低、赋存介质复杂,因此亟需发展能够进行分离富集、降低和消除基质干扰的高灵敏手性分子检测技术。基于上述挑战,陈令新团队创新性发展了基于手性分子印迹的表面增强拉曼散射(SERS-CIP)检测策略,成功实现了对海水中精氨酸、组氨酸、天冬氨酸等8种氨基酸手性对映体的高选择性和高灵敏分析检测。手性分子印迹聚合物(CIP)具有在形状、大小和官能团三方面与目标氨基酸分子互补的空腔,能够高特异性结合目标手性分子,在手性氨基酸识别方面表现出了独特的优势。由于聚合物框架和手性分子的官能团之间的相互作用,不可避免的非特异性结合参与手性识别问题一直是挑战。研究发现,可以通过发展先进的CIP识别机制并通过抑制非特异性结合提高CIP对映体识别特异性。在利用SERS对CIP非特异性结合来源进行详细研究后,团队开发了一种检测识别机制来探索CIP的空间状态,并借此区分特异性结合和非特异性结合的氨基酸对映体分子。通过对映选择性测试、外消旋混合物分析以及在复杂实际样品中的手性识别表明,这种机制能够满足理想的手性识别策略的要求,并具有良好的实用性。该研究成果得到了国家自然科学基金和中科院国际博士后项目等项目的支持。文章的第一作者为助理研究员Maryam Arabi,文章通讯作者为研究员王运庆和陈令新。
  • 通微公司推出饲料行业最新整体解决方案
    2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须设有饲料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。通微公司依托自身强大的应用研发团队,利用EasySepTM-1020 HPLC系统联用紫外检测器和蒸发光散射检测器产品平台,为广大饲料企业第一时间开发了专业饲料检测用高效液相色谱仪、耗材及应用方法包,应用于饲料中的氨基酸、维生素、三聚氰胺、抗生素等添加剂的检测;同时,我们将不断为您推出饲料中各种添加剂的专用检测方法包。通微公司的唯一的国产蒸发光散射检测仪,是国家“十五攻关”的重大科技成果,获得2007年BCEIA金奖。该检测仪液相色谱联用检测氨基酸,可以省去劳师费时的样品衍生步骤,直接检测。 EasySepTM-1020 HPLC系统平台 国产首台蒸发光散射检测仪ELSD 5000 部分检测范例如下: 1、水溶性维生素检测 仪器型号: EasySepTM-1020 HPLC 检测器类型: UV 柱 温(℃): 室温 检测波长(nm): 270 nm流动相:甲醇/0.1%磷酸溶液=55/45色谱柱:Globalsil C18,5μm,4.6 mm×150 mm进 样 量: 20 µ L 流量:1.5 mL/min 2、三聚氰胺检测 仪器型号: EasySepTM-1020 HPLC 检测器类型:UV 检测波长:240 nm色谱柱:Globalsil C18,5 μm, 4.6 mm×150 mm; 柱 温(℃): 40℃流动相:离子对试剂缓冲液-乙腈(90:10);流速:1.0 mL/min; 进样量:20 ul 3、氨基酸分析 仪器型号: EasySepTM-1020 HPLC 检测器类型:ELSD 色谱柱:Globalsil C18,5 μm,4.6 mm×250 mm 柱温:35 ℃ 流动相:溶剂A,七氟丁酸:三氟乙酸:水=1.0:0.5:500;溶剂B,甲醇;流速:0.8 mL/min;梯度洗脱: 时间(min) 0 8 11 21 30 40 A% 100 100 78 73 45 45 B% 0 0 22 27 55 55 蒸发温度:40 ℃;载气流量:2.5 L/min(推荐使用氮气) 进样体积:10 μL 1、甘氨酸(Gly),2、丝氨酸、(Ser),3、天冬氨酸(Asp),4、谷氨酰胺(Gln),5、苏氨酸(Thr),6丙氨酸、(Ala),7、谷氨酸(Glu),8、半胱氨酸(Cys),9、胱氨酸(Cys),10、脯氨酸(Pro),11、赖氨酸(Lys),12、组氨酸(His),13、缬氨酸(Val),14、精氨酸(Arg),15、甲硫氨酸(Met),16、酪氨酸(Tyr),17、异亮氨酸(Ile),18、亮氨酸(Leu),19、苯丙氨酸(Phe),20、色氨酸(Trp)。 通微公司简介上海通微分析技术有限公司(www.unimicrotech.com.cn)成立于2002年,是总部设在美国硅谷的美国通微技术股份有限公司 (Unimicro Technologies, Inc.,以下简称通微公司)在上海浦东张江高科技园区内创立的子公司;为了业务发展的需要,通微公司分别在2007年、2011年成立的两家全资子公司-苏州环球色谱有限责任公司、无锡通微检测技术有限公司,目前,通微公司北京办事处、西安办事处、广州办事处等全国销售网络相继建成。通微公司,致力于打造国际一流的微分离领域色谱仪器和耗材基地,一直专注于色谱仪器及相关耗材产品的研制与开发;借助美国通微技术股份有限公司雄厚的技术开发实力,致力于中国市场的拓展,为中国的科研单位和科研工作者提供全新、优质的产品和一流服务。通微公司设有中国分析仪器行业首家企业博士后工作站,在毛细管电色谱系统开发及产业化方面取得了重大开创性成果,推动了电色谱技术的进步;先后承担国家科学仪器重大专项、国家 “九五”、“十五” 科技攻关重大项目,国家发改委高科技产业化专项、国家自然科学基金,中国与美国以及中国与比利时等国际合作项目,科技部中小企业创新基金以及上海市的科技攻关项目等30余项,在色谱领域共发表180余篇学术及应用论文,申请和获得30多项国际和中国专利。
  • 合成生物学有望在未来5-10年保持高速增长
    国信证券 (002736 )发布研究报告称,“双碳”背景下合成生物学有望在未来5-10年保持高速增长,看好合成生物学在低成本替代现有材料及制备新材料的潜力,具备技术及成本优势的合成生物学企业竞争优势明显。合成生物学是一门发展迅速的前沿交叉学科,被誉为第三次生物技术革命,其下游应用广泛,需求正在不断扩张。合成生物学是一门融合了生物学、信息学、基因组学、 化学等多学科的交叉学科,在学习自然生命系统的基础上建立出人工生物,并制造出满足人类需求产品。合成生物学通过设计和构建细胞工厂,能够使细胞以淀粉、纤维素、CO2等可再生碳为原料,生产重要的化工产品、天然药物、食品、生物能源等产品,合成生物学相可以实现更高的转化效率、更低的成本,更友好的路线。我国大品种氨基酸产能充沛,小品种氨基酸如丙氨酸、缬氨酸、异亮氨酸、等亟需扩大产能、降低成本,通过合成生物学的手段,可有效降低小品种氨基酸生产成本。丙氨酸在食品、医药日化等领域具有广泛应用,丙氨酸生产的化工流程温度高、压力大、酸碱强,环境污染严重。目前,工业化生产丙氨酸采用发酵法和微生物酶法代替了原有的化学合成法丙氨酸,华恒生物利用合成生物方法改造微生物突破厌氧发酵技术,使丙氨酸的生产成本较酶法降低50% 缬氨酸可以改善母猪生产性能,提高动物免疫力,在饲料行业的需求快速增长,由于缬氨酸的合成途径属于丙氨酸衍生物类型,华恒生物在具备丙氨酸厌氧发酵技术后又突破了低成本缬氨酸生物发酵技术 通过人工合成酶对丙烯酸定向加氨形成了β-丙氨酸,较传统天冬氨酸脱羧法极大的降低了产品成本。全球丙氨酸市场自2016年3.5万吨增长至2019年5万吨,年化复合增长率为13%,预计丙氨酸市场在未来四年内继续保持稳定增长,在2023年将达到8万吨,同比2019年5.1万吨增长57% 近年来全球缬氨酸市场规模保持着迅猛增长态势,全球需求量从2016年的0.73万吨增长到2019年的3.25万吨,年复合增长率高达65%。尼龙66重要上游原材料己二腈等目前国内化率仍在提升中,生物基戊二胺可实现替代法生产,长链尼龙作为具有优异的耐磨性和耐低温性,其重要的上游原材长链二元酸(DC12及DC10)可通过合成生物学实现低成本制备。PA66主要应用领域为工程塑料和工业纤维,在汽车轻量化的趋势下其市场潜力较大,但PA66的上游原材料己二腈生产技术壁垒很高,差能由欧、美、日控制,国内仅能实现小部分生产,且成本高昂。合成生物学可通过利用赖氨酸脱羧的方式生产戊二胺,通过尼龙56对尼龙66实现替代。长链尼龙的重要原料长链双元脂肪酸传统合成方法为化学合成法或由蓖麻油分解制备,凯赛生物通过合成生物学利用简单的烷烃经过发酵即可廉价制备DC12及DC10,在全球市场占据了较高份额。营养素市场空间广阔,合成生物学大有可为。长链不饱和脂肪酸DHA及ARA对婴幼儿记忆力、思维能力及视网膜发育具有重要作用,广泛应用与婴幼儿配方奶粉及保健品,随着人们健康意识的提高,对DHA及ARA的需求不断增加。DHA的主要生产来源为深海鱼类,但随着海洋污染加剧,鱼油DHA存在食品安全风险,且鱼油含有大量EPA,限制了其使用范围,通过生物发酵法生产的DHA有效规避了这些分险,在DHA市场中的市占率不断提高。
  • 优化规模生产iPSC衍生的胰岛素合成的β细胞关键工艺参数
    一、摘要:1型糖尿病是一种会导致胰腺β细胞破坏的自身免疫性疾病,需要终身胰岛素治疗。胰岛移植提供了一个很有前途的解决方案,但也面临着诸如可用性有限和需要免疫抑制等挑战。诱导多能干细胞(iPSCs)为功能性β细胞提供了一个潜在的替代来源,并具有大规模生产的能力。然而,目前的分化方案,主要是在混合或2D环境中进行的,缺乏可延展性和悬浮培养的最佳条件。我们研究了一系列可能影响分化过程的生物反应器放大过程参数。该研究采用了一种优化的HD-DoE协议,该协议设计具有可扩展性,并在0.5L(PBS-0.5 Mini)垂直轮式生物反应器中实现。我们开发了一种三阶段的悬浮生长过程,从贴壁培养过渡到悬浮培养,TB2培养基在规模化过程中支持iPSC的生长。阶段性优化方法和延长分化时间用于增强iPSC衍生的胰岛样簇的标记物表达和成熟。连续的生物反应器运行被用于研究营养和生长的限制以及对分化的影响。将连续生物反应器与对照培养基变化生物反应器进行比较,显示出代谢变化和更类似b细胞的分化谱。从试验中收集的低温保存的聚集物被恢复,恢复后显示出活力和胰岛素分泌能力得到维持,这表明它们具有存储和未来移植治疗的潜力。本研究表明,阶段时间的增加或限制培养基补充以减少乳酸积累可以增加在大规模悬浮环境中培养的胰岛素合成细胞的分化能力。二、实验内容节选:营养消耗和代谢物的分析 为了检测细胞潜在的替代碳源和氮源,我们分析了对照组和连续生物反应器在整个培养过程中的氨基酸代谢(图S5A-B)。使用快速培养基氨基酸维生素分析仪Rebel(908 Devices)来分析氨基酸浓度。必需氨基酸,如组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、苏氨酸、色氨酸和缬氨酸在整个培养期间都保持不变。然而,一些氨基酸在两种培养基中都完全耗尽,包括5天后的L-天冬氨酸和16天后的L-谷氨酸。氨基酸代谢对正常的胰腺β细胞功能至关重要,丙氨酸和谷氨酰胺以其调节β细胞功能和胰岛素分泌的作用而闻名。在培养结束时,谷氨酰胺和丙氨酸的浓度高于新鲜培养基,表明它们不限制生长(图S5A-B)。然而,它们增加的来源仍然未知,不像之前的观察而将它们的增加归因于GlutaMAX&trade 添加剂。与起始培养基相比,丙氨酸和谷氨酰胺水平的升高在对照组生物反应器中没有观察到,后者在不同阶段之间和整个延长的内分泌诱导阶段都有频繁的培养基变化。两种生物反应器之间无其他显著性差异。如前所述,限制培养基补充的生物反应器比对照培养基变化的生物反应器具有更好的分化能力。氨基酸浓度调节和血清缺乏与促进来自人类干细胞的胰腺β细胞的发育有关。 此外,使用FLEX2(Nova Biomedical)对两种培养结果进行评估,分析两种反应器的整个培养期间Gln、Glu、NH4+、Na+、K+、Ca++、pH、PCO2和PO2(图S6A-B)。在连续生物反应器中,培养基的渗透压稳定增加,但保持在280-320mOsm/kg范围内。这种增加可以归因于由营养物质代谢和其他废物产生的溶质的积累。相比之下,对照培养基的渗透压变化的生物反应器随着培养基在细胞分化过程的不同阶段被补充而波动。谷氨酰胺和谷氨酸水平也进行了评估,两者都显示随着时间的推移而消耗。这与使用Rebel分析仪进行的测量结果一致。两种生物反应器在生物分化上具有可比性,除了在连续生物反应器中pH的持续下降和预期的耗氧速率方面的主要差异。在反应液中测量的气体可能会受到收集和测量之间时间的影响,但是,对所有样品的总体影响是相同的。总体数据显示,在培养10天或PP诱导分化阶段后,PO2水平开始稳步下降。尽管反应液与两个生物反应器顶空内的气体体积相同(500毫升),但与控制培养基补充变化生物反应器相比,进入反应液的氧气通量可能不足以补充0.5L连续容器中增加的耗氧量。文献来源:doi.org/10.21203
  • 鞠熀先教授团队攻克MALDI-MS检测难题 发展质谱成像分析新技术
    南京大学化学化工学院鞠熀先教授研究组在质谱成像分析方面取得重大进展,相关成果日前在线发表于Angew. Chem. Int. Ed., DOI: 10.1002/anie.201601096。该成果由14级博士生胡骏杰为第一作者,鞠熀先教授为通讯作者完成。  质谱技术由于高通量和免标记的优势,在酶活性分析中得到广泛关注。然而,由于生物样品的成分复杂,组分丰度的分布差异大,其应用常被复杂的样品前处理所限制。为简化繁琐的样品前处理和数据分析过程,鞠熀先教授研究组发展了质谱成像分析新技术,实现了对多种酶活性的便捷可视化分析。该工作首先需攻克质谱成像分析尤其是通常MALDI-MS检测存在的难题,大幅度提高质谱信号与信噪比,从而通过逐点扫描,获得清晰的质谱图像。该课题组以磷脂分子修饰多肽底物,利用具有两亲特性的磷脂分子保证其在疏水玻片表面的有序组装,构建模拟生物膜,从而增强MALDI芯片的表面生物相容性,以使分析对象酶更易接近其底物,大幅度提高了质谱信号 同时这一设计增加了酶反应产物的分子量,可以避免基质与生物样品中杂质的干扰,改善了检测信噪比与质谱分辨能力。他们以含半胱氨酸的天冬氨酸蛋白水解酶家族(Caspase-1, -2, -3和-8)为模型,将相应多肽底物分别与磷脂骨架的分子连接并组装嵌插于疏水玻片表面,制备出用于酶活性检测的阵列芯片 在目标酶的作用下,底物被剪切产生质量位移,各酶的活性通过酶切产物的质荷比进行颜色编码,实现了多种酶活性的可视化与高通量定量检测(图1)。这一方法已成功用于细胞内水解酶家族的抑制剂筛选和化疗过程癌细胞中Caspases酶活性演化的监测,为耐药性细胞鉴别及抗癌药物筛选提供了有力工具,并可方便地扩展应用于其它酶系统,为探究更多过程中酶的作用机制提供了新途径。  质谱芯片的制备及Caspase酶活性的可视化分析原理  鞠熀先教授研究组自2000年开始质谱研究,以解决实际问题为出发点,建立了海洛因及其代谢物的LC/MS分析方法及鼠药的GC/MS快速检测方法等。2010年后,随着生命分析化学国家重点实验室的建立与生命科学研究的需求,该研究组将纳米技术、化学衍生及化学生物学与传统质谱分析方法结合,通过功能化碳纳米角、磁性碳纳米管等纳米材料,提出低丰度生物小分子(Chem. Eur. J., 2013, 19, 102-108)与蛋白(Nanoscale, 2014, 6, 3150-3156)的选择性富集手段,建立了无需另加基质的MALDI-MS检测方法。特别是,针对阻碍MALDI-MS定量分析的瓶颈,该课题组利用分子标记实现了MALDI定量(Anal. Chem., 2014, 86, 8275-8280 Anal. Chem., 2015, 87, 4409-4414),并用于多肽和酶活性的定量检测,创造性地改变了传统认识,扩展了这一技术的应用范围。 原文链接:MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment ofDrug Resistance
  • SmartGrape:红外光谱+人工智能,监测酿酒用葡萄质量
    酿酒行业对于葡萄的质量有很高的的要求。根据小编调研,非侵入式的红外光谱技术应用于葡萄质量监测已行之有年,能够定量分析一些指标成分例如花青素、酚类、天冬氨酸、谷氨酸等。一项由德国政府资助的项目创新结合了中红外光谱分析技术和人工智能,将为葡萄栽培或其他农业领域的生产者提供实用的数字化工具。德国弗劳恩霍夫过程工程和包装研究所(Fraunhofer Institute for Process Engineering and Packaging IVV)近期启动了一个智能葡萄(SmartGrape)项目,结合使用红外光谱分析和人工智能(AI)来确认葡萄质量和成熟度。项目由德国联邦农业和食品办公室(BLE)和德国联邦食品和农业部(BMEL)资助,并与IRPC Infrared-Process Control GmbH、LiquoSystems GmbH、QuoData GmbH和 Weincampus Neustadt等公司合作进行。与所有农产品一样,葡萄的质量差异很大。许多外部因素,包括气候、土壤条件和收获时间,对葡萄的成分和葡萄酒的质量都有重大影响。正因为这些葡萄栽培中的多样性,最终产生了具有不同特色的各种葡萄酒。为了确保葡萄酒的原材料质量,需要根据选定的质量参数对葡萄进行监测。这个监测方法应该在不损害葡萄的前提下易于实施,并尽可能对葡萄成分提供大量信息。红外光谱正好满足了这些要求。红外光谱分析技术是一种非侵入式的光学技术,该方法利用目标分子对红外的吸收光谱来分析样品中的成分。该研究所表示,这使得红外光谱成为一种理想的媒介,可以用于认定是否当季葡萄符合酿造优质葡萄酒的要求。SmartGrape联合项目的目的是开发一种紧凑型测量系统,利用中红外范围的光谱分析达到快速、无损的葡萄质量检测。相较于过去其他利用红外光谱对葡萄质量的检测工作,SmartGrape使用了中红外波段(介于波长 2500 和 50,000 纳米之间)来检验葡萄的质量,而不是近红外波长(介于 780 和 2500 纳米之间)。该研究所指出,“中红外范围内的信息含量明显高于近红外,可以提供更完整、精确的信息。”中红外光谱分析技术生成的所有数据和伴随的化学分析需要复杂的计算与评估。在SmartGrape项目中,AI被用来记录和评估这些高维数据集。AI的好处是能够考虑非线性相关性和交互效应,比使用传统的数学和统计方法能够节省大量的时间。同时,这样的一个数据库系统可以允许多个用户的访问,透过一个友善的界面系统便可以助力葡萄栽培产业更大程度的数字化。将数据数字化还可以将数据用于更广泛的用途,SmartGrape所开发的系统提供的数字化平台将使得一些新方法和措施成为可能。例如,数据可以在德国联邦经济事务和能源部(BMWi)开发的数字生态系统中使用,这有助于整个产业链和价值链上的信息共享,包含农学家、农业机械行业到研究机构。这反过来又为流程优化创造了机会,以保护环境资源并确保农业部门的效率,尤其是考虑到气候变化带来的新挑战。举例来说,研究人员可以根据多个收获年份的葡萄质量变化记录,探讨外部影响因素(例如气候、土壤质量)的相关性及对葡萄成分的影响、并最终导致葡萄酒的质量变化。
  • 抗癌药生产成本有望大幅降低!我国通过人工智能首次设计出工业菌株
    p   人工智能会给生物行业带来什么变化?中国科学院微生物研究所吴边团队在该领域率先取得突破,通过智能计算技术,创造出自然界中不存在的生物催化反应类型,并 strong span style=" color: rgb(31, 73, 125) " 在世界上首次通过计算指导完成工业级菌株的构建。 /span /strong 22日,该项成果在线发表于国际著名期刊《自然· 化学生物学》。 /p p   “蛋白质的结构和折叠方式数据量非常大,以前只能通过实验室进行筛选,现在人工智能计算技术介入后能快速大量处理数据。”论文通讯作者、中科院微生物所研究员吴边说,2017年, strong span style=" color: rgb(31, 73, 125) " 美国化学会将人工智能设计新型蛋白质结构列为年度八大科学突破之首 /span /strong 。 /p p   如果把工业菌株比作一辆车,酶蛋白就是其核心发动机。研究人员在对天冬氨酸酶分子重设计后,成功获得一系列具有绝对位置选择性与立体选择性的人工β-氨基酸合成酶。随后,团队将非天然酶整合入大肠杆菌中,构建出可高效合成β-氨基酸的工程菌株。 /p p   “β-内酰胺抗生素、紫杉醇(抗癌药物)、西格列汀(糖尿病药物)等多种具有巨大市场销售额的明星分子, strong span style=" color: rgb(31, 73, 125) " 均需要β-氨基酸作为合成单元 /span /strong 。”吴边告诉科技日报记者, span style=" color: rgb(31, 73, 125) " strong β-氨基酸的合成长期以来 /strong /span span style=" color: rgb(31, 73, 125) " strong 依赖过渡金属催化的化学途径,需要昂贵的催化剂、苛刻的反应条件等 /strong /span 。 /p p   吴边说,通过发酵工艺优化与转化工艺优化,该生物催化体系可在温和条件下利用廉价易得的烯酸类原料及氨水,一步实现相应β-氨基酸的合成, span style=" color: rgb(31, 73, 125) " strong 而且成本可下降50%—90% /strong /span 。 /p p   据介绍,该项技术已完成中试与全尺寸生产工艺验证, span style=" color: rgb(31, 73, 125) " strong 产品潜在市场预计超30亿元,有望在紫杉醇、度鲁特韦与马拉维若等抗癌与艾滋病治疗药物的生产过程中大幅降低生产成本 /strong /span 。 /p
  • 最新!14项食品安全国家标准征求意见稿发布(附下载链接)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准&ensp 熟肉制品》等14项食品安全国家标准(征求意见稿),现向社会公开征求意见。请登陆食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。食品安全国家标准评审委员会秘书处&ensp &ensp 2024年6月27日征求意见的食品安全国家标准目录 序号标准名称制定/修订食品产品 4项1.熟肉制品修订2.糕点、面包修订3.牛奶蛋白制定4.果蔬干制品制定食品添加剂5项5.食品添加剂 L-苹果酸修订6.食品添加剂 辣椒油树脂修订7.食品添加剂 二丁基羟基甲苯(BHT)修订8.食品添加剂 碳酸铵制定9.食品添加剂 橡子壳棕制定食品经营卫生规范 3项10.食品中铅污染控制规范制定11.食品中丙烯酰胺污染控制规范制定12.食品中3-氯丙醇酯和缩水甘油酯污染控制规范制定理化检验方法与规程 1项13.食品中天冬氨酸和谷氨酰胺的测定制定通用标准 1项14.预包装食品标签通则修订果蔬干制品_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052401.pdf牛奶蛋白_编制说明(征求意见稿)_公开征求意见_JYBZSM2024060701.pdf果蔬干制品_标准文档_公开征求意见_BZWD2024052303.pdf食品安全国家标准 糕点、面包_编制说明(征求意见稿)_公开征求意见_JYBZSM2024051501.pdf食品安全国家标准 糕点、面包_标准文档_公开征求意见_BZWD2024051501.pdf牛奶蛋白_标准文档_公开征求意见_BZWD2024052201.pdf食品安全国家标准 食品添加剂 L-苹果酸_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052101.pdf食品安全国家标准 食品中天冬酰胺和谷氨酰胺的测定_编制说明(征求意见稿)_公开征求意见_JYBZSM2024051702.pdf食品安全国家标准 食品添加剂 L-苹果酸_标准文档_公开征求意见_BZWD2024052201.pdf食品安全国家标准 食品中天冬酰胺和谷氨酰胺的测定_标准文档_公开征求意见_BZWD2024052001.pdf食品安全国家标准 预包装食品标签通则_编制说明(征求意见稿)_公开征求意见_JYBZSM2024062702.pdf食品安全国家标准 预包装食品标签通则_标准文档_公开征求意见_BZWD2024062702.pdf食品添加剂 二丁基羟基甲苯(BHT)_编制说明(征求意见稿)_公开征求意见_JYBZSM2024053101.pdf食品添加剂 辣椒油树脂_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052201.pdf食品添加剂 二丁基羟基甲苯(BHT)_标准文档_公开征求意见_BZWD2024053101.pdf食品添加剂 碳酸铵_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052001.pdf食品添加剂 辣椒油树脂_标准文档_公开征求意见_BZWD2024052001.pdf食品添加剂 碳酸铵_标准文档_公开征求意见_BZWD2024052201.pdf食品中3-氯丙醇酯和缩水甘油酯污染控制规范_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052201.pdf食品添加剂 橡子壳棕_标准文档_公开征求意见_BZWD2024052101.pdf食品中丙烯酰胺污染控制规范_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052901.pdf食品中3-氯丙醇酯和缩水甘油酯污染控制规范_标准文档_公开征求意见_BZWD2024051402.pdf食品中丙烯酰胺污染控制规范_标准文档_公开征求意见_BZWD2024060702.pdf食品中铅污染控制规范_编制说明(征求意见稿)_公开征求意见_JYBZSM2024051601.pdf食品中铅污染控制规范_标准文档_公开征求意见_BZWD2024052201.pdf熟肉制品(GB 2726-2016)_标准文档_公开征求意见_BZWD2024052002.pdf熟肉制品(GB 2726-2016)_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052401.pdf食品添加剂 橡子壳棕_编制说明(征求意见稿)_公开征求意见_JYBZSM2024052201.pdf
  • Nature | 小分子代谢产物也“跨界”?看GABA如何调控免疫反应
    当我们提到GABA(γ-氨基丁酸)的时候我们会想到什么?GABA是一种主要的抑制性神经递质,调节神经元间的通讯。在大脑之外,在肠道、脾脏、肝脏和胰腺中也检测到了GABA这种神经递质的存在【1,2】。但是GABA在免疫系统中是否会“跨界”发挥作用还不得而知。2021年11月3日,日本横滨理化研究所Sidonia Fagarasan研究组发文题为B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity,发现B细胞来源的GABA诱导巨噬细胞从而限制抗肿瘤免疫反应,为免疫系统中除了细胞因子和膜蛋白之外的小分子代谢产物的免疫调节功能提供了新的见解。小分子水溶性代谢产物不仅是细胞内生物化学反应过程的重要中间产物,也是释放到细胞外环境中的“信号分子”,从而影响临近的细胞【3-5】。淋巴细胞受到多种受体和可溶性小分子代谢产物的调节,但是仍然有很多小分子代谢产物的功能尚未被了解清楚。因此,作者们希望能够找出其中发挥关键调节作用的水溶性代谢产物,该代谢产物可能作为环境线索发挥作用从而介导免疫细胞之间的相互作用。为了找出参与免疫系统的小分子水溶性物质,作者们对处于稳态以及激活状态淋巴细胞中进行水溶性代谢产物的分析。这两种淋巴细胞之间有200种左右的代谢产物存在显著的不同。其中主要涉及的代谢特征的不同是丙氨酸、天冬氨酸以及谷氨酸通路的差异,另外嘌呤和嘧啶代谢以及三羧酸环也与免疫激活密切相关。在这些代谢产物中,一个以前被广泛认为在神经系统中发挥作用的因子GABA引起了作者们的兴趣。先前并没有研究表明B细胞能够产生GABA,因此GABA在免疫系统中的作用也很不清楚。首先,作者们确认了免疫系统中的B细胞的确是GABA产生来源,并且通过对GABA合成的关键酶分析发现小鼠和人类B细胞中GAD67(Glutamate decarboxylase 67)而非GAD65的表达水平会上升。该结果说明无论是小鼠还是人类中谷氨酸的代谢的确能够刻画B细胞谱系的变化。那么B细胞中所产生的GABA是如何在免疫系统中发挥作用的呢?为此,作者们采用了MC38结肠癌模型,该模型中B细胞已经被证明通过抗原非特异性机制抑制抗肿瘤T细胞反应【6】。作者们发现B细胞缺乏的小鼠品系中肿瘤的生长比野生型的肿瘤控制的更好。另外,与接受安慰剂的小鼠相比,植入缓释GABA颗粒会导致B细胞去除的小鼠肿瘤生长显著增加。通过加入GABA受体激动剂木防己苦毒素,作者们发现会限制肿瘤的生长并提高肿瘤浸润性CD8+T细胞的细胞毒性活性。因此,作者们发现减少GABA或影响GABA受体信号通路会增强细胞毒性T细胞反应和抗肿瘤免疫,而分泌GABA使宿主对肿瘤生长产生免疫耐受。那么GABA影响免疫功能系统的细胞生物学机制是如何的呢?先前的研究表明肿瘤相关巨噬细胞(Tumour-associated macrophages,TAMs)可以抑制抗肿瘤免疫反应。作者们发现GABA影响巨噬细胞生理的过程,促进向抗炎表型极化的反应。进一步地,作者们想知道GABA如何调节巨噬细胞。研究表明TAMs起源于单核细胞(Monocytes),因此,作者们猜测GABA是通过影响单核细胞向巨噬细胞的分化来调节巨噬细胞的。为了验证这一假设,作者们将GABA加入到培养基中,发现会导致细胞数量增加、细胞存活增加同时也促进抗炎巨噬细胞特征因子FRβ(Folate receptor β)的表达。基因转录本分析也证明细胞周期相关以及叶酸代谢相关的基因出现了明显地上调。因此,作者们确认GABA促进具有抗炎特性的巨噬细胞的分化、扩张和存活。进一步地,为了确认B细胞中GABA的作用,作者们构建了特异性在B细胞中敲除GAD67的小鼠品系,发现条件性失活GAD67后会导致B细胞中GABA含量显著降低,而且发现B细胞产生的GABA会显著限制抗肿瘤T细胞反应。总的来说,该工作发现作为代谢产物以及神经递质的GABA会通过激活的B细胞被合成和分泌出来,作为细胞间相互交流的线索影响机体免疫系统的响应。该工作说明B细胞谱系产生的小分子代谢产物具有炎症调节的作用,可能会成为未来免疫反应调节的药物靶点。原文链接:https://doi.org/10.1038/s41586-021-04082-1
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 阿斯巴甜,福兮祸兮?
    你可能听说过一类食品添加剂,叫“甜味剂”,比如最常见的糖精、阿斯巴甜。但你很可能不知道它们的来历,其实是一些不遵守实验室操作规程的粗枝大叶的理科男无意中发现或发明了它们:1879年一个俄国化学家在实验室倒腾完瓶瓶罐罐,没洗手就回家吃饭,结果发现吃啥都是甜的,“糖精”被发现 1965年一个叫施莱特的化学家在合成药物的时候无意中舔了一下手指,大名鼎鼎的甜味剂“阿斯巴甜”问世。   甜味剂的诞生对于食品工业来说是个天大的好消息,因为它们的甜度数百倍于蔗糖,能大大降低成本。对于消费者来说,其实这也是一个好消息,因为它们提供的热量远低于蔗糖,甚至可以忽略不计,所以既可以满足你对甜食的渴望,又可以避免因能量摄入过多导致的肥胖、糖尿病等慢性疾病。   但是相比那些什么都敢舔的“发明家”,普通人显得谨小慎微,因为大家对“化学合成”的物质总是充满了敬畏、怀疑甚至抵触。所以各国的监管者和研究者都在不断的检验它们的安全性,确保不会对消费者的健康造成损害。当然,科学存在不确定性,科学也在不断发展,随着研究证据的积累,科学界对安全性的诠释也会与时俱进,糖精、甜蜜素、阿斯巴甜等诸多“化学合成”物质都曾在安全和不安全之间多次翻转。   争论其实并不是坏事,自从1976年美国FDA批准阿斯巴甜,围绕它的各种流言、阴谋论、利益绑架疑云甚至漫长的法律诉讼从来没有间断过。这通折腾也许是值得的,后来美国FDA把阿斯巴甜描述为“研究最彻底的食品添加剂之一”,其安全性“毋庸置疑”。美国疾控中心也证实,“没有流行病学证据可以验证阿斯巴甜能引起重大伤害或严重风险”。美国FDA为它制定了每公斤体重50毫克的安全摄入量。   当然,作为阿斯巴甜的主要生产者和推动者,美国拥有很多与之相关的专利,所以始终有人怀疑这里面有利益绑架的嫌疑。但世界各国的权威机构几乎都认可了阿斯巴甜的安全性,世界卫生组织下属的食品添加剂联合专家委员会(JECFA)两次对其安全性进行评估。在动物身上做实验证明,每公斤体重4000毫克也未出现不良反应(NOAEL),考虑到各种不确定因素,设定100倍保险系数,最后确立每公斤体重40毫克为安全摄入水平(ADI)。有100多个国家依此批准它作为食品添加剂使用,包括历来以保守、苛刻着称的欧洲。   最近欧盟食品安全局(EFSA)又一次为阿斯巴甜出具了“安全证明”,之所以说“又”,因为他们在2011年的时候就已经给出结论“阿斯巴甜是安全的”。EFSA对现有证据重新进行了梳理和细致研究,最终再次认定,对于普通人群而言,每公斤体重40毫克的摄入水平是非常安全的,这相当于一个60公斤体重的成年人每天吃2.4克,吃一辈子也没事。   阿斯巴甜是蔗糖甜度的200倍,所以2.4克差不多可以提供1斤白糖的甜度。相对而言,每天2.4克阿斯巴甜或1斤白糖,你会选择哪一个呢?以某品牌的无糖饮料为例,355mL罐装饮料约含有阿斯巴甜180毫克,相当于每天要喝13罐,如果换成含糖饮料呢?对于这样的“吃货”,我真的觉得甜味剂是最后的救命稻草了。   对于网络上传说阿斯巴甜的各种“健康危害”,EFSA的评估结果都予以了否认。他们综合大量研究结果认为,阿斯巴甜不会损伤大脑和神经组织,也不会影响人的行为和认知功能,包括儿童。对于孕妇来说,在当前的安全摄入量下,阿斯巴甜不会影响胎儿的发育(有苯丙酮酸尿症的孕妇除外)。基于动物和人体的充分研究证据,EFSA也排除了阿斯巴甜的致癌可能,这与国际癌症研究中心的资料是吻合的,我没有在致癌物列表中看到它的身影。   对于阿斯巴甜安全性的担忧还来自于它的代谢物,它在体内会降解为苯丙氨酸、天冬氨酸和甲醇。甲醇不是有毒的吗?实际上,水果、蔬菜中也会天然含有少量甲醇,比如果汁生产中,果胶水解会生成甲醇,新鲜果汁甲醇含量可以达到每升一百多毫克,酿制的果酒中甲醇可以达到每升数百毫克甚至更多,而一升无糖饮料中的阿斯巴甜最多生成几十毫克甲醇。所以EFSA的总体结论是,阿斯巴甜的降解产物和我们每天正常吃进去的同类物质相比是“毛毛雨”。当然EFSA也指出,“苯丙酮酸尿症”患者应当避免摄入阿斯巴甜,因为苯丙氨酸的缘故。   我知道还会有人心存疑虑,明明有“科学证据”证明阿斯巴甜有害健康,为什么你故意视而不见?就和法国人做的“转基因玉米导致大鼠肿瘤”一样,个别研究的“惊人”结论往往出自不符合科学规范的实验设计、统计方法等,而搅动舆论的恰恰是它们。相对于个别研究,我更信任经过严格筛选的科学证据集合,比如上述的EFSA评估结果以及之前JECFA的评估。   阿斯巴甜的安全性经历了多年的争论,这次欧盟的评估结论或许能让争论暂时告一段落,但围绕“人造”、“化学合成”物质的安全性争论不会走远,人们对“安全”的渴望也会促使科学界不断的深入研究,去探索人类健康的奥秘。对于我个人来说,我是不担心它的安全性的,在超市选择碳酸饮料的时候还会特意选择使用甜味剂的品种。虽然我也知道平衡膳食、多运动才是王道,但还是义无反顾的选择用甜味剂去平衡我的懒。
  • Cell Research报道NgAgo“有效” 韩春雨实验仍不可重复
    NgAgo 又搞事情了。  11月11日,Nature 旗下生命科学期刊 Cell Reseach 在线刊登了中国南通大学神经再生重点实验室副教授刘东团队关于 NgAgo 研究的最新成果——他们发现 NgAgo 系统确实有效!在这篇题为 NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish 的 Letter to the editor 中,研究者观察到,NgAgo 确实可以改变斑马鱼的表型,但这并非是通过基因编辑实现的。事实上,团队通过实验得出结论,NgAgo 系统可以在不改变目标基因序列的情况下,对基因表达实现 knockdown(即下调其目标 mRNA 表达水平),且这可能与 NgAgo 的基因剪切活性没有关系。  文章作者同时强调,他们没有在斑马鱼中观察到 NgAgo 系统的基因编辑功能。  所以,曾经的“基因编辑工具”  真正作用是 knockdown ?!  我们这里先简单介绍一下以上的几个结论是怎么做出来的。  首先,NgAgo 可以改变斑马鱼的表型,但与基因编辑无关  研究者选择了斑马鱼中一个名叫 fabp11a 的基因作为 NgAgo 的“调控”对象。这个基因可以编码一种脂肪酸结合蛋白,可以调节葡萄糖及脂质的稳态,还有炎症反应。除了试试 NgAgo,研究者还想看看 fabp11a 在斑马鱼胚胎发育过程的作用,于是,他们将编码 NgAgo 的 mRNA 和设计好的 5’-磷酸化单链 DNA 一起注射到了单细胞时期的斑马鱼胚胎中。  为了确保注射的 NgAgo mRNA 能够进入细胞核表达 NgAgo 蛋白,研究者专门在 mRNA 的两端增加了细胞核的定位序列(NLS) 而 5’-磷酸化单链 DNA 专门靶向 fabp11a 的第二和第三个外显子——如果 NgAgo 能编辑基因,这两段基因序列将会被改变。是:NgAgo 的存在,使 30% 的斑马鱼胚胎在发育后出现了眼部畸形,但这不是基因编辑的结果(*3)!  测序发现,fabp11a 的基因没有发生任何变化,反倒是 fabp11a mRNA 的相对表达量下降了约50%。  fabp11a 没有被编辑,但被knockdown 了。  其次,NgAgo 的 knockdown 作用在斑马鱼中存在普遍性。  NgAgo 对 fabp11a mRNA 表达的下调是一个意外吗?为了验证这一点,研究人员又对斑马鱼中的其他四个基因进行的测试,结果发现,在靶向 ta、kdrl、 lama1 和 flt1 这4个基因时,NgAgo 都能实现 knockdown 作用,并且改变基因所对应的表型。  NgAgo 的 knockdown 作用是具有普遍性的。  最后,作者没有在 NgAgo 中重复出基因编辑功能  河北科技大学教授韩春雨此前在《自然-生物技术》上发表的文章显示,NgAgo 系统可以在 37° C 的条件下对人细胞进行基因编辑,编辑效率为 11.2%-41.3%。研究者在确保半数以上的实验斑马鱼胚胎能正常发育的条件下,将实验温度设定为 37° C。然而结果显示,NgAgo 系统在这一条件下仍没有表现出任何基因编辑活性——尽管 knockdown 效应仍然存在。  有趣的是,当研究者将 NgAgo 中两个天冬氨酸位点进行突变 —— 有研究预测,这两个位点与 NgAgo 的基因剪切催化活性有关,并没有对实验中出现的 knockdown 效应产生影响。 这说明,研究者观察到的 knockdown 效应可能与NgAgo 的基因剪切活性没有关系。  最后,研究者以这样一句话结束了本篇文章:  ??we hypothesize that gDNA/NgAgo may bind to a target gene to block its transcription. Overall, we suggest that the gDNA/NgAgo system provides an alternative strategy for gene knockdown in zebrafish.  我们提出一种假设,即 gDNA/NgAgo 的作用可能是结合目标基因,从而阻碍基因的转录。总的说来,我们认为 gDNA/NgAgo 为斑马鱼中的基因knockdown 提供了一种替代方案。  为斑马鱼中的基因 knockdown 提供了一种替代方案。  为基因 knockdown 提供了一种替代方案。
  • 冷冻电镜助施一公再发Nature文章
    2014年6月29日,清华大学生命科学学院施一公研究组在《自然》(Nature)杂志以长文形式(Article)在线发表了题为&ldquo Three dimensional structure of human g-secretase&rdquo 的科研论文,在世界上首次报道了与阿尔兹海默症(老年痴呆症)发病直接相关的人源g-secretase的精细三维结构,为理解g-secretase的工作机制以及阿尔兹海默症(Alzheimer&rsquo s Disease, AD)的发病机理提供了重要线索。   阿尔兹海默症是一类神经退行性疾病,临床表现为脑组织切片中出现淀粉样斑块,神经元逐渐死亡,认知和记忆能力受损,大脑功能逐渐丧失,病人逐渐丧失独立生活能力,最后脑功能严重受损直至死亡。美国前总统里根和英国前首相撒切尔夫人都罹患该疾病。据不完全统计,我国目前大约有500万阿尔兹海默症患者,占世界发病总数的四分之一。由于缺乏特效药物,该疾病不但给病人及家属造成极大痛苦,也同时带来沉重的社会负担。   阿尔兹海默病的发生和大脑中淀粉样斑块的形成密切相关   研究证明:淀粉样斑块是由膜整合蛋白酶复合物g -secretase异常切割淀粉样前体蛋白APP (amyloid precursor protein)而产生过量易聚集的Ab42肽段所致。g -secretase是由四个膜整合蛋白组成的包含19次跨膜螺旋的复合体,包括早老素Presenilin (PS1), Aph-1, Pen-2和Nicastrin四个亚基,其中Presenilin是执行酶活功能的膜整合蛋白酶(intramembrane protease)活性亚基。目前已经在Presenilin上鉴定出一百多个与阿尔兹海默症有关联的氨基酸突变。解析g -secretase的三维结构,并在此基础上理解其正常工作及致病机理,不仅具有重大科学意义,也将对阿尔兹海默症的药物研发起到重要的指导作用。   施一公研究组揭示g分泌酶复合物三维结构   然而,膜蛋白的结构生物学研究极具挑战性。要进行结构鉴定,最关键的一步是获得纯度高、化学性质均一稳定、有活性的g -secretase复合物。施一公在清华大学建立实验室之后立即针对这个难题启动攻坚。经过大量系统的尝试,以及对表达和纯化方法的不断改造和优化,他们历经数年最终利用瞬时转染技术在哺乳动物细胞中成功过量表达并纯化出纯度好、性质均一、有活性的g -secretase复合体。通过与英国MRC分子生物学实验室合作,对获得的复合物样品进行了冷冻电镜(Cryo-EM)的分析和数据收集,最终获得了分辨率达到4.5埃的g -secretase复合物三维结构。   这项研究成果让人类第一次看到了g-secretase的真实形状、组成、和几乎所有的蛋白质二级结构(a-螺旋和b-折叠)。该结构显示,g -secretase膜内部分呈马蹄型,全部19个跨膜螺旋清晰可辨。在胞外区有一个分子量较大、分辨率相对更高的结构域,即负责底物识别的Nicastrin亚基的胞外结构域,其原子结构模型得到构建,并初步显示出底物结合的可能位点。   值得一提的是,膜整合蛋白酶主要负责蛋白质受控膜内水解(Regulated Intramembrane Proteolysis, RIP)这一重要生理过程,即跨膜肽链在磷脂双分子层中被膜整合蛋白酶水解剪切的反应。这是二十年前被发现的一个重要的细胞信号转导过程,在从细菌到人类的各种生物体内广泛存在,并参与了生物体发育、胆固醇代谢、胁迫反应等生命活动。膜整合蛋白酶包括三大类蛋白,即丝氨酸蛋白酶Rhomboid, 金属蛋白酶S2P以及天冬氨酸蛋白酶Presenilin和SPP。施一公研究组在过去十年引领着蛋白质受控膜内水解结构生物学研究领域的发展,先后解析了细菌Rhomboid同源蛋白GlpG, 古细菌S2P同源蛋白,以及古细菌Presenilin同源蛋白的晶体结构并揭示了这些膜整合蛋白酶的工作机理。此次获得的g -secretase复合物的三维结构将该领域又向前推进了重要的一步。   注释:   该论文的第一作者卢培龙是生命学院博士研究生。共同第一作者白晓晨博士曾经师从生命学院隋森芳院士,获得清华大学博士学位后在剑桥MRC分子生物学实验室Sjors H.W. Sheres课题组从事博士后研究。共同第一作者马丹也是生命学院博士研究生。此外,清华大学生命学院在读博士研究生谢田、闫创业、孙林峰、杨光辉、赵艳雨和周瑞也对本研究做出重要贡献。   本工作获得了科技部、自然科学基金委、清华-北大生命科学联合中心的经费支持。
  • 我国科学家揭示细胞程序性坏死及免疫稳态调控新机制
    近日,中国科学院上海营养与健康研究所研究员章海兵团队在Cell Death and Differentiation上在线发表题为Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia的研究成果。该研究揭示了细胞凋亡起始蛋白caspase-8的自我剪切抑制细胞程序性坏死并协同坏死关键蛋白RIPK3/MLKL抑制淋巴细胞减少的免疫缺陷性疾病的发生。   细胞程序性坏死(Necroptosis)是一种由激酶RIPK1/RIPK3的级联磷酸化调控的促炎细胞死亡形式。细胞程序性坏死通过MLKL蛋白聚合在膜上打孔裂解细胞膜,执行细胞死亡并释放损伤相关分子模式(DAMPs)触发炎症反应。已知细胞程序性坏死参与调控系统性炎症反应综合征(SIRS)、系统性红斑狼疮及自身免疫性的淋巴增生综合征(ALPS)等多种疾病。因此,对于细胞程序性坏死机制及其生物学意义的研究对于相关疾病的防治具有重要意义。  Caspase-8是天冬氨酸特异的半胱氨酸蛋白酶,最初被鉴定为细胞凋亡途径的起始蛋白。近几年的研究表明,caspase-8通过剪切RIPK1来抑制细胞程序性坏死。除此之外,caspase-8还参与细胞免疫稳态调控。临床上Caspase-8基因突变的病人会出现免疫缺陷疾病,并伴有免疫系统紊乱,表现为多器官的免疫细胞浸润并出现肉芽肿。研究发现Caspase-8通过其催化活性发挥功能,并且caspase-8的完全激活需要进行自我剪切。因此,探究caspase-8的自我剪切在调控免疫稳态中的作用机制,对于深入了解caspase-8的作用机制及相关临床疾病的治疗具有重要意义。  该研究中,研究人员首先发现在细胞程序性坏死刺激条件下,caspase-8的自我剪切出现诱导性增强,因此推断caspase-8的自我剪切可能参与程序性坏死的调控。通过构建caspase-8自我剪切突变小鼠(Casp8ΔE385/ΔE385)发现,该小鼠可以抵抗细胞凋亡诱导的急性肝损伤,但高度敏感于程序性坏死诱导的全身炎症反应综合征(SIRS),该结果在动物水平证明caspase-8自我剪切可以促进细胞凋亡并抑制程序性坏死。同时,研究人员进一步通过分离原代细胞实验证明caspase-8自我剪切负调控死亡复合体II的形成和稳定,从而抑制细胞程序性坏死的发生。此外,研究人员发现Casp8ΔE385/ΔE385小鼠患有轻微的脾脏肿大及CD8+T淋巴细胞减少性疾病(T cell lymphopenia)。在Casp8ΔE385/ΔE385小鼠中同时敲除坏死关键蛋白RIPK3/MLKL时,Casp8ΔE385/ΔE385Ripk3-/-和Casp8ΔE385/ΔE385Mlkl-/-小鼠出现更为严重的脾脏肿大及淋巴结肿大,其脾脏、淋巴结、外周血以及骨髓中的B细胞和T细胞及其各亚群均出现明显减少,鉴定为淋巴细胞减少的免疫缺陷性疾病(lymphopenia)。研究人员通过减少Casp8ΔE385/ΔE385Ripk3-/-和Casp8ΔE385/ΔE385Mlkl-/-小鼠中另一坏死调控蛋白RIPK1的表达剂量可以逆转上述表型,证明RIPK1在调控淋巴细胞减少疾病中的剂量调控效应。  该研究发现caspase-8通过自我剪切破坏死亡复合体II的稳定性,进而抑制细胞程序性坏死的发生。同时证明了caspase-8通过自我剪切协同坏死调控蛋白RIPK1/RIPK3/MLKL抑制淋巴细胞减少的免疫缺陷性疾病的发生,为免疫系统稳态调控的研究及淋巴细胞减少为特征的免疫缺陷性疾病的治疗提供新思路。  论文链接
  • 经常吃外卖的注意了,李兰娟院士团队最新研究,微塑料可导致肝毒性
    微/纳米塑料(MNPs)在人类肝脏中被检测到,并对人类健康构成重大风险。口服暴露于不可生物降解塑料衍生的微/纳米塑料可诱导小鼠肝脏毒性,鼻腔暴露于不可生物降解塑料会导致小鼠气道生态失调。然而,食源性和空气中可降解微/纳米塑料引起的肝毒性尚不清楚。近年来,科学家在人类的肠胃、肺部以及胎盘等多个器官中发现了MNPs;去年,来自首都医科大学的研究学者竟在与外部环境没有接触的器官「心脏及其周围组织」中监测到MNPs,说明MNPs的污染已达到了人体最深的解剖结构。按照重量估计,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量!还真是活到老,吃塑料到老。微塑料在人体内的分布情况 李兰娟院士团队在Environmental Science and Ecotechnology上发表的文献“Polylactic acid micro/nanoplastic-induced hepatotoxicity:Investigating food and air sources via multi-omics”揭示了生物可降解聚乳酸微/纳米塑料的肝毒性作用。 本研究通过对接触微塑料和纳米塑料的小鼠的肠道、粪便、鼻、肺、肝和血液样本的多组学分析,本研究揭示了生物可降解聚乳酸微/纳米塑料的肝毒性作用。研究结果表明,食源性和空气中的生物可降解聚乳酸微/纳米塑料都会损害肝功能,破坏血清抗氧化活性,并导致肝脏病理。食源性微/纳米塑料导致肠道微生物失调、肠道和血清的代谢改变以及肝脏转录组变化。空气传播的微/纳米塑料影响鼻和肺的微生物群,改变肺和血清代谢物,并破坏肝脏转录组。 本研究共纳入了60只雄性无特定病原体的癌症研究所小鼠,用聚乳酸(PLA)纳米塑料颗粒(NP,50纳米)和微塑料颗粒(MP,5毫米)处理小鼠:PLA NPs(50纳米)和MPs(5微米)。小鼠随机分配到六个组,即食物NP组(FQ)、食物MP组(FR)、食物对照组(FNC)、空气NP组(AQ)、空气MP组(AR)和空气对照组(ANC),每组10只。它们被饲养在22℃、光照/黑暗周期为12:12的环境中,持续7天以适应新环境。 在食源性MNP部分,FQ组、FR组和FNC组的小鼠每天分别口服100毫升含有0.2毫克NPs、0.2毫克MP和0毫克MNPs的无菌水。在麻醉小鼠以收集血液、肝脏、粪便和结肠之前,每天进行口服灌胃,持续六周。 在空气传播MNP部分,AQ组、AR组和ANC组的小鼠分别通过鼻腔给予10毫升含有0.03毫克NPs、0.03毫克MP和0毫克MNPs的无菌盐水。在麻醉小鼠以收集鼻腔组织、肺、肝脏和血液之前,每三天进行一次鼻腔暴露,持续42天。 进一步对血清转氨酶(天冬氨酸转氨酶(AST)和丙氨酸转氨酶(ALT))及抗氧化生物标志物(总抗氧化能力(T-AOC)和超氧化物歧化酶(SOD))测定、对小鼠结肠肝脏组织学分析,对小鼠粪便、鼻腔和肺部样本提取DNA及转录组分析。图1:实验组和对照组血清生化参数和组织学变化 实验结果表明,相比于对照组,接触食物或空气纳米微塑料的小鼠转氨酶明显增高,食入纳米微塑料小鼠组的血清T-AOC水平降低。食入纳入微塑料小鼠肝脏中确定存在肝细胞肿胀、点状坏死、细胞空泡化和核固缩。鼻腔注入纳米微塑料小鼠组(AQ和AR组)除肝脏观察到上述变化外,肺部还观察到出血、炎性细胞浸润和渗出物。 转录组学进一步分析提示食源性纳米微塑料改变肠道微生物群组成。食入纳米塑料组和食入微塑料组的细菌科中,毛螺菌科丰度最高,而食物对照组中最丰富的细菌科是乳杆菌科。 食物NP组(FQ)、食物MP组(FR)、食物对照组(FNC)之间的肠道代谢谱存在差异,食物NP组和食物MP组分别有752个和637个肠道代谢物发生改变。FQ组、FR组和FNC组的血清代谢谱之间食物NP组(FQ)、食物MP组(FR)、食物对照组(FNC)之间也存在差异,食物NP组和食物MP组共有832种和753种血清代谢物发生改变。图2:实验组和对照组肺微生物群的主要成分及多样性指标 食物NP组(FQ)、食物MP组(FR)和食物对照组(FNC)之间的肝脏转录组谱存在某些差异。食物NP组和食物MP组分别有307和262个肝脏差异表达基因(DEGs)发生改变。鼻腔注入纳米微塑料小鼠组(AQ、AR和ANC组)之间的肺部代谢谱存在差异。AQ和AR组分别升高了864和596种肺部代谢物。AQ、AR和ANC组之间的血清代谢谱也存在差异。AQ和AR组分别有503和664种血清代谢物发生改变。在食入纳米微塑料组中,显著上调的基因富集在炎症和氧化应激相关的通路中。而在鼻腔注入纳米微塑料小鼠组中,显著上调的基因则富集在炎症和代谢相关的通路中。
  • 蛋白质测序技术发展漫谈(上)
    本期中国科学院大连化物所单亦初老师将分享蛋白质测序技术的发展,本次分享将以连载形式以飨读者。蛋白质一级结构是组成蛋白质的氨基酸序列。蛋白氨基酸序列分析是确定蛋白质全部氨基酸序列的过程。通过蛋白质测序获得的信息有许多用途,包括:蛋白质的鉴定;合成可用作免疫原的肽段;用于治疗的抗体仿制产品的研发;以市场上销售的抗体试剂为基础进行抗体药物研发。目前的蛋白质测序方法主要分为三类:基于PCR扩增的蛋白质测序、Edman降解测序以及基于质谱的蛋白质测序。基于PCR扩增的蛋白质测序是利用细胞中表达的DNA或者RNA进行基因测序,然后再按照氨基酸密码子表转换为蛋白质的氨基酸序列,本质上属于基因测序技术。Edman降解测序是较早发展的蛋白质测序技术,利用化学方法从蛋白质的N端将氨基酸依次降解,再使用高效液相色谱对氨基酸进行鉴定。但是这种方法只能用于鉴定蛋白质和多肽的N-末端氨基酸残基(通常是几个-十几个残基,最多不超过四十个残基),无法对大的蛋白质进行全序列测定。此外,Edman降解法也有一定的局限,例如N末端封闭或有化学修饰的情况下将不能使用Edman降解法对蛋白质序列进行分析。目前使用最广的蛋白质测序方法是质谱法,较Edman降解法而言,其优点在于,质谱法更敏感,可以更快地裂解肽,可以识别末端封闭或修饰的蛋白质。基于质谱的蛋白质测序策略可分为两大类:自上而下策略(Top-Down)和自下而上(Bottom-Up)策略。自上而下的策略无需对蛋白质进行降解,直接使用LC-MS对完整蛋白质进行分析,根据谱图中碎片离子确定其序列;自下而上策略是先将蛋白质水解成肽段,通过LC-MS对肽段检测,再对肽段从头测序以及序列拼接从而得到完整蛋白质序列。图 :蛋白质序列测定原理Kira Vyatkina[1]通过自上而下的策略发展了一种Twister测序算法对单克隆抗体测序,虽然不需要使用蛋白酶酶解,减少了蛋白质预处理的步骤,但仅可以鉴定到抗体的序列片段。Liu[2]结合自上而下和自下而上两种策略发展了TBNovo测序算法对蛋白质进行测序,将自上而下的质谱数据作为抗体序列的骨架,再将胰蛋白酶酶解肽段的质谱数据对骨架的序列进行补充覆盖。由于特异性蛋白酶酶解后肽段种类少、覆盖率低,对抗体的轻链和CAH2区的测序覆盖率为86.9%和75.2%。Sen[3]发展了一种基于同源数据库搜索与从头测序结合的Supernovo测序算法,通过4种蛋白酶对单克隆抗体分别酶解,该测序方法仅可实现对抗体重链的可变区测序,无法对抗体全序列进行测定。Savidor[4]发展了一种蛋白质全序列从头测序的方法。将蛋白质在微波辅助下快速酸解,得到了种类丰富的肽段,使用其发展的肽段序列拼接算法——“肽段标签组装”(Peptide Tag Assembler,PTA),对从头测序的肽段进行序列拼接,但由于酸解的消化方式会使谷氨酰胺和天冬酰胺发生脱酰胺化,分别变为谷氨酸和天冬氨酸,降低了对蛋白质序列测定的准确度。为了解决蛋白质测序覆盖度低、准确度低的问题,我们发展了一种蛋白质全序列测定新方法[5]:该方法使用多种非特异性蛋白酶对蛋白质连续酶解,提高蛋白质酶解肽段种类和重叠度,从而提高蛋白质测序的覆盖度;此外,发展了一种序列拼接算法,根据从头测序得到的肽段序列中每个氨基酸的得分值和出现次数,对蛋白质序列进行组装和拼接,显著提高了蛋白质全序列测定的准确度。利用该测序方法对牛血清白蛋白的多种非特异性蛋白酶酶解后的肽段序列进行测序和拼接,实现了对牛血清白蛋白全序列100%准确度的测定。此外,将该方法应用于对乳腺癌药物单克隆抗体赫赛汀的全序列测定,重链和轻链的测序准确度分别达到99.6%和100%。参考文献[1] K V. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence [J]. Proteomes, 2017, 5(1), https://doi.org/10.3390/proteomes5010006[2] LIU X, DEKKER L J M, WU S, et al. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra [J]. J Proteome Res, 2014,13(7): 3241-3248.[3] KI S, WH T, S N, et al. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery [J]. J Am Soc Mass Spectrom, 2017, 28(5): 803-810.[4] SAVIDOR A, BARZILAY R, ELINGER D, et al. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination [J]. Mol Cell Proteomics, 2017, 16(6): 1151-1161.[5]杨超,单亦初,张玮杰等,基于非特异性蛋白酶连续酶解的蛋白质全序列测定方法,化学学报,修稿中。作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • 新增地黄、麦冬、天冬、化橘红4种按照传统既是食品又是中药材的物质!
    麦冬、天冬、地黄和化橘红都是中国传统中药材,它们在中医理论组方、多种经典名方中被广泛应用。2024年4月23日,中国国家卫生健康委食品司向各省健康单位定向发布了一份征求意见的函件,征求将地黄、麦冬、化橘红和天冬这四种物质纳入《按照传统既是食品又是中药材的物质目录》中。2024年8月26日,国家卫生健康委员会、国家市场监督管理总局发布关于地黄等4种按照传统既是食品又是中药材的物质的公告(2024年第4号),将地黄、麦冬、天冬、化橘红等4种物质纳入按照传统既是食品又是中药材的物质目录。批准后可以在食品领域合法应用,它们可以用来作为日常食材,如煲汤、煮粥、炒菜、糕点等,企业也可以用它来开发各种产品,如茶饮、糖果、补充剂等。附件 地黄等 4 种新增按照传统既是食品又是中药材的物质目录注:a.铅、镉、砷、汞、二氧化硫分别按 GB5009.12、GB5009.15、GB5009.11、GB5009.17、GB5009.34规定的方法测定,农药限量应符合农业农村部的相关规定;b.限量值基于干品确定,鲜品根据干品按水分进行折算。地黄等4种新增食药物质科普解读
  • 代糖食品安全性存争议
    用人工合成的甜味剂来取代天然蔗糖增加食物的甜度和口感,是食品行业一条默认的规则。但是,一个如影相随的问题是——甜味剂安全吗?   由于可能会引发不安全的后果,因甜味剂而禁售的食物屡见不鲜。2009年6月10日,委内瑞拉就以零度可口可乐中添加了甜蜜素为由将其封杀,尽管可口可乐声明在中国的同类产品使用的甜味剂是阿斯巴甜,但仍然有许多人开始对零度可口可乐敬而远之。   究竟阿斯巴甜是什么,甜蜜素又是什么,二者有何不同?其实,两者都是甜味剂。甜味剂有效解决了蔗糖成本高、能量高等不足,而且其甜度与蔗糖相比只有过之而无不及。因为用在食品中也会让人产生“甜”的感觉,所以甜味剂的名字也叫“代糖”。   与天然的蔗糖相比,种类繁多的甜味剂被有针对性地用于食品中,比如,中国允许甜蜜素作为甜味剂使用在酱菜、调味酱汁、配置酒、糕点、饼干、面包、雪糕、冰淇淋、冰棍、饮料等食品中,而阿斯巴甜则被允许用于乳制品、糖果、巧克力、胶姆糖、餐桌甜味剂、保健食品、腌渍物和冷饮制品等,这是因为阿斯巴甜在高温或高pH值情形下会水解,因此不适于需用高温烘焙的食品。   说专业一点,甜蜜素是环己基氨基磺酸钠,是由氨基磺酸与环己胺及氢氧化钠这两种有机化学制剂反应而成的,甜度是蔗糖的30倍,价格却仅为后者的3倍。而阿斯巴甜化学名天门冬酰苯丙氨酸甲酯,是由苯丙氨酸先与甲醇反应后再和天冬氨酸酯化产生,是一种非碳水化合物类的人造甜味剂,甜度更甚甜蜜素,是蔗糖的200倍,价格为后者的70倍。蔗糖、甜蜜素和阿斯巴甜的单位甜度价格比(价格/甜度)为1:0.1:0.35,要达到同样的甜度,蔗糖的单位价格是最高的,最不经济实惠。   然而,1966年的一项研究报告显示,甜蜜素或许会增加患膀胱癌的几率,因此美国和英国先后于1969年和1970年发布了禁用甜蜜素作为食品添加剂的禁令。之后,也有研究认为甜蜜素会导致睾丸萎缩因而增加患膀胱癌的几率。甚至还有人发现甜蜜素似乎影响到精子的产量,因此推理其可能会损害男性生殖基因。对于这些研究结果,至今似乎还没有任何其他支持或反对的证据。   事实上,即使在那些还没有对甜蜜素发布禁令的国家,也已经制定出来了限量使用的标准。根据中国《食品添加剂使用卫生标准》(GB2760-2007)的规定,就引发争议的可乐而言,甜蜜素的最大使用量为0.65g/kg(与糕点和雪糕、冰淇凌等一致)。   根据该标准,另一种充满了争议的甜味素——阿斯巴甜则被注明“按生产需要而适量添加”,国家标准并没有对它做出确切的定量。这与国际粮农组织和世界卫生组织的规定不同。1984年,两家机构规定阿斯巴甜在饮料中的使用量不能超过0.1%。事实上,阿斯巴甜的使用很早就引起了广泛的争议。有些研究发现不能排除阿斯巴甜引发脑瘤、脑损伤以及淋巴癌等严重后果的可能性。   美国食品药物管理局曾经为此延期数年才允许在食品中添加阿斯巴甜。这些早期的实验结果与阿斯巴甜的生产企业有明显的利益冲突,当然也在审批认证过程中引起很大争议。参考了更多的实验结果后,美国食品药物管理局自1983年逐渐放宽阿斯巴甜的使用限制,直至1996年终于取消所有限制。中国农业大学教授何计国介绍,长期过量摄取阿斯巴甜会对身体产生毒性。这是因为阿斯巴甜会在消化道内被分解成苯丙氨酸、天门冬氨酸和甲醇,天门冬氨酸会造成脑部伤害、内分泌失调或肿瘤,而甲醇在体内可以代谢成甲醛和甲酸等有害物质,先天性苯丙氨酸羟化酶缺陷患者如果服用苯丙氨酸会导致智力发育障碍,这被称为苯丙酮尿症。而且,怀孕中的妇女最好也不要摄入阿斯巴甜。   资料表明,已经有近100个国家批准阿斯巴甜作为甜味剂,其中一些国家使用已经超过了20年。在动物实验中每千克体重每天摄入4000毫克阿斯巴甜也尚未观察到危害。欧洲的食品科学委员会(SCF)在2002年重审了关于阿斯巴甜的研究并再次确认食用阿斯巴甜是安全的,2007年发表在《Critical Reviews in Toxicology》上的综述也列明迄今为止没有证据表明阿斯巴甜有安全性的问题。   但阿斯巴甜还是处于争议中。   2008年,菲律宾有议员希望能在该国禁用阿斯巴甜。同年,美国新墨西哥州通过禁用阿斯巴甜法案。最新的消息是,英国食品标准署在其网站上发表了一份声明,称将开始对阿斯巴甜展开新的研究,聚焦为何有人报告食用后引发头痛、腹痛等不同的症状。从阿斯巴甜的例子可以看出,各国对某一种甜味剂的使用和限量是不尽相同的。   不管是用了甜蜜素还是阿斯巴甜,对于零度可乐的死忠粉丝来说,需要认清的是关于“无糖依然可乐”的另外一个真相。因为热量低,无糖可乐受到糖尿病患者和减肥人士的喜爱,但无糖只是不含蔗糖,其实里面还是有糖分的。如果将其视为绝对不含糖分而肆意摄入,那和摄入高糖食品其实没什么本质性的区别,所以要小心掉入甜蜜的陷阱里!   相关链接:   添加甜蜜素,各国标准不同   1969年之前,甜蜜素被公认为安全物质。1969年美国国家科学院研究委员会收到有关甜蜜素为致癌物的实验证据,美国食品药物管理局为此立即发布规定严格限制使用,并于1970年8月发出了全面禁止的命令。1982年9月,Abbott实验室和能量控制委员会在大量试验事实的基础上,以最新的研究事实证明甜蜜素的食用安全性,许多国际组织也相继发表大量评论明确表示甜蜜素为安全物质。虽然美国食品药物管理局至今还没有最终解决这个问题。但是,目前仍有许多国家(包括中国)继续承认甜蜜素的甜味剂地位,允许甜蜜素的使用。   中国:   根据中国《食品添加剂使用卫生标准》(GB2760-2007)的规定   酱菜、调味酱汁、配置酒、糕点、饼干、面包、雪糕、冰淇淋、冰棍、饮料等最大使用量为0.65g/kg   蜜饯最大使用量为1.0g/kg   陈皮、话梅、话李、杨梅干等最大使用量8.0g/kg。   日本、美国、英国:禁止使用   欧盟:   非酒精饮料,降能或不含糖水性加香饮料,降能或不含糖的牛乳和牛乳派生基质的制品或果汁基质的饮料,使用最大限量为0.25g/L 甜点及类似产品、降能或不含糖水性加香饮料、降能或不含糖的牛乳和牛乳派生基质的制品、降能或不含糖果蔬基质甜点、降能或不含糖蛋基质甜品、降能或不含糖的谷物基质甜点、降能或不含糖的油脂基质甜点,最大使用限量为0.25g/kg 糖制食品,降能或不含糖的可可、牛乳、水果干或油脂基质的三明治涂抹食品,降能或不含糖的罐装的水果,使用的最大限量为0.5g/kg 降能的果酱果冻和橘子,最大使用限量为1g/kg。