当前位置: 仪器信息网 > 行业主题 > >

卡非氨酯

仪器信息网卡非氨酯专题为您提供2024年最新卡非氨酯价格报价、厂家品牌的相关信息, 包括卡非氨酯参数、型号等,不管是国产,还是进口品牌的卡非氨酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合卡非氨酯相关的耗材配件、试剂标物,还有卡非氨酯相关的最新资讯、资料,以及卡非氨酯相关的解决方案。

卡非氨酯相关的资讯

  • 普洱咖啡协会立项《咖啡豆中草甘膦及其代谢物氨甲基膦酸残留量的测定 液相色谱-质谱/质谱法》团体标准
    各有关单位:根据《普洱咖啡协会团体标准制定程序》的相关规定,经我会标准化技术委员会研讨、审查,批准《咖啡豆中草甘膦及其代谢物氨甲基膦酸残留量的测定 液相色谱-质谱/质谱法》团体标准进行立项,我会将牵头开展团体标准的制订工作。如有单位或个人对该标准项目存在异议,请在公告之日起五个工作日内将意见反馈至我会秘书处。同时欢迎与该团体标准有关的高等院校、科研机构、相关企事业单位、社会组织、专家学者等加入标准的研制工作,有意参与该团体标准研制工作者请与我会秘书处联系。联系人、手机:许祐慈(13987941464)电子邮箱:987604287@qq.com地址:云南省普洱市思茅区康平大道6号普洱咖啡协会二〇二三年七月十八日 团体立项的通知.pdf
  • 文献解读丨可见光促进Katritzky盐通过脱氨烷基化反应合成β ,γ -不饱和酯类
    本文由中国科学院大学协同创新实验室所作,文章发表于Oganic Letters (Org. Lett.2021, 23, 5, 1577–1581)。 可见光促进的脱氨烷基化反应已经成为一个化学合成的重要研究方向,从廉价易得的原料出发合成羰基化合物是现代合成科学的重要目标,而β,γ-不饱和羰基化合物因其独特的活性特征,日益成为有价值的合成砌块。传统方法合成β,γ-不饱和羰基多建立在过渡金属催化的交叉偶联反应,如钯、镍或铜催化下的烯醇和烯基卤代物、烯基磺酸化合物等反应(图1A)。近年来,可见光促进的脱氨烷基化反应已经成为多样化烯烃制备的重要手段(图1B), 而利用弱相互作用EDA形成的策略,该课题组发现仅仅通过碱金属盐(例如,NaI, NaOAc, K2CO3等)便可以与N-羟基邻苯二甲酰亚胺酯(NHPI esters)以及系列吡啶盐等形成EDA复合物(图1C)。据此,作者推测仅仅通过碘化钠和Katritzky盐就可以直接形成EDA复合物,产生的烷基自由基与双键偶联,再生成相应的产物(图1D)。通过可见光促进EDA复合物引发的Katritzky盐与烯烃的脱氨基烷基化反应,成功实现了β,γ-不饱和酯类化合物的构建,该方法原料简单、条件温和,无需过渡金属催化和额外的添加剂,具有通用性。图1 首先进行反应条件的优化,分别以1a和2a为原料,在45℃的LED光照条件,DMA为溶剂,加入NaI(20% mol%)反应过夜后得到的偶联产物3a,获得了最优收率95%(图3)。由于这种弱相互作用形成的复合物是很难直接分离表征的,UV-vis光谱表征技术的发展为我们研究这种弱相互作用的形成提供了有利的检测手段。利用岛津UV-2550对反应中的各底物之间,底物与催化剂之间以及底物自身的紫外可见光谱进行表征测试,明确了碘化钠和Katritzky盐直接形成EDA复合物的猜想,为实验的机理研究提供了有力的证据(图2)。进一步对1a和NaI的EDA复合物进行了DFT计算,发现其溶剂化的络合自由能为9.6 kcal/mol。 除此之外,在实验条件优化过程中,作者还使用了GC-2010 plus,GCMS-TQ8040用于制作反应产率的标准曲线。对反应产物不易分离或者分离后难以提纯而又对产率有严格要求的反应体系,利用绘制的标准曲线,不仅能够得到准确快速的每次优化条件的产率值,而且大大减轻实验操作者工作量,能够提高实验效率,减少实验耗材的使用(图3)。 图2图3 随后,作者对于底物的适用性进行了扩展,对于系列苯丙氨酸衍生的含吸电子基或者供电子基的吡啶盐(3a-g)均可以顺利反应。此外,该方法可耐受多种官能团(3h-n)(图4)。同时,二苯乙烯上取代基的影响(3o-s)也被一并考虑,亦具有较好的结果;苯乙烯(3t)的反应也得到了相应的β,γ-不饱和产物,尽管产率有所降低,其具有很好的E/Z比率,取代的苯乙烯(3u-x)也得到相应的产物,但是E/Z比率出现降低。该方法也适用于肉桂酸(3t)为原料和吡啶盐的反应,各种取代肉桂酸(3y-b’)也容易发生反应,可以得到高E/Z比例的β,γ-不饱和酯(图5)。 图4图5 同时,对于反应机理,作者进行了详细的DFT计算并进行了阐释(图6)。 图6 本研究开发了一种更为简单的合成β,γ-不饱和羰基化合物的方法,只需要NaI和Katritzky盐即可实现。DFT计算研究表明二者间的弱相互作用力加速催化EDA的产生,并揭示了自由基反应的机理。该反应从廉价易得的原料出发,不使用过渡金属催化剂和任何添加剂,操作性强,通用性良好。 关联仪器 文献题目《Photoinduced α‑Alkenylation of Katritzky Salts: Synthesis of β,γ-Unsaturated Esters》 使用仪器岛津UV、GC、GCMS 作者Chao-Shen Zhang,† Lei Bao,† Kun-Quan Chen, Zhi-Xiang Wang,* and Xiang-Yu Chen*Corresponding Authors:Zhi-Xiang Wang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Xiang-Yu Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Authors:Chao-Shen Zhang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaLei Bao − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaKun-Quan Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China †C.-S.Z. and L.B. contributed equally. 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3. 文中涉及最优,最佳类描述,限于实验组别对比结果。4. 本文内容非商业广告,仅供专业人士参考。
  • 智云达研发的新产品——豆芽氨氮速测盒上市啦!
    豆芽作为芽苗菜中的一种,由于营养价值丰富,食用方便,烹调方法多样,集美容药用功效于一身,一直颇受广大消费者的亲睐。但是近来市场上频频曝光的“毒豆芽”事件,一度让消费者闻豆芽而色变。一些不法商贩在豆芽培育过程中违规使用铵盐、氨水类化肥,从而使得豆芽中含有大量的氨氮。北京智云达科技有限公司最新研发生产的豆芽氨氮速测盒上市了,本试剂盒适用于豆芽中氨氮的快速检测。 市场上销售的那些越是看似白净、粗壮且无根的豆芽越可能存安全隐患。一般正常培育豆芽要2-3天的时间,这样生产的豆芽一是浪费人力、物力和时间,同时自然生长的豆芽卖相不美观。铵盐、氨水类化肥含有大量的氨氮,作为化肥能促进植物生长,一些不法商贩为了加快豆芽生长,让豆芽卖相好看,为了一己私利违禁添加铵盐、氮水类化肥。 此试剂盒适合豆芽中氨氮测定,小包装方便携带,适合家庭、个人使用,且操作步骤简便,结果易于分辨。将显色管与色阶卡进行比较,即可读出豆芽中氨氮的含量。如果样品中氨氮含量≥50mg/kg,则样品为阳性样品,说明豆芽培育过程中使用了铵盐类化肥。 这些氨氮类物质在人体堆积对人体健康有潜在影响。氨氮可以在一定条件下转化成亚硝酸盐,亚硝酸盐对人体的危害大家早已心知肚明,如果长期饮用,亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。 北京智云达科技有限公司作为食品安全检测专家,为解决百姓身边的食品安全问题义不容辞。公司多年来已研发生产出200余种食品安全快速检测产品,包括仪器、试剂盒、试纸、胶体金卡等。为了百姓能吃上放心的食品,北京智云达科技有限公司接下来还会不断推出更便捷、更快速、更安全快速的食品安全检测产品! 豆芽氨氮速测盒
  • 技术消息:常见氨氮废水的处理方法
    氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3-N)以及亚硝态氮(NO2-N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。常见氨氮废水处理方法:1、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下:Mg2++NH4﹢+PO43-=MgNH4P04化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理 化学沉淀法去除效率较好,且不受温度限制,操作简单 形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本 如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用 药剂使用量大,产生的污泥较多,处理成本偏高 投加药剂时引人的氯离子和余磷易造成二次污染。2、吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。3、催化氧化法催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。4、生物法传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐 第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。5、膜分离法膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。6、离子交换法离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
  • 得利特知识讲堂:常见的氨氮废水处理方法
    得利特技术组最近给同事们讲解了 一系列小知识 ,我们进行了整理。本次给大家带来常见的氨氮废水处理方法。氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3-N)以及亚硝态氮(NO2-N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。常见氨氮废水处理方法:1、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下:Mg2++NH4﹢+PO43-=MgNH4P04化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理 化学沉淀法去除效率较好,且不受温度限制,操作简单 形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本 如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用 药剂使用量大,产生的污泥较多,处理成本偏高 投加药剂时引人的氯离子和余磷易造成二次污染。2、吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。3、催化氧化法催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。4、生物法传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐 第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。5、膜分离法膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。6、离子交换法离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
  • 空气、废气、水质中氨的测定国标发布
    关于发布《空气和废气 氨的测定 纳氏试剂分光光度法》等五项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《环境空气和废气 氨的测定 纳氏试剂分光光度法》等五项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、《环境空气和废气 氨的测定 纳氏试剂分光光度法》(HJ 533-2009)   二、《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(HJ 534-2009)   三、《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)   四、《水质 氨氮的测定 水杨酸分光光度法》(HJ 536-2009)   五、《水质 氨氮的测定 蒸馏-中和滴定法》(HJ 537-2009)   以上标准自2010年4月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局批准、发布的下述五项国家环境保护标准废止,标准名称、编号如下:   一、《空气质量 氨的测定 纳氏试剂比色法》(GB/T 14668-93)   二、《空气质量 氨的测定 次氯酸钠-水杨酸分光光度法》(GB/T 14679-93)   三、《水质 铵的测定 纳氏试剂比色法》(GB 7479-87)   四、《水质 铵的测定 水杨酸分光光度法》(GB 7481-87)   五、《水质 铵的测定 蒸馏和滴定法》(GB 7478-87)。   特此公告。   二○○九年十二月三十一日
  • 国产废水氨氮检测试剂配制成功 可替代进口产品
    近日,河南煤业化工集团煤气化公司自行配制成功检测废水氨氮的专用试剂,可使该公司使用的试剂成本从每年的5.5万元降至3300元。   煤气化公司每天都要对废水中的氨氮含量进行测定,由于使用的是美国进口氨氮测定仪,在检测过程中必须每天消耗30包配套的专用试剂。为节约开支,他们组织技术人员用常用药品成功配制出离子强度剂稳定剂,替代了进口氨氮试剂,经过试验对比,检测效果与进口试剂相当。
  • NA8000在石化行业废水氨氮监测中的应用
    一、背景介绍石化行业生产废水来自各个生产装置,其中常减压蒸馏、催化裂化、重整和加氢装置均会产生大量含硫污水。由于含硫污水含有较多的硫化氢、氨、酚、氰化物和油等污染物,不能直接排至污水处理场。一般污水处理场对进水中硫化氢和氨的浓度要求分别小于 50mg/L 和100mg/L,因此,该股污水需经过气提装置处理达标后才能排放到污水处理场。为了监测气提外排净化水的氨氮含量,石化厂常采用在线氨氮分析仪对排放废水氨氮进行内控监测,保障排放废水氨氮不超标,同时通过废水氨氮的含量变化也可反映装置运行的稳定情况。酸性水气提外排净化水染物物浓度较高,含油、腐蚀性强,对在线氨氮分析仪的稳定运行有比较高的挑战。中石化南京某石化企业脱硫装置排放废水之前采用国外某品牌氨氮分析仪,由于该氨氮分析仪采用的是气敏电极法测量原理,电极容易被污染,维护比较频繁——换膜、换电解液等,仪器测量不准确时维护也繁琐,因此客户更换了 HACH 的 NA8000 新款氨氮分析仪。 二、应用情况主要仪器:NA8000(主机)+CYQ-004P(预处理器)。现场安装照片如图1所示。 NA8000 在线氨氮分析仪安置在正压防爆柜内,为分析仪的正常稳定运行提供了良好的工作环境的同时满足现场防爆要求。考虑到废水水质较为复杂,水样先经换热器降温处理后再进入 CYQ-004P 预处理系统除去水样中油、悬浮物等易堵塞管路的成分,经膜过滤后再送至 NA8000 分析仪溢流杯供分析仪采样分析。 图 2 截取了 2019.8.30~2019.10.8 时间段内 NA8000 连续监测的数据结果。从结果看,NA8000 能够很好的监测废水氨氮的变化情况,且未出现较大的波动。据客户反馈,NA8000性能较好,运行期间质控样比对结果较好,数据偏差小于 10%,满足客户需求;用户对 NA8000的操作和维护等性能均非常满意。三、总结NA8000 在监测脱硫装置外排废水的应用效果比较理想,性能稳定,质控样比对结果达到客户要求,操作和维护得到客户认可,尤其在触摸大彩屏设计、量程自动切换等特点和功能设计方面便于用户学习、操作和维护。 CYQ-004P 预处理器与 CYQ-104C 预处理器相似,采用 PVDF 平板膜对水样进行精密过滤,适用于水质较差的应用工况,能够保障 NA8000 氨氮分析仪的正常稳定运行。此外,CYQ-004P 预处理器适用于工业正压防爆柜或仪表柜内安装要求,便于集成。
  • 合肥科学岛团队帮助泰国 建成运行托卡马克装置
    7月25日,由中国科学院合肥物质科学研究院等离子体物理研究所与泰国核技术研究所合作建设的泰国托卡马克1号装置(Thailand Tokamak 1,TT-1)在泰国正式交付并投入物理实验运行。这是泰国乃至东盟国家首个托卡马克装置。  TT-1装置是基于等离子体物理研究所第二代托卡马克HT-6M全面升级改造后的常规磁体托卡马克装置。2017年8月,等离子体物理研究所与泰国核技术研究所签署合作协议,决定向其赠送HT-6M装置,并在装置改造、工程技术研发、物理实验运行、聚变人才培养等方面向泰国核技术研究所提供全方位的帮助。  2022年7月HT-6M在等离子体物理研究所完成装置主机和子系统全面升级改造及系统集成调试,之后,通过竣工验收并改名为TT-1装置,2022年12月运往泰国核技术研究所。2023年5月TT-1装置在泰国核技术研究所完成安装并开启实验调试。  中国科学院合肥物质科学研究院等离子体物理研究所与泰国核技术研究所积极响应共建“一带一路”倡议,合作建成了泰国乃至东盟国家首个托卡马克装置的同时,还帮助泰国培养了一支聚变研究青年人才团队。  此次TT-1装置的建成并正式投入实验运行,在泰国各界引起热烈反响,是近年来中泰聚变合作的丰硕成果,也是中泰科技创新合作的亮点之一。  接下来,等离子体物理研究所和泰国核技术研究所将持续开展务实合作,吸引更多东盟地区的青年人员投身聚变科学研究,把TT-1装置打造成中泰科技合作的标杆,并将共同建设中国-东盟聚变研究中心。
  • 小菲课堂|导致热像仪卡顿,非均匀性校正该如何选择?
    在小伙伴们使用热像仪的过程中,一定会发现在进行热图像拍摄时,有时会卡顿并且热像仪会发出咔嚓的声音,这时候没必要惊慌,它这是在进行非均匀性校正(NUC),为什么会这样呢,小菲来为你详细解答下~执行非均匀性校正可产生更高质量的图像非均匀性校正(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整增益和偏移,生成更高质量、更精确的图像。在NUC过程中,热像仪快门落在光学和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校正)。1热像仪进行NUC的时间在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,测量精度。热像仪将自动执行一个NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能。这将有助于确保准确性。2控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。3执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校正(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每像素偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。对于非均匀性校正(NUC)菲粉们还有哪些疑问呢?留言给小菲将详细为您解答哦~
  • 《固定污染源废气 氨排放连续监测技术规范》征求意见
    氨法脱硫、氨法脱硝是废气企业去除二氧化硫、氮氧化物的主要方式之一,但采用该方法会造成不同程度的氨逃逸,而空气中的氨是二次颗粒物的前体物,因此废气中氨排放也是影响 PM2.5的重要原因。基于此,河南、山东、河北三省率先出台了地方性氨逃逸排放限制要求。2019年3月,河南省发布的《2019年大气污染防治攻坚战实施方案》中规定,2019年年底前,水泥窑废气在基准氧含量10%的条件下,氨逃逸不得高于8mg/m3。这是自超低排放概念在水泥行业推出后,地方首次将氨逃逸问题列入监测要求 同样在2019年3月,山东省发布《火电厂大气污染物排放标准DB 37/664-2019》,增加了氨逃逸和氨厂界浓度控制指标要求;2020年3月,河北印发《水泥工业大气污染物超低排放标准》、《平板玻璃工业大气污染物超低排放标准》和《锅炉大气污染物排放标准》三项地方标准,均在严格了烟气颗粒物、二氧化硫、氮氧化物排放限制的基础上,增加了氨逃逸控制指标。但目前尚未出台废气氨排放连续监测技术规范,如果仅仅列出了排放限制,并未规定具体的、经过验证的检测方法,相关标准的颁布恐会流于形式,而无法对氨逃逸控制起到有效帮助。中国环境监测总站在“征集2021年生态环境监测类标准制修订立项建议”中征集“固定污染源和环境空气氨监测相关的技术方法”,说明行业性的非为氨排放连续监测技术规范已受到重视。日前,河南省发布了《固定污染源废气 氨排放连续监测技术规范》(征求意见稿),规定了固定污染源废气排放连续监测系统中的氨排放和有关废气参数连续监测系统的组成和功能、技术性能、监测站房、安装、技术指标调试检测、技术验收、日常运行管理、日常运行质量保证以及数据审核和处理的有关要求。据了解,河南省目前已安装联网489套氨排放在线监控设施,涉及289家企业489个排放口,行业分布和设备型号分布如下。征求意见稿见附件:《固定污染源废气 氨排放连续监测技术规范》(征求意见稿)CEMS是大气质量控制中关键的设备之一,为了解CEMS的使用情况,仪器信息网发起了CEMS有奖调研。点击链接参与调研:https://www.wjx.top/vj/wCA4U4O.aspx调研时间:即日起至5月24日 活动对象:CEMS相关用户及厂商 活动主办方:仪器信息网奖励方式:第一重奖励:活动期间,认真、如实填写完成调研问卷的相关用户,均将获得20元话费奖励,总共300份,先到先得。 第二重奖励:活动期间参与完成问卷,初步确定为有效问卷并获得电话调研资格的用户,将在电话调研后确定为有效问卷的情况下,继续获得10元话费奖励。 注:活动期间参与完成问卷,未被确认为有效问卷,但获得电话调研资格的用户,将在电话调研后确定为有效问卷的情况下,获得20元话费奖励。(活动结束后统一发放)
  • 华中师大郝格非教授:我与IKA奖学金的不解之缘
    有句话说的很好“陪伴是最长情的告白”。从曾经嗷嗷待哺到如今为人师表,一路走来都有你的陪伴,感谢有你——IKA。与IKA的故事要从迈进华中师范大学门槛那刻讲起。2015年,夏天,我怀揣着自己的农药梦师从杨光富教授从事农药分子设计研究,初入师门,整日奋战在实验台上并与IKA结下了不解之缘。师兄师姐对IKA的仪器颇为好评,并听闻学院与IKA有着多年的合作关系,因此,我对IKA产生了浓厚的兴趣。通过检索网页,IKA给我留下了深刻的印象,我发现,该集团已成为全球范围内首屈一指的领头企业,并且热衷公益事业。自2007年起,IKA在国内设立了奖学金项目,并已有多名优秀研究生获此资助,这似乎预示着什么,但是,我万万没有想到自己会与IKA奖学金有什么不解之缘。《研究生生涯》是浴火重生的奋斗史,也是满布荆棘的追梦路!充实的生活让我们来不及回首,但时间已经不经意间在指缝中溜走了。从刚进实验室时的青涩到研二时的懵懂再到研三的深入浅出,硕士期间转瞬即逝,然而自己脚步却显得略慢了一些,梦想依然停留在千里之外。2009年,IKA奖学金进驻华中师范大学化学学院,“IKA进步奖学金”评审委员会也正式设立,这对于我来说是个机会,但是那时的我依然还是个毛头小子,自知无论是文章还是专业素养都与“优秀”相差甚远。因此,我果断地放弃了当年奖学金的评选,留下更多的是拼搏的动力,这里的拼搏不只是为了那个区区的数千元奖学金,更多的是想要得到别人的认可,想要找到继续向前的动力。自那之后,我把自己绝大多数的精力放到了实验上,与文献为伴,虽然单调,但是乐在其中,都说兴趣是最好的老师,终于,我于2009年获得国家公派全额奖学金资助,赴美国肯塔基大学药学院进行博士生联合培养。在那里我感受着不一样的学术氛围,享受着不一样的风土人情,更重要的是结交了很多来自五湖四海的朋友,那几年也是我学生时代最为难忘的几年。在此期间,我接到了学校申请“IKA进步奖学金”的通知,心中先是一喜,而后在杨光富教授的鼓励下仔细地填写好了申请表。但是,答辩对于远在他乡的我是个大难题,不过好在IKA以及学院接受了授权答辩的方式,这促使我顺利拿到了当年的奖学金。这无疑是对我工作学习的一种认可,同时我也让我体会到IKA的大度。在国外游学期间我在实验室里见到了大量的IKA产品,感觉非常亲切,当我向实验室的美国同事介绍自己是“IKA奖学金”获得者时,美国同事很惊讶的说:Really?是的,IKA是低调的,它不仅带给了我们高质量的产品,而且它把公益事业落到实处,然而却并没有高调的宣传过自己的慈善,它一直都在默默的付出,为我们的科研事业奉献了一份力量,也为我们的人才培养提供了基础。2011年6月博士毕业后我留校工作,保留着学生时代的那份科研激情,未曾消退,我对专业的热爱就像学院与IKA的合作一样从来没有停止过。2014年,在双方合作已有十年之际,IKA工程师对300余台设备一一“体检”,现场诊断仪器是否处于良好运行状态,对仪器作一般性问题现场排查。此外,IKA免费为我们更换密封圈、马达等配件,重新启动了近30台的报损设备,为我们的老师和学生提供了专业、贴心和及时的上门服务。这使我对IKA有了更加全面的认识。转眼间,已从事教师工作五年之久,我实现了从学生到教师的完美蜕变。如今我已是华中师范大学的一名年轻教授,今年,我再次站到了“IKA奖学金”的领奖台上,并以教师获奖代表的身份发言讲话,内心的激动无以言表,也弥补了我学生时代那一丝丝的遗憾。华中师大郝格非教授2005到2016这11年间,一直有IKA相伴,多年坚持,与梦想同行;百年IKA,坚持公益正能量,而今,它公益众筹玩出大学生创业基金,这将使更多的莘莘学子从中获益。因此,我想对IKA说:“感谢一路有你,让我不再孤单;感谢一路有你,让我变得更加坚强。”愿IKA不仅能将产品越做越好,更能在公益的道路上越走越好。IKA大中华区市场总监张华蓉女士:收到来自华中师范大学郝格非老师这封信,我内心充满了特别的喜悦!这种喜悦一方面来自体会到我们伟大祖国科学家的内心境界,倍感骄傲鼓舞;另一方面来自对IKA一直在奖学金等公益道路上的坚持,现在更加坚定我们的付出是有价值的;IKA的slogan是:designed for scientist, 不论是IKA产品,还是IKA使命,都在为科学家提供价值,所谓不忘初心,方得始终。以下是我从其他人眼中了解到的郝格非教授:初见郝格非老师,给人一种历练成熟的感觉,好像是已经被时光打磨过的玉,没有耀眼的光芒,却于朴实无华中散发淡淡的幽泽。2011年,他博士毕业后选择留在武汉,留在这片挥洒了10年青春的土地上。在华师任教的短短两年多时间里,他已先后主持了国家自然科学基金、教育部博士点基金、霍英东青年教师基金、博士后面上及博士后特别资助等多个科研项目, "周洪宇华大卓越人才奖”是对他工作的最好肯定。此外,他还入选了“香江学者计划”,获得了赴香港深造的机会。他的博士学位论文——《农药合理设计的分子基础研究》还荣获了2013年“全国百篇优秀博士学位论文奖”,这个奖项是对他博士学业的最大肯定。他说,他要坚持做自己喜欢的科学研究,永不止息。“IKA祝愿郝格非教授在科研道路上,勇敢奔跑,攀登一个又一个科学高峰!
  • 中国科大研制高抗氨毒化的燃料电池阳极
    近日,中国科学技术大学高敏锐教授课题组研制出一种高抗氨毒化的镍基碱性膜燃料电池阳极催化剂,其在阳极含10 ppm氨的膜电极组装中,能保持95%的初始峰值功率密度和88%的初始电流密度(0.7 V下),远超商业铂碳催化剂。相关成果以“Efficient NH3-Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells”为题发表在国际著名学术期刊《美国化学会志》(J. Am. Chem. Soc. 2023, 145, 31, 17485)上。氢氧燃料电池由于比能量高和零排放等优点,有望在国家“双碳”战略中扮演重要的角色。然而,商业铂碳催化剂极易被氢气燃料中的氨气毒化而导致性能降低。特别地,在碱性膜燃料电池中,铂基催化剂的氢气氧化反应动力学缓慢,其与氨毒化协同作用,加速电池性能的衰退。因此,设计高活性、高抗氨毒化的新型阳极催化剂是碱性膜燃料电池实用化亟需解决的难题。   通常,过渡金属结合氨的能力与其未占据和占据的d轨道相关,其既可接受来自氨的电子也能向氨反向供给电子,两者都能增强氨的吸附。钼镍合金是高效氢氧化催化剂,研究人员认为营造镍位点的富电子态会排斥氨的孤对电子供给,而引入比镍电负性小的元素可以提供电子获得镍的富电子态。研究人员发现,将Cr掺杂入钼镍合金不仅获得镍的富电子态来抑制σN-H→dmetal电子供给,同时还使d带中心下移阻隔了d→σ*N-H的反向电子供给,两者协同作用大大削弱了氨吸附。 图1.氨毒化机制和电子态调控   旋转圆盘电极测试表明,该催化剂在2 ppm氨存在条件下电化学循环1万次性能几乎没有损失,而铂碳催化剂性能损失严重。在实际的碱性膜燃料电池中,以该催化剂作为阳极组装的器件在10 ppm氨存在下可保留95%的初始峰值功率密度。相比之下,铂碳催化剂的功率输出则降低至初始值的61%。   衰减全反射-表面增强红外吸收光谱测试表明,没有Cr掺杂的钼镍合金与商业铂碳催化剂在不同电位下对氨具有吸附行为。经Cr调制的催化剂表面则没有任何氨吸附峰的存在。同时,电子能量损失谱和电子顺磁共振分析也表明Cr的引入使得镍的d带占据数更高,验证了其富电子态催化中心;理论计算发现Cr引入可降低镍的d带中心,佐证了氨在其表面吸附被削弱。   近年来,高敏锐研究小组致力于碱性膜燃料电池非贵金属电催化剂的研制和应用研究(Acc. Chem. Res.2023, 56, 12, 1445;Nat. Catal. 2022, 5, 993;Nat. Commun. 2021, 12, 2686;Nano Lett. 2023, 23, 107;Nano Res. 2023,16, 10787)。在之前的工作中,该小组与杨晴教授合作发现Co元素的掺杂可以有效抑制镍的d轨道对一氧化碳分子2π*反键轨道的电子“反向供给”,获得了高一氧化碳耐受性的氢气氧化非贵金属电催化剂(Angew. Chem., Int. Ed. 2022, 61, e202208040)。   论文的通讯作者是合肥微尺度物质科学国家研究中心高敏锐教授,共同第一作者为中国科大博士研究生王业华、博士后高飞跃和张晓隆。相关研究受到国家自然科学基金委、国家重大科学研究计划、安徽省重点研究与开发计划等项目的资助。
  • 微观世界|第28期 咖啡是否真的致癌?
    1 前 言近期,你的朋友圈是否被这样一则信息刷屏?难道星巴克咖啡=致癌?对,就是你知道的星巴克!就是你知道的癌症!那么这则消息是有何而起的呢?2 起 因事实上,事情起源于3月30日,华尔街日报、美联社、路透社等媒体的一则报道—— 美国洛杉矶一家法院裁决,星巴克和其他几家咖啡公司,在加州销售的咖啡必须贴上癌症警告的标签。理由是,市面上出售的咖啡在烘培咖啡中,被发现含有的高浓度的丙烯酰胺——一种有毒的致癌化学物质。那么,究竟丙烯酰胺是什么?喝个咖啡真的就致癌了么?不喝咖啡还怎么加班?还让不让人加班了? 3 过 程那么为了更好的加班,我们先来了解一下什么是丙烯酰胺。丙烯酰胺是食物在发生“美拉德反应”时的副产物(美拉德反应:是指让食物变得焦黄并散发出独特香气的反应)。笼统的说,大部分食物(包括碳水化合物以及蛋白质),在高温烹饪的过程中都会产生丙烯酰胺。而丙烯酰胺确实是一种潜在的致癌物质,大量的动物实验表明,丙烯酰胺会使得动物致癌,其实,很多日常的食物例如油炸薯条、薯片等食物都含有丙烯酰胺。实际上业内人士更多的是关心丙烯酰胺的计量多少,虽然丙烯酰胺1994年就被国际癌症研究中心列为致癌物,但是至今还没有明确证据表明“通过食物摄入的丙烯酰胺与人类某种肿瘤有着直接明显的联系”。知道了这些,我终于可以安心喝着咖啡继续加班了,不如现在就冲一杯咖啡吧,既然已经打开了一袋咖啡,就顺便看看咖啡到底什么样子吧。 4 观 察仔细想想,喝了那么多咖啡,还真没仔细看过咖啡长什么样子,下面我们就用COXEM台式SEM来揭开咖啡的真容。我们首先把咖啡分散在样品台上进行制样,然后放入SEM的样品仓中,等待真空抽好后,就可以观察啦。首先,进行低倍数的观察(如图1),可以看出在图中有两种形态的颗粒分布,一是呈现明显棱角的不规则颗粒,那么这个就是我们常见的糖颗粒啦(说实话,咱们喝的速溶咖啡含糖量是相当高的);第二种就是,不规则形状的表面较为圆润成圆弧面的颗粒了,这个实际上就是,配料里面的植脂末了,植脂末实际上是成粉末非常复杂的物质,主要有:葡萄糖浆、食用氢化植物油、酪蛋白酸钠、磷酸氢二钾、二氧化硅、甘油酯等等。 图1 低倍数SEM观察速溶咖啡粉末那么,我们来找几张高倍下植脂末颗粒的形态的照片吧。可以看出其形貌呈现不定形的状态。通过某些破碎植脂末颗粒的观察(图3),可以看出,植脂末颗粒并非密实的结构,而是由多个细小的颗粒组成的。 图2高倍下SEM观察速溶咖啡植脂末颗粒的形貌图3高倍下SEM观察速溶咖啡破碎植脂末颗粒的形貌经过在一步的放大,我们可以看出,植脂末表面更加细节的信息,实际上是存在气孔结构的,我想这些气孔也是为了增加水溶性,达到快速溶解的目的吧。正好,图拍到这里,咖啡也到了合适的温度,可以去美美的喝上一杯了。 图4 高倍下SEM观察速溶咖啡植脂末颗粒表面的形貌5 结 论动物大量食用丙烯酰胺确实会导致癌症风险增加,但是现实中没有人会拿一瓶丙烯酰胺咕咚咚灌肚子里,从食物里吃到的量实在太少太少了。所以美国癌症学会的原话是:“目前没有任何一种癌症类型的风险增加,是明确和摄入丙烯酰胺相关的。在了解了这么多知识以后,感觉喝咖啡让人变胖,而加班让人变瘦,那么加班喝咖啡岂不是维持正常身材的绝好途径了么?(哈哈哈,本期都是小编心血来潮的一些想法,欢迎大家关注我们,下一期会更加精彩)
  • 儿童感冒药标准修订:1岁内禁用优卡丹、好娃娃
    国家药监局重新修订儿童感冒药品说明书   1岁内婴儿禁用“好娃娃”、“优卡丹”   感冒发烧是儿童常见疾病,有关用药问题倍受家长关注,日前国家药监局下发通知,根据盐酸金刚烷胺单方制剂说明书中有关儿童用药的规定,对含盐酸金刚烷胺的非处方药(OTC)的说明书进行了修订,因缺乏新生儿和1岁以下婴儿安全性和有效性的数据,要求在此类群体中禁用有关药品。   药监局:1岁以内禁用   根据国家药监局的通知,含盐酸金刚烷胺非处方药的说明书已被重新修订:对于仅用于儿童的氨金黄敏颗粒、小儿氨酚烷胺颗粒、小儿复方氨酚烷胺片,删除了“注意事项”中“1岁以下儿童应在指导下使用”,在“禁忌”项中增加了“因缺乏新生儿和1岁以下婴儿安全性和有效性的数据,新生儿和1岁以下婴儿禁用本品。”   对于可用于儿童,也可用于成人的氨酚烷胺那敏胶囊,将“5岁以下儿童应在医师指导下使用”,修订为“5岁以下儿童不推荐使用”,在“禁忌”项中增加了“因缺乏新生儿和1岁以下婴儿安全性和有效性的数据,新生儿和1岁以下婴儿禁用本品。”   市场:此类品牌药很常见   记者采访了几位妈妈,她们表示,孩子很容易感冒发烧,一般都会到药店购买一些类似的感冒药备在家中。而在记者走访的几家药店,发现药店销售的含盐酸金刚烷胺的儿童感冒药大多是“好娃娃”(小儿氨酚烷胺颗粒)、“优卡丹”(小儿氨酚烷胺颗粒)、葵花康宝(小儿氨酚烷胺颗粒)以及“迪龙”(氨金黄敏颗粒)这几个品牌产品。   “您这里有1岁以下幼儿能服用的感冒药吗?”在广州五羊新城附近一家名为居嘉堂的药店,记者以消费者身份向一位女营业员询问,营业员询问了小孩的感冒症状之后推荐了迪龙牌氨金黄敏颗粒。记者又问:“1岁以下婴儿服用安全吗?”“只要按照说明书上的剂量服用就行了。”营业员见记者犹豫不决,又推荐了另外一种针对婴幼儿服用的感冒药。在另一家名为大参林的药房,营业员同样推荐了类似成分的“好娃娃”、“优卡丹”两大品牌儿童感冒药,并说“这个小孩服用不会有什么副作用”.药店营业员大多医学知识不全面,对这些药品的具体成分、药理性能了解不到位,只是一味地向消费者推荐各种品牌的感冒药。   专家:医院临床极少用此类药   盐酸金刚烷胺类药物属抗病毒药。南方医院儿科腾志丽副教授在接受记者采访时明确表示,“我们医院没再用含‘金刚烷胺’的儿童感冒药品”,临床上该类药也不常用于儿童。她解释说,一般儿童感冒症状无非是鼻塞、流鼻涕、咳嗽、打喷嚏等,只要没有细菌感染,三至七天就能康复。若是细菌感染,一般就会使用一些抗生素进行治疗。一般五岁以下儿童前来就诊,首先都要进行初步检查,分清是细菌感染还是病毒感染引起的,再针对性治疗。儿童属特殊群体,身体机能各方面还未发育完全,很容易因感冒引发各种并发症,因此针对儿童感冒最主要的是进行并发症的预防。防止儿童因感冒引发心肌炎、肺炎等症状。   对于儿童感冒用药,腾志丽说:如非特殊的细菌感染型感冒,一般情况的感冒只需使用一些清热解毒的中成药,如板蓝根冲剂就够了。就含金刚烷胺这类药,主要对甲型流感病毒有一定效果,但对抗普上呼吸道病毒感染没有明显优势,相关的安全性也未经证实,医院一般不会进这类药品给儿童用。儿童感冒的表现复杂多变,目前为止没有一种药物可以治疗所有症状,通常对症处理,一般不主张吃药,家长因特别注意,一般儿童感冒,不打针吃药,在3-7天内,只要注意营养、多喝水、多休息,通过自身免疫系统就会康复,根本无须吃一些重症西药。   另外,需要提醒的是,除了小儿氨酚烷胺颗粒现在被禁之外,一些氨基苷类抗生素,如诺氟沙星等,家长也不要擅自给孩子服用。药物进入人体后,一般要通过肝脏、肾脏代谢转化、排泄清除。3岁以下的婴幼儿,尤其是一岁以内的孩子,肝、肾等器官发育未成熟,肝、肾功能不全,器官很容易被药物损伤。
  • 优卡丹被曝对儿童肝肾存在毒性 仁和卷入风暴眼
    1月24日、28日,仁和药业两度发布澄清公告,申明优卡丹严格按照国家药监局的标准进行生产销售,不存在质量问题,按说明书使用也不会引发儿童肝肾损害。   目前,金刚烷胺类儿童感冒药主要的两大品牌为优卡丹和好娃娃,华北制药(600812)、贵州百灵(002424)、葵花药业、先声药业等也有产品在售。“国家对于金刚烷胺类产品的规范也没有修订的迹象。”1月28日,医药业内权威人士向本报记者表示。   从1月23日至今数日内,仁和药业当家产品优卡丹陷入风波中。有观点认为,优卡丹、好娃娃等氨酚烷胺类药物对儿童肝肾存在毒性,“1岁以下婴儿禁用,6岁以下儿童应慎用”。但市场上所售优卡丹并未在说明书中列明此信息。   “家有儿女,常备优卡丹”,一句耳熟能详的广告语,却让宋丹丹深陷“代言门”。宋丹丹在微博上称:“由于个人无法确切了解及掌握药品质量,今后无论是否经药监部门的审批,我都将不会再代言任何药品类广告!”   事实上,在2012年5月,国家药监局下发通知,要求含盐酸金刚烷胺的非处方药修改说明书,规定1岁以下婴儿禁用。“市面上旧包装还没销售完,按规定也不需召回,但这却引发了误会。”上述医药界人士指出。   不过,对于仁和药业“1-12岁儿童放心使用,不会对肝肾功能造成损害”的说法,有医药企业负责人并不赞同:“1到12岁跨度很大,不同年龄的孩子对药品的耐受能力肯定不一样。优卡丹仅是简单将成人剂量减半,就给不同年龄儿童服用,这样是不科学的。”   业绩受损   优卡丹的通用名为小儿氨酚烷胺颗粒,主要用于治疗儿童感冒,“烷胺”即为金刚烷胺的简称。金刚烷胺主要通过肾脏排泄,可能会影响孩子肾脏的发育。因此才有了“优卡丹毒害儿童肾脏”的说法。   金刚烷胺最初被用来治疗帕金森症,抑制运动神经,是一款成人用药。对于处在发育期的儿童,一旦服用量不当,的确存在一定的风险。除此之外,国内所售的小儿氨酚烷胺颗粒中还含有咖啡因。   2012年5月16日国家药监局下文,要求对盐酸金刚烷胺类非处方药修订说明书,规定1岁以下婴儿禁用。当时并未引发市场强烈反应。   上述权威人士表示:“药监局的这一做法是参考了国外标准,国内实际上并没有金刚烷胺的不良反应案例。出于谨慎考虑,做了这一修订。”   根据仁和药业披露的数据,2011年优卡丹销售收入为3.08亿元,占仁和2011年全年收入的13.95%。修改说明书后,仁和药业明确表示“对库存包装做了清理,停止采购老版包装材料”。   但市场上的在售旧款优卡丹并不受影响,仍能正常销售。因此买到旧款优卡丹的消费者认为仁和药业未进行修改,这才引发了舆论质疑。   仁和药业出示了中国非处方药协会的文件,该协会认为盐酸金刚烷胺类非处方药在国内已经使用20多年,优卡丹、好娃娃、葵花康宝等药品在长期临床使用中没有不良反应记录。   不过,上述医药界权威人士表示:“国外一般要求1岁以内禁用金刚烷胺类非处方药,1到6岁慎用。”而中国的药监部门并没有规定慎用的年龄范围,不得不说存在瑕疵。   仁和药业并未公布2012年优卡丹的销售情况,只是表示受到“铬超标”胶囊和说明书修改的影响,2012年公司旗下两大品牌可立克、优卡丹收入增速同比下滑。公司季报显示,2012年前三个季度,仁和药业的净利润分别为1.04亿元、0.71亿元和0.11亿元。   此次的旧事重提,可能将进一步影响仁和药业的业绩。1月28日,仁和药业副总裁郭利的电话始终处于转移呼叫之中,除了已经做出的两个公告,公司方面没有进一步的表态。   期待规范   “这个品种在国外是成人用的多,小儿不用”   “药监局的这一做法是参考了国外标准。出于谨慎考虑,做了这一修订。”   尽管仁和药业反复强调其产品的安全性,但是对于金刚烷胺类非处方药,业界都持比较保守的态度。   金刚烷胺具有较强的抗病毒功能,美国在1966年批准其用于治疗感冒。上述权威人士表示:“这个品种在国外是成人用的多,小儿不用。国内由于儿童用药比较缺乏,因此才一直在使用。”   还有一种声音认为,儿童感冒并不需要靠药物治疗。海南快克药业总经理何天立表示:“儿童的发育过程就是免疫机制生成的过程,一般感冒是可以自愈的。只要不发烧过度,儿童感冒并不必须吃药。”   2007年10月11日,美国消费者保健产品协会宣布,主动停售14种针对2岁以下儿童的非处方感冒药,包括扑热息痛、伪麻黄碱、右美沙芬和抗组胺类药物。   上述企业负责人表示:“目前国内治疗儿童感冒的主流西药是氨酚黄那敏类和金刚烷胺类。由于无法进行临床试验,因此儿童金刚烷胺类药品用的是成人剂量减半。这一做法并不科学,0到12岁都是儿童,怎么能都用同样剂量?”   在美国,临床医生会将儿童分为2岁以下、2到6岁、6到12岁三个阶段进行给药,且通常不许服用非处方药。因此,该企业负责人认为,药监局应该进一步收集用药数据,根据不同年龄段儿童做出更详细的用药指导。   事实上,国家卫生部曾对儿童服用金刚烷胺类药物进行过类似指导。2005年国家卫生部将金刚烷胺推荐为禽流感治疗药物时,规定成人剂量每日100-200mg,儿童每日5mg/kg。但在实际使用中,优卡丹等产品很难严格按规范数据使用。   前述权威人士表示:“企业已经完全根据国家药监局的要求进行生产销售,如果要进一步增加用药警示,只有药监局才有这个权利。但从目前情况来看,国家药监局还没有类似表态。”   目前,金刚烷胺类儿童感冒药国内仅有14家企业拥有生产批号。其竞争对手小儿氨酚黄那敏类感冒药则生产企业众多,较知名的生产企业有哈药集团、华润三九(000999)等。
  • 赛默飞发布Orion 8010cX 氨氮自动监测仪新品
    Thermo Scientific Orion 8010cX 氨氮自动监测仪Thermo Scientific Orion 8010cX氨氮自动监测仪基于国家标准方法水杨酸分光光度法,测量可靠、方法可溯源且无需剧毒试剂。仪器专业的工业设计、界面设计、模块化设计、功能设计、抗干扰的测量流程设计及算法使得仪器可广泛应用于多种应用场合,以满足排放法规及工艺过程氨氮的控制要求。典型应用:市政污水的在线监测:包括污染源在线监测,污水处理设施的入口和出口监测等。地表水在线监测:包括水源地、湖泊、水库等在线监测。饮用水在线监测:消毒过程质量控制和饮用水在线监测。工业过程在线控制:工业过程中需要对氨氮浓度进行控制。氨氮是各种水体中最为常见的污染物之一,其对环境的直接影响及排放到自然水体后因贡献氮元素而带来的间接危害(如水体富营养化)被广泛关注。各国政府对氨氮的排放都有严格的规定,在污水排放标准中是主要的监控指标之一。中国甚至早在15年前就将氨氮列入两个总量控制指标的其中之一。为了达到排放标准,除了对排放口进行排放指标控制性监测,各排污企业必须在污水处理过程中对各工艺段的氨氮浓度进行严格控制,已调整处理的相关工艺参数,否则很难达到最终的排放要求。在线检测技术可以帮助排污企业准确快速的获取氨氮监测数据,为氨氮排放监管提供依据。然而,准确可靠、低维护、低故障的自动监测仪器需要考虑诸多因素。当应对情况较为复杂的污水,仪器需要耐受污水对仪器的污染的同时,还需要可以排除这些干扰因素提供准确数据。仪器应该具备自动量程切换、自动校准和自动清洗等功能以保障仪器长期稳定无人值守运行。新型Orion 8010cX 氨氮自动监测仪正是为了在复杂应用环境下提供准确、稳定的氨氮在线检测方案而设计开发。仪器基于标准方法、功能丰富、操作界面友好、维护量少、维护成本低,适用于多种应用场合。产品优势:旨在提供准确可靠的测量,满足排放的法规和工艺过程控制的要求。自动量程切换功能,保障数据有效性及准确性。丰富的软件功能,直观的图形化操作界面,方便易懂易操作。特殊的测试流程设计和算法使得仪器具备更好的抗干扰(颜色和浊度等)能力。结构紧凑,占用空间小。模块化设计、IP65防护等级机箱及长寿命关键组件保障长期稳定运行。低运营成本,低维护要求——全自动校准功能、自清洗功能。低的试剂消耗量和化学废液产生量。Orion 8010cX 在线氨氮分析仪规格测量性能测量范围量程1:(0.02-2)mg/L 量程2:(0.1-15)mg/L 量程3:(0.5-30)mg/L 量程4:(2-100)mg/L 量程5:(30-500)mg/L 准确度量程1:(0.02-2)mg/L: 读数的3%±0.04 mg/L量程2:(0.1-15)mg/L: 读数的3%±0.1 mg/L量程3:(0.5-30)mg/L: 读数的4%±0.1 mg/L量程4:(2-100)mg/L: 读数的5%±0.1 mg/L量程5:(30-500)mg/L: 读数的10%重复性量程1:(0.02-2)mg/L: 3%或±0.02 mg/L, 取大者量程2:(0.1-15)mg/L: 3%或±0.05 mg/L, 取大者量程3:(0.5-30)mg/L: 3%或±0.1 mg/L, 取大者量程4:(2-100)mg/L: 3%或±0.3 mg/L, 取大者量程5:(30-500)mg/L: 3%或± 0.6 mg/L,, 取大者最低检出限(LOD)量程1:(0.02-2)mg/L: 0.02 mg/L量程2:(0.1-15)mg/L: 0.1 mg/L量程3:(0.5-30)mg/L: 0.5 mg/L量程4:(2-100)mg/L: 1 mg/L量程5:(30-500)mg/L: 5 mg/L分辨率读数连续、周期测量(可设置启动时间)分析原理水杨酸分光光度法测量性能环境温度范围5-40℃*最大湿度95% RH 无凝露采样条件水样流量50-1000mL/min水样压力1-5 bar水样温度范围5-50℃水样连接口流通池入口G1/2母螺纹流通池G1/2母螺纹水样要求总溶解固体量(TDS)色度(铂钴比色法)数据与控制电流输出两路 4-20 mA,最大负载900Ω干触点输出2个干触点,2A@250VAC数字通讯RS485法规符合性电气安全cTUVus, CB, CE-LVD, RCM电磁兼容FCC, CE-EMC, RCM环境安全CE-RoHS, REACH, China RoHS*可能需要附加过滤预处理。创新点:Thermo Scientific™ Orion™ 8010cX 氨氮自动监测仪基于国家标准方法水杨酸分光光度法,检测可靠、方法可塑源且无需剧毒试剂。仪器专业的工业设计、界面设计、模块设计、功能设计、抗干扰的测量流程设计及算法使得仪器可广泛应用于多种应用场合,以满足排放法规及工艺过程氨氮的控制要求。 Orion 8010cX 氨氮自动监测仪
  • 禾工在江苏地区进行聚氨酯水分测定仪安调、培训作业
    江苏德丰聚氨酯有限公司主要生产、销售高固含量聚合物多元醇、聚合物预聚体、聚氨脂泡绵制品。早在2012年的时候,在我司订购第一台AKF-1卡尔费休容量法水分测定仪。应公司生产需求,于今年8月份再次在我司订购一台AKF-1卡尔费休水分检测设备。江苏德丰聚氨酯一直使用我司AKF-1型号卡式水分检测仪,对AKF-1卡尔费休微量水分测定仪如何使用能更有效的测定聚氨酯的含水量也是“轻车熟路”。因此,在本次售后安调、培训中我司技术员全程协助用户操作,与仪器操作人员有了更深一步的交流,为用户答疑解惑。AKF-1卡尔费休水分测定仪全自动测定,智能终点算法,就算一个操作员同时操作两台水分仪也不会手忙脚乱!聚氨酯是具有良好的耐油性、韧性、耐磨性、耐老化性和粘合性;在日常生活、工农业生产、医学等领域广泛应用。如何使用卡尔费休容量法水分测定仪测定聚氨酯中的含水量,禾工提供了有效的专业的整体解决方案!另外,禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 污染排放控制增氨氮和氮氧化物两项指标
    环保部污染物排放总量控制司司长赵华林表示,“十二五”期间,除了“十一五”期间已经实施的二氧化硫(SO2)和化学需氧量(COD)外,氨氮(NH3-N)和氮氧化物(NOX)也将纳入总量控制。   赵华林日前在“2010(第八届)城市水业战略论坛”上表示,“十二五”期间会对氨氮和氮氧化物进行总量控制,同时也会将重金属、可吸入物等减少污染的责任放在地方政府。   他说,现在空气中含有的氨氮已经超过了二氧化硫,成为空气中的主要污染物,“现在的酸雨已由硫酸型酸雨转向硝酸型酸雨,”而水中的氮氧化物也使得水体酸化和富营养化,出现了大量的蓝藻问题。   “最近重金属污染也出了很多事”,赵华林表示,会根据不同地区在重金属、磷等问题上要求地方政府有总量控制。   链接   氮氧化物   包括多种化合物,如一氧化二氮、一氧化氮、二氧化氮等。氮氧化物都具有不同程度的毒性,可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病。以一氧化氮和二氧化氮为主的氮氧化物是形成光化学烟雾和酸雨的一个重要原因,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。   氨氮   是水体中的重要耗氧污染物,氨氮对自然环境和人体有很大的危害,如水源中氨氮浓度过高,将导致自来水中加氯量增加,从而使自来水中有机氯量随之相应增加,对人体健康产生不利影响。氨氮也可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。
  • ATAGO(爱拓)协助连锁咖啡饮料店咖啡萃取率提取方法
    咖啡应该以味道为准,萃取率数据能帮助在调配咖啡的味道有问题时起到修正手法,数据有参考作用,但并不是口味的绝对准则。 TDS=Total Dissolved Solids是用来测量水中溶解的总固体含量的测量工具;浓度,萃取率是衡量一杯咖啡好坏的参考指标。只要咖啡浓度在1.15~1.35,萃取率在18%~22%,即可说明这杯咖啡制作的基本合格。所谓萃取率,就是咖啡粉置于水中,有多少东西会被溶解于水中。根据SCAA理论、最多会有30%的物质会被溶解于水。萃取率公式=萃取出的物质质量/物质总质量*100。 纵轴是TDS值,横轴是萃取率 近期,国家质检总局对茶饮料产品质量进行了国家监督抽查并且下了相关质量标准。部分产品中咖啡因和茶多酚等重要理化指标不合格。茶多酚和咖啡因指标是茶饮料中的特征性指标,并且是茶饮料标准中的强制性条款,不同类型的茶饮料其茶多酚和咖啡因的含量必须达到相应水平,否则就不能称饮料。造成茶饮料中茶多酚和咖啡因指标不合格的原因主要是,原材料中茶多酚和咖啡因的含量不足,原材料检测把关不严格,生产工艺参数与配料计量控制不严密以及成品质量检验把关不够或缺乏必要检测手段等问题造成。 ATAAGO(爱拓 )PAL-coffee(TDS标度)咖啡浓度计轻巧易携,人本工程学设计,按键即可单手测量,清水归零。 可迅速使样品与棱镜温度保持一致,取样简便且不易泄漏污染仪器,保养简便,符合IP65标准,可直接流水冲洗。PAL-coffee(Brix标度)咖啡浓度计,咖啡浓度更高的话,可用新的产品型号PAL-coffee (Brix值)测量范围0.00~25.00%。管理控制咖啡调配浓度,保证出品质量。 ATAGO(爱拓)超过200种产品应用解决方案,欢迎您邮寄样品进行产品咨询。www.atago-china.com
  • 小菲课堂|热像仪突然卡顿?别担心,它在进行非均匀性校准
    在我们使用热像仪的过程中一定会发现在进行热图像拍摄时有时会自动频繁地卡顿并且热像仪会发出“咔嚓”的声音这时候没必要惊慌它这是在进行非均匀性校准(NUC—Non-Uniformity-Correction)那为什么会如此呢?非均匀性校准(NUC)非均匀性校准(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整自身热噪声的增益和偏移,生成更高质量、更精确的图像。执行非均匀性校准可产生更高质量的图像在NUC过程中,热像仪快门落在镜头和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校准)。热像仪进行NUC的时机在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,实现良好的温度测量精度。热像仪将自动执行NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能,这将有助于确保准确性。有效控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校准(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每个像素自身热噪音的偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。红外热像仪执行非均匀性校准可产生更高质量的图像但随着时间的推移电子元件老化会导致校准数据偏移并产生不准确的温度测量值为了保证热像仪的准确性你需把它送到热像仪制造商进行定期实验室标定—Calibration我们建议您一年标定一次关于热像仪和红外热成像技术相关知识如果您想要系统学习和掌握可以报名参加我们的课程ITC红外培训在这里不仅可以学习理论知识还可以上手实操检测
  • 全国首个,“咖啡专业”来了!
    日前,教育部公布了2023年度普通高等学校本科专业备案和审批结果,共新增备案专业点1456个、审批专业点217个(包括160个国家控制布点专业和57个目录外新专业),调整学位授予门类或修业年限专业点46个。本次备案、审批和调整的专业,将列入相关高校2024年本科招生计划。教育部同步发布最新版《普通高等学校本科专业目录》,包含93个专业类、816种专业。据了解,此次还结合经济社会发展需求变化和专业布局情况,对国家控制布点专业范围进行了动态调整,将资源勘察工程、护理学、助产学调整为国家控制布点专业。目前,食品科学与工程类专业下有13个专业,详情如下:另外,30所高校新增食品科学与工程类专业,其中,云南农业大学新增的咖啡科学与工程为新专业。2022年,云南农业大学热带作物学院向教育部申报该专业。该校负责人接受媒体采访时表示,云南农业大学主动对接“一带一路”“乡村振兴””国家战略目标,以咖啡专业人才培养、科学研究、技术服务等为抓手,坚持专业建设适应产业发展,自觉履行社会责任。学校希望该专业为我国咖啡产业人才培养带来利好,为高原特色农业产业高质量发展注入强大动力。咖啡是世界三大饮品之一,是热区重要的出口创汇农产品和特色优势产业。近年来,中国咖啡消费人群逐年扩大,咖啡产业正处在加快发展和加速崛起的关键时期。2019-2020年,中国咖啡消费325万袋,约19.5万吨,消费规模3000亿,平均增速达20%以上,业内人士预测,10年内中国将成为全球最大的咖啡消费市场,咖啡产业将迎来爆发式增长,咖啡专业人才也将成为未来几年我国急需的专门人才。
  • 氨排放大国如何应对“坏空气推手”
    p   近日,雾霾再度降临京津冀地区,环保部3月16日发布的空气质量预报显示,京津冀地区未来十天内的空气质量呈前期较差、后期转好态势。 /p p   雾霾取代“两会蓝”,治霾话题也再次发酵。追究雾霾成因,最常关注的是燃煤、机动车、工业生产和扬尘。在刚刚结束的今年全国两会上,中国科学院院士、中科院地球环境研究所所长周卫健提出,该所研究团队耗时四年对我国北方雾霾形成机理进行研究发现,农业污染源在细颗粒物(PM2.5)形成过程中起很大作用,其“贡献率可达20%以上”。但在现实中,该因素在研究和治理中被忽视。 /p p   据悉,中科院团队在西安、北京两地进行外场观测,获得大量研究数据,氮肥氨气促PM2.5生成等研究成果,已以论文《从伦敦雾到中国霾持续的硫酸盐形成》发表在美国国家科学院院报上。 /p p   ——新闻热点—— /p p   我国是全球最大的氨排放国 /p p   周卫健研究团队发现,在北方雾霾天气中,尤其是在湿度较大的冬季,往往可监测到硫酸盐浓度暴增现象。这些高浓度的硫酸盐,主要是大气中二氧化硫经光化学反应氧化形成的。 /p p   研究还发现,与伦敦雾滴的大颗粒相比,“中国霾”粒子比雾滴小得多,属纳米级,pH值偏中性。这是由于二氧化硫转化为硫酸所产生的小粒子呈现酸性,空气中又存在较高浓度的氨气,中和了硫酸形成硫酸盐。 /p p   作为大气中唯一的碱性气体,氨气可以同水及酸性物质反应。正是这种独特的化学特性,使氨气扮演了“坏空气推手”的角色。对此,中科院大气物理所研究员王跃思解释说,1体积水能溶解700体积的氨,这意味着当大气湿度增高时,氨更容易与水进行反应,水又吸收了二氧化硫和二氧化氮,变成液相的亚硫酸和亚硝酸。在合适的氧化反应条件下,亚硫酸、亚硝酸就会转化成硫酸、硝酸,与氨发生中和反应,生成颗粒态的硫酸铵、硝酸铵,成为了PM2.5。 /p p   据北京大学环境学院团队研究发现,2006年我国氨排放总量为980万吨,超过北美与欧洲的总和。我国在近20年时间里,一直是全球最大的氨排放国。哈佛大学的研究报告显示,从2005年至2008年间,我国每年氨排放量约1020万吨,与此同时,美国、欧盟的数字分别为340万吨、376万吨。 /p p   研究发现,我国区域氨气排放源上升快、影响大,可能来源于近海养殖、畜牧业、农业、汽车(三元催化过量)、工业脱硝(还原剂用氨水或尿素过量)等。王跃思说,目前京津冀区域氮沉降每平方公里每年达6.1吨,是发达国家有记录以来的最高水平。氮沉降主要来源就是氨气,氨气的70%都来自于农业、养殖业。 /p p   北京市环保局去年启动了“京津冀区域大气氨排放特征与控制对策研究的课题”,研究显示大气中的氨气主要来自生物圈,排泄物当中的尿素和化肥的使用不当被认为是氨气排放的主要来源。 /p p   ——现实困难—— /p p   氨排放的测量难度非常大 /p p   近年来,中科院、北京大学、清华大学、中国农业大学等都在做氨排放清单的研究。但编制排放清单绝非易事,其中每个环节都有很多不确定性因素,最终出来的清单,准确性到底有多高,也很难评估。 /p p   氨排放清单编制首先对农业施肥、畜牧业、工业等排放源分类,然后用每一类别的排放因子乘上活动水平,便得出排放总数。以肉牛养殖为例,先测量出每头肉牛排放的氨,再用其乘上全国肉牛总数。 /p p   北京大学环境学院教授宋宇说,氨排放因子的测量非常困难,“氨的测量就很困难,氨是寿命较短的气体,测量过程中还有吸附。” /p p   计算也十分复杂。如肉牛在不同生长期,喂的饲料不同,会导致不同氨水平释放。方法不完善,基础数据也可能有问题。我国广大农村以散养为主,目前并没有足够现实数据支撑。在这种情况下,要摸清农村畜禽养殖排放氨的量,难度大。 /p p   ——专家建议—— /p p   多学科合力攻克雾霾成因 /p p   全国政协委员、蓝光集团董事局主席杨铿连续第四年针对雾霾治理提出提案,在今年两会上,他表示,雾霾成因复杂,需要政府环保、科技部门加强对雾霾成因进行系统深入研究。 /p p   周卫健也建议,我国雾霾形成机制异常复杂,四年研究依然不能完全解决雾霾课题。应集中多学科的科学家攻克“我国北方雾霾的成因、发展趋势、环境影响与应对”研究项目。 /p p   推清洁生产促农业氨减排 /p p   其实国家一直倡导农业氨减排。《大气十条》指出,全面推行清洁生产。积极开发缓释肥料新品种,减少化肥施用过程中氨的排放 《北京市2013—2017年清洁空气行动计划》提出,农业氨减排等技术,边研究边应用。 /p p   北京市环保科学研究院研究员张增杰等在发表的《农业源氨排放控制对策初步研究》论文中建议,我国应大力推行种养结合模式,调整畜禽养殖布局和规模,提高农田有机肥施用比例,减少化肥的施用 施用化肥时,测土配方,提高缓释肥的使用,控制施用强度等 基于畜禽养殖粪便管理系统的氮物质流,从饲喂、畜禽圈舍、粪污存储、粪肥土地利用4个方面着手采取相应的控制措施。其中畜禽养殖氨控制措施主要包括降低畜禽日粮中的粗蛋白质含量,从源头上减少氮的摄入等 编制粪肥科学还田技术指南,及农业源氨排放控制指定文件等。 /p p   重拳治理机动车氨排放 /p p   王跃思认为,工业、机动车所占氨排放比重可能比当前认为的高。“工业氨逃逸越来越多,如电厂等在脱硝中喷液态氨,想让氨和氮氧化物反应生成氮气,但控制不好,氮气没生成,氨逃逸出来了。”机动车排放升级到国四标准,柴油发动机要加脱硝装置,但反应过程中会出现反应剂尿素逃逸,尿素很容易分解出氨。“汽油标号越高,硫含量越低,氨排放会相应增多。”这是由于在使用三元催化剂时,想让氮氧化物还原成氮气,事实上很容易还原成氨,与工业合成氨的化学反应接近。 /p p   因此,杨铿建议,抓主要污染源,从源头上出重拳治理雾霾。尽快完善机动车尾气排放的专项立法,特别是在雾霾严重地区要加快制定实施细则,重点严抓执行和检查。国五汽柴油标准从今年1月1日起在全国范围内全面执行,该标准实施后,在全国范围内应禁止国三机动车买卖、过户 在有条件的一、二线城市,禁止国四机动车买卖、过户。 /p p   杨铿还建议各地成立由公安交通管理、环保部门牵头的专项执法检查小组,以治理“酒驾”力度治理环境污染。对发动机燃烧质量、机动车尾气排放情况进行不定期拉网式检查,对排放不达标机动车上路行驶的,依法惩处。 /p
  • 大连化物所研制临床高灵敏高特异性呼出气氨实时监测仪
    近日,大连化物所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队与大连医科大学附属第二医院冷松教授团队合作,基于我所自主研发的高分辨离子迁移谱技术,发展了一种面向床旁诊断的呼出气氨实时监测仪和新方法,实现了对周期性呼吸过程中呼出气氨的高灵敏和高特异性的实时监测。该方法可以有效减轻呼出气中高湿度、复杂背景,以及小分子氨的高吸附性残留对检测结果的干扰,为人体重要生物代谢标志物氨的检测提供了一种无创、实时、精准的新仪器和新方法。呼出气氨与体内氨基酸合成—代谢、尿素—氮动态平衡、血液酸碱平衡缓冲对等多种重要生理过程密切相关。呼出气中氨浓度为肝肾功能、雷氏综合征、尿素循环障碍、有机酸中毒和幽门螺杆菌感染等疾病的诊断提供了重要参考。因此,呼出气氨的快速、非侵入、准确定量监测具有重要的临床意义。在前期相关研究的基础上,本工作通过在漂气中加入改性剂丙酮来调控离子—分子反应,显著地提升了氨和试剂分子的峰—峰分离度,在上千种呼出气组分中实现痕量氨气的高特异性检测;发展了在线稀释和吹扫采样技术,解决了氨分子的吸附残留难题,实现了100%RH下呼出气氨的高灵敏检测;在宽的浓度范围(100至2400ppb)可以实现呼出气氨的准确定量检测,单次分析时间仅40ms。与目前血氨浓度检测方法相比,呼出气氨离子迁移谱检测仪具有无创检测、实时性强、选择性好、灵敏度高等优点,特别适用于透析疗效的实时监测和肝性脑病的早期识别,展示出床旁诊断的重要应用价值。目前,该仪器已在大连医科大学附属第二医院健康管理医学中心开展健康检测和评估。相关研究以“Breath-by-breath measurement of exhaled ammonia by acetone-modifier positive photoionization ion mobility spectrometry via online dilution and purging sampling”为题,发表在《药物分析学报》(The Journal of Pharmaceutical Analysis)上。该工作的第一作者是大连化物所与大连医科大学联合培养硕士研究生王露和102组蒋丹丹副研究员。该工作得到了国家自然科学基金、中科院科研仪器设备研制项目、大连化物所创新基金等项目的资助。
  • 如何自制一杯媲美星巴克的咖啡?你要知道的粒度知识
    咖啡是在全世界范围内最广受欢迎的饮品之一。咖啡粉的粒度分布很大程度上决定了咖啡的萃取时间、萃取的程度和最终成品咖啡的风味和品质。百特实验室探究了咖啡颗粒的粒度分布对于咖啡萃取的影响,且听我慢慢道来。咖啡颗粒的粒度分布我们购买了一种云南阿拉比卡小粒咖啡豆,对其进行不同程度的研磨,得到粗度、中度、细度和极细四种咖啡粉,如下图1所示。图1. 四种研磨度的咖啡颗粒我们使用丹东百特仪器有限公司生产的Bettersize2600激光粒度分布仪检测这四种咖啡粉的粒度分布,结果如下图2中所示。图2.四种研磨度咖啡颗粒的粒度分布曲线从图2中可见,随着研磨程度的提升,粒度分布逐渐减小,表明Bettersize2600能够准确区分和检测在不同研磨程度下的咖啡粉的粒度及其分布。分析冲泡咖啡的萃取效果我们取相同质量的四种咖啡粉,用相同体积和温度的水,在相同的时间里冲泡四杯咖啡。从图3可以看出,粗度咖啡粉冲泡出来的咖啡颜色最浅,玻璃杯底清晰可见;极细的咖啡粉冲泡的咖啡颜色最深,几乎看不到玻璃杯底;其它两杯咖啡随着粒度变小,颜色在变深。图3. 不同粒度的咖啡粉冲泡后的总溶解固体浓度(TDS)从图3可以看到,咖啡粉的粒度越小,咖啡粉的颗粒表面积较大,颗粒表面与热水接触更充分,溶解到水中的固体物质更多,TDS值随之增加,说明颗粒越细会有更多可溶性固体物质溶解到水中。不同研磨程度的咖啡粉制成的咖啡味道如何?我们邀请了五位同事参与口味盲测,得到的评价是:粗度和中度咖啡粉制成的咖啡“缺乏香味,口感单薄”,极细咖啡粉制成的咖啡“酸味太重,苦味太强”,而细度咖啡粉制成的咖啡“暗香浮动,口感醇厚”,最接近星巴克售卖的咖啡。图4. Bettersize2600 激光粒度分布仪结论通过咖啡的颜色、TDS值和口味评价可知,粗度和中度咖啡粉在冲泡过程中没有完成萃取,导致味道寡淡和低TDS值;极细咖啡粉又萃取过度,出现了强烈的酸味和高TDS值。经试验,在四种待测的咖啡粉中,粒径(D50)在300μm左右的咖啡粉能制作出高品质的咖啡。Bettersize2600激光粒度分布仪,可用于精确监测咖啡的粒度分布这一关键指标,帮助咖啡粉、咖啡机、速溶咖啡和咖啡粉分装等企业制造出更高品质的咖啡产品。
  • 中国环境监测总站公开征集合作单位,联合研发固定污染源废气氨和铵监测采样设备
    目前,国内尚无固定污染源废气中气态氨和颗粒态铵盐同步监测的商品化专用采样设备。为有效支持管理决策,建立适合我国实际情况的废气大气中氨的手工和在线监测标准规范,为系统评估和管控污染源氨排放提供技术支持,按生态环境部要求,中国环境监测总站(以下简称总站)现面向社会公开征集合作单位,联合研发固定污染源废气氨和铵监测采样设备。为保障设备研发项目的顺利开展,特做如下说明:一、研发内容固定污染源废气氨和铵监测采样设备,应满足同时采集烟气中颗粒物监测和烟气样品。各单位可根据现有条件和已有基础开展研发工作。二、研发经费本项目研发经费为各参加单位自筹,总站负责提供技术支持。三、项目周期本项目预计研发周期为三个月。拟于2023年12月11日在中国环境监测总站召开座谈研讨会,就项目预期目标和技术要求进行详细介绍,并讨论研发日程等相关问题。请有申报意向的单位积极参加。四、责任与义务1.申报单位在充分理解本项目相关要求的基础上,向总站提交项目合作确认函,正式确认参加项目研发,并按要求履行相关义务和责任。2.申报单位应积极配合总站开展设备研发进度调度等相关工作,并按照需要提供相应的材料。3.申报单位应按照项目进度及时间节点要求完成相应工作,如有特殊情况,应及时以书面形式向总站说明情况。五、注意事项项目合作单位应注意保守商业机密,如出现纠纷责任自负。六、联系方式中国环境监测总站 许人骥电话:(010)84943041中国环境监测总站 张慧兰电话:(010)84943154通信地址:北京市朝阳区安外大羊坊8号(乙)
  • 技术资讯:水中的氨氮含量测定方式
    氨氮(NH3—N)以游离氮(NH3)或(NH4+)形式存在于水中,两者的组成比取决于水的PH值和水温。当PH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐。水中氨氮的测定一般都采用纳氏试剂光度法,氨与碘化汞钾的碱性溶液反应,生成淡黄到棕色的配合物碘化氨基合氧汞,选用410-425nm波段进行测定,测出吸收光度,用标准曲线法来得出水中的氨氮含量。不过这种方法的低检出限为0.25mg/L,测定上限为2mg/L,需要注意的是合成物的颜色深浅与氨氮的含量成正比,所以大家在检测之前可以根据颜色的深浅来进行粗略的估计。当干扰较多或氨氮含量较少时,大家可以采用蒸馏法,使氨从碱性溶液中成气态逸出来进行检测,不过这种方法操作复杂,精密度和准确度都比较差。
  • 赫施曼助力水质氨氮检测
    氨氮含量是判定水质污染度的一个重要指标,氨氮以游离氨或铵盐形式存在于水中,水体受生活污水、农业排水、水产养殖以及某些焦化厂、化肥厂等工业废水污染后,氨氮浓度将明显增加。现行标准中,HJ 535-2009(纳氏试剂分光光度)法适用于地表水、地下水、生活污水和工业废水中氨氮的测定,其原理为:氨氮与纳氏试剂反应生成淡红棕色络合物,其吸光度与氨氮含量成正比,于波长420nm处测量吸光度。分析步骤为制作校准曲线、样品测定和空白试验。标准曲线的制作方法为:在8个50ml比色管中,分别加入0.00、0.50、1.00、2.00、4.00、6.00、8.00和10.00ml氨氮标准工作溶液,加水至标线。加入10ml酒石酸钾钠溶液,摇匀,再加入纳氏试剂,摇匀。放置10min后,在波长420nm下,用20mm比色皿,以水作参比,测量吸光度。以空白校正后的吸光度为纵坐标,以其对应的氨氮含量(ug)为横坐标,绘制校准曲线。绘制校准曲线中需要配置不同浓度的溶液,需要添加不同体积的标准工作溶液和稀释液。赫施曼的opus电子稀释配液系统,可以通过触摸屏在一个分液程序中设定多达10个独立的分液体积,按下分液键就可以进行一组分液,且分液体积参数(程序)还可保存和调用,不必每次设置,避免了重复劳动与输错数值,降低了成本与风险。 水质的氨氮检测还可用水杨酸分光光度法(HJ 536-2009),也需要配制标准曲线,分析步骤基本相同。分光光度法作为经典的含量检测方法,在水质检测中有广泛应用,也有大量的标准曲线的制作,需要毫升级的多体积分液,很多需要现用现配,赫施曼的opus电子稀释配液系统非常适用这类工作,分液程序设置好后可直接调用,让检测更加简单、便捷、可靠。
  • 59款咖啡全部检查出致癌物!涉及多个知名品牌!
    日前福建省消委会对福州市20家咖啡销售单位的59款现制现售咖啡开展比较试验均检测出低含量的2A类致癌物“丙烯酰胺”样品涉瑞幸、星巴克等多家品牌……上图部分抽检样品本次比较试验,对福州市20家咖啡销售单位的59款现制现售咖啡进行采样(其中线下30款,线上29款),样品涉及瑞幸、星巴克、 幸运咖、COTTI COFFEE等20个市面主流品牌,包括了美式咖啡、拿铁和风味拿铁等不同品类,基本涵盖市面在售的现制现售咖啡产品。本次比较试验针对样品的能量、碳水化合物、蛋白质、脂肪、反式脂肪酸、总糖、咖啡因、丙烯酰胺等8个项目进行测试。从本次测试结果情况看:1.59款样品均未检出含有反式脂肪酸(低于0.0013g/100g的检出限)。2.在蛋白质、脂肪等项目检测中,大部分产品检出量较稳定,基本符合国家健康饮食推荐要求,咖啡中添加的奶及奶制品质量较好。3.在能量、糖分、咖啡因、丙烯酰胺等检测项目中,各家产品检测结果差别较大,值得研究探讨和消费者关注。在本次59款样品中,能量检测结果有高有低,其中一杯咖啡能量高于一个成年女性一天所需能量的1/6;样品中有2款美式咖啡和2款拿铁标称为“无糖”,但经检测,其中2款拿铁样品含糖量超过标准对“无糖”规定的最高限量值;咖啡因检测显示其中4款样品的咖啡因含量低于200mg/kg,在提神作用上略显逊色;值得注意的是,在本次59款样品中均检测出低含量的2A类致癌物“丙烯酰胺”(目前我国暂未对咖啡中丙烯酰胺有限制性或禁止性规定)。丙烯酰胺到底是什么?真的会致癌吗?丙烯酰胺主要在某些食物经高温处理的过程中产生。2002年由瑞典研究人员首次报告在油炸或烘焗食物中会产生大量丙烯酰胺。食物中丙烯酰胺含量受多种因素影响。食物(尤其是含丰富碳水化合物、蛋白质含量较低的植物性食物)在120℃的烹调条件下会大量自然产生,采用水蒸煮时较少产生,未经烹调的食物中含量很低。不同食物中丙烯酰胺的含量2005年联合国粮农组织/世界卫生组织联合设立的专家委员会(JECFA),将来自24个国家的6752个检测数据,按照食物类别统计出丙烯酰胺的含量如下表显示。丙烯酰胺真的致癌吗?在世界卫生组织公布的四类致癌物中,丙烯酰胺属于2A类致癌物,也就是对人类致癌作用证据有限。很多流行病学研究表明,丙烯酰胺与肾癌、子宫内膜癌、头颈部肿瘤有关,不过这些致癌性也只是“疑似”。根据2010年国际《食品与化学毒物学期刊》( Food and Chemical Toxicology)(第48期)一项研究结果,丙烯酰胺导致致癌时的剂量为2.6~16μg/kg.day(1微克是1克的一百万分之一),即一个体重60公斤的成年人,若每天摄入丙烯酰胺156微克(156微克=2.6 微克×60)就达到致癌的量。依据上表煮咖啡丙烯酰胺的平均含量为13 μg/kg进行换算,也就是需要每天喝12 kg的咖啡,才会喝到致癌剂量。我们每天真能喝完12 kg的咖啡吗?答案显而易见。离开剂量说毒性都是“耍流氓”,说致癌性也是一样。但适当控制一下有害物的摄入量总是没错的!国内丙烯酰胺管理条例2005年,原卫生部发布了《关于降低丙烯酰胺可能造成的健康危害的公告》,说明了丙烯酰胺可能造成的健康危害,并提出了降低建议。2012年,国家风险评估发布了食品中丙烯酰胺的风险评估报告,为生产商和家庭减少食品中的丙烯酰胺提供指导。目前,食品安全国家标准关于《食品中丙烯酰胺污染控制规范》的相关条例已于2019年立项(参考2019年国家标准项目计划),目前正在制定中。相关检测标准解读现性国家标准中丙烯酰胺的检测方法为:GB 5009.204-2014 食品安全国家标准 食品中丙烯酰胺的测定。该标准2014年实施,适用于热加工食品中丙烯酰胺的测定。第一法:稳定同位素稀释的液相色谱-质谱/质谱法第二法:稳定同位素稀释的气相色谱-质谱/质谱法标准下载:GB 5009.204-2014 食品安全国家标准 食品中丙烯酰胺的测定.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制