当前位置: 仪器信息网 > 行业主题 > >

甲硫氨酸

仪器信息网甲硫氨酸专题为您提供2024年最新甲硫氨酸价格报价、厂家品牌的相关信息, 包括甲硫氨酸参数、型号等,不管是国产,还是进口品牌的甲硫氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲硫氨酸相关的耗材配件、试剂标物,还有甲硫氨酸相关的最新资讯、资料,以及甲硫氨酸相关的解决方案。

甲硫氨酸相关的论坛

  • 求助s-腺苷甲硫氨酸合成酶的液相分析方法

    [color=#444444]求助s-腺苷甲硫氨酸合成酶的液相分析方法,各位大神求帮忙!最好说明使用的流动相、配比。所使用的色谱柱、柱温。进样量。检测波长等。越详细越好。谢谢啦。[/color]

  • 【每日一贴】蛋氨酸

    【中文名称】蛋氨酸;甲硫基丁氨酸;甲硫氨酸;α-氨基-γ-甲巯基丁酸;2-氨基-4-甲巯基丁酸;DL-蛋氨酸;DL-2-氨基-4-甲硫基丁酸【英文名称】methionine;2-amino-4-methylmercaptobutyricacid;Met;DL-methionine【结构或分子式】 【相对分子量或原子量】149.21【密度】1.340(消旋体)【熔点(℃)】280~281(分解)(L体);281(消旋体)【性状】 白色片状晶体或结晶性粉末。【溶解情况】 (L体):溶于水和湿稀乙醇,不溶于无水乙醇、乙醚、石油醚、苯、丙酮。(消旋体):溶于水、烯酸和稀碱溶液,易溶于95%乙醇,不溶于乙醚。【用途】 能维持机体生长发育和氮平衡。适用于防治肝脏疾病和砷或苯等中毒。也可用于治疗痢疾和慢性传染病后因蛋白质不足而引起的营养不良症。可作饲料营养强化剂,在动物代谢过程中对肾上腺素合成胆碱和肝脂肪的磷脂起一定作用,蛋氨酸在体内可形成胱氨酸,本品与甘氨酸有拮抗作用,禽兽缺乏蛋氨酸会引起发育不良、体重减轻、肝肾机能减弱、肌肉萎缩、皮毛变质等。饲料中添加1kg蛋氨酸,相当于鱼粉50kg的营养价值,在饲料中添加量一般为0.05%~0.2%。【制备或来源】 可用酪蛋白经水解、精制而得。也可由甲硫醇与丙烯醛经斯特雷克合成反应制备。【包装及贮运】【生产单位】 天津河北制药厂;天津化工厂;吉林龙井制药厂;广东何济公制药厂;南宁第二制药厂;四川西南制药厂;吉林和龙县制药厂;江苏镇江制药厂;河北张家口东风制药厂等

  • 甲硫氨酸的强制降解实验

    分别添加1ml 2mol/L盐酸,2mol/L氢氧化钠水浴90度加热一小时后,中和稀释进样,主峰出现分叉,但是DAD检测器显示纯度没有变化,仍然是999,这是两个物质的可能性大吗,因为试了不同的梯度,等度,发现始终分不开[img]https://ng1.17img.cn/bbsfiles/images/2020/08/202008312114068792_8895_4037032_3.png[/img]

  • 红外特征峰?

    甘氨酸,苯丙氨酸,精氨酸,丙氨酸,甲硫氨酸,胱氨酸,苏氨酸需要的是带有标记了特征峰的红外谱图,哪本书里有也可以。网站就更好了!看了很多网站都只有标准谱图。谢谢!

  • 【求助】求助:红外特征峰!!谢谢!!!

    需要的是带有标记了特征峰的红外谱图,哪本书里有也可以。网站就更好了!看了很多网站都只有标准谱图。谢谢!甘氨酸,苯丙氨酸,精氨酸,丙氨酸,甲硫氨酸,胱氨酸,苏氨酸氢化可的松琥珀酸钠多谢!

  • 【求助】分子筛实验中如何排除辅料的干扰

    各位老师: 本人在分子筛时候,辅料为甲硫氨酸,制剂中的含量为3%,但是有效成分含量比较少。然后我做分子筛实验的时候,两个无法分开,有效成分的分子量是4000左右。请大家指点迷津

  • 【分享】极性化合物分析实例

    很多种类的极性化合物分离条件。􀂗 UDP-葡萄糖􀂗 UDP-葡萄糖、UDP-半乳糖、磷酸半乳糖􀂗 葡萄糖􀂗 蔗糖􀂗 红细胞中的UDP-葡萄糖、UDP-半乳糖、三磷酸腺苷(ATP)􀂗 ADP-葡萄糖、CDP-葡萄糖􀂗 糖核苷酸􀂗 胞嘧啶、胸腺嘧啶、尿嘧啶、鸟嘌呤、腺嘌呤􀂗 三磷酸腺苷(ATP)、一磷酸腺苷(AMP)􀂗 黄嘌呤-磷酸、鸟嘌呤-三磷酸􀂗 体液中的黄嘌呤、尿酸、次黄嘌呤􀂗 色胺、五羟色胺、多巴胺􀂗 L-天冬氨酸、L-精氨酸􀂗 L-精氨酸、L-赖氨酸、L-组氨酸􀂗 谷氨酸、赖氨酸􀂗 亮氨酸、异亮氨酸􀂗 L-甲硫氨酸、L-谷氨酸􀂗 甲基琥珀酸、戊二酸、草酸、肌酸、4-羟脯氨酸、天冬氨酸、鸟氨酸􀂗 叶酸􀂗 抗坏血酸􀂗 胆汁酸􀂗 柠檬酸、马来酸、反式乌头酸􀂗 马来酸、富马酸􀂗 3-羟基肉桂酸􀂗 矮壮素、甲哌啶􀂗 苯海拉明􀂗 4-二甲氨基吡啶􀂗 草甘膦􀂗 三聚氰胺、三聚氰酸􀂗 胍

  • 【资料】极性化合物分析实例

    很多种类的极性化合物分离条件。􀂗 UDP-葡萄糖􀂗 UDP-葡萄糖、UDP-半乳糖、磷酸半乳糖􀂗 葡萄糖􀂗 蔗糖􀂗 红细胞中的UDP-葡萄糖、UDP-半乳糖、三磷酸腺苷(ATP)􀂗 ADP-葡萄糖、CDP-葡萄糖􀂗 糖核苷酸􀂗 胞嘧啶、胸腺嘧啶、尿嘧啶、鸟嘌呤、腺嘌呤􀂗 三磷酸腺苷(ATP)、一磷酸腺苷(AMP)􀂗 黄嘌呤-磷酸、鸟嘌呤-三磷酸􀂗 体液中的黄嘌呤、尿酸、次黄嘌呤􀂗 色胺、五羟色胺、多巴胺􀂗 L-天冬氨酸、L-精氨酸􀂗 L-精氨酸、L-赖氨酸、L-组氨酸􀂗 谷氨酸、赖氨酸􀂗 亮氨酸、异亮氨酸􀂗 L-甲硫氨酸、L-谷氨酸􀂗 甲基琥珀酸、戊二酸、草酸、肌酸、4-羟脯氨酸、天冬氨酸、鸟氨酸􀂗 叶酸􀂗 抗坏血酸􀂗 胆汁酸􀂗 柠檬酸、马来酸、反式乌头酸􀂗 马来酸、富马酸􀂗 3-羟基肉桂酸􀂗 矮壮素、甲哌啶􀂗 苯海拉明􀂗 4-二甲氨基吡啶􀂗 草甘膦􀂗 三聚氰胺、三聚氰酸􀂗 胍

  • 我国“替尼类”(酪氨酸激酶抑制剂)抗肿瘤药的市场现状

    我国“替尼类”(酪氨酸激酶抑制剂)抗肿瘤药的市场现状2012年1月FDA批准辉瑞公司小分子酪氨酸激酶抑制剂阿西替尼上市,开始了又一轮抗肿瘤靶向药物研究的新高潮。酪氨酸激酶在肿瘤的发生、发展过程中起着非常重要的作用,以酪氨酸激酶为靶点进行药物研发已成为国际上抗肿瘤药物研究的热点。酪氨酸酶抑制剂在临床上通过抑制肿瘤细胞的损伤修复、使细胞分裂阻滞在G1期、诱导和维持细胞凋亡、抗新生血管形成等多途径实现抗肿瘤效果;其抗癌谱广,已经成为治疗各种癌症疾病的一线用药。伊马替尼是基于癌细胞分子作用机理而开发的第一个抗癌新药,开创了肿瘤分子靶向治疗的时代。目前我国已有8个酪氨酸激酶抑制剂上市,包括伊马替尼、厄洛替尼、舒尼替尼等,此类药物的市场情况如下表,其中只有埃克替尼一个为国产产品,其它均为进口产品。表1:酪氨酸激酶抑制剂靶向抗肿瘤药在中国上市情况通用名 商品名 中国上市年份 在中国上市的首家公司 伊马替尼 格列卫 2002 诺华 吉非替尼 易瑞莎 2004 阿斯利康 厄洛替尼 特罗凯 2006 罗氏 索拉非尼 多吉美 2006 拜耳 舒尼替尼 索坦 2007 辉瑞 尼洛替尼 达希纳 2009 诺华 达沙替尼 施达赛 2011 百时美施贵宝 埃克替尼 凯美纳 2011 浙江贝达药业有限公司 靶向治疗,是在细胞分子水平上,针对已经明确的致癌位点(该位点可以是肿瘤细胞内部的一个蛋白分子,也可以是一个基因片段),来设计相应的治疗药物,药物进入体内会特异地选择致癌位点来相结合发生作用,使肿瘤细胞特异性死亡,而不会波及肿瘤周围的正常组织细胞。由于靶向制剂可以提高药效、降低毒性,从而增强了药品的安全性、有效性和病人用药的顺应性,所以日益受到国内外医药界的广泛重视。从2011年各大公司年报数据了解到,诺华的伊马替尼销售额最大,超过46亿美元,罗氏的厄洛替尼和辉瑞的舒尼替尼销售额都超过10亿美元。表2:2011年各大药企的酪氨酸激酶抑制剂产品全球销售额通用名 企业 2011年销售额 伊马替尼 诺华 46.59亿美元 厄洛替尼 罗氏 12.51亿瑞士法郎 舒尼替尼 辉瑞 11.87亿美元 索拉非尼 拜耳 7.25亿欧元 达沙替尼 达沙替尼 8.03亿美元 尼洛替尼 诺华 7.16亿美元 吉非替尼 阿斯利康 5.54亿美元 拉帕替尼 葛兰素史克 2.31亿英镑

  • 【已应助】求助几篇文献,谢谢!

    【序号】:1【作者】:陈英军, 张卓标, 吕海龙【题名】:我国蛋氨酸生产现状及市场分析【期刊】:精细与专用化学品【年、卷、期、起止页码】:2005, 13(16): 22-24.【序号】:2【作者】: 马燕. 【题名】:L-甲硫氨酸产生菌诱变育种和突变株发酵条件研究【期刊】:四川师范大学【年、卷、期、起止页码】:2004.【序号】:3【作者】: KUMAR D, SUBRAMANIAN K, BISARIA V S 【题名】:Effect of cysteine on methionine production by aregulatory mutant of Corynebacteriumlilium【期刊】:Bioresource Technology【年、卷、期、起止页码】: 2005, 96: 287-294.【序号】:4【作者】: 谭圣君, 邵友元, 李卫【题名】:蛋氨酸的研究现状及其应用前景【期刊】:湖北工业大学学报【年、卷、期、起止页码】: 2006, 21(6): 66-70.【序号】:5【作者】: 张伦.【题名】:蛋氨酸国产化进程加快【期刊】:中国制药信息【年、卷、期、起止页码】:2006, 22(2): 36-39

  • 【每日一贴】胱氨酸

    【中文名称】胱氨酸;双巯丙氨酸-二硫代双丙氨酸【英文名称】cystine【结构或分子式】 【相对分子量或原子量】240.30【密度】1.677【熔点(℃)】260(分解)【性状】 白色六角形板状晶体或结晶粉末,无味。【溶解情况】 难溶于水,不溶于乙醇、苯、乙醚、氯仿,溶于烯酸和碱。【用途】 供生物化学和营养研究用。医药上,有促进机体细胞氧化和还原机能,增加白血球和阻止病原菌发育作用。主要用于各种脱发症。也用于痢疾、伤寒、流感等急性传染病、气喘、神经痛、湿疹以及各种中毒疾患等。并有维持蛋白质构型作用。 用作含硫氨基酸加到饲料种,可增加禽畜发育,增加体重化肝肾机能,提高毛皮质量,同时可减轻家禽啄癖症。【制备或来源】 广泛存在于毛、发、骨、角中,可由蛋白质(如人发)水解、精制而得,或由半胱氨酸在碱性水溶液中氧化而成。【其他】 有三种异构体:左旋体、右旋体、消旋体。【生产单位】 济南历城生物化工厂;平乐县制药厂;武汉大学九一生化微生物工厂;胶县氨基酸厂等

  • 【求助】求助:试剂的配制方法,最好具体,也有细节

    [em06] 求助一些药品的配制,希望能具体,包括每个步骤,注意事项以及细节: 0.67%TBA; 0.1mol/L pH8.3的Tris-HCl; 7mmol/L巯基乙醇; 0.02mol/L苯丙氨酸; 1%HCl的甲醇溶液; 2mol/L 硫酸; 0.1M pH7.0 磷酸缓冲溶液; 0.1M愈创木酚; 0.05mol/L pH7.8 磷酸缓冲溶液 130mmol/L 甲硫氨酸; 0.5%淀粉溶液; 10%钼酸铵; 20%KI 溶液; 1.8M 硫酸; 0.05M硫酸; 0.05M过氧化氢; 20umol/L 核黄素溶液; 100umol/L EDTA-NA2 溶液; 750umol/L NBT 溶液; 有谁知道,请回贴,谢谢!!!!!!!!!!!!!

  • 【每日一贴】蛋氨酸羟基类似物

    【中文名称】蛋氨酸羟基类似物;液体羟基蛋氨酸;2-羟基-4-甲硫基-丁酸;MHB【英文名称】methionine hydroxy-analog; Alimet;MHB【结构或分子式】 【密度】1.23(20℃)【粘度 mPa·s(20℃)】0.105 ;0.035(38℃) ;0.5(0℃)【性状】 外观为深褐色粘液。有硫化物特殊气味。【用途】 用作饲料添加剂时可作为蛋氨酸营养补充剂,促进动物生长发育。【制备或来源】 以丙烯醛为原料,在催化剂作用下同甲硫醇反应,生成的甲硫基丙醛与氢氰酸给催化剂作用合成2-羟基-4甲硫基丁腈,在硫酸存在下水解,经精制得成品。【其他】 凝固点-40℃。是单体、二聚体和三聚体组成的平衡混合物,含量分别为65%、20%、3%。 在使用该产品后,需用水冲净皮肤,若眼睛粘上该产品,亦需用清水冲洗。【包装及贮运】 用250kg塑料桶运载。【生产单位】 美国孟山都公司

  • 【求助】请教:一个甲基转移酶,用气相色谱法可不可行?

    我有一个甲基转移酶,催化腺苷甲硫氨酸和水杨酸形成水杨酸甲酯,现在想测这个酶的活性,不知道用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法可不可行?我看到有人用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]外标法对水杨酸甲酯进行定量分析的,然后我想的是,先用酶催化底物反应一段时间后,然后再测其中水杨酸甲酯的含量,用单位时间内产生水杨酸甲酯的量来表示酶单位,这样的实验计划有问题么? 愿各位大家发表一下意见,感激不尽!!!

  • 【原创大赛】【开学季】实例浅析L-半胱氨酸在降低汞残留效应方面的应用

    【原创大赛】【开学季】实例浅析L-半胱氨酸在降低汞残留效应方面的应用

    前段时间开了一个帖子来探讨汞残留效应去除的问题,试了一种试剂L-半胱氨酸的清楚效果,无奈太忙帖子没能完结,这次重新开贴,希望大家讨论一下。 都晓得汞的残留效应很严重,而且因为样品中汞的含量很小,所以用ICP-MS分析汞其残留效应对分析结果影响很大,有时候甚至连标准曲线都拉不好,故实际工作中,很多人会用金溶液作为汞的稳定剂,对系统中汞的残留似乎有一定的清洗能力!因为今年做了一个项目,要检测粮食作物中的汞含量,里面应用了L-半胱氨酸作为汞的稳定剂,我猜想其对降低汞的记忆效应应该是有一定效果的,于是我单独把汞拿出来实验了下L-半胱氨酸的消除汞记忆响应的效果。 一、实验方法:实验手册上用含20ppm的L-半胱氨酸溶液来定容消解液和配制标准系列,据此,我分别用含10ppm、20ppm、40ppm的L-半胱氨酸溶液配制了相同浓度的三个标准点,其浓度均为含汞10ppb。然后每个点分别测试6次,根据其RSD来判断其清除汞残留的效果。在进行本实验前我走了一套Hg的标注系列,线性不好,且看下图:http://ng1.17img.cn/bbsfiles/images/2014/09/201409181528_514410_1615758_3.jpg从据可以看出,在He模式下,背景值相对较低,整体灵敏度也不高,8ppb的Hg才只有7万多CPS,而且高浓度点明显上摆,根据浓度折算,是有汞残留的迹象的。 二、实验过程:按照预先设定的方法,分别测定10ppm基底半胱氨酸、20ppm基底半胱氨酸、40ppm基底半胱氨酸的Hg含量为10ppb的标准溶液,各个测量数据(单位CPS)如下表:http://ng1.17img.cn/bbsfiles/images/2014/09/201409181539_514411_1615758_3.jpg从上表中,可以看出20ppm半胱氨酸基底 的RSD较好,而且似乎L-半胱氨酸有增敏作用(在L-半胱氨酸本身汞含量为零的情况下)。为了更加形象显示三者的区别我们用个折线图来标示。http://ng1.17img.cn/bbsfiles/images/2014/09/201409181552_514415_1615758_3.jpg根据以上信息,我分别用20ppm半胱氨酸溶液和5%硝酸溶液分别在进样10ppb汞溶液后进行系统清洗,同时记录其背景值,如下表:http://ng1.17img.cn/bbsfiles/images/2014/09/201409181609_514420_1615758_3.jpg用折线图形象点http://ng1.17img.cn/bbsfiles/images/2014/09/201409181610_514421_1615758_3.jpg三、实验结果分析:根据以上结果,L-半胱氨酸可能作为基体对Hg有增敏作用,20ppm的L-半胱氨酸清洗液清洗效果要优于5%的硝酸,但是在清洗6次以后,其空白溶液中的Hg信号仍高达1000CPS以上,说明虽然L-半胱氨酸清洗效果要好于5%硝酸,但是其清洗能力仍稍显不足。因此,大致可以说明实验参考手册上添加L-半胱氨酸仅仅是为了让汞标准溶液稳定,利于长期保存,并非主要是为了清洗系统中汞的残留。

  • 分享个质谱临床应用方向的资料

    机构针对的疾病领域利用的MS技术其他信息Labcorp(US)CAH孕烯醇酮检测(CAH是指先天性肾上腺皮质增生症)LC/MS/MS 游离胆酸,甘氨胆酸,牛黄胆酸,鹅去氧胆酸,脱氧胆酸,熊去氧胆酸的定量。用于妊娠梗阻性胆汁淤积症的研究。LC/MS/MS 用于雄激素过量/缺乏检测的游离睾酮定量分析LC/MS/MS Esoterix游离和非蛋白结合的甲状腺素检测ED(平衡透析)-LC/MS/MS 甲状腺功能亢进和减退症诊断的三碘甲状腺原氨酸检测ED(平衡透析)-LC/MS/MS三碘甲状腺原氨酸下丘脑-垂体-肾上腺轴和垂体 ACTH 储备评价LC/MS/MS 盐皮质激素过多症(AME)LC/MS/MS 唾液皮质醇试验诊断库欣综合征LC/MS/MS皮质醇醛固酮检测 (Conn -原发性醛固酮增多症诊断)LC/MS/MS醛固酮胆汁酸代谢先天缺陷筛查LC/MS/MS胆汁酸-鹅脱氧胆酸;胆酸;脱氧胆酸和熊去氧胆酸Perkin Elmer(PKI) 遗传学新生儿筛查-一次测试筛查60多种化学关系(包括脂肪酸氧化和氨基酸代谢紊乱)串联质谱 PKU串联质谱 苯丙氨酸和酪氨酸水平分析辛酰肉碱和葵酰肉碱检测MCAD缺乏和MADD串联质谱辛酰肉碱升高水平与葵酰肉碱水平的比值CPT II 缺乏串联质谱长链酰基肉碱(即C16,C18,C18:1和C18:2)不明确高酪氨酸血症1型,表现为渐进性肝肾损伤症状串联质谱琥珀酰丙酮和酪氨酸肉碱/酰基肉碱转位酶缺乏症串联质谱几种长链酰基肉碱水平升高(即C16,C18,C18:1和C18:2)肉碱棕榈酰转移酶I缺乏症TypeI(CPTI)串联质谱游离肉碱升高和长链酰基肉碱降低(即C16:0和C18:0),游离肉碱和长链酰基肉碱(即C16:0和C18:0)的比值增高3-羟基长链酰基辅酶A脱氢酶缺乏症(LCHAD)串联质谱几种长链羟酰基肉碱水平升高(即C16-OH,C16:1-OH,C18-OH,C18:1-OH,C18:2-OH和C12到C14相关种类) 2,4-二烯酰辅酶 A 还原酶缺乏症串联质谱酰基肉碱C10:2中链酰基辅酶 A 脱氢酶缺乏症串联质谱辛酰肉碱(C8酰基肉碱)水平升高,通常伴随着C10、C6、和C10:1肉碱酯类的生成三功能蛋白缺乏症串联质谱几种长链酰基肉碱和羟酰基肉碱(即C16-OH,C16:1-OH,C16,C18-OH,C18:1-OH和C18)3-羟基-3-甲基戊二酰辅酶A(HMG)裂解酶缺陷症串联质谱六碳二羧酸酰基肉碱(C6-DC)和C5羟酰基肉碱(C5-OH)升高戊二酸血症I 型(GAI)串联质谱戊二酸共价结合酰基肉碱(C5二羧基酰基肉碱,C5-DC)异丁酰辅酶 A 脱氢酶缺乏症串联质谱C4升高异戊酸血症 (IVA)串联质谱C5升高甲基丙二酸血症串联质谱C3升高表示可能有代谢缺陷,MMA或丙酸血症丙酸血症 (PA)串联质谱C3丙二酸血症串联质谱丙二酰基肉碱升高   精氨酸血症串联质谱精氨酸升高5到10倍精氨酸尿症串联质谱瓜氨酸水平升高5-羟脯氨酸尿症串联质谱5-氧脯氨酸水平升高,表明需要进一步检验Mayo Clinic (Mayo Medical Laboratories)新生儿筛查服务串联质谱 儿童CAH诊断LC-MS/MS雄烯二酮,要求与雄激素前体(OHPG,17-α-羟基孕烯醇酮)一起测量氨基酸代谢串联质谱牛磺酸、苏氨酸、 丝氨酸、 天冬酰胺,谷氨酸、谷氨酰胺、脯氨酸,瓜氨酸、丙氨酸、α-氨基-n-丁酸、缬氨酸、胱氨酸、甲硫氨酸,丁酸、缬氨酸、胱氨酸、甲硫氨酸,苯丙氨酸、β-丙氨酸、鸟氨酸,赖氨酸、组氨酸、精氨酸、异亮氨酸、 磷酸丝氨酸,磷酸乙醇胺,羟脯氨酸,甘氨酸、天冬氨酸、乙醇胺、肌氨酸、 1-甲基组氨酸,3-甲基组氨酸,肌肽、 鹅肌肽,高瓜氨酸,α-氨基己二酸,γ-氨基-n-丁酸,β-氨基异丁酸,胱硫醚和色氨酸。脂肪酸代谢串联质谱SCAD 缺乏症, MCAD缺乏症, TFP缺乏症, LCHAD缺乏症, VLCAD 缺乏症, CPT-2, CACT有机酸代谢串联质谱 2M Associates,Inc.新生儿筛查服务Perkin Elmer API2000 LC/MS/MS系统 氨基酸代谢Perkin Elmer API2000 LC/MS/MS系统1.精氨酸尿症(ASA 裂解酶缺陷症)2.高胱氨酸尿症3.高甲硫氨酸血症4.枫糖尿病(MSUD)5.苯丙酮尿症和其他高苯丙氨酸血症6.酪氨酸血症脂肪酸代谢Perkin Elmer API2000 LC/MS/MS系统1.肉碱/酰基肉碱移位酶缺乏症2.中链酰基辅酶A脱氢酶缺乏症(MCAD)3.多种酰基辅酶A脱氢酶缺乏症(戊二酸血症TypeII)4. 新生儿肉碱棕榈酰转移酶II缺乏症CPT-II)5.短链酰基辅酶A脱氢酶缺乏症(SCAD)6.三功能蛋白质缺乏症(TFP 缺乏症)有机酸代谢Perkin Elmer API2000 LC/MS/MS系统1.3-羟基-3-甲基戊二酰辅酶A (HMG)裂解酶缺陷症2.异戊酸血症 (IVA)3.3-甲基巴豆酰辅酶A羧化酶缺乏症(3MCC缺乏症)4.3-甲基戊烯二酰辅酶A水解酶缺乏症5.甲基丙二酸血症(MMA)6.线粒体乙酰辅酶A硫解酶缺乏症(3-铜硫解酶缺乏) 酰基肉碱组合串联质谱 Emory遗传学实验室酰基肉碱组合-脂肪酸和有机酸血症诊断串联质谱(MCAD,VLCAD,SCAD,MAD,LCHAD,and CPTII)尿有机酸GC/MS [

  • 聚谷氨酸做肥料缓释剂的研发方案

    据说聚谷氨酸对肥料有缓释作用,领导要求我做一个实验方案.我大概整了一个如下,请大家指点.尤其是聚谷氨酸的缓释原理一块,有研究的版友务必给点指导哦.聚谷氨酸用作肥料缓释剂试验方案背景资料:聚谷氨酸是一种水溶的高分子化合物,具有高吸水性、生物降解性。在农业应用中,聚谷氨酸的作用有三方面:1,保水剂;2,病害抑制剂,3,肥料增效剂/缓释剂。其中做病害抑制及、肥料增效剂的报道较多,做肥料缓释剂的报道很少。聚谷氨酸作为肥料增效剂使用,据报道在肥料用量减少20%的情况下,产量与对照持平,还有报道聚谷氨酸可以抑制黄瓜病害,增加黄瓜生物量。还有资料称聚谷氨酸对肥料具有缓释作用,但是对缓释原理缺乏详细清晰的阐述。对于聚谷氨酸对药物的缓释原理,有文献是这样解释的:聚谷氨酸分子链上具有大量活性较高的侧链羧酸(-COOH),易于和一些药物结合生成稳定的复合物。这个原理或许可以借用来解释聚谷氨酸对肥料的缓释作用,这样的缓释机理与腐殖酸类物质有相似之处。据专利200710052667聚γ谷氨酸增效肥料,“实验证明,将聚γ谷氨酸或其盐与熔融尿素混匀造粒,成粒率提高2-3%,粉状产品减少,借助尿素和聚γ谷氨酸分子间化学键的结合作用,使尿素在土壤中缓慢释放,释放时间由原来的50天提高到200天左右,肥料利用率提高20%以上,在达到同样效果的前提下,可节约肥料20%以上,显著提高作物硝酸还原酶和过氧化酶的活性以及植物根系活力,效果明显优于添加其它脲酶抑制剂的尿素产品”。聚谷氨酸也有制作包膜肥料的先例。据VEDAN公司的资料,用聚谷氨酸浓度为0.05%、0.075%、0.1%浓度的溶液对尿素进行包膜,用紫外分光光度计测定尿素完全释放时间延长到300分钟(未包膜尿素的释放时间为75分钟)。达不到GB/T23348-2009缓释肥料标准的要求。根据上述背景资料,认为聚谷氨酸做包膜肥料产品效果并不理想。如果聚谷氨酸有缓释作用,添加聚谷氨酸的肥料产品缓释机理与包膜肥料、脲醛肥料、稳定性肥料都不同。测定聚谷氨酸添加肥料的缓释性能的试验方法也应与之不同。拟采用间隙淋洗法测定含有聚谷氨酸的尿素在土壤中的存留时间。 试验方案:试验原理:将待测肥料加入土壤,并加适量水,培养至一定时间后,用100.00ml 0.02mol/L的CaCl2溶液,分两次淋洗,收集淋洗液,加碱,蒸馏。馏出组分用硼酸吸收,最后用硫酸滴定,并计算出铵的含量。根据各阶段淋洗液中铵态氮的含量,判断聚谷氨酸对铵态氮肥的保蓄作用。土壤与肥料样品的选择:为了先找到合适的试验方法,简化操作,计划使用硫酸铵为肥料样品,取用广东酸性土为供试土壤,这样氮肥在土壤中的转化可以降至最低,最后可以通过检测淋出液中的铵态氮含量,来判断聚谷氨酸对肥料的保蓄作用。确定试验方法可用后,再扩展到其他形态 氮肥、磷、钾肥。所需仪器、试剂:直径6cm,长10cm的锥底硝化管(拟用100毫升注射器代替,试验前在底部垫一小块棉花,以防止土壤颗粒堵塞小孔),半透膜,蒸馏装置,滴定装置,紫外可见分光光度计,火焰光度计、其他实验室常用装置。蒸馏水、0.02mol/LCaCl2溶液、硼酸吸收液、浓氢氧化钠溶液、硫酸滴定液。一、准备肥料样品根据博尔日公司产品宣传资料,聚谷氨酸在造粒肥料中的添加量可达到千分之一或千分之三左右。取硫酸铵100g,聚谷氨酸1g,将两者研磨均匀,得到聚谷氨酸添加量为千分之十的肥料样品A;取样品A 50g,加硫酸铵50g,研磨均匀,得到聚谷氨酸添加量为千分之五的肥料样品B;取样品B40g,加硫酸铵60g,研磨均匀,得到聚谷氨酸添加量为千分之二的肥料样品C。二、准备土壤样品取广东酸性土壤,风干、粉碎、过筛备用。三、试验步骤1, 取硝化管8支,塞入一小团棉花(或者玻璃毛),先加土壤至距管口5cm处,再分别取粉末状硫酸铵、上述肥料样品A、B[font=宋

  • 迪马AAA氨基酸柱 这样测半胱氨酸 可以吗??

    迪马AAA氨基酸柱 这样测半胱氨酸 可以吗??

    先简单 介绍——————做氨基酸 检测想了解详细资料,请自己到迪马科技官网自行下载http://simg.instrument.com.cn/bbs/images/brow/em09510.gifPITC柱前衍生法18种天然氨基酸分析(异硫氰酸苯酯柱前衍生法)——序列号: D0241 适用范围 该方法适用于氨基酸注射液、动植物性食品和饲料中 Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(蛋氨酸)、Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、 Lys(赖氨酸)等 18种天然氨基酸的检测http://ng1.17img.cn/bbsfiles/images/2012/03/201203131711_354396_2019107_3.jpg2 溶液配制 氨基酸储备液: 称取一定量氨基酸标准品,用 0.1 mol/L HCl水溶液溶解,胱氨酸为0.01 mol/L,酪氨酸为0.02 mol/L,其他氨基酸为 0.05 mol/L 氨基酸使用液: 将储备液用0.1 mol/L HCl水溶液稀释,得到浓度为 0.002 mol/L 的氨基酸单标和混标 内标液: 以正亮氨酸作为内标物。称取一定量正亮氨酸,溶于 0.1 mol/L HCl水溶液,得到 0.02 mol/L 的正亮氨酸内标液 异硫氰酸苯酯溶液: 将 250 μl 异硫氰酸苯酯用乙腈乙腈定容至 10 ml,得到0.2 mol/L 异硫氰酸苯酯溶液 三乙胺溶液: 将1.4 ml三乙胺用乙腈定容至 10 ml,得到1.0 mol/L 三乙胺溶液 标准溶液衍生化 量取 200 µl氨基酸混合标准溶液(每种组分浓度均为 0.002 mol/L),置于 1.5 ml塑料离心管中,准确加入20 μl正亮氨酸内标溶液、100 µl 1 mol/L三乙胺乙腈溶液和100 µl 0.2 mol/L 异硫氰酸苯酯乙腈溶液,混匀,室温反应 1 小时,然后加入正己烷 400 µl,旋紧盖子后剧烈振荡5~10 s,静置分层,取 200 µl下层溶液与 800 µl水混合,0.22 µm 针式过滤器过滤,待分析。注: 通过控制原始样品质量或稀释等方法,使样品溶液中的氨基酸总量不超过0.04 mol/L 或3.0 g/L(两者中取最小值) 只有采用内标法分析时,才需要加入正亮氨酸作为内标物 衍生得到的样品溶液中含有50%的乙腈,这与流动相溶剂体系存在较大差距,因而需要加水稀释,否则会引起峰前沿或分叉迪马科技AAA氨基酸柱子 洗脱条件 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646181_2019107_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/04/201104221943_290383_2019107_3.gif

  • 【求助】询问羟脯氨酸的检测方法

    最近公司要检测羟脯氨酸,在文献上看到有用异硫氰酸苯酯作为衍生剂的,上网看了下贵公司有氨基酸的方法包,但是没有看到羟脯氨酸的检测,不知道这个能不能检测,能不能将它与别的氨基酸的峰分开,因为要检测的峰还是有点多。

  • 【分享】谷氨酸发酵液除菌体提取谷氨酸研究进展

    谷氨酸发酵液除菌体提取谷氨酸研究进展作者:佚名 文章来源:本站原创点击数: 222 更新时间:2010-4-14 13:19:04 file:///C:/Users/%E9%83%AD%E9%9B%B7/AppData/Local/Temp/msohtml1/01/clip_image001.gif我国味精生产,从发酵液中提取谷氨酸大多采用带菌体冷冻等电加离交法,由于发酵液中存在大量的菌体蛋白、悬浮物及其它杂质,给谷氨酸提取操作、提取收率、谷氨酸质量带来显著影响,且废水含高C0D、高B0D等严重污染环境的物质,又给废水治理带来重重困难。 近几年来,国内一些味精生产企业、研究所,对谷氨酸发酵液除菌体及提取谷氨酸进行了大量研究,除菌体工艺有高速离心机分离,絮凝剂分离、膜分离等,都取得了明显成果。按除菌体不同工艺、除菌体率分别达到70%~96%,以膜分离法除菌率最高达95%以上,得到的发酵液澄清,0D低,谷氨酸提取操作方便,由于除去了影响谷氨酸结晶的大量杂质,因而谷氨酸结晶颗粒大,纯度高、质量好,易于沉降分离,提取收率明显提高。高纯度谷氨酸有利于味精精制,味精中和脱色过滤可降低活性碳或树脂用量,提高味精结晶质量,大大降低味精生产成本。除菌体后的发酵液及等电提取后的废液中C0D、BOD大大减少,减轻了环境污染,降低了废水治理负荷与难度。得到的菌体经干燥后可以综合利用,作高蛋白质饲料或作核苷酸的生产原料。 谷氨酸发酵液除菌体及多种新工艺提取谷氨酸的研究,是对我国味精工业清洁生产的有益探索。随着研究的不断深化,许多先进工艺技术将会被应用,味精生产终将进入一个新水平。 1 高速离心分离除菌体,浓缩等电提取 沈阳味精厂从瑞典引进4台ALFA—LAVA公司的FESX5l2S一3lC型蝶片式高速喷咀离心机,转速4650I1) 分,功率45kw,对玉米淀糖为碳源,尿素作氨源、玉米浆为生物素的T一6l3菌发酵液进行了工业性除菌体,进料量20m ,喷咀直径1.0mm,菌体分离率达70%以上,轻流占75% ,重流占25%左右,除菌体后发酵液中谷氨酸略增,还原糖下降,0D值明显降低,工业规模运转证明,该设备对分离谷氨酸发酵液性能可靠,比较适宜。 发酵液除菌体后采用浓缩等电点提取法。 除菌体后的发酵液,经减压蒸发到含谷氨酸12%~15% ,后与重液经水解浓缩制成的二次蒸发液进行等电中和(60℃、40l1)m搅拌),然后冷却、沉淀、离心分离,提取达83.14%~85.03%,比带菌体浓缩等电点提取收率77.24%显著增加。且谷氨酸含量高达96%(干),用于制造味精时脱色液过滤快,透光率高,味精质量好。 2 凝聚剂除菌体一次等电或浓缩等电提取 使用安全性高的壳聚糖作絮凝剂,其阳离子性能与发酵液中菌体(带负电荷)与蛋白凝聚使其沉淀而进行分离。壳聚糖对金属离子、蛋白质、氨基酸、核酸均有很强的吸附能力,特别对胶体微粒有甚大的絮凝作用,其官能基团主要是氨基。在最佳pH、搅拌速度、用量、温度条件下,菌体去除率可达9O%左右。 壳聚糖不易溶于水,而溶解于酸性溶液中。配成一定浓度后,于发酵液中慢慢加人,搅拌速度也以慢为好。过快易将凝絮物打碎,难过滤。菌体凝聚沉降后,抽取上清液,沉降物可加硅藻土或珍珠岩作助滤剂,尤以硅藻土作助滤剂好,不吸附谷氨酸。中试规模过滤可用板框压滤,小试规模实验室中,采用高速离心机分离。应用国产高速离心机分离除菌体凝絮物(包括菌体)至今未见报导,这也是用凝絮法除菌体不能很快推广的一个较大问题。凝聚法去除菌体后的谷氨酸发酵液的提取方法有: 2.1一次等电点法 谷氨酸发酵液经絮凝处理后,采用一次等电点法,(即用酸逐步调到pH3-2法)提取收率可达76.18% ,比对照收率71.3%提高6.2% ,谷氨酸结晶的透光率52.25% ,比对照l1.25%提高了4倍;谷氨酸提取后的母液,可减少谷氨酸0.06%~0.11%。这是提高谷氨酸收率的一个重要原因,即去除了干扰谷氨酸结晶因素。 2.2 浓缩等电点法 将除菌体经过滤的发酵液,真空浓缩一倍,用加热快速调pH的方法,一次性直接调到pH3.2。搅拌到常温,再搅拌2h~3h时,沉淀3h,离心分离谷氨酸,谷氨酸一次收率平均可达85%左右,纯度可达95%左右,且调节pH的酸用量比普通谷氨酸等电点法用量要少。 2.3 先等电提取后浓缩再提取法 谷氨酸发酵液除菌体后,先用一次等电点法(常温或冷冻)提取出谷氨酸的60%~75%,残母液中含1.2%~1.5%左右的残谷氨酸,再加以浓缩(通过多效蒸发器)3倍,再提出剩余谷氨酸,总收率可达85%以上。母液浓缩成浆状可作肥料,再根据当地的土质情况,适当添加磷、钾等肥效成分。这条工艺路线是既提高了谷氨酸的提取收率,又产生综合效益。从发酵液分离出

  • 【分享】L-胱氨酸试剂纯度的测定

    L-胱氨酸试剂纯度的测定一.实验原理:在溴酸钾的标准溶液中,加入过量的溴化钾,将溶液酸化,发生反应生成溴。在有过量溴存在的强酸性溶液中(盐酸浓度1mol/L),胱氨酸和溴1:5发生反应,剩余的溴用碘化钾还原,析出的碘可用硫代硫酸钠标准溶液滴定。二.实验内容和实验步骤:1.硫代硫酸钠标准溶液的配制:称取约3.1-3.2g的带5个结晶水的硫代硫酸钠,用新鲜蒸馏水溶解,加入少量碳酸钠,稀释到约500ml,贮在棕色瓶子里。2.准确称取0.1740-0.1744g溴酸钾基准物质和2g溴化钾,溶解后定量转入250ml容量瓶,移取25.00ml该溶液,加25ml水,10ml(1+1)盐酸,放5-8分钟,然后加入20ml10%的碘化钾,再放5-8分钟,用硫代硫酸钠滴定到淡黄色,加2ml淀粉溶液,继续滴定到蓝色消失,记下消耗硫代硫酸钠的体积。3.溴酸钾标准溶液的配制:准确称取1.3360g干燥的溴酸钾,溶解并转移到100ml容量瓶中,移取25.00ml进入100ml容量瓶再稀释到刻度。4.从稀释后的溴酸钾标准溶液中移25.00ml到锥形瓶中,加过量溴化钾固体和25ml 2mol/L的盐酸。放在冰浴中并盖上表面皿,放30分钟。5.准确称取0.21-0.22gL-胱氨酸试剂,用稀盐酸溶解后装入100ml容量瓶中,移取25.00ml加入步骤4中的溶液里,适当摇动反应5-10分钟。6.加入22-25ml 2mol/L的氢氧化钠溶液,再加入0.2mol/ L的碘化钾溶液20ml,立即用硫代硫酸钠滴定到淡黄色,加入淀粉指示剂,继续滴定到蓝色刚好消失,记下消耗的硫代硫酸钠体积。三.L-胱氨酸试剂纯度的计算过程:标定硫代硫酸钠标准溶液的浓度为C,滴定时消耗体积V,L-胱氨酸试剂质量为m,则L-胱氨酸试剂的纯度=(0.0012-2VC/5)*240.3/m*100%。来源:生命经纬

  • 【分享】如何制备常用培养基 公司版本

    培养基制备(按1000ml计)1、 营养肉汤(Nutrient broth)培养基:牛肉膏3g,蛋白胨10g,NaCl 5g,加水至1000ml,pH7.2~7.42、 营养琼脂培养基(Nutrient agar)培养基: 牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15~20g,加水至1000ml,pH7.2~7.43、 肉汁葡萄糖培养基: 牛肉膏3g,蛋白胨10g,NaCl 5g,葡萄糖20g,琼脂15~20g,,pH7.2~7.44、 察氏培养基:NaNO32g,K2HPO4 1g,KCl 0.5g,MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g,蔗糖30g, 琼脂15~20g,加水至1000ml,pH自然5、 高氏一号培养基:可溶性淀粉20g,KNO31g,NaCl 0.5g, K2HPO4 0.5g, MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g, 琼脂20g,加水至1000ml,pH7.2~7.4。此培养基适用于多数放线菌,孢子生长良好,宜保藏菌种。制法:先用少量冷水将淀粉调成糊状,再取700ml水盛于烧杯中,在电炉上加热,沸腾时边搅拌边将淀粉糊倒入,待透明后再将其他成分加入,最后补足水分至1000ml.6、 无碳基础培养基(NH4)2SO4 5g,KH2PO4 1g,NaCl 0.1g, MgSO4·7H2O 0.5g,CaCl2 0.1g,酵母膏0.2g, 加蒸馏水至1000ml,pH6.5.加2%水洗琼脂即成固体培养基.于6.86×104Pa压力下灭菌20min.此培养基适用于测定酵母菌对碳源的利用(加待测碳源2%).7、 无氮基础培养基:葡萄糖20g, K2HPO4 1g, MgSO4·7H2O 0.5g,酵母膏 0.1g或20%豆芽汁20ml,水洗琼脂20g,加无氨蒸馏水至1000ml.pH6.5. 于6.86×104Pa压力下灭菌20min.此培养基适用于测定酵母菌对氮源的利用(加待测氮源0.5%).8、 营养缺陷型筛选用培养基⑴ 普通营养肉汤培养基⑵ 加倍营养肉汤培养基: 牛肉膏3g,蛋白胨10g,NaCl 5g,加水至500ml,pH7.2⑶ Vogel 50×(即浓缩50倍): MgSO4·7H2O 10g,柠檬酸100g,NaNH4HPO4·4H2O175g,KH2PO4·2H2O599.88g,K2HPO4·3H2O656.31g,加蒸馏水至1000ml.配置时先加水500ml,加热使药品溶解后,再定容1000ml.配好后放入冰箱备用.⑷ 固体基本培养基: Vogel 50×20ml,葡萄糖20g,水洗琼脂20g,加蒸馏水至1000ml,pH7.0,⑸ 2氮液体基本培养基:K2HPO4 7g,KH2PO4 3g,柠檬酸纳·3H2O 5g,MgSO4·7H2O 0.1g,(NH4)2SO4 2g,葡萄糖20g,加蒸馏水至1000ml,pH7.0, 于4.9×104Pa压力下灭菌20~30min.⑹ 无氮液体基本培养基:在⑸的配方中除去(NH4)2SO4即可.⑺ 混合氨基酸和混合维生素的配置:将氨基酸分为七组(如下表),其中六组各有6种氨基酸,每种氨基酸等量研细,充分混匀.若所选的氨基酸为DL型,则用量加倍.第七组只有一中氨基酸.第八组为混合维生素.Ⅰ 赖氨酸 精氨酸 甲硫氨酸 半胱氨酸 胱氨酸 嘌呤Ⅱ 组氨酸 精氨酸 苏氨酸 谷氨酸 天冬氨酸 嘧啶Ⅲ 丙氨酸 甲硫氨酸 苏氨酸 羟脯氨酸 甘氨酸 丝氨酸Ⅳ 亮氨酸 半胱氨酸 谷氨酸 羟脯氨酸 异亮氨酸 缬氨酸Ⅴ 苯丙氨酸 胱氨酸 天冬氨酸 甘氨酸 异亮氨酸 Ⅵ 色氨酸 嘌呤 嘧啶 丝氨酸 缬氨酸 酪氨酸Ⅶ 脯氨酸 Ⅷ 维生素B1 维生素B2 维生素B6 泛酸 对氨基苯甲酸 烟碱酸及生物素因脯氨酸容易潮解,所以单独列为第七组.把维生素B1、B2、B6、泛酸、对氨基苯甲酸(BAPA)、烟碱酸及生物素等量研细,充分混匀,配成混合维生素为第八组。

  • DL-蛋氨酸含量测定

    有人用间接碘量法(甲硫法)测定蛋氨酸含量的吗?为什么我测定结果只有80%?标识含量为99%。

  • CNS_12.006_L-丙氨酸

    [align=left][/align][align=left][/align][align=center][/align][align=center][font='黑体'][size=29px]食品添加剂 L[/size][/font][font='黑体'][size=29px]-[/size][/font][font='黑体'][size=29px]丙氨酸[/size][/font][/align][align=center][font='宋体'][size=18px]吴勇[/size][/font][/align][align=center][font='宋体'][size=18px]二〇二一年七月二十二日[/size][/font][/align]1. 概述L-丙氨酸通常指L-α-氨基丙酸,在营养学上属于非必需氨基酸,同时在人体血液氨基酸中含量最高,在食品、医药、化工等领域得到广泛应用。L-丙氨酸作为食品添加剂时属于增味剂或营养强化剂。2. 理化性质性状为白色结晶或结晶性粉末,属斜方晶系。可溶于水和乙醇,不溶于乙醚和丙酮,无臭无毒。密度为1.432gcm[font='等线'][size=13px]-3[/size][/font],熔点为314.5℃,相对分子质量为89.09。3. 制备方法L-丙氨酸的制备方法经历了蛋白水解提取法、发酵法和酶法的发展过程。其中蛋白水解提取法的成本较高,已不适合工业化生产。目前工业化生产的主要方法是酶法转化,即利用携带具有生物活性的L-天冬氨酸-β脱羧酶的微生物,通过生物催化的方式将L-天冬氨酸转化为L-丙氨酸。酶法转化通常可分为两类:固定化细胞法和游离细胞法。生产L-丙氨酸的菌种包括德阿昆哈假单孢菌、黄色短杆菌、产气荚膜梭菌、脱硫脱硫孤菌、小球诺卡氏菌等。[font='等线'][size=13px][1][/size][/font]3.1 固定化细胞法固定化细胞法生产L-丙氨酸的基本工艺流程为:菌体培养加入L-天冬氨酸进行酶转化抽滤L-丙氨酸粗品母液稀释脱色过滤真空浓缩干燥。[font='等线'][size=13px][2][/size][/font]可使用卡拉胶进行固定化,通过固定化德阿昆哈假单孢菌和固定化大肠杆菌装柱串联,可达到从富马酸铵经过转化为L-天冬氨酸的过程转化为L-丙氨酸,从而实现连续化生产。其中,大肠杆菌可实现富马酸到L-天冬氨酸的转化过程,德阿昆哈假单孢菌可实现L-天冬氨酸到L-丙氨酸的转化过程。此方法的关键在于防止固定化过程可能带来的酶失活和pH变化带来的酶失活,以及防止丙氨酸消旋酶对L-丙氨酸的外消旋化。3.2 游离细胞法游离细胞法生产L-丙氨酸的基本工艺流程为:菌体培养离心固定化加入L-天冬氨酸进行酶转化脱色、浓缩、结晶干燥。[font='等线'][size=13px][2][/size][/font]此方法的关键在于抑制丙氨酸消旋酶的活性,同时提高酶的活性和稳定性。4. 应用[font='等线'][size=13px][1][/size][/font]4.1 L-丙氨酸在食品工业的使用L-丙氨酸作为一种广泛存在于食品中的氨基酸,可用作食品的添加剂。4.1.1 防腐剂L-丙氨酸与二元羧酸(如乙酸钠、富马酸)、氧化性酸的混合物可用作保存面条的防腐剂,并且能在防腐的同时保持面条的鲜度。L-丙氨酸与辣椒油、山梨酸钾的混合物能够有效抑制酵母菌、大肠杆菌、黑曲霉等细菌的滋生,可适用于水产品、面条、腌制品、海产品、豆制品、畜产品以及饲料、化妆品、药品的保鲜。4.1.2 风味调味料[font='等线'][size=13px][3][/size][/font]L-丙氨酸具有改善风味的效果,属于重要的氨基酸类调味剂,能够与其它氨基酸配合使用加强食品与饮料的风味。L-丙氨酸与其它氨基酸和(如葡萄糖、阿拉伯糖、甘露糖、果糖、蔗糖、麦芽糖等)以任意比例混合后可显著改善食品、饲料的风味。目前,L-丙氨酸作为食品增味剂的应用已经有了比较大的发展,但仍需要进一步的开发。4.1.2.1 酱油酱油中L-谷氨酸钠等增味剂的添加量较大以及酱油的咸度太高等问题都限制了酱油的使用市场,如何减少味精等添加剂的用量以及降低酱油的咸味已经逐渐成为人们关注的焦点。在酱油中添加L-丙氨酸后,尤其是对于苦涩味特别严重的三级酱油,随着丙氨酸浓度的增大,酸味、苦味、涩味变得柔和,酱油整体风味得到改善。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和,尤其是对盐度高、不含L-谷氨酸钠、I+G和酵母抽提物等添加剂的酱油原油的调味效果最为明显。4.1.2.2 鱼露在国外的鱼露的生产中,一般通过添加HVP(植物蛋白水解液,hydrolyzed vegetable protein)补充氨基酸,提高鱼露的鲜味,HVP中含有一种名为3-氯-1, 2-丙二醇(3-MCPD)的物质,这种物质对生殖器官、肾脏和神经均有毒性,同时还存在潜在的致癌和致突变作用,长期食用含有3-MCPD的食品会造成严重身体损伤。针对3-MCPD的安全性和出口限量标准等问题,一些酱油、鱼露生产商对其生产工艺进行了改善,将传统工艺中的HVP替换为丙氨酸、谷氨酸、甘氨酸等的混合溶液,所得鱼露的味道更加醇厚,而且改善后的生产工艺成本与改善前相差不大。4.1.2.3 食用盐国外推出的低钠盐,主要成分为60%~70%氯化钠和20%~30%氯化钾,10%左右的L-丙氨酸、酵母提取物以及I+G,可以实现减盐不减咸,帮助人体钠钾平衡,增加鲜味,尤其是可以减少味精的使用量,对预防及降低高血压均起到了积极的作用。4.1.2.4 鸡精为了提升鸡精的风味,除了增加鸡肉粉的添加量以外,一些生产厂家优选在其鸡精配方中添加丙氨酸,利用丙氨酸的鲜味以及诱发食物风味的作用来 提升鸡精调味料的口感,既起到了协调增鲜的作用,又降低了人体钠的摄入量。鸡精中添加L-丙氨酸后,其鸡肉风味更加醇厚,鲜味增强。4.1.2.5 复配甜味剂许多甜味剂单体都有各自的优点和缺陷,无论哪种甜味剂单体,用量过大时都会产生不良风味和后味,均不能同时满足安全、口感、工艺、成本四项要求。只有对单体甜味剂各自的优点进行利用和发挥,对其缺点进行弥补和改造,用科学合理的方法对多种甜味剂进行复配和改造,才能满足使用要求。在复配甜味剂中加入1%~10%的L-丙氨酸,能提高甜度、柔和甜 味,减少糖精钠等人工合成甜味剂的用量,是制作糖尿病人食品的潜在甜味剂,同时也能满足现代人“低糖”的饮食习惯。4.2 L-丙氨酸在医药上的应用L-丙氨酸作为一种蛋白质的合成原料,能够影响人体的生理活动。40年代起出现第一代氨基酸输液,由水解蛋白制成,含有较多杂质,在临床中出现不良反应;1965年日本出现第二代氨基酸输液,其中含有11种氨基酸,除人体必需氨基酸8种外还存在精氨酸、组氨酸和甘氨酸;1976年开始,多国出现第三代氨基酸输液,在第二代氨基酸输液的基础上加入了L-丙氨酸、脯氨酸和丝氨酸等多种非必需氨基酸。随着临床医学的发展,第四代氨基酸输液不再是营养型输液,而是治疗型输液,通过调整人体的氨基酸代谢水平对部分疾病进行治疗。L-丙氨酸在治疗如肝病引起的蛋白质合成紊乱、糖尿病、急慢性肾功能衰竭以及对维持危急病人的营养、抢救患者的生命方面起到了积极作用。L-丙氨酸可以有效减轻酒精对肝脏的损害。L-丙氨酸可以有效地减轻酒精对肝脏的损害。通过对腹腔注射170mmol/kg体重19%的乙醇的小鼠进行试验表明,投服L-丙氨酸的小鼠的生存率为67%,比不投的高出34%;而L-丙氨酸与鸟氨酸相结合, 则生存率提高到100%。所以可将L-丙氨酸与L-鸟氨酸的混合物按0.01%~10%添加量加到食品中,也可以将L-丙氨酸与谷氨酰胺以 1:0.05~0. 5(摩尔比)混合物制成片剂、胶囊、乳剂、口服液等,能够起到保护肝脏、降低酒精中毒的作用。L-丙氨酸还是血液保存剂的主要成分。目前输血用血液保存方法中除了全血保存外,还有红血球制剂保存。但血液制剂在保存过程中会发生老化,因而保存期有限。为了提高保存期 ,防止老化,采用了添加腺嘌呤、肌苷、蔗糖、乳糖等方法。但这类方法都有缺点,这些添加成分在输血前必须予以除去。例如,在添加蔗糖时,直接将含有蔗糖的血液注射到人体中时,血液中的糖浓度会急剧上升,必须在输液前预先用等渗透压生理盐水洗涤、渗透等方法降低糖浓度后才能输血。而氨基酸既可以降低渗透压又显示与蔗糖相同的抗溶血性,在输血时可 以不必除去,能直接使用,还具有优良的营养效果。5. 限量标准现行标准[font='等线'][size=13px][4][/size][/font]中对L-丙氨酸的功能划分为增味剂,仅用于调味品(食品分类号12.0)生产,对于最大使用量无明确界定,按生产需要适量使用。6. 理化指标及测定方法[font='等线'][size=13px][5][/size][/font]6.1 理化指标现行标准[font='等线'][size=13px][5][/size][/font]中L-丙氨酸的理化指标列于下表。[table][tr][td]项目[/td][td][/td][td]指标[/td][/tr][tr][td]L-丙氨酸(以干基计),w/%[/td][td][/td][td]98.5~101.5[/td][/tr][tr][td]干燥减量,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]pH(50g/L 水溶液)[/td][td][/td][td]5.7~6.7[/td][/tr][tr][td]砷(As)/(mg/kg)[/td][td]≤[/td][td]1[/td][/tr][tr][td]重金属(以Pb计)/(mg/kg)[/td][td]≤[/td][td]10[/td][/tr][tr][td]灼烧残渣,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]比旋光度 α[font='等线'][size=13px]m[/size][/font](20℃,D)/[(o)dm2 kg[font='等线'][size=13px]-1[/size][/font]][/td][td][/td][td]+13.5~+15.5[/td][/tr][/table]6.2 测定方法6.2.1 鉴别实验6.2.1.1 茚满三酮试验称取约1g样品,精确至0.1g,溶于1000mL水中,取此溶液5mL,加1mL 20g/L茚满三酮溶液,加热至沸,约3min后显紫色。6.2.1.2 氧化试验称取约0.2g实验室样品,溶于10mL (1+30) 硫酸溶液,加入0.1g高锰酸钾,煮沸,有强烈的刺激臭味乙醛产生。6.2.2 L-丙氨酸含量测定称取约0.2g干燥样品,精确至0.0001g,置于250mL干燥的锥形瓶中,加3mL无水甲酸溶解,加50mL冰乙酸,加2滴2g/L结晶紫指示液,用0.1 mol/L高氯酸标准滴定溶液滴定至溶液由蓝色变成蓝绿色为终点。按照相同的步骤,除不加入样品外其它条件不变,进行空白实验。L-丙氨酸的质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]1[/size][/font]表示L-丙氨酸的质量分数,以百分比形式表示;V[font='等线'][size=13px]1[/size][/font]表示样品消耗高氯酸标准滴定溶液的体积(mL);V[font='等线'][size=13px]2[/size][/font]表示空白消耗高氯酸标准滴定溶液的体积(mL);c表示高氯酸标准滴定溶液浓度(molL[font='等线'][size=13px]-1[/size][/font]);m表示样品质量(g);M表示L-丙氨酸的摩尔质量(gmol[font='等线'][size=13px]-1[/size][/font]),M=89.09。6.2.3 干燥减量的测定将电热恒温干燥箱调节至(105±2)℃,之后将称量瓶置于电热恒温干燥箱中干燥,取出后在干燥器中冷却,称量,精确至0.0001g,重复操作至恒重。之后用已恒重的称量瓶称取1g~2g样品,精确至0.0001g。将装有样品的称量瓶和盖子放入电热恒温干燥箱同时干燥2h~4h,之后将称量瓶和盖子迅速移至干燥器中冷却。冷却后盖上盖子进行称量,精确至0.0001g,重复操作至恒重,重复干燥时间为1h。水分质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]2[/size][/font]表示水分的质量分数,以百分比形式表示;m[font='等线'][size=13px]0[/size][/font]表示称量瓶的质量(g);m[font='等线'][size=13px]1[/size][/font]表示称量瓶和干燥前样品质量(g);m[font='等线'][size=13px]2[/size][/font]表示称量瓶和干燥后样品质量(g)。[font='等线'][size=13px][6][/size][/font]6.2.4 pH的测定称取约5g样品,精确至0.01g,加入约20mL无二氧化碳的水溶解并稀释至100mL。将校准后的酸度计的电极用水冲洗一次,之后用样品溶液冲洗一次。调节样品溶液的温度至(25±1)℃,并将酸度计的温度补偿旋钮调至25℃,读取pH值。样品应分为2份进行平行测定,测得的pH值读数稳定1min以上,测得的pH值允许误差绝对值小于等于0.02。[font='等线'][size=13px][7][/size][/font]6.2.5 砷的测定称取0.25g二乙氨基二硫代甲酸银,研碎后用适量三氯甲烷溶解,加入1.0mL三乙醇胺,再用三氯甲烷稀释至100mL,作为吸收液。称取约1g样品,精确至0.01g。吸取一定量的样品溶液和1mL含砷0.001mg的砷标准使用溶液,置于砷发生瓶中,补加硫酸至总量为5mL,加水至50mL。在各瓶中加入3mL 150g/L碘化钾溶液,混匀,放置5min。分别加入1mL 400g/L氯化亚锡溶液,混匀,放置15min。加入5g无砷金属锌,立即塞上装有乙酸铅棉花的导气管,并使管的尖端插入盛有5.0mL吸收液的吸收管中,室温反应1h。取下吸收管,用三氯甲烷将吸收液体积定容至5.0mL。经目视比色或用1cm比色杯,于515nm波长下测定吸收液的吸光度。样品液的色度或吸光度不得超过砷标准吸收液的色度或吸光度。[font='等线'][size=13px][9][/size][/font]6.2.6 重金属的测定准备以下溶液:1. 硫代乙酰胺溶液:称取硫代乙酰胺约4g,精确至0.1g,溶于100mL水中,置于冰箱保存。临用前取此液1.0mL加入预先由15mL 40g/L氢氧化钠溶液、5mL水和20mL甘油组成的混合液5mL,置于水浴上加热20s,冷却后立即使用。2. 乙酸铵缓冲溶液(pH=3.5):称取25.0g乙酸铵,溶于25mL水中,加入45mL 6mol/L盐酸,用稀盐酸或稀氨水调节至pH=3.5,之后用水稀释至100mL。3. 1μg/mL铅标准溶液。临用前配制。称取约10 g样品,精确至0.01g,溶于约60mL无二氧化碳水,之后转移至100mL容量瓶并使用无二氧化碳水定容,摇匀。吸取样品溶液12mL,置于25mL具塞比色管中,即为A 管。吸取10mL铅标准溶液和2mL样品溶液置于25mL具塞比色管中,摇匀,即为B管(标准)。吸取10mL无二氧化碳水和2mL样品溶液置25mL具塞比色管中,摇匀,即为C管(空白)。在 A、B、C 管中,各加入2mL乙酸铵缓冲溶液,摇匀,分别滴加1.2mL硫代乙酰铵溶液,迅速搅拌混合。相对于C管,B管显现了淡棕色。2min后,A管的颜色不应深于B管。6.2.7 灼烧残渣的测定称取约2g~3g样品,精确至0.0001g,置于在800℃±25℃灼烧至恒重的瓷坩埚中,加入适量的(1+8)硫酸溶液将样品完全浸湿,用温火加热,至样品完全炭化,冷却。加入约0.5mL硫酸将残渣完全浸湿,使用相同的方法加热直至硫酸蒸气全部逸散。在(800±25)℃下灼烧45min,之后放入干燥器中冷却至室温,称量残渣的质量。灼烧残渣的质量分数可通过以下公式计算:式中:w3表示灼烧残渣的质量分数,以百分比形式表示;m表示样品质量(g);m1表示残渣质量(g)。6.2.8 比旋光度称取10g样品,精确至0.0001g,加入(1+1)盐酸溶液溶解,转移至100mL容量瓶并使用(1+1)盐酸溶液定容,摇匀。按照仪器的使用说明调整旋光仪,用(1+1)盐酸溶液校正零点。将样品溶液充满洁净、干燥的旋光管,排出气泡,将盖旋紧后放入旋光仪内。调节样品溶液的温度至(20±0.5)℃,按照仪器的使用说明操作并读取旋光角,精确至0.01°。比旋光度可通过以下公式计算:式中:α[font='等线'][size=13px]m[/size][/font](20℃, D)表示20℃钠灯照射下的比旋光度[(°)dm[font='等线'][size=13px]2[/size][/font]kg[font='等线'][size=13px]-1[/size][/font]];α表示旋光角(°);l表示旋光管长度(dm);ρ[font='等线'][size=13px]α[/size][/font]表示溶液中L-丙氨酸的质量浓度(g/mL)。[font='等线'][size=13px][8][/size][/font]参考文献[1] L-丙氨酸的生产及应用. 王雪根, 朱建良, 欧阳平凯. 南京化工大学学报(自然科学版). 1998, 20, 01.[2] 游离细胞法与固定化细胞法生产L-丙氨酸的比较. 徐虹, 王雪根, 范伟平, 欧阳平凯. 工业微生物. 1988, 28, 38-39.[3][font='宋体'][size=24px][color=#333333] [/color][/size][/font]L-丙氨酸在食品工业中的应用潜力. 郭媛, 王丽娟等. 中国调味品[font='宋体'][size=12px][color=#666666]. [/color][/size][/font]2017, 42, 07.[4] GB 2760 - 2014[5] GB 25543 - 2010[6] GB/T 6284 - 2006[7] GB/T 9274 – 2007[8] GB/T 613[9] GB 5009.76 - 2014

  • 关于谷氨酸和焦谷氨酸

    最近在做一个课题,夏天测谷氨酸的标线还是好好的,这俩天就不行了,我想问下谷氨酸的液相测定方法是如何测定的,我用的流动相是磷酸水溶液,因为谷氨酸是微溶于水的,所以配的浓度最高是25 mmoL/L,想问下大神们液相测定谷氨酸和焦谷氨酸的方法~ 谢谢~

  • 【每日一贴】羟基蛋氨酸钙

    【每日一贴】羟基蛋氨酸钙

    【中文名称】羟基蛋氨酸钙;MHA-Ca【英文名称】methionine hydroxy analog-Ca【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/02/201202012000_347274_1855403_3.jpg【密度】典型堆积密度(装填)为658kg/m3.【性状】 外观为浅褐色结晶形粉末。【溶解情况】 水溶性为7.4g/100g(27℃)【用途】 用作饲料添加剂时可作为蛋氨酸类营养补充剂,促进动物生长发育。【制备或来源】 丙烯醛与甲硫醇反应制得。【其他】 pH值7,代谢能量为15.35MJ/kg。 在使用该产品后,需用水冲净皮肤,若眼睛粘上该产品,亦需用清水冲洗。应避免使该产品与空气中粉尘接触。【包装及贮运】 25kg袋运载。【生产单位】 美国孟山都公司;诺伟恩国际营养有限公司

  • 【每日一贴】甘氨酸

    【每日一贴】甘氨酸

    【中文名称】甘氨酸;氨基醋酸;氨基乙酸【英文名称】glycine;glycocoll;aminoacetic acid【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/01/201201202056_346495_1615838_3.jpg 【相对分子量或原子量】75.07【相对密度】1.1607【熔点(℃)】232~236(分解)【毒性LD50(mg/kg)】 土拨鼠经口6800~8000。鸡经腹腔LD50为43.2μmol/g。如果对白色莱航鸡一次投喂(口服)4g以上的甘氨酸,则呈中毒症状。【性状】 白色晶体或结晶性粉末,有甜味。【溶解情况】 溶于水,不溶于乙醇和乙醚。【用途】 用于医药、有机合成和生物化学研究等,也用作金霉素缓冲剂。食品工业可利用其具有甜味作添加剂;在饲料添加剂中可用作诱食剂或引诱剂;也课桌农药中间体。【制备或来源】 可由一氯乙酸与氢氧化铵作用而成,也可由明胶水解、精制而得。【消耗定额(t/t)】 (1)斯德莱克法:以甲醛、氰化钠、氯化氨为原料进行反应,在硫酸存在下进行醇解,在氢氧化钡存在下加水分解的产品。 (2)一氯醋酸氨化法:以一氯乙酸为原料,氨化而得。【生产单位】 吉林省长春市农安县制药厂;河北省石家庄市东华化工厂等

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制