当前位置: 仪器信息网 > 行业主题 > >

莫立替尼

仪器信息网莫立替尼专题为您提供2024年最新莫立替尼价格报价、厂家品牌的相关信息, 包括莫立替尼参数、型号等,不管是国产,还是进口品牌的莫立替尼您都可以在这里找到。 除此之外,仪器信息网还免费为您整合莫立替尼相关的耗材配件、试剂标物,还有莫立替尼相关的最新资讯、资料,以及莫立替尼相关的解决方案。

莫立替尼相关的仪器

  • Thermo Scientific Niton Apollo LIBS 分析仪激光聚焦碳分析快速、准确、便携式 LIBS 分析当碳检测和可移动性为首要考虑因素时,工厂企业可依托 Thermo Scientific™ Niton™ Apollo™ 手持式 LIBS 分析仪。 Niton Apollo 采用激光诱导击穿光谱(LIBS)技术,提供了卓越的分析性能和更高的分析效率。Niton Apollo 产品为业界领先的 Niton 产品系列的一部分,拥有无与伦比的分析速度、性能和便携性。它将实验室分析带到现场并带来了无限可能性。应用• 测定各种冶金样品中的合金成分和等级• 计算碳当量,确定管道可焊性• 验证关键部件,例如管道、阀门和反应容器,进行材料可靠性鉴别(PMI)• 在接收、过程制造和输出质量控制(QC)时检查材料• 材料测试报告(MTR)• 防止受污染的废料进入供应流• 检测不稳定元素和痕量元素以符合监管标准分析性能Niton Apollo 旨在提供快速分析和低检测限,确保提供卓越分析结果。Niton Apollo 采用有效的激光和高纯氩气吹扫技术,可在约 10秒内提供实验室品质结果。用户可计算碳当量并执行高级平均,同时还可以识别合金和伪元素。实时显示数据,便于快速有效地制定决策。扩大现场使用范围避免将重型设备搬入狭小的空间范围。Niton Apollo 仅重 6.4 磅(2.9kg),其将传统的实验室或车载光学发射光谱(OES)系统转换为极为便携的手持式分析仪。无缝链接管道和沟槽,带来全新的活动范围体验。锥形鼻端有助于实现更大的覆盖范围,测量难以企及的区域。提高分析效率结合高速检测性能与扣动扳 机即可测量的简便性。使用Niton Apollo 的用户只需接受极为简单的培训,即使非技术用户也能轻松操作。快速分析时间有助于提高样品通过量和产量。当需要更换低电量电池时,热插拔 Milwaukee 电池还可以确保用户正常工作。正在使用 Niton Apollo 验证来料安全分析当操作强大的激光器时,应十分小心。Niton Apollo 配置三(3)个可靠的安全联锁装置,有助于降低激光误操作失火风险。联锁装置经由第三方检验机构进行试验、测试和验证,有助于确保操作人员安全。Niton Apollo 通过测量腔室压力、光谱类型和摄像头明/ 暗条件进行联锁,用户可安心操作。功能生动的图标和应用程序界面简化了导航和配置。即使戴着手套,也可以使用滑动和触摸屏幕功能。Niton Apollo 的可选方向键额外提供了更多可用性。宏观和微观相机可实现精确的样品定位并收集图像,以便更好地保存记录。WiFi 辅助功能还可以自动将数据从设备传输到 PC 端。
    留言咨询
  • 创新点上市时间:2019年11月1. 强大的分析性能 Niton Apollo旨在提供快速分析和低检测限,确保提供卓越分析结果。Niton Apollo采用有效的激光和高纯氩气吹扫技术,可在约10秒内提供实验室品质结果。用户可计算碳当量并执行高级平均,同时还可以识别合金和伪元素。实时显示数据,便于快速有效地制定决策。 2. 扩大现场使用范围 避免将重型设备搬入狭小的空间范围。Niton Apollo仅重6.4 磅(2.9 kg),其将传统的实验室或车载光学发射光谱(OES)系统转换为极为便携的手持式分析仪。无缝链接管道和沟槽,带来全新的活动范围体验。锥形鼻端有助于实现更大的覆盖范围,测量难以企及的区域。 3. 提高分析效率 结合高速检测性能与扣动扳机即可测量的简便性。使用 Niton Apollo的用户只需接受极为简单的培训,即使非技术用户也能轻松操作。快速分析时间有助于提高样品通过量和产量。当需要更换低电量电池时,热插拔 Milwaukee 电池还可以确保用户正常工作。产品简介Thermo Scientific Niton Apollo LIBS 分析仪激光聚焦碳分析快速、准确、便携式 LIBS 分析当碳检测和可移动性为首要考虑因素时,工厂企业可依托 Thermo Scientific™ Niton™ Apollo™ 手持式 LIBS 分析仪。 Niton Apollo 采用激光诱导击穿光谱(LIBS)技术,提供了卓越的分析性能和更高的分析效率。Niton Apollo 产品为业界领先的 Niton 产品系列的一部分,拥有无与伦比的分析速度、性能和便携性。它将实验室分析带到现场并带来了无限可能性。应用• 测定各种冶金样品中的合金成分和等级• 计算碳当量,确定管道可焊性• 验证关键部件,例如管道、阀门和反应容器,进行材料可靠性鉴别(PMI)• 在接收、过程制造和输出质量控制(QC)时检查材料• 材料测试报告(MTR)• 防止受污染的废料进入供应流• 检测不稳定元素和痕量元素以符合监管标准分析性能Niton Apollo 旨在提供快速分析和低检测限,确保提供卓越分析结果。Niton Apollo 采用有效的激光和高纯氩气吹扫技术,可在约 10秒内提供实验室品质结果。用户可计算碳当量并执行高级平均,同时还可以识别合金和伪元素。实时显示数据,便于快速有效地制定决策。扩大现场使用范围避免将重型设备搬入狭小的空间范围。Niton Apollo 仅重 6.4 磅(2.9kg),其将传统的实验室或车载光学发射光谱(OES)系统转换为极为便携的手持式分析仪。无缝链接管道和沟槽,带来全新的活动范围体验。锥形鼻端有助于实现更大的覆盖范围,测量难以企及的区域。提高分析效率结合高速检测性能与扣动扳机即可测量的简便性。使用Niton Apollo 的用户只需接受极为简单的培训,即使非技术用户也能轻松操作。快速分析时间有助于提高样品通过量和产量。当需要更换低电量电池时,热插拔 Milwaukee 电池还可以确保用户正常工作。正在使用 Niton Apollo 验证来料安全分析当操作强大的激光器时,应十分小心。Niton Apollo 配置三(3)个可靠的安全联锁装置,有助于降低激光误操作失火风险。联锁装置经由第三方检验机构进行试验、测试和验证,有助于确保操作人员安全。Niton Apollo 通过测量腔室压力、光谱类型和摄像头明/ 暗条件进行联锁,用户可安心操作。功能生动的图标和应用程序界面简化了导航和配置。即使戴着手套,也可以使用滑动和触摸屏幕功能。Niton Apollo 的可选方向键额外提供了更多可用性。宏观和微观相机可实现精确的样品定位并收集图像,以便更好地保存记录。WiFi 辅助功能还可以自动将数据从设备传输到 PC 端。注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • 动态库存,如有需要,欢迎咨询二手-赛默飞世尔傅立叶变换红外光谱仪-ThermoFTIR-NICOLET380+FT-IR显微镜
    留言咨询
  • 体外模拟消化,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 模拟体外消化,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。模拟体外消化原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化模拟,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 灵活的样品处理功能、 轻巧的外形设计 (13.5 x 10.9 in. (35x 28cm), 22 lb. (10kg)),以及Thermo Scientific™ OMNIC™ 软件均为其增色不少,此外,Nicolet iS5 傅立叶变换红外 (FT-IR) 光谱仪沿袭了其他型号 Thermo Scientific Nicolet FT-IR 光谱仪采用的 FT-IR 技术,技术底蕴经得起考验。 Nicolet iS5 傅立叶变换红外 (FT-IR) 光谱仪的特点:耐用的设计 Nicolet iS5 傅立叶变换红外 (FT-IR) 光谱仪的设计,使其可在苛严的环境下无故障运行。 采用坚固的镁合金框架覆盖光学元件,经久耐用 温控二极管激光器可确保无故障多年运行 用户可自行更换部件,使维修成本最小化 宽范围的温度和湿度适应条件 仪器设计时,周全考虑了振动、电磁干扰 (EMI)、灰尘和倾斜等因素 镁合金结构提供了出色的机械特性,在确保抗震性、抗高温和抗高湿的同时减轻了重量维护简便 光谱仪的 IR 源或干燥剂的更换无需打开光学台,无需专业的维修人员。ATR附件iD7 ATR 光学器件可使光通量最大化,您可在数秒内获得高质量的光谱数据。 Thermo Scientific™ Smart™ 芯片技术 和可靠的晶体装配系统,可确保iD7 ATR 安装到 Nicolet iS5 光谱仪中能稳定、简便的操作。 整体金刚石晶体具有卓越的耐用性 全光谱范围可提供有关样品的详细信息 可互换的晶体,提供采样多功能性 自动配件识别提高工作效率
    留言咨询
  • 体外模拟口腔系统简介:口腔是享受好食品的“关口”。在口腔里食品与口水接触,经过咀嚼,混合,形成食团,然后被满足的吞咽。在口腔里的“加工”,对食物在胃里的消化过程有很大的影响。可以模拟婴幼儿,成年人,老年人的口腔咀嚼过程,“过程”各有特色。 体外模拟口腔系统原理:基于人体真实口腔参数设计,可以研究营养物质的释放以及咀嚼基质中活性,甚至有毒物质和食物污染物的释放,唾液浸渍的研究,口腔咀嚼消化的评价,针对目标人群设计的食品配方对食团及其特性的影响的研究,气味释放以及味道演变过程。关于口腔微生物/口腔菌群的研究也可以作为仿生口腔探索的一部分;直接将咀嚼过后形成的食团喂入动态人胃肠消化系统,进行一体化研究。 体外模拟口腔系统的应用举例:1. 体外模拟口腔系统用于口腔咀嚼过程中气体释放及味道演变过程研究,究挥发性物质动态释放过程,可以直接连接GC,GC-MS,电子鼻,电子舌等感官分析设备;2. 体外模拟口腔系统用于假牙制作研究,例如:老年人口腔是首站,人类口腔的升级版研究,为老年人咀嚼创造更好的条件,用更少的力,达到更好的咀嚼状态,为假牙制造提供理论基础3. 体外模拟口腔系统为口腔类日化品(漱口水,牙膏等)研究提供得力助手。例如:口腔卫生,口腔中细菌去除效果研究,口腔微生物(口腔菌群)的研究,为口腔健康提供新力量。4. 体外模拟口腔系统用于其他研究。 体外模拟口腔系统可设置参数等:可设置循环次数/咀嚼速率/上颚压力/唾液流速/温度等。实验参数按照 要求调节完毕后,设备全自动化操作。 体外模拟口腔系统已经进行过多种食品的模拟咀嚼,以常见的食材大米为例,以体内和仿生口腔的结果展示:大米的粒径分布,剪切黏度和水分含量这些参数在体内和仿生机器上几乎相一致。
    留言咨询
  • 体外肠道模拟消化系统 MC-ABSF-II(高校实验室/科研专用/生命科学/人动物研究) 产品简介: 体外模拟消化系统SHIME普遍适用于高校、科研院所以及企业的肠道微生物实验室、营养学实验室,是体外肠道模型SHIME包括批量培养模型、连续发酵培养系统(升结肠、横结肠和降结肠)、人类肠道微生态模拟器(胃、小肠、升结肠、横结肠、降结肠)试验的理想工具。用于预测或评估化合物的可消化性、生物利用率、营养成分释放动力学特性及结构变化等研究的体外模型。可应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,动物营养及饲料研究等;肠道微生态内细菌功能和多样性的研究、体外模拟肠道抗生素对肠道菌群变化的药效研究、微生态制剂和益生素生产研究。本体外消化模拟装置可以对肠道环境的真实模拟及工艺参数的优化筛选以及肠道动力学过程各参数的在线监测及控制。具有降低成本和时间,提高实验重复性和准确性,可人工监控、定点取样等优点,能够部分或完全替代活体实验,因而没有伦理限制,也避免了活体实验中较大的个体差异性。应用领域:1、食品营养学领域:开发新的功能性食品或保健品,需要进行单胃动物(人、猪、鼠等)体外消化实验,测试 其消化及吸收情况、升糖指数以及对单胃动物肠道菌群的影响等;同时监测食物在日常进食中,与食物之间的消化相互影响;2、医药学领域,用来测试中药提取物或合成药物在单胃动物胃肠道消化吸收实验。对中药在单胃动物体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、单胃动物消化道疾病研究领域。 单胃动物体外消化模拟系统主要功能:1、控制“肠胃”恒温;温度30~40℃之间可控;精度:±0.1℃;智能PID控温;采用全新的半导体无水控温;2、控制肠胃内物理化学环境;蠕动,酸性,微正压,无氧环境;3、控制不同模拟部位酸性不同进行自动检测及控制;4、进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;5、检测消化过程中“食物”的化学变化情况;6、模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供单胃动物肠胃内多种微生物生长的环境;7、实现多种吸收方式模拟,根据不同部位吸收特点,进行主动吸收和被动吸收;8、消化液和分泌液的分泌量和速率可调控,范围0-150ml/min;参数可自行设定修改;9、实验重复率偏差<1%;吸收偏差<2%;10、操作组装简单,程序可自动分析数据,并绘制曲线,系统自带多种模拟工艺配方;11、服务端采用WFC远程通讯模式;12、客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;13、设备采用双屏数据同步显示,直观方便;14、云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;
    留言咨询
  • 体外消化模拟系统,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟系统原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化系统,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化系统原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化模拟实验,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟实验原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化系统设备,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化系统设备原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化实验步骤,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化实验步骤原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化实验,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化实验原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化系统参数:1. 材质:不锈钢316L,高硼硅玻璃,硅胶管,ABS。选材确保设备经久耐用。2. 温度控制 ; 30~40℃之间可控;精度:±0.1℃;智能PID控温,采用全新的半导体无水控温;胃系统:模拟胃,完全模拟体内物理环境。全自动智能控制肠胃内物理化学环境;酸性,微正压,无氧环境;3. 进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;4. 模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供人体(动物)肠胃内多种微生物生长的环境;5. 模拟小肠吸收功能,可模拟小分子主动吸收功能。吸收物质<1000kDa;6. 消化液和分泌液的分泌量和速率可调控,范围0-1500ml/min;参数可自行设定修改;7. 胃蛋白酶的平均酶活浓度:252ug tyrosine.eq/ml.min8. 实验重复率偏差<1%;吸收偏差<2%。9. 各部位吸排方式:挤压和蠕动,模拟肠壁的蠕动收缩并促进“食物”进入和排出。10. 液体加入方式:采用高精度蠕动泵,分别控制模拟胃液、肠液、胆汁的输入速率及食糜排出速率。11. 客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;采用C#.net以 Framework 4.0框架开发。12. 设备采用双屏数据同步显示,直观方便。13. 云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;设备配置明细配置1体外肠道模拟设备控制系统 1台配置21000ml反应器 5套配置3补料瓶 15套配置4废液瓶 2套配置5配件 全套产品简介:为了满足各个科院院所和企事业单位对人体或家畜的模拟消化系统设备的需求,北京佳德精密科技有限公司联合各高校院所,一起谈论、设计、开发了体外肠胃消化模拟系统。该设备主要从“真实模拟”着手,全方面模拟人体(动物)体外肠胃的消化模拟过程。包含物理消化环境的仿真模拟,化学消化环境的仿真模拟,以及微生物消化过程的仿真模拟。通过各种高精度传感器和控制器,来检测及控制各种物理化学参数,同时提供肠胃微生物生长的“真实肠胃”条件。该设备的主要应用领域包含:食品、药品、功能性成分的消化代谢过程分析,病理学以及肠道益生菌等研究。产品开发的应用和意义:1、食品营养学领域,开发新的功能性食品或保健品,需要进行人体(动物)消化反应实验,测试其代谢情况以及对人体(动物)肠胃菌群的影响等;食物在人(动物)日常进食中,与食物之间的消化相互影响;2、医药学领域,可以测试中药提取物或合成药物消化反应实验。对中药在人体(动物)体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、人(动物)消化道疾病研究领域;动物饲料的开发研究等。科研人员通常通过活体动物进行上述领域的研究。不仅费用高昂,可重复性差,同时有悖伦理。 北京佳德精密科技有限公司研发人员们共同努力下,创新研发出人体体外肠道模拟系统,可完全替代活体动物实验。在多种高精度传感器和精密的执行单元功能控制下,可高度仿真人体肠胃消化吸收过程。降低实验成本,实验可重复性高。同时避免对动物的伤害。
    留言咨询
  • 今天快速获得的分析结果已是繁忙实验室的要求。如果您无法接受低效或者出错,那就依靠 Thermo Scientific&trade Nicolet&trade Summit 傅里叶变换红外光谱仪。Nicolet&trade Summit 光谱仪设计采用高性能光学引 擎,配置的设计采用高性能光学引擎,配置的Thermo Scientific&trade OMNIC&trade Paradigm 软件,能帮助您比以往更快地鉴别、验证和量化分析材料。性能 — 由 Thermo Scientific&trade LightDrive&trade 光学引擎驱动的 Nicolet Summit 光谱仪设定了傅里叶变换红外光谱仪性能的基准,包括提供干涉仪、激光器和光源的 10 年质保。工作效率 — 光谱仪直观的 OMNIC Paradigm 软件、集成的多色光带,以及可选配的机载触摸屏简化了分析,提高了工作效率。连接性 — Nicolet Summit 光谱仪包含集成的一台由OMNIC Paradigm 软件驱动的 Windows® 计算机,内置的数据处理系统具有完整 Wi-Fi 功能,可以随时随地保持与实验室连接,并确保尽可能快地传输数据。直观的软件推动项目完成工作流功能快速执行用户自定义工作流,简化的分析只需点触几下即可完成。当您需要新建的工作流时,带有预置模版的可视化工作流编辑器将引导您创建。或者只需简单地分析您的样品,软件将在分析完成后自动为您创建工作流。 数据完整性实现高程度的数据完整性,超越审计的要求。数据库基础架构、流线化安全软件和 Audit Manager 应用程序可以确保数据保持的合规性,并得到充分保护。使用 OMNICParadigm 安全软件套件,可对重要文件进行数字签名并追踪使用人的详细操作。触摸屏版或桌面版软件OMNIC Paradigm 触摸屏版软件流线化分析,用户在检测、检索和报告分析结果的同时,节省了工作台空间。 OMNICParadigm 桌面版软件可帮助进一步分析,软件简便易用的操作界面有助查看仪器状态和近期工作、处理光谱、进行多组分检索,以及新建谱图库。OMNIC Anywhere 软件您可在世界各地与实验室保持连接。基于云的 OMNICAnywhere 软件平台支持您在远离仪器的安全环境中分析数据,快速创建和在线提交实验室报告,以及随时随地利用不同设备与全球各地的同事分享结果。
    留言咨询
  • 产品简介:为了满足各个科院院所和企事业单位对人体或家畜的模拟消化系统设备的需求,北京佳德精密科技有限公司联合各高校院所,一起谈论、设计、开发了体外肠胃消化模拟系统。该设备主要从“真实模拟”着手,全方面模拟人体(动物)体外肠胃的消化模拟过程。包含物理消化环境的仿真模拟,化学消化环境的仿真模拟,以及微生物消化过程的仿真模拟。通过各种高精度传感器和控制器,来检测及控制各种物理化学参数,同时提供肠胃微生物生长的“真实肠胃”条件。该设备的主要应用领域包含:食品、药品、功能性成分的消化代谢过程分析,病理学以及肠道益生菌等研究。产品开发的应用和意义:1、食品营养学领域,开发新的功能性食品或保健品,需要进行人体(动物)消化反应实验,测试其代谢情况以及对人体(动物)肠胃菌群的影响等;食物在人(动物)日常进食中,与食物之间的消化相互影响;2、医药学领域,可以测试中药提取物或合成药物消化反应实验。对中药在人体(动物)体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、人(动物)消化道疾病研究领域;动物饲料的开发研究等。科研人员通常通过活体动物进行上述领域的研究。不仅费用高昂,可重复性差,同时有悖伦理。 北京佳德精密科技有限公司研发人员们共同努力下,创新研发出人体体外肠道模拟系统,可完全替代活体动物实验。在多种高精度传感器和精密的执行单元功能控制下,可高度仿真人体肠胃消化吸收过程。降低实验成本,实验可重复性高。同时避免对动物的伤害。技术要求;l 温度控制系统:测量范围:0~150℃;控制范围:+5℃~±85℃;控制精度:±0.01℃;分 辨 率:0.01℃;控制内容:温度值在线检测、PID智能控制; JDWK3高精度半导体无水控温;l 酸碱检测及控制:瑞士Hamilton检测电极电缆;控制范围:2-12ph 分辨率:0.01ph;变速器采用高精度抗干扰集成JD系列,带滤波器,信号隔离,原装双屏蔽数据线;pH控制方式:三种控制模式,手动控制/实时自动控制/FT模式自动控制/,其中FT控制模式为必要的控制模式;l 吸收系统:消化模拟的核心问题之一;可模拟人体对消化的最终产物进行吸收的过成;防止“消化产物”过多,影响菌种生长及其代谢过程,使得消化模拟出现偏差;l 通过约翰克兰机械密封,严格控制厌氧环境下进行肠胃蠕动模拟;松下伺服电机驱动特殊设计的搅拌桨进行肠胃蠕动模拟:l 压力流量系统:通过质量流量计自动控制通入反应器内惰性气体,形成厌氧环境;配有EFSR 产气速率模块;l 胃系统:模拟胃,完全模拟体内物理环境。全自动智能控制肠胃内物理化学环境;酸性,微正压,无氧环境;l 进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;l 模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供人体(动物)肠胃内多种微生物生长的环境;l 模拟小肠吸收功能,可模拟小分子主动吸收功能。吸收物质<1000kDa;l 消化液和分泌液的分泌量和速率可调控,范围0-1500ml/min;参数可自行设定修改;l 胃蛋白酶的平均酶活浓度:252ug tyrosine.eq/ml.minl 实验重复率偏差<1%;吸收偏差<2%。l 各部位吸排方式:挤压和蠕动,模拟肠壁的蠕动收缩并促进“食物”进入和排出。l 液体加入方式:采用高精度蠕动泵,分别控制模拟胃液、肠液、胆汁的输入速率及食糜排出速率。l 客户端开发采用西门子SMART-1200可编程现场控制+上位机电脑端双重监测及控制;采用C#.net以 Framework 4.0框架开发。l 设备采用内嵌式JD-MCGS控制系统,实现全自动化,操作简单,直观方便。l 云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;l 设备可连接GC/MS等分析设备,控制软件可连接JD V1.0系列产品,多功能使用;
    留言咨询
  • 体外模拟消化系统模型,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化系统模型原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 人体器官模拟系统 400-860-5168转2623
    TissUse集成式先进细胞培养解决方案利用器官模拟的芯片将原代细胞、干细胞和类器官培养提升到新的水平。TissUse和实时控制多器官的细胞培养和实验模拟体内生理条件,生理相关性一直是体外实验中使用原代细胞和干细胞的关键驱动因素。TissUse可以快速、轻松地创建三维活性组织并自动控制微流体,为信息丰富的分析提供长期收益率细胞的培养基础。选择正确的细胞是实验成功的关键。维持细胞表型是研究复杂生物过程的关键,器官内或器官间相互作用,自分泌/旁分泌因子,以及对病原体和外来生物的反应TissUse兼容范围广泛,包括主要细胞,干细胞和细胞。为您提供灵活性的独特的研究需求。无论你想现有潜在的培养或进行复杂的多器官的研究,在TissUse套件的硬件,消耗品和分析软件上,使得使用芯片的器官模拟变得很简单为什么选择TissUse?SEED种植?任何细胞都能轻松的种植在开放式的培养板上。?广泛的培养形式选择,包括商业植入物,器官切片,3D基质和凝胶,组织特异性支架,无支架培养?容易定制或验证细胞/组织模型的加载系统包括MucilAir™ , EpiSkin™ 和更多其他系统 CULTURE培养?可编程应用流体学。器官内流量可调,优化氧气,营养和机械力?可方便地优化各器官间的流速,以实现精确的平台药动学?媒介变化迅速且容易实现DOSE给药?介入生物制剂(肽、蛋白质)、小分子、激素等? 基因编辑(CRISPR, Talen, ZFN)?引入免疫细胞(如细胞毒性T细胞、CAR-T细胞、NK细胞等)进行免疫分析和观察?无PDMS组件,减少非特定绑定干扰ANALYZE 分析?简单的(重复的)介质取样用于生物标志物分析(LC-MS, ELISA, multiplex)?可移动支架允许对微组织进行全方位的分析组学方法?组织模拟可用于成像,以可视化细胞形态、细胞迁移和蛋白标记物定位应用领域生物工程学与3D细胞培养动物实验替代方案神经,代谢系统靶向药物研发个人化药物研发在培养皿中临床试验药物,烟草,化妆品,化学行业监管测试免疫
    留言咨询
  • 模拟体外消化 400-860-5168转3662
    模拟体外消化,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 模拟体外消化测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外消化模拟 400-860-5168转3662
    体外消化模拟,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化模拟测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外模拟消化 400-860-5168转3662
    体外模拟消化,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外模拟消化测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 创新点上市时间:2019年11月1. 强大的分析性能 Niton Apollo旨在提供快速分析和低检测限,确保提供卓越分析结果。Niton Apollo采用有效的激光和高纯氩气吹扫技术,可在约10秒内提供实验室品质结果。用户可计算碳当量并执行高级平均,同时还可以识别合金和伪元素。实时显示数据,便于快速有效地制定决策。 2. 扩大现场使用范围 避免将重型设备搬入狭小的空间范围。Niton Apollo仅重6.4 磅(2.9 kg),其将传统的实验室或车载光学发射光谱(OES)系统转换为极为便携的手持式分析仪。无缝链接管道和沟槽,带来全新的活动范围体验。锥形鼻端有助于实现更大的覆盖范围,测量难以企及的区域。 3. 提高分析效率 结合高速检测性能与扣动扳机即可测量的简便性。使用 Niton Apollo的用户只需接受极为简单的培训,即使非技术用户也能轻松操作。快速分析时间有助于提高样品通过量和产量。当需要更换低电量电池时,热插拔 Milwaukee 电池还可以确保用户正常工作。产品简介Thermo Scientific Niton Apollo LIBS 分析仪激光聚焦碳分析快速、准确、便携式 LIBS 分析当碳检测和可移动性为首要考虑因素时,工厂企业可依托 Thermo Scientific™ Niton™ Apollo™ 手持式 LIBS 分析仪。 Niton Apollo 采用激光诱导击穿光谱(LIBS)技术,提供了卓越的分析性能和更高的分析效率。Niton Apollo 产品为业界领先的 Niton 产品系列的一部分,拥有无与伦比的分析速度、性能和便携性。它将实验室分析带到现场并带来了无限可能性。应用• 测定各种冶金样品中的合金成分和等级• 计算碳当量,确定管道可焊性• 验证关键部件,例如管道、阀门和反应容器,进行材料可靠性鉴别(PMI)• 在接收、过程制造和输出质量控制(QC)时检查材料• 材料测试报告(MTR)• 防止受污染的废料进入供应流• 检测不稳定元素和痕量元素以符合监管标准分析性能Niton Apollo 旨在提供快速分析和低检测限,确保提供卓越分析结果。Niton Apollo 采用有效的激光和高纯氩气吹扫技术,可在约 10秒内提供实验室品质结果。用户可计算碳当量并执行高级平均,同时还可以识别合金和伪元素。实时显示数据,便于快速有效地制定决策。扩大现场使用范围避免将重型设备搬入狭小的空间范围。Niton Apollo 仅重 6.4 磅(2.9kg),其将传统的实验室或车载光学发射光谱(OES)系统转换为极为便携的手持式分析仪。无缝链接管道和沟槽,带来全新的活动范围体验。锥形鼻端有助于实现更大的覆盖范围,测量难以企及的区域。提高分析效率结合高速检测性能与扣动扳机即可测量的简便性。使用Niton Apollo 的用户只需接受极为简单的培训,即使非技术用户也能轻松操作。快速分析时间有助于提高样品通过量和产量。当需要更换低电量电池时,热插拔 Milwaukee 电池还可以确保用户正常工作。正在使用 Niton Apollo 验证来料安全分析当操作强大的激光器时,应十分小心。Niton Apollo 配置三(3)个可靠的安全联锁装置,有助于降低激光误操作失火风险。联锁装置经由第三方检验机构进行试验、测试和验证,有助于确保操作人员安全。Niton Apollo 通过测量腔室压力、光谱类型和摄像头明/ 暗条件进行联锁,用户可安心操作。功能生动的图标和应用程序界面简化了导航和配置。即使戴着手套,也可以使用滑动和触摸屏幕功能。Niton Apollo 的可选方向键额外提供了更多可用性。宏观和微观相机可实现精确的样品定位并收集图像,以便更好地保存记录。WiFi 辅助功能还可以自动将数据从设备传输到 PC 端。注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • DSA模拟动脉血管检测模体1、模拟动脉血管最小分辨尺寸及运动伪影检测模块造形剂浓度:150mg/mL1300mg/mL各一块,三个模拟血管,宽度和厚度分别为1.0、2.0和4.0mm,每个管上都有模拟动脉狭窄和动脉瘤,宽度分别为单个动脉宽度的1/4、1/2和3/4,模块尺寸为300*150*25.4mm。2、低对比度碘线对试验插件模块中有3组填充碘造影剂测试线条组,每组线条由4条直径不同线条组成,直径分别为0.5、1.0、2.0 4.0mm。3组线条组碘造影剂浓度分别别为2.5、5.0和10.0mg/cc。模块尺寸为200*150*25.4mm。3、图像线性测试插件测试板上环形分布有六个19mm的测试区,有不同的碘厚度和三碘浓度,分别为20.0、10.0、4.0、1.0、0.5mg/cm3,尺寸为200*150*25.4mm,如图所示。4、骨骼模拟试验块含有三种模拟骨骼的PTFE条,宽度为:25mm,厚度分别为5、10、15mm厚。尺寸为200*200*25.4mm。5、空白插入件均匀材质的有机玻璃模块,尺寸为200*150*25.4mm。6、阶梯楔形试验块6个阶梯块(个个25,4mm高)形成一个模块。上面3个和下3个“折叠"时,可以变成一个200*200*76.5mm 大小的模块。7、高对比度分辨试验插件配合线对卡使用,在测试板上开有线对卡放置的凹槽,可支持线对卡水平、垂直及45虚旋转摆位,线对卡尺寸:50*50mm。模块尺寸为200*150*25.4mm。8、槽块(模体基座)模体具有一个开口,可用于固定和定位其它模块,用来放置不同的模块以实现不同参数测量。模块外尺寸:200*200*76.5mm,槽尺寸:200*150*25.4mm9、配板 铝制成,布满3.2mm大小的孔洞,尺寸:200*200*1.5mm
    留言咨询
  • 产品简介ZTI-32信道模拟器产品用于无线通信中的空中接口测试,通过向待测设备的接收端口提供衰落处理后的发射信号来仿真无线发射机和接收机之间真实世界的无线信道。在移动通信技术、卫星通信技术、短波通信技术、网络模拟与测试技术的标准验证、产品开发、测试、组网和运维等产业链环节均发挥重要作用。模拟高速列车、航空/航天器、智能炮弹等不同场景下的无线通信链路。主要功能指标32路多点对多点射频通道的连接;支持一个或多个独立的MIMO、MISO、SIMO、SISO模拟; 支持无线信道模型编辑:多径衰落、时延、衰落信道、多普勒频移、阴影衰落、大尺度衰落; 支持航空信道模拟(战斗机爬升、俯冲、高速盘旋,直升机旋翼遮挡等);支持标准信道模拟,包含3GPP、3GPP2、ITU等,标准化组织定义的标准信道模型3GPP 5G NR TDL、3GPP LTE信道模型、WCDMA、TD-SCDMA、GSM、3GPP TR38901(5G)、TR36873(LTE)、航空信道模型、多天线信道模型、不静态场景、高速列车场景和自定义信道模型;支持256个衰落通道,每个衰落信道最多支持48条路径、衰落通道的衰落类型可单独配置。产品主要指标宽*高*深:600mm*850mm*600mm;供电方式:交流220V,频率50Hz;可靠性:MTBF5000h;可维修性:MTTR2h。产品主要参数技术型号ZTI-32MIMO天线规模32x32最大衰落通道数量1024(32x32)最大时延20ms时延类型常数、正弦滑动时延、线性滑动时延、3GPP增消、3GPP滑动时延组和用户自定义5G/6G信道选配卫星信道选配频率范围1MHz~6GHz(40GHz~44GHz毫米波需适配)信号带宽200MHz输出信号功率范围-120dBm~-14dBm;信道配置拓扑MIMO,MISO,SIMO,SISO每个信道衰落路径数最大48条路径时延路径之间相对时延差最大19ms时延分辨率4.07ns@200MHz路径衰落损耗最大60dB最大多普勒频移±5MHz,分辨率步进长度2Hz衰落类型常数、瑞利(Rayleigh),莱斯(Rice),Nakagami,对数正态,Suzuki,纯多普勒,平坦,圆形,高斯,Jakes,经典3dB,经典6dB,用户自定义射频通道数量32双向本振数64独立本振底噪-120dBm通道间隔离度110dB输出电平准确度±2dB本地时钟精度0.05ppm支持参数配置宽带配置、载波频率配置、输出功率配置其他支持以太网管理接口、支持SCPI命令接口
    留言咨询
  • 旗云ZTI-32信道模拟器 400-860-5168转4435
    产品简介ZTI-32信道模拟器产品用于无线通信中的空中接口测试,通过向待测设备的接收端口提供衰落处理后的发射信号来仿真无线发射机和接收机之间真实世界的无线信道。在移动通信技术、卫星通信技术、短波通信技术、网络模拟与测试技术的标准验证、产品开发、测试、组网和运维等产业链环节均发挥重要作用。模拟高速列车、航空/航天器、智能炮弹等不同场景下的无线通信链路。主要功能指标32路多点对多点射频通道的连接;支持一个或多个独立的MIMO、MISO、SIMO、SISO模拟;支持无线信道模型编辑:多径衰落、时延、衰落信道、多普勒频移、阴影衰落、大尺度衰落;支持航空信道模拟(战斗机爬升、俯冲、高速盘旋,直升机旋翼遮挡等);支持标准信道模型,包含3GPP、3GPP2、ITU等,标准化组织定义的标准信道模型3GPP 5G NR TDL、3GPP LTE 信道模型、WCDMA、TD-SCDMA、GSM、3GPP TR38901(5G)、TR36873(LTE)、航空信道模型、多天线信道模型、静态场景、高速列车场景和自定义信道模型;支持256个衰落通道,每个衰落信道最多支持48条路径、衰落通道的衰落类型可单独配置。产品检测/检验报告图3产品主要指标宽×高×深:600mm×850mm×600mm;供电方式:交流220V,频率50Hz;可靠性:MTBF≧5000h;可维修性:MTTR≤2h。产品主要技术参数型号ZTI-32MIMO天线规模32x32最大衰落通道数量1024(32x32)最大时延20ms时延类型常数、正弦滑动时延、线性滑动时延、3GPP增消、3GPP滑动时延组和用户自定义5G/6G信道选配卫星信道选配频率范围1MHz~6GHz(40GHz~44GHz毫米波需适配)信号带宽200MHz输出信号功率范围-120dBm~-14dBm;信道配置拓扑MIMO,MISO,SIMO,SISO每个信道衰落路径数最大48条路径时延路径之间相对时延差最大19ms 时延分辨率4.09ns@200MHz路径衰落损耗最大60dB最大多普勒频移±5MHz,分辨率步进长度2Hz衰落类型常数、瑞利(Rayleigh),莱斯(Rice),Nakagami,对数正态,Suzuki,纯多普勒,平坦,圆形,高斯,Jakes,经典3dB,经典6dB,用户自定义射频通道数量32双向本振数64独立本振底噪-120dBm通道间隔离度110dB输出电平准确度±2dB本地时钟精度0.05ppm支持参数配置宽带配置、载波频率配置、输出功率配置其他支持以太网管理接口、支持SCPI命令接口
    留言咨询
  • 产品简介ZTI-4信道模拟器产品用于无线通信中的空中接口测试,通过向待测设备的接收端口提供衰落处理后的发射信号来仿真无线发射机和接收机之间真实世界的无线信道。在移动通信技术、卫星通信技术、短波通信技术、网络模拟与测试技术的标准验证、产品开发、测试、组网和运维等产业链环节均发挥重要作用。模拟高速列车、航空/航天器、智能炮弹等不同场景下的无线通信链路。图1图2主要功能指标4路多点对多点射频通道的连接;支持一个或多个独立的MIMO、MISO、SIMO、SISO模拟;支持无线信道模型编辑:多径衰落、时延、衰落信道、多普勒频移、阴影衰落、大尺度衰落;支持航空信道模拟(战斗机爬升、俯冲、高速盘旋,直升机旋翼遮挡等);支持标准信道模型,包含3GPP、3GPP2、ITU等,标准化组织定义的标准信道模型3GPP 5G NR TDL、3GPP LTE 信道模型、WCDMA、TD-SCDMA、GSM、3GPP TR38901(5G)、TR36873(LTE)、航空信道模型、多天线信道模型、静态场景、高速列车场景和自定义信道模型;支持16个衰落通道,每个衰落信道最多支持48条路径、衰落通道的衰落类型可单独配置。产品检测/检验报告图3产品主要指标宽×高×深:500mm×200mm×500mm供电方式:交流220V,频率50Hz可靠性:MTBF≥5000h;可维修性:MTTR≤2h产品主要技术参数 型号ZTI-4MIMO天线规模4╳4最大衰落通道数量16(4╳4)最大时延20ms时延类型常数、正弦滑动时延、线性滑动时延、3GPP增消、3GPP滑动延组和用户自定义5G/6G信道选配卫星信道选配频率范围1MHz~6GHz(40GHz~44GHz毫米波需适配)信号带宽200MHz输出信号功率范围-120dBm~-14dBm信道配置拓扑MIMO,MISO,SIMO,SISO每个信道衰落路径数最大48条路径时延路径之间相对时延差最大19ms时延分辨率4.07ns @ 200MHz路径衰落损耗最大60dB最大多普勒频移±5MHz,分辨率频进长度2Hz衰落类型常数、瑞利(Rayleigh),莱斯(Rice),Nakagami,对数正态,Suzuki,纯多普勒,平坦,圆形,高斯,Jakes,经典3dB,经典6dB,用户自定义射频通道数量4双向本振数8独立本振底噪-120dBm通道间隔离度110dB输出电平准确度±2dB本地时钟精度0.05ppm支持参数配置宽带配置、载波频率配置、输出功率配置其他支持以太网管理接口、支持SCPI命令接口
    留言咨询
  • 产品简介ZTI-4信道模拟器产品用于无线通信中的空中接口测试,通过向待测设备的接收终端口提供衰落处理后的发射信号来信真无线发射机和接收机之间真实世界的无线信道。在移动通信技术、卫星通信技术、短波通信技术、网络模拟与测试技术的标准验证、产品开发、测试、组网和运维等产业链环节均发挥重要作用。模拟高速列车、航空/航天器、智能炮弹等不同场景下的无线通信链路。主要功能指标4路多点对多点射频通道的连接;支持一个或多个独立的MIMO、MISO、SIMO、SISO模拟;支持无线信道模型编辑:多径衰落、时延、衰落信道、多普勒频移、阴影衰落、大尺度衰落;支持航空信道模拟(战斗机爬升、俯冲、高速盘旋,直升机旋翼遮挡等);支持标准信道模型,包含3GPP、3GPP2、ITU等,标准化组织定义的标准信道标准模型3GPP 5G NRTDL、3GPP LTE信道模型、多天线信道模型、静态场景、高速列车场景和自定义信道模型; 支持16个衰落通道,每个衰落信道最多支持48条路径、衰落通道的衰落类型可单独配置。产品检测/检验报告产品主要指标:宽*高*深:500mm*200mm*500mm;供电方式:交流220V,频率50Hz;可靠性:MTBF5000h;可维修性:MTTR2h。产品主要技术参数型号ZTI-4MIMO天线规模4x4最大衰落通道数量16(4x4)最大时延15ms时延类型常数、正弦滑动时延、线性滑动时延、3GPP增消、3GPP滑动时延组和用户自定义5G/6G信道选配卫星信道选配频率范围1MHz~6GHz(40GHz~44GHz毫米波需适配)信号带宽200MHz输出信号功率范围-4dBm~-120dBm;信道配置拓扑MIMO,MISO,SIMO,SISO每个信道衰落路径数最大48条路径时延路径之间相对时延差最大19ms时延分辨率5ns@200MHz路径衰落损耗最大60dB最大多普勒频移±5MHz,分辨率步进长度2Hz衰落类型常数、瑞利(Rayleigh),莱斯(Rice),Nakagami,对数正态,Suzuki,纯多普勒,平坦,圆形,高斯,Jakes,经典3dB,经典6dB,用户自定义射频通道数量4双向本振数8独立本振底噪-120dBm通道间隔离度110dB输出电平准确度±2dB本地时钟精度0.05ppm支持参数配置宽带配置、载波频率配置、输出功率配置其他支持以太网管理接口、支持SCPI命令接口
    留言咨询
  • 型号Sunlight-0503A Sunlight-1003A光斑尺寸inch(mm)2×2(50x50) 4×4(100x100)光谱匹配等级A级(0.75-1.25)空间不均性等级A级(优于±2%)时间稳定性等级A级(优于±2%)工作距离mm120 330灯泡功率W350 1000准直角< ±5° < ±5°功率输出典型值100mw/cm2(1 个太阳常数)±20%可调光照面辐照度0.7—1.2 Sun(太阳常数)线性度0.01%3A太阳能太阳模拟器Sunlight-0503A、Sunlight-1003A光伏产品标准规定AAA级太阳模拟器的三个关键指标必须严格满足要求,分别是:光谱匹配度、辐照均匀度和时间稳定性广泛应用于太阳能电池特性测试,光电材料特性测试,生物化学相关测试 ,光学催化降解加速研究,皮肤化妆用品检测,环境研究等。 稳态模拟器是输出辐照度稳定的太阳光模拟器,这种模拟器适用于单体电池和小尺寸组件的测试,通常应用于太阳电池的IV曲线测试系统中。特性及技术指标符合ASTM E927-5 、IEC60904-9 2007 Ed2、JIS C8912 规定的AAA级模拟器的标准:光谱匹配度A级:0.75-1.25空间不均性A级:优于±2%时间稳定性A级:优于±2%AM1.5G空气质量滤波器,保证完美的光谱匹配度高精度光学积分器,光斑输出均匀进口氙灯灯泡,能量衰减慢,性能稳定可靠铸件结构,确保整机无变形,光路稳定,方便移动,外形美观。参数列表:(1inch=25.4mm)
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制