当前位置: 仪器信息网 > 行业主题 > >

掺杂铅的

仪器信息网掺杂铅的专题为您提供2024年最新掺杂铅的价格报价、厂家品牌的相关信息, 包括掺杂铅的参数、型号等,不管是国产,还是进口品牌的掺杂铅的您都可以在这里找到。 除此之外,仪器信息网还免费为您整合掺杂铅的相关的耗材配件、试剂标物,还有掺杂铅的相关的最新资讯、资料,以及掺杂铅的相关的解决方案。

掺杂铅的相关的仪器

  • 近中红外荧光光谱系统近中红外具体指哪个波段?红外波,是电磁频谱中的重要组成部分。相较于我们常说的可见光波段,是人眼所无法看到的成分。红外辐射覆盖从700nm到1mm的范围,常见地按照波段进行区分,红外分为以下几个部分:近红外(0.751.4μm)、短波红外(1.4-3μm)、中红外(3-8μm)、长波红外(8-15μm)、远红外(15-1000μm),所以近中红外区我们大致概括为700nm到8μm范围。红外与电磁波谱的关系波段波长范围应用领域近红外0.75 - 1.4μm材料科学、光纤通信,医学领域短波红外1.4 - 3μm电信和军事应用中红外3 - 8μm化学工业和天文学长波红外8 - 15μm天文望远镜和光纤通信远红外15 - 1000μm通常用于癌症治疗不同红外区的波段及应用近中红外荧光材料的典型应用——近中红外激光晶体Er:YAG和Cr,Er:YAG激光晶体棒的图片由于3μm中红外波段激光在军工领域、激光理疗设备及环境监测等领域有着重要的应用前景,稀土离子掺杂的固体激光材料因此得到广泛关注及大量研究。较早被研究的材料有基于808nm、980nm激光器激发的Er3+的2.7μm发射(4I11/2-4I13/2跃迁),随着半导体激光器在短波长逐渐成熟,衍生出了Ho3+离子掺杂的LiYF4,使用640nm的激光激发可产生1.2μm(5I6-5I8),2.0μm(5I7-5I8),2.8-3μm(5I5-5I7)均具有较强的荧光,再有硫系玻璃如Ho3+掺杂的Ge-Ga-S-CsI玻璃,在900nm激发下能够发射2.81μm(5I6-5I7)和3.86μm(5I5-5I6)。近中红外客户案例与实测数据1) 掺铒微晶玻璃的中红外荧光光谱在众多激光玻璃材料中,由于Er离子掺杂的氟化物玻璃具有较低的声子能量、优异的中红外透过特性、较高的激光损伤阈值,因此它是目前实现2.7μm波段光纤激光器的候选材料并备受关注,其2.7μm波段发光源于Er3+离子的4I11/2-4I13/2跃迁。采用卓立汉光中红外荧光测试系统,系统组成:980nm激光器、Omni-λ5015i影像校正型红外单色仪、红外镀金反射式样品室、液氮制冷型InSb探测器(光谱响应范围1-5.5um)。掺铒中红外荧光微晶玻璃PL谱测试结果,发射峰在2.7μm左右。2) 近中红外荧光光谱系统配置808nm,980nm激光器掺Er离子样品发射在1550nm,2730nm左右。3) 近中红外荧光光谱系统PbS量子点ns寿命测量及时间分辨荧光光谱碲酸盐玻璃掺杂硫酸锌YAG:Er晶体系统性能及指标稳态测试发射光谱:1-5.5μm(选配探测器拓宽光谱范围)瞬态测试荧光寿命衰减尺度:μs-ms-s(需配置示波器,具体视激发光源而定)激发光源连续激光808nm、980nm、1064nm、1550nm、1940nm等OPO可调谐激光器可选输出范围:3000-3450nm,2700-3100nm,650-2400nm,410-2400nm,210-2400nm。重复频率:20Hz,脉冲:≤6ns,mJ级别的单脉冲能量纳秒固体激光器2940nm,1064nm,532nm等光路切换外置3路激光切换装置,通过推拉装置进行光路切换,无需移动或调整激光样品仓结构红外专用镀金反射式样品仓,带两个激光吸收阱,带高通滤光片插槽样品架标配:液体、粉末、薄膜样品架光谱仪光路结构Czerny-Turner(CT)光路设计,焦距:320mm,杂散光:1*10-5光栅配置配置三块进口光栅,尺寸:68mm×68mm光子计数型探测模块近红外光电倍增管950-1700nm,TE制冷型,制冷温度:-60℃,最小有效面积Ø 1.6mm,增益:1×106,阳极暗计数:2.5×105,阳极脉冲上升时间:0.9ns近红外光电倍增管300-1700nm,液氮制冷型,制冷温度:-80℃,最小有效面积3×8mm,增益:1×106,阳极暗计数:2.5×105,阳极脉冲上升时间:3ns单光子计数器计数率:100Mcps,采样速率:1MB/S,四通道模拟输入:1-10V,通道数:10000时间相关单光子计数器计数率:100Mcps,分辨率:16/32/64/128/256/512/1024ps,通道数:65535模拟信号型探测模块TE-InGaAs探测器800-1700nm,TE制冷型,制冷温度:-40℃,光敏面直径:3mm,峰值响应度:0.9 A/W,配置温控器及前置放大器,温度稳定度:±0.5℃,信号输出模式:电流TE-InGaAs探测器800-2600nm,TE制冷型,制冷温度:-40℃,光敏面直径:3mm,峰值响应度:1.2 A/W,配置温控器及前置放大器,温度稳定度:±0.5℃,信号输出模式:电流LN-InSb探测器1-5.5μm,液氮制冷型,制冷温度:77K,光敏面尺寸:Ø 2mm,峰值响应度:3A/W,配置前置放大器,信号输出模式:电流LN-MCT探测器2-12μm(另有14μm、16μm、22μm选项),液氮制冷型,制冷温度:77K,光敏面尺寸:1×1mm,峰值响应度:3x103V/W,配置前置放大器,信号输出模式:电压锁相放大器参考信号通道,频率范围:50mHz至102kHz,输入阻抗:1MΩ/25pF,输入信号类型:方波或正弦波,相位分辨率:0.01°,相位漂移:低于10kHz 0.1°/℃;高于10kHz:0.5°/℃斩波器频率范围:标配20~1KHz( 10孔),30~1.5KHz(15孔),60~3KHz(30孔),TTL/COMS电平输入输出,频率稳定性:250ppm/℃,频率漂移:1%,输入输出连接器:BNC时序控制器可编程延时发生器脉冲通道个数:6个,一个T(时钟基准),其他为CH1-CH5,单个脉冲周期:最小值100ns(10MHz),最大值1s(1Hz),单个脉冲宽度:≥50ns,脉冲延迟:100ns-1s(基于T通道时钟),脉冲输出高电平:T,CH1-CH2:5±0.5V/20mA;CH3:4.5V±0.5V/100mA(适用于50Ω输入阻抗外设);CH4-CH5:3.3±0.5V/高阻,分辨率:1μs,上升时间:4-6ns电源:USB供电:5V/500mA,通讯接口:USB2.0,输出接口:SMA示波器示波器模拟带宽:500 MHz,通道数:4+ EXT,实时采样率:5GSa/s(交织模式),2.5GSa/s(非交织模式),存储深度:250Mpts/ch(交织模式),125 Mpts/ch(非交织模式)电脑及软件标配电脑标配操作系统Windows系统Omni-Win控制软件稳态测试功能:激发扫描,发射扫描,同步扫描,三维扫描瞬态测试功能:动力学扫描,寿命扫描,时间分辨光谱扫描可选功能:温度控制扫描光学平台阻尼隔振光学平台尺寸(L×W×H):1500mm×1000mm×800mm阻尼隔振光学平台尺寸(L×W×H):1800mm×1200mm×800mm相关文章成果液氮制冷型MCT检测器1、基于全光纤结构的2-6.5μm红外高能量超连续光源输出光谱测量[1] (a) 不同长度的As2S3光纤输出光谱测量 (b) 4m As2S3 光纤在不同输入光能量下的输出光谱2、PPLN晶体中通过温度调谐自由差频产生的连续波2.9-3.8μm 随机激光光谱测量[2]2.9μm-3.8μm可调谐中红外随机激光光谱测量液氮制冷型InSb检测器1、中红外发光硫卤玻璃陶瓷中红外发光研究[3],通过引入Ga2S3纳米晶,极大增强了硫卤玻璃陶瓷位于2.3和3.8μm处的中红外发光强度。下图为440℃不同热处理时间下的硫卤玻璃陶瓷中红外发射光谱测试,浅蓝曲线为主体玻璃陶瓷的发光。硫卤玻璃陶瓷中红外发射光谱2、能量转移相关的Ho3+掺杂Yb3+敏化氟铝酸玻璃的中红外2.85μm发光研究[4]Ho3+/Yb3+ 掺杂氟铝酸玻璃的中红外荧光光谱TE制冷型InGaAs检测器Bi:CsI晶体的超宽近红外发光光谱[5]300K不同激发波长下Bi:CsI 晶体的近红外发光光谱参考文献:【1】Bin Yan etal, Optics Express, Vol. 29, No. 3【2】Bo Hu etal, Science China-Information Sciences , August 2023, Vol. 66【3】Shixun Dai etal, Journal of Non-Crystalline Solids 357 (2011) 2302–2305【4】Beier Zhou etal,Journal of Quantitative Spectroscopy & Radiative Transfer, 149(2014)41–50【5】Liangbi Su etal, OPTICS LETTERS , Vol. 36, No. 23, December 1, 2011
    留言咨询
  • 综合概述 ATR7010EO是基于拉曼的食用油掺杂分析仪,可以定量检测食用油掺杂的含量。可用于食用油品企业的研发设计、工艺开发和生产等环节,通过检测食用油的拉曼图谱并作定量分析,帮助用户测试掺杂浓度,确定食用油品的掺杂的关键参数、比例,提升食用油产品质量,实现企业高效、安全、稳定的放大生产。ATR7010EO是奥谱天成顺应市场食用油掺杂检测需求全新研制推出的一款拉曼光谱仪,它采用制冷型高灵敏度CCD,使得仪器具有良好的环境适应性,可根据用户的油品实际情况按照需求进行定制,使之适合于企业生产和实验室食用油品科学研究。 ATR7010EO配备的多功能软件,可实现食用油掺杂的快速分析,支持用户快速提取掺杂所需信息,让用户能更轻松作出后续决策,提升食用油品的质量。产品特点l 定量检测:可对食用油的掺杂含量(0%~100%)进行定量检测。l 安全环保:不用进行复杂化学实验分析,避免操作员接触强腐蚀性、剧毒、易燃易爆等高危化学品,提高安全性;l 高灵敏度:采用高灵敏度的制冷型CCD,可实现低掺杂食用油品掺杂的检测;l 适用性强:仪器设计兼顾体积与性能,满足茶油、大豆油、橄榄油等食用油品的掺杂的检测;l 一键式分析:配备功能强大、界面友好的的光谱分析软件,一键式操作,意味着无论是专家还是初次使用拉曼光谱仪的用户,均可快速和准确采集食用油品数据和分析食用油掺杂。典型应用l 茶油掺杂 ● 花生油掺杂 l 大豆油掺杂 ● 葵花油掺杂 l 橄榄油掺杂 ● 菜籽油掺杂 l 玉米油掺杂ATR7010EO原理食用油作为高效的能量来源,人体每时每刻的生理活动都需要能量的支持。传统食用油掺杂检测方法主要依赖于理化法、色谱法、气质连用法,红外法等检测手段,这些检测方法往往需要繁琐的前处理过程,费时、费力且费用高,且无法确认油品的产地,这对一些企业和单位进行食用油的掺杂检测和产地鉴定造成了一定的困难。拉曼光谱是由印度科学家C. V. Raman在 1928 年发现的一种散射光谱。拉曼光谱能反映分子转动、振动信息。食用油的种类和食用油所含的饱和与不饱和脂肪酸比例有关,食用油的各个特征峰强度分别反应的是饱和与不饱和脂肪酸的含量,所以食用油的掺杂定量实际上定的是饱和与不饱和脂肪酸混合物的比例。仪器信息 仪器外观信息 表2-1 ATR7010EO技术规格
    留言咨询
  • 总览ZBLAN光纤是由ZrF4、BaF2、LaF3、AlF3和NaF等重金属氟化物组成的复合玻璃光纤。与广泛应用的石英光纤相比,ZBLAN光纤具有传输波长范围宽(0.35μm~4μm)和掺杂稀土离子发射效率高等特点。对于光纤激光器和放大器的应用,为了优化其效率,通过一种独te的光纤制造技术,筱晓光子推出低成本生产出高质量(特别是低损耗)的氟化物纤维双包层光纤,具有特定的d型芯可以设计和制造定制光纤的激光和放大器Mid-IR supercontinuumLVF非线性单模光纤由于其优良的性能,可以实现非常平坦和宽带的输出光谱。(中红外超连续介质激光器)中红外光谱和光学测量VF提出了用于光学安装的标准单模和多模光纤连接电缆。荧光LVE制造用于荧光研究的定制稀土掺杂氟化物玻璃块。晓光子提供全系列ZBLAN光纤产品,可定制波长0.04μm~0.35μm,纤芯与包层从50μm~1000μm可定制,也可定制红外线解决方案。稀土 Ho钬/Pr镨掺杂 ZBLAN双包层氟化物裸光纤,稀土 Ho钬/Pr镨掺杂 ZBLAN双包层氟化物裸光纤 通用参数产品应用光纤激光器光纤放大器类型掺稀土双包层光纤光纤类型双包层氟化物光纤掺杂元素Pr,Nd,Ho,Er,Dy,Tm,Yb,其它掺杂浓度(ppm mol)500-50000包层形状圆,八角形,长方形纤芯数值孔径0.16,0.21,0.26涂覆层数值孔径0.5截止波长(um)2.5芯径(um)2涂覆层直径(um)圆形:123/200/500(直径)八角形:123/200/500(对角线长度)矩形:123/200/500(对角线长度)包层直径(um)460,480,600第二层涂覆层厚度(um)30第二层涂覆层材料氟树脂包层材料UV固化丙烯酸脂实验测试半径1.25cm,2cm,6cm标准型号参考型号稀土掺杂稀土浓度(摩尔ppm)芯径(μm)Core NACutoff(nm)第一层包层直径(μm)包层形状第二层包层直径(μm)CladdingNA包层吸收(dB/m)ZDF-16/250-10E-CEr10,00016±20.12±0.02@ 3500 nm 2850250±13圆形460±300.50±0.02@1000nm0.3-0.8@ 980 nmZDF-18/250-60E-CEr60,00018±20.12±0.02@ 2700 nm 3400250±13圆形460±300.50±0.02@1000nm2-3@ 980 nmZDF-30/300-60E-CEr60,00030±20.12±0.02@ 2700 nm 5350300±15圆形460±300.50±0.02@1000nm4-5@ 980 nmZDF-7.5/125-40T-CTm(铥)40,0007.5±1.50.14±0.02@ 2000 nm 1700120±3圆形210±200.50±0.02@1000nm1-2@ 800 nmZDF-8.5/125-2H40T-CHo(钬)Tm2,00040,0008.5±2.00.14±0.02@ 2000 nm 2000123±4圆形195±150.50±0.02@1000nm1-2@ 800 nmZDF-10/125-30H2.5P-CHoPr(镨)30,0002,50010±10.17±0.02@ 3000 nm 2400123±3圆形210±100.50±0.02@1000nm1-2@ 1150 nmZDF-20/250-40E2.5D-CEyDy 镝40,0002,50020±30.13±0.02@ 3000 nm 4100250±13圆形460±300.50±0.02@1000nm1-2@ 980 nmZBLAN玻璃的折射率(芯,典型)HBLAN玻璃的折射率(用于包层,典型)ZBLAN玻璃的材料分散性(芯,典型)HBLAN玻璃的材料分散性(用于包层,典型)背景损耗和发射波长通过选择稀土元素和激发波长,得到不同波长的光发射。虽然芯在长波长区域具有较低的损耗,但在第一包层中的传播光在1.7um处造成更大的损耗,而由于吸收用于第二包层的氟基UV树脂而导致更多波长损耗。DCFF配置订购信息例如:DCFF-2/125-P-30-0.21-0.52/125------2=芯径 125=涂覆层直径P ----------P=掺杂稀土元素30 ---------30=第二层涂覆层厚度0.21--------0.21=纤芯数值孔径0.5 --------0.5=涂覆层数值孔径
    留言咨询
  • 一,氟化物单模掺铥ZBLAN光纤 ( 0.3-4.50μm)ZFG光纤重金属氟化物组成的复合玻璃光纤。与广泛应用的石英光纤相比,ZFG光纤具有传输波长范围宽0.03μm~4.5μm具有掺杂稀土离子发射效率高等特点。在光纤激光器和放大器的应用领域,为了优化其效率,通过一种独te的光纤制造技术,筱晓光子特推出低成本生产出高质量(特别是低损耗)的氟化物纤维单模光纤,具有特定的D型芯可以设计和制造定制光纤的激光和放大器Mid-IR supercontinuumLVF非线性单模光纤由于其优良的性能,可以实现非常平坦和宽带的输出光谱。(中红外超连续介质激光器)中红外光谱和光学测量。筱晓光子提供全系列ZFG光纤产品,可满足苛刻的光纤激光器的需求,可定制截止波长,纤芯直径,包层直径等,筱晓光子为您提供全方位红的外线解决方案。 光纤类根据数量价格,合同金额原则上不低于3500元光纤类根据数量价格,合同金额原则上不低于3500元 氟化物单模掺铥ZBLAN光纤 ( 0.3-4.50μm),氟化物单模掺铥ZBLAN光纤 ( 0.3-4.50μm) 通用参数型号ZFG SM [0.95](Tm3 5000) 3/125 纤芯直径3μm包层直径125μm第二包层直径N/A数值孔径0.23掺杂离子TmF3浓度(mol)5000ppm截止波长0.9μm短期弯曲半径≥15mm长期弯曲半径≥45mm衰减曲线三,稀土钬/铥掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列)ZBLAN氟化物光纤的特点之一是各种稀土掺杂物,比如Tm、Pr和Er的高效率光发射。光纤用掺稀土的单模ZBLAN光纤抽芯光放大器、ASE光源和光纤激光器作为增益介质。稀土钬/铥掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列),稀土钬/铥掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列) 通用参数产品应用光纤激光器光纤放大器类型掺稀土双包层光纤光纤类型双包层氟化物光纤掺杂元素Pr,Nd,Ho,Er,Dy,Tm,Yb,其它掺杂浓度(ppm mol)500-50000包层形状圆,八角形,长方形纤芯数值孔径0.16,0.21,0.26涂覆层数值孔径0.5截止波长(um)2.5芯径(um)2涂覆层直径(um)圆形:123/200/500(直径)八角形:123/200/500(对角线长度)矩形:123/200/500(对角线长度)包层直径(um)460,480,600第二层涂覆层厚度(um)30第二层涂覆层材料氟树脂包层材料UV固化丙烯酸脂实验测试半径1.25cm,2cm,6cm标准型号参考型号稀土掺杂稀土浓度(摩尔ppm)芯径(μm)Core NACutoff(nm)第一层包层直径(μm)包层形状第二层包层直径(μm)CladdingNA包层吸收(dB/m)ZDF-16/250-10E-CEr10,00016±20.12±0.02@ 3500 nm 2850250±13圆形460±300.50±0.02@1000nm0.3-0.8@ 980 nmZDF-18/250-60E-CEr60,00018±20.12±0.02@ 2700 nm 3400250±13圆形460±300.50±0.02@1000nm2-3@ 980 nmZDF-30/300-60E-CEr60,00030±20.12±0.02@ 2700 nm 5350300±15圆形460±300.50±0.02@1000nm4-5@ 980 nmZDF-7.5/125-40T-CTm(铥)40,0007.5±1.50.14±0.02@ 2000 nm 1700120±3圆形210±200.50±0.02@1000nm1-2@ 800 nmZDF-8.5/125-2H40T-CHo(钬)Tm2,00040,0008.5±2.00.14±0.02@ 2000 nm 2000123±4圆形195±150.50±0.02@1000nm1-2@ 800 nmZDF-10/125-30H2.5P-CHoPr(镨)30,0002,50010±10.17±0.02@ 3000 nm 2400123±3圆形210±100.50±0.02@1000nm1-2@ 1150 nmZDF-20/250-40E2.5D-CEyDy 镝40,0002,50020±30.13±0.02@ 3000 nm 4100250±13圆形460±300.50±0.02@1000nm1-2@ 980 nmZBLAN玻璃的折射率(芯,典型)HBLAN玻璃的折射率(用于包层,典型)ZBLAN玻璃的材料分散性(芯,典型)HBLAN玻璃的材料分散性(用于包层,典型)背景损耗和发射波长通过选择稀土元素和激发波长,得到不同波长的光发射。虽然芯在长波长区域具有较低的损耗,但在第一包层中的传播光在1.7um处造成更大的损耗,而由于吸收用于第二包层的氟基UV树脂而导致更多波长损耗。DCFF配置订购信息例如:DCFF-2/125-P-30-0.21-0.52/125------2=芯径 125=涂覆层直径P ----------P=掺杂稀土元素30 ---------30=第二层涂覆层厚度0.21--------0.21=纤芯数值孔径0.5 --------0.5=涂覆层数值孔径
    留言咨询
  • 总览ZBLAN氟化物光纤的特点之一是各种稀土掺杂物,比如Tm、Pr和Er的高效率光发射。光纤用掺稀土的单模ZBLAN光纤抽芯光放大器、ASE光源和光纤激光器作为增益介质。稀土Ey/Dy镝掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列),稀土Ey/Dy镝掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列) 通用参数产品应用光纤激光器光纤放大器类型掺稀土双包层光纤光纤类型双包层氟化物光纤掺杂元素Pr,Nd,Ho,Er,Dy,Tm,Yb,其它掺杂浓度(ppm mol)500-50000包层形状圆,八角形,长方形纤芯数值孔径0.16,0.21,0.26涂覆层数值孔径0.5截止波长(um)2.5芯径(um)2涂覆层直径(um)圆形:123/200/500(直径)八角形:123/200/500(对角线长度)矩形:123/200/500(对角线长度)包层直径(um)460,480,600第二层涂覆层厚度(um)30第二层涂覆层材料氟树脂包层材料UV固化丙烯酸脂实验测试半径1.25cm,2cm,6cm标准型号参考型号稀土掺杂稀土浓度(摩尔ppm)芯径(μm)Core NACutoff(nm)第一层包层直径(μm)包层形状第二层包层直径(μm)CladdingNA包层吸收(dB/m)ZDF-16/250-10E-CEr10,00016±20.12±0.02@ 3500 nm 2850250±13圆形460±300.50±0.02@1000nm0.3-0.8@ 980 nmZDF-18/250-60E-CEr60,00018±20.12±0.02@ 2700 nm 3400250±13圆形460±300.50±0.02@1000nm2-3@ 980 nmZDF-30/300-60E-CEr60,00030±20.12±0.02@ 2700 nm 5350300±15圆形460±300.50±0.02@1000nm4-5@ 980 nmZDF-7.5/125-40T-CTm(铥)40,0007.5±1.50.14±0.02@ 2000 nm 1700120±3圆形210±200.50±0.02@1000nm1-2@ 800 nmZDF-8.5/125-2H40T-CHo(钬)Tm2,00040,0008.5±2.00.14±0.02@ 2000 nm 2000123±4圆形195±150.50±0.02@1000nm1-2@ 800 nmZDF-10/125-30H2.5P-CHoPr(镨)30,0002,50010±10.17±0.02@ 3000 nm 2400123±3圆形210±100.50±0.02@1000nm1-2@ 1150 nmZDF-20/250-40E2.5D-CEyDy 镝40,0002,50020±30.13±0.02@ 3000 nm 4100250±13圆形460±300.50±0.02@1000nm1-2@ 980 nmZBLAN玻璃的折射率(芯,典型)HBLAN玻璃的折射率(用于包层,典型)ZBLAN玻璃的材料分散性(芯,典型)HBLAN玻璃的材料分散性(用于包层,典型)背景损耗和发射波长通过选择稀土元素和激发波长,得到不同波长的光发射。虽然芯在长波长区域具有较低的损耗,但在第一包层中的传播光在1.7um处造成更大的损耗,而由于吸收用于第二包层的氟基UV树脂而导致更多波长损耗。DCFF配置订购信息例如:DCFF-2/125-P-30-0.21-0.52/125------2=芯径 125=涂覆层直径P ----------P=掺杂稀土元素30 ---------30=第二层涂覆层厚度0.21--------0.21=纤芯数值孔径0.5 --------0.5=涂覆层数值孔径技术参数光纤损耗谱
    留言咨询
  • 德国WEP公司的ECV(型号为CVP21)在太阳能光伏行业的应用非常普及,市场占有率甚至达95%以上,是光伏行业电池技术研究和发展的必要工具之一,几乎知名的光伏企业都有使用。 WEP公司的ECV设备:CVP21(见图)1. ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布(见图);2. 相比其他方法如SRP,SIMS等,ECV具有测量使用方便,价格低的优点; 3. WEP公司的ECV具有独特技术可应用于测试电池片的绒面样片,这也是其被广泛使用的原因之一;4. CVP21所能测量的深度范围是nm---10um 5. 测量的载流子浓度范围在10e12cm-3 N 10e21cm-3之内都无需校准;6. 测量扩散样片时,样片是保持“Dry in”和“Dry out”,并无需做特别处理;7. 其所用到的化学试剂本地就能买到,价格低且用量很少买一次可以用好几年;8. 从CVP21所测得的数据能带给研发或工艺人员三方面的信息:一是表面浓度,二是浓度变化曲线,三是结深(见图);9. 表面浓度对于选择和使用适合的浆料很有帮助,如粘合性,接触电阻等的匹配问题;10. 浓度分布曲线对掌握和改进扩散工艺提供依据;11. 结深的信息对电池工艺的总体把握来说是必须的,也是扩散工艺时常需要抽测的项目之一;12. 参考:测试出的几种扩散浓度分布曲线(见图);13. 广泛的客户群:Q-CELL, NREL, ISFH, SHELL,ECN,RWE,HMI,SISE尚德,天合,晶澳,英利,交大泰阳,BYD,海润,晶科,吉阳,南玻,格林保尔… 仪器简介:电化学ECV,掺杂浓度检测(C-V Profiling)PN结深测试 电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。 本设备适用于在半导体生产中的外延过程的性能评估和过程控制,可以测试多种不同的材料,例如:硅, 锗, III-V 族和 III-N族材料等。CVP 21的模块化系统结构让测量半导体材料(结构,层)中的掺杂浓度分布变得高效、准确。选用合适的电解液与材料接触、腐蚀,从而得到材料的掺杂浓度分布。电容值电压扫描和腐蚀过程由软件全自动控制 。CVP21的系统特点: *坚固可靠的模块化系统结构 .光学,电子和化学部分相对独立. *精确的测量电路模块 *强力的控制软件,系统操作,使用简便 *完善的售后服务体系 提供免费样品测试并提供测试报告。 保修期:2年,终身维修。 对用户承诺终身免费样品测试每月1次。技术参数:我们在电化学方分布测试产品方面有超过30年的经验和世界上最先进的电路系统。全自动,特别适用于新材料,如氮化镓,碳化硅材料等。  有效检测: 外延材料、扩散 、离子注入 适用材料: CVP21应用范围宽,可以用于绝大多数的半导体材料。 IV族化合物半导体如:硅(Si)、锗(Ge)、碳化硅(SiC)等 III-V族化合物半导体如:砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等 三元III-V族化合物半导体如:铝镓砷(AlGaAs)、镓铟磷(GaInP)、铝铟砷(AlInAs)等 四元III-V族化合物半导体如:铝镓铟磷(AlGaInP)等 氮化物如:氮化镓(GaN)、铝镓氮(AlGaN)、铟镓氮(InGaN)、铝铟氮(AlInN)等 II-VI族化合物半导体如:氧化锌(ZnO)、碲化镉(CdTe)、汞镉碲(HgCdTe)等 其他不常见半导体材料(可以联系我们进行样品测量)。   载流子浓度测量范围: *最大 1021/cm³ ; 最小 1011/cm³ 深度解析度: 最大无上限;最小可至1 nm (或更低) 模块化系统结构: 拓扑型结构,实时监控腐蚀过程,适于微小样品及大尺寸的晶圆,全自动化系统。主要特点:CVP21电化学ECV是半导体载流子浓度分布完美的解决方案: 1, CVP21应用范围宽,可以用于绝大多数的半导体材料。 * IV族化合物半导体如:硅(Si)、锗(Ge)、碳化硅(SiC)等 * III-V族化合物半导体如:砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等 * 三元III-V族化合物半导体如:铝镓砷(AlGaAs)、镓铟磷(GaInP)、铝铟砷(AlInAs)等 * 四元III-V族化合物半导体如:铝镓铟磷(AlGaInP)等 * 氮化物如:氮化镓(GaN)、铝镓氮(AlGaN)、铟镓氮(InGaN)、铝铟氮(AlInN)等 * II-VI族化合物半导体如:氧化锌(ZnO)、碲化镉(CdTe)、汞镉碲(HgCdTe)等 * 其他不常见半导体材料(可以联系我们进行样品测量)。 2, CVP21可用于不同形态的样品:多层结构的薄膜材料、基底没有限制(基底导电或绝缘均可)、标准样品尺寸从4*2mm ~ 8英寸晶圆(更小尺寸样品请预先咨询我们)。 3, CVP21拥有很好的分辨率范围。 * 载流子浓度分辨率范围从 1012 cm-3 ~ 1021 cm-3 * 深度分辨率范围从1nm ~ 100um (依样品类型、样品质量决定) 4, CVP21是一套完整的电化学ECV测量系统。 * 系统可靠性高(仪器的电子、机械、光学、液体传动几个主要部分均经特殊设计) * 免校准的系统(完全自校准的电子系统,电缆电容均无须用户再次校准) * 易于使用(全用户管理软件优化,在实验室环境或生产环境均易于使用) * 照相机镜头控制(过程在线由彩色照相机镜头控制;每次测量后,镜头数据均可取出。) * 实验菜单(测量菜单预定义,优先权用户可以很容易修改或改进测量菜单) * Dry-In/Dry-Out: Auto-Load/Unload/Reload (电化学样品池自动装载/卸载/再装载,优先权用户易于修改,进行样品dry-in/dry-out处理。) 全自动电化学CV分布仪 CVP21光伏太阳能领域的首选! 众多科研和半导体领域用户的的首选!上海瞬渺光电官方中国最佳全自动电化学CV分布仪光伏太阳能领域代理商!服务众多知名光伏企业!本设备适用于评估和控制在半导体生产中的外延过程并且以被使用在多种不同的材料上, 例如:Silicon, Germanium, III-V including III-Nitrides.CVP21的净室和模块化的系统设计结构使得本系统可以高效率,准确的测量半导体材料(结构,层)中的掺杂浓度分布.选用合适的电解液与材料接触,腐蚀,从而得到材料的掺杂浓度分布。电容值电压扫描和腐蚀过程由软件全自动控制CVP21的系统特点? 坚固可靠的模块化系统结构 .光学,电子和化学部分相对独立.? 精确的测量电路模块? 强力的控制软件,系统操作,使用简便? 完善的售后服务体系特别推荐晶硅太阳能电池研究单位使用知名用户:(Shin-Etsu SEH or ISFH)In the field of solar cell research, the CVP21 system is currently being used at many research centres. It was first used in 1999 by the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Germany, and since then it has been installed at the Institute for Molecules and Materials (IMM) in Nijmegen, The Netherlands, the RWE Space Solar Power GmbH in Heilbronn, Germany, the Hahn-Meitner-Institute (HMI) in Berlin, Germany, and the Institute for Solar Energy Research (ISFH) in Hamelin/Emmerthal, Germany.在德国和日本都有很多太阳能电池用户使用,鉴于商业保密需要不能公开。产品完美结合我们在电化学方分布测试方面超过30年的经验和世界上最先进的电路系统。 全自动, 特别适用于新材料, 如氮化镓, 碳化硅材料,多晶硅等等。 有效检测:?外延材料?扩散?离子注入适用材料: CVP21应用范围宽,可以用于绝大多数的半导体材料。IV族化合物半导体如:硅(Si)、锗(Ge)、碳化硅(SiC)等…III-V族化合物半导体如:砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等…三元III-V族化合物半导体如:铝镓砷(AlGaAs)、镓铟磷(GaInP)、铝铟砷(AlInAs)等…四元III-V族化合物半导体如:铝镓铟磷(AlGaInP)等…氮化物如:氮化镓(GaN)、铝镓氮(AlGaN)、铟镓氮(InGaN)、铝铟氮(AlInN)等…II-VI族化合物半导体如:氧化锌(ZnO)、碲化镉(CdTe)、汞镉碲(HgCdTe)等…其他不常见半导体材料(可以联系我们进行样品测量)。 载流子浓度测量范围:?最大 1021/cm3?最小 1011/cm3深度解析度:?最大无上限?最小可至1 nm (或更低)模块化系统结构:?拓扑型结构?实时监控腐蚀过程?适于微小样品及大尺寸的晶圆全自动化系统:?精密的电路,电子系统?强力的软件 金牌优质服务 提供免费样品测试并提供测试报告。对用户承诺终身免费样品测试每月1次。保修期:2年,终身维修。电化学CV分布仪(CV测试仪)
    留言咨询
  • 德国WEP公司的ECV(型号为CVP21)在太阳能光伏行业的应用非常普及,市场占有率甚至达95%以上,是光伏行业电池技术研究和发展的必要工具之一,几乎知名的光伏企业都有使用。 WEP公司的ECV设备:CVP21(见图)1. ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布(见图);2. 相比其他方法如SRP,SIMS等,ECV具有测量使用方便,价格低的优点; 3. WEP公司的ECV具有独特技术可应用于测试电池片的绒面样片,这也是其被广泛使用的原因之一;4. CVP21所能测量的深度范围是nm---10um 5. 测量的载流子浓度范围在10e12cm-3 N 10e21cm-3之内都无需校准;6. 测量扩散样片时,样片是保持“Dry in”和“Dry out”,并无需做特别处理;7. 其所用到的化学试剂本地就能买到,价格低且用量很少买一次可以用好几年;8. 从CVP21所测得的数据能带给研发或工艺人员三方面的信息:一是表面浓度,二是浓度变化曲线,三是结深(见图);9. 表面浓度对于选择和使用适合的浆料很有帮助,如粘合性,接触电阻等的匹配问题;10. 浓度分布曲线对掌握和改进扩散工艺提供依据;11. 结深的信息对电池工艺的总体把握来说是必须的,也是扩散工艺时常需要抽测的项目之一;12. 参考:测试出的几种扩散浓度分布曲线(见图);13. 广泛的客户群:Q-CELL, NREL, ISFH, SHELL,ECN,RWE,HMI,SISE尚德,天合,晶澳,英利,交大泰阳,BYD,海润,晶科,吉阳,南玻,格林保尔… 仪器简介:电化学ECV,掺杂浓度检测(C-V Profiling)PN结深测试 电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。 本设备适用于在半导体生产中的外延过程的性能评估和过程控制,可以测试多种不同的材料,例如:硅, 锗, III-V 族和 III-N族材料等。CVP 21的模块化系统结构让测量半导体材料(结构,层)中的掺杂浓度分布变得高效、准确。选用合适的电解液与材料接触、腐蚀,从而得到材料的掺杂浓度分布。电容值电压扫描和腐蚀过程由软件全自动控制 。CVP21的系统特点: *坚固可靠的模块化系统结构 .光学,电子和化学部分相对独立. *精确的测量电路模块 *强力的控制软件,系统操作,使用简便 *完善的售后服务体系提供免费样品测试并提供测试报告。保修期:2年,终身维修。对用户承诺终身免费样品测试每月1次。技术参数:我们在电化学方分布测试产品方面有超过30年的经验和世界上最先进的电路系统。 全自动,特别适用于新材料,如氮化镓,碳化硅材料等。 有效检测: 外延材料、扩散 、离子注入适用材料: CVP21应用范围宽,可以用于绝大多数的半导体材料。IV族化合物半导体如:硅(Si)、锗(Ge)、碳化硅(SiC)等 III-V族化合物半导体如:砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等 三元III-V族化合物半导体如:铝镓砷(AlGaAs)、镓铟磷(GaInP)、铝铟砷(AlInAs)等 四元III-V族化合物半导体如:铝镓铟磷(AlGaInP)等 氮化物如:氮化镓(GaN)、铝镓氮(AlGaN)、铟镓氮(InGaN)、铝铟氮(AlInN)等 II-VI族化合物半导体如:氧化锌(ZnO)、碲化镉(CdTe)、汞镉碲(HgCdTe)等 其他不常见半导体材料(可以联系我们进行样品测量)。 载流子浓度测量范围:*最大 1021/cm³ ; 最小 1011/cm³ 深度解析度: 最大无上限;最小可至1 nm (或更低)模块化系统结构: 拓扑型结构,实时监控腐蚀过程,适于微小样品及大尺寸的晶圆,全自动化系统。主要特点:CVP21电化学ECV是半导体载流子浓度分布完美的解决方案:1, CVP21应用范围宽,可以用于绝大多数的半导体材料。 * IV族化合物半导体如:硅(Si)、锗(Ge)、碳化硅(SiC)等 * III-V族化合物半导体如:砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等 * 三元III-V族化合物半导体如:铝镓砷(AlGaAs)、镓铟磷(GaInP)、铝铟砷(AlInAs)等 * 四元III-V族化合物半导体如:铝镓铟磷(AlGaInP)等 * 氮化物如:氮化镓(GaN)、铝镓氮(AlGaN)、铟镓氮(InGaN)、铝铟氮(AlInN)等 * II-VI族化合物半导体如:氧化锌(ZnO)、碲化镉(CdTe)、汞镉碲(HgCdTe)等 * 其他不常见半导体材料(可以联系我们进行样品测量)。2, CVP21可用于不同形态的样品:多层结构的薄膜材料、基底没有限制(基底导电或绝缘均可)、标准样品尺寸从4*2mm ~ 8英寸晶圆(更小尺寸样品请预先咨询我们)。3, CVP21拥有很好的分辨率范围。 * 载流子浓度分辨率范围从 1012 cm-3 ~ 1021 cm-3 * 深度分辨率范围从1nm ~ 100um (依样品类型、样品质量决定)4, CVP21是一套完整的电化学ECV测量系统。 * 系统可靠性高(仪器的电子、机械、光学、液体传动几个主要部分均经特殊设计) * 免校准的系统(完全自校准的电子系统,电缆电容均无须用户再次校准) * 易于使用(全用户管理软件优化,在实验室环境或生产环境均易于使用) * 照相机镜头控制(过程在线由彩色照相机镜头控制;每次测量后,镜头数据均可取出。) * 实验菜单(测量菜单预定义,优先权用户可以很容易修改或改进测量菜单) * Dry-In/Dry-Out: Auto-Load/Unload/Reload (电化学样品池自动装载/卸载/再装载,优先权用户易于修改,进行样品dry-in/dry-out处理。) 全自动电化学CV分布仪 CVP21光伏太阳能领域的首选! 众多科研和半导体领域用户的的首选!上海瞬渺光电官方中国最佳全自动电化学CV分布仪光伏太阳能领域代理商!服务众多知名光伏企业!本设备适用于评估和控制在半导体生产中的外延过程并且以被使用在多种不同的材料上, 例如:Silicon, Germanium, III-V including III-Nitrides.CVP21的净室和模块化的系统设计结构使得本系统可以高效率,准确的测量半导体材料(结构,层)中的掺杂浓度分布.选用合适的电解液与材料接触,腐蚀,从而得到材料的掺杂浓度分布。电容值电压扫描和腐蚀过程由软件全自动控制CVP21的系统特点? 坚固可靠的模块化系统结构 .光学,电子和化学部分相对独立.? 精确的测量电路模块 ? 强力的控制软件,系统操作,使用简便? 完善的售后服务体系特别推荐晶硅太阳能电池研究单位使用知名用户:(Shin-Etsu SEH or ISFH)In the field of solar cell research, the CVP21 system is currently being used at many research centres. It was first used in 1999 by the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Germany, and since then it has been installed at the Institute for Molecules and Materials (IMM) in Nijmegen, The Netherlands, the RWE Space Solar Power GmbH in Heilbronn, Germany, the Hahn-Meitner-Institute (HMI) in Berlin, Germany, and the Institute for Solar Energy Research (ISFH) in Hamelin/Emmerthal, Germany.在德国和日本都有很多太阳能电池用户使用,鉴于商业保密需要不能公开。产品完美结合我们在电化学方分布测试方面超过30年的经验和世界上最先进的电路系统。 全自动, 特别适用于新材料, 如氮化镓, 碳化硅材料,多晶硅等等。 有效检测:?外延材料 ?扩散?离子注入适用材料: CVP21应用范围宽,可以用于绝大多数的半导体材料。IV族化合物半导体如:硅(Si)、锗(Ge)、碳化硅(SiC)等…III-V族化合物半导体如:砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等…三元III-V族化合物半导体如:铝镓砷(AlGaAs)、镓铟磷(GaInP)、铝铟砷(AlInAs)等…四元III-V族化合物半导体如:铝镓铟磷(AlGaInP)等…氮化物如:氮化镓(GaN)、铝镓氮(AlGaN)、铟镓氮(InGaN)、铝铟氮(AlInN)等…II-VI族化合物半导体如:氧化锌(ZnO)、碲化镉(CdTe)、汞镉碲(HgCdTe)等…其他不常见半导体材料(可以联系我们进行样品测量)。 载流子浓度测量范围: ?最大 1021/cm3?最小 1011/cm3深度解析度:?最大无上限?最小可至1 nm (或更低)模块化系统结构:?拓扑型结构?实时监控腐蚀过程?适于微小样品及大尺寸的晶圆全自动化系统: ?精密的电路,电子系统?强力的软件金牌优质服务提供免费样品测试并提供测试报告。对用户承诺终身免费样品测试每月1次。保修期:2年,终身维修。电化学CV分布仪(CV测试仪)
    留言咨询
  • 一,ER30-4/125掺铒单模光纤高掺铒光纤适用于从1530到1610 nm波长区域(C和L波段)的光纤激光器和放大器。这些光纤覆盖了广泛的应用领域,从通讯放大器(掺铒光纤放大器)到高功率无源光网络/有线电视助推器,以及用于仪表、工业、医疗的超短脉冲放大器。这些高掺杂的的光纤具有标准的 Ø 125 µ m的包层直径。我们这款深截至波长的掺铒光纤在L波段有超过50%的转换效率,是普通光纤20米的一个转换效果。光纤类根据数量价格,合同金额原则上不低于3500元 ER30-4/125掺铒单模光纤,ER30-4/125掺铒单模光纤产品特点● 针对于发射波长从1530到1610 nm,泵浦波长为980 nm和1480 nm● 几何特性使双折射效应很低,并且有出色的熔接特性● 对于泵浦激光单模光纤的典型熔接损耗小于0.1 dB● 对于SMF-28e+光纤的典型熔接损耗小于0.15 dB产品应用● C-和L-波段密集波分复用、Metro、有线电视和无源光网络● 受激自发辐射来源● 连续和脉冲激光器和放大器技术参数产品类别掺杂光纤光纤类型EDF40-F吸收峰值1532nm1(Max.[1530–1535 nm])范围30±3dB/m吸收峰值1532nm1(Max.[1530–1534 nm])典型值36 dB/m250m光纤长度上的吸收峰值波动≤2.5 %背景损耗 (Min.[1100–1300 nm])最大值≤ 10 dB/km背景损耗 (Min.[1100–1300 nm])典型值≤ 6 dB/km弯曲敏感度 (100 m, 15 mm弯曲半径, λ 1620 nm)≤ 0.1 dB截至波长890±90nm模场直径1550 nm6.5 ± 0.5μm数值孔径0.2熔接衰减 (with G.652 at 1300 & 1700 nm)≤ 0.2 dB偏振模色散 (100 m)≤ 0.25 ps包层直径125 ±1 μm涂覆层直径250 ±7 μm芯/包层同心度≤0.7 μm包/涂覆层同心度≤ 12.5 μm光纤强度1.5 % (150 KPSI)商业段长(±5 m)250, 500, 1000 m存储温度- 40°C to +75°C工作温度- 5°C to +75°C存储湿度(非凝露)5 % to 95%工作湿度(非凝露)5 % to 95 %对掺铒光纤ER30-4/125(长约5米)进行了群延迟、色散和差分群延迟检测;结果如下:群延迟以下是ER30-4/125掺铒光纤在三种不同的泵浦功率下群延迟(GD)关于波长的函数曲线。群延迟的概念是信号(例如,调制波前的特殊点)中的信息传输光学路径长度所需要的时间。色散以下是ER30-4/125掺鉺光纤在三种不同的泵浦功率下色散(CD)关于波长的函数曲线。色散是群延迟与波长关系图的局部坡度。差分群延迟以下是掺铒光纤ER30-4/125在三种不同的泵浦功率下差分群延迟(DGD)关于波长的函数曲线。差分群延迟被定义为所有偏振态的最大群延迟变化二,ER40-6/125高掺杂EDF掺铒光纤稀土掺杂光纤通常用于光纤激光器和放大器和ASE光源.Microphotons提供受激辐射波段在1000-1100 nm间掺镱(Yb)光纤、辐射在C和L通讯波段(1530 - 1610 nm)的掺铒(Er)光纤和辐射波段在1.9-2.1 µ m的掺铥(Tm)光纤。掺铒、镱、铥的光纤有单模和大模场区域(LMA)可选,掺镱和铥还可以选择保偏光纤(PM)。筱晓光子提供全系列掺铒光纤产品,可满足苛刻的光放大器设计要求,放大范围覆盖C波段和L波段。应用1480nm或980nm泵浦技术,掺铒光纤可实现35nm的放大带宽,并在带宽范围内保持增益平坦,可获得理想的功率转换效率。光纤类根据数量价格,合同金额原则上不低于3500元 ER40-6/125高掺杂EDF掺铒光纤,ER40-6/125高掺杂EDF掺铒光纤产品特点● 优异的光纤均匀性● 高功率转换效率和低噪声设计● 业界领先的光纤几何性能● 低PMD特性● DLPC9双层涂覆确保优异的光纤机械性能● 良好的抗氢损特性● 低熔接损耗特性产品应用● DWDM放大器● CATV放大器● 980nm或1480nm泵浦● 陆地或水下通信● 国防、军工及航空航天领域技术参数产品类别掺杂光纤光纤类型EDF40-F吸收峰值1532nm1(Max.[1530–1535 nm])范围[35-40] dB/m吸收峰值1532nm1(Max.[1530–1534 nm])典型值36 dB/m250m光纤长度上的吸收峰值波动≤2.5 %背景损耗 (Min.[1100–1300 nm])最大值≤ 10 dB/km背景损耗 (Min.[1100–1300 nm])典型值≤ 6 dB/km弯曲敏感度 (100 m, 15 mm弯曲半径, λ 1620 nm)≤ 0.1 dB截至波长2≤ 1300 nm模场直径1550 nm5.4 ± 0.7μm数值孔径0.23 ± 0.02熔接衰减 (with G.652 at 1300 & 1700 nm)≤ 0.2 dB偏振模色散 (100 m)≤ 0.25 ps包层直径125 ±1 μm涂覆层直径250 ±7 μm芯/包层同心度≤0.6 μm包/涂覆层同心度≤ 12.5 μm光纤强度1.5 % (150 KPSI)商业段长(±5 m)250, 500, 1000 m存储温度- 40°C to +75°C工作温度- 5°C to +75°C存储湿度(非凝露)5 % to 95%工作湿度(非凝露)5 % to 95 %备注:1.其他波长吸收峰值可根据要求提供2.截至波长小于980 nm光纤可选低熔接差损吸收波段重复性三,Coractive ER30/ER35/ER40/ER50/Er80 保偏掺铒光纤这种掺铒单包层保偏光纤具有高吸收率和高双折射率,使该产品成为设计眼睛安全的保偏光纤激光器和放大器的理想解决方案,广泛应用在1.5µ m波段。ER35-7-PM 保偏掺铒光纤 <1450nm,ER35-7-PM 保偏掺铒光纤 <1450nm技术参数产品特点:高吸收-减少非线性效应高双折射率-最小化应力提供高效的能量传输,最小化泵的功率需求低背景损耗产品应用:超快光纤激光器和放大器激光雷达倍频效应医疗科学实验技术参数:光学参数纤芯吸收 @1530 nm – Nominal (dB/m)35 ± 7纤芯数值孔径0.22截止波长(nm)1450 ± 50模场直径 1550 nm (µ m)6.5 ± 0.5双折射≥ 1.4E-04几何和机械参数纤芯直径(µ m)5.8 ± 0.5包层直径(µ m)125 ± 2芯层同心度误差(µ m) 1.0涂层直径(µ m)245 ± 10拉力测试(kpsi)≥ 100 四 , nLIGHT Liekki 高掺杂EDF掺铒光纤/高掺杂铒增益光纤 890/1530nmLIEKKI&trade Er80-4/125-HD-PM光纤光纤是一种高掺杂的,专为光纤设计的保偏铒光纤激光。纤芯折射率分布专为正常色散高于标准阶跃折射率光纤。高铒浓度提供了强大的增益和减少所需的应用长度,以最大限度地减少非线性效应。这使得这种纤维特别适用于超短脉冲应用包含多型号 Er16-8/125 Er30-4/125(HC) Er40-4/125 Er80-8/125 Er110-4/125Er80-4/125-HD-PM保偏铒高掺杂光纤 800-980nm,Er80-4/125-HD-PM保偏铒高掺杂光纤 800-980nm技术参数产品特性优秀的吸收和光谱形状一致性高掺杂浓度使得所需光纤较短,从而降低非线性效应很好的温度稳定性低熔接损耗应用范围脉冲激光器和放大器中级功率的低非线性效应应用领域激光雷达医疗领域光纤传感适用于980nm或1480nm泵浦超短脉冲(femtosecond)放大器,激光器参数特点模场直径 @1550nm6.5 ± 0.5 um纤芯吸收峰值@1530nm80 ± 8 dB/m纤芯数值孔径0.2截止波长800-980 nm纤芯/包层偏差 0.7 um包层直径125 ± 2 um包层形状圆形涂覆层直径245 ± 15 um涂覆层材料高折射率丙烯酸酯压力测试水平 100 Kpsi包层物理结构圆,熊猫型色散值 at 1550 nm(nominal) 1-22ps/(nm*km)双折射,≥1E-04常见参数问题: 掺铒光纤nLIGHT掺铒光纤的吸收和发射截面是多少?请联系nLIGHT光纤代表以接收nLIGHT掺铒光纤吸收和发射截面的代表性数据。nLIGHT标准掺铒光纤的色散是多少?我们的掺铒光纤的色散参数敏感地取决于纤芯直径和纤芯数值孔径。根据假设标称芯径和NA的模拟,可以预期色散参数在以下范围内:光纤几何结构标称色散[ps/(nm*km)]Erxxx-4/125-12-18Erxxx-8/125 10。。。16*适用于1500 nm至1600 nm的波长范围nLIGHT的掺铒光纤的有效核心面积是多少?掺铒光纤的有效纤芯面积取决于纤芯直径和纤芯数值孔径。根据假设标称芯直径和NA的模拟,可以预期芯的有效面积在以下范围内:纤维几何结构标称有效面积[(m² )]Erxxx-4/125 26。。。32Erxxx-8/125 60。。。70*适用于1500 nm至1600 nm的波长范围nLIGHT的掺铒光纤的非线性系数是多少?根据光纤几何结构,可以预期以下标称非线性折射率:光纤几何结构标称非线性折射率n2[(cm² /W)]Erxxx-4/125 2.0&bull 10.0-16。。。2.2 &bull 10.0-16Erxxx-8/125 2.4&bull 10.0-16。。。2.5 &bull 10.0-16*适用于1500 nm至1600 nm的波长范围nLIGHT掺铒光纤的铒离子密度是多少?考虑到基本模式与纤芯的重叠,并根据光纤类型,可以预期以下铒离子密度:纤维型铒离子密度[(m-3)]Er16-8/125 6.8&bull 10.024Er30-4/125 2.1&bull 10.025Er40-4/125 3.5&bull 10.025Er80-8/125 3.9&bull 10.025Er110-4/125 8.4&bull 10.025*适用于1500 nm至1600 nm的波长范围你们提供与你们的掺铒光纤相匹配的无源光纤吗?我们不为我们的掺铒光纤提供专门的色散工程匹配无源光纤。标准电信光纤通常与我们的铒产品兼容。您的掺铒光纤在1300nm处的背景损耗是多少?请联系nLIGHT光纤代表,以获取光纤在1300 nm处的测量背景损耗。请在询价时提供您光纤的光纤代码。nLIGHT掺铒光纤的纤芯直径和掺铒直径是多少?标称芯径和掺铒直径如下:光纤型标称纤芯和掺铒直径[(m)]Erxxx-4/125 3.5Erxxx-8/125 7.6nLIGHT掺铒光纤的自发辐射寿命是多少?对于我们所有的掺铒光纤,自发辐射寿命可以假定为9 ms左右。nLIGHT掺铒光纤中淬火离子(铒团簇)的比例是多少?淬火离子的分数(铒团簇)如下所示:淬火离子的纤维型分数Er30 xxx 4.80%Er40 xxx 7.0%Er80 xxx 14.0%Er110 xxx 16.0%您建议您的掺铒光纤使用什么长度的光纤?光纤的最佳长度取决于应用,理想情况下应根据模拟确定,并考虑到精确的设计。当假设C波段(L波段)应用的总吸收为70 dB(600 dB)时,可获得初始估计值。因此,光纤长度为:1530nm[dB/m]下的光纤类型标称吸收光纤型号1530nm下的标称吸收[dB/m]C波段应用长度[(m)]L波段应用长度[(m]Er16-8/125164.538Er30-4/125(HC)302.320Er40-4/125401.815Er80-8/125800.97.5Er110-4/1251100.67.5 五,MetroGain 掺铒光纤(C+L波段) Fibercore M-12(980/125)掺饵光纤属于Fibercore公司的掺铒MetroGain系列光纤。该系列光纤专门为低成本或者小型的单级EDFA而设计的。其具有高光转换效率,从而可以仅利用较短的光纤长度即可实现EDFA。该系列光纤拥有多种包层大小规格,从而可以满足不同EDFA的需求。MetroGain系列光纤提供了三款基于980nm泵浦的产品和一款基于1480nm泵浦的产品,可实现C波段(1530~1565nm)和L波段(1565~1625nm)的光纤放大器。M-12(980/125)是一款基于980nm泵浦的光纤,泵浦吸收率高,因此作为增益光纤其所需长度短。该范围设计用于高效率“Metro-style”掺铒光纤放大器(EDFA)配置、单级放大器、放大自发辐射(ASE)光源和单通道或少通道EDFA。M-5(980/125)提供了相对较低的掺杂水平,通过降低放大器输出对精确增益长度的灵敏度来简化EDFA制造过程。M-12(980/125)具有高吸收水平,可以缩短增益长度,降低材料成本。M-12(980/80)是一种80µ M变体,受益于标准M-12(980/125)的更高吸收率,但在用于小线圈直径时允许显著更长的机械寿命,对于小型EDFA设计(如小型EDFA和微型EDFA)尤其重要。M-3(1480/125)设计用于1480nm的泵浦,其泵浦转换效率高于980nm的泵浦。光纤类根据数量价格,合同金额原则上不低于3500元 MetroGain 掺铒光纤(C+L波段),MetroGain 掺铒光纤(C+L波段)通用参数产品特性高吸收,可用于窄增益界面或短激光腔高转换效率高转换效率出色的熔接特性 针对泵浦光波长为 980 纳米和 1480 纳米,发射波长为 C 或 L 波段优化 应用范围EDFA光纤放大器 ASE光源单通道光纤放大器微型光纤放大器技术参数:M-3(1480/125)M-5(980/125)M-12(980/125)(980/80)截止波长 (nm)1300-1450900- 970数值孔径0.21 -0.24模场直径 (um)5.1-5.9@1550nm5.5-6.3@1550nm5.7-6.6@1550nm泵浦吸收率Absorption (dB/m)2.8-3.8@1480nm6.5-10.1@1531nm4.5-5.5 @980nm5.4-7.1@1531nm11.0-13.0 @980nm16.0- 20.0 @1531nm拉力测试(%)1(100kpsi)Attenuation 衰减 (dB/km)≤10@1200nmPolarization Mode Dispersion (ps/m)0.005包层直径(um)125±180±1纤芯偏离度(um)≤0.3裸光纤直径 (um)245±15170±10涂覆层材料双丙烯酸酯典型吸收和发射光谱七 ,PS-ESF-3/125 掺铒光敏光纤 1530-1625nm相干高性能PS-ESF-3/125是分布反馈(DFB)和分布布拉格反射(DBR)激光器的理想光纤。这些光纤被设计成固有的光敏性,使器件长度变短,并具有良好的泵转换效率。如有要求,可根据客户要求提供光纤或更高感光性的产品。光纤类根据数量价格,合同金额原则上不低于3500元 PS-ESF-3/125 掺铒光敏光纤 1530-1625nm,PS-ESF-3/125 掺铒光敏光纤 1530-1625nm通用参数特点和优点具有中等Er掺杂浓度的固有光敏性使得具有叠加光纤光栅结构的短长度器件成为可能高效率的泵信号转换良好完全匹配的无源光纤有助于构建基于光纤的组件和尾纤,具有低的泵浦和信号耦合损耗。典型应用超短甚窄线宽全光DFB和DBR激光器参数:参数单位指标型号PS-ESF-3/125工作波长nm1530-1625数值孔径NA0.280模场直径MFD @ 1550nmum5.5±1.0截止波长nm920±50峰值吸收近1530nmdB/m8.5±1.0包层直径um125.0 ±1.0纤芯直径um3.0涂覆层直径um245.0 ±15.0纤芯/包层同心度偏差um≤0.5包层/涂覆层偏差um5涂覆层材料Acrylate工作温度℃-40 ~ +85强度测试水平kpsi≥100 (0.7GN/m2)
    留言咨询
  • 一, 铒/镱共掺双包层光纤这款铒镱共掺光纤适用于1.5μm波段应用,具有高掺杂浓度和高能量转换能量转换。由于其高吸收率,该产品是设计光纤放大器高功率光学放大器(5w)的理想选择,广泛应用在不同的应用市场,如电信的CATV及低功率激光雷达等应用领域。光纤类根据数量价格,合同金额原则上不低于3500元 铒/镱共掺双包层光纤,铒/镱共掺双包层光纤通用参数产品特点高掺杂浓度-提供高效的能量转换,zui小化泵浦功率需求高吸收率–zui小化纤维长度并减少非线性效应优化的铒/镱共掺合成芯–减少1µ m处的寄生发射产品应用大功率电信放大器低功率光纤激光器和光纤放大器传感器:激光雷达和光谱学参数光学数据纤芯吸收 @ 915nm (dB/m):2.4 ± 0.4纤芯吸收 @ 1535nm ( 标称值 ) (dB/m):85 ± 25核心数值孔径:0.20 ± 0.02背景损耗 @ 1200 nm (dB/km): 150.0几何与力学特性芯径 (µ m):10 ± 1包层直径 (µ m):128 ± 3纤芯/包层同心度误差 (µ m): 1.0涂层直径 (µ m):260 ± 15使用环境工作湿度(%)5-85工作温度(C&ring )0-70储存湿度(%)5-85储存温度(C&ring )-40-85熊猫型保偏掺镱光纤筱晓保偏掺镱光纤系列采用熊猫型应力元设计,以提高双折射率,具有较高的保偏性能,产品分普通涂层的单模光纤和双包层大模场光纤两大类可供选择,具有转换效率高,增益大的特点,可实现高功率高光束质量偏振光输出。适用于超快光纤激光器,以及要求偏振光输出的光纤激光器和放大器。熊猫型保偏掺镱光纤,熊猫型保偏掺镱光纤截止波长880±80nm技术参数产品特点高精度几何尺寸控制截面几何对称性良好光学性能优异应用领域材料加工、科学研究和医疗高精度测量光学检测超快光纤激光器和放大器 规格参数PN#Yb85-6/125-PMYb85-20/400-PMYb85-30/250-PM(纤芯吸收)Core Absorption at 915nm(nominal)85dB/m//模场直径Mode Field Diameter at 1060 nm (1)6.0 ± 0.520.0 ± 1.530.0 ± 0.5包层吸收Cladding Absorption at 920 nm/0.52.3核心数值孔径Core Numerical Aperture (nominal)0.110.0650.060截止波长Cut-off wavelength (2)880 ± 80nm880 ± 80nm880 ± 80nm包层数值孔径Cladding Numerical Aperture, ≥Core background loss at 1200 nm, ≤≤15db/km≤15db/km≤30db/km双折射Birefringence, ≥(1E-04)2.541.5芯包同心度Core Concentricity Error, ≤1.0um5um4um包层直径Cladding Diameter (flat-to-flat)125 ± 2um400 ± 10um250 ± 5.0um包层几何形状Cladding GeometryRound, PANDARound, PANDARound, PANDA涂层直径Coating Diameter245 ± 15um 550 ± 15um400 ± 15um涂层材料Coating MaterialDual coated low index acrylate双涂层低指数丙烯酸酯Dual coated low index acrylateDual coated low index acrylate验证试验Proof Test, ≥100kpsi100kpsi100kpsi二,LIEKKI Yb1200-10/125‒ 大模场双包层掺镱光纤LIEKKI Yb1200-10/125 光纤是高度掺杂的大模面积光纤,适用于中等功率光纤激光器和放大器应用。高包层吸收、低光暗化损耗和高光束质量的结合使它们成为紧凑型光纤功率放大器的理想选择。 LIEKKI Yb1200-10/125 光纤可用作双包层 (Yb1200-10/125DC) 和双包层保偏 (Yb1200-10/125DC-PM) 光纤。光纤类根据数量价格,合同金额原则上不低于3500元 LIEKKI Yb1200-10/125‒ 大模场双包层掺镱光纤,LIEKKI Yb1200-10/125‒ 大模场双包层掺镱光纤通用参数 特征行业领xian的纤维沉积工艺——直接纳米颗粒沉积realNA — 精确的光纤纤芯 NA,可实现出色的光纤性能可预测性和zui小的熔接损耗适用于低非线性和高光束质量应用的大型、低 NA 纤芯结合高泵浦吸收和低光暗化损失丙烯酸酯涂层使光纤能够在极端环境条件下应用:经证明可在高达 120&ring C 和极端湿度下工作。匹配无源光纤,经过优化设计,可将熔接损耗降至zui低应用中等功率放大器和激光器脉冲和连续波应用用于倍频的红外源 工业、医疗和科学应用参数FiberLIEKKI Yb1200-10/125DCLIEKKI Yb1200-10/125DC-PMOpticalUnits976 nm时的峰值包层吸收(标称)dB/m(7.4)(7.4)920 nm时的包层吸收dB/m1.7 ± 0.31.7 ± 0.3模场直径(1)(标称)um(11.1)(11.1)核心数值孔径(realNA)0.080 ± 0.0050.080 ± 0.005包层数值孔径,≥0.480.48Core background loss at 1200 nm, ≤1200 nm时的堆芯背景损耗,≤dB/km2525Birefringence, ≥双折射,≥1E-04-1.4几何和机械属性纤芯直径um10.0 ± 1.010.0 ± 1.0纤芯同心度误差,≤um1.01.0Cladding Diameter (flat-to-flat)包层直径(平到平)um125 ± 2125 ± 2包层几何形状OctagonalRound, PANDA涂层直径245 ± 15245 ± 15涂层材料Dual coated low index acrylate双涂层低指数丙烯酸酯Dual coated low index acrylate验证试验,≥kpsi100100单模掺镱纤芯泵浦光纤 1030-1100nm (用于低功率光纤激光器)DF1100单模掺镱纤芯泵浦光纤用于低功率光纤激光器。它在977 nm处提供900 dB的高峰值吸收,并且提供了900到1064 nm的宽泵浦范围。 SM掺镱光纤(DF1100)是一种高掺杂的掺镱单模光纤 为低功率光纤激光器和放大自发辐射(ASE)光源设计的电平。 DF1100设计用于915nm或980nm左右的堆芯泵送。高吸收率允许短时间 用于飞秒锁模环形激光器或前置放大器的增益长度。 可以通过改变光纤的长度来调节光纤的发射光谱,发射 DF1100可实现1030nm至1100nm。核心泵送设计 1060、1085 和 1550nm 发射 ,与熔接锥形接头兼容的接头 ,低泵阈值设计光纤类根据数量价格,合同金额原则上不低于3500元 单模掺镱纤芯泵浦光纤 1030-1100nm (用于低功率光纤激光器),单模掺镱纤芯泵浦光纤 1030-1100nm (用于低功率光纤激光器)通用参数产品特点核心泵送设计1060、1085 和 1550nm 发射与熔接锥形接头兼容的接头低泵阈值设计典型应用:光纤激光器放大自发发射 (ASE) 光源掺铒光纤放大器 (EDFA)有线电视 (CATV)教育工具包参数工作波长(nm)1030 - 1100截止波长(nm)800- 900数值孔径0.14-0.17模场直径(m)5.1-6.3 @1085nm衰减(dB/km)50 @1200nm验证实验(%)1 (100 kpsi)包层直径(um)125 ±1 µ m纤芯包层同心度(um)0.5涂层直径(um)245 ± 7涂层类型Dual Layer Acrylate工作温度(C)-55至+85泵浦吸收峰值(dB/m)1500(标称)@977nm掺杂剂镱 Ytterbium (Yb)
    留言咨询
  • 1、产品简介FemtoFiber dichro系列可同时产生两束完全同步,不同波长的激光。 这个新概念提供了一个紧凑和易于使用的激光系统,只需按下按钮即可使用。作为TOPTICA第一个基于该新平台的激光系统,FemtoFiber dichro midIR使用这种新方法生成宽带中红外光谱。 该系统基于铒掺杂光纤激光器,可提供宽带激光脉冲,可调范围在5 - 15μm。 这些中红外脉冲通过1.5μm基波源和1.7-2μm超连续光谱源之间的差频(DFG)产生的。2、产品特点 SAM锁模,全保偏光纤设置 用户友好一站式操作系统 坚固,可靠而又紧凑的设计 双波长同步输出 半自动时延调整3、产品参数波长脉宽平均功率重频FemtoFiber dichro midIR5 - 15 μm,20 - 60 THz,670 - 2000 cm-1 (tuning range)---typ. 1 mW80 MHz如有其它需求,请联系我们。
    留言咨询
  • Er掺杂光纤激光器 400-860-5168转1732
    技术参数:脉冲宽度(FWHM): 150-300 fs 波长: 1560 ± 10 nm 平均输出功率: 100 mW 峰值输出功率:最高10 kV 重复频率: 40-80 MHz 功率输出: 100 mW, TEM00, 线偏振或光纤输出 (FC/APC) 工作光输出: FC/APC (~1 mW) RF 输出:SMA 锁模状态:SMA主要特点:特点:占用空间小,转键操作,高度稳定性
    留言咨询
  • PAIMS离子迁移谱系统 400-860-5168转2889
    便携式AIMS是小型紧凑型分析仪器。AIMS引擎,AIMS控制单元,两个数字质量流量控制器和压力控制器集成为一体。该便携式先进的离子迁移谱仪提供多重设置。对于对移植性实验要求强大的分析仪器感兴趣的用户来说,它是理想的选择。PAIMS兼容离子迁移谱技术所有优点。PAIMS的所有操作参数均可由用户自定义设置调整,适用于实验室研究以及工业直接应用PAIMS的主要优点是:非放射性等离子体电离源高灵敏度高分辨率在大气压和亚大气压下操作可移植性技术参数:工作压力:600-1200mbar工作温度:30-100℃分辨率 N2/Air:70 FWHM检测限ppb以下漂移速率:500-1200ml/min流量:5-500ml/min漂移场强:200-560V/cm电源:24V极性:正负极电离源:电晕放电通讯:USB2.0尺寸:352x305x142mm 应用环境:快速,远程监控流程气相色谱仪或多毛细管柱气相色谱仪的接口痕量气体检测VOC / TOC监测环境监测室内/室外空气质量监测化学分析研究实验室可以配置作为AGILENT GC气相色谱仪的检测器,GC-IMS组合是食品,饮料,制药和环境工业中复杂基质2D分析的完美组合 异构体和构象选择性大气压化学电离邻苯二甲酸二甲酯在这项工作中,我们研究了大气压化学电离(ACPI)的电离机理,用于邻苯二甲酸二甲酯(邻苯二甲酸二甲酯 - DMP(邻位异构体),间苯二甲酸二甲酯 - DMIP(间)和对苯二甲酸二甲酯 - DMTP(对))的三种异构体离子迁移谱(IMS)和IMS结合正交加速飞行时间质谱仪(oa-TOF MS)。通过反应物离子H + (H 2 O)n (n = 3和4)对分子进行化学电离。异构体的阳性IMS和IMS-oaTOF质谱显示离子迁移率和离子组成的显着差异。IMS-oaTOF光谱由簇离子MH + (H 2 O)n组成 对于不同的异构体具有不同的水合度(n = 0,1,2,3)。在DMP异构体的情况下,我们观察到 通过质子转移电离几乎排他地形成MH +,而在DMIP和DMTP水合离子的情况下,MH + (H 2 O)n (n = 1,2,3) )分别为MH + (H 2 O)n 检测到(n = 0,1,2),通过加合物形成反应形成。电离过程的差异阐明了这种行为。为了阐明电离过程,我们对中性和质子化和水合异构体(对于不同的构象异构体)的结构和能量进行了DFT计算,并计算了相应的质子亲和力(PA)和水合能。 碱性和结构对质子化分子水合,质子束缚二聚体和团簇形成的影响:离子迁移率 - 飞行时间质谱和理论研究通过配备电晕放电离子源的IMS-TOFMS技术研究氨,甲醛,甲酸,丙酮,丁酮,2-辛酮,2-壬酮,苯乙酮,乙醇,吡啶及其衍生物的质子化,水合和簇形成。发现质子化分子MH +参与水合或簇形成的趋势取决于M的碱性。具有较高碱度的分子比具有较低碱度的分子水合较少。低碱性分子如甲醛的质谱表现出较大的M n H +(H 2 O)n簇,而对于碱性较高的化合物如吡啶,只有MH + 和MH +。观察到M个峰。DFT计算的结果表明,随着分子的碱性增加,水合焓和团簇形成减少。通过比较甲酸,甲醛和乙醇的质谱,还研究了结构对簇形成的影响。通过离子迁移率和质谱技术研究了对称(MH + M)和不对称质子结合二聚体(MH + N)的形成。理论和实验结果均表明,不对称二聚体在分子(M和N)之间更容易形成,具有相当的碱性。随着M和N之间的碱度差异增加,MH + N形成的焓降低。 离子迁移谱结合质谱法研究含有和不含NH 3掺杂剂的电晕放电离子源的常压化学电离机理:理论和实验研究使用离子迁移率(IMS)和时间 - 来研究在电晕放电(CD)大气压化学电离(APCI)离子源中2-壬酮,环戊酮,苯乙酮,吡啶和二叔丁基吡啶(DTBP)的电离。飞行质谱(TOF-MS)。在不存在和存在氨掺杂剂的情况下记录IMS和MS光谱。在没有NH 3掺杂剂的情况下,反应物离子(RI)是H +(H 2 O)n,n = 3,4,并且MH +(H 2 O)x 簇作为产物离子产生。水合模型显示水合量(x)取决于M的碱度,温度和漂移管的水浓度。在氨存在下(NH 4+(H 2 O)n为RI)根据M的碱度,生成两种产物离子MH +(H 2 O)x 和MNH 4 +(H 2 O)x。使用NH 4 +( H 2 O)n 作为RI,吡啶和具有较高碱性的DTBP的产物离子是MH +(H 2 O)x, 而环戊酮,2-壬酮和具有较低碱性的苯乙酮产生MNH 4 +(H 2 O)x。为了解释产物离子的形成,M-H +,H + -NH 3和H + -OH 2 在M-H + -NH 3 和M-H + -OH 2 和M-H中的相互作用能通过B3LYP / 6-311 ++ G(d,p)方法计算+ -M复合物。发现对于具有高碱性的分子M,M-H + 相互作用强,导致H + -NH 3的弱化,并且 M-H + -NH 3 和M- 中的H + -OH 2相互作用。H + -OH2个 复合体用于移动机器人手臂离子迁移谱仪检测爆炸物
    留言咨询
  • PeakMachine离子迁移谱系统允许二维分离复杂基质中存在的挥发性化合物。多毛细管柱气相色谱仪(MCCGC)与离子迁移谱仪的结合非常适合通过顶空技术分析液体和固体样品。Peak Machine的2D分离基于GC保留时间和每种化合物的离子迁移率。PeakMachine在大气压下以及在低于大气压下均可工作。Peak机器为离子迁移谱仪提供了最佳参数。IMS的工作温度为30-140°C,分辨力高达100 FWHM,适用于分析复杂基质中存在的风味和气味。Peak机器还允许将掺杂剂气体(反应离子改性剂)插入IMS,从而提高了仪器对目标化合物(例如内酯)的选择性。适用于食品,饮料和制药行业的质量控制 Peak Machine优点:非放射性等离子体电离源高灵敏度高解析力在大气压和低于大气压下运行现场最高工作温度与任何自动进样器兼容机器学习分类用于:复杂矩阵的2D分析(二维双模式)被分析化合物的分类食品,饮料,化学工业气味风味等VOC / TOC分析化学分析研究实验室爆炸物化学品技术参数:工作压力600-1200 mbar工作温度30-140℃分辨力N2/空气90/100 FWHM灵敏度ppb-ppt漂移气流500-1200 ml/min样气流量2-500 ml/min漂移场强度200-560 V/cm极性正负电离源电晕放电预分离气相色谱电源250V/24V通信 TCP/IP,USB 2.0尺寸(毫米)490x390x150
    留言咨询
  • 简介:载流子迁移率测量系统Paios主要用于太阳能电池在稳态,瞬态以及交流条件下的光电性能测量(载流子迁移率测量Photo-CELIV,瞬态光电流测量TPC、瞬态光电性能测量TPV、强度调制光电压谱IMVS、强度调制光电流谱IMPS以及阻抗IS,CV等量测)为光电器件微观机理研究提供了有力的测试平台;多功能一体化高性能瞬态测试平台,不但可以测量器件的载流子迁移率、载流子寿命、载流子动力学过程、阻抗谱等,还可以对瞬态光电流谱TPC,瞬态光电压谱TPV、强度调制光电流谱IMPS、强度调制光电压谱IMVS等进行测量分析,全面分析器件中的载流子特性和瞬态过程。可量测器件类型: * 无机半导体光电器件,有机半导体光电器件; * 有机太阳能电池OPV; * 钙钛矿太阳能电池Perovskite Solar Cell,钙钛矿LED; * 无机太阳能电池(例如:单晶硅、多晶硅、非晶硅等硅基太阳能电池); * 染料敏化太阳能电池DSSC; 主要测量功能: * 最大功率点MPP、FF、Voc、Isc、VS 光强,迁移率(I-V测试 & I-V-L测试,空间电荷限制电流SCLC法) * 载流子浓度,载流子动力学过程(瞬态光电流法 TPC) * 载流子寿命,载流子符合动力学过程(瞬态光电压/瞬态开路电压法 TPV) * 载流子迁移率(暗注入瞬态法 DIT,单载流子器件&OLED) * 串联电阻,几何电容,RC时间(电压脉冲法 Pulse Voltage) * 参杂密度,电容率,串联电阻,载流子迁移率(暗态线性增加载流子瞬态法 Dark-CELIV) * 载流子迁移率,载流子密度(光照线性增加载流子瞬态法 Photo-CELIV) * 载流子复合过程,朗之万函数复合前因子(时间延迟线性增加载流子瞬态法 Delaytime-CELIV) * 不同工作点的载流子强度,载流子迁移率(注入线性增加载流子瞬态法 Injection-CELIV) * 几何电容,电容率(MIS线性增加载流子瞬态法 MIS-CELIV) * 陷阱强弱度,等效电路(阻抗谱测试 IS) * 迁移率,陷阱强弱度,电容,串联电阻(电容VS频率 C-f) * 内建电压,参杂浓度,注入势垒,几何电容(电容VS电压 C-V) * 陷阱分析(深能级瞬态谱DLTS) * 载流子传输时间分析(强度调制光电流谱 IMPS); * 载流子复合时间、收集效率等分析(强度调制光光电压谱IMVS); * 点亮电压(电流电压照度特性 I-V-L) * 发光寿命,载流子迁移率(瞬态电致发光法 TEL) *载流子迁移率(TEL瞬态电致发光,Photo-CELIV线性增压抽取载流子) *OLED/钙钛矿LED发光特性测量(发光器件测量);测量技术: 1)IV/IVL特性:IV和IVL曲线是针对OLED和OPV标准的量测手法,通过曲线可以得到样品的电流电压特性关系、电流电压与光强的特性关系; *对于有机半导体材料可通过空间电荷限制电流SCLC分析Pmax、FF、Voc、Isc和迁移率等; 2)瞬态光电流(TPC):研究载流子动力学过程和载流子密度等; 3)瞬态光电压(TPV):研究载流子寿命和复合过程; 4) 双脉冲瞬态光电流(Double Transient Photocurrent):分析电荷载流子俘获动态过程; 5) 暗注入瞬态法(Dark Injection):对于单载流子器件和OLED,研究其载流子迁移率; 6) 电压脉冲法(Voltage Pulse):串联电阻、几何电容和RC效应分析; 7) 暗态线性增压载流子瞬态法(Dark-CELIV):参杂浓度、相对介电常数、串联电阻、电荷载流子迁移率测量; 8) 光照线性增压载流子瞬态法(Photo-CELIV):提取有机太阳能电池片内载流子迁移率mobility,及载流子浓度分析等; 9) 时间延迟线性增压载流子瞬态法(Delaytime-CELIV):复合动态过程分析和Langevin复合因子分析等; 10)注入线性增压载流子瞬态法(Injection-CELIV):电荷载流子浓度和电荷载流子迁移率测量分析; 11)MIS-CELIV:载流子迁移率量测 12)阻抗谱测量(Impedance Spectroscopy):器件等效电路分析等; 13)电容频率测量法(C-f): 迁移率、陷阱、几何电容和串联电阻测量; 14)电容电压测量法(C-V):内建电压、参杂浓度和几何电容等测量; 15) 深能级瞬态谱(DLTS):陷阱分析; 16)强度调制光电流谱(IMPS):载流子传输时间分析; 17)强度调制光光电压谱(IMVS):载流子复合时间、收集效率等分析; 18)瞬态电致发光测试(Transient Electroluminescence):抽取OLED器件的载流子,磷光寿命测量; 应用案例:1.第三代太阳能电池的表征 2. Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient and Frequency Domain
    留言咨询
  • 日本Fiberlabs提供各种光纤光放大器, 掺铒光纤放大器EDFA、掺镱光纤放大器YDFA、掺镨光纤放大器PDFA、掺铥光纤放大器TDFA以及CWDM放大器;光纤放大器:FiberLabs提供台式光学放大器在telecom 和non-telecom带宽,利用其独特的光纤技术。这些放大器允许的参数控制在前面板,方便研发应用,包括研发下一代光网络、光测量,脉冲激光放大及科学实验。主要特点:一些列波段大多数模型有RS232C / IEEE488.2(GP-IB)为默认接口可自定义下一代光通信系统的发展放大传输信号的评估微弱信号检测在光学测量&传感器产品列表:
    留言咨询
  • 法国IBS IMC210中束流离子注入机 离子注入机由离子源、质量分析器、加速器、四级透镜、扫描系统和靶室组成,可以根据实际需要省去次要部位。离子源是离子注入机的主要部位,作用是把需要注入的元素气态粒子电离成离子,决定要注入离子的种类和束流强度。离子源直流放电或高频放电产生的电子作为轰击粒子,当外来电子的能量高于原子的电离电位时,通过碰撞使元素发生电离。碰撞后除了原始电子外,还出现正电子和二次电子。正离子进入质量分析器选出需要的离子,再经过加速器获得较高能量,由四级透镜聚焦后进入靶室,进行离子注入。 离子注入机是集成电路制造前工序中的关键设备,离子注入是对半导体表面附近区域进行掺杂的技术,其目的是改变半导体的载流子浓度和导电类型。离子注入与常规热掺杂工艺相比可对注入剂量、注入角度、注入深度、横向扩散等方面进行精确的控制,克服了常规工艺的限制,提高了电路的集成度、开启速度、成品率和寿命,降低了成本和功耗。离子注入机广泛用于掺杂工艺,可以满足浅结、低温和精确控制等要求,已成为集成电路制造工艺中必不可少的关键装备。 特点:l精确控制离子束流l精确控制加速电压l占地小, 操作简单, 运行成本低l特别适合于研发应用l适用于4”~6”晶片,最小可用于1*1cm2样品(室温)l4”热注入模式,最高温度可达600度l2个带有蒸发器的Freeman离子源,可使温度达750度l1个Bernas离子源l非凡的铝注入能力l一个主气箱,配有4个活性气体管路;一个副气箱,配有4个中性气体管路l高价样品注入能力l注入角0~15度lIBS特有的矢量扫描系统l手动装载/卸载用于标准注入和热注入,自动25片cassette 装载用于标准腔室l远程操作控制接触屏(5米链接线缆)l辐射低于0.6usv/hour 工艺性能
    留言咨询
  • 碳化硅衬底晶片生产商 4H-N碳化硅衬底片厂家苏州恒迈瑞材料科技有限公司生产供应碳化硅衬底晶片,产品主要有2英寸到6英寸,类型分为导电型4H-N 掺杂氮和半绝缘型4H-SI型掺杂钒以及非掺杂4H-SI型。产品等级分为超低微管密度级碳化硅衬底晶片,产品级碳化硅衬底片,研究级碳化硅衬底晶片,测试级碳化硅晶片,欢迎有需求的客户咨询。碳化硅(Silicon Carbide)是C元素和Si元素形成的化合物,目前已发现的碳化硅同质异型晶体结构有200多种,其中六方结构的4H型SiC(4H-SiC)具有高临界击穿电场、高电子迁移率的优势,是制造高压、高温、抗辐照功率半导体器件的优良半导体材料,也是目前综合性能好、商品化程度高、技术成熟的第三代半导体材料,与硅材料的物理性能对比,主要特性包括:(1)临界击穿电场强度是硅材料近10倍;(2)热导率高,超过硅材料的3倍;(3)饱和电子漂移速度高,是硅材料的2倍;(4)抗辐照和化学稳定性好;(5)与硅材料一样,可以直接采用热氧化工艺在表面生长二氧化硅绝缘层。
    留言咨询
  • 砷化铟(InAs)晶体基片 400-860-5168转2205
    产品名称:砷化铟(InAs)晶体产品简介:技术参数:晶体结构:立方 a =5.4505 ?生长方法:CZ导电类型:N型掺杂类型:不掺杂载流子浓度:2 ~ 5E16 / cm3 迁移率:18500cm2/V.S 常规尺寸:常规晶向:100、111;常规尺寸:10x10x0.5mm dia2″x0.5mm 抛光情况:单抛或双抛 表面粗糙度Ra:15A注:可按客户需求定制相应的方向和尺寸。备注:1000级超净室100级超净袋 Other InAsInSbInP GaAsGaSb基片包装盒系列薄膜制备设备RTP快速退火炉
    留言咨询
  • TGG 激光晶体Rod 400-860-5168转2255
    SYNOPTICS公司可以完全自主实现集晶体生长、加工、镀膜、检测、包装于一体的一站式服务。作为ISO 9001:2008证书获得企业,SYNOPTICS着重于该公司在晶体生长、制造和检测方面的支持,以确保达到超高的质量标准。 主要特点:* 波长覆盖广: 500nm-3000nm * 晶体尺寸大 * 镀膜阈值高* 均匀性好 应用领域:* 医疗* 工业* 军事* 科研激光市场TGG 激光晶体RodTGG晶体广泛应用于光学隔离器。光学隔离器利用的是TGG晶体的法拉第效应,法拉第的旋光性与入射光的方向无关,仅允许一个方向的光通过。TGG优点(优于铽掺杂的玻璃)* TGG的费尔德常数是铽掺杂玻璃的两倍* TGG的热导率比铽掺杂玻璃高一个量级* TGG的光学损耗低于铽掺杂玻璃基于以上优点,TGG适用于高平均功率激光的应用,高功率激光主要的限制因素是热效应导致的光畸变。在相同功率下,TGG晶体的光畸变低于铽掺杂玻璃 TGG晶体与铽掺杂玻璃在1064nm处的对比TGGTb-Glass费尔德常数,V1064nm632nm-40-134-20-70RadT-1m-1RadT-1m-1 吸收系数,a0.0015 0.003 cm-1热导率7.4 0.7Wm-1K-1折射率,n1.95 --非线性折射率,n28.0 2.4510-13esu品质因子,V/a27 7-品质因子,V/n58- 棒的标准规格,材料参数晶体Terbium Gallium Garnet (Tb3Ga5O12 )朝向[111] within 5 degrees透过波前畸变@632nm大晶体棒:直径3mm或长度25.4mm小晶体棒:直径3mm或长度25.4mm1/8 wave / inch1/8 wave total消光比25 dB minimum尺寸公差直径公差+.000”/-.002”长度公差+0.010”/-0.010”滚光55±5 μinch (RMS)倒角0.005” ± 0.003”@45°±5° 端面反射率 0.25% @ 1064 nm附着力和耐用性Meets MIL-C-48497A Standards脉冲损伤阈值10J/cm2
    留言咨询
  • 产品总览得益于高 RE 溶解度(高达 100 000 ppm)和低声子能量,我们的氟化物光纤可提供数十种活性转变,从而实现从可见光到中红外的广泛应用。 我们拥有大量掺杂 ZFG 或 IFG RE 的双包层光纤。它们中的大多数在优秀包层上呈现双 D 形,以改善泵浦吸收。 掺杂剂 Er、Ho、Dy、Tm... 共掺杂 Pr/Yb, Tm/Yb....Le Verre Fluore 掺铒双包层单模光纤 波段3.55um 5.6W,Le Verre Fluore 掺铒双包层单模光纤 波段3.55um 5.6W通用参数掺杂元素摩尔含量(ppm)纤芯直径/包层直径*(um)截止波长(um)应用(经实验室研究测得)Erbium70,00015/240*260/290 µ m (可选择保偏光纤)2.5 µ m41 W CW laser at 2.94 µ mErbium10,00016.5/240*260/290 µ m2.7 µ m5.6 W CW at 3.55 µ mHolmium100,00016/90*100/155 µ m4.2 µ m200 mW CW at 3.92 µ mPraseodymium Ytterbium3,00020,0005/125/200 µ m1.3 µ mVisible emissionat 491, 520, 535 and 620 nm(*) 纤芯直径/优秀包层直径*D形直径/第二包层直径(**)无掺杂双包层光纤是为产生高功率激光而设计的。双包层将使您能够将泵浦注入优秀包层,而不是掺杂光纤的纤芯,从而将泵浦吸收分布在光纤的前几米。 公司简介筱晓(上海)光子技术有限公司成立于2014年,是一家被上海市评为高新技术企业和拥有上海市专精特新企业称号的专业光学服务公司,业务涵盖设备代理以及项目合作研发,公司位于大虹桥商务板块,拥有接近2000m² 的办公区域,建有500平先进的AOL(Advanced Optical Labs)光学实验室,为国内外客户提供专业技术支持服务。公司主要经营光学元件、激光光学测试设备、以及光学系统集成业务。十年来,依托专业、强大的技术支持,以及良好的商务支持团队,筱晓的业务范围正在逐年增长。目前业务覆盖国内外各著名高校、顶级科研机构及相关领域等诸多企事业单位。筱晓拥有一支核心的管理团队以及专业的研发实验室,奠定了我们在设备的拓展应用及自主研发领域坚实的基础。主要经营激光器/光源半导体激光器(DFB激光器、SLD激光器、量子级联激光器、FP激光器、VCSEL激光器)气体激光器(HENE激光器、氩离子激光器、氦镉激光器)光纤激光器(连续激光器、超短脉冲激光器)光学元件光纤光栅滤波器、光纤放大器、光学晶体、光纤隔离器/环形器、脉冲驱动板、光纤耦合器、气体吸收池、光纤准直器、光接收组件、激光控制驱动器等各种无源器件激光分析设备高精度光谱分析仪、自相关仪、偏振分析仪,激光波长计、红外相机、光束质量分析仪、红外观察镜等光纤处理设备光纤拉锥机、裸光纤研磨机 。
    留言咨询
  • 扫描电容显微镜(SCM)是一种表征材料纳米电学性质的原子力显微镜(AFM)成像技术,它使用微波射频(RF)信号来探测半导体和其它种类样品中的电荷,载流子的位置,掺杂水平和掺杂类型(p型和n型)等。全新快速扫描电容显微镜 SCM可以在牛津仪器的 Asylum Research 的快速扫描 Cypher 和 Jupiter XR AFM 平台上使用。牛津仪器Asylum Research SCM模式的独特之处在于,它不仅可以测量微分电容(dC/dV),还可以测量分辨率低至1aF的电容,而且是可以直接测量电容。与传统的SCM相比,它具有更高的分辨率和更快的扫描速度。更高的灵敏度允许探测金属和绝缘体,以及传统半导体器件以外的非线性材料——包括那些不形成自然氧化物层的材料。图1 静态随机存储 (SRAM) 样品。所有通道同时获得了29μm扫描区域:a:形貌;b:dC/dV振幅(与掺杂浓度成反比);c:dC/dV相位(蓝色表示p型掺杂,红色表示n型掺杂);d:电容(与掺杂浓度有线性关系);电容,而不仅仅是dC/dV传统的SCM模式只能提供微分电容(dC/dV)数据,这大大限制了用户从测量数据中得出的结论。牛津仪器Asylum Research全新设计的SCM模式具有独特的能力,可以提供dC/dV和电容数据,因此可以获得更完整的材料表征。电容通道对掺杂水平提供线性响应,并检测电容的变化,分辨率可达1 aF。全新的SCM模式是一个强大的工具,可以用于材料的纳米电子特性描述。更快的成像牛津仪器Asylum Research全新的高带宽SCM电路允许以高达26 Hz的扫描频率采集高质量的dC/dV和电容数据。传统的SCM模式的带宽要低得多,并且在扫描速率为1 Hz时数据质量明显退化。全新的SCM模式在高达26Hz的扫描频率下几乎没有信息丢失。这种更快的成像改进了用户体验并大大提高了工作效率。不同扫描速度比较的SRAM样品。微分电容(dC/dV)振幅图像给出了相同的5μm区域内扫描率从1 Hz到26 Hz的结果。以最快的速度数据质量几乎保持不变,但是图像只需要1秒就可以获得,而传统的SCM需要5-10分钟。图2 微分电容(dC/dV)振幅图像更高的分辨率牛津仪器Asylum Research全新设计的SCM模式显示出更高的灵敏度,因此可以获得更高的分辨率的图像。以前被认为使用SCM模式由于信号弱难以图像的样品,现在可以常规地获得图像。右侧图中,采用全新的SCM模式对单壁碳纳米管(CNT)进行成像,横向分辨率约为25 nm。图3 绝缘基板上碳纳米管的电容数据与3D形貌叠加图样品是绝缘基板上的碳纳米管。电容数据叠加在3D形貌图上。图像范围2 μm。样品由Harvard Center for Nanoscale Systems的 B.Wilson和J.Tresback提供。二维材料研究SCM在表征二维材料独特物理和电子特性有着广泛的应用前景。右边的图像是沉积在硅上的CulnS,电容信号与剥离材料厚度的具有很高的相关性,因此利用SCM模式分辨二维材料层厚度具有良好的潜力。图4 CulnS沉积在硅上的电容数据和3D形貌叠加图样品CulnS沉积在硅上,电容数据叠加在在3D形貌图上,扫描范围20μm,样品由Northwestern的University M. Cheng和V. Dravid教授提供。电池材料研究能量存储是SCM可以提供重要信息的另一个研究领域。右图中给出了一个电池的测试电极,在电容通道中可以观察到明显的对比。单个晶粒和晶界处的电容信号的变化为了解电子传导提供了依据。这些数据可以与导电AFM和电学应变显微镜相关联,以进一步了解结构和功能特性。图5 测试电池的电极,扫描范围30μm。a:形貌图;b:电容图;技术指标
    留言咨询
  • 日本理学Rigaku 顺序型波长色散X射线荧光光谱仪ZSX Primus 400产品描述Rigaku 独特的 ZSX Primus 400 连续波长色散 X 射线荧光 (WDXRF) 光谱仪专为处理非常大或重的样品而设计。该系统可接受直径最大为 400 毫米、厚度为 50 毫米和质量为 30 千克的样品,非常适合分析溅射靶材、磁盘,或用于多层薄膜计量或大型样品的元素分析。优点带有定制样品适配器系统的 XRF,适应特定样品分析需求的多功能性,可使用可选适配器插件适应各种样品尺寸和形状。凭借可变测量点(直径 30 毫米至 0.5 毫米,具有 5 步自动选择)和具有多点测量的映射功能以检查样品均匀性。具有可用相机和特殊照明的 XRF,可选的实时摄像头允许在软件中查看分析区域。仍保留了传统仪器的所有分析能力。应用领域固体、液体、粉末、合金和薄膜的元素分析:溅射靶材组成.隔离膜:SiO2、BPSG、PSG、AsSG、Si₃ N₄ 、SiOF、SiON等。高 k 和铁电介质薄膜:PZT、BST、SBT、Ta2O5、HfSiOx金属薄膜:Al-Cu-Si、W、TiW、Co、TiN、TaN、Ta-Al、Ir、Pt、Ru、Au、Ni等。电极膜:掺杂多晶硅(掺杂剂:B、N、O、P、As)、非晶硅、WSix、Pt等。其他掺杂薄膜(As、P)、困惰性气体(Ne、Ar、Kr等)、C(DLC)铁电薄膜、FRAM、MRAM、GMR、TMR;PCM、GST、GeTe焊料凸点成分:SnAg、SnAgCuNi MEMS:ZnO、AlN、PZT的厚度和成分SAW器件工艺:AlN、ZnO、ZnS、SiO 2(压电薄膜)的厚度和成分;Al、AlCu、AlSc、AlTi(电极膜)■ 技术参数大样本分析:最大 400 毫米(直径),最大 50 毫米(厚度),高达 30 千克(质量)样品适配器系统,适用于各种样本量测量点:30 毫米至 0.5 毫米直径,5步自动选择映射能力,允许多点测量样品视图相机(可选)分析范围:Be - U元素范围:ppm 至 %厚度范围:sub &angst 至 mm衍射干扰抑制(可选):单晶衬底的准确结果符合行业标准:SEMI、CE标志占地面积小,以前型号的 50% 占地面积
    留言咨询
  • 氮化镓晶片生产厂家苏州恒迈瑞材料科技有限公司生产销售2英寸及4英寸蓝宝石氮化镓衬底片,衬底结构GaN-On-Sapphire。GaN氮化镓外延厚度有4.5um和20um两种。2英寸蓝宝石衬底厚度为430um,4英寸蓝宝石衬底厚度为650um。掺杂类型分为N型非掺杂,N型硅掺杂及镁掺杂。蓝宝石氮化镓晶片包装方式为单个晶圆盒或Cassette盒。蓝宝石氮化镓衬底晶片尺寸:2 inch 50.8mm±1mm蓝宝石衬底厚度:430um衬底结构:GaN-On-Sapphire掺杂类型:N型非掺杂/N型硅掺杂/P型镁掺杂氮化镓外延厚度:4.5um±0.5um/ 20um±2um晶向:C-plane(0001)A Axis 0.2±0.1°位错密度:≤5x108cm-2包装方式:晶圆盒或Cassette盒抛光要求:单抛/双抛氮化镓,分子式GaN,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,属于极稳定的化合物,自1990年起常用在发光二极管中。它的坚硬性好,还是高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。
    留言咨询
  • 量子和纳米级材料工程的先进平台Q-One&trade 是最先进的聚焦离子束平台,用于先进的器件制造和纳米级材料工程。Q-One具有确定性单离子注入功能,是世界上第一台专门为满足量子研究的苛刻要求而设计的仪器。主要特点:高分辨率质量过滤聚焦离子束确定性单离子检测,检测效率高达98%可选择液态金属或等离子离子源一流的离子选择和广泛的植入物种类飞安级光束电流,可实现精确的单离子事件纳米级精密载物台,可处理高达 6 英寸的晶圆专有的注入和光刻软件确定性植入确定性单离子注入意味着以令人难以置信的精度将单个离子放入底物中,并知道已经发生了注入。Q-One使用超灵敏植入后检测系统技术来检测每次离子撞击时产生的信号。种类繁多Q-One提供广泛的植入元件。液态金属离子源(LMIS)技术在单个源中产生不同元素的多个离子,包括团簇和多电荷物种。有几种合金成分可供选择,包括硅、铒、钕、金和铋。利用我们多年的专业知识,我们确保每个源头都以最佳方式流动,以实现最大的稳定性。单独的等离子体离子源也可用于氢、氮、氧和其他气态元素。应用量子技术嵌入半导体矩阵中的单个杂质原子作为量子比特(量子比特)显示出巨大的前景。单离子注入能够产生大量相同的量子比特阵列,是可重复制造这些和其他量子器件的关键途径。然而,公差是极端的——每个原子必须非常精确地放置,有时距离其邻居只有20纳米。Q-One是唯一针对此应用而设计的工具,其规格针对这些极端要求。应用掺杂纳米材料Q-One不仅限于注入单个离子。将任何所需的离子剂量植入任何位置,甚至可以使用专有软件植入自定义区域或形状。掺杂纳米材料,如纳米线或具有不同元素的量子点,可以改变其性质。Q-One通过允许您靶向单个纳米材料并使用各种掺杂剂探索不同的行为,开辟了一个充满可能性的世界。应用离子光刻Q-One允许用户执行直接写入光刻,就像普通FIB一样,但种类范围更广,离子剂量控制更好。使用铋等重元素进行高效溅射,或使用氢等轻元素进行基于光刻胶的离子光刻,甚至包括单离子事件。如果没有检测每个注入事件的方法,就不可能精确地注入单个离子。系统提供速度和可扩展性,不需要复杂的预制。因此,您可以不受阻碍地选择植入物种类和目标材料。
    留言咨询
  • 晶片,硅片,晶圆 400-860-5168转4527
    4英寸氮化镓厚膜晶片尺寸: φ100±0.1mm厚度: 4μm、20μm电阻率(300K): N型(非掺杂)<0.5Ωcm2英寸氮化镓厚膜晶片尺寸: φ50.8±0.1mm厚度: 4μm、20μm电阻率(300K): N型(非掺杂)<0.5Ωcm2英寸氮化铝厚膜晶片尺寸: φ50.8±0.1mm厚度: 4±1.5μm导电类型:Semi-Insulating2英寸氮化镓自支撑晶片尺寸: φ50.8±1mm厚度: 350±25μm电阻率(300K): N型(非掺杂)<0.1Ωcm10×10.5mm2氮化镓自支撑晶片尺寸: 10.0×10.5mm2厚度: 350±25μm电阻率(300K): N型(非掺杂)<0.1Ωcm非极性/半极性氮化镓自支撑晶片尺寸: (5.0~10.0)×10.0/20.0mm2厚度: 350±25μm电阻率(300K): N型(非掺杂)<0.1Ωcm
    留言咨询
  • ScopeX PG7质检机构/工厂测金仪是浪声科学针对贵金属领域推出的一款旗舰X射线荧光光谱仪,仪器采用一体化设计,内置工控电脑,配备超大样品舱、X-Y平台,适用于各种各样形态的物品。软件用户界面友好,操作简便,使得非专业人员也能轻松进行日常检测,可快速识别贵金属含量以及鉴别镀金掺杂、元素掺杂和包覆掺杂等样品的真伪。ScopeX PG7具有检测速度快,测试稳定性好、准确性高,适用范围广等特点,是珠宝首饰工厂、金银纯度标记中心、黄金精炼厂、冶炼厂和测试实验室、质检机构的理想工具。使用优势无损检测无需对样品做前期处理,简单、方便、快捷地实现贵重金属的无损检测。精准快速几秒到几分钟即可获得稳定结果,贵金属成分快速鉴定,为回收黄金兑现定价交易。高精度检测XRF技术提供可靠的纯度和成分数据,精度可达0.01%(999金)。完善的安全防护多种安全防护装置:高压安全锁(自动联锁)、软件开盖、防泄漏保护开关以及全金属封闭机箱,从根本上保证操作人员人身安全,避免意外操作带来的辐射伤害。高精度手调X-Y平台搭载高精度手调X-Y平台,为仪器提供了更高的灵活性、精确性,使得测量过程更加高效和准确。配备蓝牙打印机仪器配备蓝牙打印机,实现无线打印功能,用户无需物理连接,仅需点击“打印报告”即可迅速获得报告和数据。售后服务7*24小时客服热线,快速响应客户需求、提供快速、专业客户服务,确保客户无忧体验,持续优化产品与服务。样品灵活性可轻松测量各种形态的样品,以及样品上的细小部件,例如连接件、扣子、镶嵌物和宝石托等。应用场景首饰厂来料、回收料等原材料检验首饰厂生产过程控制首饰厂质量控制/成品检验金银贵金属检测机构/检测中心规格参数仪器构型台式仪器重量尺寸41KG尺寸330×580×360mm(W×D×H) 样品仓尺寸320×480×130mm(W×D×H)检测范围Al(铝)—U(铀)语言中文、英语等多国语言探测器SDD探测器光路结构垂直光路光管窗口玻璃窗准直器仪器配置1.5mm准直器,不仅有助于减少背景噪声,还有助于提高分辨率和测量精度。 精度±0.01%(999金)内置电脑包含电脑参数I5四核+win11数据打印蓝牙打印机算法ScopeX PG7融合了校正曲线法、基本参数法(FP法)等XRF分析方法,消除背景差异,减少分析误差,提高检测精准度! 一键测试按钮“放置样品—关闭上盖—一键测试—查看结果”,操作简单,非技术人员也可自行检测。XY 平台X-Y平台能够适应不同大小和形状的样品,提供了更大的灵活性,使得测量过程更加高效和准确。摄像头内置500万像素的高分辨率CMOS彩色摄像头,不仅可以帮助为用户提供了直观的样品定位和图像记录功能,还确保X射线准确照射到目标区域,同时提升了操作的准确性。电源AC 220V±5V 50Hz(各地区配置稍有不同)
    留言咨询
  • Er:YAG 激光晶体 400-860-5168转2255
    SYNOPTICS公司可以完全自主实现集晶体生长、加工、镀膜、检测、包装于一体的一站式服务。作为ISO 9001:2008证书获得企业,SYNOPTICS着重于该公司在晶体生长、制造和检测方面的支持,以确保达到超高的质量标准。 主要特点:* 波长覆盖广: 500nm-3000nm * 晶体尺寸大 * 镀膜阈值高* 均匀性好 应用领域:* 医疗* 工业* 军事* 科研激光市场Er:YAG晶体 Er:YAG在600-800nm光谱范围均可被泵浦,广泛应用于医疗和牙科。Er:YAG优点:* 宽的泵浦带600-899nm;* 高的光学质量;* 可以输出长波,高的水吸收区;* 理想的硬组织切除工具 标准规格 材料参数基质Yttrium Aluminum Garnet(Y3Al5O12 )掺杂Erbium (Er -3)掺杂浓度50 Atomic % (~7x10 cm-3 )朝向[111] crystallographic directions(±5°)波前畸变1/2 wave per inch of length, as measured in a double pass interferometer operating @ 1micron尺寸/机械规格直径公差+.000”/-.002”长度公差+.040”/-.000”滚光55 ±5 micro-inch倒角0.005”±0.003”@ 45°±5° 端面标准规格面型Within λ/10 wave @ 633 nm wavelength平行度Within 30 seconds of arc垂直度Within 5 minutes of arc光洁度Scratch-dig 10-5 per MIL-O-13830A 端面减反膜规格反射率Less than 0.25% @ 2.94 microns附着力和耐用性Meets Mil-C-48497A standards脉冲损伤阈值Greater than 10 J/cm2Er:YAG特性激光能级4I11/2 -4 I13/2受激发射截面3×10-20cm2泵浦波长范围600-800nm
    留言咨询
  • 碳化硅晶片生产厂家碳化硅(SiC)是Ⅳ-Ⅳ族二元化合物, 也是元素周期表Ⅳ组元素中稳定固态化合物, 是一种重要的半导体材料。 它具有优良的热学、力学、化学和电学性质, 不仅是制作高温、高频、大功率电子器件的优质材料之一,也可以用作基于GaN的蓝色发光二极管的衬底材料。苏州恒迈瑞公司目前用于衬底的碳化硅晶片以4H为主,导电类型分为半绝缘型(非掺、掺杂)与N型。 产品类型:4H-SI碳化硅晶片掺杂:钒厚度:500um±25um尺寸:2英寸,3英寸,4英寸,6英寸晶向:on axis 0°0001±0.5° 产品类型:4H-SI碳化硅晶片掺杂:非掺杂厚度:500um±25um尺寸:2英寸,3英寸,4英寸,6英寸晶向:on axis 0°0001±0.5°
    留言咨询
  • Si+SiO2薄膜 400-860-5168转2205
    产品名称:Si+SiO2薄膜产品简介:技术参数:常规晶向:100, 111,掺杂类型:N型掺杂 或者 P型掺杂制作方法:干法或湿法薄膜厚度:常规厚度300nmSiO2 常规尺寸:dia4"x0.5mm;dia2"x0.5mm;单面氧化 或者 双面氧化可按照客户要求加工氧化层厚度:50nm~1um标准包装:1000级超净室100级超净袋单片盒或25片插盒封装
    留言咨询
  • 描述● 适于棉,人造纤维和混纺条子及原棉的测试.通过光电检测系统,NATI可以测试不同尺寸等级的棉结和杂质.● 尺寸范围: 棉结: ≥0.50mm ≥0.70mm ≥1mm杂质: ≥0.25mm ≥0.50mm● 特别设计用于快速,可靠,便于携带到生产现场进行连续测试和评估各个生产工序的棉结和杂质的数量。● NATI是目前市场上唯一能大容量测试棉条达6米,并对棉结和杂质自动测量和分级的测试仪器。● NATI是唯一不需要人工准备棉样,并能确保整个测试结果可靠的棉结测试仪器(人工操作,人员的能力差异将导致测试结果出现25-50%的偏差).● 可以快速测试大量的棉样(不到两分钟的时间可测试2g的棉条),NATI使梳棉部分的日常控制切实可行,从而获得更好的梳棉品质和更好的梳棉机维护保养计划.● 使用方便: NATI测试前不需要任何操作技巧和预先的准备.● 原棉测试: 采用原棉选择器(可选件)可在很短的时间内准备2-2.5g样品,而且不受操作者能力的影响.● NATI装有一个加大纤维废品回收箱,用于大量回收测试样品(特别适用于棉结含量低的精梳棉和人造棉条)● NATI采用的是无刷电机(免维护),确保在几千小时测试后性能不变.NATI棉结、杂质测试仪● 可以选配打印机或电脑(订购时注明)。选项B174N开棉辊: 适用棉花,订货号 3280 168S43N 开棉辊: 适用化纤,订货号 3280 169打印机220V,订货号 3280A.136原棉选择器,订货号 3282走车,订货号 3280.900*一个开棉辊已经包含在仪器中其他● 电源规格:115Vac 或220Vac, 50Hz或60 Hz,单相● 净重: 35kg 尺寸: (L)400×(W)350×(H)640mm
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制