当前位置: 仪器信息网 > 行业主题 > >

胱氨苄酯

仪器信息网胱氨苄酯专题为您提供2024年最新胱氨苄酯价格报价、厂家品牌的相关信息, 包括胱氨苄酯参数、型号等,不管是国产,还是进口品牌的胱氨苄酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胱氨苄酯相关的耗材配件、试剂标物,还有胱氨苄酯相关的最新资讯、资料,以及胱氨苄酯相关的解决方案。

胱氨苄酯相关的资讯

  • 利用高频光腔衰荡光谱技术同步观测北京和上海大气氨浓度
    氨气是形成二次气溶胶的重要前体物,也是城市大气环境治理的关键物种。中国科学院大气物理研究所组织实施的全国大气氨观测研究网络(AMoN-China)通过被动离线采样发现,城市已成为大气氨排放热点区域。然而,被动采样周期较长(周-月),难以捕捉大气氨浓度在日尺度上的快速变化。同时,以往研究常观察到大气氨浓度在早上5:00-12:00快速增加,这一早高峰现象是否具有普遍性亟待更多高频观测站点资料的验证。鉴于此,中国科学院大气物理研究所研究员潘月鹏课题组与华东师范大学教授吴电明团队合作,基于高频光腔衰荡光谱技术在北京和上海两个超大城市开展了大气氨浓度同步观测实验(测量频率1Hz,精度0.03ppb,图1)。这两个城市位于华北平原氨排放热点区域的南北边缘,是研究区域传输和局地排放对大气氨浓度叠加影响的理想站点。图1. 基于光腔衰荡光谱法测量北京和上海的大气氨浓度2020年5月观测结果发现,北京大气氨平均浓度(23.1±10.3 ppb)接近上海(12.0±5.0 ppb)的两倍,与卫星观测的氨气柱浓度和自下而上统计的氨气排放量的空间分布一致。研究还发现两个城市同时存在氨气早高峰现象,其发生频率大于50%,机动车排放是导致氨气浓度早高峰形成的主要原因。早晨边界层打破后,随着对流发展,富含氨气的残留层向下传输也对早高峰有一定贡献。上述结果促进了我们对城市大气氨浓度动态变化特征及背后驱动因素的科学认识,其高频观测数据可用于提升大气化学传输模型的模拟精度,有助于评估大气氨污染的生态环境效应并为氨减排策略的制定提供参考。该研究成果发表于Atmospheric Environment (JCR一区,IF=5.755)。中国科学院大气物理研究所2019级硕博连读生孙倩为该论文第一作者,潘月鹏研究员和华东师范大学吴电明教授为共同通讯作者。该研究受到北京市自然科学基金(8232050),国家自然科学基金(42077204)和大气边界层物理和大气化学国家重点实验室开放基金(LAPC-KF-2022-09)的共同资助。
  • 岛津水产品中三甲氧苄氨嘧啶残留的LCMSMS检测方案
    三甲氧苄氨嘧啶(TMP),是一种磺胺增效剂。常与多种抗生素合用,也可产生协同作用,增强疗效,可以成倍增加部分抗菌药的疗效。抗菌谱与磺胺药基本类似,但抗菌作用弱,且易产生耐药性。和磺胺类、四环素、青霉素、红霉素、庆大霉素、粘菌素等合用可以增强抗菌作用。 目前我国对磺胺类及其增效剂的使用有比较明确的规定。农业部NY 5034 - 2005中规定禽肉类产品中磺胺类总量不得超过100 &mu g/kg NY5070 - 2002 中规定磺胺类在水产品中总量不得超过100 &mu g/kg, 增效剂磺胺三甲氧苄氨嘧啶限量不得超过50 &mu g/kg 。日本肯定列表中将动物源性食品的最低限量定为20 &mu g/kg。《SN/T 2538-2010进出口动物源性食品中二甲氧苄氨嘧啶,三甲氧苄氨嘧啶和二甲氧甲基苄氨嘧啶残留量的检测方法液相色谱质谱/质谱法》规定,三甲氧苄氨嘧啶的检测低限为5.0 &mu g/kg。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用快速测定水产品中三甲氧苄氨嘧啶的方法,供检测人员参考。水产品经处理后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8040进行分析。三甲氧苄氨嘧啶在0.1-100 µ g/L浓度范围内线性良好,标准曲线的相关系数为0.9993;对1 µ g/L、5 µ g/L和10 µ g/L三甲氧苄氨嘧啶标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.31%和3.95%以下,系统精密度良好。 岛津三重四极杆质谱仪系列 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中的三甲氧苄氨嘧啶残留》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 【激光氨气分析】AE: 华北农区秋冬季地气氨交换规律
    原文:中国科学院大气物理研究所 题注:宁波海尔欣光电科技有限公司和中科院大气物理研究所和深入合作,研发了一款便携式、高精度、快响应的HT8700开路多通池激光氨分析仪,并以HT8700为核心部件,集成开发了一套基于大气湍流方法(涡动相关法)的氨通量观测系统,这是目前测量地气氨交换通量的理想方法。 本文介绍了一个发表在Atmospheric Environment的研究工作。该项目采用了HT8700和涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据。============================================================================== 华北是我国氨的热点区域,大气中的氨含量高,空间覆盖范围广,这与区域内高强度的农业活动密切相关,如农业施肥、畜牧养殖等。高浓度的大气氨和由此引发的过量活性氮沉降,会导致重霾污染天气,也深刻改变了氮素的生物地球化学循环。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。 相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 鉴于此,中国科学院大气物理研究所联合中国农业大学、中国科学院亚热带农业生态研究所等单位,采用自主研制的开路激光氨分析仪(Wang et al.,2021)和基于大气湍流理论的涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,研究站点位于河北省曲周县,该地区的氨排放和沉降问题尤为突出。 研究团队成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据,并估算出由此损失的氮占氮肥施用量的0.57-0.71%,该结果远远低于同类观测研究的估算结果,这在很大程度上归因于优化后的施肥管理措施,为评估农业氨减排途径的有效性提供了观测证据。得益于观测设备在测量精度和频率上的优良性能,研究团队还首次获得农区高时间分辨率(半小时)的氨干沉降通量数据集,监测到平均沉降速率为14 g N ha-1 d-1,并发现迥然不同于自然生态系统的干沉降日变化规律。未来,利用该自主仪器及方法开展长期定位观测,可为氨干沉降通量的联网观测研究提供有效的验证数据,有助于提升对氨沉降时空变化规律的认识。 图1 基于自主研制仪器的氨湍流通量观测系统 图2 华北典型农区秋冬季氨浓度和氨通量半小时平均观测值(子图b和c中的通量值与子图a相同,纵轴坐标数值范围不同) 图3 华北典型农区秋冬季氨浓度和氨干沉降通量日变化趋势 上述研究成果近期发表于Atmospheric Environment,论文一作为大气物理研究所王凯博士和中国农业大学王敬霞研究生,通讯作者为中国农业大学刘学军教授。研究得到国家大气重污染成因与治理攻关项目(DQGG0208)、国家重点研发计划项目(2018YFC0213301、2017YFD0200101)、国家自然科学基金(41975169、42175137)等项目的资助。 相关文献:1. Wang K., Wang J., Qu Z., Xu W., Wang K., Zhang H., Shen J., Kang P., Zhen X., Wang Y., Zheng X., Liu X., 2022. A significant diurnal pattern of ammonia dry deposition to a cropland is detected by an open-path quantum cascade laser-based eddy covariance instrument. Atmospheric Environment 278, 119070. 2. Wang K., Kang P., Lu Y., Zheng X., Liu M., Lin T., Butterbach-Bahl K., Wang Y., 2021. An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology 308–309: 108570.
  • 智云达研发的新产品——豆芽氨氮速测盒上市啦!
    豆芽作为芽苗菜中的一种,由于营养价值丰富,食用方便,烹调方法多样,集美容药用功效于一身,一直颇受广大消费者的亲睐。但是近来市场上频频曝光的“毒豆芽”事件,一度让消费者闻豆芽而色变。一些不法商贩在豆芽培育过程中违规使用铵盐、氨水类化肥,从而使得豆芽中含有大量的氨氮。北京智云达科技有限公司最新研发生产的豆芽氨氮速测盒上市了,本试剂盒适用于豆芽中氨氮的快速检测。 市场上销售的那些越是看似白净、粗壮且无根的豆芽越可能存安全隐患。一般正常培育豆芽要2-3天的时间,这样生产的豆芽一是浪费人力、物力和时间,同时自然生长的豆芽卖相不美观。铵盐、氨水类化肥含有大量的氨氮,作为化肥能促进植物生长,一些不法商贩为了加快豆芽生长,让豆芽卖相好看,为了一己私利违禁添加铵盐、氮水类化肥。 此试剂盒适合豆芽中氨氮测定,小包装方便携带,适合家庭、个人使用,且操作步骤简便,结果易于分辨。将显色管与色阶卡进行比较,即可读出豆芽中氨氮的含量。如果样品中氨氮含量≥50mg/kg,则样品为阳性样品,说明豆芽培育过程中使用了铵盐类化肥。 这些氨氮类物质在人体堆积对人体健康有潜在影响。氨氮可以在一定条件下转化成亚硝酸盐,亚硝酸盐对人体的危害大家早已心知肚明,如果长期饮用,亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。 北京智云达科技有限公司作为食品安全检测专家,为解决百姓身边的食品安全问题义不容辞。公司多年来已研发生产出200余种食品安全快速检测产品,包括仪器、试剂盒、试纸、胶体金卡等。为了百姓能吃上放心的食品,北京智云达科技有限公司接下来还会不断推出更便捷、更快速、更安全快速的食品安全检测产品! 豆芽氨氮速测盒
  • 应用案例 | HT8700大气氨激光开路分析仪用以测量广州塔附近大气氨通量
    项目内容:中国科学院广州地球化学研究所测量广州塔附近的大气氨通量,并进行实验比对项目时间:2023年9月项目地点:广州塔仪器安装项目意义&bull 空气质量监测:氨是一种有害气体,常常与空气污染和城市环境质量相关。通过在广州塔上安装氨激光开路分析仪,可以实时监测城市空气中的氨浓度,有助于评估空气质量,并提供数据支持,以采取必要的措施来改善空气质量。&bull 健康保护:氨的高浓度对人类健康有害,可能导致呼吸问题和其他健康问题。通过监测氨浓度,可以提前发现潜在的危险,采取措施来保护城市居民的健康。&bull 环境保护:氨还可以对周围的生态系统产生不利影响,对水体和土壤造成污染。通过监测氨的浓度,可以采取措施来减少氨的排放,降低对环境的不良影响。&bull 科学研究:广州塔上的氨监测数据可以用于科学研究,例如气象学、环境科学和大气化学。这些数据有助于研究氨在城市大气中的来源、传播和化学反应,从而更好地理解城市大气环境。&bull 污染源追踪:氨的监测可以帮助确定城市内潜在的氨排放源,这有助于政府和监管机构采取措施来减少污染源并加强环境管理。知识分享:通量塔的选址和建设原则在生态学、气象学和环境科学等领域,通量塔是一种用于测量大气层中气体和能量交换的设备。这些通量塔用于监测大气和地表之间的物质通量,例如水蒸气、二氧化碳、热量等,以了解生态系统和大气中的不同过程。通量塔通常包括一系列仪器和传感器,用于采集大气和地表参数的数据。选址和建设原则:&bull 代表性地点:通量塔的选址应考虑到它们所监测的生态系统或气象过程的代表性。选择代表性地点可以确保测量结果对于整个区域或生态系统有意义。&bull 最小扰动:通量塔的建设应尽量减少对周围环境的扰动。这包括减少人工结构对生态系统或气象过程的影响,以确保测量的准确性。&bull 高度选择:通量塔通常会建立在不同的高度,以测量气体和能量通量在大气中的垂直分布。选择适当的高度可以提供更全面的数据。&bull 安全考虑:通量塔的建设和维护应符合安全标准,以确保工作人员和环境的安全。通量塔在环境科学研究中起着重要作用,帮助科学家了解大气和生态系统之间的相互作用,以及气体和能量的交换过程。选择合适的位置和正确的建设原则对于获得准确和可靠的数据非常关键。
  • 如何辨认真假氨氮电极,选对氨氮测定仪
    针对市场上出现的假氨氮电极,厦门隆力德环境技术开发有限公司多年来作为德国WTW中国技术服务中心,为了消费者免受欺骗,总结出真假氨氮电极的不同,教您如何选对氨氮测定仪。 1. 表面材质及序列号做工的不同。 真电极表面光滑,假电极手感及做工都很粗糙; 真电极系列号是激光刻印的,有轻微凹痕,假电极序列号是机械刻的,凹痕较深且不清晰。 2. LOGO及型号的不同 真电极LOGO及文字清晰,且排版大气,由于电极表面光滑和材质较好,印刷文字可以用指甲划掉;假电极LOGO及型号模糊,型号字体小,电极表面粗糙,印刷文字难以用指甲划掉。 3. 电极感测部对比 假电极玻璃感测头较短,气敏膜安装后,电极玻璃顶面无法接触到气敏膜,造成测试重复性非常差; 真电极玻璃感测头采用特殊铵敏玻璃,透明度很好,工作电极镀层薄且厚度均匀,参考电极镀层均匀,不易脱落; 假电极玻璃感测头采用普通玻璃,透明度差,工作电极镀层厚且厚度不一,参考电极镀层厚度不一,容易脱落。制造工艺落后导致电极寿命很短,且寿命期内测试重复性很差,经常出现校准无法通过。 4. 整体外观的对比 假电极整体制造工艺粗糙。 5. 其他类型假电极 白色电极杆 更多氨氮资料详见我司网站 http://www.xmlld.com/support.html
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 海尔欣发布高精度大气氨本底激光开路分析仪新品
    开路气体分析技术:不同于常见的抽取式采样+闭路气体池技术,开路气体分析技术对浓度变化的响应时间可达0.1秒,不存在采样和预处理通道管壁对分子的吸附和滞后现象。低功耗、部署范围广:无需采样泵降低了整机功耗和质量,方便携带,结合太阳能电池板,有利于在无供电电网地区部署,提高了用户选择研究地点的自由度。波长调制技术:采用预设的程序,在目标气体的吸收范围内选取波长进行扫描式复合测量,以此获得更佳的峰型(用于光谱积分反演),排除非目标气体的干扰。信号噪音屏蔽:优化的模拟电子技术,极低噪声激光电流源,探测器前放,结合锁相放大数字信号处理算法,避免了自然环境中的电磁干扰,以及光电子噪声的影响,以此获得更准确的测量结果。中心波长控制器:通过参考光路以及自动反馈将激光器中心波长锁定在特征吸收谱中心,确保获得更准确的特征波谱。稳定的温度控制:通过被动散热和半导体制冷,保证激光器温度的精准控制。在外界不断变化的温度条件下获得更准确的测量结果。稳定的环境气压和温度测量补偿:对环境温度和压力实时精准测量,结合内置的温度和压力补偿算法,确保在环境条件不断变化下获得更准确的测量结果。冬季/夏季两种工作模式:冬季,夏季模式可根据环境温度进行切换,拓展仪器工作温度范围,提高测量准确度。创新点:海尔欣公司自主研发的大气氨激光开路分析仪采用红外激光吸收光谱技术(LDIR),结合开路式多次反射气体池,使得测量有效光程达数十米,实现了对大气氨分子进行10Hz,亚ppb精度的高速测量,该大气氨开路分析仪采用车辆移动平台搭载的形式,形成一整套车载巡检系统。 1、避开了传统的闭路氨分析仪器由于采样管路的传输时间和吸附效应,响应速度很慢的缺点,创新性的采用开路测量方案,无需采样,响应速度非常快,由高浓度恢复至零点时间小于1秒,尤其适合车载平台高速运动中收集到瞬时浓度变化,避免漏检氨排放源; 2、开路分析仪无需采样泵,依靠大气的自然流动经过光路分析,大大降低了整机功耗(50W)和质量(5kg),因此可使用小型车载电源或电池供电,适合多种巡检车型。海尔欣的分析仪甚至结合太阳能电池板可在无电网覆盖区域部署,提高了用户选择测量点的自由度。
  • 文章推荐 | 量子级联激光开路分析仪检测农田氨干沉降的日变化
    氨(NH3)是大气中最重要的碱性气体。农业活动,特别是施用合成肥料后的氨挥发,是人为氨排放的主要来源之一,也是农田养分流失的重要途径。这些氮(N)负荷有利于生态系统作为初级生产的营养投入,但也会导致许多环境和公共卫生问题,如生物多样性丧失、富营养化和雾霾污染。因此,特别是在农业地区,准确定量氨挥发和沉积通量对于了解地方和区域氮预算至关重要。然而,氨通量的现场测量仍然存在巨大的不确定性和挑战。 到目前为止,涡流协方差(EC)技术,基于同时测量地面上的湍流空气运动和气体浓度,是测量生态系统和大气之间的能量和质量交换的最直接的方法。对于氨通量测量,EC比其他方法有优势,因为它可以直接量化氨发射和沉积通量,并产生代表场尺度上空间平均的时间连续数据。然而,在过去,由于缺乏快速响应(≥10Hz)和高灵敏度的氨分析仪,特别是那些可以由现场太阳能电池驱动的分析仪,EC的应用受到了严重的限制。海尔欣昕甬智测推出一种采用量子级联激光吸收光谱技术的HT8700大气氨激光开路分析仪。根据实验室和现场测试,该仪器已被证明是在各种环境条件下测量氨通量的有效工具。 HT8700大气氨激光开路分析仪开创性的开路设计用于氨气测量基于量子级联激光技术,自主研发、设计、生产了的开路分析仪,具有低功耗(太阳能供电)、高精度(亚ppbv级)、快响应(10Hz)等特点,特别适合于地面氨排放和大气氨沉降通量的涡动相关法高频自动连续监测。 本研究采用HT8700大气氨激光开路分析仪,在全球氨热点地区之一华北平原的一个典型农业站点进行了氨通量测量。该实验时间持续了5周,并在小麦季节进行。本研究的主要目的是调查该农业基地秋季氨通量的特征,并量化氨对农田的干沉积和氨挥发造成的氮损失。
  • 脱硝氨逃逸监测系统研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 脱硝氨逃逸监测系统 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 北京华科仪科技科技股份有限公司 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 李丹 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " Lidan@huakeyi.com /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 & nbsp & nbsp □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □技术转让 & nbsp & nbsp □技术入股 □合作开发& nbsp & nbsp √其他(自主研发) /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align: center " img style=" width: 350px height: 299px " title=" 北京华科仪-科学仪器研发成果征集图片.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/23de24d4-fe7e-4254-b759-9b454650e179.jpg" width=" 350" height=" 299" / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 目前,国内各大电厂的脱销设备都已经在运行之中,但据我们的市场调研,目前国内市场上所使用的逃逸氨的监测仪表,90%以上都是进口产品,这些产品都是采用激光吸收光谱原理来测量的。实际的运行情况来看,几乎没有能够准确测量的产品,监测下限无法满足用户需求,主要原因就是粉尘干扰,光程短,结晶等原因。目前国内市场对能够准确测量逃逸氨的在线分析仪器有迫切需求。 br/ & nbsp & nbsp & nbsp 我公司研发的逃逸氨分析仪HK-7501,打破常规分析原理,利用化学比色法来检测逃逸氨浓度,大大降低了检测下限,使之能够达到0.05ppm,完全满足用户需求,而且比激光法的检测下限低了2个数量级。该仪器的检测方法与(GB/T18204.25-2000)国家标准公共场所空气中氨测定方法是相同的,进一步提高了可实施性。 br/ & nbsp & nbsp & nbsp HK-7501脱硝氨逃逸在线分析系统采用化学比色法测量,适用于烟气脱硝后对逃逸氨的自动监测。 br/ & nbsp & nbsp & nbsp 该系统采用180℃-250℃全程高温伴热取样,可保证样品不失真,可避免管路产生NH3气吸附、结晶堵塞管路等情况。抽取的样气经过雾化稀硫酸溶液吸收与吸收池中吸收液双重吸收,然后通过比色定量计算出氨与样气体积比,得到烟气中逃逸氨浓度。 br/ & nbsp & nbsp & nbsp 对烟气逃逸氨的双重吸收可完全将烟气中的逃逸氨吸收,雾化稀硫酸溶液在对烟气逃逸氨吸收的同时可对取样管道较容易结晶的位置进行有效冲洗。 br/ & nbsp & nbsp & nbsp 该系统采样探头采用金属陶瓷覆膜技术,耐腐蚀、大流速、颗粒多的环境。精度为0.2um,有效阻止烟气中的粉尘进入系统,同时反吹系统可有效对其进行定时反吹清洗,有效保证系统正常运行,且方便维护等。 br/ & nbsp & nbsp & nbsp 该测量系统较传统激光法不需考虑烟道粉尘对激光透射率的影响,以及现成震动、热膨胀等原因造成激光发射器与接收光路对不准而不能进行测量。 br/ & nbsp & nbsp & nbsp 技术指标: br/ & nbsp & nbsp & nbsp HK-7501脱硝氨逃逸在线分析系统技术指标: br/ & nbsp & nbsp & nbsp 1分析物:脱硝氨逃逸量 br/ & nbsp & nbsp & nbsp 2分析方法:吸收液吸收、纳氏试剂比色法 br/ & nbsp & nbsp & nbsp 3测量范围:0-10ppm,0-50ppm(可定制) br/ & nbsp & nbsp & nbsp 4检测下限:0.05ppm br/ & nbsp & nbsp & nbsp 5重复性:1%F.S br/ & nbsp & nbsp & nbsp 6漂移:可忽略 br/ & nbsp & nbsp & nbsp 7线性误差:<1%F.S br/ & nbsp & nbsp & nbsp 8测量周期:6-20min br/ & nbsp & nbsp & nbsp 9报警输出:系统故障报警,浓度超限报警,雾化温度报警 br/ & nbsp & nbsp & nbsp 10模拟量输出:1路( & nbsp & nbsp 0-10mA、0-20mA、4-20mA),隔离,最大负载750& amp #937 br/ & nbsp & nbsp & nbsp 11继电器输出:3路 br/ & nbsp & nbsp & nbsp 12通讯接口:RS485 br/ & nbsp & nbsp & nbsp 13伴热温度:180℃-250℃ br/ & nbsp & nbsp & nbsp 14标定周期:出厂完成标定,定期可用标液进行标定 br/ & nbsp & nbsp & nbsp 15取气流量:0-5L/min br/ & nbsp & nbsp & nbsp 16工作电压:AC200V-240V br/ & nbsp & nbsp & nbsp 17系统功率:≤5KW br/ & nbsp & nbsp & nbsp 18压缩空气:0.7-1.0MPa br/ & nbsp & nbsp & nbsp 19机柜尺寸:850mm(长)*600mm(宽)*1780mm(高) /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 此项成果符合GB/T18204.25-2000《公共场所空气中氨测定方法》等相关国家标准,广泛适用于燃煤电力、水泥、冶金、石化、玻璃、陶瓷等领域烟气脱硝后烟气氨逃逸在线监测。 br/ & nbsp & nbsp & nbsp 市场预测: br/ & nbsp & nbsp & nbsp 经济效益: br/ & nbsp & nbsp & nbsp 目前,该产品的实验样机已经成型,如果转化成成品,预计2016~2017年度销量在250台左右,预计2016~2019三年的销售额在1.1亿左右,预计可以为公司带来5500万元的利润。 br/ & nbsp & nbsp & nbsp 社会效益, br/ & nbsp & nbsp & nbsp 1& nbsp 提高国产仪器的市场占有率,打破进口仪器一统天下的局面。 br/ & nbsp & nbsp & nbsp 2& nbsp 对在线分析逃逸氨的方法,有了更深入的研究和创新,对提高逃逸氨的检测精度有重要意义。 br/ & nbsp & nbsp & nbsp 3& nbsp 协助控制喷氨量,有效防止空预器腐蚀和堵塞。以最少的喷氨量获得最大的脱销效率。 br/ & nbsp & nbsp & nbsp 4& nbsp 对控制减少烟气中的氮氧化物排放,节能减排,减少大气污染有重大意义. /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 此项成果(HK-7501)脱硝氨逃逸在线分析系统目前拥有2项发明专利、1项实用新型专利、4项外观外观专利、软件著作权1项: br/ & nbsp & nbsp & nbsp 一种有效吸收烟气中逃逸氨的预处理方法和装置(发明专利)& nbsp & nbsp 201510953955.3 br/ & nbsp & nbsp & nbsp 一种比色法测量烟气中氨含量的装置及方法(发明专利)& nbsp & nbsp 201510953977.0 br/ & nbsp & nbsp & nbsp 在线氨逃逸测量装置(外观专利)& nbsp & nbsp 201530538473.2 br/ & nbsp & nbsp & nbsp 在线氨逃逸取样装置(外观专利)& nbsp & nbsp 201530538471.3 br/ & nbsp & nbsp & nbsp 在线氨逃逸检测系统取样探头(外观专利) 201530538466.2 br/ & nbsp & nbsp & nbsp 在线氨逃逸检测装置(外观专利)& nbsp & nbsp 201530538461.X br/ & nbsp & nbsp & nbsp 一种在线氨逃逸检测仪(实用新型专利)& nbsp 201521101576.3 /p /td /tr /tbody /table p & nbsp /p
  • 氨排放大国如何应对“坏空气推手”
    p   近日,雾霾再度降临京津冀地区,环保部3月16日发布的空气质量预报显示,京津冀地区未来十天内的空气质量呈前期较差、后期转好态势。 /p p   雾霾取代“两会蓝”,治霾话题也再次发酵。追究雾霾成因,最常关注的是燃煤、机动车、工业生产和扬尘。在刚刚结束的今年全国两会上,中国科学院院士、中科院地球环境研究所所长周卫健提出,该所研究团队耗时四年对我国北方雾霾形成机理进行研究发现,农业污染源在细颗粒物(PM2.5)形成过程中起很大作用,其“贡献率可达20%以上”。但在现实中,该因素在研究和治理中被忽视。 /p p   据悉,中科院团队在西安、北京两地进行外场观测,获得大量研究数据,氮肥氨气促PM2.5生成等研究成果,已以论文《从伦敦雾到中国霾持续的硫酸盐形成》发表在美国国家科学院院报上。 /p p   ——新闻热点—— /p p   我国是全球最大的氨排放国 /p p   周卫健研究团队发现,在北方雾霾天气中,尤其是在湿度较大的冬季,往往可监测到硫酸盐浓度暴增现象。这些高浓度的硫酸盐,主要是大气中二氧化硫经光化学反应氧化形成的。 /p p   研究还发现,与伦敦雾滴的大颗粒相比,“中国霾”粒子比雾滴小得多,属纳米级,pH值偏中性。这是由于二氧化硫转化为硫酸所产生的小粒子呈现酸性,空气中又存在较高浓度的氨气,中和了硫酸形成硫酸盐。 /p p   作为大气中唯一的碱性气体,氨气可以同水及酸性物质反应。正是这种独特的化学特性,使氨气扮演了“坏空气推手”的角色。对此,中科院大气物理所研究员王跃思解释说,1体积水能溶解700体积的氨,这意味着当大气湿度增高时,氨更容易与水进行反应,水又吸收了二氧化硫和二氧化氮,变成液相的亚硫酸和亚硝酸。在合适的氧化反应条件下,亚硫酸、亚硝酸就会转化成硫酸、硝酸,与氨发生中和反应,生成颗粒态的硫酸铵、硝酸铵,成为了PM2.5。 /p p   据北京大学环境学院团队研究发现,2006年我国氨排放总量为980万吨,超过北美与欧洲的总和。我国在近20年时间里,一直是全球最大的氨排放国。哈佛大学的研究报告显示,从2005年至2008年间,我国每年氨排放量约1020万吨,与此同时,美国、欧盟的数字分别为340万吨、376万吨。 /p p   研究发现,我国区域氨气排放源上升快、影响大,可能来源于近海养殖、畜牧业、农业、汽车(三元催化过量)、工业脱硝(还原剂用氨水或尿素过量)等。王跃思说,目前京津冀区域氮沉降每平方公里每年达6.1吨,是发达国家有记录以来的最高水平。氮沉降主要来源就是氨气,氨气的70%都来自于农业、养殖业。 /p p   北京市环保局去年启动了“京津冀区域大气氨排放特征与控制对策研究的课题”,研究显示大气中的氨气主要来自生物圈,排泄物当中的尿素和化肥的使用不当被认为是氨气排放的主要来源。 /p p   ——现实困难—— /p p   氨排放的测量难度非常大 /p p   近年来,中科院、北京大学、清华大学、中国农业大学等都在做氨排放清单的研究。但编制排放清单绝非易事,其中每个环节都有很多不确定性因素,最终出来的清单,准确性到底有多高,也很难评估。 /p p   氨排放清单编制首先对农业施肥、畜牧业、工业等排放源分类,然后用每一类别的排放因子乘上活动水平,便得出排放总数。以肉牛养殖为例,先测量出每头肉牛排放的氨,再用其乘上全国肉牛总数。 /p p   北京大学环境学院教授宋宇说,氨排放因子的测量非常困难,“氨的测量就很困难,氨是寿命较短的气体,测量过程中还有吸附。” /p p   计算也十分复杂。如肉牛在不同生长期,喂的饲料不同,会导致不同氨水平释放。方法不完善,基础数据也可能有问题。我国广大农村以散养为主,目前并没有足够现实数据支撑。在这种情况下,要摸清农村畜禽养殖排放氨的量,难度大。 /p p   ——专家建议—— /p p   多学科合力攻克雾霾成因 /p p   全国政协委员、蓝光集团董事局主席杨铿连续第四年针对雾霾治理提出提案,在今年两会上,他表示,雾霾成因复杂,需要政府环保、科技部门加强对雾霾成因进行系统深入研究。 /p p   周卫健也建议,我国雾霾形成机制异常复杂,四年研究依然不能完全解决雾霾课题。应集中多学科的科学家攻克“我国北方雾霾的成因、发展趋势、环境影响与应对”研究项目。 /p p   推清洁生产促农业氨减排 /p p   其实国家一直倡导农业氨减排。《大气十条》指出,全面推行清洁生产。积极开发缓释肥料新品种,减少化肥施用过程中氨的排放 《北京市2013—2017年清洁空气行动计划》提出,农业氨减排等技术,边研究边应用。 /p p   北京市环保科学研究院研究员张增杰等在发表的《农业源氨排放控制对策初步研究》论文中建议,我国应大力推行种养结合模式,调整畜禽养殖布局和规模,提高农田有机肥施用比例,减少化肥的施用 施用化肥时,测土配方,提高缓释肥的使用,控制施用强度等 基于畜禽养殖粪便管理系统的氮物质流,从饲喂、畜禽圈舍、粪污存储、粪肥土地利用4个方面着手采取相应的控制措施。其中畜禽养殖氨控制措施主要包括降低畜禽日粮中的粗蛋白质含量,从源头上减少氮的摄入等 编制粪肥科学还田技术指南,及农业源氨排放控制指定文件等。 /p p   重拳治理机动车氨排放 /p p   王跃思认为,工业、机动车所占氨排放比重可能比当前认为的高。“工业氨逃逸越来越多,如电厂等在脱硝中喷液态氨,想让氨和氮氧化物反应生成氮气,但控制不好,氮气没生成,氨逃逸出来了。”机动车排放升级到国四标准,柴油发动机要加脱硝装置,但反应过程中会出现反应剂尿素逃逸,尿素很容易分解出氨。“汽油标号越高,硫含量越低,氨排放会相应增多。”这是由于在使用三元催化剂时,想让氮氧化物还原成氮气,事实上很容易还原成氨,与工业合成氨的化学反应接近。 /p p   因此,杨铿建议,抓主要污染源,从源头上出重拳治理雾霾。尽快完善机动车尾气排放的专项立法,特别是在雾霾严重地区要加快制定实施细则,重点严抓执行和检查。国五汽柴油标准从今年1月1日起在全国范围内全面执行,该标准实施后,在全国范围内应禁止国三机动车买卖、过户 在有条件的一、二线城市,禁止国四机动车买卖、过户。 /p p   杨铿还建议各地成立由公安交通管理、环保部门牵头的专项执法检查小组,以治理“酒驾”力度治理环境污染。对发动机燃烧质量、机动车尾气排放情况进行不定期拉网式检查,对排放不达标机动车上路行驶的,依法惩处。 /p
  • 中国科大研制高抗氨毒化的燃料电池阳极
    近日,中国科学技术大学高敏锐教授课题组研制出一种高抗氨毒化的镍基碱性膜燃料电池阳极催化剂,其在阳极含10 ppm氨的膜电极组装中,能保持95%的初始峰值功率密度和88%的初始电流密度(0.7 V下),远超商业铂碳催化剂。相关成果以“Efficient NH3-Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells”为题发表在国际著名学术期刊《美国化学会志》(J. Am. Chem. Soc. 2023, 145, 31, 17485)上。氢氧燃料电池由于比能量高和零排放等优点,有望在国家“双碳”战略中扮演重要的角色。然而,商业铂碳催化剂极易被氢气燃料中的氨气毒化而导致性能降低。特别地,在碱性膜燃料电池中,铂基催化剂的氢气氧化反应动力学缓慢,其与氨毒化协同作用,加速电池性能的衰退。因此,设计高活性、高抗氨毒化的新型阳极催化剂是碱性膜燃料电池实用化亟需解决的难题。   通常,过渡金属结合氨的能力与其未占据和占据的d轨道相关,其既可接受来自氨的电子也能向氨反向供给电子,两者都能增强氨的吸附。钼镍合金是高效氢氧化催化剂,研究人员认为营造镍位点的富电子态会排斥氨的孤对电子供给,而引入比镍电负性小的元素可以提供电子获得镍的富电子态。研究人员发现,将Cr掺杂入钼镍合金不仅获得镍的富电子态来抑制σN-H→dmetal电子供给,同时还使d带中心下移阻隔了d→σ*N-H的反向电子供给,两者协同作用大大削弱了氨吸附。 图1.氨毒化机制和电子态调控   旋转圆盘电极测试表明,该催化剂在2 ppm氨存在条件下电化学循环1万次性能几乎没有损失,而铂碳催化剂性能损失严重。在实际的碱性膜燃料电池中,以该催化剂作为阳极组装的器件在10 ppm氨存在下可保留95%的初始峰值功率密度。相比之下,铂碳催化剂的功率输出则降低至初始值的61%。   衰减全反射-表面增强红外吸收光谱测试表明,没有Cr掺杂的钼镍合金与商业铂碳催化剂在不同电位下对氨具有吸附行为。经Cr调制的催化剂表面则没有任何氨吸附峰的存在。同时,电子能量损失谱和电子顺磁共振分析也表明Cr的引入使得镍的d带占据数更高,验证了其富电子态催化中心;理论计算发现Cr引入可降低镍的d带中心,佐证了氨在其表面吸附被削弱。   近年来,高敏锐研究小组致力于碱性膜燃料电池非贵金属电催化剂的研制和应用研究(Acc. Chem. Res.2023, 56, 12, 1445;Nat. Catal. 2022, 5, 993;Nat. Commun. 2021, 12, 2686;Nano Lett. 2023, 23, 107;Nano Res. 2023,16, 10787)。在之前的工作中,该小组与杨晴教授合作发现Co元素的掺杂可以有效抑制镍的d轨道对一氧化碳分子2π*反键轨道的电子“反向供给”,获得了高一氧化碳耐受性的氢气氧化非贵金属电催化剂(Angew. Chem., Int. Ed. 2022, 61, e202208040)。   论文的通讯作者是合肥微尺度物质科学国家研究中心高敏锐教授,共同第一作者为中国科大博士研究生王业华、博士后高飞跃和张晓隆。相关研究受到国家自然科学基金委、国家重大科学研究计划、安徽省重点研究与开发计划等项目的资助。
  • 文章推荐 | 使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量
    荷兰应用科学院(TNO, the Netherlands Organisation for Applied Scientific Research)和荷兰国家公共卫生与环境研究所(RIVM, National Institute for Public Health and the Environment)的联合研究团队发表了一篇题为“ Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods "的研究论文,已发表于《Atmospheric Measurement Techniques》。实验项目:使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量项目地点:荷兰 Ruisdael 观测站合作伙伴:荷兰应用科学院和荷兰国家公共卫生与环境研究所的联合研究团队部署仪器:HT8700大气氨激光开路分析仪项目简介:氨的干燥沉积(NH3)是荷兰大气向土壤和植被的氮沉积的最大因素,导致富营养化和生物多样性的损失。然而,学术界对于氨通量测量的数据十分有限,而且通常最多只有月度分辨率。造成这种情况的一个重要原因是在干燥条件下测量氨通量非常困难。过去,没有一种技术可以被认为是氨通量测量的黄金标准,这使得新技术的测试和判断其质量变得复杂。 这项研究展示了两种新型测量装置的相互比较结果,旨在以半小时分辨率测量氨的干沉降。在为期五周的比较期内,研究人员在荷兰 Cabauw 的 Ruisdael 观测站并排运行了两种光学开路的通量观测技术:其一是使用梯度法通量技术新型 RIVM-miniDOAS 2.2D 仪器,其二是宁波海尔欣光电科技有限公司推出的使用涡度协方差技术的HT8700大气氨激光开路分析仪。HT8700大气氨激光开路分析仪部署于荷兰的观测站RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪均为开路式光学仪器,在测量过程中直接测量氨在大气中的含量。除此之外,它们在测量原理和从测量浓度得出沉积值的方法上存在很大差异。在迎风地形均匀又没有附近障碍物时,两种不同的技术显示出非常相似的结果(r = 0.87)。观察到的通量从约80 ng NH3 m-2 s-1 的沉降到约140 ng NH3 m-2 s-1 的排放不等。无论是在绝对通量值还是实时的通量和浓度变化,两种截然不同的技术中获得了相似的结果,这证实了两种仪器都能够在至少几周的连续时间内以高时间分辨率测量氨通量。不过这个相关性也会受到其他因素影响,例如当风向受到附近障碍物干扰时。HT8700与定制化RIVM-miniDOAS 2.2D 仪器所测量的氨通量变化显示高度的一致性此外,论文中还讨论了两个系统的技术性能(例如,正常运行时间、精度)和实际局限性。miniDOAS 系统的正常运行时间达到了 100%,但在这次活动中对两台仪器进行了定期校准(占7周正常运行时间的35%)。而HT8700在下雨期间和下雨后不久数据有效性较低,并且其早期产品使用的光学镜面涂层可能会退化,导致约21%的数据缺失(针对此问题的升级版光学镜面已经交付客户使用)。虽然HT8700在恶劣天气条件下的独立运行时间有限,在适当的情况下,该系统仍然可以提供良好的结果,为未来的升级迭代版本打开了良好的前景,将能适用于业务化的实时氨通量监控应用。这些仪器所提供的崭新的高时间分辨率数据将促进对氨干沉降过程的研究,从而更好地理解氨沉降过程,并更好地对化学传输模型进行参数化。HT8700大气氨激光开路分析仪产品升级自动清洁自动清洁系统使用清洗和喷气功能来清除下镜面的灰尘,免除常规的手动清理。并采用了一种全新的镜面涂层技术,增强耐腐蚀性,以保证实地的长期观测。降雨传感如遇降雨天气,系统收集的数据为无效数据。增设降雨识别芯片,通过传感装置实时反馈至系统。并将降雨期间收集的数据特殊标注,便于使用者筛选有效数据。镜片加热在野外工作过程中会遇到低温条件,普通镜片易积水雾,影响镜片反射效率。开发加热系统,增设加热组件,可将镜片温度提至高于环境温度。确保反射能力不受低温、冷凝、降雨影响,使仪器分析结果更精准、更可靠。HT8700搭载升级版光学镜面,进行全新一轮野外测试通过这次研究,我们可以看到,RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪在测量氨沉降方面具有很高的潜力和应用价值。尽管这两种仪器在测量原理和数据处理方法上存在差异,但在一定条件下,它们都能提供准确可靠的测量结果。此外,通过不断的技术升级和改进,HT8700大气氨激光开路分析仪的性能和稳定性得到了进一步提高,为未来的氨沉降测量提供了更好的工具和手段。总之,这项研究提供了有关氨沉降测量的新思路和新方法,为未来的环境保护和生态学研究提供了新的工具和手段。我们相信,随着技术的不断进步和研究的深入,我们将能够更好地了解氨沉降过程,为保护环境、维护生态平衡和促进可持续发展做出更大的贡献。
  • 农污监测新突破 | 激光助力大气氨的测量
    ▲氨涡度协方差通量观测系统。新突破 准确量化农业生态系统的NH3排放可帮助理解某区域甚至是全球范围的NH3收支以及落实空气污染的控制和缓解战略。 中国科学院大气物理研究所的科学家及其合作者在《农业和森林气象学(Agricultural and Forest Meteorology)》上发表了一篇研究,称他们开发了一种便携式太阳能开路NH3分析仪(型号:HT8700)。该分析仪专门用于基于涡度协方差(eddy covariance-EC)方法的NH3通量观测,这是测量陆地生态系统和大气之间NH3交换的最直接和有效的方法。该团队不仅在实验室,也通过野外现场实验研究了分析仪测量NH3流量的适用性。原理与前景 基于电化学方法的通量系统需要具有高灵敏度和快速响应的NH3分析仪。该研究的主要作者王凯博士说:“运用通量观测新仪器使我们能够监控不同类型生态系统的NH3通量,包括排放和沉降。” HT8700 NH3分析仪基于最先进的量子级联激光吸收光谱技术。其开放路径设计克服了封闭路径仪器存在的一些问题。该仪器具有良好的响应时间、精度和稳定性,是基于电化学技术的NH3流量测量的理想工具。 来自宁波HealthyPhoton有限公司的合著者王博士说:“现场实验证明了开路设计对于NH3通量观测的重要性,但我们认为未来还有更多改进的机会。现阶段因为光学镜直接暴露在环境中,其数据可用性在很大程度上受到激光信号强度频繁降低的限制。我们正在开发一种镜子自动清洁设计,使该仪器更适合自动化测量、使用寿命更长,尤其是在多尘的野外条件下。”
  • 2分钟教你做实验!— 纳氏试剂分光光度法测氨氮空白值偏高的原因探讨
    让您一目了然做实验-纳氏试剂分光光度法测氨氮的操作过程 一、检测原理以游离态的氨或铵根离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于420nm波长处测量。 二、实验步骤1移取标准溶液、待测溶液定容至50毫升2分别加入1.0mL酒石酸钾钠或矿物质稳定剂2滴3加入以二氯化汞为原料的纳氏试剂1.5mL或以碘化汞为原料的纳氏试剂1.0mL4混匀后静置10min510mm比色皿,在420nm波长下,以水作参比测试吸光度三、线性空白值偏高的常见问题原因分析及解决方案1、用1cm比色皿时的空白吸光度空白值偏高,大于0.030,导致线性不好或截距偏大。原因分析:(1)试剂纯度(所用试剂含铵盐,如酒石酸钾钠);(2)试验用水被污染,引入氨或者铵盐。解决方案:(1)用矿物质稳定剂代替酒石酸钾钠;(2)在无氨条件下制水并密封储存,或者使用高质量新鲜的蒸馏水代替无氨水,并且在实验前测试空白吸光度低于0.030方可使用。2.显色温度的控制冬季室温往往较低,如室温介于5-10℃时显色会不完全;而温度在20-25℃时显色最完全且较稳定;温度超过30℃,显色不稳定且极易褪色,导致吸光度偏低。所以显色温度应控制在20-25℃之间。3.显色时间的控制3.1 纳氏反应时间小于10min,反应不充分;10-30min反应相对稳定;30-45min显色会相应加深;大于45min,显色会处于减退状态。因此应控制反应时间在10-30min。3.2 显色完全后应尽快测定,防止颜色加深或褪色影响吸光度。4.比色皿的尺寸选择和吸附4.1 根据样品的浓度可以选择10mm或者20mm的比色皿,选择10mm比色皿时,空白吸光度应该小于0.03,相应地,选择20mm比色皿时,空白吸光度应该小于0.06。4.2 高浓度在比色皿中的吸附尤其明显,可能导致测定结果偏高。尽量按浓度从低到高的顺序测定,尤其是测标曲时;4.3 为了准确测定,测样前用蒸馏水冲洗比色皿3遍以上再测定,以减少吸附产生的误差;4.4 测定完成后,比色皿上壁上如仍有吸附物,应将比色皿放在铬酸洗液或稀硝酸中浸泡片刻,再进行冲洗后备用。5.显色剂用量对测定结果的影响表1 纳氏试剂加入量(氯化汞)对空白值和2mg/L标液吸光度的影响纳氏试剂加入量(mL)0.511.522mg/L标液吸光度(Abs)0.6220.6220.6790.707空白吸光度(Abs)0.0090.0260.0300.0462mg/L标液扣空白后吸光度(Abs)0.6130.6420.6490.661从表1可知,随着纳氏试剂加入量增大,空白值会变高。应按照国标方法要求加入合适体积的纳氏试剂。6.纳氏试剂的使用与储存6.1纳氏试剂使用前需恒温至室温,且使用前不可摇匀,应吸取上清液使用。纳氏试剂在生产配制后也需静置进行沉淀。6.2纳氏试剂的使用选择,根据HJ 535-2009,市面上氯化汞和碘化汞两种原料的纳氏试剂均可使用,如图1所示。 图1 HJ 535-2009方法中对纳氏试剂选择的规定6.3纳氏试剂应冷藏避光保存。
  • 团簇质谱+光谱 大连化物所为合成氨催化剂提供新思路
    p   近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍团队和分子反应动力学国家重点实验室团簇光谱与动力学研究组研究员江凌团队合作在合成氨反应机理研究中取得新进展,相关结果发表在《德国应用化学》(Angew. Chem. Int. Ed.,DOI:10.1002/ange.201703864)上,并被选为“热点文章”。 /p p   实现温和条件下氨的高效合成一直是催化领域的重要研究课题。陈萍团队首次报道了具有优异低温活性的LiH-3d过渡金属这一复合催化剂体系,并提出了“氮转移”催化机理:LiH作为第二催化中心,可以转移过渡金属表面的氮物种形成Li2NH/LiNH2,继而加氢放氨。这种双中心的催化机制打破了单一过渡金属上反应物种的活化能垒和吸附能之间的限制关系,使得氨的低温低压合成成为可能(Nature Chemistry,2017,9,64)。而该催化剂上氮的活化和转移转化的微观机制尚有待深入研究。 /p p   在该工作中,大连化物所研究团队以LiH-Fe复合催化剂为研究对象,发现Fe与LiH在界面处存在强的相互作用。利用自主研制的团簇质谱与光谱联用实验装置,并与密度泛函理论计算紧密结合,成功探测到该催化剂表(界)面存在Li-Fe-H三元氢化物物种(如Li4FeH6,Li5FeH6等)。更为有趣的是这些氢化物物种可与N2反应直接转化为含有Fe-(NH2)-Li和LiNH2的物质,实现了N2的解离、向Li的转移和加氢 同时,三元氢化物中与Fe结合带负电荷的氢则转化为与N结合带正电荷的氢,完成了两电子转移。这些基于团簇反应的研究结果暗示了在Fe-LiH表(界)面形成的Li4FeH6很可能是催化活性中心,而N2的活化则有可能从传统Fe基催化剂C7位上的均裂过程转变为“氢助解离”机制。这项研究加深了对LiH-3d过渡金属催化剂上合成氨反应机理的认识,为新型高效合成氨催化剂的设计开发提供了思路。 /p p   上述工作得到国家杰出青年基金、基金委重点项目、教育部能源材料化学协同创新中心(iChEM)和大连化物所甲醇转化与煤代油新技术基础研究专项(DICPDMTO)的资助。 /p
  • 多通道近位抽取高精度脱硝氨逃逸在线分析系统技术应用
    p    strong span style=" color: rgb(0, 112, 192) " 氨逃逸分析的意义 /span /strong br/ /p p   当前,随着我国经济的持续发展,能源压力日趋紧张,环境污染已严重危害到我国人民的健康和生活质量。近年来河北、山东、北京等地被持续的大范围雾霾天气所笼罩,引发全社会的广泛关注。二氧化硫、氮氧化物和可吸入颗粒物这三项是雾霾主要组成。为了降低经济快速发展带来的雾霾、臭氧层破坏、温室效应及酸雨现象,我国要求使用燃煤的工厂(主要是火电厂和水泥厂)安装脱硝装置,降低氮氧化物的排放。 /p p   国内外应用较多且工艺成熟的选择性催化还原法(SCR)和选择性非催化还原法(SNCR)烟气脱硝,均需要向烟气中喷入还原剂氨,使烟气中的氮氧化物还原成氮。 /p p   为了保证氮氧化物充分反应,提高脱硝效率,需要实现还原剂氨注入量的最优化。如果喷氨过多,则会产生氨逃逸,造成更严重的危害: /p p   1.逃逸的氨与烟气中的SO sub 3 /sub 反应生成NH sub 4 /sub HSO sub 4 /sub ,当后续烟道烟温降低时,NH sub 4 /sub HSO sub 4 /sub 就会附着在空气预热器表面和飞灰颗粒物表面。 /p p   2.NH sub 4 /sub HSO sub 4 /sub 可以沉积并积聚在催化剂表面,引起催化剂的失活。 /p p   3.NH sub 4 /sub HSO sub 4 /sub 在低于150℃时,以液态形式存在,腐蚀空气预热器,并通过与飞灰表面物反应而改变飞灰颗粒物的表面形状,最终形成一种大团状粘性的腐蚀性物质。 /p p   4.这种飞灰颗粒物和在空气预热器换热表面形成的NH sub 4 /sub HSO sub 4 /sub 会导致空气预热器的压损急剧增大。 /p p   5.逃逸的氨导致飞灰化学性质发生改变,使得飞灰不能作为建材原料而得到利用。 /p p   所以,脱硝工艺喷氨量的控制,既要保障脱硝效率最高,又不能过量喷氨造成新的危害,需要对氨逃逸进行实时准确的在线分析。作为脱硝工艺中必不可少的关键监测设备,氨逃逸的准确稳定测量,对提高工业效率和安全生产有着重要的意义。 /p p    strong span style=" color: rgb(0, 112, 192) " 氨逃逸分析的现状 /span /strong /p p   目前电力行业脱硝工艺基本上已经装配了氨逃逸在线分析系统,但在实际运行过程中这些氨逃逸在线分析系统往往存在着一些普遍性问题: /p p   1.氨逃逸数据为0或某个固定值,或只有仪表自身噪声信号,没有真正检测出逃逸氨,给性能验收和环保验收带来麻烦。 /p p   2.增大或减少喷氨量,氨逃逸数据无变化,没有趋势相关性,无法为电厂控制喷氨流量提供科学的数据参考。为了NOx达标排放可能会喷氨过量,造成氨水浪费和形成大量铵盐对后面设备造成严重腐蚀。 /p p   3.传统氨逃逸不能随时通标气进行验证,不能确保数据的准确性。 /p p   通过对这些氨逃逸设备实地调研分析,发现这些设备主要采用原位测量方式,将设备的发射端和接收端分别安装在烟道上,采取对射的方式。这种测量方式会有以下几种影响: /p p   1.测量点位置粉尘量大,激光透射率不足,导致无法测量。 /p p   2.为了解决透射率不足无法测量的问题,很多原位式分析仪采用斜角安装方式,即在烟道一角采取对射安装。这种方式测量的氨逃逸不具有代表性,不能反映烟道截面的真实状况,同时粉尘对测量仍然会造成影响。 /p p   3.测量精度和测量下限与光程相关,光程越长,测量精度和测量下限越好。采用斜角安装方式测量光程短,测量下限和精度不够,无法满足氨逃逸精确测量的需求。 /p p   4.现场振动和热膨胀因素,会造成激光对射不准,影响正常使用。 /p p   5.无法通标气标定和验证。 /p p   正是由于上述原因,原位式脱硝氨逃逸分析仪在实际使用中遇到了众多的困难,为了解决这些问题,国内一些企业将国外进口的分析仪进行改造,自己设计加工样气室,采用抽取式去除粉尘,抽取样气进入样气室测量,但是由于自身不掌握TDLAS核心技术,在改造过程中存在诸多技术问题及测量光程不够等因素,也没有取得良好的测量效果。 /p p    strong span style=" color: rgb(0, 112, 192) " 多通道近位抽取高精度测量技术应用 /span /strong /p p   针对上述问题和现状,北京大方科技有限责任公司基于自身掌握的TDLAS核心技术,将多通道近位抽取及多次反射高精度测量技术应用于氨逃逸在线分析,成功解决上述问题,并得到了广泛应用。 /p p   一、采用高精度多次反射长光程技术 /p p   鉴于脱硝工程中氨逃逸对环境和设备的巨大危害,环保部对脱硝工艺中氨逃逸量有严格的规范。环保部2010年1月发布的环发[2010]10号《火电厂氮氧化物防治技术政策》以及2010年2月发布的标准HJ562-2010《火电厂烟气脱硝工程技术规范----选择性催化还原法》皆要求SCR氨逃逸控制在2.5mg/m sup 3 /sup (干基,标准状态)以下。因此,脱硝工程中的氨逃逸量极低(ppm量级),这对氨逃逸分析仪的测量精度提出了极高的要求。 /p p   目前测量氨逃逸通常采用可调谐二极管激光吸收光谱技术(TDLAS技术),其基本原理是朗伯-比尔定律(Beer-Lambert’s law),依据朗伯-比尔定律,当单色光穿过均匀气体介质时透射光强和入射光强的关系, 如方程(1)、(2)所示: /p p style=" margin-left:13px text-indent:21px line-height:150% text-autospace:none" span style=" font-size:21px line-height:150% font-family:仿宋" & nbsp img src=" http://img1.17img.cn/17img/images/201710/noimg/f1b1356f-e59a-4815-a181-8722c53bd3d8.jpg" title=" 公式.png" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p   其中,P 为气体的压力; /p p   T 是样品气体的温度; /p p   Xabs 是被测气体在样品气体中的摩尔百分比; /p p   L 为光程长度; /p p   S 为吸收谱线的强度; /p p   fn为吸收谱线的线型函数。 /p p   由公式可知光程长度越长,气体的吸收强度越强,所得到信号的信噪比越好,也就是说测量光程越长,测量精度越高。大方科技自主开发多次反射高温样气室,激光在样气室中多次反射,如图1为多次反射技术样气室中光路轨迹仿真图,光程可达30米,极大的提高了测量精度和检测下限。通过光程的提高,很大程度的解决了传统氨逃逸光程短、测量精度不足的问题。 /p p style=" text-align: center "   img src=" http://img1.17img.cn/17img/images/201710/noimg/5c6248b5-acb0-4782-b0e4-1b81f607f144.jpg" title=" 图1.png" /   /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1.大方科技多次反射技术样气室中光路轨迹仿真图 /span /p p   二、多通道近位抽取测量技术应用 /p p   针对原位式氨逃逸在线分析系统受烟尘和烟道震动影响等因素,大多数氨逃逸在线分析系统已采用抽取式技术路线,将烟气抽出经过预处理后进行测量,很好的解决了上述问题。目前已有的抽取式氨逃逸在线监测系统多采用单点取样,将一根取样探杆沿烟道长边中心位置插入至烟道核心区域,虽然和传统的原位式氨逃逸分析仪安装在烟道角落位置相比,目前单点核心区域抽取更具代表性,但对于大型机组烟道尺寸很大(通常长边可达13米以上)的情况下,烟道内流场分布复杂,截面上氨逃逸浓度也不尽相同,为了更准确的代表烟道中氨逃逸的浓度,需要实现多点测量。如果单点测量是一台通用测量设备,那么多点测量则是一台高端设备,满足高质量、高要求用户的需求。 /p p   大方科技在抽取式技术路线基础上,通过产品小型化、外置过滤装置、减震安装装置设计、近位恒温控制、流路控制等成功实现多通道近位测量技术。近位测量实现取样气体从取样探杆出来直接进入分析气室,不需要伴热管线,减少了系统的响应时间,降低氨气吸附的风险,降低伴热管线堵塞及损坏的可能,提高了系统的可靠性和耐用性。取样点的位置和取样探杆的长度可根据现场情况设计,既可实现同一烟道多点同时测量,也可以实现多烟道多通道测量,且每个取样点可独立反吹。通道数量可以1~6任意扩展。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/noimg/9f23d8c0-cf6c-42b2-ac42-dc46822639d5.jpg" title=" 图片2.png" / /p p style=" text-align: center "   span style=" color: rgb(0, 176, 240) "  图2.大方科技近位抽取氨逃逸在线分析系统主机实物图 /span /p p   大方科技率先开展氨逃逸的多点取样测量,成功实现了两点、三点、四点以及网格取样的应用,测量准确有代表性,得到了用户的高度评价。 /p p   三、复杂烟气工况高温近位抽取预处理技术应用 /p p   由于我国燃煤种类及燃烧工艺的复杂多样性,烟气具有高温、高湿、高腐蚀、高粉尘的特点,且每家的工况环境各异,这给氨逃逸的在线监测带来了不确定性。氨分子极易溶于水且具有极强的吸附性,因此要求整个系统中不能存在冷点,也不能降温除水,需要在高温下完成测量。由于烟气中存在大量的粉尘,要求预处理系统既能够将粉尘过滤掉,避免造成光学器件的污染,又不能堵塞,加大现场的维护量。烟气中含有SO3、NH3等腐蚀性气体,且湿度大,要求整个烟气流路需要做防腐处理。所以,开发适合我国烟气工况,且适应强的氨逃逸在线分析系统,其首要难点之一是烟气预处理系统的开发。 /p p   针对上述复杂工况,大方科技结合自身在烟气预处理多年摸爬打滚的经验,成功开发了稳定可靠的近位抽取预处理系统。抽取气体直接进入气室,不需要经过伴热管线,烟气接触的流路全程高温伴热250℃以上无冷点,避免氨气吸附和损失,保证样气真实性。系统滤芯采用碳化硅过滤器,在高温下不会与SO2、NH3等腐蚀性气体发生化学反应,且滤芯采用后置安装,无需专业工具拆卸,更换和清理极其方便。每个通道皆具有自动反吹控制,反吹间隔和反吹时长根据工况设置,有效避免滤芯堵塞。 /p p   对于氨逃逸监测而言,复杂的烟气工况环境是造成故障率攀升的主要原因。所以,预处理系统的稳定性和耐用性是氨逃逸监测设备的核心竞争力之一。大方科技近位抽取式预处理技术的应用,极大的提高了系统稳定性,结合多次反射长光程技术的应用,保障了测量结果的准确,为合理喷氨提供了科学的数据支撑。图3为大方科技氨逃逸在线分析系统现场趋势图,红色为喷氨量曲线,黄色为氨逃逸曲线,当系统的喷氨量发生变化时,氨逃逸数据曲线也相应地变化,从图上看喷氨量和氨逃逸曲线趋势一致,相关性高,为系统的安全、经济运行提供有价值的数据参考。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201710/noimg/f84c9423-8972-473b-83c6-2c3ca3349309.jpg" title=" 图3.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3.大方科技氨逃逸在线分析系统现场趋势图 /span /p p style=" text-align: right " span style=" color: rgb(0, 176, 240) " span style=" color: rgb(0, 0, 0) " 【供稿来源:北京大方科技有限责任公司】 /span br/ /span /p
  • 大连化物所研制临床高灵敏高特异性呼出气氨实时监测仪
    近日,大连化物所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队与大连医科大学附属第二医院冷松教授团队合作,基于我所自主研发的高分辨离子迁移谱技术,发展了一种面向床旁诊断的呼出气氨实时监测仪和新方法,实现了对周期性呼吸过程中呼出气氨的高灵敏和高特异性的实时监测。该方法可以有效减轻呼出气中高湿度、复杂背景,以及小分子氨的高吸附性残留对检测结果的干扰,为人体重要生物代谢标志物氨的检测提供了一种无创、实时、精准的新仪器和新方法。呼出气氨与体内氨基酸合成—代谢、尿素—氮动态平衡、血液酸碱平衡缓冲对等多种重要生理过程密切相关。呼出气中氨浓度为肝肾功能、雷氏综合征、尿素循环障碍、有机酸中毒和幽门螺杆菌感染等疾病的诊断提供了重要参考。因此,呼出气氨的快速、非侵入、准确定量监测具有重要的临床意义。在前期相关研究的基础上,本工作通过在漂气中加入改性剂丙酮来调控离子—分子反应,显著地提升了氨和试剂分子的峰—峰分离度,在上千种呼出气组分中实现痕量氨气的高特异性检测;发展了在线稀释和吹扫采样技术,解决了氨分子的吸附残留难题,实现了100%RH下呼出气氨的高灵敏检测;在宽的浓度范围(100至2400ppb)可以实现呼出气氨的准确定量检测,单次分析时间仅40ms。与目前血氨浓度检测方法相比,呼出气氨离子迁移谱检测仪具有无创检测、实时性强、选择性好、灵敏度高等优点,特别适用于透析疗效的实时监测和肝性脑病的早期识别,展示出床旁诊断的重要应用价值。目前,该仪器已在大连医科大学附属第二医院健康管理医学中心开展健康检测和评估。相关研究以“Breath-by-breath measurement of exhaled ammonia by acetone-modifier positive photoionization ion mobility spectrometry via online dilution and purging sampling”为题,发表在《药物分析学报》(The Journal of Pharmaceutical Analysis)上。该工作的第一作者是大连化物所与大连医科大学联合培养硕士研究生王露和102组蒋丹丹副研究员。该工作得到了国家自然科学基金、中科院科研仪器设备研制项目、大连化物所创新基金等项目的资助。
  • 关注环保——博纯推出专利除氨器
    在脱硝后烟气气体分析应用中,经常会有逃逸氨问题的困扰。博纯专利除氨器能有效去除逃逸氨,防止采样管线因结盐而堵塞,有效的保护仪器设备。   美国博纯有限责任公司研制了博纯专利除氨器其中的专利洗涤器介质并投入连续生产。该介质的使用寿命取决于样气的流速和气流中的氨浓度,在与气体反应时,具有很强的选择性,仅仅将气体中的氨去除,防止氨盐产生 同时,它是一种非常安全、稳定的化学物质,便于进行搬运和存储。   博纯专利除氨器安装方便(安装于采样探头后方),便于维护。   查看产品图片http://www.instrument.com.cn/netshow/SH101541/C96354.htm   更多产品信息,请登录www.permapure.com   关于博纯   成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。   博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。   博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。   拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。   关于豪迈:   创立于1894年的英国豪迈国际有限公司(Halma p.l.c. – www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。   销售联系方式   夏黎明先生 中国区销售经理   上海市长宁区仙霞路137号盛高国际大厦1801室   邮编:200051   电话:021-52068686-113   传真:021-52068191   电子信箱: fxia@permapure.com   网址:http://www.permapure.com
  • 应用案例:HT8700大气氨激光开路分析仪测量养殖场多畜舍 NH3排放
    项目地点山西省晋中市榆次区北头村同时饲养猪、牛、羊的某养殖场项目背景随着社会的发展和养殖业规模的扩大,农业源 NH3 对环境空气质量的影响越来越大,它们在自然界中占有很大的比重,可促进二次气溶胶和灰霾的形成,甚至对大气中O3的产生也有间接影响。项目目标掌握畜舍NH3 排放和扩散规律,了解NH3 对二次气溶胶形成过程的影响,运用模型准确、全面地评价大气NH3 。分析方法该项目使用了开路式激光NH3分析仪(HT8700)用于养殖场NH3 浓度的在线测量。该分析仪采用车辆移动平台搭载形式(图2.3a),它包括Healthy Photon HT8700大气氨激光开路分析仪、 数据采集模块、GPS 模块、超声波三维风速仪模块和实时数据处理模块等(图2.3b)项目采用纳式试剂分光光度法(HJ533-2009)与开路式激光NH3 分析仪测量精度对比实验。结论通过国标法(纳式试剂分光光度法)与开路式激光NH3 分析仪(HT8700)对NH3测量结果进行对比发现HT8700测的结果高于国标法的NH3 浓度值,但在可接受范围内,并不影响对于测量养殖场NH3 的使用,HT8700为开路式,实时测量,方便灵活,便于捕捉养殖场NH3 短期内的波动。相关论文:山西大学李瑞金、耿红、付玉玲《养殖场多畜舍NH3排放测量及对二次气溶胶形成的影响研究》10.27284/d.cnki.gsxiu.2021.001027
  • 我国首家水性聚氨酯国家重点实验室被批准
    记者从广东佛山市有关部门获悉,顺德东方树脂有限公司被正式批准授牌为佛山市水性聚氨酯胶粘剂工程技术研究开发中心,至此,该公司成为我国第一家水性聚氨酯国家重点实验室。   据介绍,佛山市水性聚氨酯研发中心的落成具有深远的意义。每年我国仅用于制鞋的溶剂型胶类产品就达上千万吨,如此庞大的数量挥发出来的VOC等有害气体不逊于我国汽车尾气一年排放的总量,严重影响我国的大气环境,为国家的环境建设与稳定带来巨大的危害。随着我国环保理念的加强,溶剂型产品将被绿色环保的水性聚氨酯产品所取代。但在目前,水性聚氨酯研发处于起步阶段,水性聚氨酯核心技术一直被国外公司控制。严格的技术壁垒,导致了高额的进口成本,不利于与之相关的行业发展。该中心成立,得到佛山市、顺德区两级政府高度重视,研发中心将承担起国家部分水性聚氨酯研发课题,为打破技术堡垒,推动行业的发展做出重要贡献。
  • 凝聚创新力,守护农田环境——HT8700大气氨激光开路分析仪助力农田氨气排放监测
    引言在全球碳中和的浪潮下,农田环境的气体排放问题引起了广泛关注。氨气作为农田排放的主要气体之一,其监测对于农业的可持续发展和环境保护至关重要。宁波海尔欣光电科技有限公司推出的HT8700大气氨激光开路分析仪,以其光谱技术的高度精准性和学术应用价值,为农田氨气排放监测提供了新的解决方案。农田排放气体检测的重要性与必要性农田作为重要的碳循环环境,其气体排放直接关系到碳平衡和生态平衡。而其中的氨气排放不仅会影响空气质量,还可能导致氮肥的浪费和土壤污染。因此,精准监测农田中的氨气排放变得至关重要。合理的氨气排放监测不仅有助于农业的可持续发展,也能减少对环境的不良影响,助推碳中和目标的实现。农田氨气排放数据分析通过HT8700大气氨激光开路分析仪,我们能够获取农田氨气排放的精确数据,为进一步的学术研究提供了有力支持。这些数据不仅可以帮助我们更深入地了解农田氨气的季节性和地域性变化,还能够揭示不同施肥策略对氨气排放的影响。这些数据的分析和研究,将为农业生态环境的优化管理提供科学依据。HT8700大气氨激光开路分析仪的特点HT8700大气氨激光开路分析仪凭借其技术特点在学术应用中脱颖而出:高精度测量: 基于光谱技术,HT8700能够实现高精度的氨气浓度测量,确保数据的准确性和可靠性。多维数据采集: HT8700能够实时监测多个维度的氨气排放数据,为研究人员提供更全面的信息。实时数据传输: 设备支持实时数据传输,为学术研究提供了及时的数据支持。助力碳中和,共建美丽乡村随着碳中和目标的不断推进,农业的绿色可持续发展愈发受到关注。HT8700大气氨激光开路分析仪的推出,无疑为农田氨气排放监测注入了新的活力。通过精准监测,农民可以科学施肥,降低氨气排放,助力实现美丽乡村的愿景。宁波海尔欣光电科技有限公司的HT8700大气氨激光开路分析仪,以其精准、高效的特点,成为农田氨气排放监测的得力工具。在环境保护和碳中和的双重压力下,这款仪器不仅体现了技术的创新,更彰显了企业的社会责任。愿HT8700在未来的道路上,为农田环境守护贡献更大的力量,为美好的农村生活贡献一份坚实的保障。
  • 【无创呼气诊断】山西大学实现免校准、ppb级的实时氨测量
    与血液分析相比,人体呼气分析通过量化呼出的生物标志物,提供了一种非侵入式的实时无创诊断方式。山西大学董磊教授团队实现了一款无需校准的中红外(MIR)呼气传感器,采用 10.359µm 中红外量子级联激光器(QCL)瞄准氨的强吸收谱线,并采用拍频石英增强光声技术(beat-frequency quartz-enhanced photoacoustic technique, BF-QEPAS),消除了传统石英增强光声光谱技术(quartz-enhanced photoacoustic spectroscopy, QEPAS)校准过程和波长锁定的要求。通过研究吸附解吸效应、优化传感器系统的调制深度和调制频率,在3 ms的积分时间内实现了9.5 ppb的检测限。研究组的实验记录了八名健康志愿者呼出的氨气含量,并对实时测量结果进行分析。与传统的 QEPAS 传感器相比,该项目所提出的基于 BF-QEPAS 的传感器具有更高的灵敏度、更快的响应时间。 这项研究成果《Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level》2022年2月发表于《Sensors and Actuators: B. Chemical》。 图一 基于BF-QEPAS的免校准、ppb级、实时中红外人体呼出氨传感器论文封面 氨主要通过肝脏和肾脏的代谢过程从人体排出,因此人体氨(NH3)水平的变化与肝脏和肾脏的功能障碍有关,当肝脏和肾脏发生疾病时,代谢紊乱会导致体内氨水平升高。然而,目前关于人体氨水平的医学测量仍依赖于血液分析,这是一种具有感染风险的侵入性诊断方法。尽管近年来有一些新的方法实现氨气监测,然而面对临床诊断的呼吸分析存在分辨率极高、样品量小、响应时间快、校准间隔长等要求,迫切需要开发新的方法来完成人体呼吸氨气的检测。 近年来,随着光声技术的发展,基于石英增强光声光谱(QEPAS)的痕量气体传感器具有更佳的抗噪性和更强的分析能力。随后兴起的拍频石英增强光声光谱(BF-QEPAS)技术在响应时间和校准间隔方面比传统的 QEPAS 更具优势。BF-QEPAS 要求激光调制频率与石英音叉(QTF)谐振频率失谐,当激光波长快速扫描通过目标吸收线时,可以得到两个频率之间的拍频信号,快速获取及反演痕量气体浓度。因此,BF-QEPAS 避免了校准过程和波长锁定要求,并允许对目标痕量气体进行实时监测。 山西大学团队针对选定的氨吸收线,采用中心波长为 10.359 µm 的连续波(CW)分布式反馈量子级联激光器(DFB-QCL)作为光源。项目组采用的激光波长调谐范围涵盖从 964.955 cm-1 到 966.873 cm-1,其中在965.35 cm-1是一条几乎不受水和二氧化碳干扰的强吸收谱线。昕虹光电为项目组提供了QC-Qube 全功能迷你量子级联激光器发射头,集成了高质量进口激光芯片、珀耳帖冷却器、低噪声风扇和输出光束准直透镜组,便于科研人员快速搭建一套基于QCL的激光发射光源。 如图二所示,传感器系统由呼吸采样系统、光声传感单元、控制与数据处理单元三部分组成。呼吸采样系统旨在收集呼出气并调节气体压力和流量,为光声检测提供合适的测量环境。光声传感单元则是采用了BF-QEPAS技术的传感器核心部分。其中,控制和数据处理单元中采用了来自昕虹光电的QC750-touch屏显激光驱动器,为激光器提供工作电流并控制其温度。实验结果显示该传感器原型机能够达到9.5ppb的检测极限。 图二 基于BF-QEPAS的人体呼出气氨传感器原型照片 项目组并演示了八名健康志愿者基于 BF-QEPAS 传感器系统的呼出气实时氨测量。图三为一个典型呼气过程中氨和二氧化碳的浓度变化曲线。八名健康受试者的测量结果氨浓度分布在150-640ppb范围内,均低于1500ppb的安全阈值。实验表明,即使是健康的受试者也存在较大的个体浓度差异。 图三 基于 BF-QEPAS 传感器系统的志愿者呼出气实时测量浓度曲线 参考文献:Biao Li, Chaofan Feng, Hongpeng Wu, Suotang Jia, Lei Dong, Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level, Sensors and Actuators B: Chemical, Volume 358, 2022, 131510, ISSN 0925-4005,
  • 哈希“氨氮大比武”总决赛成功举行
    仪器信息网讯 2012年3月22日,由哈希公司举办的 “氨氮大比武,我测最准”年度总决赛在北京中日友好环境保护中心顺利召开。“氨氮大比武”是继“COD大比武”后哈希公司举办的又一次大型市场活动,共吸引了全国七大赛区的近千名用户报名,最终角逐出的每个赛区的前三名组成小分队参加此次总决赛。仪器信息网作为特邀媒体参加了此次活动。 活动现场   氨氮参数是“十二五”新增控制和检测的约束性指标,哈希公司这届“大比武”正是响应了市场的趋势,积极帮助用户做好氨氮参数测定相关工作。从活动网上报名情况来看,报名参加此次活动的用户来自环境监测站、环科院、自来水污水厂、排水公司、水务公司以及工业企业等单位,行业覆盖面广,深受用户欢迎。   DR3900分光光度计   本次氨氮大比武采用哈希2011年推出的DR3900分光光度计以及TNTplus氨氮条形码试剂作为测试仪器与试剂,包括样品检测、团队风采展示与个人演说、哈希知识抢答等环节。选手们在比赛中亲身体验到了DR3900给测试带来的便利性,并分享了自己在氨氮测试中的经验,同时也与哈希公司的工程师就技术问题进行了现场交流。选手们均表示,参加此次“氨氮大比武”既学习到了相关技术,也能够与同行们进行交流,收获颇丰。 现场操作 团队展示   经过激烈的角逐,华东赛区小分队获胜,荣膺“氨氮测试优胜团队”。来自华中赛区的陈希女士获得了“2011-2012年度氨氮测试达人”称号,她所在单位还将获赠哈希公司即将上市的DR6000分光光度计。 “氨氮测试达人”颁奖留念 获胜团队颁奖留念   哈希公司表示,氨氮大比武活动不仅是一个比赛,更是哈希公司与客户,客户与客户之间相互交流的平台,未来还将继续举办此类活动。 全体参赛人员环境保护中心留念   附录:美国哈希公司   http://www.hach.com.cn/   http://hach.instrument.com.cn/   相关新闻:哈希“COD大比武”年度总决赛与“DR3900分光光度计全球首发会”在京举行
  • 甲氨蝶呤、革兰阳性菌鉴定等14项试剂注册审查指导原则发布
    近日, 国家药监局器审中心发布了血液融化设备、甲氨蝶呤检测试剂、革兰阳性菌鉴定试剂等14项医疗器械产品注册审查指导原则。在这些原则中“甲氨蝶呤检测试剂注册审查指导原则”和“革兰阳性菌鉴定试剂注册审查指导原则”适用于质谱检测法。甲氨蝶呤检测试剂注册审查指导原则适用范围:本指导原则适用于以化学发光法、液相色谱-串联质谱法、均相酶免疫等方法对人体血清/血浆中甲氨蝶呤进行定量检测的体外诊断试剂。其他方法学的甲氨蝶呤检测试剂注册可参照本指导原则,但应根据产品的具体特性确定其中内容是否适用。革兰阳性菌鉴定试剂注册审查指导原则适用范围:本指导原则适用于利用生化鉴定原理,鉴定临床医学相关的革兰阳性需氧型、厌氧型或兼性厌氧细菌的试剂(革兰阳性菌及其鉴定简介见附件);检测样本为从血液、体液、粪便、泌尿生殖道分泌物等临床样本中分离的纯菌。《血液融化设备注册审查指导原则》等14项医疗器械产品注册审查指导原则.ra
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 四种方法九类仪器 国家监测网水质氨氮检测情况揭晓
    近日,中国环境监测总站通报了2015年第一轮国家环境监测网实验室水中氨氮能力考核结果。结果显示,364家单位使用的方法共四种,仪器共九种,分别为流动注射分析仪、便携式可见分光光度计、多参数水质分析仪、可见分光光度计、连续流动注射分析仪、气相分子吸收光谱仪、实验室氨氮自动分析仪、台式氨氮水质分析仪和紫外可见分光光度计。其中使用频率最高的为可见分光光度计,比例为65.7%。  原文如下:关于2015年第一轮国家环境监测网实验室水中氨氮能力考核结果的通报(总站质管字[2015]154号)  各省、自治区、直辖市环境监测中心(站)、新疆生产建设兵团环境监测中心站:  为掌握国家网环境监测和质量管理水平,持续监督成员单位质量体系的有效性,保证监测数据质量,根据《关于印发的通知》(总站质管字[2015]51号),中国环境监测总站开展了2015年第一轮国家环境监测网实验室水中氨氮能力考核工作,现将此次能力考核的结果通报如下:  一、基本概况  本次考核对象为各省(自治区、直辖市)地级城市(含)以上监测站,考核项目为水中氨氮。实际共有360家监测站报名,占全部考核对象的比例为97.6%。另有总站质检室、新疆生产建设兵团第一师等10家非考核范围内的单位报名参加。  考核共发放水中氨氮样品370份,收回结果367份,有3家单位(江西宜春市环境监测站、宁夏吴忠市环境监测站、宁夏中卫市环境监测站)未能在规定时间内提交考核结果。  未报名参加考核以及提交《盲样未能检测情况说明》的单位详见附件6。  二、考核结果  1、结果统计与能力评价  本次考核参照《能力验证结果的统计处理和能力评价指南》(CNAS-GL02),采用四分位数稳健统计方法,对盲样测定结果进行统计。  考核所用的盲样为氨氮样品,每个单位收到1支考核样。样品分为五种浓度水平,各浓度水平的样品编号由国家环境监测网能力考核系统平台自动随机生成,详见附件1。各参加考核单位的结果评价汇总表见附件2。各浓度水平样品的主要稳健统计参数汇总见附件3,Z比分数图见附件4。表1 2015年第一轮水中氨氮能力考核总体情况   本次考核总体情况见表1,考核结果分布图见图1。在收回的364份有效结果中,考核结果为“满意”的单位为321家,占88.2%。  图1 2015年第一轮水中氨氮能力考核结果分布图  2、基本信息统计  (1)检测方法统计  本次考核各参加单位使用的检测方法分布情况见表2。由表2可见,使用《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)的单位最多,比例为97.3%。  表2检测方法分布情况  (2)仪器设备及其类型统计  本次考核各参加单位使用的仪器设备有:流动注射分析仪、便携式可见分光光度计、多参数水质分析仪、可见分光光度计、连续流动注射分析仪、气相分子吸收光谱仪、实验室氨氮自动分析仪、台式氨氮水质分析仪和紫外可见分光光度计等共9种。其中使用可见分光光度计和紫外可见分光光度计的单位最多,分别占65.7%和29.7%,其次是连续流动注射分析仪,所占比例为2.2%。仪器设备分布情况见表3。  表3 仪器设备分布情况  (3)标样来源统计  本次考核的统计结果表明,各参加单位使用的氨氮标样来源主要是环保部标准样品研究所,所占的比例为98.9%。另外还有个别单位的氨氮标样来源于中国计量科学研究院、国家有色金属及电子材料分析测试中心和中国测试技术研究院等。  3、质量体系问题统计  从本次考核的结果报告单中,发现了9类主要质量体系问题,包括测定值有效位数保留不对,数据无效不参与统计、系统填报与盖章版结果报告单填写不一致、相对误差计算错误、质控措施中测定值有效位数保留不对、三级审核信息填写不完整或日期有误、结果报告单未盖章、结果报告单修改不规范、样品基本信息(如检测方法名称、标样厂商、样品编号等)填写错误、方法检测限填写错误等。  其中,相对误差计算错误一类问题出现的最为普遍,占的比例为26.4%。其次表现为三级审核信息填写不完整或日期有误、方法检测限填写错误、样品基本信息(如检测方法名称、标样厂商、样品编号等)填写错误,各均占3.5%左右。详见表4。  表4 质量体系问题分布情况表  4、各省结果统计  本次考核中所涉及的全国省、自治区、直辖市的考核结果汇总情况见表5。各省辖区内单位的考核结果情况见附件5中的分省报告。  表5 各省(自治区、直辖市)级站考核结果汇总表  三、结论与建议  1、本次水中氨氮能力考核结果满意率为88.2%,与以往的能力考核相比,结果满意率有了一定幅度的提高,表明国家环境监测网各成员单位水中氨氮的检测能力和技术水平整体较好。  2、从不同浓度水平样品的考核结果来看,低浓度样品较高浓度样品的结果满意率偏低。需要进一步加强对低浓度样品的检测能力,提高低浓度样品的检测水平。  3、建议国家环境监测网各成员单位进一步加强实验室的质量管理,规范三级审核等各项管理制度,保障监测数据质量,不断提高实验室质量管理水平,促进质量管理体系有效运行与持续改进。
  • 污染排放控制增氨氮和氮氧化物两项指标
    环保部污染物排放总量控制司司长赵华林表示,“十二五”期间,除了“十一五”期间已经实施的二氧化硫(SO2)和化学需氧量(COD)外,氨氮(NH3-N)和氮氧化物(NOX)也将纳入总量控制。   赵华林日前在“2010(第八届)城市水业战略论坛”上表示,“十二五”期间会对氨氮和氮氧化物进行总量控制,同时也会将重金属、可吸入物等减少污染的责任放在地方政府。   他说,现在空气中含有的氨氮已经超过了二氧化硫,成为空气中的主要污染物,“现在的酸雨已由硫酸型酸雨转向硝酸型酸雨,”而水中的氮氧化物也使得水体酸化和富营养化,出现了大量的蓝藻问题。   “最近重金属污染也出了很多事”,赵华林表示,会根据不同地区在重金属、磷等问题上要求地方政府有总量控制。   链接   氮氧化物   包括多种化合物,如一氧化二氮、一氧化氮、二氧化氮等。氮氧化物都具有不同程度的毒性,可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病。以一氧化氮和二氧化氮为主的氮氧化物是形成光化学烟雾和酸雨的一个重要原因,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。   氨氮   是水体中的重要耗氧污染物,氨氮对自然环境和人体有很大的危害,如水源中氨氮浓度过高,将导致自来水中加氯量增加,从而使自来水中有机氯量随之相应增加,对人体健康产生不利影响。氨氮也可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。
  • 标准解读|《水产养殖水体中氨氮的测定 气相分子吸收光谱法》(SC/T 9444-2023)标准发布
    近期,为保护农业水产养殖水体污染,改善养殖水环境质量,中华人民共和国农业农村部2023年4月11日发布《水产养殖水体中氨氮的测定 气相分子吸收光谱法》(SC/T 9444-2023)标准,该标准是由中国水产科学研究院珠江水产研究所起草,已于2023年8月1日实施。上海安杰智创科技股份有限公司作为《水产养殖水体中氨氮的测定 气相分子吸收光谱法》(SC/T 9444-2023)标准的验证单位,参与该标准的起草工作。1.仪器和设备2.适用范围本文件描述了用气相分子吸收光谱法测定水产养殖水体中氨氮含量的方法原理、试剂与材料、仪器和设备、样品采集和保存、干扰和消除、测定、结果计算和检测方法灵敏度、准确度、精密度。本文件适用于水产养殖水体(淡水、海水、养殖用水和排放水)中氨氮的测定。其他水体可参照执行。3.方法原理水样在除去亚硝酸盐等干扰后,用次溴酸盐氧化剂将氨及铵盐氧化成等量亚硝酸盐,在盐酸介质中,加入无水乙醇作催化剂,将亚硝酸盐转化成NO2,用载气载入气相分子吸收光谱仪中,测得的吸光度与NO2浓度遵守朗伯比尔定律。中国水产科学研究院珠江水产研究所与安杰科技合作,购买了安杰科技AJ-3700气相分子吸收光谱仪,应用于水产养殖水质中氨氮的检测。国家重大专项“多功能气相分子分析仪的开发及工程化应用”项目启动会公司承担了国家科技部“重大科学仪器设备开发”重点专项1项、上海市高新技术成果转化项目6项、上海市中小企业科技创新基金项目1项、上海市科学技术委员会科研计划项目1项、上海张江国家自主创新示范区专项发展资金项目1项;牵头起草、参与编制了国家标准和行业标准15项。安杰科技根据市场变化、广大客户的实际需求,不断完善气相分子吸收光谱仪的各项使用功能,使其能够更加的自动化、智能化,能够为客户的检测工作带来满意的体验。AJ-3700 气相分子吸收光谱仪应用范围应用于生态环境监测、水文水资源监测、城市排水监测、石油化工环境监测、第三方监测等水质分析。检测指标测定水中硫化物、氨氮、总氮、亚硝酸盐氮、硝酸盐氮、凯氏氮等指标。产品优势1.全自动检测:样品放置后无须人工干预,全自动测量并出具结果报告;2.测量速度快:根据不同测定项目,实现2-5分钟出具测定结果;3.抗干扰性强:具有一定色度浊度的样品可直接进样测定,无需前处理;4.绿色环保:无高氯汞等可对人体、环境造成二次污染的化学试剂。
  • 亨斯迈聚氨酯(中国)有限公司完成UL94燃烧测试仪安装调试工作
    莫帝斯技术(中国)有限公司,日前已经完成亨斯迈聚氨酯(中国)有限公司,UL94水平垂直燃烧仪的安装调试工作,目前客户已经投入使用该测试仪器,并进行内部测试服务工作。 Firemaster UL94 水平垂直燃烧仪,设计为对设备和器具部件材料的可燃性能试验,众多应用于最终用途的测试指标如易燃性能、燃烧速率、火焰蔓延、燃烧强度及产品的阻燃性能均可被检测。 其可检测的标准为以下: 水平燃烧测试:UL HB、IEC 60695-11-10、IEC 60707、ISO 1210、GB/T 2408 50W 垂直燃烧测试:UL94 V0、V1、V2、IEC 60695-11-10、ISO 1210、GB/T 2408 500W垂直燃烧测试:UL94 5VA、5VB、IEC 60695-11-20、ISO 9770、GB/T 5169.17 薄膜材料垂直燃烧测试:VTM-0、VTM-1、VTM-2、ISO 9773 泡沫材料水平燃烧测试:HF-1、HF-2、HBF、ISO 9772、GB/T 8332 亨斯迈聚氨酯(中国)有限公司介绍: 亨斯迈聚氨酯(中国)有限公司是亨斯迈聚氨酯公司在中国的子公司。亨斯迈聚氨酯是世界上最大的二苯基甲烷二异氰酸酯(MDI)的制造商之一。公司同时生产软质和硬质聚醚多元醇、聚酯多元醇、聚醚胺、环氧丙烷和组合聚醚多元醇系统和聚脲系统。 亨斯迈聚氨酯有限公司是亨斯迈集团的业务之一。 亨斯迈聚氨酯进入大中华已经有十多年的历史,是中国化学工业的外国投资方之一。目前,亨斯迈聚氨酯在上海拥有独资的组合聚醚多元醇混拌工厂及合资的MDI制造工厂和集仓储与分发为一体的贸易公司。为了更好地满足中国市场的需求,公司在香港,上海,北京,广州,青岛还设立了办事处。 公司网站地址:www.huntsman.com/pu www.motis-tech.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制