当前位置: 仪器信息网 > 行业主题 > >

尔扑利诺

仪器信息网尔扑利诺专题为您提供2024年最新尔扑利诺价格报价、厂家品牌的相关信息, 包括尔扑利诺参数、型号等,不管是国产,还是进口品牌的尔扑利诺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合尔扑利诺相关的耗材配件、试剂标物,还有尔扑利诺相关的最新资讯、资料,以及尔扑利诺相关的解决方案。

尔扑利诺相关的资讯

  • 1976年诺贝尔化学奖得主利普斯科姆逝世 享年91岁
    1976年诺贝尔化学奖获得者、哈佛大学教授威廉利普斯科姆(William Lipscomb)于4月14日因肺炎及并发症不幸逝世,享年91岁。 威廉利普斯科姆(图片来源:哈佛大学)   利普斯科姆于1919年出生,1941年从美国肯塔基大学毕业,同年进入加州理工学院攻读物理,1942年师从里纳斯鲍林(Linus Pauling)学习物理化学,1946年获理学博士。1946-1958年在明尼苏达大学任教,1959年任哈佛大学教授直至退休。   1976年,因在硼烷结构方面的研究贡献,利普斯科姆荣获诺贝尔化学奖。
  • 【CPHI 2019】艾杰尔-飞诺美首个智能自助式色谱展台诚邀您的莅临
    CPhI China 世界制药原料中国展历经十八载潜心钻研,前进的脚步从未停止,2019年6月18-20日将再度登陆上海新国际博览中心。本次会议,艾杰尔-飞诺美推出首个智能自助式色谱展台,让您有一个不一样的体验。艾杰尔-飞诺美N1馆 C30号展台期待您的莅临。艾杰尔飞诺美诚邀莅临主题沙龙6月18日上午 10:30-11:30《核-壳和全多孔技术的共用和互补:更好的HPLC和UHPLC结果》主题报告将在 W5馆F92准时与您相见。精彩活动展台现场,我们为您准备了艾杰尔飞诺美色谱产品及精彩的互动活动:关注微信即可参与转盘抽奖。有机会抽取科学家板夹、口罩、小鸟钥匙环、手机支架、T恤衫一份,转到什么给什么。数量有限,先到先得!与色谱产品指南合影还可有机会额外领取精美小礼品一份哦!活动细则详询N1馆 C30号展台工作人员。【粉丝福利】提前注册享免费参会关注微信,获取预注册链接,按要求将信息填写完整并提交,预注册成功的观众即可在2019年6月18-20日免费参加CPhI 2019。
  • 中国离诺贝尔奖还有多远?白春礼院士:我看好物理领域
    黑西装、金属眼镜……在4月13日举行的中国化学会第28届学术年会开幕式暨中国化学会八十华诞庆祝仪式上,中国科学院院长白春礼院士以《在发现与创造中不断发展化学科学》为题,展开了首场报告。他回顾了化学在人类生活中发挥的巨大作用,并指出研究社会公共安全问题也是化学的使命。中国离诺贝尔奖还有多远?白春礼表示,他看好我国物理研究领域。   化学关注公共安全   白春礼说,多年来,我国化学研究在与生命、材料、环境等学科的交融中,催生了许多新兴交叉的前沿   学科,促进着人们生活、生产方式的发展和转变。“化学在解决新能源危机、探索太空等方面都发挥着重大的作用。化肥,它让我们从饥饿中拯救出来 还有各种化学药物的产生,也让人类的健康更有保障。”   化学的使命是什么?针对地沟油、三聚氰胺等社会热点问题,白春礼说,“化学在食品安全检测、化学事故处理救援、炸药与毒品等方面发挥至关重要的作用。社会公共安全问题呼唤化学。这也是我们化学研究的使命之一。”   “如今,我国化学领域论文的数量在国际刊物中与美国并驾齐驱。”白春礼说,“在质量和影响力方面,我国化学论文还需要提高,原创方面还需要创新。”   诺贝尔奖不能规划   去年,汤森路透集团研究服务引文分析师David曾分析,“诺贝尔化学奖、物理学奖将先于生理学或医学奖来到中国。”对这一观点,白春礼认为,“不能提前规划和预测”。   “自然科学领域的研究成果是不能人为规划的。相信只要科研人员能够专心致力于研究,假以时日就能取得非常大的成功。”   中国离诺贝尔奖还有多远?白春礼请记者重点关注日前大亚湾中微子实验的重大发现。3月8日,中科院高能物理研究所王贻方宣布,中国大亚湾中微子实验室发现了一种新的中微子振荡,并测量到它的振荡频率。这一消息在世界物理界获得广泛的关注。白春礼认为,这是目前中国最有希望获得诺贝尔奖的一个成果。
  • 艾杰尔飞诺美:生物医药专用色谱柱新品来袭
    p style=" text-align: justify line-height: 1.75em "   “想要提高生物大分子分离度,让分离效果更佳? /p p style=" text-align: justify line-height: 1.75em "   蛋白表征和分析方法的批次间重现性不满意? /p p style=" text-align: justify line-height: 1.75em "   ——我们的科学家和工程师始终以客户的挑战为挑战,以客户实际需求出发,不断开发出令客户更加满意的新的产品和技术。” /p p style=" text-align: justify line-height: 1.75em "   艾杰尔飞诺美隆重推出—— strong 专注于生物大分子分析的bioZen WidePore C4色谱柱 /strong 。作为bioZen产品家族新的成员, span style=" color: rgb(0, 176, 240) " strong 该款产品可用于改善反相条件下的完整和亚基单克隆抗体(mAbs)的反相分析,该产品将于6月1日起在中国区全面上市,并在官方渠道正式发售。 /strong /span /p p style=" text-align: justify line-height: 1.75em " span style=" color: rgb(192, 0, 0) " strong   新品优势表现 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1、在核-壳颗粒基础上实现400Å 超窄孔径分布,为复杂的大分子生物制剂分析提供高分离度解决方案 /p p style=" text-align: justify line-height: 1.75em "   2、实心硅胶核上形成均匀的多孔外壳的核-壳颗粒粒径分布统一,符合需要高灵敏度应用的要求 /p p style=" text-align: justify line-height: 1.75em "   3、2.6 µ m粒径兼容于HPLC及UHPLC系统 /p p style=" text-align: justify line-height: 1.75em "   4、先进的填装技术确保超优柱床结构及色谱柱性能 /p p style=" text-align: justify line-height: 1.75em "   5、三键键合 C4键合技术使得在LC-UV 和 LC-MS下都有较高的灵敏度。 /p p style=" text-align: justify line-height: 1.75em "   6、采用先进的工艺优化系统提升产品的一致性,并通过额外的QC测试来确保产品的批次重现性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/a751f4f3-9562-4011-9f2e-9bc1dcd4818f.jpg" title=" 1111111.png" alt=" 1111111.png" / /p p style=" text-align: center line-height: 1.75em "   图注:bioZen WidePore C4 2.6μm /p p style=" text-align: justify line-height: 1.75em "   飞诺美全球生物产品经理Brian Rivera对该款产品表示:“bioZen 2.6 µ m WidePore C4的开发融合了生产及工艺上的优化,这使得我们对这款色谱柱非常有信心,确信研究人员能够利用这款生物制剂分析专用色谱柱取得优异的重现性和满意的性能!” /p p style=" text-align: justify line-height: 1.75em "   除bioZen WidePore C4外,bioZen系列产品还包括7种用于UHPLC和HPLC表征生物治疗剂(例如单克隆抗体、抗体-药物偶联物和生物类似物)的化学特性。 bioZen还提供样品前处理解决方案。此外,所有bioZen 液相色谱柱均采用生物相容钛硬件,与传统的不锈钢硬件相比,可大幅减少次级相互作用、残留和其他回收问题,从而提供更好的重现性,并显著降低预充时间,避免干扰蛋白质或肽的完整性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b4dd32a0-5fe0-4ba5-96bb-f3680d3312ed.jpg" title=" 22222222.png" alt=" 22222222.png" / /p p style=" text-align: center line-height: 1.75em "   图注:bioTI 生物兼容性钛 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 关于艾杰尔-飞诺美   /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 艾杰尔-飞诺美潜心钻研生物医药技术,持续以优质的产品质量,快速的技术支持响应和方法开发服务于行业领域用户,助力并加速提高全球的健康水平及幸福感。多年来相继推出了蛋白、寡核苷酸、合成肽分析的生物分离液相色谱解决方案。 /p p br/ /p
  • 重磅!2023年诺贝尔化学奖揭晓!量子点绘制绚丽纳米世界!
    2023年10月4日下午,瑞典皇家科学院决定将2023年诺贝尔化学奖授予美国麻省理工学院教授蒙吉G巴文迪(Moungi G. Bawendi)、美国哥伦比亚大学教授路易斯E布鲁斯(Louis E. Brus)和美国纳米晶体技术公司前首席科学家阿列克谢伊基莫夫(Alexei I. Ekimov),以表彰他们在量子点的发现和发展方面的贡献。三人将分得1100万瑞典克朗,约合人民币725万元。量子点是纳米大小的半导体材料,具有独特的光学和电子性质。由于它们可以发出特定颜色的光,且荧光亮度超过传统荧光体,被广泛应用于显示器、照明和生物成像技术。此外,量子点还可以作为光电材料,将光能转化为电能,被应用于太阳能电池和光电器件等领域。在医学领域,量子点被用作生物成像和药物输送,帮助医生了解和诊断病情,提高药物治疗效果。蒙吉G巴文迪(Moungi G. Bawendi):1961年出生于法国巴黎,法国-突尼斯裔美国化学家,美国艺术与科学院院士,美国国家科学院院士,诺贝尔化学奖获得者,美国麻省理工学院教授,是量子点领域的先驱之一,他在该领域的研究成果为制备高质量的量子点材料奠定了基础,并开发出新颖的制备方法,提高量子点的性能,并拓展了应用领域。路易斯E布鲁斯(Louis E. Brus):1943年出生于美国俄亥俄州,美国艺术与科学院院士,美国国家科学院院士,挪威科学与文学院外籍院士,诺贝尔化学奖获得者,美国哥伦比亚大学化学系教授,他创造了量子点术语,在量子点的表征和理解方面做出巨大贡献。阿列克谢伊基莫夫(Alexei I. Ekimov):1945年出生于苏联列宁格勒,俄罗斯物理学家,诺贝尔化学奖获得者,美国纳米晶体技术公司首席科学家,他发现新型半导体量子点材料,推动量子点技术发展,给各领域的应用创新提供可能性。诺贝尔化学奖近五年得主2022年诺贝尔化学奖授予美国化学家卡罗琳贝尔托西(Carolyn R. Bertozzi)、丹麦化学家摩顿梅尔达尔(Morten Meldal)和美国化学家卡尔巴里夏普莱斯(K. Barry Sharpless),以表彰他们在链接化学和生物正交化学的发展作出了贡献。2021年诺贝尔化学奖授予德国科学家本杰明李斯特 (Benjamin List) 和美国科学家戴维麦克米伦 (David MacMillan),以表彰他们对不对称有机催化的发展所作出的贡献。2020年诺贝尔化学奖授予埃马纽埃尔卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗杜德纳(Jennifer A. Doudna),以表彰她们在“凭借开发基因组编辑方法”方面作出的贡献。2019年诺贝尔化学奖授予约翰古迪纳夫(John B. Goodenough),斯坦利威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino),以表彰他们在锂离子电池领域的贡献。2018年诺贝尔化学奖授予美国科学家弗朗西斯阿诺德(Frances H. Arnold)、美国科学家乔治史密斯(George P. Smith)和英国科学家乔治保罗温特(Gregory P. Winter),以表彰他们在“酶的定向进化”以及“多肽与抗体的噬菌体展示技术”领域的贡献。
  • 魅力化学--瑞士步琪与诺贝尔奖得主会谈
    www.labculture.com (Richard R. Ernst教授会晤瑞士步琪有限公司Christian Zwicky,就其诺贝尔奖获奖之路进行交谈。) 诺贝尔奖获奖者、ETH教授Richard Ernst相信:只有人们拥有了广阔的知识面,才能得以了解某一领域中的复杂问题。正如一位著名的哲学家曾经说过的:“如果仅仅只专研化学,那最终也无法得其精华。”因此在采访过程中,这位科学家一再强调:培养广泛的兴趣对每个人都至关重要,从中我们可以获取丰富的经验、理解世间万物间的联系,而这些真理使尔等得自由。这位诺贝尔获奖者在谈话期间经常描绘到即使是在不同领域,例如:化学和音乐、化学和西藏艺术间,均有着惊人的相似之处。而存在于这些不同领域间的差异是可以通过探索某种途径进行互补的,此时科学家和人们所具备创造能力、革新能力便是重中之重。 基于以上原因,Richard Ernst感谢BUCHI产品给化学家带来更多革新机会和灵感来源。“众所周知,BUCHI研发销售的产品大部分是由玻璃组成的。”而这一特性将带来长久的优势,当使用BUCHI的仪器时,整个工作过程可视化,而无须盲人摸象般跟着感觉走。Ernst教授阐述:实验过程中的不仅重视手工操作还应明悉洞察,这就需要手脑并用。正因如此,Ernst教授更乐于在实验室内工作。“对化学家而言实验和过程干预都是非常重要的”。而BUCHI的仪器正是理想之选。 “你会问化学和音乐的共同点为何?”- 音乐既为光谱学 在ETH获得博士学位后,Richard Ernst急切地期望能学以致用,逃出象牙塔。他来到了美国从事工业研发工作,并在那里度过了有趣的5年。时至今日,他似乎对再次回到ETH仍感到懊悔:“大约回来后的九至十个月,我都有些神经衰弱了。”然而,熬过最初的那段低落后,他便进入了职业生涯中的高峰期,并最终在1991年获得了诺贝尔奖。当得奖信息传到他耳中时,他正安坐在飞机内,飞越英格兰的上空。“当时机长走向我,并问我是否是Ernst?我回答‘我是,但请让我安静片刻,我想打个盹。’”然而机长掩饰不住兴奋之情,他认为Ernst现在可不是休息的时候,因为他刚获得了诺贝尔奖。显然,这是从莫斯科到纽约途中令人激动的一刻。在会晤临近尾声时,瑞士步琪有限公司市场部兼研发主管Christian Zwicky就步琪公司未来的发展向这位诺贝尔获奖者讨教时,他回答道:“请继续保持现状,你们是制造行业中的一个闪光点。每天都在输送着可靠完善的产品。” 阅读全文请点击:www.labcultrue.com
  • 艾杰尔-飞诺美第1000台中压纯化色谱落户康龙化成
    p    strong 仪器信息网讯 /strong 2019年4月3日,艾杰尔-飞诺美第1000台CHEETAH系列中压纯化色谱交付仪式在宁波康龙化成工厂举行。康龙化成副总裁魏忠勇、艾杰尔-飞诺美中国区总经理施扬等双方高层以及相关员工出席活动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/6a8f28b0-fa14-48bd-9c7e-ef26a646e53d.jpg" style=" " title=" 1.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/5a4d89f6-9db1-4927-87b7-231e9a2cdbed.jpg" style=" " title=" 2.jpg" / /p p style=" text-align: center "   交付仪式现场 /p p   艾杰尔的CHEETAH中压快速纯化制备色谱诞生于2009年,型号先后更新为CHEETAH MP100、CHEETAH MP200等 2018年推出了该系列的第二代产品CHEETAH II型,至今已近十年,纯化仪器数量也达到了1000台。 /p p   第1000台CHEETAH的用户是康龙化成,即是巧合也是必然。艾杰尔-飞诺美与康龙化成的合作源于色谱耗材。其关于仪器设备的合作开始于2010年,也就是CHEETAH上市的时间。至今,康龙化成拥有的CHEETAH仪器设备数量已经将近400台,占整个公司纯化设备的50%。而且据介绍,这些仪器是在10年间陆续购入的。当编辑问到康龙化成副总裁魏忠勇为何康龙化成会一直采购CHEETAH时,魏忠勇提到了三点,一是药物研发非常需要中高压纯化色谱;二是艾杰尔-飞诺美的纯化色谱仪器非常稳定,及长期稳定性好;最后一点即是艾杰尔-飞诺美的售后服务及时、质量好。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/b3a01786-1f95-4460-8155-5cc38270d7bf.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center "   艾杰尔-飞诺美中国区总经理施扬 /p p   艾杰尔成立于2007年,是一家专业从事色谱分离材料和自动化设备的高新技术企业。2014年,其生产的CHEETAH MP 200中压制备色谱入选国产好仪器(仪器信息网联合中国仪器仪表行业协会组织的项目)。2016年,艾杰尔与美国Phenomenex公司先后加入丹纳赫集团。2018年Phenomenex与艾杰尔联合。2019年3月新的LOGO在中国范围内正式启用,意味着,艾杰尔-飞诺美全面贯彻并推广Agela(艾杰尔)与Phenomenex(飞诺美)双品牌发展策略,从而全面打造双品牌“并驾齐驱”的市场格局。施扬说到,今天的活动是新LOGO的第一次亮相。今后,艾杰尔-飞诺美提供给用户的不仅仅是色谱耗材,而是从前处理、分析、制备全方位的解决方案。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/cadba6bc-d979-4d12-8520-95af5ee65837.jpg" style=" " title=" 4.jpg" / /p p style=" text-align: center " 艾杰尔-飞诺美推出双品牌LOGO标识 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/cca7e77f-51ca-4124-bbc3-2b25eb5951a0.jpg" style=" " title=" 5.jpg" / /p p style=" text-align: center "   康龙化成副总裁魏忠勇 /p p   康龙化成新药技术股份有限公司成立于2003年,是国际化的生命科学研发服务企业。其主营业务涉及新药研发临床前的全流程,包括化学、生物、药物代谢及药代动力学、药理、毒理等各个领域,目前在全球员工总人数已达6000多人。康龙化成于2014年在宁波杭州湾新区投资建设康龙化成生命科技产业园,此次新购入的CHEETAH II即是在这里交付使用的。魏忠勇谈到,康龙化成与艾杰尔-飞诺美这些年来共同发展,都取得了非常快速的发展成果,未来也将携手发展。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/db09bd28-e623-4a28-ab92-eeec326854c0.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center "   艾杰尔-飞诺美中国区销售总监牛玉峰主持活动 span style=" text-align: justify "    /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/85dace24-5d2d-41e1-9109-057ffde23b66.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " 艾杰尔-飞诺美服务团队 /p p   就像康龙化成副总裁魏忠勇说到的,康龙化成一直采购CHEETAH的原因之一就是艾杰尔-飞诺美的售后服务好。这次的交付仪式上,艾杰尔-飞诺美服务团队也“隆重”亮相。艾杰尔-飞诺美非常重视应用方法的开发,目前公司已拥有国际水准的色谱分离材料的自主研发、应用和生产队伍,拥有装备精良的分析和纯化应用服务实验室,并积累了相当多的分离纯化应用的宝贵经验。 /p p   而对于具有重要意义的第1000台CHEETAH中压纯化色谱仪器用户,艾杰尔-飞诺美服务团队成员纷纷保证将提供更及时、高质量的售后服务。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/8f57c43f-be19-46b3-8e2a-1d3691f88f1c.jpg" style=" " title=" 8.jpg" / /p p style=" text-align: center " 双方领导共同揭幕交接牌 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/b1f233bd-2679-48ec-b961-4b80c365b6aa.jpg" style=" " title=" 9.jpg" / /p p style=" text-align: center " 双方领导切蛋糕,答谢会正式开始 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/9b5cf754-7039-4853-85f7-01e26db5fb39.jpg" style=" " title=" 10.jpg" / /p p span style=" text-align: justify " /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/dc09c0b8-b573-44d5-b916-a0897f96f1f1.jpg" title=" IMG_1218_meitu_1.jpg" alt=" IMG_1218_meitu_1.jpg" / /p p style=" text-align: center " span style=" text-align: justify " 用户体验 /span /p p   本次交接的第1000台中压纯化色谱于2018年10月上市,已入围仪器信息网2018年度科学仪器行业优秀新产品名单。该新品具有很多功能,如控制单元通过无线网络与主机连接,可实现远程控制,实验人员可以坐在隔壁办公室操作实验室内的仪器,免受化学试剂对身体的伤害 软件具有数据权限管理功能,可设计不同账户权限级别,登录后获得相应权限,保障实验数据安全 使用PDA检测器实现全波长扫描,创新地对扫描的峰给出一个光谱角度的纯度值。 /p
  • 分配色谱发明人阿切尔•马丁诺贝尔奖奖章被拍卖
    1952年,英国化学家阿切尔•马丁(Archer Martin)和理查德辛格(Richard Synge)因发明分配色谱法获得诺贝尔化学奖。近日,阿切尔•马丁的家人于通过伦敦的拍卖商Noonans将其获得的诺贝尔奖牌拍卖,同时被拍卖的还有他的CDE勋章、旭日章以及Leverhulme Medal等其他荣誉奖章。该诺贝尔奖牌最后以15万英镑成交。马丁发展分配色谱始于第二次世界大战期间。由于他患有胃溃疡,他被允许得到额外的牛奶配给,因为当时牛奶被认为是一种抗炎药。然而,他发现,由于巴氏杀菌技术的发展,牛奶疗法逐渐失效,这让他将他工作目标放在了未经过巴氏消毒的牛奶上。马丁随后使用他开发的色谱技术分离了牛奶中的成分,鉴定了乳清中的活性成分,然后将其浓缩。他说服了多家公司测试这种提取物,最后发现这种提取物可以缓解炎症。马丁和辛格之后继续开发并发展了这种技术,并将其用于确定气体混合物组分。马丁虽然已经于2002年去世,但他的科学遗产意义重大。今天,色谱技术已经成为了化合物分离分析不二选择,在制药、食品、化工等各个领域广泛应用。
  • 免疫治疗得诺贝尔奖了,我们距离治愈肿瘤还有多远?
    p style=" text-indent: 2em " 人类与肿瘤抗争已逾百年。冷静地说,阶段性胜利并不多,免疫治疗大概算一个。昨天,2018年诺贝尔生理学或医学奖颁布,美国科学家詹姆斯· 艾利森(James P. Allison)与日本科学家本庶佑(Tasuku Honjo)因在肿瘤免疫领域的原创发现分享了该奖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9967c246-cf33-4186-a068-11851263511b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em " 都说免疫治疗开启了肿瘤治疗的第三次革命,具有划时代意义。放眼全球,肿瘤的威胁确实来势凶猛,已日益成为与心脑血管疾病并驾齐驱的人类健康主要“杀手”。那么,今天我们不谈高精尖的科学术语,就来聊聊一个接地气的话题:当免疫治疗得诺贝尔奖了,我们距离治愈肿瘤还有多远? /p p style=" text-indent: 2em " 免疫治疗与“超级幸运者” /p p style=" text-indent: 2em " 科学家普遍认为肿瘤治疗领域有三次革命,第一次是化疗放疗,针对肿瘤分化分裂;第二次是靶向治疗,针对的是基因突变;第三次就是荣获本次诺奖的免疫检验点,它针对的是免疫逃逸。 /p p style=" text-indent: 2em " 詹姆斯· 艾利森对一种充当免疫系统“刹车片”的蛋白质进行了研究,他认识到松开这一“刹车片”,可以重新释放人体免疫细胞攻击肿瘤的潜力,后来这种概念发展成了治疗患者的新方法。 /p p style=" text-indent: 2em " 本庶佑则发现了免疫细胞的一种蛋白,并证明这种蛋白充当了制动器的角色,但作用机制有所不同。基于这一发现的疗法在对抗癌症方面非常有效。 /p p style=" text-indent: 2em " 可以说,由于两位科学家的原创发现,带来了过去十年癌症领域的一系列革命。随着更多科学家的关注、参与,逐渐推动临床出现了一系列振奋成就。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0ad0e1fb-34d3-4f10-a62f-eaea2c7d8a64.jpg" title=" u=233057320,1556578971& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=233057320,1556578971& amp fm=173& amp app=25& amp f=JPEG.jpg" / /p p style=" text-indent: 2em " 免疫治疗之所以令人激动,主要原因在于:首先,免疫疗法能治疗已广泛转移的晚期癌症,部分标准疗法全部失败的晚期癌症患者在使用免疫治疗后取得了很好的效果。其次,免疫疗法有“生存拖尾效应”。响应免疫疗法的患者有很大机会高质量长期存活,这批曾被判死刑的晚期癌症患者被称为“超级幸存者”。 /p p style=" text-indent: 2em " 在黑色素瘤、肺癌、肾癌等患者中,免疫疗法都制造出了一批“超级幸存者”,最初接受治疗的一批患者很多已存活10年以上。这种“拖尾效应”是免疫药物与化疗、靶向药物最大的区别。 /p p style=" text-indent: 2em " “美国的詹姆斯· 艾利森找到的这种蛋白质是CTLA-4,日本的本庶佑找到的蛋白质就是著名的PD-1。”结构生物学家、中科院生物物理研究所副研究员叶盛表示,基于PD-1这套系统,现在开发出了一些已上市的、效果非常好的、广谱抗癌药物。“这些药物的作用方式和传统抗癌药物的作用方式有着很大区别。传统的药物通常是直接作用于癌细胞去杀死它们,但抗体药物针对的是PD-1或与之结合的PD-L1,通过抗体与它们的结合,阻止这两个蛋白相互识别结合,也就阻止了癌细胞对T细胞的抑制作用。” /p p style=" text-indent: 2em " 简言之,这种免疫治疗的逻辑是调动人体自身的免疫系统去抵御外敌。 /p p style=" text-indent: 2em " “PD-1这种生物标记在癌症患者中的表达高,针对PD-1进行封锁性免疫治疗,对癌症患者将大有助益。”上海交通大学医学院附属仁济医院肿瘤科主任王理伟教授告诉记者,这一里程碑式疗法是目前在全球较热门的特异免疫性治疗方法,其最大的特点是不分瘤种,如今在欧美国家的临床使用中,已有近30%的患者从中获益。 /p p style=" text-indent: 2em " 为癌症治疗打开了一扇新大门 /p p style=" text-indent: 2em " 不过就此认为人类战胜了肿瘤,还为时尚早。专家在接受记者采访时均提到,免疫治疗为肿瘤治疗打开了一扇新大门,每个方法有其特定的治疗方案和特定的临床指征。也就是说,包治百病的灵丹妙药从未出现过,谈“攻克肿瘤”为时尚早。 /p p style=" text-indent: 2em " “目前肿瘤免疫治疗,如免疫检查点抗体,对实体瘤治疗的有效率在10%-50%。”上海交通大学医学院附属瑞金医院肿瘤科张俊教授提到,以肺癌为例,对PD-1免疫治疗有反应的病人,有约50%的患者有长期生存的机会,但对所有未经筛选的病人,生存期只平均延长了三个月。 /p p br/ /p p style=" text-indent: 2em " 张俊提到,负性调节因子确实对肿瘤治疗起到了很好的作用,但不代表免疫治疗可以作为普适治疗方式。目前,美国FDA批准的PD-1单抗的适应症在于错配基因修复缺失的实体瘤病人。对多数实体瘤患者,现在需要关注的就是免疫检查点抑制剂,包括PD-1/PD-L1抑制剂、CTLA-4抑制剂等。这类药物对部分实体瘤如肺癌、黑色素瘤、肾癌、膀胱癌、头颈癌等效果不错。 /p p style=" text-indent: 2em " 另一个值得血液癌症患者关注的免疫疗法是CAR-T疗法。 /p p style=" text-indent: 2em " 整体而言,免疫疗法的副作用小于传统化疗、靶向药物,有5%-10%的患者可能会出现较严重的免疫相关反应,比如甲状腺炎症、免疫性肺炎、免疫性肠炎、免疫性肝炎甚至免疫性心肌炎。这些问题如发现不及时,可能发生致命事故。因此,也有科研人员提醒,随着免疫疗法流行,基层医生熟悉免疫疗法副作用的处理,至关重要。 /p p style=" text-indent: 2em " “从这个角度而言,我们需要能在正确的时间给正确的病人用到正确的药。”张俊表示,进一步通过生物标记物的筛选帮助病人治疗肿瘤至关重要。 /p p style=" text-indent: 2em " 提高有效率是下一步研究重点 /p p style=" text-indent: 2em " 应该说,随着整个科研链条的整合及人类对肿瘤愈加深入的认识,治疗手段和药物的研发耗费的时间在缩短。如果把肿瘤比喻成一幅拼图的话,现在人类可能已拼出了这幅图的六七成框架,但中间还有很多未解之谜。对全世界的肿瘤科研人员而言,最大的愿景就是每个实验室一点点地这儿拼一点、那儿拼一点,最后能把肿瘤形成、转移、发展的机理这张拼图拼完整,找到治愈肿瘤的突破点。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/5cb75c86-5143-4be3-9b42-f39fcbc22cf8.jpg" title=" u=3322499851,2911953909& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=3322499851,2911953909& amp fm=173& amp app=25& amp f=JPEG.jpg" / /p p style=" text-indent: 2em " 免疫治疗有其特定的方法和适应症,需更多精准医疗和免疫治疗的临床试验数据来阐明。2015年被称为免疫治疗元年,尚有大量临床数据还未获得。 /p p style=" text-indent: 2em " 比如,目前已有研究发现,在绝大多数实体瘤患者中,单独使用PD-1抑制剂的有效率其实并不高,在10%-25%左右。如何提高免疫疗法有效率,使得用免疫疗法来治疗肿瘤的可能性会越来越大,是下一步研究的重中之重。 /p p style=" text-indent: 2em " 也有研究认为,免疫治疗可能需要研究与化疗、放疗、靶向治疗等肿瘤治疗方式的联合应用。一剂式的肿瘤解决方案堪称“神药”,但似乎并不现实。如何联合用药,这也是科学家下一步要进一步研究的。 /p p style=" text-indent: 2em " 恭喜获得诺奖的科学家们,他们为肿瘤治疗开辟了一些新方向,也确实为不少在死亡边缘线上挣扎的患者争取到了“加时”。这段“加时”可能只有几个月,但谁又能否认这几个月的力量?它可能冰释了多年的遗憾,可能成全了一生的心愿,也可能放下了所有的固执。更重要的是,人类的医学文明何尝不就是从这几个月、几个月的延长与努力中获得进步的。可以肯定的是,在努力把癌症真正变成慢性病的路上,诺奖远不是终点。 /p
  • 拓新产品架构 磐诺推出全二维气相色谱新品
    仪器信息网讯 近日,磐诺推出了全新全二维气相色谱产品GC1212,气相色谱家族再添一员,应用领域布局进一步完善。全二维气相色谱技术是一种多维色谱分离技术,利用两种极性不同的毛细管色谱柱,通过调制器串联形成二维气相色谱系统对样品组分进行分析。与常规一维气相色谱相比,全二维气相色谱具有分辨率高、峰容量大、灵敏度好、谱图分布规律性强等优点,是实现复杂样品分离鉴定的有力工具,在石油化工、环境、食品等领域有着很强的应用前景。常州磐诺仪器有限公司(以下简称:磐诺)是国内知名的色谱仪器厂家,一直专注于气相色谱及相关技术的研发和创新。为了深入了解该新产品,本网特别与磐诺就GC 1212全二维气相色谱仪产品相关话题进行了探讨。磐诺:着力推动全二维气相色谱普及化仪器信息网:请介绍磐诺推出全二维气相色谱产品的背景及其市场定位。磐诺:技术创新是一家科技企业,特别是仪器科技企业的灵魂和基石。对于气相色谱这项比较成熟的技术而言,是否能够再创新、在哪些方面进行创新、如何创新,是磐诺一直在考虑的问题。最近几年,全二维气相色谱技术凭借其远超常规一维色谱的分离能力,在石化、环境、食品、代谢等领域获得了越来越广泛的应用,被称为继毛细色谱柱以后气相色谱最具革命性的技术。但到目前为止,全二维技术还大多集中在高端科研实验室,在常规分析领域的渗透不足,在标准化方面的工作也缺乏亮点。更先进便利的分析工具亟待推广和应用,在市场广泛需求的推动、国家和行业政策的助力下,让技术转化为产品,产品服务于市场,进而真正惠及用户,是磐诺有责任也有能力去做的事。磐诺希望借助传统气相色谱技术的积累,能够为全二维色谱技术的推广贡献力量。全二维气相色谱产品GC1212磐诺作为国内领先的色谱厂家,依靠成熟的色谱研发、生产、市场和销售能力,再加上具有多年产品和应用开发的全二维技术专家团队,首次推出全新全二维气相色谱产品GC1212。要实现全二维技术的普及,就不能只聚焦于科研领域,我们希望能将该技术推广到常规应用实验室中,成为一种标准化的分析工具和手段。今后,我们将持续进行产品研发和升级,尽量减少客户的转换门槛,开发更多行业应用方案和前瞻性应用研究。并与相关的行业单位深度合作,建立示范合作点,共同推进方案和标准落地。另外,除了实验室色谱,磐诺全二维技术还可以整合到在线或便携式气相色谱产品中,进一步拓展产品线和应用场景。新品GC1212:一体化+专用软件仪器信息网:新品GC1212有哪些显著创新?磐诺:GC1212全二维气相色谱仪的创新主要有以下几点:第一、设备的整体性。之前几乎所有的全二维气相色谱都是在现有GC或GC-MS平台上加装一个全二维调制器来实现的,可以说,没有一家全二维厂家是基于自有GC产品,而现有的GC都只是为一维色谱分离而设计制造的,并没有考虑到全二维的功能需求。这样的组合产品在整体功能上就存在天生欠缺,最多只能做到信号通讯同步以及参数编辑整合。磐诺作为深耕GC技术的厂家,依托专精技术优势,可以更好地将全二维功能有机整合到GC平台中,从底层设计开始嵌入全二维模块,具有更好的功能兼容性和用户体验感。第二、在软件上实现了完全统一。使用一套软件实现仪器控制、状态监控、方法优化、数据采集和处理以及定制方案,不需要下载使用多套不同厂家的软件来编辑不同设备的对应设备方法;方法编辑更高效,错误率大大减少。软件还配有针对全二维气相色谱的流量计算和方法优化工具,方便用户进行系统配置和参数选择。在采集数据的同时,实时显示一维及全二维谱图,第一时间了解样品组成情况,方便提前进行计划调整和结果估算。第三、灵活定制方案。磐诺全二维GC产品主要针对科研及常规分析应用,对于某些专用分析需求,内置特定方法包:包括专用色谱柱系统、色谱参数方法、定制标样、定制化数据处理流程等,提供一整套完整的“交钥匙”解决方案。同时,对于科研用户,我们专业的技术团队提供从色谱柱配置、方法开发、数据处理到系统维护、方案定制等一系列全面的技术支持和服务。新手操作友好,对于初步接受全二维技术的用户,可以尽快上手使用,节省调试和方法开发,及数据处理的时间,以最快速度最小成本享受到全二维色谱技术带来的效果提升。着重石油化工等领域应用仪器信息网:磐诺的全二维气相色谱产品着力解决哪些实际应用问题?针对特殊领域应用是否推出新的解决方案?磐诺:全二维色谱主要解决复杂样品和复杂基质中的分离难题。我们推出的全二维GC产品也主要聚焦这个方向,特别在化工、环境和食品等行业推出针对性的分析方案,着力解决原有一维分析方案中分析时间长、需要大量预处理和预分离过程、以及设备要求高使用不便等问题。我们已经开发的方案包括:柴油中多环芳烃、航煤中烃组成、凝析油分析、蜡油及润滑油等重油中族组成和含氧化合物、环境中恶臭气体、食品中矿物油、香精香料等分析方案,也和国内一些分析机构进行合作,满足一些行业特定的分析需求。仪器信息网:对于新品的市场表现预期如何?磐诺:任何一种革命性的技术从开始出现到引领市场,都需要很长的一段时间,期间需要技术人员、配套材料、整体方案以及实际需求等各方面要素逐渐完善。我们现在习以为常的色谱技术,不管是毛细管色谱柱,还是色谱质谱联用,无一不是经过十几年甚至几十年的发展,才最终被市场接受。对于这款全二维GC新品,磐诺已做好充分准备,戒骄戒躁,砥砺前行,真正在产品设计和应用开发上下功夫,打造出具有国际领先水平的国产设备和自有方案。当然,我们也充满信心,在磐诺集团强大的研发生产和市场推广能力的保障下,同时得益于国家对高新技术的大力支持,以及各行业对国产新技术的旺盛需求,全二维GC产品会以比较快的速度推进,并得到客户和市场的认可。磐诺对新技术应用前景保有信心,未来全二维色谱系统会在相应应用领域分析工具数据中获得可观份额。
  • 精密光谱专家、诺贝尔物理学奖得主约翰霍尔受聘华东师大名誉教授
    10月28日,2005年诺贝尔物理学奖获得者约翰霍尔教授从华东师范大学校长俞立中手中接过了名誉教授的证书。   当天,约翰霍尔以“光学频率梳”为题,与华东师大师生分享了他有关科学需求、理念重塑、创新和机缘的故事,以及诸多富有价值、出人意料的实际应用。   “霍尔教授的名字如雷贯耳,今天能够亲眼目睹这位诺贝尔得主和专业大师的风采,我觉得非常幸运。”物理系2008级博士方易说,“而且更幸运的是,我们还近距离地与他进行了交流,例如我们在实验中遇到的瓶颈等,这种经历实在太让人难忘了。”   武愕副教授是华东师大精密光谱科学与技术国家重点实验室的一名青年教师,她去年在德国进行学术交流时,曾与霍尔教授有过近距离的接触。“他是我们这一领域领头羊式的人物。”武愕说,“这次他能够来到学校并受聘为名誉教授,无论对学校还是对我们实验室所有成员来说,都是一次学习交流的宝贵机会。我们与他交流实验室目前在做的项目,他还给我们提出了许多好的建议和想法,受益匪浅。”   讲座结束后,霍尔教授被同学们团团围住。同学们就如何开展交叉学科研究、如何有效进行学术研究、如何将个人兴趣与研究相结合以及霍尔教授获诺贝尔奖经过等问题,与霍尔教授进行了深入的交流。   约翰霍尔教授在精密光谱、光速测量方面的开创性研究成果以及“光学频率梳”的技术发明实现了简单直接的光学频率测量,并已在科学、气象学和诊断性药物领域得到了广泛应用,获得了2005年诺贝尔物理学奖。
  • 专家解读中国本土科学家与诺贝尔奖距离
    诺贝尔科学奖走过百年历史,在中国作家莫言获得诺贝尔文学奖之前,全世界共有30多个国家的几百名科学家获奖,中国本土科学家却一直榜上无名。“中国本土科学家离诺贝尔奖究竟有多远?”这样的问题每每在诺贝尔奖颁奖时节被不断提及。   10月22日,在中国科协举办的“科学家与媒体面对面”活动中,中国科学技术大学教授、中国科学院院士郭光灿和中国科学院生物物理研究所研究员王江云与媒体记者分享了他们对诺贝尔奖的解读。在两位专家看来,近些年中国科学技术持续进步与诺贝尔奖越来越近,但依然存在距离,而这种距离来自原创成果、执着精神和科学机制的缺失。   郭光灿长期研究量子科学,今年获诺贝尔物理学奖的实验与他的工作有很大关系。近十年来,国家科技投入的大幅增加让这位70岁的科学家印象深刻。“这使我国科研实力大大提高,提高到国外只要有人提出新的信息,我们很快就可以跟上而且能出很有水平的文章。”但郭光灿觉得,有一点还不够,那就是我们缺少原创的东西。“紧跟没问题,也可以超越,但要做到领先的原创,我们还有一定距离。”   他认为,目前我国各学科、各领域原创还很少,应该更多地鼓励原创性,尤其是鼓励对科学有追求的年轻人。这些年轻人本身应该非常乐于做科学研究、把科研当成一种爱好,不考虑获得什么奖,不把获奖当成工作的动力。“如果有更多这样的年轻人参与科学研究,我认为诺贝尔奖早晚要到来。”郭光灿说。   回忆起上世纪60年代,郭光灿说,那时和他一起进入中国科学技术大学的同学都怀着“将来当牛顿、爱因斯坦、居里夫人”的梦想,但现在的年轻人想法更多,也更加实际。“追求功利所占的比例和以前相比要大得多。”这种新的环境下,他认为需要有更加科学合理的机制让真正热爱科学的人能够投身科学,潜心研究。但现在的制度下,学生们常常选择更容易出论文的题目做,否则毕不了业,评不上职称。   1998年毕业于中国科学技术大学少年班的王江云是位年轻的科学家,在他看来,现在中国研究所和高校里的年轻研究员和教授,受到考核的压力比美国同龄人还要大,“评估更加频繁,考核更加严格”。考核频繁的结果是大部分年轻的科学家选择紧密跟踪、跟随欧洲、日本、美国的研究,“这样可以有保障地迅速发表一些高水平的文章”。   静下心来,认真执着地做研究,郭光灿觉得,现在有些年轻人想这样做但是环境不允许,“最大的问题是评价体系”。郭光灿以量子芯片研究举例说,该项工作难度大,又不容易出文章,不容易出文章就留不住年轻人。“国家现在有各种各样的奖,没有文章什么奖都拿不到,什么位置都没有,这就很难使看重这些的人真正专心研究。”   “如此一来,对年轻人有导向作用,使他们很难做艰苦的、花时间的、不容易出成果的、对个人利益又不太有利的工作。”郭光灿说。他希望国家除了项目支持的形式外,能够固定支持一些高水平的研究团队,让更多年轻人能够静下心来做研究。
  • 诺奖巨星、著名核磁共振波谱学家Richard R. Ernst教授逝世
    2021年6月4日,1991年诺贝尔化学奖获得者、苏黎世联邦理工学院(ETH)名誉教授理查德恩斯特(Richard R. Ernst)去世,享年87周岁。Ernst教授首次提出了傅立叶变换核磁共振方法,确立了二维核磁共振的理论基础,后又在发展和应用二维核磁共振方面作出重大贡献,并因此被授予1991年诺贝尔化学奖。由Ernst编写的Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, 1987),已成为全世界核磁共振领域研究者的圣经。该书中文版《一维和二维核磁共振原理》经毛希安老师等译校出版。Ernst于 1933 年出生在瑞士温特图尔,童年时期对音乐兴趣浓厚,13岁时机缘巧合之下在阁楼里发现了一个装满化学品的箱子,从此对化学实验过程的本质产生了浓厚的兴趣,并将其发展成一生的事业。20世纪50年代,他在ETH学习化学工程,并于1962年获得物理化学博士学位。从 1962 年到 1968 年,他供职于知名NMR谱仪公司美国加利福尼亚州的Varian 公司,在著名科学家Weston A. Anderson的提议下,Ernst尝试了一种脉冲激励实验,并于1964年的夏天成功实现了脉冲傅立叶变换NMR(FT-NMR),随后又提出了噪声去耦和许多其它核磁共振方法。1968年,他回到ETH任教,并成立了核磁共振波谱研究小组,以发展液相和固相方法为研究重点。受Jean Jeener教授在1971年Ampere暑期学校中所提设想的启发,Ernst组在1974年实现了第一个二维核磁共振(2D-NMR)实验。2D-NMR与他此前提出的FT-NMR一起,成为现代NMR谱学中最为基础和重要的技术。基于上述两项技术,波谱学家们提出了数以百计的NMR脉冲实验方法,并应用于多个学科领域。Ernst也因此获得了1991年度诺贝尔化学奖。此外,Ernst还发展了其它许多NMR新技术,如化学诱导动态核极化技术(CIDNP)、多量子滤波、多量子谱、全相关谱等等。值得一提的是,Ernst凭以获得诺奖的工作FT-NMR在两度被知名期刊Journal of Chemical Physics拒稿之后,才得以发表在期刊Review of Scientific Instruments(目前影响因子IF为1.587)上,可见优秀的科研成果无论发表在何种期刊终将迸发出闪亮的光彩。自 1976 年起,Ernst担任ETH物理化学正教授;并于 1998 年退休成为名誉教授。Ernst一生获得了诸多著名科学奖项。除了诺贝尔奖,他还获得了许多其他奖项,包括 1991 年的沃尔夫奖和 1985 年的马塞尔贝诺伊斯特奖。他还获得了 17 所高校的荣誉博士学位并任多国科学院院士。自 1998 年以来,德国化学学会 (GDCh) 磁共振光谱分会每年向三位年轻科学家颁发以他的名字命名的奖项。虽然学术成就斐然,Ernst教授谈到自己的工作时却总是很谦虚。在谈到FT-NMR时,他总是说,傅立叶变换是法国的傅立叶首先提出来的,他只是将其引入了核磁共振领域而已。他一直希望自己的研究能从学术界象牙塔,走向更广阔的世界,被广泛地应用,使社会真正受益。 Ernst教授也是中国人民的老朋友,多年来一直与中国多所高校和科研机构保持密切往来,并于1997年、2007年两度到访中国科学院武汉物理与数学研究所(现名中国科学院精密测量科学与技术创新研究院)。他也曾向波谱学界大力推介中国磁共振领域的核心期刊《波谱学杂志》,并在给《波谱学杂志》读者的亲笔信中充分肯定该刊在中国波谱学学科的发展中起到的推动作用。2007年11月6日,Ernst教授在第二次访问中科院武汉物理与数学所期间,受邀作了题为“傅立叶变换在核磁共振中的应用(From Monsieur Fourier to fMRI)的学术演讲,叶朝辉院士主持了演讲会。在报告中有一张人脑的MRI图片,Ernst教授将其左边标识为科学,右边标识为艺术,意即科学和艺术是相通的,每个人都可以将科学和艺术联系起来。他说:“一个人要变得有创造性,一定要有自己的兴趣爱好,一只脚站在科学上,另一只站在艺术上,我们的头脑就能变得富有创造性”。这句话给在场师生留下了难忘印象。谨以此文纪念我们的良师益友Richard R. Ernst教授,您的科学家精神、幽默风趣的人生态度将持续影响着我们。
  • 诺贝尔化学奖获得者田中耕一先生莅临HUPO展(图)
    来自日本岛津公司的消息:2004年10月25日-27日岛津公司参加了在北京举办的“第三届国际HUPO年会”。据岛津公司相关人士介绍,本次展会上岛津公司隆重展出了LC-离子阱-TOFMS、MALDI-离子阱-TOFMS、自动凝胶处理系统、印迹法PVDF膜质谱鉴定技术,LC-MALDI等仪器,吸引了众多的参观者驻足观看询问。配合本次展会,岛津公司还成功举办了午餐学术交流会。在融洽的气氛中,岛津仪器用户和对岛津技术、产品感兴趣的专家学者共同交流。2002年诺贝尔化学奖获得者岛津制作所质量分析研究所所长田中耕一先生也亲临展会和学术交流会,为参观者耐心地进行仪器讲解和回答问题。
  • 2022年诺贝尔生理或医学奖/化学奖预测,谁将摘走诺奖桂冠?
    一年一度的诺奖季即将开始,这是全球科学界的盛事。尽管鲜有国人获奖,但我们对这个奖项的重视和关注丝毫没有减少。今天我们大胆预测一下今年的诺贝尔生理或医学奖以及化学奖,同时帮助我们科普一下在国际科学这个大舞台上,有哪些科学家做出了重要贡献?我国科研水平与它们差距多大?2020年诺贝尔医学奖授予HCV发现(属临床领域)、2021年诺贝尔医学奖授予感觉受体(属基础领域),今年的诺贝尔医学奖又会花落谁家?基于诺贝尔医学奖领域分配规律(基础:临床为2:1),因此推测今年高概率仍会在基础领域,综合过去30年内基础领域发展情况,这里给出2022年诺贝尔生理或医学奖的三个组合预测。01生物化学组合自2009年诺贝尔医学奖授予端粒酶发现以来,生物化学领域近期还未获得诺贝尔医学奖,应该予以考虑了。目前,组蛋白修饰和基因表达调控的重要性逐渐得到认可,因此在该方向做出重要贡献的三位科学家:1、加州大学洛杉矶分校格伦斯坦(Michael Grunstein)(1988年证明组蛋白与基因表达调控相关)2、洛克菲勒大学艾莉斯(David Allis)(1996年发现组蛋白乙酰转移酶)3、哈佛大学施瑞伯(Stuart Schreiber)(1996年发现组蛋白去乙酰化酶)他们都是诺奖的热门人选。备选:微小RNA发现者:安布罗斯(Victor Ambros)、鲍尔库姆(David Baulcombe)和鲁弗肯(Gary Ruvkun)。02细胞生物学组合细胞生物学是近十年来诺贝尔医学奖重点青睐领域,从iPS到囊泡运输,从细胞自噬到低氧信号,都是诺贝尔医学奖关注的热点,因此今年再次颁发给这个领域的机率也很高。综合细胞生物学各分支发展,内质网未折叠蛋白应答发现是较为重大的科学突破,而做出重大贡献的两位科学家:京都大学森和俊(Kazutoshi Mori)和加州大学旧金山分校瓦尔特(Peter Walter)(1993年同时筛选到未折叠蛋白应答基因),他们今年获奖机率较大。备选:mTOR发现者瑞士巴塞尔大学霍尔(Michael Hall)和磷脂信号通路发现者威尔康奈尔医学院坎特利(Lewis Cantley)。03情怀组合诺贝尔奖不仅仅是科学贡献比拼,有时候还需要考虑到人情世故,因此对于一些较为年迈的科学家可能会有特别照顾。这一组合的三位科学家为法国斯特拉斯堡大学尚邦(Pierre Chambon)、美国索尔克研究所埃文斯(Ronald Evans)和美国洛克菲勒大学罗德(Robert Roeder),以表彰他们在转录因子领域的先驱性贡献。尚邦出生于1931年,今年已91岁高龄,如能获奖,也将打破劳斯(87岁,1966年获奖者)保持的诺贝尔医学奖获奖年龄最大记录,近几年物理奖和化学家先后都有年龄近百科学家获奖并打破纪录(物理奖是96岁,化学奖是97岁),医学奖则多年未有突破,今年有望改观。尚邦属上世纪古典科学家代表,多个领域都做出卓越贡献,如最终错失也可能是诺贝尔奖一点小遗憾。备选:B细胞和T细胞发现者库珀(Max D. Cooper)(89岁高龄)和米勒(Jacques Miller)(91岁高龄)。上面这些预测主要基于2022年诺贝尔医学奖授予基础医学领域,若颁发给临床领域,则赫赛汀发明者、他汀发现者和fMRI发明者等机会很大。这里一并预测下今年的诺贝尔化学奖,去年按规律原本应颁发给生命科学领域,最终却授予有机合成,这也预示着今年生命科学领域获奖机率会进一步增加以符合生命科学越来越被偏爱的趋势,如这个前提成立,今年最有机会的是两个组合PK。04偏基础的分子运动机制研究团队三位科学家美国斯坦福大学斯普迪赫(James Anthony Spudich)、德克萨斯大学希茨(Michael Patrick Sheetz)和加州大学旧金山分校韦尔(Ronald David Vale)。他们在上世纪八十年代的研究深化和拓展对肌肉收缩和分子内物质运输机制的理解和认识,自2015年化学奖颁发给机制研究以来,一直都是授予应用领域,今年有望改变。05偏应用的mRNA疫苗研究团队两位科学家是宾夕法尼亚大学卡里科(Katalin Karikó)和魏斯曼(Drew Weissman)。两位科学家发现的重要性显而易见,去年就被寄予极高厚望,但最终未能获奖,但也有意外收获,那就是今年继续横扫各项科学大奖(通常获得诺贝尔奖后就很难再获其他“小奖”),鉴于mRNA疫苗的热度和新冠肺炎疫情的现状,今年获奖概率仍然较高。不管谁获奖,我想应该都是对全民的一次很好的科普。这次盛事也让我们看到国内科研水平与他们的差距。不难否认的是,诺奖是奖励过去一段时间做出的重大成果,近些年中国的科研水平增长很快,期待不久的将来也会有诺奖级科研成果出来。
  • “中国的诺贝尔奖”:首届未来科学大奖颁奖典礼在京举办
    1月15日晚,首届未来科学大奖颁奖典礼在未来论坛2017年会现场举行,未来科学大奖生命科学奖得主、香港中文大学教授卢煜明,未来科学大奖物质科学奖得主、清华大学教授薛其坤共同出席颁奖典礼并正式领受大奖荣誉。此外,典礼现场还宣布设立了“未来科学大奖数学和计算机科学奖”这一全新奖项。  包括未来科学大奖捐赠人、未来科学大奖科学委员会成员、未来论坛理事会代表、未来论坛咨询委员会委员代表、诺贝尔奖得主代表在内的科学、产业、投资、传媒及艺术等各界嘉宾在现场见证了颁奖典礼的举行。  未来论坛科学委员会轮值主席丁洪致欢迎辞。丁洪表示,评选委员会一致认为大奖结果代表了大中华地区的最高科学水平,委员们对于大奖将得到世界的认同并经受住时间考验充满信心。  未来科学大奖生命科学奖捐赠人丁健、李彦宏、沈南鹏、张磊,以及物质科学奖捐赠人邓锋、吴亚军、吴鹰、徐小平,正式将大奖奖杯交到了香港中文大学教授卢煜明和清华大学教授薛其坤手中。包括诺贝尔奖得主J. Georg BEDNORZ及Klaus Von KLITZING在内的在场人士向获奖者表达了敬意与祝贺。香港中文大学教授卢煜明从未来科学大奖生命科学奖捐赠人丁健、李彦宏、沈南鹏、张磊手中获得大奖奖杯。资料图  卢煜明在获奖致辞中表示,在中国众多卓越的科学家中,未来科学大奖选择了自己,感到非常荣幸。“我遇到了很多善良的导师。”卢煜明说道,“基因检测这项工作给了我无限的启发,让我能够在研究的道路上走得更远。”清华大学教授薛其坤从物质科学奖捐赠人邓锋、吴亚军、吴鹰、徐小平手中获得大奖奖杯。资料图  薛其坤在获奖致辞中回顾了自己从山东沂蒙山区出发后所经历的科研历程。薛其坤深情地说道,中国科学正处在黄金时代,其本人就是黄金时代的幸运者,未来科学大奖也在中国科学发展上留下了浓重一笔。  在本次颁奖典礼上,未来论坛科学委员会委员李凯及田刚教授,与大奖捐赠人丁磊、江南春、马化腾、王强一道,共同宣布未来科学大奖数学和计算机科学奖正式设立。  未来论坛发起人及秘书长武红女士在讲话中特别感谢了所有未来科学大奖捐赠人、科学委员会成员以及一直以来支持并参与未来论坛科学公益活动的社会公众。武红表示,我们必须相信每个人都有改变世界的能力,未来论坛将继续给热爱科学事业的人们带来希望、带来信心。  未来科学大奖成立于2016年,单项奖金100万美金,是中国大陆第一个由科学家、企业家群体共同发起的民间科学奖项,被称为“中国的诺贝尔奖”。2016年9月19日,大奖公布了首届获奖人名单。
  • 特尔诺发布特尔诺实验室净化系统工程T-JH001新品
    特尔诺实验室净化系统工程T-JH001实验室净化初步设计说明一、设计内容 :本实验室初步设计内容为:净化送风系统、空调、排风系统、彩钢板吊顶、围护、隔墙、净化密封门、送风机组、电器、照明控制等。二、设计依据:1、客户提供的设计图及有关技术要求。2、洁净厂房设计规范(GB50073) 一2002)3、通风与空调工程施工质量验收规范(GB50243-2002)4、当地室外计算气象参数。三、室内设计参数(静态)无菌室1、温度: 20-25°C+1°C2、相对湿度: 50%-65%+5%3、换气次数: 30- -35次/n4、洁净度:十万级5、压差: 5-20Pa6、噪声:≤65dB (A)7、工作照度: 300Lx四、气流组织及送、回、排风本工程空调、净化分为单元式独立控制各系统。1、设计送风量为(3000m*/n) 送风机、机箱采用EPS夹芯彩钢板制作,排风量为300m3/n、机箱同样采用彩钢板制作。2、送风、空调系统为初、中效、高效三级过滤。五、冷、热源及空调1、实验室区域采用壹台风冷、热泵管道式空调机组。六、结构部分1、吊顶--部分全部采用EPS彩钢夹芯板。厚度为: L=0.426mm,韩国钢板,泡沫容量为L=14kg/立方,双面贴膜,吊顶、吊筋采用平行直吊。吊顶高度为2. 4米。2、隔断维护采用EPS彩钢夹芯板、厚度为: L=50mm, 钢板为L=0.426mm, 韩国钢板,泡沫容量为L=14kg/立方,单面贴膜,所有明处的铝合金型材为常熟喷塑型材。3、门]采用新型双密封型材、门框型材为型材制作,锁为不锈钢执手门]锁,便于开门。4、采光固定窗采用铝合金框架。压线为圆弧型,单层浮法平板玻璃,厚度为L=5mm,铝合金框架为喷塑材料。5、吊顶、维护、地面之间的直角,均用.R=50铝合金圆角作装饰过渡、维护转角采用铝合金竖柱圆弧过度,铝型材为银白色材料。七、净化产品部分1、高效送风口静压箱为钢制喷塑,高效过滤器边框为铝合金制。2、散流器为铝合金。八、风管部分1、镀锌板采用优质武钢同类产品,按图纸要求制作安装。2、保温材料采用PEF橡塑隔热板、厚度L =20mm。九、风量调节部分1、防火阀均采用国内优质名牌产品。密闭对开多叶调节阀采用L=1.2 mm,优质钢板制作。:2、单层铝合金百叶风口可调节。3、防雨百叶风口为铝合金制加强型。十、电器、照明部分1、净化区--采用吸顶式净化荧光灯及国标电线、穿线管、开关、插座等按相关要求选用优质产品。2、普通区--采用吸顶式荧光灯。3、电器控制柜、照明控制箱等均采用国内优质名牌产品。 创新点:特尔诺实验室净化系统工程T-JH001最新净化方案,与上一代产品相比,在材料选用上更加精细,门采用新型双密封型材、门框型材为型材制作,锁为不锈钢执手门]锁,便于开门。吊顶、维护、地面之间的直角,均用.R=50铝合金圆角作装饰过渡、维护转角采用铝合金竖柱圆弧过度,在使用上更加方便。 特尔诺实验室净化系统工程T-JH001
  • 2014诺贝尔奖陆续揭晓
    梅- 布里特· 莫泽    约翰· 奥基夫    赤崎勇    爱德华· 莫泽    中村修二    天野浩   生理学或医学奖垂青&ldquo 大脑GPS&rdquo   本报讯(记者冯丽妃)&ldquo 这简直不太可能,我从未预料到,这是一项崇高的荣誉。&rdquo 10月6日,2014年诺贝尔生理学或医学奖获得者之一约翰· 奥基夫在接受记者采访时仍然非常激动。当得知获奖时,他正在家里的办公桌前像以往一样工作。   瑞典卡罗琳医学院6日在斯德哥尔摩宣布,将2014年诺贝尔生理学或医学奖授予拥有美英双国籍的科学家约翰· 奥基夫以及两位挪威科学家梅-布里特· 莫泽和爱德华· 莫泽,以表彰他们发现大脑定位系统细胞的研究。   诺贝尔奖评选委员会在声明中说,今年获奖者的研究成果解决了困扰科学界几个世纪的难题,发现了大脑的定位系统,即&ldquo 内部的GPS&rdquo ,从而使人类能够在空间中定位自我,有助于进一步了解人类大脑空间记忆的中枢机制。   布里特在采访中表示,在接到瑞典诺贝尔生理学或医学奖委员会秘书长电话得知喜讯后,她喜极而泣。让她感到有些沮丧的是,丈夫爱德华当时正在飞机上,不能在第一时间与他分享这个消息。   &ldquo 12:30飞机落地后,我走出机舱,有一个机场代表捧着鲜花接我坐车,当时我还一头雾水。&rdquo 爱德华说,看到朋友们发来的150封邮件和75条短信后,他才知道自己获得诺奖。   今年诺贝尔生理学或医学奖奖金共800万瑞典克朗(约合111万美元),奥基夫将获得奖金的一半,而莫泽夫妇将共享奖金的另一半。   非热门的&ldquo 真贡献&rdquo   10月6日下午,2014年诺贝尔奖首个奖项&mdash &mdash 生理学或医学奖揭晓。   美国及挪威的三位科学家约翰· 奥基夫(John O&rsquo Keefe),莫泽夫妇&mdash &mdash 梅-布里特· 莫泽(May-Britt Moser)和爱德华· 莫泽(Edvard I. Moser)因&ldquo 发现构成大脑定位系统(GPS)的细胞&rdquo 获奖。   不过,大奖一出即引来争议,有专家认为,其研究并非&ldquo 独领风骚&rdquo 。同时,专家呼吁,中国脑科学计划不宜再&ldquo 议而不决&rdquo 。   揭开世纪之谜   数世纪以来,一直有个问题困扰着哲学家和科学家&mdash &mdash 大脑是怎么构造出一幅描述我们所处环境的地图,我们又是如何在复杂环境中找到线路的?   &ldquo 这是很重要的未解问题。&rdquo 中国科学院外籍院士、中科院上海生科院神经科学研究所所长蒲慕明在接受《中国科学报》记者采访时说。   就在两周前,蒲慕明在法兰克福马普脑研究所的一个会议上,与O&rsquo Keefe、E. Moser再次相遇。在蒲慕明看来,他们能获得诺贝尔奖是在意料之中的。   &ldquo O&rsquo Keefe的工作为研究大脑如何决定动物体自身在空间中位置开创了新的实验范式,指出了海马区在空间定位中的重要性。Moser夫妇对网格细胞的发现,是近年来O&rsquo Keefe实验范式下的最重要发现之一。&rdquo 蒲慕明说。   在他看来,Moser团队目前显然是这个领域最活跃的,&ldquo 他们在奥斯陆Kavli研究所的所有研究组都围绕这个领域展开&rdquo 。   对于获奖成果的意义,中国科学院院士杨雄里在接受《中国科学报》记者采访时评价,该研究对于人类认识自身基本生理功能,阐明脑的高级复杂功能有典型意义 其次,他们的研究首先具有哲学层面的意义,为康德的先验论提供了神经生理学证据 此外,该研究对与老年痴呆症等大脑疾病的治疗、诊断对策的研发也可能会有所启示。   &ldquo 神经科学领域一直是诺贝尔奖的得奖大户。这项研究揭示了关于生命最基本的知识信息,让我们能够更加理解人类自己,这也符合诺贝尔奖的一贯原则,即奖励给对人类知识有真正贡献的科学研究。&rdquo 第二军医大学教授孙学军告诉记者。   获奖存在争议   不过,在杨雄里看来,这样的结果还是有些&ldquo 出人意料&rdquo 。   &ldquo 他们的工作并非&lsquo 独领风骚&rsquo 。&rdquo 中科院院士杨雄里告诉记者,尽管获奖者在大脑的定位系统方面的研究做得很出色,但是这样类型的研究工作很多,达到这种研究水平的,也不只这么一家。   在杨雄里看来,诺奖到底授予谁,见仁见智,&ldquo 但还是出乎我的意料&rdquo 。   有同样感受的,不只是杨雄里。此奖项颁发当天就引来争论。10月6日晚,由北京大学教授饶毅等三位学者主编的《赛先生》发文表示:&ldquo 今年生理奖不一定有广泛共识&rdquo &ldquo 有观点认为脑内各种细胞都有,比这些细胞更有趣的如&lsquo 镜像神经元&rsquo &lsquo 祖母神经元&rsquo 等,所以发现细胞不够重要,确定其功能,了解其机理更为重要。&rdquo   此前,汤森路透的&ldquo 诺奖预测&rdquo 根据论文的引文分析,共筛选出了三项可能获奖的研究,关于大脑定位系统细胞的研究未在其列。   就脑科学领域的研究热点来看,脑细胞空间定位功能的研究也只不过是众多脑功能研究的一个方向。&ldquo 目前,脑科学领域研究中,最受关注的是各种脑功能相关的神经环路的结构和工作原理,比方说有哪些神经细胞组成怎样的环路结构,在进行各种脑功能时回路中的各个神经细胞是如何处理电活动信息的编码、储存和提取。&rdquo 蒲慕明说。   &ldquo 对大脑定位系统的研究是当前脑科学研究很重要的一个方面,但并非&lsquo 炙手可热&rsquo 。&rdquo 杨雄里说。   中国差距&ldquo 相当大&rdquo   今年3月,蒲慕明、杨雄里等一批神经科学家召开了以&ldquo 我国脑科学研究发展战略研究&rdquo 为主题的香山科学会议,呼吁尽快启动中国脑科学计划。   &ldquo 但是半年过去了,进展情况不如人意。&rdquo 杨雄里感慨,细致、谨慎的讨论非常重要,但需要果断的决定和妥善的安排,以扎实的措施推进脑计划的实施。   近20年来,杨雄里亲眼见证了中国神经科学的发展。他认为,随着国家对脑科学支持力度的加大,研究人员数量增加,研究水平不断提高,中国的神经科学近年来取得了&ldquo 相当迅速的&rdquo 发展。   &ldquo 但是,我们应该看到,我们得到支持的力度与发达国家相比,仍有相当差距 我们的研究水平在神经科学的几个分支,比方说神经系统的可塑性研究、感觉的研究等方面,达到了国际先进水平,但从整体来讲,力量还比较薄弱,研究水平的差距还相当大。&rdquo 杨雄里说。   蒲慕明也表示,整体上,我国脑科学研究在高水平、有竞争力的实验室数量,科学成果总量和影响力等方面,与先进国家相比都有很大差距。目前我们也没有脑科学领域里主要的、推动前沿发展的团队。   今年1月,中国科学院脑科学卓越创新中心正式揭牌成立,将进一步聚焦脑科学的重要前沿方向。   &ldquo 未来数十年里,我国神经科学家是有可能做出像O&rsquo Keefe和Moser夫妇的工作那样突破性的成果。要达到这个目标,关键在于科研问题的选择,我们的青年科学家要能有胆识去选择重要的未解难题,我们的科研环境也要能鼓励支持青年科学家冒险攻关,尤其是组成团队攻关。&rdquo 蒲慕明说。   物理学奖花落&ldquo 蓝光LED&rdquo   本报讯 (记者冯丽妃)瑞典皇家科学院10月7日宣布,将2014年诺贝尔物理学奖授予85岁的日本科学家赤崎勇、54岁的天野浩和60岁的美籍日裔科学家中村修二,以表彰他们发明了节能高效的&ldquo 蓝色发光二极管&rdquo 。   红光LED和绿光LED早已发明,但长期以来制造蓝光LED成为一个难题,缺少了三原色中的蓝色,就无法获得可用于照明的白色LED光源。此次获奖成果解决了这个问题,瑞典皇家科学院在新闻公报中说:&ldquo 随着LED灯的问世,我们现在有更持久和更高效的替代光源。&rdquo   颁奖结果公布后,诺奖委员会物理学会主席在接受媒体采访时间回应称:&ldquo 这是一项真正有益于大多数人的发明。&rdquo   赤崎勇现任日本名城大学终身教授、名古屋大学特聘教授。天野浩现任名城大学、名古屋大学教授。中村修二现任美国加州大学圣塔巴巴拉分校教授。三名获奖者将平分800万瑞典克朗(约合111万美元)的诺贝尔物理学奖奖金。   &ldquo 在我的大学时代,半导体工业在各类工业领域独领风骚。今天,以硅为基础的大规模集成电路(LSI)在各类投资中极具竞争力。而复合半导体尽管极具发展潜力,但它们的很多物性尚未被发掘。我们很幸运,因为我们还有更多的研究机遇。&rdquo 名古屋大学的个人主页上,天野浩给学生的信中写道。   &ldquo 小职员&rdquo 的大成就   白炽灯点亮了20世纪,21世纪注定将是LED(发光二极管)灯的天下。   北京时间10月7日下午5点45分,2014年诺贝尔物理学奖揭晓,日本及美国三位科学家赤崎勇(Isamu Akasaki)、天野浩(Hiroshi Amano)和中村修二(Shuji Nakamura)获奖。获奖理由是&ldquo 发明了高效蓝光二极管,带来了明亮而节能的白色光源&rdquo 。   呼声很高   早在颁奖之前,复旦大学物理学系教授施郁就在猜测是否会将今年的奖颁发给LED,&ldquo 很多其他重要应用成果都得奖了,而LED还没有&rdquo 。   全球四分之一的电能用于照明。而传统的白色光源在环保以及效能和明亮度上都越来越受到诟病。一直以来,寻找一种更持久更高效的方式来代替旧有的光源,成为众多研究者追逐的目标。   红色和绿色二级管早已存在,但是若没有蓝光,就无法制造白色灯管。虽然有很多人为此努力,但在科学界和工业界,30年来蓝光二极管一直是个重大挑战。   直到上世纪90年代早期,当赤崎勇、天野浩和中村修二从半导体中制造出明亮蓝色光束时,他们为制光技术触发了根本性转变。利用蓝光二极管,白光可通过新的途径被创造出来。随着LED灯管的出现,现代的灯不仅寿命长,而且更节能。   &ldquo LED灯泡的发明将大大减低能耗,节约成本。&rdquo 中科院光电研究院研究员、北京中视中科光电技术有限公司总工毕勇表示,高效蓝光二极管如果能够大规模应用的话,能够节电50%以上。   对于三位获奖者,其实业内早就有期待。中科院苏州纳米技术与纳米仿生研究所研究员徐科说,2002年左右,相关的呼声就已经很高。   获奖者之一的中村修二被称为&ldquo 蓝光之父&rdquo ,他是高亮度蓝色发光二极管与青紫色激光二极管的发明者。2006年,中村修二获得千禧年创新奖。能够获得此奖,是业界非常大的荣誉。   &ldquo 业界对他非常看重。&rdquo 中科院院士欧阳钟灿说,美国加州大学圣塔巴巴拉分校校长杨祖佑曾三次亲自前往日本拜访中村修二,请他去美国担任教授。   而另外一位获奖者赤崎勇也可谓是众望所归。他开发了氮化镓结晶化技术,并完成世界第一个高亮度的蓝色发光二极管。2009年11月10日,赤崎勇获得了京都奖尖端技术领域的奖项。而京都奖素有&ldquo 日本诺贝尔奖&rdquo 之称。   瑞典皇家科学院诺贝尔奖评委会常务秘书斯泰方· 诺尔马克表示,本次诺贝尔物理学奖因循&ldquo 奖励为人类福祉作出重要贡献的发明&rdquo 的精神而颁出。   &ldquo 我们老是差一步&rdquo   上世纪70年代初,世界范围内掀起了对氮化镓的研究热潮,而利用它开发出蓝色发光二极管被认为是一个大胆设想,一旦开发成功,应用范围广阔。赤崎勇当时从事的便是这一领域的研究。   但是提高氮化镓品质和控制其性质并非易事。到上世纪70年代末,当大多数科学家都放弃了氮化镓系蓝色发光二极管的研究时,赤崎勇继续不懈研究,在经历了多次失败后,终于在世界上首次实现氮化镓的PN结,为利用氮化镓材料制造蓝色发光二极管奠定了基础。   徐科指出,与国外相比,国内的研究在力量上虽然不弱,但是在进展上&ldquo 老是差一步&rdquo 。   &ldquo 日本在LED方面的研究已经做到了理论上的极限。&rdquo 毕勇说。日本已经研制出超过200流明/瓦的商业用器件,中国则为100流明/瓦~120流明/瓦。   流明是光通量的单位,即每输入一瓦的电,能够获得的光的数量。流明量越高,发光效率越高。   事实上,在商业化的应用上,中国与其的差距正在缩小,差距主要在实验室研究上。毕勇说:&ldquo 目前,我们实验室的最高水平是150流明/瓦,日本已经到了240流明/瓦。日本下一步更多地是往商品的应用上去转换。&rdquo   &ldquo 过去近30年半导体的发展都是在其他工作的基础上慢慢发展。&rdquo 徐科表示,在LED方面,目前我们已经有很好的研究基础,有较大的产业规模,未来要在国际上具有核心竞争力,必须在基础研究和技术开发上作出中国自己的贡献。   小职员何以登上大舞台   得奖虽是众望所归,但是获奖者的身份却再次让不少人啧啧惊叹。   中村修二曾经只是一个普通公司的职员,生活在日本一个叫阿南的小城市里,因为与工厂闹矛盾才离开。而之前,他也只是一个不知名大学毕业的硕士生。   2002年,田中耕一获得诺贝尔化学奖也是如此,一时间化学界并不知道这个人是谁。寻究起来才发现,他只是一个拥有本科学历的小职员。   小职员何以登上大舞台,一次次创造奇迹。中科院宁波材料技术与工程研究所研究员黄庆表示,这与他们在科学道路上的坚守和探索精神密不可分。   1988年,中村修二提出要制备氮化镓蓝光发光二极管,而此时,所有的人都还在十年如一日地生产磷化钾砷化镓。没有实验员没有助手,中村修二却在短短四年时间内获得了理想的试验结果。   已经80多岁的赤崎勇也曾是在神户工业公司(现富士通公司)和松下电器产业公司从事科研工作的一名职员。在许多研究场合,他都强调不懈和不气馁的精神。   在一次对年轻研究人员的讲话中,他说道:&ldquo 即使是失败,也绝对不要放弃。想做一件全新的事情,失败会如影随形。在失败的情况下,不要气馁、不言放弃非常重要。另外,对研究来说,直觉也非常重要,而直觉需要在经历无数次失败的过程中培养。&rdquo   而在国内,专家们表示,LED的发展进程其实是我国科学界急功近利的一个体现,也是迟迟难以获得国际性突破的原因。   &ldquo 上世纪80年代坐冷板凳,90年代跟随大潮开始热,但是原创性上却一直落后。&rdquo 对于这点,徐科有点遗憾。   黄庆表示,目前我国科学领域也演变成急功近利的舞台,沉溺于影响因子、SCI、量化指标,而不是充满冒险、乐趣、坚守和风险的探索之旅。
  • 2017年“搞笑诺贝尔奖”揭晓了!
    p   据国外媒体报道,在今年的“搞笑诺贝尔奖”颁奖典礼上,又有多位科学家凭借出人意料的研究成果获得了不同奖项。 /p p   今年是第27个第一届“搞笑诺贝尔奖”——每年的颁奖典礼都是“第一届”。作为对诺贝尔奖的有趣模仿,搞笑诺贝尔奖由科学幽默杂志《不可思议研究年报》(Annals of Improbable Research)主办,于每年九月在哈佛大学桑德斯剧场举行颁奖仪式,授予“乍一看好笑,后又引人深思”的十项科学领域成就。 /p p   今年获奖情况如下: /p p    strong span style=" color: rgb(0, 112, 192) " 物理学奖——一只猫能否同时处于固体和液体状态? /span /strong /p p   今年的物理学奖就颁给了法国研究人员马克-安托万 法尔丹2014年关于“一只猫可否同时处于固体状态和液体状态”的研究。据悉,其灵感来自互联网上猫咪们塞进玻璃杯、水桶和水槽中的照片。 /p p    span style=" color: rgb(0, 112, 192) " strong 和平奖——定期演奏迪吉里杜管可以帮助治疗睡眠呼吸暂停及打鼾。 /strong /span /p p   对于那些与打鼾者共同生活的人来说,米洛· 普汉的搞笑诺贝尔奖成果可谓一大福音。这位瑞士科学家发现,演奏迪吉里杜管——澳大利亚原住民的一种管状乐器——能够发出一种深沉的、富有节奏感的嗡嗡声,能够帮助缓解睡眠呼吸暂停。 /p p   米洛· 普汉是苏黎世大学流行病学、生物统计与预防系的主任,他在观察了一位中度睡眠呼吸暂停患者演奏迪吉里杜管之后确信,这种乐器能对病情缓解有所帮助。他招募了一些会演奏塑料迪吉里杜管——长度大约为130厘米——的志愿者,对此展开研究。“定期演奏迪吉里杜管能够减少中度阻塞性睡眠呼吸暂停患者在白天的睡意,并缓解打鼾现象,同时改善他们伴侣的睡眠质量,”普汉在论文中总结道。 /p p   为什么这种方法能够奏效?普汉认为,演奏迪吉里杜管可以帮助人们学会有规律地呼吸(演奏技巧在于从嘴里吹气的同时通过鼻子吸气),并增强呼吸时所用咽喉肌肉的力量。 /p p    span style=" color: rgb(0, 112, 192) " strong 经济学奖——触摸活鳄鱼如何影响一个人的赌博意愿? /strong /span /p p   本次搞笑诺贝尔奖的经济学奖归属两位澳大利亚人,他们发现,如果你想要控制自己的赌博损失,那就不要在走进赌场之前与鳄鱼近距离接触。马修· 洛克罗夫(Matthew Rockloff)是澳大利亚中央昆士兰大学人口研究实验室的负责人,他和研究助理南希· 格里尔(Nancy Greer)用一条体长约为1米的湾鳄——嘴巴用胶带绑着——猛戳准备去赌博的人的手臂,然后观察接下来会发生什么。 /p p   与危险爬行动物“亲密”接触所产生的兴奋感,会促使赌博者“赌上更多的赌注,而这又意味着更长的赌博时间,导致更大的损失,”洛克罗夫说道。与许多获得搞笑诺贝尔奖的研究一样,洛克罗夫的发现乍看之下有些愚蠢,但实际却有着充足的应用依据。 /p p   “这是第一个关于情绪刺激对赌博选择影响的研究,很显然,这将有助于解决一个非常严肃的行为和精神健康问题,”洛克罗夫说道。在得知获得搞笑诺贝尔奖之后,洛克罗夫感到非常幸运,他这样来描述自己的好运:“我必须努力克制自己,一定不能把这种运气用在一台老虎机上。” /p p    span style=" color: rgb(0, 112, 192) " strong 解剖学奖——为什么老人的耳朵大? /strong /span /p p   “这是个奇怪的荣誉,但我感到非常激动,” 解剖学奖得主、英国医师詹姆斯· 希思科特说道。他的研究成果是关于耳朵的大小,于1995年发表在久负盛名的《英国医学期刊》(British Medical Journal)上。 /p p   该研究的灵感来自希思科特和其他几位全科医师的讨论。当希思科特提问道“老人的耳朵为什么那么大”时,同事中有半数同意他的观察,另一半则觉得非常可笑。在研究中,希思科特测量了超过200名患者的耳朵长度,发现老年男性不仅长着大耳朵,而且耳朵在30岁之后每十年就能生长大约2毫米。女性的耳朵也会随着年龄增长而变大,但她们的耳朵一开始较小,跟男性的耳朵比起来不那么显眼。而且,可能男性衰老时通常有头发变少的趋势,因而大耳朵更容易被人注意到。“耳朵的测量真的有些神奇,”希思科特说道。 /p p    span style=" color: rgb(0, 112, 192) " strong 生物学奖——在一种洞穴昆虫身上发现雌性长着雄性生殖器官,而雄性长着雌性生殖器官的现象。 /strong /span /p p   搞笑诺贝尔生物学奖授予Kazunori等四人。在一种洞穴昆虫身上,研究者发现雌性长丁丁雄性长妹妹的现象。研究者在洞穴中持续偷窥虫类性生活,惊奇地发现母虫子长着小弟弟。他们的这项研究可以说颠覆了常识,这个敬业的团队无法到场,于是在洞穴里录了获奖感言。  /p p    span style=" color: rgb(0, 112, 192) " strong 营养学奖——吸血蝙蝠食谱中的人血研究。 /strong /span /p p   搞笑诺贝尔营养学奖授予Enrico Bernard等三人。这个团队在毛腿吸血蝙蝠的粪便里发现了与人血有关的基因片段。主办方本打算在现场放两只蝙蝠助助兴,但是蝙蝠突然就失踪了了,因此他们大力呼吁捡到的观众要物归原主。获奖团队也通过视频表达了他们的喜悦。 /p p    span style=" color: rgb(0, 112, 192) " strong 医学奖——通过脑部扫描技术评估人对某种芝士的厌恶程度。 /strong /span /p p   搞笑诺贝尔医学奖授予Jean-Pierre Royet等五人。这是第一项有关讨厌奶酪的脑部研究。在这项研究中,研究团队利用脑部成像技术观察人们在闻到不同种类的奶酪时大脑的变化,发现基底神经节才是人们恨意的源泉。 /p p   除此之外,还包括流体力学奖——人手里拿着咖啡倒着走时,咖啡具有什么样的流体力学特性?认知学奖——许多同卵双胞胎其实分不清自己和自己的双胞胎兄弟或姐妹。产科学奖——发育中的人类胎儿对母亲阴道里播放的音乐更加敏感等有趣的研究! /p
  • 2011年诺贝尔物理学奖揭晓
    索尔珀尔马特 52岁,美国加州大学伯克利分校教授,主持超新星宇宙学项目。     亚当里斯 42岁,美国约翰斯霍普金斯大学和太空探测科学研究所任天文学教授,研究天文物理。    布赖恩施密特 44岁,生于美国,拥有美、澳双重国籍,澳大利亚国立大学教授,主持超新星搜寻小组。   美国人索尔珀尔马特和亚当里斯以及持有美国和澳大利亚双重国籍的布赖恩施密特获得2011年度诺贝尔物理学奖。诺贝尔物理学奖评审委员会10月4日评价,这3名获奖者“研究几十颗处于爆炸状态的恒星即‘超新星’,发现宇宙正在扩张过程中,扩张速率不断加速”。   观测50余颗超新星   在瑞典首都斯德哥尔摩瑞典科学院内,诺贝尔物理学奖当地时间11时45分(北京时间17时45分)揭晓。   珀尔马特、里斯和施密特的研究对象,是一些大质量恒星在演化后期伴随星核与星壳分离出现的一种现象,即超级规模大爆炸。质量相当于太阳的8至25倍的恒星以超新星爆发方式结束“生命”,而恒星外侧气体包则高速抛离,所显现的绝对光度可超过太阳光度100亿倍。   分析特定类型的超新星爆发,珀尔马特、里斯和施密特所属的研究小组发现,超过50颗超新星所显现的光度比先前预期暗淡。对这一结果的解释,是宇宙正在加速扩张。   3人曾是竞争对手   这个发现,被瑞典皇家科学院称为“震动了宇宙学的基础”。   诺贝尔物理学奖评审委员会认定,3名获奖者所获研究结果改变了人类对宇宙的认识。“将近一个世纪,一种公认看法是,宇宙正在扩张,是大约140亿年前‘大爆炸’的结果。”评审委员会说。   “不过,发现宇宙扩张正在加速,令人惊异。”评审委员会介绍说,“如果扩张继续加速,宇宙将以冰冻状态终结。”   另外,3人的研究,确认了最初由科学家阿尔伯特爱因斯坦提出的一种理论,即他称之为“宇宙学常数”的理论。   1998年,珀尔马特主持一个研究小组,施密特则主持成员包括里斯的另一个研究小组。两个小组各自努力,相互“竞争”,而观测结果可谓“不约而同”。   评审委员会宣布,奖金1000万瑞典克朗(约合146万美元),珀尔马特获二分之一,施密特和里斯获另外二分之一。徐勇(新华社专稿)   ■ 反应   “得知获奖后膝盖发软”   诺奖得主施密特称“像第一个孩子出生时的感觉”   现年44岁的布赖恩施密特生于美国,现居住在澳大利亚堪培拉。他承认,知道获奖消息最初半个小时,自己“确实激动,两腿膝盖发软,一定程度上因为这种(获奖)情形而吃惊。”   施密特接受媒体采访时表示,宇宙加速膨胀的理论一开始受到了不少谨慎的怀疑。“(大家都觉得)重力会减缓宇宙的膨胀,当我们发现相反的事情正在发生时,那真是令人大吃一惊。但是我们越是观察,现象就越明显。”施密特说,“这个发现听起来疯狂得不像是真的,我想我们有点吓坏了。”   谈到获得诺奖,施密特说他是当晚8时之后才知道消息,电话那头传来的瑞典口音十分真诚。“有点像我第一个孩子出生时的感觉,是一种生命改变的体验。”   “我没有期待(获得诺奖)……我猜想,对一些事情,大家会期待,却多半不会发生,而这(诺贝尔奖)就是其中之一。”施密特说。   一同获得诺奖的亚当里斯教授接到诺奖通知电话的时候,也明显注意到了电话那头的瑞典口音。“我知道,这不可能是宜家打来的。”里斯说。(楚楚)   “一场难以置信的探险”   诺奖得主珀尔马特和里斯称,获奖得益于团队合作   得知自己成为2011年诺贝尔物理学奖得主的消息后,美国人索尔珀尔马特和亚当里斯分别表示,他们获奖得益于团队合作。   “这项发现很大程度上是团队努力的结果。”珀尔马特4日在加州大学伯克利分校发表的一份声明中说。他在声明中回顾了其团队每一名成员对于整个成果的贡献。   现在担任约翰斯霍普金斯大学教授的亚当里斯与此次共同获奖的澳大利亚国立大学教授布赖恩施密特属于另一研究团队,他们独立得出了与珀尔马特团队相同的结论。   里斯说:“这项发现有关宇宙在加速膨胀,并暗示暗能量存在。我参与到其中,是一场令人难以置信的探险。能够在卓越的研究机构与优秀的同事合作,我感到非常幸运。”   ■ 链接   超新星大发现   多年来,天体物理学界一直认为宇宙是在以一个恒定的速度膨胀,直到这三位科学家开始了对超新星的观测。   此次获奖的珀尔马特和施密特分别领导两个研究小组,用最先进的天文观测工具对准了一种“Ia型超新星”。这种超新星是由密度极高而体积很小的白矮星爆炸而成。   由于每颗“Ia型超新星”爆发时质量都一致,它们爆炸发出的能量和射线强度也一致,因此在地球上观测“Ia型超新星”亮度的变化,可以准确推算出它们和地球距离的变化,并据此计算出宇宙膨胀的速度。   两个研究小组总共观测了约50颗遥远的“Ia型超新星”,并于1998年得到了一致的结论:宇宙的膨胀速度不是恒定的,也不是越来越慢,而是不断加快。
  • 纪念诺贝尔奖级科学家:近红外光谱技术之父Karl Norris
    p strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   摘要:本文扼要综述了近红外光谱分析技术的发展里程,主要介绍了Dr. Karl H. Norris对近红外光谱分析技术做出的贡献,并汇总了与近红外光谱相关的诺贝尔奖获得者的贡献。很遗憾Dr. Karl H. Norris没有荣获诺贝尔奖,但这丝毫不影响Karl Norris的伟大,也不影响近红外光谱技术的伟大。世上诺贝尔奖可以缺席,但是却不能没有Karl Norris这位科学家,也不能没有近红外光谱这项分析技术。现代近红外光谱对分析技术和过程控制技术都产生了深远的影响。 /span /strong /p p span style=" font-family: 宋体, SimSun "   2019年7月17日,被誉为“近红外光谱技术之父”(Father of NIR Technology)的Dr. Karl H. Norris去世,享年98岁。7月18日收到国际知名光谱学家日本Ozaki教授发来的邮件: span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " strong “We share the deep sadness for Dr. Karl Norris. I think his contribution truly corresponds to Nobel Prize. Although we lost the great scientist, we have to keep his great spirit not only in NIR spectroscopy but also in science and engineering. His contribution is much wider than NIR spectroscopy. ” /strong /span Ozaki教授评价Dr. Karl Norris的贡献可以与获得诺贝尔奖的科学家媲美。Ozaki教授的这段话让我萌发写一篇小随笔的冲动,随后系统整理了多年积累的相关文献,几经脉络的调整,终成这篇小文。 /span /p p strong   一、Dr. Karl H. Norris之前的情况 /strong /p p   近红外光是人们发现的第一个非可见光区域,由英国物理学家赫歇耳(F.W.Herschel,1739-1822)发现。赫歇耳是一位天文学家,他通过自己磨制镜片制作的天文望远镜发现了天王星。赫歇耳制作了400多个望远镜提供给天文爱好者使用,其中有些人抱怨通过望远镜观测星体会灼痛眼睛。于是,他设计了一个实验来研究太阳光线的热效应(图1)。赫歇耳利用1666年牛顿发现的三棱镜分光现象将太阳光色散成不同颜色的光,然后用温度计逐一测量不同颜色光的热量,在偶然情况下他发现在红色光之外仍存在更大强度的热量,他断定在红光之外仍存在不可见的光,他用拉丁文称之“红外”(Infra-red)。由于赫歇耳用的棱镜是玻璃制成的,其吸收了中红外区域的辐射,实际上该波段是近红外(Near Infrared,NIR),波长范围大致位于700~1100nm范围内,因此,在一些文献中常把这段短波近红外区域称为Herschel区。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 389px " src=" https://img1.17img.cn/17img/images/201908/uepic/b75f5ce8-1b56-4da0-8121-0fff654f330e.jpg" title=" 01.jpg" alt=" 01.jpg" width=" 300" height=" 389" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 赫歇耳发现红外辐射实验的示意图 /strong /p p   巧合的是,第一次测量近红外吸收谱带的人是赫歇耳的儿子John Herschel,1840年他设计了一个巧妙的实验,将经玻璃棱镜色散后的太阳光照射到乙醇上,用黑色多孔纸吸收乙醇蒸气,然后通过称重方法来测定乙醇的蒸发速度。1881年英国天文学家阿布尼(W Abney)和E R Festing用Hilger光谱仪以照相的方法拍摄下了48个有机液体的近红外吸收光谱(700~1200nm),发现近红外光谱区的吸收谱带均与含氢基团有关(例如C-H、N-H和O-H等),并指认出了乙基和芳烃的C-H特征吸收位置。1889年瑞典科学家K Angstrem采用NaCl材料的棱镜和辐射热测量计作检测器,首次证实尽管CO和CO sub 2 /sub 都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱。这个试验最根本的意义在于它表明了红外光谱吸收产生的根源是分子而不是原子,整个分子光谱学科就是建立在这个基础上的。 /p p   上述这些原始性的科学发现都是在诺贝尔奖设立前完成的,诺贝尔奖设立时间是1900年6月,首次颁发是1901年12月。 /p p   直到上世纪六十年代,近红外光谱都没有得到较好的应用,主要是它的吸收非常弱,且谱带宽而交叠严重,依靠传统的光谱定量(单波长的朗伯-比尔定律)和定性分析(官能团的特征吸收峰)方法很难对其进行应用,一度被称为光谱中的“垃圾箱”(The garbage bin of spectroscopy)。相比较而言,近红外光谱两端的外延区域(紫外-可见光谱和中红外光谱)在这段时间内却得到了快速发展。 /p p   一些影响分子光谱分析的理论或技术,也都是在此期间(1900~1960)提出或发明的。例如,1912年丹麦物理化学家N Bjerrum 提出HCl 分子的振动是带负电的Cl原子核与带正电的H原子之间的相对位移,分子的能量由平动、转动和振动组成,以及转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。同年,F E Fowle用近红外光谱吸收谱带测定空气湿度,这可能是近红外光谱首次用于定量分析。1927年美国加州大学的J W Ellis观测到有机化合物近红外光谱中750nm、820nm、900nm、1000nm、1200nm、1400nm、1700nm、2200nm的吸收峰与C-H键相关,并指出3400nm处的为基频吸收峰,1700nm和1200nm处的分别为一级和二级倍频吸收峰,2300nm和1400nm分别为6800nm与3400nm、1400nm的合频吸收峰。1928年美国加州大学的F S Brackett利用1200nm谱带可以鉴别多个不同的化合物,并指认1190nm、1220nm和1230nm分别为-CH3、-CH2和-CH的吸收谱带。 /p p   1924年法国科学家J Lecomte首次提出分子指纹图谱的概念,发现中红外光谱可以识别同分异构体(如所有的辛烷异构体)。这一发现为二次世界大战期间,将中红外光谱用于分析性质相似的碳氢燃料以及橡胶产品提供了重要信息,人们真正认识到了中红外光谱的实用价值。1930年Mecke提出了表示分子振动的符号,如ν表示键伸缩振动,δ表示键角弯曲振动,γ表示面外弯曲振动,并对谱带的归属进行了研究,这些符号沿用至今。 /p p   为描述紫外-可见区测定无机颗粒物质漫反射光谱时的光学行为,P Kuhelka和 F Munk于1931年提出了K-M理论,其理论基础是假设光的多重散射,即反射被观察到之前,已在系统内由一个粒子到另一个粒子进行了多次反射。1933年,H Hotelling写出了关于主成分分析(PCA)的经典论文, 1936年,P C Mahalanobis提出了计算马氏距离的方法,后来PCA和马氏距离被广泛用于近红外光谱多元定性分析。 /p p   1942年,用于中红外气体分析的怀特池(White Cell)被发明,使得中红外光谱在气体分析中逐渐得到广泛应用。二次世界大战前的1939年世界仅有几十台中红外光谱仪,但到1947年世界已有500余台红外光谱仪在工作,中红外光谱已成为分子结构的分析的主要手段。1945年美国Beckmam公司推出世界上第一台成熟的紫外可见分光光度计商品仪器,仪器稍加改动便可以测定近红外区域的光谱了。二次世界大战还加速了1930年研制出的硫化铅检测器的发展,使其成为非常灵敏的商品化检测器,用于近红外区1~2.5μm波长范围的测量。1950年左右,干涉滤光片在光谱仪器中得到了应用,基于几个特定波长的红外滤光片式在线过程仪器相对独立地出现了,主要用于气体、水分和湿度的分析,这类仪器的应用延续至今。1955年左右,美国IBM公司已开发出Fortran语言,这是第一个结构化和科学化的计算机语言。1960年左右,Fahrenfort和Harrick发明了红外衰减全反射(ATR)测量附件,可直接测量一些特殊样品的红外光谱,显著扩展了红外光谱的应用范围。 /p p   尽管上述的理论和技术都有鲜明的原创性,也对后来的分子光谱技术产生了很大影响,但都与诺贝尔奖无缘,这些理论和技术或许算不上重大的发现或发明吧。 /p p   上世纪四五十年代,也有将近红外光谱用于定量分析的报道,包括测定环氧化合物官能度、聚合物和酚醛塑料不饱和度、化合物的羟基、药物的水分等,例如,英国化学工业公司(ICI)Harry Willis不仅采用近红外光谱表征聚合物的结构,还采用近红外光谱测量聚合物薄膜的厚度。但上述这些研究和应用从严格意义上讲都不属于现代近红外光谱分析技术,都是沿用传统的中红外光谱官能团解析和朗伯-比尔定律的定性和定量分析路线。 /p p   现代近红外光谱分析技术是从Dr. Karl H. Norris的工作开始的。 /p p strong   二、Dr. Karl H. Norris的贡献 /strong /p p   Dr. Karl Norris是美国农业部研究中心(马里兰州贝茨维尔市)的一位工程师。1949年他曾用自己改造的Beckmam DU紫外光谱仪通过透射测量方式对鸡蛋的新鲜度进行研究,发现750nm处的吸收峰为水中OH基团的倍频吸收。这或许是第一张复杂混合物(天然产物)的近红外光谱,所以很多介绍近红外光谱发展史的文章中都会引用这张图(见图2)。遗憾的是因当时条件和技术所限,没有建立光谱与鸡蛋品质之间的关系,只能靠蛋壳的颜色开发出了鸡蛋自动筛选设备,这项工作得到了时任美国总统Dwight D. Eisenhower的关注(见图3)。Karl Norris通过这项研究还发现水果和蔬菜在700~800nm有明显的吸收谱带,这对Karl Norris之后开发近红外无损果品品质分析仪(例如苹果的水心病等)埋下了伏笔(见图4)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 346px " src=" https://img1.17img.cn/17img/images/201908/uepic/54b74d3d-7d4b-4ba5-a8b1-e7df3ea6bdd5.jpg" title=" 02.jpg" alt=" 02.jpg" width=" 500" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2 鸡蛋随时间变化的吸收光谱图 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 401px " src=" https://img1.17img.cn/17img/images/201908/uepic/918f91a2-f561-4b74-82e0-31a2915f6589.jpg" title=" 03.jpg" alt=" 03.jpg" width=" 500" height=" 401" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 1953年D D Eisenhower总统参观Karl Norris研制的鸡蛋自动筛选设备 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 346px " src=" https://img1.17img.cn/17img/images/201908/uepic/73f9c7ca-f06c-4909-aead-a7dedf4b2a85.jpg" title=" 04.jpg" alt=" 04.jpg" width=" 500" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 Karl Norris与Neotec公司研制的近红外内部品质分析仪 /strong /p p   Karl Norris真正开始近红外光谱技术的研究是1960年从测定种子中的水分开始的,早期的思路也是基于朗伯-比尔定律的,例如测定种子甲醇提取物中的水分,后来又将粉碎的谷物与四氯化碳混合成浆,以减少光的散射,他们找到了透射光谱中两个波长(1.94μm和2.08μm)吸光度之间差值与水含量之间的一元二次多项式定量关系,获得了满意的结果。这个差值光谱的概念对Karl Norris影响很深,之后滤光片仪器波长的筛选和导数光谱消除颗粒等影响都源于此。但是,当实际应用推广时,发现四氯化碳有毒,且这种方法操作起来也相对繁琐,用户不接纳。没有四氯化碳做稀释剂,无法实现光谱的透射测量,Karl Norris开始尝试采用反射方式,他们买来了当时最好的Cary 14光谱仪。但这台仪器的性能并不能满足他们的需求,例如测量速度慢(20min才能得到一张光谱),没有合适的反射测量附件(尽管也有积分球,但信噪比很差),样品仓太小无法适合样品的无损分析等。在随后的多年中,随着电子技术的进步,Karl Norris与他的合作者不断对其进行了改造(见图5),包括样品仓、光路系统(将双光路变为单光路)、电子器件、A/D转换板、检测器和计算机等。 span style=" color: rgb(255, 0, 0) " strong 正是在这台被称为“The Norris Machine”的光谱仪上,Karl Norris开启了现代近红外光谱分析技术的大门。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 384px " src=" https://img1.17img.cn/17img/images/201908/uepic/f1619571-5833-423b-b460-6684cfca33f5.jpg" title=" 05.jpg" alt=" 05.jpg" width=" 500" height=" 384" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 Karl Norris与他主持改造后的Cary 14光谱仪(1957年和1988年) /strong /p p   首先,Karl Norris创造性地将传统光谱分析中的吸光度(A=log1/T)用log1/R代替,这明显不符合朗伯-比尔定律,没有任何理论基础,受到当时大多数光谱学家和化学家的质疑。值得庆幸的是Karl Norris不是光谱学家,他是一位农业工程师,以解决实际应用问题为研究导向。Karl Norris的结果却是非常积极,log1/R与水分存在较强的相关关系。随着研究的深入,他们发现两波长测量谷物水分时会受样品中其他成分的干扰,例如小麦中的蛋白质,大豆中的油脂等。Karl Norris又创新性地将多个波长的吸光度通过多元线性回归(MLR)方法建立预测方程,显著提高了预测谷物水分的准确度。之后很短的时间内,Karl Norris意识到近红外光谱还可以测量这些干扰物的含量,例如蛋白质、油分含量等。经过Norris的努力,筛选出了6个关键波长(1680nm、1940nm、2100nm、2230nm、2310nm),这为随后开发商品化的滤光片仪器奠定了坚实的基础(见图6)。为了降低颗粒粒度对漫反射光谱的影响,Karl Norris采用导数方法对光谱进行处理,并提出了“Karl Norris滤波”方法,这种光谱预处理方法当时在光谱学中较少使用。 /p p    span style=" color: rgb(255, 0, 0) " strong Karl Norris所做的上述工作被认为是现代近红外光谱技术的开端,其已具备了现代近红外光谱技术的显著特征:整粒谷物无损分析、分析速度快、基于光谱预处理和多元校正的多物性参数同时分析,建标样本为实际样本等。值得注意的是,与传统分析技术相比,近红外光谱从创始起就存在着两个显著特点:(1)推崇不对样品进行处理,以附件的形式解决不同形态样品的测量问题 (2)推崇不将样品带到仪器旁边,而将仪器带到样品旁边(即现场分析和在线分析)。这两个特点对影响分析技术的发展是深远的。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 407px " src=" https://img1.17img.cn/17img/images/201908/uepic/37802891-a429-40c4-8bd3-a316c16795b5.jpg" title=" 06.jpg" alt=" 06.jpg" width=" 500" height=" 407" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong   图6 1968年Karl Norris操作首台4个滤光片的大豆近红外分析仪样机(最初是基于粉碎大豆与四氯化碳混合成浆的透射测量方式,后来改为漫反射测量方式) /strong /p p   Karl Norris的另一项贡献是在他的指导下,DICKEY-john和Neotec两家公司于上世纪七十年代初,基于滤光片技术首次开发出了商品化的近红外光谱谷物专用分析仪,这是近红外光谱技术发展过程的一个重要里程碑。之后,滤光片型的仪器也进行了较多改进,针对不同的测量对象(例如草料和烟草等)选取不同波长的滤光片、增加滤光片的数量、温度控制、光学系统密封以适应恶劣的现场环境等,但Karl Norris提出的仪器本质的特征没有改变。DICKEY-john公司生产的GAC Model 2.5AF和Neotec公司生产的GQA Model 31成为上世纪70年代中期主力的近红外谷物快速分析仪器。这些仪器在实际应用中,发挥了很大的作用,在很大程度上推动了近红外光谱技术的发展。例如,在加拿大Phil Williams通过必要的改进,将这类近红外谷物分析仪(起初是Neotec Model I仪器)用于小麦出口区快速测定蛋白质的需求。因为贸易商愿意为高蛋白质含量的小麦付更多的钱,这样交易量大的贸易商,通过近红外分析仪经几次交易赚得钱,就能够购买一台近红外分析仪。因此,数百台这样的仪器进入大型粮仓和出口区,同时一些面粉厂、大豆加工厂和食品生产厂等也开始使用近红外分析仪。进入上世纪70年代末期,光栅扫描型近红外光谱分析仪开始出现,其关键技术都是以“The Norris Machine”为原型样机(雏型)研制的,例如Neotec Model 6100和Tchnicon InfraAlyzer 500等。 /p p   1975年,加拿大谷物委员会(Canadian Grain Commission,CGC)将近红外方法规定为蛋白质检测的官方方法。1978年,美国农业部联邦谷物检验服务中心(USDA,FGIS-Federal Grain Inspection Service)也为其所有的小麦出口基地购置了近红外分析仪,1980年FGIS采纳该方法作为官方指定的测定小麦蛋白质的标准方法。1982年美国谷物化学家协会(American Association of Cereal Chemists,AACC)正式批准了该方法(AACC No.39-00)。 span style=" color: rgb(255, 0, 0) " strong 2009年Phil Williams在匹兹堡沃特斯论坛上讲到,全球约90%小麦的贸易是基于整粒谷物近红外分析仪检测蛋白质含量进行的(Today, Phil Williams estimates that over 90% of wheat world-wide is sold on the basis of protein testing by whole-grain NIRS instruments)。有文献报道,加拿大采用近红外光谱技术后(主要是对农作物的管理),稻米的产量每公顷提高约0.6吨,小麦的产量提高约1.1吨,小麦蛋白质含量提高约1%(The success of NIR-based tissue testing services is substantial, being estimated to enhance yields of rice by 0.6 tonne ha–1and wheat yields by 1.1 tonnes ha–1. NIR spectroscopy has also helped producers raise the protein content of wheat grain by 1% protein)。 /strong /span /p p span style=" color: rgb(255, 0, 0) " strong   Karl Norris的工作,尤其是“The Norris Machine”迅速得到农业领域的关注,在上世纪七十年代,一些美国本土和国际同行纷至沓来,Karl Norris以无私、大度、开放的科学家精神,将他的研究成果毫无保留地传授给每位来访的学者,并与他们进行深入合作。毋庸置疑,Karl Norris的实验室成为了培养现代近红外光谱分析大师的摇篮,“The Norris Machine” 也成为名副其实的“Master Instrument”。这期间在Karl Norris实验室进行访问的学者有:美国宾州的John Shenk,美国北卡州的W Fred McClure,加拿大的Phil Williams,日本的Mutsuo Iwamoto,匈牙利的Karoly Kaffka等等。 /strong /span 这些学者后来都成为近红外光谱分析技术的卓越践行者和强有力推动者,他们参照Karl Norris的模式纷纷研发仪器、开发软件和推广应用。例如John Shenk在美国建立了第一个近红外光谱草料分析网络,并开发了著名的化学计量学软件DOSISI和WinISI Mutsuo Iwamoto回到日本后,在他的带领和影响下,近红外光谱技术在日本得到了广泛的应用,日本在上世纪八十年代末期就基于近红外光谱开发出果品品质自动分选装置,并得到了广泛推广应用。上世纪九十年代Karl Norris在日本静冈参观了Mitsui公司研制的果品近红外在线分选装置(图7),曾感叹说:“My dream has come true in Japan”。可见,Karl Norris在培育国际近红外大师这一方面的贡献无疑是巨大的。 /p p span style=" color: rgb(255, 0, 0) " strong   在Karl Norris的带领下,开创现代近红外光谱技术并取得成功应用的是农业工程师、农学家和动物营养家等,而不是物理学家、化学家和光谱学家,这与其他光谱技术的发展道路是截然不同的。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/201908/uepic/2ce59b3e-c11f-4517-8fe6-20d24847a29e.jpg" title=" 07.jpg" alt=" 07.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图7 Karl Norris在日本参观过的Mitsui公司研制的果品近红外在线分选装置 /strong /p p   Karl Norris的工作也对我国产生了间接影响,我国的近红外光谱技术也是从农业领域的研究和应用开始的。上世纪七十年代后期我国科研人员通过Karl Norris等人的学术论文、仪器厂商的宣传、以及到日本等国家的考察学习开始认识近红外光谱技术(图8)。早在八十年代初期中国农科院吴秀琴老师和长春光机所陈星旦院士就开始合作研制滤光片型的近红外光谱分析仪,并取得了成功。这之后,严衍禄教授组建了中国农业大学近红外光谱分析实验室,开始了近红外光谱在农业领域的系统研究,他们的研究成果集中发表在1990年《北京农业大学学报》增刊上。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 339px " src=" https://img1.17img.cn/17img/images/201908/uepic/e1ba8853-96e4-4f72-a072-7edfb406c351.jpg" title=" 08.png" alt=" 08.png" width=" 500" height=" 339" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图8 我国早期开始关注近红外光谱技术的文献 /strong /p p   在上世纪六七十年代,Karl Norris等人的近红外光谱分析研究工作并未获得光谱界的认可。一度被光谱学家和化学家认为是“Black Magic”。Karl Norris为促进近红外光谱获得当时一些光谱学家的支持做了很多工作。Karl Norris在从事近红外光谱分析谷物研究初始,就找到美国著名的光谱学家Tomas Hirschfeld寻求帮助,但当时Karl Norris的研究工作并未得到Tomas Hirschfeld的支持,因为从传统光谱学来看,近红外光谱没有任何优势。但是,Karl Norris与Tomas Hirschfeld的交往并没有因此而终止,Karl Norris取得一些进展后,都会与Tomas Hirschfeld进行沟通交流,最终使Tomas Hirschfeld从近红外光谱的强烈反对者变为近红外光谱的强烈支持者。这一时期开始支持近红外光谱技术的光谱学家还有Peter Griffiths和Bill Fateley等人。这些光谱学家的加入,对近红外光谱技术理论体系的形成起到了重要的作用。例如,1985年Tomas Hirschfeld通过巧妙的实验设计,找到了近红外光谱可以预测水中氯化钠含量的光谱信息依据(图9)。1984年,在Tomas Hirschfeld的倡导下,美国材料与试验协会(ASTM)成立了近红外光谱工作组(E13.03.03),研究近红外光谱技术的标准方法问题。 /p p   令人惋惜的是,Tomas Hirschfeld英年早逝(1939-1986),但是他对近红外光谱的贡献被大家一直记得。在Karl Norris等人的倡议下,国际近红外光谱学会在上世纪八十年代末设立了“Tomas Hirschfeld Award”,表彰在近红外光谱领域做出突出贡献的科学家,截至2019年已有30位获此荣誉。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/4a48c389-3bc3-4217-9043-14d1a184efff.jpg" title=" 09.jpg" alt=" 09.jpg" / /p p style=" text-align: center " strong 图9 NaCl浓度对水近红外光谱的影响 /strong /p p   1974年瑞典化学家S Wold和美国华盛顿大学的B R Kowalski教授创建了化学计量学学科(Chemometris)。化学计量学是将数学、统计学、计算机科学与化学结合而形成的化学分支学科,其产生的基础是计算机技术的快速发展和分析仪器的现代化。据报道,1981年PC机全球销量为三十万台,但到1982年就激增至三百万台。计算机使仪器的控制实现了自动化,且更加精密准确,同时使数据矩阵计算变得相对简单了,可以用来处理更为复杂的定量或定性程序。遗憾的是,化学计量学产生初期并没有与近红外光谱在农业中的应用结合起来。是Karl Norris的不懈努力使化学计量学家逐渐重视这一技术,为近红外光谱技术的崛起起到了推波助澜的作用。一些基于主成分分析的化学计量学方法开始被大家所采用,如主成分回归和偏最小二乘等,这显著提高了近红外光谱分析结果的准确性和可靠性,这也是近红外分析理论体系的重要组成部分,使其基本达到了理论与实践的统一。在上世纪九十年代中期,人工神经网络方法已经出现在用于近红外光谱分析的化学计量学商品化软件中。 /p p   1984年,T Hirschfeld与B R Kowalski在美国《Science》杂志上发表了题为“Chemical Sensing in Process Analysis”的文章,文中多次提到近红外光谱技术。同年,MathWorks公司成立,正式把Matlab推向市场。也是在1984年,B R Kowalski受美国国家科学基金会(NSF)和21家企业共同资助,在美国华盛顿大学建立了过程分析化学中心(Center for Process Analytical Chemistry,CPAC),后更名为过程分析与控制中心(Center for Process Analysis and Control,CPAC)。该研究中心的核心任务是研究和开发以化学计量学为基础的先进过程分析仪器及分析技术,使之成为生产过程自动控制的组成部分,为生产过程提供定量和定性的信息,这些信息不仅用于对生产过程的控制和调整,而且还用于能源、生产时间和原材料等的有效利用和最优化,近红外光谱是其中一项关键的技术。与CPAC合作的这些企业都是当时化工和石化等领域知名的大企业,这意味着近红外光谱技术已开始从农业应用领域转向工业过程分析领域。其中一项划时代的创新技术是利用近红外光谱测定汽油的辛烷值,它可以在很多场合替代传统大型的马达机测试仪器(图10)。与此同时,一些知名的仪器制造商也开始研制新型的近红外光谱仪器,近红外光谱仪器市场和应用研究从此开始呈现出百花齐放的局面。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 246px " src=" https://img1.17img.cn/17img/images/201908/uepic/85a20100-29a6-4c0b-a551-cdcd5e3a4ece.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 500" height=" 246" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图10 传统测定汽油辛烷值的马达机与CPAC研制的近红外辛烷值分析仪 /strong /p p   另外,Dr. Karl H. Norris还是将近红外光谱技术用于医学领域的先行者之一,始终从事和指导近红外光谱在这一领域的研究和应用工作。 /p p strong   三、与近红外光谱相关的诺贝尔奖 /strong /p p   下面介绍几个与近红外光谱技术相关的诺贝尔奖。 /p p   迈克尔逊干涉仪是1883年美国物理学家迈克尔逊(Albert Abraban Michelson)和莫雷(Edward Williams Morley)合作,为研究“以太”而设计制造出来的精密光学仪器。实验结果否定了“以太”的存在,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,迈克尔逊被授予了1907年度诺贝尔物理学奖。目前,迈克尔逊干涉仪目前被广泛应用于近红外光谱仪器和中红外光谱仪器。 /p p   2017年诺贝尔物理学奖授予3位美国科学家Rainer Weiss、Barry C. Barish和Kip S. Thorne,获奖理由是“对LIGO探测器和引力波观测的决定性贡献”。LIGO全称“激光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory)”。该项目的成就在于,当引力波到达地球时,两台大型激光干涉仪成功地检测到了比原子核还要小数千倍的细微变化(导致的空间变化程度最大值为10 sup -21 /sup ,相当于1亿千米的长度内产生一个原子大小(10 sup -10 /sup 米)的变化)。LIGO的干涉仪是迈克尔逊干涉仪在18世纪80年代的巨型版本,创新性的技术和工程将LIGO的干涉仪延伸到1120公里,使LIGO的干涉仪比迈克尔逊所使用的大144000倍,以保证有足够的灵敏度检测到引力波。2015年9月14日,LIGO探测器首次捕获到宇宙中的引力波,这次的引力波信号由两个黑洞相互碰撞而产生,经过了13亿光年才到达地球。 /p p   1922年诺贝尔物理学奖授予丹麦哥本哈根的尼尔斯· 玻尔(Niels Bohr,1885-1962),以表彰他在研究原子结构,特别是在研究原子发出的辐射方面所作的贡献。玻尔综合了普朗克的量子理论、爱因斯坦的光子理论和卢瑟福的原子模型,提出了新的定态跃迁原子模型理论,即后来被称玻尔理论,这理论成功地解释了氢光谱并排出了新的元素周期表。玻尔建立的原子量子论,打开了人类认识原子结构的大门,为近代物理研究开辟了道路。量子力学这一近代物理学大厦的基础,是以玻尔为领袖的一代杰出物理学家集体才华的结晶,包括1929年获得诺贝尔物理学奖的德布罗意(电子的波粒二象性理论)、1932年获得诺贝尔物理学奖的海森堡(矩阵力学)、1933年获得诺贝尔物理学奖的薛定谔(波动力学)、1945年获得诺贝尔物理学奖的泡利(泡利不相容原理)等。玻尔提出的能级跃迁理论至今仍在原子和分子光谱领域中得到广泛使用。 /p p   1964年诺贝尔物理学奖授予美国的汤斯(Charles H.Townes)、前苏联的巴索夫(Nikolay G.Basov)和普罗霍罗夫(Aleksandr M.Prokhorow),以表彰他们从事量子电子学方面的基础工作,这些工作导致了基于微波激射器和激光原理制成的振荡器和放大器。1960年美国加利福尼亚州休斯实验室的科学家梅曼宣布成功的研制了世界上第一台红宝石激光器,获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。激光器的发明是20世纪科学技术有划时代意义的一项成就。自激光器发明后,激光理论、激光器件、激光应用各方面的研究广泛开展,各种激光器也如雨后春笋一般涌现,激光科学成果累累,已成为影响人类社会文明的又一重要因素。 /p p   印度物理学家拉曼(Chandrasekhara Venkata Raman, 1888-1970),因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。受散射光强度低的影响,拉曼光谱经历30年的应用发展限制期。直到1960年后,激光技术的兴起,拉曼光谱仪以激光作为光源,光的单色性和强度显著提高,拉曼散射信号强度得以提高,拉曼光谱技术才得到迅速发展。1980年后,探针共焦激光拉曼光谱仪的成功研制,大大扩展了拉曼光谱的应用范围,出现了像共焦显微拉曼光谱技术、傅里叶变换拉曼光谱技术、表面增强拉曼光谱技术、激光共振拉曼光谱技术、光声拉曼技术、高温高压原位拉曼光谱技术等,使得拉曼光谱被广泛应用于物理、化学、医药、工业等各个领域。 /p p   1969年,贝尔实验室的科学家Willard S. Boyle和George E. Smith发明了第一个数字影像传感器技术:电荷耦合器件(CCD)。CCD的应用范围甚广,如数字相机、手机,影响了社交媒体和视讯共享革命的发展。据报道,2009年,CCD一年出货量达13亿颗。这两位技术发明人在2009年获颁诺贝尔物理奖,以表扬他们在数字成像领域的贡献。CCD作为阵列检测器,在光谱仪上的应用也十分广泛。 /p p   被誉为“光纤之父”的高锟(Charles Kao)获得2009年诺贝尔物理学奖。1966年高锟在一篇论文中首次提出用玻璃纤维作为光波导用于通讯的理论。简单地说,就是提出以玻璃制造比头发丝更细的光纤,取代铜导线作为长距离的通讯线路。这个理论引起了世界通信技术的一次革命。1970年,美国康宁公司研制出损耗为20dB/km的光纤,使光在光纤中进行远距离传输成为可能,光纤通信新纪元自此拉开序幕。现阶段光纤通信可实现同时传输24万路的信号,其容量比微波通信增加一千倍。而且,在确保通信质量的前提下,普通电缆或微波通信的中继距离为1.5~60公里,而现阶段光纤可实现2000~5000公里的无中继传输。光纤除用于通讯领域外,还在医学、传感器和光谱仪中得到广泛应用。没有光纤,在线近红外光谱技术在工业中的应用也不会像如今这样广泛。 /p p   与发射单一频率的传统激光器不同,频率梳光源可同时发射多个频率,均匀间隔以类似于梳齿的谱线,它可覆盖从太赫兹到紫外可见较宽频率的光。光学频率梳已经成为继超短脉冲激光问世之后激光技术领域又一重大突破。在该领域内,开展开创性工作的两位科学家J. Hall和T. W. Hansch于2005年获得了诺贝尔奖。光梳相当于一个光学频率综合发生器,是迄今为止最有效的进行绝对光学频率测量的工具,可将铯原子微波频标与光频标准确而简单的联系起来,为发展高分辨率、高精度、高准确性的频率标准提供了载体,也为精密光谱、天文物理、量子操控等科学研究方向提供了较为理想的研究工具,逐渐被人们运用于光学频率精密测量、原子离子跃迁能级的测量、远程信号时钟同步与卫星导航等领域中。 /p p    strong 四、结束语 /strong /p p   原创性是诺贝尔科学奖的奖励宗旨,原始性创新就是向科学共同体贡献出以前从未出现过、甚至连名称都没有的东西,包括重大科学发现、理论突破、技术和方法的发明等。拉曼效应属于科学发现,激光和光纤属于理论突破,迈克尔逊干涉仪和频率梳属于技术发明,这些都是重大的原始性创新工作,其贡献也是巨大的,无容置疑。 /p p   当然,诺贝尔奖也有无奈和尴尬,例如1948年的诺贝尔医学奖授予发明剧毒有机氯杀虫剂DDT(二氯二苯三氯乙烷)的瑞士化学家米勒。DDT能够有效地杀除蚊虫、控制疟疾蔓延,但是DDT很难降解,毒性残留时间长,世界各国现已明令禁止生产和使用。再例如,一些重大的发现和发明没有获得诺贝尔奖,提出元素周期表的德米特里· 门捷列夫,发明电灯泡的托马斯· 爱迪生,提出黑洞死亡理论的史蒂芬· 霍金,爱因斯坦虽然获得了诺贝尔奖,可是他提出的划时代意义的相对论并不是获奖的理由,等等。 /p p   Karl Norris的研发工作和成果对近红外光谱技术的贡献是巨大的,也是原创性的,对分析技术的进步(包括对过程控制技术的进步)也是革命性的。Karl Norris是近红外光谱技术的开拓者,是名副其实的“近红外光谱之父”。没有Karl Norris,人们可能会在近红外光谱技术探索之路的黑暗期中徘徊更长的时间,也或许这个“沉睡者”永不被唤醒,永不会成为分析技术家族中的“巨人”。Karl Norris遗憾与诺贝尔奖失之交臂,但这丝毫不影响Karl Norris的伟大,也不影响近红外光谱技术的伟大。 /p p   世上可以没有诺贝尔奖,但是却不能没有Karl Norris这位科学家,也不能没有近红外光谱这项分析技术。 /p p   谨以此文悼念Dr. Karl H. Norris! /p p strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   参考文献 /span /strong /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   1 W F McClure. 204 Years of near Infrared Technology: 1800–2003. Journal of Near Infrared Spectroscopy,2003,11(6):487~518 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   2 F E Fowle. The Spectroscopic Determination of Aqueous Vapor. Astrophysical Journal,1921,35(3):149~162 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   3 K H Norris. Early History of near Infrared for Agricultural Applications. NIR news,1992,3(1):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   4 T Davies. Happy 90th Birthday to Karl Norris, Father of NIR Technology. NIR news,2011,22(4):3~16 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   5 S Kawano. Past, present and future near infrared spectroscopy applications for fruit and vegetables. NIR news,2016,27(1):7~9 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   6 G Batten. An appreciation of the contribution of NIR to agriculture. Journal of Near Infrared Spectroscopy,1998,6(1):105~114 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   7 R D Rosenthal,D R Webster. On-line system sorts fruit on basis of internal quality. Food Technol,1973,27(1):52~56, 60 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   8 K H Norris,P C Williams. Optimization of Mathematical Treatments of Raw Near-Infrared Signal in the Measurement of Protein in Hard Red Spring Wheat. I. Influence of Particle Size. Cereal Chem,1984,61(2):158~165 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   9 K H Norris. When Diffuse Reflectance Became the Choice for Compositional Analysis. 1993,4(5):10~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   10 G L Bosco,l James. waters symposium 2009 on near-infrared spectroscopy. Trends in Analytical Chemistry,2010,29(3):197~208 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   11 T Davies. The history of near infrared spectroscopic analysis: Past, present and future - & quot From sleeping technique to the morning star of spectroscopy& quot . Analusis,1998,26(4):17~19 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   12 J S Shenk. Early History of Forage and Feed Analysis by NIR 1972–1983. NIR news,1993,4(1):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   13 F EBarton II. Near Infrared Equipment through the Ages and into the Future. NIR news,2016,27(1):41~44 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   14 T Davies. NIR Instrumentation Companies: The Story So Far. NIR news,1999,10(6):14~15 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   15 K H Norris. NIR is Alive and Growing. NIR news,2005,16(7):12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   16 K H Norris. NIR-spectroscopy From a small beginning to a major performer. Cereal Foods World,1996,41(7):588 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   17 K J Kaffka. Near Infrared Technology in Hungary and the Influence of Karl H. Norris on Our Success. Journal of Near Infrared Spectroscopy,1996,4(1):63~67 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   18 M Iwamoto,S Kawano,Y Ozaki. An Overview of Research and Development of near Infrared Spectroscopy in Japan. Journal of Near Infrared Spectroscopy,1995,3(4):179~189 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   19 K H Norris. History of NIR. Journal of Near Infrared Spectroscopy,1996,4(1):31~37 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   20 P Geladi,E Då bakk. An Overview of Chemometrics Applications in near Infrared Spectrometry. Journal of Near Infrared Spectroscopy,1995,3(3):119~132 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   21 J J Workman. A Review of Process near Infrared Spectroscopy: 1980–1994. Journal of Near Infrared Spectroscopy,1993,1(4):221~245 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   22 A M C Davies. The History of near Infrared Spectroscopy 1. The First NIR Spectrum. NIR news,1991,2(2):12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   23 R Miller. Professor Harry Willis and the History of NIR Spectroscopy. NIR news,1991,2(4):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   24 K B Whetsel. The First Fifty Years of Near-Infrared Spectroscopy in America. NIR news,1991,2(3):4~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   25 K B Whetsel. American Developments in near Infrared Spectroscopy (1952–70) . NIR news,1991,2(5):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   26 D Miskelly,J Ronalds,D M Miskellya,J A Ronaldsb. Twenty-One Years of NIR in Australia: A Retrospective Account with Emphasis on Cereals. NIR news,1994,5(2):10~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   27 B Osborne. Twenty Years of NIR Research at Chorleywood 1974–1993. NIR news,1993,4(2):10~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   28 F E Barton II. Progress in near Infrared Spectroscopy: The People, the Instrumentation, the Applications. NIR news,2003,14(2):10~18 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   29 P C Williams. The Phil William& #39 s Episode. NIR news,1992,3(2):3~4 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   30 P E K Donaldson. In Herschel& #39 s Footsteps. NIR news,2000,11(3):7~8 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   31 K I Hildrum,T Isaksson. Research on near Infrared Spectroscopy at MATFORSK 1979–1992. NIR news,1992,3(3):14 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   32 C Paula,J M Montesb,P Williams. Near Infrared Spectroscopy on Agricultural Harvesters: The Background to Commercial Developments. NIR news,2008,19(8):8~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   33 G D Battena,A B Blakeneyb,S Ciavarellaca,V B McGratha. NIR Helps Raise Crop Yields and Grain Quality. NIR news,2000,11(6):7~9 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   34 J Reeves III,S R Delwiche. Near Infrared Research at the Beltsville Agricultural Research Center (Part 1): Instrumentation and Sensing Laboratory. NIR news,2005,16(6):9~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   35 J Reeves III. Near Infrared Research at the Beltsville Agricultural Research Center (Part 2) . NIR news,2005,16(8):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   36 I Foskett. The Art and Science of Interference Filters. NIR news,1993,4(1):3~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   37 R F Goddu. Determination of Unsaturation by Near-Infrared Spectrophotometry. Analytical Chemistry,1957,29(12):1790~1794 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   38 R L Meeker,F E Critchfield,E T Bishop. Water determination by near infrared spectrophotometry. Analytical Chemistry,1962,34(11):1510~1511 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   39 R T O’Connor. Near-infrared absorption spectroscopy—a new tool for lipid analysis. Journal of the American Oil Chemists& #39 Society,1961,38(11)641~648 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   40 W A Patterson. Non-Dispersive Types of Infrared Analyzers for Process Control. Applied Spectroscopy,1952,6(5):17~23 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   41 J R Hart,C Golumbic,K H Norris. Determination of moisture content if seeds by near-infrared spectrophotometry of their methanol extracts. Cereal Chem,1962,39(2):94~99 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   42 K B Whetsel. Near-Infrared Spectrophotometry. Applied Spectroscopy Reviews,1968,2(1):1~67 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   43 J A Jacquez,W McKeehan,J Huss,J M Dmitroff,H F Kuppenheim. Integration Sphere for Measuring Diffuse Reflectance in the Near Infrared. J. Opt. Soc. Am.,1955,45(10):781-0 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   44 D L Wetzel. Near-Infrared reflectance analysis sleeper among spectroscopic techniques. Analytical Chemistry,1983,55(12):1165A~1176A /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   45 F W McClure. Near-infrared spectroscopy. the giant is running strong. Analytical Chemistry,1994,66(1):43A~53A. /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   46 P Williams. John Shenk& #39 s Retirement: Some Tributes from His Friends, Colleagues and Students. NIR news,2005,16(2):6~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   47 P Flinn. A Giant of a Man: In Memory of John Stoner Shenk II, 1933–2011. NIR news,2011,22(7):4~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   48 T Davies. Karl& #39 s London Marathon. NIR news,2002,13(3):3 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   49 D W Hopkins. What is a Norris Derivative? NIR news,2001,12(3):3~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   50 G E Ritchie. Investigating NIR Transmittance Measurements through the Use of the Norris Regression (NR) Algorithm: Part 1: How Do We Come to “Norris Regression”? NIR news,2002,13(1):4~6 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   51 P Williams. Twenty-Five Years of near Infrared Technology—What Were the Milestones? NIR news,1997,8(1):5~6 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   52 W F McClure. Breakthroughs in NIR Spectroscopy: Celebrating the Milestones to a Viable Analytical Technology. NIR news,2006,17(2):10~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   53 J L Gonczy. Developments in Hungary 1970–1990. NIR news,1993,4(3):3~4 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   54 T Fearn. Chemometrics for NIR Spectroscopy: Past Present and Future. NIR news,2001,12(2):10~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   55 T Davies. Looking Back& #8230 Looking Forward: My Hopes for 2020. NIR news,2006,17(7):3~4 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   56 P Williams. Near Infrared Technology in Canada. NIR news,1995,6(4):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   57 T Hirschfeld,J B Callis,B R Kowalski. Chemical Sensing in Process Analysis. Science,1984,226(4672):312~318 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   58 T Hirschfeld. Salinity Determination Using NIRA. Appl. Spectrosc.,1985,39(4):740~741 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   59 D A Burns,E W Ciurczak. Handbook of Near-Infrared Analysis(Third Edition),Marcel Dekker Inc,New York,2007 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   60 M Ferrari,K H Norris,M G Sowa. Medical near Infrared Spectroscopy 35 Years after the Discovery. Journal of Near Infrared Spectroscopy,2012,20(1):vii~ix /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   61 J T Kuenstnerb,K H Norris. Spectrophotometry of Human Hemoglobin in the near Infrared Region from 1000 to 2500 nm. NIR news,1994,2(2):59~65 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   62 K H Norris. Moving NIR into the Next Century. NIR news,1999,10(1):4~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   63吴敏,胡高峰,姚文坡,干振华,徐达军,黄亚萍,汪长岭. 近红外光谱在医学应用方面的最新进展. 中国医疗设备,2017,32(6):109~113 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   64 薛凤家编著. 诺贝尔物理学奖百年回顾. 北京:国防工业出版社出版,2003 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   65 李丽. 时空向度的现代探索-诺贝尔物理学奖获得者100年图说. 重庆:重庆出版社,2006 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   66 郭奕玲,沈慧君. 诺贝尔物理学奖一百年. 上海:上海科学普及出版社,2002 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   67 吴润,彭蜀晋. 光谱分析方法的演变与百年诺贝尔奖. 化学教育,2014,35(16):58~64 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   68 中国仪器仪表学会近红外光谱分会. 《回望 继承 凝聚 奋进—我与近红外故事文集》,北京:化学工业出版社,2017 /span /p p style=" text-align: right "   褚小立 /p p style=" text-align: right "   2019年8月8日 /p
  • 诺贝尔化学奖:展现细胞的内部世界
    十七世纪,最早的微生物学家安东尼.范.列文虎克(Antonie van Leeuwenhoek)利用聚光下的透镜看到了游动的细胞,并为之惊叹不已。自那时起,显微镜便开辟了新的研究前景。今年,诺贝尔化学奖授予了三位科学家。他们突破光学显微镜的极限,展现了活细胞分子级结构的清晰图像。   斯特凡.赫尔(Stefan Hell)、威廉姆.莫尔纳尔(William Moerner)和埃里克.白兹格(Eric Betzig)在上世纪九十年代与本世纪头十年内所取得的进展,意味着如今生物学家可以对蛋白质分散、进入细胞的过程进行实时观察。该技术可应用于研究神经元间如何连接,以及受精卵如何分裂成胚胎等问题。   &ldquo 这真是生命科学的革命,因为我们现在可以看到从前看不到的结构。&rdquo 斯特凡.赫尔说道。(斯特凡.赫尔在位于哥廷根的马克斯.普朗克学会生物物理化学研究所从事超分辨率技术的研究工作。)或如诺贝尔委员会所说:&ldquo 显微(微米)技术已然变为显纳(纳米)技术了。&rdquo   正如德国物理学家恩斯特.阿贝(Ernst Abbe)于1873年所意识到的那样,无论透镜有多干净,光学显微镜所呈现的细胞分子图像总是模糊不清的。物理定律决定:当物体间距小于约200纳米(约为可见光波长的一半)时,可见光将无法分辨不同物体,而这些物体将会呈现为一点。这称作阿布衍射极限。在这种分辨率下,人们可以看到细胞中的细胞器,却看不到细胞器的具体结构。电子显微镜比光学显微镜的分辨率高,但只限于真空条件下使用,故仅能用于研究已死的组织。   阿布极限是客观存在的,无法克服。于是,2014年的诺贝尔奖得主们转而运用荧光团(荧光分子)技术。所谓荧光团技术,即激光器发射出特定波长的激光,冲击荧光团使其发光。这一技术现常用于生物成像。   战胜模糊 威廉姆.莫尔纳尔现就职于加利福尼亚州斯坦福大学。他于1989年在位于圣荷西的IBM阿尔马登研究中心工作时,发现了单个分子会发出微弱的荧光。1997年,他在加利福尼亚大学圣地亚哥分校任职期间,又找到了控制荧光的办法,从而可以像开关灯一样改变分子。但仍旧需要这些单个分子间距大于200纳米才能分辨出来。   1995年,新泽西默里山贝尔工作室的埃里克.白兹格提议:如果使细胞中异种分子发出不同颜色的光,研究人员应当可以通过顺序拍摄红分子、绿分子、蓝分子的照片来提高分辨率。虽然同色荧光团仍需相距200纳米以上,但通过图层叠加的方法的确可以做出拥有更高分辨率的结构图。接下来,莫尔纳尔证明了各类同种分子可在不同时刻发光。这项发现最终将白兹格的想法变成了现实。   白兹格历经近十年才将他的想法付诸实践。他曾离开科学学术界,到他父亲在密歇根的医疗设备公司工作。2006年,他效力于弗吉尼亚州阿什本地区霍华德?休斯医学研究所珍妮利亚农业研究院。他运用这项技术拍摄了一张溶酶体蛋白的超分辨率照片,溶酶体蛋白上遍布着带有绿色荧光标记的分子。德国维尔茨堡大学超分辨率显微技术研究员马库斯.萨澳(Markus Sauer)说:这项技术现可达到20纳米的分辨率。   此时,正在芬兰图尔库大学工作的斯特凡.赫尔发现了一种可以避开阿布极限的技术。这项技术同样依赖于对荧光分子的控制。1994年,他提出:使用激光器制造有色荧光团,然后再次使用激光器使部分荧光团停止发光。其实早在1917年,爱因斯坦就描述了这一过程。   赫尔的方法是运用第二次激光照射冲击被照亮的荧光团,如此一来只剩下极少荧光点在发光。而由于无法战胜阿布极限,最后的图像还是模糊的。但有一点可以肯定,第二次照射后剩下的极少荧光点可以帮助研究人员确定光源。   将一系列这样的荧光点集合起来,就可以得到一幅高分辨率的图像。理论上,这些荧光点可以达到仅几纳米的间距。但在活细胞中,30纳米左右已然是极限了。萨澳说:这是由于现阶段第二次激光强度太大而常常破坏荧光团。   细胞的世界   &ldquo 至少在我看来,二十世纪那么多的物理发现一定能帮我们克服衍射难题。&rdquo 现就职于哥根廷马克斯?普朗克学会生物物理化学研究所的赫尔,在得知获奖消息时这样对诺贝尔委员会说道。   &ldquo 的确如此,赫尔运用的所有量子物理原理都在二十世纪二十年代末被发现。&rdquo 托马斯.卡拉尔指出。托马斯.卡拉尔(Thomas Klar)是奥地利约翰.开普勒林兹大学应用物理学研究所负责人,曾在2000年与赫尔合着原理论证的论文。   赫尔接到诺贝尔委员会打来的电话时正在读一篇科学论文。之后,他说:&ldquo 我读完了想看的那段,然后打电话给我的妻子和一些亲友。&rdquo   今年诺贝尔奖得主们的发明尚未成为常规技术,但已有许多生物学家运用此技术拍摄出了很好的细胞内部结构图。赫尔还发布了间距40纳米的小泡在神经元内游动的视频。庄小威是马萨诸塞州剑桥市哈佛大学的一名化学家。她自己则另有发明&mdash &mdash 随机光学重建显微法。该显微法可用于展现肌动蛋白纤维如何沿轴突横截面周长呈环状包裹轴突。&ldquo 将来会出现许多新版的超分辨率显微镜。&rdquo 赫尔说道。
  • 特尔诺发布特尔诺集中气路系统T-JQ001新品
    实验室集中供气系统涉及气体管路的设计、材质选择、工程安装和验收等方面的工作,它主要是由气源,切换装置,调压装置,终端用气点,监控及报警装置组成。简而言之,集中供气系统将中央储气设备中的气体经切换装置并调压后通过管路系统输送到各个分散的终端用气点。创新点:特尔诺集中气路系统T-JQ001与本公司上一代产品相比,气路系统主要由气源切换系统、管道系统、调压系统、用气点、监控及报警系统组成。在现代化的实验室中,为了完成实验,需要用到多种分析仪器,如气相色谱仪,原子吸收等,其中这些仪器需要用到高纯气体,传统的做法是采用独立钢瓶分散供气的模式,这种供气模式每台仪器设备单独配置气体钢瓶,分别满足每台仪器设备的使用,但随着近年来实验室投资的不断加大,仪器设备的不断增加,用气量也逐年增加,传统的供气模式已经难以满足仪器设备增加的需求,同时分散供气模式带来的实验室布局混乱,钢瓶的频繁更换也对实验室的管理和维护造成困难,为了解决以上两个方面的问题,就需要一套安全性高且能实现集中分配供气的系统完成从气源想仪器的供气,这就是实验室高纯气体管道系统的功能所在。 特尔诺集中气路系统T-JQ001
  • 获得诺贝尔奖的多能干细胞技术离临床应用还有多远?
    p style=" text-align: justify "   2012年,诺贝尔生理学或医学奖授予了英国科学家John B. Gurdon先生和日本科学家Shinya Yamanaka博士,表彰他们将成熟细胞重新编程,转化为可以分化为多种细胞类型的诱导多能干细胞(iPSC)方面的突破性研究。自从在2006年被发现以来,iPSC被誉为能够为再生性医药带来革命的发现。12年已经过去了,它们的研究进展到了那个阶段呢? /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/8fdee30a-2486-4dd7-a816-3f842a0fc0da.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 496" height=" 352" style=" width: 496px height: 352px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 2012年诺贝尔生理学或医学奖得主John B. Gurdon先生和Shinya Yamanaka博士 /span /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图片来源:nobelprize.org) /span /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong iPSC的最初临床试验 /strong /span /p p style=" text-align: justify "   在2018年10月的一项外科手术中,京都大学(Kyoto University)的神经外科医生将240万细胞移植到一名帕金森病(PD)患者的大脑中。这些细胞是由匿名捐献者的外周血细胞重新编程成为iPSC,然后再分化生成的多巴胺能前体细胞。研究人员希望它们能够提高多巴胺水平,缓解患者的症状。 /p p style=" text-align: justify "   这项手术是临床医生们检测iPSC能否用于治疗疾病的最新尝试。近几年来,日本的科学家们启动了几项临床研究,检验它们在治疗心脏疾病和视网膜黄斑变性方面的功效。而世界其它地方的研究人员在探索将这些细胞转化为治疗从子宫内膜异位到脊髓损伤等一系列疾病的疗法。这些临床研究的启动给人们带来希望,这项获得诺贝尔奖的科学发现终将开花结果,为患者带来创新疗法。 /p p style=" text-align: justify "   “我很高兴他们试图将这项技术推入临床期,因为iPSC领域需要证明这些细胞具备成为再生性疗法的潜力。”伊利诺伊大学芝加哥分校的Jalees Rehman博士说。然而,将这一技术推入临床的过程也暴露出开发疗法时需要面对的挑战。 /p p style=" text-align: justify "   目前,只有少数患者接受了基于iPSC的治疗。在2014年,一名患有黄斑变性的女性接受了从iPSC分化的视网膜细胞的移植,这些iPSC来自于她自身的细胞。虽然她的视力没有因为这一治疗得到显著改善,但是“iPSC分化细胞的安全性得到了确认”,京都大学的Jun Takahashi博士写道。他也是帮助将iPSC分化为多巴胺能前体细胞的干细胞生物学家,这些细胞被用于植入到PD患者大脑中。他的太太,RIKEN发育生物学中心的Masayo Takahashi博士,生成了在这项临床试验中使用的视网膜细胞。 /p p style=" text-align: justify "   去年,有5名患者使用iPSC分化的视网膜细胞治疗同样的眼科疾病,这些iPSC细胞是从其它捐献者中获得的。其中一名患者出现了对移植体的严重但不致命反应,迫使医生摘除移植体。 /p p style=" text-align: justify "   更多的临床试验即将开展。明年,心脏外科医生们计划将由iPSC分化形成的心肌细胞组织移植到3名心脏病患者的心脏中,Takahashi博士计划在2022年之前再治疗6位PD患者。这些研究都处于临床试验的最早期。“现在对我们的临床试验做出任何判断都为时过早。”Takahashi博士说。 /p p style=" text-align: justify "   在有些研究人员等待临床试验的结果来验证iPSC是否具有再生疗法潜力的同时,另外一些学者正在大幅度推动临床前研究,开发出更多使用它们治疗疾病的方法。例如,加州大学洛杉矶分校的干细胞生物学家April Pyle博士最近开发出一种可能用于治疗杜氏肌营养不良症(DMD)的疗法。这是一种由于编码抗肌萎缩蛋白的基因出现变异而导致的严重疾病。她和她的同事使用CRISPR-Cas9技术在人类iPSC中修复了产生突变的基因,然后将它们分化成为骨骼肌细胞,并且将这些细胞注射到抗肌萎缩蛋白缺失的小鼠肌肉中。“我们能够在肌肉的局部区域恢复抗肌萎缩蛋白的表达。”她解释道。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a58008f7-08a8-40f6-a434-3fd201ce687a.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 466" height=" 471" style=" width: 466px height: 471px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " April Pyle博士(图片来源:April Pyle实验室官网) /span /p p style=" text-align: justify "   “我认为这才是开始,”Pyle博士说:“我觉得我们终于将要看到以前辛勤工作带来的成果,在这些最初的临床试验之后将会有许多后续的临床试验。” /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 克服进入临床研究面对的挑战 /strong /span /p p style=" text-align: justify "   如今,研究人员已经找出将iPSC诱导分化成为大多数已知细胞类型的方法。但是让这些细胞能够在新的组织环境中承担成熟细胞的功能是需要克服的另一个问题。例如在心脏中,研究人员发现新的干细胞需要与其它细胞在电生理特征方面达成一致。在细胞培养环境下对人类iPSC分化的心肌细胞的研究表明,对这些细胞进行电刺激,让它们在发育的过程中产生收缩,会让细胞更快成熟,意味着它们可能更能够承担在体内需要面对的工作量。 /p p style=" text-align: justify "   如何整合新细胞,让它们能够在受伤或疾病组织中生存是另一个问题。“你需要一个特别的基质么?它是水溶胶,还是一个补丁,还是一个类器官?如何能够让这些细胞长期生存?”Rehman博士问道:“这是我们在所有器官中都会遇到的挑战。” /p p style=" text-align: justify "   研究人员已经在使用猴子模型来评估移植过程的效率,Takahashi博士解释道。去年,他的团队证明,在猴子模型中,人类iPSC分化的多巴胺能神经元能够稳定地整合到已有的大脑组织中,这些细胞能够生成多巴胺并且最终可以改善类似PD的症状。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/45a8a316-9e69-4ece-98bb-28e46829043d.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify "   另一个移植iPSC生成组织的挑战是这些细胞可能触发癌症的风险。这一风险一直存在,因为这些细胞是从增殖能力非常强的细胞中分化而来。为了预防这一风险,Takahashi博士和他的同事们对移植细胞进行严密筛选,过滤掉那些未分化,最可能过度增殖的细胞。同时他们会将这些细胞植入到小鼠身上,检测它们生成肿瘤的可能性。 /p p style=" text-align: justify "   然而,“我们无法完全消除肿瘤生成的可能性。” 庆应义塾大学(Keio University)的妇科教授Tetsuo Maruyama博士说。因此,他认为这些手术应该聚焦于非必需器官,例如眼睛或者子宫。他最近成功地从iPSC中分化出健康的子宫细胞,计划用这些细胞来研究子宫内膜异位的机理,并且生成人类子宫内膜在临床使用。 /p p style=" text-align: justify "   另一个研究人员经常关注的问题是患者在接受由其它供体产生的iPSC时需要使用免疫抑制药物。例如,Takahashi博士的PD患者在长达一年的时间里需要使用免疫抑制药物,这可能让他们抵抗感染和癌症的能力下降。虽然存在这样的风险,很多研究人员仍然选择使用同种异体的干细胞,主要原因是这一策略在扩大化生产时可以节省时间、成本、和人力。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong “即用”型iPSC的优势 /strong /span /p p style=" text-align: justify "   开发“即用”型iPSC疗法对学术界和工业界都具有很大的吸引力。例如,澳大利亚的生物技术公司Cynata Therapeutics最近完成了一项1期临床研究,使用iPSC分化生成的间充质干细胞来治疗移植物抗宿主病(GVHD)。这种疾病在骨髓移植手术后发生,供体的免疫细胞认为受体细胞是外来物,并且对它们进行攻击,这往往会造成患者死亡。但是间充质干细胞可以分化成熟为一系列不同的细胞类型,抑制供体T细胞的增殖和激活,Cynata公司的产品开发副总裁Kilian Kelly博士说。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/903cbf81-f1f4-4f13-8730-5e80922b8a60.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 520" height=" 188" style=" width: 520px height: 188px " / /p p style=" text-align: justify "   这项临床试验中,间充质干细胞通过静脉注射到15名GVHD患者体内,这些患者对类固醇疗法没有响应,预后情况非常糟糕。虽然现在评估疗效还为时过早,但是Kelly博士表示,他很高兴看到其中14名患者的病情得到了显著改善,这是一个好兆头。更便捷的是,免疫排斥对间充质干细胞来说不是一个问题,因为它们不表达触发免疫排斥的特异性抗原。“这意味着我们可以使用从单一iPSC库中获取的细胞来治疗几乎所有人。”Kelly博士说。 /p p style=" text-align: justify "   这也是多个机构在开发可以用来大规模开发再生疗法的iPSC细胞库的原因之一。例如,日本政府决定投资2.5亿美元来开发iPSC库存,帮助生物医学研究。捐献这些细胞的志愿者经过精心筛选,包括了不同种类的常见人类白细胞抗原(HLA)类型。这样,这些细胞和人群中的大多数人都具有免疫相容性。在进行移植时,患者可能只需要少量的免疫抑制。这是在使用患者特异性细胞和从随机供体中获得的细胞之间的折中方案。 /p p style=" text-align: justify "   综合来看,这些细胞能够与日本人口中70%的人群免疫相容。对于像美国这样的遗传背景复杂的国家来说可能更为困难,但是研究人员已经开始向这个方向努力。一家位于威斯康辛的名叫Fujifilm Cellular Dynamics的公司正在试图开发一个iPSC细胞库,它可以与大部分美国人口相匹配。 /p p style=" text-align: justify "   在这些努力继续进行的同时,世界各地的研究人员仍在研究将这些细胞应用于临床的细节。“我们离临床应用越接近,对需要解决的挑战的认知就越清晰,”Rehman博士说:“我认为这是科学发现非常正常的过程。” /p p style=" text-align: justify "    span style=" font-size: 14px color: rgb(127, 127, 127) " 参考资料: /span /p p style=" text-align: justify " span style=" font-size: 14px color: rgb(127, 127, 127) "   [1] Increasing Number of iPS Cell Therapies Tested in Clinical Trials. Retrieved December 4, 2018, from https://www.the-scientist.com/news-opinion/increasing-number-of-ips-cell-therapies-in-clinical-trials--65150 /span /p
  • 关于参加“2017诺贝尔奖获得者医学峰会暨质谱技术与临床医学主题论坛”的通知
    p style=" text-align: center " a href=" http://2017.nobelsummit.com/dhyc/111.html" target=" _self" title=" " img src=" http://img1.17img.cn/17img/images/201707/insimg/f420d84f-0976-497a-b9f0-d696ecd96316.jpg" title=" 1.png" / /a /p p   由诺贝尔奖得主国际科学交流协会主办的“2017年诺贝尔奖获得者医学峰会”将于2017年9月14日-16日在贵阳隆重召开。本次峰会包括“第二届国际精准医学高峰论坛”、“质谱技术与临床医学主题论坛”等若干论坛。大会委托中国质谱学会承办的“质谱技术与临床医学主题论坛”拟定于9月16日(半天)同期召开。 /p p   作为医学的发展前沿,精准医学引起世界各国的高度重视。我国推动精准医学的战略意义是提升疾病诊治水平,促进医学健康前沿发展,增加我国医学国际竞争力,发展医疗生物技术,形成新的经济增长点、带动大健康产业的发展。质谱技术在生命组学、精准医疗研究及其临床医学中发挥着越来越大的作用。因此,本届峰会增设“质谱技术与临床医学主题论坛”,其目的为质谱技术和临床医学及其相关领域专家、学生提供交流平台,促进质谱技术与临床医学的交叉融合、推动质谱技术在精准医学、转化医学发挥更大作用等。 /p p   2016年,诺贝尔奖获得者医学峰会暨第一届国际精准医学高峰论坛,著名质谱学者分享最新研究亮点,获得医学专家及参会人员的良好反馈。本次论坛将邀请国内知名质谱技术专家、临床医学专家或临床质谱应用专家等一起交流,在此我们诚挚地邀请您拨冗参加。因论坛规模有限,希望相关领域专家、学生积极报名。 /p p   主办单位:诺贝尔奖得主国际科学交流协会 /p p   承办单位:中国质谱学会 /p p   协办单位: 安特百科(北京)技术发展有限公司 /p p   支持媒体:仪器信息网( a href=" http://www.instrument.com.cn" target=" _self" title=" " www.instrument.com.cn /a ) /p p   会议地点:中国贵阳· 贵阳国际生态会议中心 /p p   会议时间:2017年9月14日-9月16日 /p p   会议议程:见链接: a href=" http://2017.nobelsummit.com/dhyc/111.html" target=" _self" title=" " http://2017.nobelsummit.com/dhyc/111.html /a /p p   其中,“质谱技术与临床医学主题论坛”(9月16日) /p p   会议住宿及交通:请关注如下链接 /p p    a href=" http://2017.nobelsummit.com/chzc/jdjt/105.html" target=" _self" title=" " http://2017.nobelsummit.com/chzc/jdjt/105.html /a /p p   参会费用:会议注册费1000元(如果只参加质谱技术与临床医学主题论坛,则为500元),请大家通过银行汇款和网上缴费,不接受现场缴费。(报名限额 150人) /p p   缴费方式:通过银行汇款(账户信息如下): /p p   开户行:北京银行燕园支行 /p p   户名:安特百科(北京)技术发展有限公司 /p p   账号:0109 0327 8001 2010 2310 193 /p p   进行银行汇款时,请备注发票抬头和会议费缴纳人员姓名 如缴纳多人会议费或需开具增值税专用发票,请详细填写附件中的开票信息,并邮件发送给会议费事宜联系人。 /p p   2 通过网上支付缴费 /p p   在线缴费链接: a href=" http://www.antbuyhot.com/shop/item-503209.html" target=" _self" title=" " http://www.antbuyhot.com/shop/item-503209.html /a /p p   登录页面,点击立即购买,注册获取用户名和密码,并登陆按提示缴费,若缴纳多人会议费,买家留言处备注缴费人员姓名(我们会与注册系统核对),提交订单付费即可。 /p p   会议费事宜联系人: /p p   刘会兰 电话:18942663827邮箱:huilan_liu@antpedia.net /p p   会议注册:请登陆光谱网(http://www.sinospectroscopy.org.cn)注册您的参会个人信息(希望大家留下联系方式,以便会务组与大家联络),具体步骤: /p p   1. 登录光谱网填写您的个人信息,获取用户名和密码: a href=" http://www.sinospectroscopy.org.cn/register.php" target=" _self" title=" " http://www.sinospectroscopy.org.cn/register.php /a /p p   2. 提交参会信息,点击如下链接,输入用户名和密码 /p p    a href=" http://www.sinospectroscopy.org.cn/CHMsg.php?mid=22" target=" _self" title=" " http://www.sinospectroscopy.org.cn/CHMsg.php?mid=22 /a /p p   进入后选择我要参会,提交即可。 /p p   会议联系人: /p p   谢孟峡 010-58807981 xiemx@bnu.edu.cn /p p   张瑞萍 13911901683 rpzhang@imm.ac.cn /p p style=" text-align: right "   主办单位:诺贝尔奖得主国际科学交流协会主办 /p p style=" text-align: right "   承办单位:中国质谱学会 (中国物理学会质谱分会) /p p style=" text-align: right "   协办单位: 安特百科(北京)技术发展有限公司 /p p style=" text-align: right " 二〇一七年七月 /p p br/ /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201707/ueattachment/505c048d-637b-4d82-a17b-58a52e3080e1.doc" 附:开票信息.doc /a /p p style=" text-align: left " br/ /p
  • 2011年诺贝尔化学奖揭晓
    北京时间10月5日下午5点45分,2011年诺贝尔化学奖揭晓,以色列科学家达尼埃尔谢赫特曼Daniel Shechtman获奖,获奖理由是“发现准晶体”。今年诺贝尔化学奖奖金共1000万瑞典克朗(约合146万美元),由谢赫特曼一人独享。   2011年诺贝尔生理学或医学奖揭晓   2011年诺贝尔物理学奖揭晓 达尼埃尔谢赫特曼(Daniel Shechtman)    非凡的原子“镶嵌”   在准晶体中,我们发现迷人的阿拉伯镶嵌艺术在原子水平的重现:规则但从不重复的模式。然而,准晶体构型的发现曾被认为是不可能的,因而Daniel Shechtman只得对已知的科学发起强烈的挑战。2011年诺贝尔化学奖已经从根本上改变了化学家如何想象固体物质。   1982年4月8日的早上,一幅违反自然定律的图像出现在Shechtman的电子显微镜中。在所有的固体物质中,原子被认为均匀地分布在晶体中,并周期性地进行重复。对于科学家来说,为了获得晶体,这种重复是必需的。   然而,Shechtman眼前出现的图像却显示,该晶体中的原子排列模式是无法重复的。这种模式曾被认为是不可能的,就像不可能单纯用六角形制造足球,因为同时需要五角形和六角形。他的发现引起了极大的争议。在为自己的发现辩护期间,他被要求离开了自己的研究小组。不过,他的坚持最终迫使科学家重新考虑他们对于物质属性的概念。   非周期性“镶嵌”,比如在西班牙阿尔罕布拉宫和伊朗Darb-i Imam神殿中发现的中世纪伊斯兰镶嵌艺术,帮助科学家理解了准晶体在原子水平的特征。在这些镶嵌中,比如准晶体,模式是规则的——它们遵循数学法则——但它们从不重复自己。   当科学家描述Shechtman的准晶体的时候,他们使用一个来自于数学和艺术的概念:黄金比例。这一数字在古希腊的时候就已经引起了数学家的兴趣,经常出现在几何学中。举个例子来说,在准晶体中,原子间不同距离之比同黄金分割相关。   跟随Shechtman的发现,科学家已经在实验室中制造了其它种类的准晶体,并从来源于俄罗斯一条河流中的矿石样本中发现了天然准晶体。一家瑞典公司也从某种形态的铁中发现了准晶体。科学家们目前正在实验于不同产品中使用准晶体,比如煎锅和柴油机。   Daniel Shechtman,以色列公民。1941年出生于以色列特拉维夫。1972年从以色列理工学院获得博士学位。以色列理工学院菲利普托拜厄斯讲席教授。   ■ 人物 谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系   ——美国化学协会主席纳西杰克逊   当我告诉人们,我发现了准晶体的时候,所有人都取笑我。   ——谢赫特曼   “那时,所有人都取笑我”   因为挑战当时的“常识”,谢赫特曼被斥“胡言乱语”、“伪科学家”   “胡言乱语”、“伪科学家”,当30年前谢赫特曼发现“准晶体”时,他面对的是来自主流科学界、权威人物的质疑和嘲笑,因为当时大多数人都认为,“准晶体”违背科学界常识。   “当我告诉人们,我发现了准晶体的时候,所有人都取笑我。”谢赫特曼在一份声明中说。1982年,41岁的谢赫特曼正在美国霍普金斯大学从事研究工作。   “的确,那时候的人们压根不会接受那种晶体的存在。”美国化学协会主席纳西杰克逊说,“因为他们认为这违反自然界‘规则’。”   因为这些“规则”被视为真理,胆敢“捋虎须”的谢赫特曼自然就备受排挤。   发现“准晶体”后,谢赫特曼花费了好几个月的时间,试图说服他的同事,但一切均徒劳,没人认同他的观点。不仅如此,他还被要求离开他所在的研究小组。无奈之下,谢赫特曼只有返回以色列,在那里,他的一个朋友愿意帮助他,将“准晶体”的有关研究成果公开发表。   最开始,这篇论文也没能逃脱被拒绝的命运,但在谢赫特曼和他朋友的艰苦努力下,1984年,论文终于得以发表,也立即在化学界引发轩然大波。一些化学界权威也站出来,公开质疑谢赫特曼的发现,其中包括著名的化学家、两届诺奖得主鲍林。   “他(鲍林)公开说:达尼埃尔谢赫特曼是在胡言乱语,没有什么准晶体,只有‘准科学家’。”谢赫特曼后来说。   近30年后,勇敢质疑“常识”的谢赫特曼终于获得全世界最权威的科学认可。“谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系。”纳西杰克逊说。   ■ 背景 固体家族“另类哥”   20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。   根据固态物质构成的原子排列规律,晶体内原子应呈现周期性对称有序排列,非晶体内原子呈无序排列。1982年4月8日,谢赫特曼在铝锰合金冷冻固化实验中首次观察到合金中的原子以一种非周期性的有序排列方式组合,具有这种原子排列方式的固体在当时理论下是不可能存在的。   由于原子排列不具周期性,准晶体材料硬度很高,同时具有一定弹性,不易损伤,使用寿命长。鉴于其“强化”特性,准晶体材料可应用于制造眼外科手术微细针头、刀刃等硬度较高的工具。此外,准晶体材料无黏着力并且导热性较差,其应用范围还包括制造不粘锅具、柴油发动机等,应用前景广阔。   附:诺贝尔奖网站官方公告   5 October 2011   The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2011 to   Daniel Shechtman   Technion - Israel Institute of Technology, Haifa, Israel   "for the discovery of quasicrystals"   附录:近10年诺贝尔化学奖得主及其主要成就   2011年,以色列科学家达尼埃尔谢赫特曼因发现准晶体而获奖。准晶体是一种介于晶体和非晶体之间的固体,准晶体的发现不仅改变了人们对固体物质结构的原有认识,由此带来的相关研究成果也广泛应用于材料学、生物学等多种有助于人类生产、生活的领域。   2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究成果而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。   2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。   2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。   2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。   2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。   2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。   2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。   2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了开创性贡献而获奖。   2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希因发明了对生物大分子进行识别和结构分析的方法而获奖。
  • 中国学者解读2012年诺贝尔化学奖
    10月10日,69岁的美国科学家罗伯特莱夫科维茨和57岁的布莱恩科比尔卡因进一步揭示了G蛋白偶联受体的内在工作机制,分享了2012年诺贝尔化学奖。   而18年前,G蛋白和G蛋白偶联受体(GPCRs)就曾令他们的发现者——两名美国科学家获得了诺贝尔生理学或医学奖。   看清G蛋白激活过程   莱夫科维茨从1968年便开始利用放射性碘来寻找细胞接受信号的物质,这种物质后来被称为“G蛋白偶联受体”。他找到了多种受体,并将其中的“β-肾上腺素受体”从细胞壁抽出。上世纪80年代,年轻的科比尔卡加入了莱夫科维茨团队。   2007年,科比尔卡首次用T4溶菌酶融合法解析了β-肾上腺素受体的结构,该方法后来成为获取G蛋白偶联受体三维结构的常规手段。2011年,他又在这个受体被激活并向细胞发送信号时获得了三维图像。   “在此之前,一直没有人了解G蛋白偶联受体究竟如何激活G蛋白。”清华大学生命科学学院院长施一公评价,“这是一项划时代的工作。”   中科院院士、同济大学校长裴钢指出,G蛋白偶联受体是细胞表面的信号接收器,是细胞生物学、分子药理学等学科里最基础的一类传导分子。同时,很大一部分药物都以该受体为作用靶点,激活机理研究将对未来药物研发有所助益。   早就被看好的研究   获奖者的名字被公布后,《中国科学报》记者拨通北京大学生命科学学院院长饶毅的电话,他称自己曾在今年4月就非常看好G蛋白偶联受体研究。他分析,诺贝尔化学奖委员会不时地肯定化学和生物交叉的工作。鉴于G蛋白偶联受体本身及其结构解析的重要性,他认为,对于该受体的结构生物学研究,几乎肯定会获得诺贝尔奖。   中科院生物物理所研究员王江云曾在与科比尔卡合作过的斯克利普斯研究所工作,他也在第一时间告诉《中国科学报》记者:“几个月来我一直向我的同事表示,G蛋白偶联受体研究非常有可能获得诺奖。”   今年4月,科比尔卡受聘清华大学医学院客座教授。当时,施一公曾给同事们写了一封邮件,在介绍完科比尔卡的工作后,他提到:“我个人认为,他今后5年之内很可能得诺贝尔奖。”   从他们身上学做真正的科学家   裴钢和山东大学医学院教授孙金鹏都曾在莱夫科维茨研究组里做过博士后,整个实验室都亲切地称莱夫科维茨为Bob。   “Bob是一个非常率真的科学家。”裴钢说,“争论时,整个走廊都能听到我们的声音,不过他从来不以老师自居。”孙金鹏则认为:“Bob拿奖是实至名归,他多年的努力进取和一丝不苟的科学态度终究得到了认可。”   施一公与科比尔卡则在两年前结识。“他是一个非常低调、非常认真的人,来清华的时间里,从早到晚都在实验室指导自己的博士后、博士生做实验。”   据裴钢介绍,近年来我国G蛋白偶联受体研究越来越多,但由于起步较晚,仍在努力追赶先进水平。“我们的物质条件已经很好,更需要文化和精神上的建设,应从他们身上学做真正的科学家,孜孜不倦、默默无闻地工作。”   此外,施一公还透露,科比尔卡的妻子田东山是一名出生于马来西亚的华裔,两人“夫妻档”配合默契。“他的妻子称得上是幕后英雄,管理实验室、组织人员等工作都由她承担。”
  • 今年诺奖花落谁家 2022年诺贝尔奖10月3日起陆续揭晓
    据诺奖官网预告,10月3日至10月7日,诺贝尔生理学或医学奖、物理学奖、化学奖、文学奖、和平奖将逐日公布获奖人名单。此外,2020和2021年诺奖得主将与2022年最新一届得主,共同参加12月在瑞典斯德哥尔摩举行的颁奖仪式。作为科学界巅峰奖项,关于今年的诺贝尔生理学或医学、物理学奖、化学奖花落谁家,也有了各方预测。生理学或医学奖关注人类疾病根源记者了解到,近5年的诺贝尔生理学或医学奖分别发给了神经科学、免疫学、细胞生物学、临床医学和神经科学。有分析认为,今年奖项可能颁给乳腺癌及蕾特氏症的遗传性激励阐明。据悉,来自美国的三位科学家,Mary-Claire King、Huda Zoghbi和Adrian P Bird,分别发现了导致乳腺癌及蕾特氏症的重要致病基因。他们的研究,成为揭示人类发展和疾病因由的重要基础之一。美国科学家Michael Grunstein在20世纪80年代主要以酵母为研究对象,首次揭示了包装DNA的组蛋白会影响基因的表达,也成为获奖热门。此外,当地时间9月28日,因其贡献巨大,现任中国香港中文大学李嘉诚健康科学研究所所长、化学病理学系系主任的卢煜明被授予“2022年拉斯克临床医学奖”。这是医学界久负盛名的奖项之一,有“诺贝尔风向标”之称。物理学奖光学或量子力学成热门2021年的物理学奖,有一半颁给了“地理物理学”,属于“冷门”。此外,去年和前年颁给了天体物理学和天文学。今年的预测中,光学或量子力学成为热门,其中候选者众多。比如美国科学家Charles H. Bennett和加拿大科学家 Gilles Brassard,分别是化学物理学家和计算机科学家,他们在上世纪80年代发明了量子密码学,以确保数据通信的物理不可侵犯性。化学奖抗菌药物研发获提名诺奖得主的工作是开创性和有意义的,他们的论文也会被大量引用。有分析机构根据文献被引用数量,梳理出几位优秀科学家。比如普林斯顿大学分子生物学教授Bonnie L.Bassler和华盛顿大学微生物学教授E.Peter Greenberg,发现细菌通过一种化学通信系统交流,从而调节基因表达。他们的研究在抗菌药物开发方面有潜在应用,被视为新型抗菌药物设计的潜在靶标。此外,哈佛大学能源教授Daniel G. Nocera,通过发现和发展一种电子转移机制,实现了太阳能的人工高效利用,即“人工光合作用”。手机扫一扫打开当前页面
  • “细数”诺贝尔奖中的科学仪器研发成果
    新闻专题:   2012年10月10日,随着诺贝尔化学奖的宣布,2012年诺贝尔奖与自然科学有关的奖项已经全部揭晓。诺贝尔奖自1901年首次颁发以来,已有数百位科学家因数百项研究成果获奖,那么在这么多研究成果中哪些与仪器相关?又有哪些研究成果最终使得某种仪器诞生?   笔者查阅了从1901-2012年历年的诺贝尔化学奖、物理学奖、生理学或医学奖获奖成果,以下摘录部分与仪器有关的诺贝尔奖。   1、1922年诺贝尔化学奖   阿斯顿 (Francis Willian Aston,英国),研究质谱法,发现整数规划。1925年,阿斯顿凭借自己发明的质谱仪,发现“质量亏损”现象。   2、1926年诺贝尔化学奖   斯维德伯格((Theodor Svedberg,瑞典),发明超离心机,用于分散体系的研究。   3、1952年诺贝尔化学奖   马丁 (Arcger Martin,英国)、辛格(Richard Synge,英国),发明分配色谱法,成为色谱法其中一大类别。   4、1953年诺贝尔物理学奖   泽尔尼克(Frits Zernike,荷兰),发明相衬显微镜。   5、1972 年诺贝尔化学奖   穆尔(Stanford Moore,美国)、斯坦 (William H.Stein,美国) 、安芬林 (Christian Borhmer Anfinsen,美国), 研制发明了氨基酸自动分析仪,利用该仪器解决了有关氨基酸、多肽、蛋白质等复杂的生物化学问题。   6、1979年诺贝尔生理学或医学奖   科马克 (Allan M. Cormack,美国)、蒙斯菲尔德(英国),发明X 射线断层扫描仪(CT扫描)。   7、1981年诺贝尔物理学奖   西格巴恩(Nicolaas Bloembergen,瑞典),开发高分辨率测量仪器以及对光电子和轻元素的定量分析 肖洛(Arthur L.Schawlow,美国),发明高分辨率的激光光谱仪。   8、1986年诺贝尔物理学奖   鲁斯卡(Ernst Ruska,德国),设计第一台透射电子显微镜 比尼格(德国)、罗雷尔(Heinrich Rohrer,瑞士),设计第一台扫描隧道电子显微镜。   9、1991年诺贝尔化学奖   恩斯特 (Richard R.Ernst,瑞士) ,发明了傅立叶变换核磁共振分光法和二维核磁共振技术,使核磁共振技术成为化学的基本和必要的工具。   10、2002年诺贝尔化学奖   芬恩(John Fenn,美国),田中耕一(日本),发明了对生物大分子的质谱分析法。其中芬恩发明了电喷雾离子源(ESI)、田中耕一发明了基质辅助激光解析电离源(MALDI)。
  • 诺贝尔奖,真的过时了吗
    div id=" ct" class=" ct2 wp cl" div class=" mn" div class=" bm" div class=" bm_c" div class=" vw mbm" div id=" blog_article" class=" d cl" deep=" 5" p style=" text-indent: 2em " & nbsp 又到新的一年诺贝尔奖(以下简称诺奖)公布新获奖人的时候,很多科技工作者对诺奖有很深的情怀,有的科技网站提早把诺奖公布的时间表发布出来便于人们第一时间了解动态。然而,10月5日2020年的生理学/医学奖公布,可是不但像英国《金融时报》、美国《华盛顿邮报》、CNN这样世界著名的报纸电台网站不作重要新闻,连著名的《科学》杂志网站都没有将其列为头条作报道。这说明诺奖的影响力已大大下降,甚至有一些专家认为诺奖已经过时了! /p p style=" text-indent: 2em " 为什么诺奖已经过时了?首先,时代不同了!一百一十多年前开始颁发诺奖时,正在发生第二次科学革命,科学的进步使人类对自然、对宇宙的认识大为深化,物理、化学、生理学/医学这些科学诺奖授予爱因斯坦、波尔、普朗克等著名科学家,使诺奖赢得极大的声誉,也让诺奖成为科学发展的风向标。但是,二十一世纪与过去大为不同,技术对社会的驱动作用远远大于科学,正在发生的第四次工业革命,更是以人工智能、大数据、物联网、5G等为代表的新兴技术为动力。同样,现在的社会也发生了巨大的变化,文学已经不是人们精神寄托的重要载体,随着社交媒体的兴起,小说、诗歌越来越远离人们的精神世界,与百姓的生活关联度非常低。因此,还将目光集中在传统的几门科学和文学,不能代表诺贝尔遗嘱要奖励的为“人类做出卓越贡献的人”。诺奖科学奖也好,文学奖也罢,真的对人们工作与生活无关紧要。可能有人不同意,那我问下,你能说出几个去年或前年诺奖得主的名字,或者其得奖的原因? /p p style=" text-indent: 2em " 第二,诺奖即令是在科学领域,这几个学科也不是对人类影响最为重要的。人类发展最重要的问题是什么?联合国可持续发展目标(Sustainable Development Goals,SDGs)是重要的指标。在2015年9月联合国可持续发展峰会上,联合国193个成员国正式通过SDGs,从解决社会、经济和环境三个维度的发展问题,提出促进人类社会转向可持续发展道路,指出了全球当前发展面临的重要问题。当然,人类在17个SDGs目标外,还面临安全、文明发展范式的挑战。但是,很遗憾诺奖对这些人类重大问题的关联度和贡献度不令人满意。例如,拯救了数百万人的生命农业科学没有获诺奖,也没有研究生态学和环境的科学家获奖。被称为拯救世界饥饿第一人的农业科学家诺曼· 博劳格(Norman Borlaug)在1970年获得的是诺贝尔和平奖。有专家说进化生物学对人类发展也非常重要,尽管越来越多的化学和医学奖颁给了生物学家,但从形式上讲,诺奖甚至连生物学奖都没有。可能有学者又会说科学家研究的自由探索,不应围着社会需求转,来提出不同意见。但科学研究的目的,在整体上一定是与社会需要一致的!如果“躲进小楼成一统”,那只能为社会所抛弃! /p p style=" text-indent: 2em " 第三,诺奖对推动科学发展作用有限。诺奖做不到奖励前一年或者近期对科学发展做出重要贡献的人,很多获奖者是在做出成果几十年后才获奖,早就过了科研的黄金期了。2019年诺贝尔化学奖得主,美国固体物理学家约翰· 古迪纳夫(John Goodenough)已是97岁高龄,这比2018年诺贝尔物理学奖阿瑟· 阿什金(Arthur Ashkin)96岁获奖年龄纪录还高。生命末期高龄科学家还能为科学发展做贡献?而且,《科学界的精英——美国的诺贝尔奖金获得者》哈里特?朱克曼(Harriet Zuckerman)指出,诺奖得主在获奖之后,科研生产率(发表文章的数量)下降三分之一,十年内又会下降27%。从这个意义上说,诺奖并没有达到刺激科学进一步发展的目的。 /p p style=" text-indent: 2em " 这里引出另一个更为重要的问题:伴有重大物质和精神利益的重大科技奖励对促进科技发展究竟有多大正面作用?我知道不会有一致的答案,但真的非常需要深入思考和研究:不同层级的科技奖励,真的对科技进步很有益处吗?科技奖励与以理性、实证为核心,维护真理,反对权威的科学精神是不是矛盾? /p p style=" text-indent: 2em " 最后,诺奖的评审规则和结果也跟不上时代。诺贝尔奖规定每个奖项奖励的人数不能超过三人,这与当前科学重大发现更多需要团队合作,更需要依靠大科学装置集体进行的趋势不相符。另外,诺奖更多地授予白人男性研究者,也被很多人认为有“种族主义、性别歧视”问题。从1901年至去年,累计颁发597次,共有919位个人和24个组织获得过诺奖,其中只有54次授予女性。这与世界科学家和资深科学家中,女性分别为28.4%和11%的状况不相符。而非白人男性获诺奖的比例,与他们在世界科学家的比例就更不一致了!在诺奖900多人的授奖名单中,仅有70多名亚洲科学家,只有14位是黑人,从来没有一位黑人科学家获得诺奖科学奖。因此,诺奖获得者也被称为“穿实验室白大褂的老白人男士”,而受到一定的非议。 /p p style=" text-indent: 2em " 总之,走过近120年的历史,诺奖显得老迈跟不上时代的步伐了。但是,在科学已远不是显学,科学家比起文艺、体育明星,比起乔布斯、比尔?盖茨这些创新家(企业家)的知名度和影响力相差很多的当代,每年的诺奖公布和颁奖,还能使媒体较为广泛地报道,让社会大众觉得科学还很重要,科学还有某种神圣或神秘感,这个奖项对科学还有一定的正面效用。因此,诺奖怎样改革,根据社会发展的需要改变设奖的项目和评奖的程序,提高授奖的及时性,扩大得奖人在世界的覆盖面,让其真正能够体现诺贝尔遗嘱的精神,促进人类发展,是诺奖未来需要面对的重要挑战!否则,这个在人类历史上曾经辉煌的奖项,可能会被人们遗忘! /p /div /div /div /div /div /div
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制