当前位置: 仪器信息网 > 行业主题 > >

米贝地尔

仪器信息网米贝地尔专题为您提供2024年最新米贝地尔价格报价、厂家品牌的相关信息, 包括米贝地尔参数、型号等,不管是国产,还是进口品牌的米贝地尔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合米贝地尔相关的耗材配件、试剂标物,还有米贝地尔相关的最新资讯、资料,以及米贝地尔相关的解决方案。

米贝地尔相关的资讯

  • 【视频】诺贝尔奖得主夏庞蒂耶:重写生命密码
    p style=" text-indent: 2em " 2020年诺贝尔化学奖7日授予两名女科学家,以表彰她们在基因组编辑方法研究领域作出的贡献。这里的基因组编辑方法,指的正是当下热门的CRISPR/Cas9基因编辑技术。 /p p style=" text-indent: 2em " 这是埃玛纽埃尔· 沙尔庞蒂耶4年前获得欧莱雅联合国教科文组织“杰出女科学家奖”时录制的视频。 /p p style=" text-indent: 2em " ——让你坚持的事业信念是什么? /p p style=" text-indent: 2em " span style=" text-indent: 2em " —— /span span style=" text-indent: 2em " 希望自己开发的技术能造福人类和社会 /span /p script src=" https://p.bokecc.com/player?vid=5577CE3784AF00C89C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p br/ /p p style=" text-indent: 2em " “基因剪刀”技术为生命科学研究开启了一个新时代,并从很多方面造福人类。诺贝尔化学奖评选委员会7日在新闻公报中说:“这个基因编辑工具拥有巨大能量,会影响到我们每个人。它不仅在基础科学领域引发了变革,还产生了很多创新性成果,并将带来具有独创性的新治疗方法。” /p p 相关阅读: a target=" _blank" href=" https://www.instrument.com.cn/news/20201007/561197.shtml" 诺贝尔化学奖花落2位女科学家,历届获奖女科学家盘点 /a /p
  • 重磅!2023年诺贝尔化学奖揭晓!量子点绘制绚丽纳米世界!
    2023年10月4日下午,瑞典皇家科学院决定将2023年诺贝尔化学奖授予美国麻省理工学院教授蒙吉G巴文迪(Moungi G. Bawendi)、美国哥伦比亚大学教授路易斯E布鲁斯(Louis E. Brus)和美国纳米晶体技术公司前首席科学家阿列克谢伊基莫夫(Alexei I. Ekimov),以表彰他们在量子点的发现和发展方面的贡献。三人将分得1100万瑞典克朗,约合人民币725万元。量子点是纳米大小的半导体材料,具有独特的光学和电子性质。由于它们可以发出特定颜色的光,且荧光亮度超过传统荧光体,被广泛应用于显示器、照明和生物成像技术。此外,量子点还可以作为光电材料,将光能转化为电能,被应用于太阳能电池和光电器件等领域。在医学领域,量子点被用作生物成像和药物输送,帮助医生了解和诊断病情,提高药物治疗效果。蒙吉G巴文迪(Moungi G. Bawendi):1961年出生于法国巴黎,法国-突尼斯裔美国化学家,美国艺术与科学院院士,美国国家科学院院士,诺贝尔化学奖获得者,美国麻省理工学院教授,是量子点领域的先驱之一,他在该领域的研究成果为制备高质量的量子点材料奠定了基础,并开发出新颖的制备方法,提高量子点的性能,并拓展了应用领域。路易斯E布鲁斯(Louis E. Brus):1943年出生于美国俄亥俄州,美国艺术与科学院院士,美国国家科学院院士,挪威科学与文学院外籍院士,诺贝尔化学奖获得者,美国哥伦比亚大学化学系教授,他创造了量子点术语,在量子点的表征和理解方面做出巨大贡献。阿列克谢伊基莫夫(Alexei I. Ekimov):1945年出生于苏联列宁格勒,俄罗斯物理学家,诺贝尔化学奖获得者,美国纳米晶体技术公司首席科学家,他发现新型半导体量子点材料,推动量子点技术发展,给各领域的应用创新提供可能性。诺贝尔化学奖近五年得主2022年诺贝尔化学奖授予美国化学家卡罗琳贝尔托西(Carolyn R. Bertozzi)、丹麦化学家摩顿梅尔达尔(Morten Meldal)和美国化学家卡尔巴里夏普莱斯(K. Barry Sharpless),以表彰他们在链接化学和生物正交化学的发展作出了贡献。2021年诺贝尔化学奖授予德国科学家本杰明李斯特 (Benjamin List) 和美国科学家戴维麦克米伦 (David MacMillan),以表彰他们对不对称有机催化的发展所作出的贡献。2020年诺贝尔化学奖授予埃马纽埃尔卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗杜德纳(Jennifer A. Doudna),以表彰她们在“凭借开发基因组编辑方法”方面作出的贡献。2019年诺贝尔化学奖授予约翰古迪纳夫(John B. Goodenough),斯坦利威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino),以表彰他们在锂离子电池领域的贡献。2018年诺贝尔化学奖授予美国科学家弗朗西斯阿诺德(Frances H. Arnold)、美国科学家乔治史密斯(George P. Smith)和英国科学家乔治保罗温特(Gregory P. Winter),以表彰他们在“酶的定向进化”以及“多肽与抗体的噬菌体展示技术”领域的贡献。
  • 山中伸弥的诺贝尔奖之路
    今年的诺贝尔生理与医学奖颁给了剑桥大学的 John B Gurdon (79岁)和日本京都大学的 Shinya Yamanaka(山中伸弥,50岁) 。Gurdon得奖是因为他50多年前在牛津大学的工作,他是第一个利用成熟体细胞转入到胚胎细胞中并成功克隆出生物个体的,并且发明的细胞核转移技术一直被广泛应用(如克隆羊多莉)。 而山中伸弥得奖是因为成功的将成熟的体细胞诱导成具有分化能力的多功能干细胞(IPS, Induced pluripotent stem cells),而这项工作是在2006年完成的。大多数重大成果都要等上十几年到几十年(如 Gurdon 等了50年)才能拿到诺贝尔生理与医学奖,而山中的工作只等了6年,可知其重要意义。   山中伸弥另外一个抢眼的原因是 他之前并不是做干细胞研究的,之前做的是脂肪代谢,转到干细胞研究也是十多年前,并且是由于脂肪代谢研究失败才阴差阳错才转行的。而他的诺贝尔奖之路也是从他现在任职的单位之一,美国加州大学旧金山分校的Gladstone 研究所开始的。   1993年,31岁的山中伸弥在日本大阪城市大学医学博士毕业之后,放弃了做整容医生赚大钱的机会转而做基础研究,他想在美国找一个做博士后的工作,不过尽管投了不少简历但等了很久也没有收到回信,后来才等到了 旧金山Gladstone 研究所 T om Innerarity 的回信,答应给他一个博士后的位置,T om Innerarity 是 Gladsone 研究所的资深研究员,研究工作主要是跟心血管相关。 Gladstone 研究所成立于1979年, 整个研究所最初研究方向是心血管疾病和病毒引起的疾病上,后来又多了个神经退行性疾病的方向。当时研究热门是引起心脏病的罪魁祸首- -低密度脂蛋白(或称坏胆固醇),研究所之前的研究发现了坏胆固醇的主要成分是一种叫做apoB的蛋白,这种蛋白在人体内有两种不同结构,长结构和短结构,长结构一般存在于肝脏中,并且参与了坏胆固醇的累积,而短结构一般存在于肠中,并且是相对无毒性的。 山中在 Tom Innerarity 实验室中的课题就是寻找一种新的降低坏胆固醇的方法,在这之前他得弄明白 apoB蛋白的这两种结构是怎么形成的,只要找到了形成的机制,就可以控制长结构的形成进而阻止坏胆固醇的累积。在最初的实验中,山中鉴定了一种叫做APOBEC-1的酶,在肠中这种酶可以缩短aopB的结构使其毒性变小。而在肝脏中,这种酶是失活的。在老板T om Innerarity 指导下,山中与其他实验室成员开始寻找在肝脏中激活APOBEC-1的方法,只要APOBEC-1 激活就可以减少长结构的apoB进而减少坏胆固醇的形成。   经过一连串实验之后,他们终于发现老鼠肝脏中坏胆固醇降低了,不过实验却有另外一个意想不到的结果 —- 老鼠得了肝癌。这对整个实验小组是个打击,本以为减低了坏胆固醇降低心脏病的发生却产生了另外一个更加严重的副作用。当实验室其他人都对实验结果很沮丧时,山中却产生了好奇心,他想弄明白到底是什么原因导致了老鼠得了肝癌。 他想是不是因为开启了APOBEC-1的在肝脏的表达才导致了肝癌呢?进一步的实验完善了他的想法, APOBEC-1 的开启改变了一个叫做NAT1蛋白,这个蛋白在被修饰后就会导致癌症的产生。山中觉得他自己找到了产生癌症的关键,那就是失去功能的NAT1。下一步,山中要研究NAT1缺失的老鼠,想看看他们是否也会得癌症。为了这个目的,他需要做基因敲除的老鼠,这其中就需要到胚胎干细胞。胚胎干细胞是万能的,他们可以分化成各种各样的细胞如皮肤细胞,肌肉细胞和血细胞。他首先是求助于他在研究所的朋友 Robert Farese,后者把他介绍给了 研究所当时做胚胎干细胞的专家 Heather Myers。山中要Heather帮他做NAT1敲除的老鼠,并且他要跟她学怎么去做。 Heather后来说很多人都会过来要帮忙做转基因的老鼠,不过只有山中要求亲自参与其中,他想学习操作的每一步,每一个细节,他一直说是因为以后还要做基因敲除的老鼠,他说他现在学会了,以后就不会麻烦她了。   不过NAT1敲除的老鼠一直都没做出来,这让他和Heather感到很沮丧,不知什么原因,他们发现NAT1缺失之后,胚胎干细胞就不能继续发育成熟,它们只是不断的复制但不会分化为其他细胞。不过这也正好表明NAT1在胚胎干细胞分化过程中起着很重要的作用,这是他们意外的发现。山中后来在多处场合感激Heather 的帮助,不仅是因为她教给了他做胚胎干细胞的方法,更是因为Heather 告诉他胚胎干细胞不仅可以是个工具,更可以作为研究的重点。   也就是从这里开始,山中开始了胚胎干细胞的研究之路,与其他实验室研究胚胎干细胞的思路不同,他并不是研究胚胎干细胞怎么分化成其他细胞,他的思路是反着的,他要研究已经分化成熟的细胞怎么变成具有多功能的干细胞,并且这种被诱导成的干细胞跟胚胎干细胞具有相似的功能。经过一系列的摸索,2004年的时候,他实验室就已经确定了24种基因可能参与了成熟细胞转变为干细胞的过程,经过2年的筛选,最终确定了其中最重要的4种基因(Oct3/4, Sox2, Klf4, c-Myc),并称为山中因子。2006年,他们通过在老鼠的皮肤成纤维细胞中注入山中因子成功将其转变为多功能干细胞,2007年,他们也通过了同样的办法把人的皮肤细胞转变为多功能干细胞,这种干细胞可以与人的胚胎干细胞相比拟。 当他们在2006年第一次把老鼠成熟细胞变成干细胞时,他们自己也不敢相信会这么简单,仅仅4个基因的导入就能起到作用,原本以为会复杂的多,加上那时正是韩国克隆专家黄禹锡造假的时候,所以他们自己也很担心,所以在2006年发表的那篇《CELL》上,尽可能的把实验每个细节都列出来了。再过一年,其他实验室用了他们的技术之后也都相继作出了相关的干细胞,证实了IPS技术是成功的。   这就是山中伸弥的诺贝尔之路,原本研究胆固醇的博士后,走了一条岔路,歪打正着,写入史册。看了这些,觉得做科研,好奇心很重要,好奇能害死猫,好奇让你能拿奖!
  • 贝因美婴儿米粉违规添加猪骨粉
    缘起消费者诉违规添加   据了解,今年4月19日广东消费者容女士在广州黄花岗文化广场的好又多超市,购买了2盒"贝因美紫菜骨粉高钙营养米粉",该品外包装盒上标示"特别添加海带、紫菜、新鲜猪骨粉".   回到家后,因担心食品安全问题,吴女士查阅并对照了《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012),发现贝因美米粉里的"新鲜猪骨粉",其实不得添加在食品里,在婴儿米粉里添加"新鲜猪骨粉"属于超范围使用食品添加剂。   4月28日,容女士就此事向国家卫生部递交咨询申请函,几天后,卫生部寄来答复函称:婴幼儿食品包括婴儿配方食品、较大婴儿和幼儿配方食品,其食品安全国家标准分别为GB 10765-2010和GB 10767-2010,普通消费者只要登录卫生部网站,就可找到"卫生标准"一栏进行查询。卫生部复函内指出,按照《食品添加剂卫生管理办法》的相关规定,食品添加剂(包括食品营养强化剂)必须经过卫生部列入名单中方能使用。而根据《食品营养强化剂使用卫生标准》(GB 14880-1994)规定,除牦牛粉可以作为营养强化剂-钙源使用外,其他来源的骨粉,包括新鲜猪骨粉,不能作为营养强化剂使用。   拿到这份权威说法后,今年5月,容女士将销售方好又多黄花岗百货有限公司连同厂家贝因美公司告上了法庭,要求判令被告一好又多百货退还她购买的贝因美产品所付的货款70.80元,并承担连带清偿责任 判令被告二贝因美公司依法赔偿她相当于货款10倍的损失,同时还要求两被告支付她的误工费、精神损失费等合计29315元。   争议添加猪骨粉是否安全   贝因美米粉乱添加是否安全?在法庭上,三方展开激烈辩论。   作为原告的容女士坚称,贝因美作为生产者,将"新鲜猪骨粉"作为营养强化剂功能特别添加到婴幼儿食品中缺乏法律依据。理由是,《食品安全法》第46条规定,"不得在食品生产中使用食品添加剂以外的化学物质和其他可能危害人体健康的物质。"新鲜猪骨粉若没有经过食品安全风险评估,随意使用于婴幼儿食品,很不应该。况且,不管什么动物的骨粉,也不管是否新鲜,依据卫生部相关规定,都不能使用在婴幼儿食品中。   容女士认为,婴幼儿主辅食品的营养成分,不仅关系到食品的营养,而且关系到婴幼儿的身体健康和生命安全,必须在进行风险评估后规定营养成分的最高量、最低量等要求,使婴幼儿在满足营养需求的同时又保证食用安全。如果贝因美无法提供特别添加"新鲜猪骨粉"的合法性的证据,则属于生产不符合食品安全国家标准食品的行为。而好又多百货作为专业的销售商,必定具备法定验货义务及专业验货技能,在由其验明产品合格证明和其他标识后,理应知道该产品是不符合国家食品安全标准的,其继续销售涉诉产品明显就属于一种故意行为,必须承担相应的法律责任。   对于容女士的指责,好又多百货辩称,自己是商品零售企业,并不从事商品生产,所售商品均是向供应商采购后直接销售给消费者的,该公司建立并执行了严格的检查验收制度,尽到了合理、谨慎的审查检验职责,而且该公司并没有实施欺诈行为,要求"退回货款"和"赔偿10倍价款"的诉求毫无法律依据。此外,好又多百货还称,被告仅针对包装宣传不符合标准向法院起诉,根本没证据证明其实际受到损害,法院不应该受理。   对于"贝因美紫菜骨粉高钙营养米粉"产品是否合格的问题,贝因美公司直接出示了一份由国家轻工业食品质量监督检测杭州站对其产品作所的《检测报告》。该报告显示,该产品经检验,各项指标均符合Q/HBS0108S-2010,GB13432-2004中所规定的技术要求。   法院判决不符合食品添加规定   6月19日,广州市越秀区法院开庭审理此案。法官在调查取证后认为,根据国家卫生部向原告发出的《政府信息依申请公开告知书》,可以证实被告贝因美公司生产的"贝因美紫菜骨粉高钙营养米粉"添加"猪骨粉"不符合《食品添加剂管理办法》的相关规定。因此,原告要求退还货款有理由。   不过法官又认为,原告要求两被告按照《食品安全法》第96条规定,支付价款10倍赔偿的诉讼请求,属于惩罚性赔偿。在本案中,原告没有证据证实其食用了该食品后,对人体构成损害的事实,亦无证据证明上述产品不符合食品安全标准。所以,原告主张惩罚性赔偿和误工费的诉求缺乏事实依据。而本案是合同之诉,要求精神损失费不符合规定。   因此,越秀法院判令好又多百货在判决生效后10日内,一次性将货款70.8元退还给原告,同时驳回原告的其他诉讼请求。   对此,容女士表示不服,她认为法院应该提高这些企业的违法成本,于是决定上诉。   延伸   婴儿食品添加增多   多新规出台限制乱添加   近年来,婴儿食品乱添加现象渐增,不少企业为给产品一个卖贵价的名目,在这类食品中添加多种营养素及其它成分,并大力宣传其所添加物与众不同的功能。对此添加增多现象,国家相关部门十分重视。记者昨天查阅卫生部及相关部门官网,发现近年来我国对婴儿食品的添加发布有多个限制新规,如禁止在婴儿配方食品中添加牛初乳、禁止"添香加料"等等。专家指出,婴幼儿属于特殊体质群体,其对所摄入食物高度敏感,因此我国对婴幼儿配方食品的原料采取严格的安全性评估制度,列入婴幼儿配方食品相关标准后方准许使用。   据了解,我国婴儿食品行业不安全事件时有发生,而在这些食品安全事件中大多由添加物引发。记者日前走访市场发现,婴儿食品近年来出现添加物增多现象,如不少婴儿奶粉宣称添加DHA、叶黄素、钙、益生菌、牛初乳等等,各类营养素和新成分功能各异,均宣称对婴儿健康发育具有良好作用。然而记者发现,每一次婴儿食品新增加添加物,企业便以"配方升级"名义发起新一轮提价。有业内人士指出,在婴儿食品中添加各种新名目的营养素,其实均是企业的一种营销手段,"其实作用、成分都差不多,符合国家标准的婴儿食品均合格。"   婴儿食品添加物增多现象,引起部分业内人士的安全隐患担忧,也引起国家关注。近年来,为保障食品安全,卫生部曾多次发布多个新规来限制婴儿食品乱添加行为。
  • 诺贝尔奖未来可能被迫降低奖金数量
    2009年的诺贝尔奖颁奖典礼将于12月10日在瑞典首都斯德哥尔摩举行,今年的获奖者及诸多名流近日已陆续抵达斯德哥尔摩。一系列的庆祝活动已经展开,届时,每个奖项的获奖者将领取总额为1000万瑞典克朗的奖金。   不过未来几年的获奖者可能要稍稍郁闷一下了。诺贝尔基金会执行总裁Michael Sohlman近日表示,由于全球金融危机的影响,诺贝尔奖可能将不得不削减奖金数量。他说:“将来我们可能会被迫降低奖金数量。我们经历了金融风暴,不可避免地淋了一些‘雨水’(资产缩水)。”   他表示,诺贝尔基金会的资产价值在2009年稍稍有些恢复,而去年由于金融危机损失了将近1/5的原有资本。根据诺贝尔基金会网站消息,诺贝尔奖的价值自1950年代以来一直保持稳定或有所增加。   另据悉,今年的诺贝尔奖总计将耗费1.2亿克朗,包括了各奖项的奖金、在斯德哥尔摩的奢华宴会以及在奥斯陆的颁奖典礼的花费等各种支出。
  • “脱发克星”米诺地尔,你真的了解吗?
    谁说成年人的世界没有“容易”二字,容易秃、容易胖、容易单身没对象。要说让成年人最“痛心”的事,那无疑是脱发,根据最新调查数据显示,我国脱发人数已经超过2.5亿,其中占比最大的为26-30岁人群,高达41.9%,可以看出,脱发年龄已经呈现年轻化趋势。说起脱发,那就不得不说近几年众suo周知的“脱发克星”-米诺地尔。米诺地尔作为临床上使用最为广泛的药物,具有促使毛发增生的效用,外用可以治疗脱发症。米诺地尔主要用于治疗雄激素性脱发与斑秃引起的脱发,且米诺地尔搽剂是目前美国FDA唯yi批准上市的治疗脱发的非处方药,也是《中国雄激素性脱发治疗指南》推荐使用的药物之一。但是需要注意的是,这是一种受管制的西药,必须在医生或者药剂师指导下才能使用。米诺地尔在临床应用中,的确具有促使毛发增生的效用,但是用在育发产品中,会出现过敏性表现,包括头皮脱皮、毛囊炎、荨麻疹等问题,所以该物质在我国化妆品中属于禁用成分。然而近几年某些化妆品打着生发的旗号,在其中偷偷添加米诺地尔,那么如何对化妆品进行管控呢?可参考《化妆品安全技术规范》中收录的米诺地尔的检测方法,针对于毛发用液态水基类化妆品中米诺地尔进行测定与分析。月旭实验室按照《化妆品安全技术规范》中收录的米诺地尔的检测方法,流动相使用磺基丁二酸钠二辛酯溶液,使用月旭Ultimate® LP-C18 (4.6×250mm,5μm)色谱柱对米诺地尔进行分析,结果如下图所示。米诺地尔保留时间约为13min,理论塔板数19841,不对称度1.05,峰型良好。色谱柱:月旭Ultimate® LP-C18(4.6×250mm,5μm)。流动相:磺基丁二酸钠二辛酯溶液;流速:1mL/min;柱温:30℃;检测波长:280nm;进样量:10μL。2 标准曲线的绘制按照《化妆品安全技术规范》中收录的米诺地尔的检测方法配制浓度为:1µ g/mL、5µ g/mL、25µ g/mL、50µ g/mL、100µ g/mL的标准工作溶液,浓度由低向高依次进样分析,以峰面积-浓度作图,绘制标准工作曲线,如下图所示。标准曲线在浓度范围内线性良好,线性系数R2=1。3 回收率按照《化妆品安全技术规范》中收录的米诺地尔的检测方法对洗发水样品进行加标回收实验,计算得到回收率结果如下图所示。洗发水加标回收率为102.3%,回收率较好,无基质干扰。4总结按照《化妆品安全技术规范》中收录的米诺地尔的检测方法使用月旭Ultimate® LP-C18 (4.6×250mm,5μm)色谱柱可以得到良好的分析结果,线性和回收率良好,符合检测要求。5相关产品信息
  • 诺贝尔化学奖得主在浙大建立生物纳米工作室
    日前,市委书记阎立在市行政中心长谊轩亲切会见2013年诺贝尔化学奖得主迈克尔· 莱维特(Michael Levitt)先生一行。   迈克尔· 莱维特毕业于剑桥大学冈维尔与凯斯学院,是著名的生物物理学家,1987年至今一直在美国斯坦福大学担任结构生物学教授。2013年,他与另外两位美国科学家马丁· 卡普拉斯(Martin Karplus)和亚利耶· 瓦谢尔(Arieh Warshel)因建立&ldquo 发展复杂化学体系多尺度模型&rdquo 而获得诺贝尔奖,最大贡献是引进电脑进入化学研究,并打通了链接经典物理学与量子物理学的桥梁。   迈克尔· 莱维特此次来常将在浙江大学常州工业技术研究院建立工作室,并担任纳米药物研究中心首席科学家。纳米药物研究中心由浙江大学思源讲座教授周如鸿和中国科学院院士唐孝威领衔建设,重点关注石墨烯及其衍生物在生物纳米技术上的应用。   阎立在会见时表示,常州长期推行科教兴市战略,与国内外大学大院大所广泛开展产学研合作。其中,常州高新区与浙江大学合作,共同成立了浙大常州工业研究院。阎立希望迈克尔教授加盟研究院后,能把生物领域的先进理论和技术带到常州,充分发挥浙大的技术、人才和科研优势,尽早在常州结出硕果,推动常州新材料产业和生物医药产业更好更快发展。
  • 第31届搞笑诺贝尔奖揭晓,“无聊的知识”又双叒叕增加了!
    搞笑诺贝尔奖(IgNobelPrizes)是对诺贝尔奖的有趣模仿。其名称来自Ignoble(不名誉的)和NobelPrize(诺贝尔奖)的结合。受疫情影响,当地时间2021年9月9日,第31届搞笑诺贝尔奖典礼在线上举行。研究猫喋喋不休、电影观众散发的化合物以及空运犀牛的最佳方法等的科学家们获得了最高荣誉,你没看错,这一届搞笑诺贝尔奖和往常一样荒谬。今年获得“搞笑诺贝尔奖”的无厘头研究有哪些呢?让我们一睹为快。生物学奖:“喵星人”的语言竟有这么多?来自瑞典隆德大学的生物学家苏珊娜肖茨对“喵星人”的语言进行了研究。图片来源:《印度快报》网站苏珊娜肖茨发现猫咪能发出十几种不同的声音:咕噜声、唧唧声、颤抖声、颤音、尖锐声、喃喃自语、喵喵声、呻吟、吱吱声、嘶嘶声、嚎叫声、咆哮声… … 通过对名为唐娜、洛基和涂布等猫的观察,从2011年到2016年,她撰写了五篇相关研究论文。研究表明,咕噜声和喵喵声是最常见的猫叫声。而且,猫会根据环境发出不同的声音,例如通过窗户观察鸟类或觅食时。生态奖:被嚼过的口香糖也有大学问!对一些人来说,街上一块被咀嚼过的口香糖简直是令人作呕的垃圾;而对于西班牙巴伦西亚大学的莱拉萨塔里等人来说,这就是一个科学宝库。他们使用基因分析技术研究了大街上被丢弃的口香糖上保留和生长的细菌,以及“废弃的口香糖菌群”是如何随着时间的推移而变化的。这些丢弃的口香糖分别来自法国、希腊、新加坡、西班牙和土耳其。这项研究发表在《科学报告》杂志上。他们也因此获得了生态奖。研究小组分析了扔到世界各地人行道上的口香糖,发现几周后就会出现多种细菌菌株,并会保留持续三个月以上。研究人员写道:“我们的发现对很多学科都有影响,包括取证、传染病控制或废弃口香糖残留物的生物修复。”化学奖:电影内容也影响观众散发的气味?德国马克斯普朗克研究所的一个团队获得了搞笑诺贝尔化学奖,他们测量了电影院内观众在看电影时释放的挥发性有机化合物(VOC),想看看这些散发出来的物质是否与电影中的脏话、暴力、性、吸毒以及反社会行为有关。研究发现,观众的脉搏和呼吸频率一致增加时,特殊的传感器可以检测到二氧化碳和数百种其他VOCs的相应上升,这种效果在悬疑和喜剧电影中最为强烈,而恐怖电影中的异戊二烯水平差异很大。据了解,研究人员想证明,我们可以利用VOC测量值作为电影评级的工具。如果能在影片试映期间监测电影院的气味,以便更客观地衡量电影内容对观众的影响,这或许确实是个不错的想法。经济学奖:领导人越胖,国家越腐败蒙彼利埃商学院经济学教授帕夫洛布拉瓦茨基试图提出了一种更可量化的评估腐败的方法:领导人的体重指数 (BMI)。他利用测试计算机视觉/机器学习是否可以使用面部识别来确定一个人的 BMI。他选择了来自 15 个前苏联国家的政治领导人面孔的 299 张样本图像,“因为腐败被认为是该地区的一个重大问题。” 然后对这些样本进行计算机视觉算法,以获得每个政治家的 BMI 估计值。他发现数据集中的大多数政客都有相当高的 BMI:96 人的BMI 在 35 到 40 之间,而 13 人严重肥胖(BMI大于 40)。只有 10 人的 BMI 处于正常范围内,而且没有人体重过轻。此外,当把这些数据与这 15 个国家的腐败指标进行比较时,他发现两者之间存在高度相关性。例如,波罗的海国家(爱沙尼亚、立陶宛和拉脱维亚)和格鲁吉亚被认为是最不腐败的,其政治领导人的 BMI 中值最低。医学奖:“爱的力量”——改善鼻塞还有这种操作?德国海尔布隆SLK诊所的教授塞姆布卢特和他的同事获得了医学奖,因为其研究表明,性高潮是一种有效的鼻腔减充血剂。与服用减充血药物相比,性高潮发生后,鼻腔呼吸明显改善,而且其清除鼻窦的效果持续了一个多小时。尽管布卢特承认他并没有从每个人那里获得确凿的数据。目前还不完全清楚鼻塞被疏通的机制,但布卢特认为有很多因素在起作用。他说:“我认为这是随性高潮而来的兴奋、体育锻炼和荷尔蒙变化的混合体所导致的。”和平奖:男性长胡须,不只为了好看图中分别是搞笑诺贝尔和平奖获得者大卫凯利、史蒂文纳尔韦和伊森贝塞里斯。图片来源:美国犹他大学网站美国犹他大学的伊桑贝塞里斯等人合著的一篇论文称,人类男性进化出胡须是为了防止面部遭到拳击。由于这一惊人的假设,该团队被授予搞笑诺贝尔和平奖。在这项研究过程中,没有人真的被一拳打脸;取而代之的是,将重物落到包裹在羊皮中的骨状纤维环氧树脂复合材料上。这项研究的结果表明,头发确实能够显著降低钝器撞击的冲击力,并吸收能量。如果人类的面部毛发也是如此,那么留胡子可能有助于保护面部骨骼的脆弱区域免受破坏性打击,比如下巴。据推测,浓密的胡须还可以减少面部皮肤和肌肉的损伤、撕裂和挫伤。物理学奖/动力学奖:为什么行人(不)会经常发生碰撞?费德里科托斯基教授和大学研究员亚历山德罗科贝塔凭借对埃因霍芬火车站500万名乘客的步行行为的分析,获得了所谓的搞笑诺贝尔奖。图片来源:荷兰埃因霍芬理工大学网站没错,今年两项搞笑诺贝尔奖——物理学奖和动力学奖都是与行人有关的。荷兰埃因霍芬理工大学的亚历山德罗科贝塔和他的同事因为进行了实验而获得了物理学奖,他们的实验目的是“了解为什么行人不会相撞”,搞笑诺贝尔奖的组织者说,这项实验旨在了解为什么行人不会经常与其他行人相撞。而另一项发表在《科学进展》杂志上的研究获得了动力学奖,该研究解释了为什么行人有时会发生碰撞?昆虫学奖:消灭潜艇上的小强!昆虫学奖颁给了一组美国海军研究人员,他们研究了消灭潜艇上蟑螂的最佳方法,那就是使用高效有机磷杀虫剂。这项研究可以追溯到1971年,因此,获得搞笑诺贝尔奖永远不会太晚。运输学奖:勇敢犀牛,不怕困难!研究人员研究了空运犀牛的最佳方法。图片来源:英国BBC网站搞笑诺贝尔运输学奖颁给了美国康奈尔大学的罗宾雷德克里夫等人,他们通过评估多种运输濒危黑犀牛的方法获得了这一奖项。这些犀牛正受到偷猎者的威胁,它们需要被重新安置,以防止过度近亲繁殖。运输打了镇静剂的犀牛的理想方式是用直升机把它们抬起来,而且还要求它们倒挂。研究团队担心犀牛在倒立时可能会出现呼吸和心血管问题,所以他们研究了12头犀牛在倒立被吊起来时的身体反应。事实证明,犀牛们“应付得很好”,而且运输被打镇静剂后颠倒的犀牛还很酷!图片来源:gigazine.net网站以上就是获得今年搞笑诺贝尔奖各个奖项的有趣研究。事实上,自1991年,搞笑诺贝尔奖已经走过30个年头了,它尊重好奇和“富有想象力”的发现,设立初衷的是为了表彰那些让人忍俊不禁后又发人深省的研究。有些事情看似好笑又无趣,但正是因为有了科学家们的钻研精神,我们才能在“废物”背后看到“宝物”,在“无用”深处挖掘“有用”,这些研究也或许正是某一伟大未来科学研究成果的垫脚石,因此,每一个奖项也都应该被尊重。看完搞笑诺贝尔奖以后,是不是对科学多了一度热爱呢?
  • 2020诺贝尔化学奖背后的“神器”—盘点基因编辑的秘密
    p style=" text-align: justify text-indent: 2em " Emmanuelle Charpentier和Jennifer A. Doudna共同获得2020年诺贝尔化学奖,以表彰他们“ span style=" color: rgb(0, 112, 192) " strong for the development of a method for genome editing. /strong /span ”(开发出一种基因组编辑方法)。 /p p style=" text-align: justify text-indent: 2em " 关于将化学颁发给研究生物技术的科学家,有些人可能会感到奇怪。笔者开始也是这样认为,经过查阅资料发现诺贝尔奖没有设立“基础医学或者生物学奖”,所以可能就将化学奖给了研究“基因编辑”技术的二位美女科学家。 /p h4 style=" text-align: center text-indent: 0em margin-top: 15px " span style=" color: rgb(0, 0, 0) " strong CRISPR/cas 9的“基因编辑”步骤 /strong /span /h4 p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 518px height: 289px " src=" https://img1.17img.cn/17img/images/202010/uepic/d4913037-a55d-4d1e-bbfc-f4bd5ae79fa7.jpg" title=" 文章首页截图.png" alt=" 文章首页截图.png" width=" 518" height=" 289" / /p p style=" text-align: center " span style=" color: rgb(89, 89, 89) " strong span style=" font-size: 14px " 图片中的文章就是获奖者当时在Nature的文章 /span /strong /span br/ /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Bacterial strains /strong /span /p p 准备菌株 /p p style=" text-align: justify text-indent: 2em " 文中使用了 span style=" color: rgb(0, 176, 80) " strong SLT Spectra Reader /strong /span 的酶标仪,在620 nm的条件下检查培养物生长的状态。 br/ /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Bacterial transformation /strong /span /p p 细菌转化 /p p style=" text-align: justify text-indent: 2em " 这一步用到了 a href=" https://www.instrument.com.cn/zc/128.html" target=" _blank" textvalue=" 基因导入仪(细胞融合仪)" style=" color: rgb(0, 176, 80) text-decoration: underline " strong span style=" color: rgb(0, 176, 80) " 基因导入仪(细胞融合仪) /span /strong /a ,广泛应用于各种动物、植物细胞和微生物的 strong 电穿孔 /strong ,也可作细胞 strong 杂交、融合、基因导入 /strong 的研究。为了提高基因受体细胞导入率及存活率,在真核细胞(如小鼠细胞和人类细胞等哺乳动物)导入基因时,须加入特殊的电缓冲液,在做大肠杆菌等原核细胞和酵母时可以不用以上特殊缓冲液。 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong DNA manipulations /strong /span /p p DNA处理 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(227, 108, 9) " DNA操作包括: /span DNA制备(DNA preparation)、扩增(amplification)、酶切(digestion)、连接(ligation)、纯化(purification)、琼脂糖凝胶电泳(agarose gel electrophoresis)和Southern blot分析。 /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 504px height: 232px " src=" https://img1.17img.cn/17img/images/202010/uepic/8969b3c9-8b14-44c3-8065-a38f5292131f.jpg" title=" 引物设计平台.png" alt=" 引物设计平台.png" width=" 504" height=" 232" / /p p style=" text-align: justify text-indent: 2em " 质粒中插入定点突变试剂盒:QuickChangeR II XL kit ( strong span style=" color: rgb(0, 176, 80) " Stratagene /span /strong ). br/ /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 484px height: 78px " src=" https://img1.17img.cn/17img/images/202010/uepic/d8399632-5b60-470b-994e-3a7c2de4ba56.jpg" title=" vwr.png" alt=" vwr.png" width=" 484" height=" 78" / /p p style=" text-align: justify text-indent: 2em " 质粒制备和DNA纯化:Kits ( strong span style=" color: rgb(0, 176, 80) " Peqlab /span /strong Biotechnology GmbH and strong span style=" color: rgb(0, 176, 80) " Qiagen /span /strong ) /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong In-frame gene deletion in i S. pyogenes /i /strong /span /p p 化脓性链球菌的框内基因缺失 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Construction of plasmids for complementation studies in i S. pyogenes /i /strong /span /p p 化脓性链球菌互补研究质粒的构建 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Construction of plasmids for transformation studies in i S. pyogenes /i /strong /span /p p 化脓性链球菌转化研究质粒的构建 /p p 以上2步使用 br/ /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong RNA preparation /strong /span /p p RNA制备 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 468px height: 178px " src=" https://img1.17img.cn/17img/images/202010/uepic/c06e787e-926d-40bd-8cfc-840a27ce778e.jpg" title=" TRIzol试剂.png" alt=" TRIzol试剂.png" width=" 468" height=" 178" / /p p style=" text-align: justify text-indent: 2em " TRI试剂是由Chomczynski开发,是一步法提取分离总RNA的试剂。该试剂RNA分离方法已被广泛应用,是一种对人、动物、植物、酵母、细菌和病毒来源样本进行总RNA或RNA、DNA和蛋白同时分离的一种理想的快速、经济和高效的方法。 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong cDNA library for differential RNA sequencing (dRNA-seq) and 454 pyrosequencing /strong /span br/ cDNA文库的差异RNA测序(dRNA-seq)和454焦磷酸测序 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/212f3cc4-aa94-412f-bd8e-a2c4e7328d2c.jpg" title=" 454.png" alt=" 454.png" / /p p style=" text-align: left text-indent: 2em " GS FLX系统概括:“一个片段 = 一个磁珠 = 一条读长”。 /p p style=" text-align: left text-indent: 2em " 具体步骤:1)样品输入并片段化;2)文库制备;3)一个DNA片段=一个磁珠;4)乳液PCR扩增。 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Northern blot analysis /strong /span /p p Northern印迹分析 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/71aea3f4-4462-441f-8f3b-b99c5830b5b5.jpg" title=" GE.png" alt=" GE.png" / /p p style=" text-align: justify text-indent: 2em " northern研究的是RNA,southern研究的是DNA,western研究的是蛋白。电泳之后将样品转移到Hybond-N+ or Hybond-XL membranes(两种膜上)。用人工合成的核酸作为探针,检测样品里目的核酸或者目的蛋白的有无和多少。 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong RNA metabolic stability analysis /strong /span /p p RNA代谢稳定性分析 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong RT-PCR analysis /strong /span /p p 逆转录聚合酶链反应分析 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 479px height: 242px " src=" https://img1.17img.cn/17img/images/202010/uepic/9b6e0d5b-e684-47c3-99d3-ee35b8fd3a41.jpg" title=" QIAGEN.png" alt=" QIAGEN.png" width=" 479" height=" 242" / /p p style=" text-align: left text-indent: 2em " QIAGEN一步RT-PCR试剂盒提供了Sensiscript和Omniscript逆转录酶、HotStarTaq DNA聚合酶、QIAGEN一步RT-PCR缓冲液、dNTP混合物和Q-Solution(一种新型添加剂,可有效扩增“困难”模板)。单管设置和优化的组件可以获得高灵敏度和成功的结果。 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong RNA mapping /strong /span /p p RNA作图 /p p style=" text-align: left text-indent: 2em " Mapping可以把原始的fastq格式的数据mapping到参考基因组上,从而获得此reads的位置信息。其中mapping quality代表了reads所mapping的位置是否可信。如果一条reads可以mapping到多个位置,那么就会有比较低的mapping quality。 /p p style=" text-align: justify text-indent: 2em " Mapping会用到多种软件,是一种生物信息学的方法。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 407px height: 447px " src=" https://img1.17img.cn/17img/images/202010/noimg/bc15b0a1-9d73-48a4-bc1e-d0e2658ca4b7.gif" title=" RNA mappingN.gif" alt=" RNA mappingN.gif" width=" 407" height=" 447" / /p p style=" text-align: center margin-top: 5px " span style=" color: rgb(89, 89, 89) font-size: 14px " strong miRNA 测序技术的mapping结果的可视 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 基因组mapping有以下误差来源: /p p style=" text-align: left text-indent: 2em " 准确度:基因组很大,并且有重复。如果比对错误,则会造成假阳性的误差。敏感性:有variation的序列和参考基因组是不一样的。如果可以高效的把这些序列mapping到参考基因组上,并且每个个体是和参考基因组有差异的,那么实验结果就是比较理想的。速度:二代测序会产生非常多的数据,需要这些序列快速的比对到参考基因组上。 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong i In vitro /i transcription, purification and 5′ end labeling of RNA /strong /span /p p 体外RNA的转录、纯化和5& #39 端标记 /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong i In vitro /i RNA structure mapping and footprinting /strong /span /p p 体外RNA结构定位和足迹 /p p style=" text-align: justify text-indent: 2em " 使用了 strong 荧光及磷光分析仪 /strong (文中提到的型号为,FLA-3000 Series, Fuji富士)。 /p p style=" text-align: justify text-indent: 2em " 该仪器的原理:用磷光屏代替X胶片成像的一种自显影仪器。由镧系元素掺杂的特殊晶体制成的磷光屏及信号读出设备组成。样品发射的射线在磷光屏中形成潜影,照射结束后用激光扫描磷光屏,读出其中的潜影信号并转化为数字信号储存。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 374px height: 427px " src=" https://img1.17img.cn/17img/images/202010/uepic/e92906db-8d4a-4882-b93d-ac0d2c24d631.jpg" title=" FUJI-3000.png" alt=" FUJI-3000.png" width=" 374" height=" 427" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 图片中的注释提到了利用荧光成像仪和图像测量软件测定各泳道二聚体带中RNA的比例。 /strong /span /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Computational analysis of DNA and protein sequences /strong /span /p p DNA和蛋白质序列的计算分析 /p p style=" text-indent: 2em text-align: justify " 文中的计算分析软件: br/ /p table style=" border-collapse:collapse " width=" 648" tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 340" valign=" top" p strong span style=" color: rgb(0, 0, 0) " 基因注释(Gene annotations) /span /strong /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 307" valign=" top" p span style=" font-size: 14px " NCBI genome browser br/ /span /p p span style=" font-size: 14px " KEGG (Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/) /span /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 340" valign=" top" strong span style=" color: rgb(0, 0, 0) " 基因位点组织和质粒生成的DNA序列分析(DNA sequence analysis for genetic locus organization and plasmid generation) /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 307" valign=" top" span style=" font-size: 14px " Vector NTI software ( strong span style=" font-size: 14px color: rgb(0, 176, 80) " Invitrogen /span /strong ) /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 340" valign=" top" strong span style=" color: rgb(0, 0, 0) " DNA和假定蛋白质的比较序列分析(Comparative sequence analysis of DNA and putative proteins) /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 307" valign=" top" span style=" font-size: 14px " BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 340" valign=" top" strong span style=" color: rgb(0, 0, 0) " 序列比对(sequence alignments) /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 307" valign=" top" p span style=" font-size: 14px " ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) br/ /span /p p span style=" font-size: 14px " AlignX ( strong span style=" font-size: 14px color: rgb(0, 176, 80) " Invitrogen /span /strong ) /span /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 340" valign=" top" strong span style=" color: rgb(0, 0, 0) " Putative rho-independent transcription terminators (RITs) /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 307" valign=" top" span style=" font-size: 14px " TransTermHP (v2.04) program (http://transterm.cbcb.umd.edu/) /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 340" valign=" top" strong span style=" color: rgb(0, 0, 0) " Putative promoters /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 307" valign=" top" p span style=" font-size: 14px " BPROM software (http://www.softberry.com/) br/ /span /p p span style=" font-size: 14px " BDGP Neural Network Promoter Prediction NNPP version 2.2 (http://www.fruitfly.org/seq_tools/promoter.html) /span /p /td /tr /tbody /table p style=" margin-top: 10px text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " /span /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 522px height: 103px " src=" https://img1.17img.cn/17img/images/202010/uepic/76fa36a1-08fd-42b7-b300-969d93895dcb.jpg" title=" invitrgen.png" alt=" invitrgen.png" width=" 522" height=" 103" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 517px height: 167px " src=" https://img1.17img.cn/17img/images/202010/uepic/2d72f951-0ae3-4ff9-943c-05bf5fc862e0.jpg" title=" thermo.png" alt=" thermo.png" width=" 517" height=" 167" / /p p style=" margin-top: 10px text-align: left text-indent: 2em " span style=" color: rgb(0, 0, 0) " 上面提到的 span style=" color: rgb(0, 176, 80) " strong Invitrogen /strong /span 是一家生物信息学领域榜上有名的企业。网页的封面中显示了“Accelerating Research in Life Science”就是最好的证明。 /span span style=" color: rgb(0, 112, 192) " strong br/ /strong /span /p p style=" margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong Computational predictions of RNA structure and co-folding /strong /span /p p RNA结构和共折叠的计算预测 /p p style=" text-align: left text-indent: 2em " 文中使用的软件为TBI(https://www.tbi.univie.ac.at/)开发的 strong VIENNIA 工具 /strong 。该软件可以对RNA的结构和折叠进行精准的计算和预测。 /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 516px height: 161px " src=" https://img1.17img.cn/17img/images/202010/uepic/43819bce-f78e-48dc-808f-20fe3775134b.jpg" title=" Vienna RNA package.png" alt=" Vienna RNA package.png" width=" 516" height=" 161" / /p p style=" text-align: justify text-indent: 2em margin-top: 10px " Charpentier在2011年发表了这篇文章。后来,与Jennifer Doudna开始了合作共同研究。Doudna是一位对RNA有丰富的认识和经验丰富的生物化学家。他们成功地在试管中对细菌进行了基因的编辑,并简化了基因剪刀的分子组成。 /p p style=" text-align: justify text-indent: 2em " Charpentier和Doudna对基因编辑技术进行重新实验研究,发现了在自然形态下可以从病毒中识别出DNA的方法。这种技术可以在预定的位置切割任何DNA分子,DNA被切割后则生命的密码就容易被改写。 /p p style=" text-align: justify text-indent: 2em " 2012年发现CRISPR/Cas9基因剪刀以来,促成了基础研究中的许多重要发现。比如植物学家可以培育出耐霉、害虫和干旱的作物。在医学方面,新的癌症疗法将给遗传疾病的治愈带来希望。基因编辑技术犹如一支神笔,改变生物的遗传密码的同时,也给我们的生活带来了多彩。 /p
  • 化妆品中米诺地尔检测方法(暂行)发布
    为做好化妆品中米诺地尔检测工作,国家食品药品监督管理局组织有关专家对《化妆品中米诺地尔的检测方法(暂行)》进行了论证,并经化妆品标准专家委员会审评通过,日前予以印发。   附:关于印发化妆品中米诺地尔检测方法(暂行)的通知 各省、自治区、直辖市食品药品监督管理局(药品监督管理局),新疆生产建设兵团食品药品监督管理局:   根据《化妆品卫生规范》(2007年版)规定,6-(哌嗪基)-2,4-嘧啶二胺-3-氧化物(米诺地尔)为禁用组分。为做好化妆品中米诺地尔的检测工作,国家局组织有关专家对《化妆品中米诺地尔的检测方法(暂行)》进行了论证,并经国家局化妆品标准专家委员会审评通过,现予印发,请遵照执行。                             国家食品药品监督管理局                            二○一○年八月二十三日
  • 贝克曼库尔特发布新一代DelsaMax 纳米粒度及zeta电位分析仪
    2013年3月18日贝克曼库尔特发布最新一款高效能纳米粒度及ZETA电位分析仪。每年一度的全球最大型科学仪器展---美国费城PITTCON上,贝克曼库尔特公司发布一款多通道高效能的纳米粒度及Zeta电位仪---DelsaMax系列。该系列当前共推出DelsaMax Pro及DelsaMax Core 两个型号。该系列采用当前最尖端的并行测量技术,一次加样即可同步进行纳米粒径测量与Zeta电位分析,而且测量时间仅需1秒钟!最新的DelsaMax系列被赞誉为“最小的样品量,最快捷的分析,成就最极致的结果”。这又将是一项划时代的贡献!   DelsaMax PRO于3月18日至21日在PITTCON的2403展位展出。   DelsaMax PRO堪称为全球最快的同步分析仪,仅需45微升即可在短短1秒钟内获得纳米粒径与Zeta电位的结果,完全不可思议却又成为事实!   DelsaMax CORE分析仪利用独立的动态和真正的静态光散射检测器,测量从0.4纳米至10,000 纳米的颗粒大小与分子量,样品量低至11uL。系统温控范围为-15º 和150º C。   DelsaMax ASSIST样品前处理增压系统,可强制充入惰性气体以减少样品池中起泡现象,使样品更稳定。   欲了解更多信息,请访问www.delsamax.com。   关于Beckman Coulter公司,请访问:www.beckmancoulter.com。
  • 德祥与德国Pilodist公司合作13年背后的秘密
    近日德祥科技有限公司(下称德祥)董事总经理朱先生和战略发展部总经理梅女士造访德国Pilodist 总部(下称Pilodist)。与 Pilodist CEO Fischer博士和实验室和研发中心的团队进行了深入的交流会面,并参观完善的生产工厂设施,对Pilodist不断精益求精的产品工艺有更深刻的体会。洁净高效,精密有序—Pilodist 生产工厂Pilodist是一家历史悠久的精馏研发和生产企业,前身是成立于1962年的Fisher公司。随着几代人的不断推陈出新,Pilodist开发了多条分离提纯、精馏产品线,在国内外拥有众多的忠实客户,如BP、埃克森美孚等等。德祥作为国内专业的仪器代理商,早在05年就与Pilodist公司建立了合作关系,13年的合作期间,Pilodist研发团队和工艺开发团队都给德祥留下非常深刻的印象,他们在技术上的不断开拓,在设备的工艺和软件上的不断优化,如密封性超高的玻璃技术,人性化使用的改良,数据可追溯性,重复性、*度、过程控制的多样性不断提高。这些也铸就了Pilodist产品高质量,在业内技术龙头的位置。Pilodist的实力让他们成为连续两年获得欧洲颁发给高新技术公司的奖项—Top 50 Fast Growth Company!Pilodist CEO Fischer博士目前Pilodist基于用户的需求发展出可满足不同应用领域的产品线,包含从主要应用于石化领域的实沸点蒸馏系统(可满足ASTM-2892/5236/1160/D86/D5001/SH/T-0065等多种标准),同时也开发了*同心管技术应用于精馏设备,也拥有薄膜蒸发器、分子蒸馏和萃取等技术,可服务于石化、制药、化工、香精香料、食品等众多领域,以提供高效高质的提纯分离服务。 精馏其实是一项非常常规的分离技术,为什么Pilodist能在一个常规的技术上有如此大的竞争力呢?就让德祥带你去探秘德国精馏品牌-Pilodist背后的秘密。Pilodist 精湛的玻璃吹制技术Pilodist 一直引以为傲的就是她的玻璃吹制技术。我们知道国内的很多精馏塔无法做到高真空主要是由于密封系统,而Pilodist 的则可通过自己吹制的玻璃器件之间的磨砂接口及垫圈、快速接头实现免真空脂连接,确保系统的运行安全和压力控制的稳定性。在这项技术的背后是由一个人均玻璃吹制经验超过20年的团队常年对品质的卓越追求铸造的。Pilodist 自制玻璃器件在Pilodist的室内玻璃吹制、电子、软件及机械加工室,PILODIST® 制造了所有的玻璃器件和绝大部分重要的主件和零部件。每一套设备在运往客户之前都经过完整的组装及详尽的测试。除此之外,Pilodist的产品还具有蒸发速率高,实验重现性高,设备稳定性好,软件操作方便,仪器设计人性化等诸多特性。这些也都是德祥所代理的产品都兼具的优势。德祥一直致力于为客户提供完整的解决方案和更加高效的实验方法,在不断进步的过程中一往无前。Pilodist专业的生产和德祥专业的服务定会成为大家的好帮手,欢迎大家拨打4009 000 900垂询。Pilodist和德祥携手合作,为中国带来更专业的仪器● 原油实沸点蒸馏系统,符合国标标准。● 精馏系统,多功能蒸馏装置,分离效率高。● 薄膜蒸发系统,用于低挥发性物质和热不稳定、高分子量、高粘性有机物中易挥发性物质的分离。● 自动汽液相平衡装置,用于分析二组分或多组分混合物汽液相平衡的基础实验数据,并以此建立通用模型。● 航煤燃油润滑性测定仪,通过球缸润滑性评估器测量航空涡轮燃料润滑性的全自动设备。
  • 第66届诺贝尔奖获奖者大会闭幕
    第66届诺贝尔奖获奖者大会近日在德国波登湖畔的林道闭幕,本届大会共邀请到了29位诺贝尔物理学奖获得者,其中有获得2015年诺贝尔物理学奖的日本物理学家梶田隆章和加拿大物理学家阿瑟麦克唐纳。作为本届大会的合作伙伴国,奥地利总统费舍也出席了会议并讲话。  大会的闭幕式在波登湖的玛瑙岛上举行,风景秀丽的玛瑙岛是诺贝尔奖获奖者大会的创始人贝纳多特伯爵夫妇的私人领地,贝纳多特伯爵是瑞典皇室亲属,这位伯爵一生热衷于赞助科学事业,在1951年创办了第一届诺贝尔奖获奖者大会,此后每年一届从不间断。2004年贝纳多特伯爵去世后,索尼雅贝纳多特伯爵夫人继续领导和组织每年一届的大会,2008年索尼雅病逝后,其女儿贝蒂纳贝纳多特女伯爵又继承了家族的这项事业。  此次大会共邀请了来自80个国家的400多名青年科学家和学生参会,而这是从上万名申请的学者中经过多轮评委评比,精心挑选出来的。参加诺贝尔奖获奖者大会有严格的参会条件,要求有两个以上国际著名学术机构的推荐,有在国际专业杂志上发表的学术论文,有流利的英语会话能力,学生年龄不超过30岁,博士后年龄在35岁以下。中国参加本届大会的境内外人数共29名,是继德国、美国之后参加人数较多的国家。  据中国学生代表团领队,中德科学中心常务副主任陈乐生教授介绍,这是中国第13次派出如此多的青年学者参加诺贝尔奖获奖者大会,中国学者的选拔和组团工作由中德科学中心负责,并得到教育部、中科院的鼎立支持。中德科学中心与诺贝尔奖获奖者大会基金会共同组成评委会,共同审核申请参加会议学者的学术水平。在经过几轮筛选后,还要进行包括英语能力的面试,因此,中国挑选的年轻学者都非常优秀。  从前几届的参会情况看,中国参加过大会的学者中已有三分之二去了美国、德国等国深造,并有被诺贝尔奖得主招为弟子。这些人在国外经过几年的锻炼,将来回国后将挑起大梁,成为国家科技领域的风云人物。陈教授介绍说,改革开放后曾有一批留德的风云人物出现,如现任科技部部长万钢以及路甬祥、韦玉、王大中、林泉。近年来还有一批留德或在德国从事过研究工作的中青年学者成为所在研究领域的领军人物,如潘建伟、卢柯、葛均波等。  记者也随机采访了几位参会的中国年轻学者,请他们谈谈参加大会的感受。来自中国科学技术大学的任亚飞说,感受最深的是与德国诺奖获得者冯克里青教授面对面的交流,大师用深入浅出的语言阐述了量子霍尔效应的原理和发现过程,使这位正在开始从事固体物理研究,年仅23岁的研究生激发起了对量子物理学的浓厚兴趣。他表示参加这次活动不仅能和大师进行学术交流,而且能感受大师现实中最真实、生动的一面。  来自北京大学的蒋庆东表示,参加诺贝尔奖获奖者大会不仅是聆听科学大师的高超演讲,目睹大师的风采,也是一次与其他国家青年学者交流的很好机会。通过交流他感觉到,中国在物理学一些领域并不比欧美差,也有自己一流的论文、一流的学者。这些年国家对科研的投入在不断增长,中国的科研成果在国际上不断获得好评,2015年屠呦呦获得诺贝尔生理学或医学奖,相信中国人获得诺贝尔物理学奖也是早晚的事。  记者还采访了林道诺贝尔奖获奖者大会基金会主席沃夫冈许勒尔博士,他专门负责组织这项活动已经有16年,今年即将退休并出任基金会名誉主席。采访中,他称赞了中国科学中心为每年一届的大会给予很大支持,尤其是与陈乐生、赵妙根两位主任的合作非常愉快。许勒尔博士也期待中国能有更多优秀科学家获得诺贝尔奖。
  • 3i流式新品|贝克曼库尔特发布CytoFLEX nano纳米流式分析仪
    贝克曼库尔特生命科学正式推出专为纳米级小颗粒研究设计的CytoFLEX家族新成员——CytoFLEX nano 纳米流式分析仪。据官方介绍,CytoFLEX nano突破传统流式细胞术的检测极限,用更优的灵敏度和分辨率、灵活的方案设计、可重复的结果和简单的操作,为用户拓展小颗粒的研究边界。——01——突破传统流式检测极限能够检测传统流式细胞仪检测不到的群体,清晰分辨40nm-1µm粒径的小颗粒样本。——02——真正的多色小颗粒分群配备紫色(405nm)、蓝色(488nm)、黄色(561nm)、红色(638nm) 4种激光,6个荧光通道,涵盖小颗粒研究的主要染料。——03——多SSC通道打开思路具备5个侧向散射通道,通过不同通道的SSC散射光比值,无需使用染料,即可分离识别不同小颗粒亚群。——04——高灵敏度检测微弱荧光在各个荧光通道中检测500nm八峰微球都有优异表现,不仅可以检测到低丰度小颗粒,还可以清晰检测表面的低密度抗原。——05——高分辨率清晰分辨亚群在表征多种大小的颗粒时,能够清晰分辨至少10nm粒径差异的类群。——06——严格质控保障实验结果对荧光灵敏度、Baseline等实施自动监控,确保排除仪器性能问题影响实验结果。——07——操作简单方便快速上手延用CytoFLEX系列相似的软件设计,流程自动化程度高,简化仪器维护步骤。日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct
  • 第23届搞笑诺贝尔奖揭晓 获奖者无奇不有
    据联合早报网援引BBC报道,第23届搞笑诺贝尔奖颁奖大会在美国哈佛大学举行,获奖项目无奇不有,其中包括发现银河能为屎壳郎引路以及为什么洋葱能让人流泪。 据BBC报道,获搞笑生理学和天文学奖的是一个国际科学家小组,他们的研究成果是发现屎克郎夜晚迷路后,能利用银河导航,找到回家的路。 一群英国和荷兰研究人员获今年的搞笑概率奖,他们有两项发现:奶牛趴下的时间越长,站起来的可能性就越大;而一旦奶牛站了起来,就很难估计它什么时候会再趴下。 搞笑医学奖的获奖者是一群日本、中国和英国的研究人员,他们的实验结果显示,做过心脏移植手术的老鼠听歌剧和古典音乐能活得更长。 今年的搞笑物理奖给了几名意大利科学家,他们发现有些人的体能结构可以让他们在池塘的水面上行走而不会沉下去,但前提是人和池塘都必须在月球上。 获今年的搞笑心理学奖的是一组法国和美国研究人员,他们发现喝醉酒的人会觉得自己更有吸引力。 搞笑化学奖得主是发现洋葱为什么让人流眼泪的日本人。 此届搞笑和平奖授予白俄罗斯总统和警察,因为总统规定在公共场合鼓掌是非法行为,而警察又以鼓掌的罪名逮捕了一名独臂男子。 一名美国人和一名加拿大人获得今年的搞笑考古学奖,他们的成就是吞下一只死鼩鼱,然后从自己排出的粪便中研究人体的消化系统。 还有一个搞笑安全工程奖,获奖者是一名已经去世的美国人,他发明了一个捕捉劫机者的机电系统,把劫机者装在密封的包裹中用降落伞扔下地面,让等待那里的警察处理。 此届搞笑公共卫生奖授予一组泰国人,他们的研究成果是如何接上被嫉妒的妻子割断的阴茎的技术,但他们声明,这种技术不适用于被鸭子吃掉一部分的断下的阴茎。 每个获奖者都有60秒钟的发言时间,否则会被一名8岁的女孩嘘下台。 今年的搞笑诺贝尔奖授奖大会首次向获奖者颁发奖金,数额为10万亿津巴布韦元,约合4美元或24.5元人民币。
  • 无需诺贝尔奖高贵仪器 普通显微镜也可看到纳米级物质
    我们用显微镜来观察细胞,因为显微镜可以让物体的影像变大。但如果把物体本身变大不就有相同效果?这种看似不科学的说法要如何办到?答案跟婴儿用的尿布有关。麻省理工学院神经工程师 Edward Boyden 研发一种称为&ldquo 扩展显微镜&rdquo (expansion microscopy) 的技术,让被观察的物体膨胀,生物学家甚至可以用普通显微镜看到分子等级的脑部细节。 与昂贵技术有相同效果 Boyden 的技术其实跟 2014 年诺贝尔化学奖三位得主的萤光显微技术可以做个对比。诺贝尔奖的显微镜技术突破了可见光最小波长 400 纳米的限制,对于距离只有 20 纳米的物体仍能清晰分辨,不过缺点是所需的仪器很昂贵,且面对有厚度的物体较不易观察,例如肿瘤细胞或是整个大脑。Boyden 的技术则可以观察立体的组织,例如脑部神经细胞之间突触间隙及间隙一端的突触钮 (synaptic bouton)。 Boyden 运用的是丙烯酸类聚合物。常见的尿布或卫生棉之所以具有锁水功能,其中便含有丙烯酸;丙烯酸还能留住蛋白质分子。在 Boyden 的技术下,首先要把萤光分子锁定在要观察的蛋白质上,然后开始注水,要观察的组织因为加入丙烯酸而膨胀了 91.125 倍(三维方向各自膨胀 4.5 倍)。因为组织膨胀,被萤光分子标记的蛋白质彼此距离也拉开,可以让用可见光进行观察的显微镜也能看见。Boyden 表示这项技术可以让原先距离在 60 纳米以上的分子被清楚观察。 物质膨胀但无太多质变 重要的是,组织中的细胞仍然保持完好状态,蛋白质的相对位置与方向没有太大的改变,如上图左是膨胀后的样子,与图右的原始状态比较改变不大。这项改变根据研究团队的估计,大约是 1% 至 4% 之间。 2014 年诺贝尔化学奖得主之一的 Stefan Hell 表示,这项技术很有趣也值得继续发展,他提到 1990 年代德国就有科学家有类似的点子,但看来 Boyden 的研究团队才是真正把构想实现的人。 (首图来源:Boyden, E., Chen, F. & Tillberg, P. / MIT / Courtesy of National Institutes of Health)
  • 顶刊速递,北航研究团队制备并表征高性能MXene纳米片薄膜!
    【科学背景】随着纳米科技的迅猛发展,二维纳米材料作为一类重要的新兴材料,因其独特的电子、光学和机械性能,引起了广泛的关注。其中,钛碳化物(Ti3C2Tx)MXene纳米片由于其优异的机械性能和电导率,显示出在航空航天和电子器件等领域的巨大应用潜力。然而,将MXene纳米片从单层的优异性能扩展到宏观尺度的应用中却面临着诸多挑战。目前报道的组装方法如真空过滤、刮刀涂布和空间限制蒸发等,虽然在一定程度上可以制备MXene薄膜,但仍然存在诸如取向度不高、孔隙率较大以及界面相互作用弱等问题。例如,通过真空过滤制备的MXene薄膜取向度仅为0.64,其机械性能显著低于单层MXene的理论值。有鉴于此,北京航空航天大学的程群峰教授团队在“Science”期刊上发表了题为“Ultrastrong MXene film induced by sequential bridging with liquid metal”的研究论文。一种新的制备策略——利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,被提出并成功实施。这种方法不仅通过LM纳米粒子有效减少了MXene薄膜的孔隙,还通过BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。研究结果表明,这种LBM薄膜不仅具有极高的拉伸强度,还表现出优异的电磁屏蔽效率,为MXene纳米片在宏观尺度应用中的进一步开发提供了新的思路和方法。【科学图文】图1:LBM薄膜的制备原理及表征。图2. LBM薄膜的界面相互作用表征。图3. LBM薄膜的力学性能和断裂机理。图4. 电磁干扰屏蔽效能的表现。【科学结论】本文克服钛碳化物(Ti3C2Tx)MXene纳米片组装过程中的关键挑战,提出了一种创新的策略,即利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,成功制备了超强的宏观LBM薄膜。通过LM纳米粒子的引入,有效减少了薄膜的空隙,同时利用BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。这些改进不仅显著提高了MXene纳米片在薄膜中的应力传递效率,还赋予了LBM薄膜优异的电磁屏蔽性能。这一研究不仅为MXene纳米片及其他二维纳米材料在高性能材料领域的应用提供了新的设计思路和解决方案,还展示了多层次、多材料协同作用的重要性和潜力。未来的研究可以进一步探索和优化这种组装策略,以扩展其在能源存储、传感器技术和柔性电子设备等领域的应用,从而推动纳米材料设计和制备技术的发展,实现更广泛的实际应用和产业化转化。文献信息:https://www.science.org/doi/10.1126/science.ado4257
  • 科普:他们揭示了“复杂物理系统”背后的奥秘——2021年诺贝尔物理学奖成果解读
    物理学世界存在着很多“复杂系统”,大到多变的天气,小到金属中的原子运动… … 它们混乱随机,令人难以揣摩。而2021年诺贝尔物理学奖就授予了三名科学家,以表彰他们对“理解复杂物理系统做出的开创性贡献”。  对人类至关重要的一个复杂系统正是我们的地球气候。日裔美籍科学家真锅淑郎和德国科学家克劳斯哈塞尔曼的工作为人类对气候的认知打下了坚实的科学基础。  如今,二氧化碳等温室气体是导致地球大气升温的“罪魁祸首”这一认知已经为大众所熟知,但正是真锅淑郎论证了大气中二氧化碳浓度增加如何导致地球表面温度的升高。20世纪60年代,他领导了地球气候物理模型的开发,是第一个探索辐射平衡和气团垂直输送之间相互作用的人,他的工作为建立气候模型奠定了基础。  当代气候模型是基于物理法则,并从天气预测模型演变而来。天气由温度、降水、风或云等气象指标描述,并受海洋和陆地事件影响,气候模型是基于天气计算的统计属性,如平均值、标准偏差、最高和最低测量值等。比如,气候模型无法明确告诉我们明年12月北京的天气情况,却能告诉我们那个月北京的平均气温和降雨量。  气候模型不仅有助于理解气候,也有助于理解人类造成的全球变暖。为了解二氧化碳水平增加如何导致气温升高,真锅淑郎把空气团因对流而产生的垂直输送以及水蒸气的潜热纳入其中。为方便计算,他构建了一个一维模型,深入到大气层中40公里,并通过改变大气中气体的浓度来测试模型。他发现,氧和氮对地表温度影响可忽略不计,而二氧化碳的影响则很明显:当二氧化碳水平翻倍,全球温度上升超过2摄氏度。  天气是混乱多变系统的经典例子,为何气候模型依然可靠呢?在真锅淑郎的研究约10年后,克劳斯哈塞尔曼创建了一个将天气和气候相关联的模型,回答了这一问题。  哈塞尔曼将混乱变化的天气现象作为快速变化的噪音纳入计算,并证明这种噪音如何影响气候,从而为长期气候预报奠定了坚实科学基础。受爱因斯坦有关布朗运动的理论启发,他创建了一个随机气候模型,证明了快速变化的大气实际上会导致海洋缓慢变化。  哈塞尔曼还开发出可识别人类对气候系统影响的方法。他发现,气候模型以及观测和理论考量,均包含了有关噪音和信号特性的充分信息。例如,太阳辐射、火山有关颗粒或温室气体水平的变化会留下独特的信号和印记,可被分离出来。这种印记识别方法也可应用于研究人类对气候系统的影响,为进一步研究气候变化扫清障碍。  与真锅淑郎和哈塞尔曼相比,意大利科学家乔治帕里西的研究更聚焦于微观尺度。1980年左右,他发现了明显的随机现象如何受隐秘法则的支配,奠定了复杂系统理论的基石。  帕里西的研究与一个有趣的概念密切相关——“自旋玻璃”。这可不是一种玻璃,而是指磁性合金材料的一种亚稳定状态。“自旋玻璃”是一种超复杂和混乱的系统,如果我们观察一种“自旋玻璃”合金材料中的原子运动,就会发现当中的铁原子和铜原子随机混合。材料中占比很少的铁原子以一种令人迷惑的方式改变了整个材料的磁性,每个铁原子都相当于一个小磁铁,即一个“自旋”,同时受到身边其他铁原子影响。在普通磁铁中,所有“自旋”都指向同一个方向,而在“自旋玻璃”中,它们会“受挫”,有些“自旋”试图指向同一个方向,而另一些则完全指向相反的方向。  “研究‘自旋玻璃’就好像观看莎士比亚所写的人类悲剧,”帕里西说,“如果你想和两个人同时交朋友,但他们彼此厌恶,这就令人受挫。”  “自旋玻璃”为研究复杂系统提供了物理模型。1979年,帕里西取得突破性进展,成功利用一种名为“副本戏法”的数学工具描绘 “自旋玻璃”问题。这一方法后来也被用于很多复杂系统研究。  帕里西的开创性发现使理解和描述许多不同的、显然完全随机的复杂材料和现象成为可能,不仅对物理学影响深远,也给数学、生物学、神经科学和机器学习等领域的研究带来启示。
  • 三张图看懂:诺贝尔奖正越来越多地授予那些改变世界的女性
    p style=" text-align: center " img width=" 450" height=" 260" title=" a4db30a3d18f178ee35f04.jpg" style=" width: 450px height: 260px " src=" http://img1.17img.cn/17img/images/201510/noimg/923dd215-67af-4355-a9d1-2638ec24d6a2.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   世上几乎没有比获得诺贝尔奖更高的殊荣了。1895年,诺奖创立者阿尔弗雷德· 诺贝尔在他的遗嘱中写道,获奖者“都应在此前一年为人类做出了最伟大的贡献”。 /p p   今年有两位女性获得诺奖,中国药学家屠呦呦因发现抗疟药青蒿素获得了诺贝尔生理学/医学奖,捕捉到苏联时代个人声音的白俄罗斯作家斯维特兰娜· 阿列克谢耶维奇获得了诺贝尔文学奖。 /p p   单纯来看,有两位女性荣获诺奖让人觉得难以置信。但对比另外八位男性获奖者来看就会发现,在缩小诺奖得主的男女差距方面,还有很大的提升空间。 /p p   自1901年诺贝尔奖首次颁发以来,女性共获奖49次,男性获奖825次,团体组织获奖26次。如果只比较男女获奖者,女性获诺贝尔奖次数占5.6%。 /p p style=" text-align: center " img width=" 450" height=" 326" title=" a4db30a3d18f178ee36305.png" style=" width: 450px height: 326px " src=" http://img1.17img.cn/17img/images/201510/noimg/8241cfc7-0dc5-4a9c-8d1d-a1224e8b4841.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   同时,就获奖者性别而言,并不是在所有的奖项上男女比例都是均匀的。在六个奖项中,女性得主占比最高的是诺贝尔文学奖(12.5%),其次是诺贝尔和平奖(12.4%) 诺贝尔物理学奖的女性得奖者比重最低(约为1%)。 /p p style=" text-align: center " img width=" 450" height=" 331" title=" a4db30a3d18f178ee36706.png" style=" width: 450px height: 331px " src=" http://img1.17img.cn/17img/images/201510/noimg/700c0b50-bc65-450b-bc03-59e1840439e2.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   尽管这些数字确实不高,但截至目前情况一直在显著改进。在诺奖问世后的头20年里,只有四次颁发给了女性,其中居里夫人拿到了两次。 /p p   而在接下来的60年中,情况开始稍有好转,每20年里,都有五位女性获奖。到了20世纪最后20年,情况有了明显改善。从1981年到2000年,女性11次夺得诺奖。如今,21世纪的女性取得了真正的突破。过去15年中,19位女性拿到了这个奖项。 /p p style=" text-align: center " img width=" 450" height=" 328" title=" a4db30a3d18f178ee36c07.png" style=" width: 450px height: 328px " src=" http://img1.17img.cn/17img/images/201510/noimg/a1f300be-0847-4aa8-8150-6dff3fac6ecb.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   希望这样的趋势延续下去,不断加速。 br/ /p
  • 聚焦单细胞分析自动化|贝克曼库尔特生命科学携手10x Genomics开启合作
    近日,贝克曼库尔特生命科学与10x Genomics公司宣布建立新的合作伙伴关系,以扩展单细胞监测工作流程的自动化解决方案。作为协议的一部分,10x Genomics将开发专用的Chromium Single Cell试剂盒,在贝克曼库尔特生命科学的Biomek i7自动化移液处理工作站上使用。该定制应用程序将实现高质量、大规模的10x Genomics单细胞文库自动化制备,产生可立即用于测序的文库。肿瘤学、免疫学和神经科学等领域正越来越依赖单细胞方法,这些方法可帮助研究人员揭示生物学的复杂性,并推动新的科学发现。随着更大规模的研究需要更广泛的解决方案,文库制备等手动过程的自动化可提高通量。此次合作关系的建立计划在Chromium单细胞系统运行结束后实现工作流程的自动化。合作前期的重点是高通量的文库制备,通过同时处理数十个单细胞样本为实验室提供更简化且更高效的解决方案。贝克曼库尔特生命科学生物技术流程解决方案副总裁兼总经理Elsa Burgess表示:“在贝克曼库尔特生命科学,我们每天都在努力打破手动工作流程的瓶颈,让实验室能够更快实现研究目标,并避开容易出错的步骤。我们很荣幸10x Genomics信任我们,让我们为其客户提供单细胞分析的自动化解决方案,特别是当越来越多的研究人员使用这种方法时。这只是开始,这项令人兴奋的合作最终将惠及多个科学领域的研究人员。”10x Genomics公司的联合创始人、总裁兼首席科学官Ben Hindson表示:“随着研究人员不断使用更多样本进行单细胞分析,他们在寻找新的自动化解决方案,以便高度自信地构建高质量的文库,且手动操作时间更少。我们有些客户已经成功试用了这种方法,我们很高兴能够与贝克曼库尔特生命科学正式合作,开发大规模的自动化产品,开创更大规模的单细胞研究。”作为此次合作的一部分,10x Genomics计划开发一套与自动化兼容的耗材,以便实现高通量的样本处理,并获得经过验证的结果。关于贝克曼库尔特生命科学生命科学、研究、精密制造。如果您一生的使命是在这些或相关领域中的任何一个,您需要了解贝克曼库尔特生命科学公司。它是丹纳赫公司(纽约证券交易所代码:DHR)全球科技家族的一部分。我们的使命是帮助那些寻求生命中重要科学和医疗健康问题答案的人。自 1935 年以来,贝克曼的名字一直是将复杂生物医学检测技术简化和自动化的代名词。几十年后,我们的全球组织也开始体现库尔特科学遗产。今天,贝克曼库尔特生命科学公司是一个值得信赖的全球资源,提供帮助优化研究和制造效率的工具。离心机、颗粒计数器/分析仪、自动化液体处理器、流式细胞仪、基因组试剂。所有这些产品——以及更多产品——通过提高敬业的科学家、质量控制专家和其他人的生产力,进而持续改善人们的生活质量。无论人们在哪里需要答案,从著名的大学和大型制药公司,到初创的小型生物技术公司、食品/饮料和电子制造公司,您都可以找到贝克曼库尔特生命科学。关于 10x Genomics10x Genomics公司致力于提供业界领先的技术,以帮助科学家揭示生物学和疾病的复杂性,提升了解和治疗疾病的方式。通过将创新的微流体技术,试剂和生物信息学相结合,使全球的研究人员能够以前所未有的分辨率和通量加速探索研究,改善人类健康。仅供研究使用 (RUO),不用于诊断过程。
  • 样品砷含量超母乳2~3倍 婴幼儿米糊陷重金属污染疑云
    婴幼儿米糊陷重金属污染疑云 雀巢(中国)公司昨发表声明强调其产品安全   据英国《星期日电讯报》的最新报道称,瑞典研究人员发表论文称,包括雀巢在内的9种欧洲知名品牌的婴儿食品含有毒重金属砷、铅与镉,其含量虽未达世界卫生组织(WHO)规范的上限,但婴儿长期食用,仍会导致智力受损,甚至出现行为异常。据悉,欧盟委员会官员已决定召开紧急会议,商讨重新制定新的婴儿食品安全标准。   这份研究的检验样本包括雀巢、喜宝(Hipp)、活乐(Holle)、欧格妮(Organix)等9种知名品牌生产的供4个月以上婴儿食用的辅食,以及9种婴儿配方奶粉。   据了解,发表研究论文的这所瑞典研究机构是世界顶级的医学院瑞典卡罗琳学院Miljomedicin研究所(卡罗琳学院有一个委员会专门负责颁发诺贝尔生理学或医学奖)。而论文是发表在今年1月的国际权威学术期刊《食品化学》中。   针对瑞典研究机构发布关于婴幼儿食品中含有微量锰、镉和砷研究报告的报道,昨日雀巢(中国)有限公司发表声明,强调"所涉及的雀巢产品未在中国生产和销售",并称这些产品是完全安全的,并符合所有北欧和欧洲的相关标准。   国内食品安全专家指出,国际和国内的食品安全标准都有对婴儿配方食品中砷含量作出限量规定,在限量范围内食用可以说是安全的。记者了解到,国内婴幼儿谷类辅助食品标准只对砷、铅两类重金属元素提出限量要求。至于镉等元素限量,则在农业部的标准《粮食(含谷物、豆类、薯类)及制品中铅、镉、铬、汞、硒、砷、铜、锌等八种元素限量》有要求。   研究:样品砷含量超母乳2~3倍   本报记者昨日从中山大学一位医学专家处拿到这份备受关注的论文英文原文(《婴儿配方食品和幼儿食品中高含量的必需元素和有毒元素--一个值得关注的问题》)。细读后发现,该论文重点研究评估的是6个月龄婴儿食品中有毒与必需元素的含量和摄入。在大部分的配方食品,必须元素钙、铁、锌、锰、钼的含量都明显高于母乳。和母乳喂养比,婴儿食品日常摄入的锰含量高出十倍到几百倍,这一摄入水平可能损害健康。   据本报记者了解,论文的研究人员从瑞典市面购买了9种婴儿配方食品(从出生起可以食用)和9种幼儿食品(4岁龄以上食用)作为样本,并指出这些食品均为大型食品商生产,能在全球范围都能买到。检验样本包括雀巢、喜宝(Hipp)、活乐(Holle)、欧格妮(Organix)等。   从实验结果看,在婴儿配方食品一组,除了一款样品外都含有比母乳高的镉(1.3~20倍)、铅(1.6~3倍)和铀(1.7~46倍),其中3款样本的砷含量超过母乳2~3倍。   对比:谷物食品砷含量高于牛奶食品   至于幼儿食品的一组,基于谷物生产的儿童食品样本镁、锰、钼、砷、镉、锑的含量都高于基于牛奶生产的食品。基于大米的样本砷的含量更是特别高,达到17~33微克/千克,而其他食品只有0.2~3微克/千克。两款基于大米的食品还含有其他有毒元素。   记者注意到在分析砷危害一节,论文指,在实验样本中3个纯粹基于大米的样本的砷含量大约是30微克/千克,2个在大米外还添加进水果成分的样本其砷含量就轻微下降到18微克/千克。其中,一个样本的含量相当于人体每公斤摄入1微克的水平,如果每天喂食2次就已经接近欧洲标准的上限(2.1微克/千克),这个含量已经超过了健康安全水平。   论文称,多个研究已经发现大米和基于大米生产的婴幼儿食品时常含有较高含量的砷,当中大部分是以毒性最大的无机砷的形态而存在。砷除了能致癌外还能引发多种毒性反应,儿童对此尤其敏感。如果儿童在成长早期就从饮用水中摄入低剂量的砷,将会致病和致死,或者损害早期发育。   论文最后指,随着给婴幼儿辅食的流行,日常摄入的必需元素特别是锰、铁和钼在增加。值得警惕的是,这些食品同时也可能带来高剂量的有毒元素如砷、镉、铅、铀,它们主要来自于食品的原料。   调查:未找到论文提及的产品   有关报道引起了广泛关注,特别是诸如"婴儿食品混入砷"等字眼,令不少妈妈恐慌。妈妈网上出现长达8页的讨论,不少妈妈表示迷茫,网友"wanghaomm"说,"如果水稻也有毒,那么,自己打豆浆米糊吃也是有害身体的呀!抓狂!还能吃什么?"   针对有关报道,昨日雀巢(中国)有限公司特意发表声明,强调报道中所涉及的雀巢产品是完全安全的,并符合所有北欧和欧洲的相关标准,报道中所及雀巢产品未在中国生产和销售。雀巢在中国生产和销售的婴幼儿食品完全符合中国法规及标准的要求,消费者可放心食用。   雀巢在华联系人对本报记者表示,实验用的产品根本不是中国生产,所以马上就排除中国产品不受事件影响。但被问到外国米糊产品大米来源是哪里时,该联系人表示"不清楚".   记者随后走访人民路上多家婴幼儿用品店,均没有找到论文提及的雀巢、喜宝(Hipp)、活乐(Holle)、欧格妮(Organix)品牌的米糊。米糊品牌都是亨氏、味奇、贝因美。后来记者在中山路上一家超市找到雀巢品牌的牛肉蔬菜配方米糊、胡萝卜配方米糊、鸡肉蔬菜配方米糊等11种婴幼儿食品,产地均为黑龙江。   不过记者在大型购物网站上,就找到论文提及的其他品牌米糊产品,而且都是宣称欧洲生产,诸如"HIPP喜宝香蕉晚餐有机燕麦米粉米糊"(43.5元)、"(瑞士品牌)德国产HOLLE天然有机大米米粉米糊250克4个月"(55元)、"Organix有机全麦米糊米粉"(62元)等等。   专家:大米对砷的吸收能力较强   到底为何米糊等大米配方食品会有砷?论文指出,婴儿配方食品中可能含有的毒元素是来自天然存在的原材料,或者来自遭食品加工过程中的污染。例如,基于大米生产的婴幼儿食品在2008年时就曾报告含有高于安全标准的砷。   业内人士告诉本报记者,由于自然的因素或人为污染,重金属在土壤中微量存在。当谷物生长时,就会从土壤中吸收这些重金属,其中又以大米对砷的吸收能力较强。国际研究已经表明,就算是微量的砷都有可能导致婴儿脑部损伤。欧洲食品安全管理局对食品中砷的规定是每公斤体重摄入约2微克,不过最近该局已经表示需重新进行风险评估。世界卫生组织也暂时停止了对砷摄入量的建议,因为近期的研究显示就算微量的砷都可能致癌。   专家:标准限量以下食用安全   中山大学毒理学教授、广东省食品安全专家委员会专家杨杏芬表示,国际上和国家都有对婴幼儿配方食品中的砷含量作出限量规定,只要含量在标准限量之下可以说是安全的。   对于婴幼儿米糊等谷类食品,国家有强制标准,质监部门监督抽查时也会按照强制标准检测。不过,国内婴幼儿谷类辅助食品标准只对砷、铅两类重金属元素提出限量要求。根据国家标准《婴幼儿谷类辅助食品》,铅、砷等污染物有限量控制,其中添加鱼类、肝类、蔬菜类的谷类辅助食品限量为0.3毫克/千克,其他产品铅限量0.2毫克/千克。添加藻类的产品无机砷限量0.3毫克/千克,其他产品限量0.2毫克/千克。   有NY 861-2004《粮食及制品中铅、镉、铬、汞、硒、砷、铜、锌等八种元素限量》的标准要求,其中大米制品镉(以Cd计)限量在0.2毫克/千克。   砷 (arsenic)是一个知名的化学元素,元素符号As,原子序 33.砷的硫化物矿自古以来被用作颜料和杀虫剂、灭鼠药。硫化合物具有强烈毒性,今天砷的拉丁名称 arsenium和元素符号As正是由这一词演变而来。三氧化二砷在我国古代文献中称为砒石或砒霜。小剂量砒霜作为药用在我国医药书籍中最早出现在公元973年宋朝人编辑的《开宝本草》中。   每天吃两次问题米糊   砷可能破坏神经系统   研究发现,如果每天向婴儿喂食两次上述品牌的米糊等辅食,婴儿接触到致癌物"砷"的数量,比母乳喂养高出50倍 接触可破坏神经系统和肾脏功能的重金属"镉",数量比母乳喂养增150倍 接触可致永久性的智力受损伤或行为异常的重金属"铅",数量也要增8倍。
  • WDDY-2008J自动电位滴定仪(非水滴定)测《盐酸曲马多》 (大连贝尔药业)
    大连贝尔药业有限公司质管部于2011年12月28日购得我公司生产的WDDY-2008J微机自动电位滴定仪一台,用于测定&ldquo 盐酸曲马多&rdquo 的含量,经安装工程师反复测试比对,其结果完全符合《中国药典》及大连贝尔药业有限公司的相关企业标准!其测试结果的重复性及准确性让人难以置信(重复性误差达0.02%)!WDDY-2008J微机动电位滴定仪的人性化设计及测量结果的高可靠性给大连贝尔药业有限公司的领导及化验人员留下了深刻印象,同时也成为大唐仪器之自动电位滴定仪在医药行业的又一成功应用典范!(大唐仪器2012年2月6日)
  • 精密光谱专家、诺贝尔物理学奖得主约翰霍尔受聘华东师大名誉教授
    10月28日,2005年诺贝尔物理学奖获得者约翰霍尔教授从华东师范大学校长俞立中手中接过了名誉教授的证书。   当天,约翰霍尔以“光学频率梳”为题,与华东师大师生分享了他有关科学需求、理念重塑、创新和机缘的故事,以及诸多富有价值、出人意料的实际应用。   “霍尔教授的名字如雷贯耳,今天能够亲眼目睹这位诺贝尔得主和专业大师的风采,我觉得非常幸运。”物理系2008级博士方易说,“而且更幸运的是,我们还近距离地与他进行了交流,例如我们在实验中遇到的瓶颈等,这种经历实在太让人难忘了。”   武愕副教授是华东师大精密光谱科学与技术国家重点实验室的一名青年教师,她去年在德国进行学术交流时,曾与霍尔教授有过近距离的接触。“他是我们这一领域领头羊式的人物。”武愕说,“这次他能够来到学校并受聘为名誉教授,无论对学校还是对我们实验室所有成员来说,都是一次学习交流的宝贵机会。我们与他交流实验室目前在做的项目,他还给我们提出了许多好的建议和想法,受益匪浅。”   讲座结束后,霍尔教授被同学们团团围住。同学们就如何开展交叉学科研究、如何有效进行学术研究、如何将个人兴趣与研究相结合以及霍尔教授获诺贝尔奖经过等问题,与霍尔教授进行了深入的交流。   约翰霍尔教授在精密光谱、光速测量方面的开创性研究成果以及“光学频率梳”的技术发明实现了简单直接的光学频率测量,并已在科学、气象学和诊断性药物领域得到了广泛应用,获得了2005年诺贝尔物理学奖。
  • 中科科仪参加2018低维碳纳米材料制备及应用技术交流会
    4月24日至25日,由中科院苏州纳米技术与纳米仿生研究所与中粉网联合举办的“2018低维碳纳米材料制备及应用技术交流会”在江苏省苏州市召开,中科科仪作为主赞助商之一参加了此次盛会。金刚石、石墨、碳纳米管等低维碳纳米材料因其突出的力学、电学和化学性能,在新材料领域有着巨大的前景,引发了国内外各大高校科研院所持续的研究热潮。交流会上,中科科仪电镜事业部精心策划,秉承公司“创新科学仪器,发展一流企业”的理念,针对研究所高校用户,重点推出代表国内最高技术水平的KYKY-EM8100F场发射扫描电镜;针对寻求大规模低成本生产的企业用户,重点推出KYKY-EM6200钨灯丝扫描电镜。两款产品均得到了现场新老客户的广泛关注与好评,彰显了科仪的品牌形象和影响力。
  • 蔡司发布全新亚微米级X射线显微镜Xradia 600 Versa
    p    strong 仪器信息网讯 /strong 德国耶拿当地时间,2019年1月23日,屡获殊荣的蔡司Xradia Versa系列又推出了两款新型先进产品 — Xradia 610 Versa和Xradia 620 Versa X射线显微镜。它们的独特优势是能够在全功率和电压范围内更快速地对样品进行无损成像,且不会影响分辨率和对比度。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/ea57ce49-bb64-409b-939e-5d7cb9fc0001.jpg" title=" 1.jpg" alt=" 1.jpg" style=" width: 450px height: 300px " width=" 450" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 新型蔡司Xradia 620 Versa /span /p p   蔡司Versa X射线显微镜凭借优异的大工作距离高分辨率(RaaD)的特性,成为了全球优秀研究人员和科学家的“有力帮手”。在相对大工作距离下也能保持超高分辨率,有助于产生意义非凡的科学见解和发现。随着当今技术的快速发展,对分析仪器也提出了更高的要求,而蔡司Xradia 600 Versa系列就是专为应对这一挑战而设计的。 /p p    strong 蔡司 Xradia 610 & amp 620 Versa采用改进的光源和光学技术 /strong /p p   X射线计算机断层扫描成像领域面临的两大挑战是:实现大尺寸样品和大工作距离下的高分辨率和高通量成像。蔡司推出的两款X射线显微镜凭借以下优势完美解决了这些挑战:系统可提供高功率的X射线源,显著提高X射线通量,从而加快了断层扫描速度。工作效率提高达两倍,而且不会影响空间分辨率。同时,X射线光源的稳定性得到提升,使用寿命也更长。 /p p    strong 主要特性包括: /strong /p p   ● 最高空间分辨率500nm,最小体素40 nm /p p   ● 与蔡司 Xradia 500Versa系列相比,工作效率提高两倍 /p p   ● 更加简便易用,包括快速激活源 /p p   ● 能够在较大的工作距离下对更广的样品类型和尺寸的样品进行亚微米特征的观察 /p p    strong 先进科研和工业领域的更多应用将因此而受益 /strong /p p   这两款用途广泛的仪器可以为不同领域的科研机构和工业客户带来更高的工作效率和价值,助力他们的研究和探索。 /p p   凭借RaaD特性,蔡司 Xradia Versa在大工作距离下也能保证超高分辨率,并且能够对安放在环境试验舱室或高精度原位加载装置中的样本进行成像。这可以让材料科学研究人员在受控的环境条件下以无损的方式表征材料的3D微观结构,以探究不同原位条件下(如加热或拉压)造成的影响。 /p p   随着全球能源材料需求呈现爆炸式增长,工业研究人员需要分析这些材料在多个固相和液相阶段的复杂多物理场行为及其相关的结构演变。蔡司 Xradia 600 Versa系列能够帮助研究人员解析这些结构的形态及其在工作条件下的行为。这些基于RaaD技术的X射线显微镜可以对完整的软包电池和圆柱形电池进行高分辨率成像,从而为数百次充放电老化效应的研究提供支持。 /p p    strong 在电子和半导体行业 /strong 中,用户常常会为了工艺开发、良率提高进行结构和失效分析,并对先进的半导体封装进行结构分析。蔡司Xradia 600 Versa系列可以通过无损成像进行封装产品的缺陷分析,如:Bumps或Microbumps中的裂纹、焊料润湿问题或TSV通孔结构。在物理失效分析(PFA)之前对缺陷进行三维可视化,减少人为物理切片引入的假象缺陷,从而提高失效分析的成功率。 /p p    strong 在增材制造行业 /strong 中,3D X射线显微镜在从粉末到零件的整个流程的多道工序中发挥着重要作用。典型应用包括:研究粉末床中颗粒的具体形状、尺寸和体积分布,以确定合适的工艺参数。蔡司Xradia 600 Versa系列具有更高的工作效率和结果效率,实现高效的工作流程。 /p p    strong 在原材料研究领域 /strong 中,用户会进行多尺度的孔隙结构分析,包括原位流体流动分析。全新蔡司Xradia Versa X射线显微镜以更快的运行速度为数字岩心模拟、基于实验室的衍射衬度断层扫描成像和多尺度成像等提供更精确的三维纳米尺度成像,从而减少研究前后衔接瓶颈限制。 /p p    strong 在生命科学领域 /strong ,蔡司 Xradia 600 Versa系列可实现更快、更高分辨率的成像,让研究人员能够研究软组织(如神经组织、血管网络、细胞结构、韧带和神经)、骨骼的矿物组织以及植物结构(如根和细胞结构)。 /p p    strong 持续改进和可升级性 /strong /p p   蔡司X射线显微镜旨在通过不断创新和发展进行升级和扩展,以保护我们客户的利益。这样可以确保随着前沿技术的不断进步,显微镜技术也能向前发展,从蔡司 Xradia Context microCT到蔡司Xradia 500/510/520 Versa,再到现在新增的蔡司 Xradia 610/620 Versa,用户都可以将系统升级至最新的X?射线显微镜。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 关于蔡司 /strong /span /p p   蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。 /p p   全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 蔡司研究显微镜解决方案 /strong /span /p p   蔡司研究显微镜解决方案是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6,300名员工在2016/2017财年创造了总额达15亿欧元的业绩。 /p
  • 珀金埃尔默Genomics采用BioDiscovery软件为其基因组数据分析服务
    p   仪器信息网讯 BioDiscovery近日宣布 PerkinElmer Genomics采用BioDiscovery的NxClinical的软件为其基因组数据分析服务。 /p p   该软件能够使PerkinElmer Genomics从全基因组测序、全外显子组测序和靶向面板中提供快速而准确的拷贝数变异信息。该产品集成了从微阵列和下一代测序技术中获得的拷贝数数据、序列变体和等位基因的变化,同时允许在单一平台无关的系统上对基因组变体进行联合分析和解释的特点。 /p p   BioDiscovery总裁Soheil Shams在一份声明中表示:“作为遗传和基因组测试领域的领导者,PerkinElmer需要全面且独特的数据分析解决方案,比如利用分析NGS数据来进行CNV调用。NxClinical融合了多种技术和平台,能够解释从单个核苷酸到大拷贝数变化的基因组变异。” /p p   PerkinElmer Genomics的副总裁兼CSO Madhuri Hedge表示,PerkinElmer已经将NxClinical整合到其CNGnome测试管道中,用于检测整个基因组中的大量拷贝数变化,并对结果和整个工作流程的效率表示满意。” /p p   BioDiscovery还宣布,其软件工具旨在帮助临床研究人员,而不仅仅用于初级诊断。 /p p   目前该交易的财务条款尚未披露。 /p p & nbsp /p
  • 官宣 | Discovery Studio 2020 新功能揭秘~
    Discovery Studio 2020相较于Discovery Studio 2019进行了一系列产品性能的提高和新功能的增加,这些功能进一步扩展了研究的热点领域,例如添加显式膜结构的跨膜蛋白分子动力学研究和抗体成药性评价等。新功能涉及分子动力学(Simulation)、药效团模型(Pharmacophores)、蛋白处理(Macromolecules)、抗体设计(Antibody)、分子对接(Receptor-Ligand Interactions)和毒性预测(TOPKAT)并进行更新和改进。分子动力学Simulation新增Multi-Site Lambda Dynamics method (MSLD):用于计算大型类属库分子的相对结合自由能,更好地进行先导化合物的筛选优化;图1:通过MSLD方法计算组合库中分子的相对结合自由能 新增显式膜结构的跨膜蛋白的分子动力学计算。提供多种类型的磷脂膜结构,同时支持自定义膜类型;图2:在POPC显式膜内溶剂化的hERG离子通道优化了分子动力学的计算步骤,每一个计算步骤都可以通过作业提交系统进行资源分配;? QM/MM升级为64位可执行程序。药效团Pharmacophores 新增Ensemble Pharmacophore Generation :从一组活性配体生成一组共同特征的药效团。活性配体使用2D指纹进行聚类。对于每个聚类,从聚类中心选择5个配体,然后使用共同特征药效团算法创建药效团; 新增Interaction Pharmacophore Generation :从受体-配体复合物的非键相互作用出发产生药效团模型;图3:依据受体-配体非键相互作用产生药效团模型 优化了3D QSAR Pharmacophore Generation的验证方法; 更新了PharmaDB数据库,容量达到253,818个药效团模型。蛋白处理Macromolecules 优化Prepare Proteins 模块:可以同时处理多个蛋白分子,并添加了并行计算提高计算效率; 新增Analyze Protein Interface的参数 Neighbor Distance Cutoff:用于确定两个氨基酸残基是否相邻。抗体设计Antibody 新增计算抗体黏度,蛋白溶解度; 优化抗体人源化计算Predict Humanizing Mutations 模块参数,可以同时自定义重链(H)和轻链(L)的V基因和J基因; 计算聚集的工具面板重命名为Predict Protein Formulation Properties。分子对接Receptor-Ligand Interactions GOLD接口支持最新版GOLD程序,可实现共价对接功能; 新增核酸分子与配体分子的2D相互作用图; 优化了非键相互作用中配体疏水作用的定义方法。毒性预测TOPKAT 新增解释TOPKAT计算结果的内容,帮助更好理解Toxicity Prediction (TOPKAT)和Toxicity Prediction (Extensible)计算的结果。新操作教程 Discovery Studio 2020 Adding an explicit membrane to a transmembrane protein:“跨膜蛋白添加显式膜结构”教程 Calculate relative binding free energies using Multi-Site Lambda Dynamics:“MSLD计算相对结合自由能”教程 Generating ensemble pharmacophores from large data sets:“从一组活性配体生成一组共同特征的药效团”教程 Generating interaction pharmacophores from a protein-ligand complex:“通过受体-配体相互作用产生药效团模型”教程程序版本和库更新Discovery Studio 2020 支持Pipeline Pilot 2020 CHARMm版本更新至c43b2 MODELER版本更新至v9.22 Dmol3版本更新至v2020 Blast+版本更新至v2.9 抗体模板库更新至2019年7月 客户端可以重新下载中断的作业(interrupted jobs)支持Discovery Studio 2020 客户端/服务器的操作系统 完整的Discovery Studio系统要求,请参考创腾科技官网的咨询动态(www.neotrident.com) 新增支持OpenSSL1.1.1c 新增支持SLURM
  • 2017年“搞笑诺贝尔奖”揭晓了!
    p   据国外媒体报道,在今年的“搞笑诺贝尔奖”颁奖典礼上,又有多位科学家凭借出人意料的研究成果获得了不同奖项。 /p p   今年是第27个第一届“搞笑诺贝尔奖”——每年的颁奖典礼都是“第一届”。作为对诺贝尔奖的有趣模仿,搞笑诺贝尔奖由科学幽默杂志《不可思议研究年报》(Annals of Improbable Research)主办,于每年九月在哈佛大学桑德斯剧场举行颁奖仪式,授予“乍一看好笑,后又引人深思”的十项科学领域成就。 /p p   今年获奖情况如下: /p p    strong span style=" color: rgb(0, 112, 192) " 物理学奖——一只猫能否同时处于固体和液体状态? /span /strong /p p   今年的物理学奖就颁给了法国研究人员马克-安托万 法尔丹2014年关于“一只猫可否同时处于固体状态和液体状态”的研究。据悉,其灵感来自互联网上猫咪们塞进玻璃杯、水桶和水槽中的照片。 /p p    span style=" color: rgb(0, 112, 192) " strong 和平奖——定期演奏迪吉里杜管可以帮助治疗睡眠呼吸暂停及打鼾。 /strong /span /p p   对于那些与打鼾者共同生活的人来说,米洛· 普汉的搞笑诺贝尔奖成果可谓一大福音。这位瑞士科学家发现,演奏迪吉里杜管——澳大利亚原住民的一种管状乐器——能够发出一种深沉的、富有节奏感的嗡嗡声,能够帮助缓解睡眠呼吸暂停。 /p p   米洛· 普汉是苏黎世大学流行病学、生物统计与预防系的主任,他在观察了一位中度睡眠呼吸暂停患者演奏迪吉里杜管之后确信,这种乐器能对病情缓解有所帮助。他招募了一些会演奏塑料迪吉里杜管——长度大约为130厘米——的志愿者,对此展开研究。“定期演奏迪吉里杜管能够减少中度阻塞性睡眠呼吸暂停患者在白天的睡意,并缓解打鼾现象,同时改善他们伴侣的睡眠质量,”普汉在论文中总结道。 /p p   为什么这种方法能够奏效?普汉认为,演奏迪吉里杜管可以帮助人们学会有规律地呼吸(演奏技巧在于从嘴里吹气的同时通过鼻子吸气),并增强呼吸时所用咽喉肌肉的力量。 /p p    span style=" color: rgb(0, 112, 192) " strong 经济学奖——触摸活鳄鱼如何影响一个人的赌博意愿? /strong /span /p p   本次搞笑诺贝尔奖的经济学奖归属两位澳大利亚人,他们发现,如果你想要控制自己的赌博损失,那就不要在走进赌场之前与鳄鱼近距离接触。马修· 洛克罗夫(Matthew Rockloff)是澳大利亚中央昆士兰大学人口研究实验室的负责人,他和研究助理南希· 格里尔(Nancy Greer)用一条体长约为1米的湾鳄——嘴巴用胶带绑着——猛戳准备去赌博的人的手臂,然后观察接下来会发生什么。 /p p   与危险爬行动物“亲密”接触所产生的兴奋感,会促使赌博者“赌上更多的赌注,而这又意味着更长的赌博时间,导致更大的损失,”洛克罗夫说道。与许多获得搞笑诺贝尔奖的研究一样,洛克罗夫的发现乍看之下有些愚蠢,但实际却有着充足的应用依据。 /p p   “这是第一个关于情绪刺激对赌博选择影响的研究,很显然,这将有助于解决一个非常严肃的行为和精神健康问题,”洛克罗夫说道。在得知获得搞笑诺贝尔奖之后,洛克罗夫感到非常幸运,他这样来描述自己的好运:“我必须努力克制自己,一定不能把这种运气用在一台老虎机上。” /p p    span style=" color: rgb(0, 112, 192) " strong 解剖学奖——为什么老人的耳朵大? /strong /span /p p   “这是个奇怪的荣誉,但我感到非常激动,” 解剖学奖得主、英国医师詹姆斯· 希思科特说道。他的研究成果是关于耳朵的大小,于1995年发表在久负盛名的《英国医学期刊》(British Medical Journal)上。 /p p   该研究的灵感来自希思科特和其他几位全科医师的讨论。当希思科特提问道“老人的耳朵为什么那么大”时,同事中有半数同意他的观察,另一半则觉得非常可笑。在研究中,希思科特测量了超过200名患者的耳朵长度,发现老年男性不仅长着大耳朵,而且耳朵在30岁之后每十年就能生长大约2毫米。女性的耳朵也会随着年龄增长而变大,但她们的耳朵一开始较小,跟男性的耳朵比起来不那么显眼。而且,可能男性衰老时通常有头发变少的趋势,因而大耳朵更容易被人注意到。“耳朵的测量真的有些神奇,”希思科特说道。 /p p    span style=" color: rgb(0, 112, 192) " strong 生物学奖——在一种洞穴昆虫身上发现雌性长着雄性生殖器官,而雄性长着雌性生殖器官的现象。 /strong /span /p p   搞笑诺贝尔生物学奖授予Kazunori等四人。在一种洞穴昆虫身上,研究者发现雌性长丁丁雄性长妹妹的现象。研究者在洞穴中持续偷窥虫类性生活,惊奇地发现母虫子长着小弟弟。他们的这项研究可以说颠覆了常识,这个敬业的团队无法到场,于是在洞穴里录了获奖感言。  /p p    span style=" color: rgb(0, 112, 192) " strong 营养学奖——吸血蝙蝠食谱中的人血研究。 /strong /span /p p   搞笑诺贝尔营养学奖授予Enrico Bernard等三人。这个团队在毛腿吸血蝙蝠的粪便里发现了与人血有关的基因片段。主办方本打算在现场放两只蝙蝠助助兴,但是蝙蝠突然就失踪了了,因此他们大力呼吁捡到的观众要物归原主。获奖团队也通过视频表达了他们的喜悦。 /p p    span style=" color: rgb(0, 112, 192) " strong 医学奖——通过脑部扫描技术评估人对某种芝士的厌恶程度。 /strong /span /p p   搞笑诺贝尔医学奖授予Jean-Pierre Royet等五人。这是第一项有关讨厌奶酪的脑部研究。在这项研究中,研究团队利用脑部成像技术观察人们在闻到不同种类的奶酪时大脑的变化,发现基底神经节才是人们恨意的源泉。 /p p   除此之外,还包括流体力学奖——人手里拿着咖啡倒着走时,咖啡具有什么样的流体力学特性?认知学奖——许多同卵双胞胎其实分不清自己和自己的双胞胎兄弟或姐妹。产科学奖——发育中的人类胎儿对母亲阴道里播放的音乐更加敏感等有趣的研究! /p
  • 2022年诺贝尔奖颁奖日程公布!
    当地时间8月8日,2022年诺贝尔奖颁奖日程在其官网上线。今年的诺贝尔奖颁奖典礼将于10月3日至10日举行。诺贝尔基金会还决定邀请2022年诺贝尔奖获得者与2020年和 2021年的获奖者一起参加 12 月在斯德哥尔摩举行的诺贝尔周。计划在斯德哥尔摩举行颁奖典礼,并在斯德哥尔摩市政厅举行宴会。2022年诺贝尔奖颁奖日程具体如下:诺贝尔生理学或医学奖最早于欧洲中部时间10月3日星期一11:30PHYSIOLOGY OR MEDICINE – Monday, 3 October, 11:30 CEST at the earliestThe Nobel Assembly at Karolinska Institutet, Wallenbergsalen, Nobel Forum, Nobels väg 1,Solnahttp://www.nobelprizemedicine.orgnobelforum@nobelprizemedicine.org诺贝尔物理学奖10月4日,星期二,欧洲标准时间最早11:45PHYSICS – Tuesday, 4 October, 11:45 CEST at the earliestThe Royal Swedish Academy of Sciences (Kungl. Vetenskapsakademien, KVA), Sessionssalen, Lilla Frescativägen 4A, Stockholmwww.kva.se/pressroomeva.nevelius@kva.se诺贝尔化学奖10月5日,星期三,欧洲中部时间最早11:45CHEMISTRY – Wednesday, 5 October, 11:45 CEST at the earliestThe Royal Swedish Academy of Sciences, Sessionssalen, Lilla Frescativägen 4A, Stockholmwww.kva.se/pressroomeva.nevelius@kva.se诺贝尔文学奖10月6日星期四,欧洲中部时间最早13:00LITERATURE – Thursday, 6 October, 13:00 CEST at the earliestThe Swedish Academy (Svenska Akademien), Börssalen, Källargränd 4, Stockholmhttp://www.svenskaakademien.se/enlouise.hedberg@svenskaakademin.se诺贝尔和平奖10月7日星期五,欧洲中部时间11:00PEACE – Friday, 7 October, 11:00 CESTThe Norwegian Nobel Committee, The Norwegian Nobel Institute (Norska Nobelinstitutet), Store Sal, Henrik Ibsens gate 51, Oslohttps://www.nobelpeaceprize.orgpostmaster@nobel.no
  • 878万!贝克斯帝尔科技中标北京大学多功能光发射电子能谱仪采购项目
    一、项目编号:HCZB-2022-ZB1302(招标文件编号:HCZB-2022-ZB1302)二、项目名称:多功能光发射电子能谱仪三、中标(成交)信息供应商名称:贝克斯帝尔科技(北京)有限公司供应商地址:北京市朝阳区工人体育场北路4号39号楼4层418A室中标(成交)金额:878.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 贝克斯帝尔科技(北京)有限公司 多功能光发射电子能谱仪 详见中标公告附件 详见中标公告附件 详见中标公告附件 详见中标公告附件 1302中标公告.pdfHCZB-2022-ZB1302多功能光发射电子能谱仪 招标文件 发售版.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制