当前位置: 仪器信息网 > 行业主题 > >

氯亚苄基

仪器信息网氯亚苄基专题为您提供2024年最新氯亚苄基价格报价、厂家品牌的相关信息, 包括氯亚苄基参数、型号等,不管是国产,还是进口品牌的氯亚苄基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯亚苄基相关的耗材配件、试剂标物,还有氯亚苄基相关的最新资讯、资料,以及氯亚苄基相关的解决方案。

氯亚苄基相关的资讯

  • 参加SLAS2012亚洲会展,赢取SLAS2013美国年会全程免费之旅
    注册参加SLAS2012亚洲会展,您将有机会免费参加于2013年1月12~16日在美国福罗里达州奥兰多市举办的SLAS2013年会,SLAS将承担您的全程机票与酒店费用。获奖者名单将于6月21日SLAS2012亚洲会展现场公布。SLAS2013年会是实验室自动化与筛选协会举办的第二届全球会展,您将有机会与4500名来自全球的卓越实验室科学和技术专家汇聚一堂,聆听涵盖30个议题、多达130场的精彩专题演讲,并与行业领袖及业界专家探讨行业发展趋势。届时将有全球300多家企业展示其最新科技与产品。   立刻报名SLAS 2012亚洲会展,赢取这次免费之旅!   主旨演讲嘉宾 Dean Ho教授   除了原定主旨演讲人MahendraRao博士,来自美国加州大学洛杉矶分校(UCLA)的医学院教授Dean Ho将加盟SLAS2012亚洲会展的主旨演讲,演讲主题为:   Diamond-Based Platforms for Nanomedicine   以钻石为基础的用于纳米药物的平台   作为SLAS科学期刊JALA的主编,Dean Ho教授还将在6月19日的短期课程 "如何吸引编辑的眼球:在学术期刊中成功发表著作的作者指南"中与您做面对面的分享。   新产品新技术展示   实验室自动化与筛选协会2012亚洲会展将为您带来领先的药物研发与临床诊断行业的实验室技术和自动化新产品。   专业观众预先网上注册可免费参观展览展示,会场免费供应饮料和食品,供您与业内同仁轻松聚谈。   现在就注册,享受SLAS为您构建的同业交流平台。 Hot!   快和您的同事一起上线浏览SLAS网站!从现在至2012年6月29日您能够免费在线阅读SLAS JBS排名前十的专业文章,包括由Walter Stünkel和 Robert M. Campbell发表的"Sirtuin 1 (SIRT1): The Misunderstood HDAC," 由David C. Bouck et al.发表的"A High-Content Screen Identifies Inhibitors of Nuclear Export of Forkhead Transcription Factors," 以及由Jonathan A. Lee发表的"Open Innovation for Phenotypic Drug Discovery: The PD2 Assay Panel,"等等。   SLAS定期出版两本在国际上广受好评的科学刊物:Journal of Laboratory Automation (简称JALA)和Journal of Biomolecular Screening(简称JBS)。现在注册参加SLAS2012亚洲会展,您就能成为SLAS会员并可免费获取JBS或JALA刊物。
  • 农业用基因编辑植物评审细则(试行)
    各有关单位:   为更好指导农业用基因编辑植物安全评审工作,扎实做好安全管理,我办制定了《农业用基因编辑植物评审细则(试行)》,现予印发。   农业用基因编辑植物评审细则(试行)   一、分子特征   (一)靶基因编辑情况。提供覆盖编辑位点的PCR扩增测序或全基因组测序等资料,对于采用全基因组测序的,还应提供在编辑位点的覆盖度分析资料。相关数据应能够说明基因编辑植物中靶基因编辑情况。   (二)载体序列残留情况。提供全基因组测序及其在转化载体上的覆盖度分析等资料。相关数据应能够说明基因编辑植物中载体序列残留情况。   (三)脱靶情况。提供预期脱靶位点的PCR扩增测序或全基因组测序等资料,应采用生物信息学等方法分析预期脱靶位点,对于采用全基因组测序的,还应提供在预期脱靶位点的覆盖度分析资料。相关数据应能够说明基因编辑植物的脱靶情况。   二、环境安全   (一)可能直接改变物种关系的基因编辑植物,如抗病虫、耐除草剂性状。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   3.对生态系统群落结构和有害生物地位演化的影响。   4.抗病虫基因编辑植物还应提供对可能影响的非靶标生物的室内生物测定。   5.耐除草剂基因编辑植物还应提供对至少3种其他常用(非目标)除草剂耐受性的测定。   (二)其他基因编辑植物,如抗逆(抗旱、耐盐碱、抗冻、抗高温等)、品质改良、生理性状改良(养分高效利用、生育期改变、高产等)。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   三、食用安全   (一)可能改变关键成分的基因编辑植物,如品质改良、高产等。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.最大可能摄入水平对人群膳食模式影响评估。   3.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质的表达量及其与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   4.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质的表达量;(2)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(3)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(4)新蛋白质毒理学试验。   5.若上述数据资料(1—4项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   (二)不改变关键成分的基因编辑植物,如抗病虫、耐除草剂、抗逆(抗旱、耐盐碱、抗冻、抗高温等)、生理性状改良(生育期改变、养分高效利用等)。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   3.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(2)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(3)新蛋白质毒理学试验。   4.若上述数据资料(1—3项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   四、评审程序   上述分子特征、环境安全和食用安全评价都可在中间试验阶段进行,若中间试验阶段获得的数据资料表明目标性状不增加环境安全风险,经评价合格后可直接申请安全证书。   若中间试验阶段获得的数据资料表明目标性状可能增加环境安全风险,需开展环境释放或生产性试验,经安全评价合格后方可申请安全证书。环境释放或生产性试验应在试验植物的主要适宜生态区进行。申请生产应用安全证书,应在每个主要适宜生态区至少设一个试验点。 农业用基因编辑植物评审细则(试行).pdf
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 新发现,基因组编辑技术可对DNA进行微调
    Crispr基因编辑——一种分子剪刀可以让科学家对生物体的DNA进行有针对性的改变。Crispr基因编辑毫无疑问是治疗镰状细胞病的一个希望。镰状细胞病是一种与之相关的血液疾病,被称为地中海贫血,是一种罕见的失明,以及一种毁灭性的疾病,被称为转甲状腺素淀粉样变性,在这种疾病中,一种畸形的蛋白质会在体内堆积。有时候,科学家可以使用Crispr剪掉有问题的DNA以达到治疗疾病的目的,但在某些情况下,保留一个基因并对其进行微调,即系进入表观遗传编辑,可能会达到更好的目的。表观遗传学是研究DNA在一生中发生的化学变化,这些变化反过来又影响基因的表达。这些变化可能是由于一个人的行为(如饮食或吸烟)或环境暴露(如毒素或紫外线)造成的。表观遗传学是一种分子记忆,反映了我们多年来遇到的经验。这就是为什么,在拥有相同DNA密码的同卵双胞胎中,一个可能会患上癌症,而另一个则保持健康。虽然基因编辑依赖于改变DNA密码本身,而表观遗传编辑则涉及到上调或下调单个基因的表达。基因包含制造重要蛋白质的指令,而它们的表达是基因被“开启”来制造它们的过程。如果将基因比喻成音板上的音量旋钮,表观遗传编辑控制着它们的设置是“响亮的”还是“柔和的”。对于这样的“音量控制”进行实验是一个新领域,而刚好在今年5月发表在《科学进展》杂志上的一项研究提供了一个有趣的线索,揭示了一个可能的应用:对抗早期饮酒改变基因工作方式的方式。在之前的研究中,科学家们发现,青春期的酗酒会改变杏仁核的大脑化学成分–杏仁核是大脑中控制恐惧和快乐反应的小杏仁形状的部分。在啮齿动物和人类身上,他们都发现,在生命早期接触酒精似乎会减少一种名为Arc的基因的表达。这个基因是大脑可塑性的主要调节器,也就是大脑基于经验的适应能力。当Arc的表达被抑制时,这种变化与成年后易患焦虑和酒精使用障碍有关。在这项新研究中,由伊利诺伊大学芝加哥分校酒精表观遗传学研究中心主任、精神病学教授Subhash Pandey带领的团队想看看他们是否可以通过在老鼠杏仁核中对Arc进行表观遗传编辑来逆转这种改变。他们构建了一种经过修改的Crispr形式,这种Crispr不是编辑或删除基因,而是增加基因的表达。然后,他们将其注射到成年大鼠的大脑中,这些成年大鼠在青少年时期曾接触过酒精——相当于10至18岁的人类。这种早期的接触意味着Arc的表达在成年动物中已经受到抑制。Subhash Pandey表示他们瞄准了杏仁核的中央核,因为这是处理进入大脑的信息的关键中枢,也是焦虑、恐惧和饮酒行为的中心。注射Crispr使Arc的表达恢复到基线水平,Subhash Pandey称之为大脑的“工厂重置”。之后,这些啮齿动物摄入的酒精减少了,焦虑也减少了——研究人员通过行为测试来测量这一点,包括老鼠在所谓的“高架迷宫”中的表现。十字形迷宫由两条暴露在外的臂和两条封闭的臂组成。啮齿类动物的压力越大,它们就越不愿意在迷宫的露天部分呆上一段时间。Subhash Pandey说:“我们没有看到任何迹象表明他们的饮酒水平会回到基线,所以我们认为,也许这种表观基因编辑会产生持久的影响,我认为,就如何将这种疗法转化为人类治疗而言,还有很多工作要做,但我抱有很高的希望。”为了测试Arc基因是否真的导致了这一结果,研究人员还设计了一种旨在减少其表达的Crispr注射。他们在青春期没有接触酒精的老鼠身上进行了测试。注射后,老鼠比之前更焦虑,喝了更多的酒。这项研究提出了一种可能性,即我们的分子记忆可能会被修改,甚至被删除。加州大学伯克利分校的遗传学教授、加州大学伯克利分校和加州大学旧金山分校创新基因组学研究所的科学主任费奥多尔乌尔诺夫说:“这项研究展示了改变基因对其经历的记忆的可行性,这深深给我留下了深刻的印象。”但是他也强调,老鼠不是人类,我们不应该草率下结论。乌尔诺夫说表示治愈一只老鼠和用表观遗传编辑器给一个酗酒成瘾的人注射之间的距离还很遥远。我们是否具备向那些轻度饮酒问题的人的杏仁核进行快速注射还有很长的路要走。乌尔诺夫作为表观遗传编辑公司Tune Therapeutics的联合创始人之一,他认为,这样的实验疗法可以在多次治疗后复发、没有其他治疗选择的酒精成瘾患者中进行测试。然而,与直接编辑基因一样,调整基因表达可能会产生意想不到的后果。因为Arc是一种与大脑可塑性有关的调节基因,修改它的表达可能会产生酒精成瘾以外的影响。俄勒冈健康与科学大学遗传学教授贝琪弗格森(Betsy Ferguson)研究成瘾和其他精神疾病的表观遗传机制,她说:“我们不知道这种变化会改变其他什么行为。”“这是一种平衡,既要找到有效的方法,又要找到不会破坏日常生活的方法。”另一个复杂的因素是,随着时间的推移,酒精的使用会改变数十个、甚至数百个基因的表达。在人类中,这可能不像提高Arc的表达那么简单,这只是其中之一。虽然解决方案似乎是调整所有这些基因,但同时操纵许多基因的表达可能会导致问题。“我们知道行为,包括饮酒行为,是由许多基因控制的,这真的是一个具有挑战性的问题来解决,”Betsy Ferguson说。目前还不清楚这种编辑的影响会持续多久。Betsy Ferguson表示自然发生的表观遗传变化可能是暂时的,也可能是永久性的,有些甚至可以传给后代。总的来说,她认为使用表观遗传编辑治疗酒精成瘾的想法很有趣,但她希望看到结果被复制,并在更接近人类的大型动物身上试验Crispr治疗。相信这一天可能不会太远,因为最近有几家公司推出了表观遗传编辑商业化。在总部设在圣地亚哥的Navega治疗公司,研究人员正在研究如何通过抑制一种名为SCN9A的基因的表达来治疗慢性疼痛。当它高度表达时,它会发出许多疼痛信号。但简单地删除这个基因并不是一个好主意,因为一定程度的疼痛是有用的;当身体出现问题时,它会发出信号。(在极少数情况下,携带SCN9A突变的人对疼痛具有免疫力,这使他们容易受到无法感觉到的伤害。)。在Navega的实验中,小鼠的表观遗传编辑似乎抑制了几个月的疼痛。点击图片免费报名参加“第五届基因测序网络大会”
  • CRISPR基因编辑技术遭遇迄今最大安全性质疑
    p   据《新科学家》杂志网站5月30日报道,美国科学家通过全基因组测序发现,CRISPR基因编辑技术能引起基因组内大量非靶标区内的基因发生突变,包括1500多种单核苷酸突变和100多种大片段序列的敲入和敲除。发表在《自然· 方法学》杂志上的这一论文表明,CRISPR的脱靶效应可能远超人们此前的估计。 /p p   CRISPR基因编辑技术因其快速和高精准等特点,成为研究基因与疾病关系的热门之选,并因其能敲入新基因、敲除或修复受损基因,为基因疗法带来了更大希望。但最新论文共同作者、哥伦比亚大学医学中心病理学和细胞生物学副教授斯蒂芬· 曾认为,随着临床试验的相继展开,科学界是时候慎重考虑CRISPR技术脱靶效应的潜在风险了。 /p p   之前对CRISPR脱靶效应的研究,主要通过计算机模型先识别最可能受到影响的非靶标区,再详细研究这些位点是否发生过基因敲入或敲除现象,但这些研究只能对培养皿的细胞或组织展开,而斯蒂芬团队首次通过全基因组测序对活体动物内CRISPR技术的全部脱靶效应进行了研究。 /p p   他们对两只经过CRISPR基因编辑的小鼠进行了全基因组测序,并与未编辑小鼠进行对照后发现,虽然CRISPR成功修复了导致小鼠失明的基因,但这两只小鼠基因组内不但出现了1500多种单核苷酸突变,而且其100多种非编码区内还出现了基因敲入和敲除现象,而这些变异都是之前计算机模拟未发现的脱靶效应。 /p p   斯蒂芬表示,如果不用全基因组测序方法,研究人员就会“忽略”这些具有潜在威胁的突变,而其实哪怕只出现一种单核苷酸变异,也有可能造成致癌性等严重副作用。他指出:“希望其他团队利用我们的方法对CRISPR的脱靶效应进行研究,不断改进CRISPR系统,进一步提高其精确性和安全性。” /p
  • 早报:RNA编辑为精确癌症治疗带来新希望
    这一研究成果公布在Cancer Cell杂志上,由MD安德森癌症中心生物信息学和计算生物学副教授梁晗博士以及Gordon Mills博士领导完成,梁晗博士研究组研究兴趣包括开发生物信息学工具,更好地分析癌症基因组数据,泛癌症基因组分析,RNA编辑和癌细胞的进化过程。 此前,梁晗博士研究组通过调查13种癌症类型,在分子水平上认识了性别对不同癌症的影响,也从一个方面指出了性别特异性治疗的需要。(从癌症基因组中寻找性别差异) 在最xin这项研究中,梁晗等人发现了一种特定类型的RNA编辑方法:A-to-I RNA编辑在癌细胞蛋白质变异过程中扮演了关键角色。 RNA编辑是RNA分子遗传信息发生改变的过程。之前科学家认为这个过程在人类和其他脊椎动物中很罕见,现在的研究表明RNA编辑在人类基因组中广泛存在。 由于癌症可能源自极其不同的蛋白质类型和突变,因此针对每位患者的个体化治疗需要有对蛋白质“基因组”更好的理解,后者也就是蛋白质组学了。了解促成蛋白质变异和多样性的分子机制是当今癌症研究的一个关键问题,在癌症治疗方面具有重要的临床应用。 梁晗博士表示,“利用来自癌症基因组图谱和美国国家癌症研究所临床蛋白质组肿瘤分析联盟的数据,我们的这项研究提出了许多直接证据,证明A-to-I RNA编辑是癌细胞中蛋白质组多样性的来源,因此,RNA编辑是一种理解癌症分子机制,研发精确癌症治疗的一种新模式。” “如果一种蛋白质只在肿瘤蛋白质中被高度编辑,而正常蛋白质不被高度编辑,那么就有可能被设计成为抑制编辑突变蛋白的特殊药物。” 很早之前,科学家们就知道A-to-I RNA编辑能帮助细胞调整RNA分子,从而产生能改变DNA“说明书”的核苷酸序列,这会影响蛋白质如何产生以及它们如何在细胞内组装。 在最xin研究中,研究人员发现了A-to-I RNA编辑如何通过改变氨基酸序列来促进乳腺癌蛋白质出现多样性的分子机制:一种称为衣被蛋白亚单位α(COPA)的蛋白质,在A-to-I RNA编辑后,能在体外增加了癌细胞增殖,迁移和侵袭的风险。
  • “基因编辑”新突破能对抗恶性肿瘤?
    【英国《独立报》网站7月27日报道】题:科学家宣布用DNA编辑技术Crispr对抗致命疾病有突破性进展  一项极其精确地“编辑”人类基因组的革命性技术,首次被用于“剪贴”一种关键类型的免疫细胞的基因。该型免疫细胞参与保护机体免受从糖尿病、艾滋病病毒到癌症等范围广泛的一系列疾病的侵害。  科学家相信,这一新进展最终能够带来对抗病毒感染和恶性肿瘤的新方法。  研究人员首先在实验室中对免疫系统的T细胞进行“基因编辑”,然后把它们放回患者体内来预防疾病。  医疗研究人员多年来一直尝试对血液中的T细胞进行精确的基因治疗。T细胞参与防范病菌入侵和癌症,以及免疫系统攻击机体自身组织的自体免疫性疾病,比如I型糖尿病等。  牵头进行这项最新研究的美国加利福尼亚大学旧金山分校的亚历山大弗朗西斯科说,此前,研究人员在切除突变,然后准确地用健康DNA链取而代之的技术上一直未能取得成功。
  • 沃特世超高效合相色谱获匹兹堡编辑金奖
    UPC2技术架起了联接LC与GC的桥梁,为实验室解决复杂分析问题提供了一种新选择奥兰多,福罗里达州沃特世公司(WAT:NYSE)的新产品沃特世ACQUITY UPC2™ (ACQUITY 超高效合相色谱)系统,今天在2012年分析化学和应用光谱学匹兹堡会议上荣膺最佳新产品,获得了颇具声誉的2012匹兹堡编辑金奖。ACQUITY UPC2系统运用了超高效合相色谱(UPC2)的原理扩展了反相液相色谱法(LC)和气相色谱法(GC)分离的界限,提供了一种能够补充正相色谱的选择。沃特世的ACQUITY UPC2系统成为一种新型的分析系统,为科研人员解决疏水性和手性化合物、脂类、热不稳定的样品和聚合物等难分析化合物提供了一种不可或缺的工具。沃特世公司总裁Art Caputo致辞说:“我们谨代表沃特世公司遍布全世界的所有员工,最诚挚地感谢匹兹堡大会的编辑们对全新ACQUITY UPC2系统,及其为分离科学带来的新范畴的认可。”“自从61年前成立以来,匹兹堡大会就已经跻身于重要年会的行列,科研人员借此之际了解能够帮助他们加快研发速度、揭示全新真相,以及进一步推动科学发展的最新实验室科技发展。2004年匹兹堡大会的编辑们授予了ACQUITY UltraPerformance LC® (UPLC® )最佳金奖。从此之后,全世界数以千计的知名实验室采用了ACQUITY UPLC系统,从而改变了色谱分析的模式和影响。我们坚信,ACQUITY超高效合相色谱在LC和GC技术之间架起了一座桥梁,因此她具备同样的潜质——很显然,知名的科学编辑们也同意这一点。”控制压缩的CO2拓宽了分离的选择压缩二氧化碳是UPC2的主要流动相,比过去液相色谱的液体流动相和气相色谱的载气有很多突出优势。一方面,二氧化碳单独使用或与其他助溶剂混合,都是低粘度的流动相,和液相色谱的液体相比,能够获得较高的扩散率,并有利于传质。另一方面,和气相色谱相比,二氧化碳是一种可以在较低温度进行分离的流动相。科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。配以业界领先的亚2微米颗粒色谱柱,沃特世的ACQUITY UPC2系统使得科学家能够更加精确地改变流动相的强度、系统压力和温度。从而调整出系统的分离度和选择性,科学家分离、检测和定量结构类似物、异构体、对映体和非对映异构体混合物时,能够更好的控制分析物的保留——这些化合物以任何其他方法分离通常都是困难的。沃特世的ACQUITY UPC2系统一个主要优势就是使用廉价、无毒的压缩二氧化碳作为主要流动相,代替了购买和处理昂贵的有毒、挥发性的有机溶剂。ACQUITY UPC2系统是沃特世公司高品质产品设计与研发经验悠久历史的结晶,它体现了沃特世品牌的耐用性、可靠性和易用性。它的主要特点包括: 10微升的固定进样环可实现所载样品进行体积为0.5微升至10微升的部分进样,消除了更换进样环的需求。 减少了系统容积,可以缩短运行时间、优化梯度性能、减小带宽,使用更小粒径的色谱柱。 助溶剂和色谱柱切换功能,可以快速地筛选溶剂和色谱柱,提高了方法开发的灵活性。 梯度的准确性与精确性保证了保留时间的重现性。 改善了光学检测和MS的兼容性,可以进行定量和定性分析。 由于其具有溶剂载量少、分离度高、峰形窄、分离速度快等特点,因此也可以作为MS的完美接口。无论您需要对天然产物、传统药物、药品、食品添加剂或污染物、杀虫剂、表面活性剂、聚合添加剂、脂质或生物燃料进行分析,沃特世ACQUITY UPC2系统都能呈现给您无与伦比的分离性能和峰形。与所有以ACQUITY为基础的产品一样,ACQUITY UPC2系统将沃特世在化学行业领先的信息软件以及专家支持方面最大化的优势。目前,ACQUITY UPC2系统已经与LC和GC并驾齐驱,成为实验室应对极其困难分离问题的有力武器。了解更多信息:www.waters.com/upc2关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 医学领域是否为临床CRISPR基因编辑的到来做好了准备?
    医学领域是否为临床crispr基因编辑的到来做好了准备? crispr-cas9能够以多个重要的方式来潜在地转化医学,首先该技术能够帮助科学家们对多种哺乳动物机体中的基因进行“裁剪”来产生用于研究人类健康和疾病发生的模型,此前科学家仅能够在小鼠机体中使用该技术,但基因编辑技术使得他们能够更加精准地修饰几乎所有哺乳动物机体的基因组。由于猪的心脏或者猴子的大脑更类似于人类机体中相应的器官,这或许就能够帮助研究者通过研究来理解心脏病和多种精神疾病发生背后的遗传基础和分子机制,但这往往也是具有一定的争议性,因为很多人反对对灵长类动物进行实验操作。基因编辑影响医学进展的另一种方式就是通过促进对人类细胞生理学和病理学过程的研究,利用基因编辑技术在体外准确地操作人类细胞的基因组,就能够帮助我们鉴别出参与参与正常人类生理学过程以及多种人类疾病发生的关键基因,笔者在他最近新出版的一本名为“redesigning life: how genome editing will transform the world”的书中探讨了crispr-cas9基因编辑技术的应用和转化。当然一项让科学家们非常感兴趣的发展就是基因编辑技术和干细胞技术的合集,多潜能干细胞(pluripotent stem cells)有潜力发育为任何类型的细胞,其能够以胚胎干细胞(es)的方式从人类胚胎中分离出来,或者通过激活成体细胞的特殊基因来产生诱导多能干细胞(ipscs)。 近日有科学家诱导胚胎干细胞和诱导多能干细胞使其发育成为类器官,类器官是一种类似机体组织的结构,比如类似于机体眼睛、肠道、肾脏、胰腺、前列腺、肺部、乳腺,甚至大脑等组织,而基因编辑技术就使得科学家们对类器官操作成为了可能,这就能够帮助研究者更加深入地理解人类胚胎发育的奥秘,并且也能够帮助研究者开发研究疾病的模型以及药物筛选平台。来自威斯康星大学麦迪逊分校的研究人员su-chun zhang今年夏天就在一份声明中指出,人类干细胞和基因编辑技术联姻将能够给科学界带来革命性的变革;而来自加利福尼亚大学的科学界pablo ross带领的研究团队通过研究则发现,利用crispr-cas9技术就能够对猪胚胎进行编辑从而使猪长出胰腺。将人类诱导多能干细胞注入胚胎中就能够促进这种初步人类胰腺组织的生长,ross告诉bbc,我们希望这种猪的胚胎能够正常发育,但胰腺几乎完全由人类细胞产生,而且其也能够很好地应用于患者的胰腺移植。 对干细胞进行工程化操作来产生能够用作器官移植的人类器官是基因编辑的一个潜在方向,另外一个方向就是利用该技术来纠正隐藏在多种人类疾病背后的遗传缺失;近日就有研究表明,利用基因编辑技术就能够修复编码肌营养不良蛋白和亨廷顿蛋白基因的缺失,而这两种蛋白往往能够诱发杜氏肌营养不良和亨廷顿氏症;基于能够对动物进行成功研究和试验,美国监管机构就为临床试验亮了绿灯,鼓励科学家们利用基因编辑技术来治疗癌症,同时科学家们也考虑利用基于crispr的疗法来治疗一系列的遗传性失明。目前部分crispr应用进入到临床仍然存在一定的争议,当然就有科学家们对于基因疗法的潜在风险展开了激烈地辩论,美国西北大学的生物论理学家laurie zoloth近日就告诉nature杂志,任何在人类中第一次使用的方法我们都必须格外小心,当然科学家们非常关心的问题就是是否基因编辑能够足够准确地靶向作用基因缺失位置,同时还不会产生对基因组其它位置的不利脱靶效应,是否引入人类细胞,比如将诱导多能干细胞引入到猪体内,能够影响宿主的大脑发育或者产生其它副作用,抑或者是在受体动物体内产生脱靶效应;来自斯坦福大学的研究者mildred cho则认为,对动物的研究截止到目前为止仅仅需要进行临床研究即可,当然通常情况下我们都很想为了我们的信仰大干一场。
  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • 2021年度“绿色仪器”揭晓,威立雅获殊荣!
    9月21日,由仪器信息网和我要测网联合举办的“2021年度仪器及检测3i奖颁奖盛典”于北京隆重举行,12项重磅大奖颁发。来自科研院校的院士专家、行业协会/学会领导、著名检测机构和企业代表、国内外知名仪器公司高层领导等汇聚一堂,共享荣誉时刻,见证行业发展。颁奖盛典现场作为3i奖之一的“2021年度科学仪器行业绿色仪器”于盛典期间揭晓,威立雅水处理技术(上海)有限公司“实验室智能中央纯水系统升级款 CENTRA R500/R600”获奖。华测检测认证集团北京有限公司总经理吕小兵为获奖代表颁发了奖杯和证书。颁奖嘉宾与获奖代表合影获奖感言威立雅 实验室智能中央纯水系统升级款 CENTRA R500/R600“绿色说明”:1. 该产品额定功率2KW,同类产品通常需要4KW,与同类仪器相比,显著降低单位时间能耗;2. 水的利用率高达75%,同类产品只有50%左右,显著降低单位时间水耗,且无需冷却水、清洗水等;3. CENTRA R600系统长730mm,深890mm,高1820mm,占地面积不到1平方米,同类产品需要3-4平方米,占用实验室空间明显小于同类产品;4. CENTRA R600系统外壳采用耐酸碱材料,且可回收,和同类产品相比更环保。2021年是中国承诺实现“碳达峰、碳中和”目标元年,“绿色低碳“的理念以前所未有的速度深入各行各业。科学仪器行业是高技术行业,追求技术创新是行业发展的主旋律,而开展性能指标评价是促进技术创新的重要方式之一。随着社会各界环保意识的增加,绿色、低碳、环保,保护人身健康和安全,特别是保护广大从业人员的健康和安全,成为科学仪器企业追求的长远目标之一。2010年,应广大科技工作者和行业、企业人员要求,仪器信息网作为一家科学仪器专业门户网站,本着促进行业健康快速发展的原则发起了“绿色仪器”评选公益性活动。十余年间,共有300余家企业参与到此评选活动过程中,合计申报了近800台仪器,评选出了多届深受广大从业人员欢迎的绿色仪器,为促进科学仪器行业绿色低碳技术发展发挥了重要作用。2021年度,共有22家厂商申报了27台产品。经过本网专业编辑评审组及顾问专家初审,确定12台仪器及设备入围。入围产品经用户调研和专家评审组的严格审核,最终评出1台“2021年度科学仪器行业绿色仪器”。关3i奖“仪器及检测3i奖”,简称“3i奖”(创新innovative、互动interactive、整合integrative),是由信立方旗下网站——仪器信息网和我要测网联合举办,随着科学仪器及检验检测行业的发展需求,应运而生。从2006年创办第1类奖项——优秀新品奖,到2021年底,已设有13类奖项,3i奖不断记录着行业发展路上的熠熠星光。3i奖作为公益奖项,始终秉承着“公正、公平、公开”的原则,依托信立方长期合作的业内权威专家和数千万用户进行评审。经过多年的打造,3i奖已经成为国内外科学仪器及检验检测行业最权威的奖项之一,受到越来越多用户、国内外仪器厂商、检测机构及媒体的关注与重视,部分奖项的获奖名单曾被多个政府部门采信。更多“2021年度仪器及检测3i奖颁奖盛典”详情,请点击【创新、互动、整合三大华美篇章演绎2021年度仪器及检测3i奖盛典】一文查看。
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • RO反渗透系统氯和亚硫酸盐过程控制应用
    RO反渗透系统氯和亚硫酸盐过程控制应用解决方案众所周知,工业生产中会涉及到众多的反渗透(RO)系统,这些系统如果不采用一些氧化剂或者生物杀菌剂,就会极易受到生物污染,从而会导致该系统功能退化和膜的寿命显著下降,所以在这个过程中,一般都会加入氯(Cl2)来消灭大多数的致病微生物。然而,在反渗透(RO)系统中,膜极易受到进水中氯的破坏,这会导致较低的盐排斥率和较差的渗透。用户不得不频繁的更好价格昂贵的RO反渗透膜,以及面对频繁的设备停机。为了保护反渗透(RO)系统,氯的残留必须要维持到一个非常低得浓度,用户在除氯的过程中,一般采用颗粒活性炭(GAC)来消除水中的氯,那么实时监测GAC系统的健康状况,就变得尤为重要,这就需要一个非常灵敏、准确且易于使用的仪器来完成这项任务,但是传统的DPD法或者安培滴定法都存在一定的局限性。 另外,亚硫酸氢钠经常被用于降低进入反渗透系统(RO)中的氯,在这个过程中,亚硫酸氢钠的用量至关重要,因为亚硫酸氢盐会与溶解物发生反应,让水中的氧气导致厌氧生物生长加速,从而迅速污染反渗透(RO)系统。 但是由于氯或次氯酸盐的浓度会随着其年龄的变化而变化,因此获取氯或次氯酸盐的难度很大,这也意味着监测亚硫酸氢盐是困难的。传统的亚硫酸盐分析方法存在着一定的局限性,比如量程,准确性,精确度和易用性。即使不存在氯,过量的亚硫酸氢盐会降低pH值,也会导致ORP读数增加,这样会导致控制系统提示需要加入更多的亚硫酸氢盐,最终产生生物淤积,降低了膜的使用寿命。由此可知,一个灵敏、精确和易用的氯监测和亚硫酸盐检测仪器,对解决用户上述的痛点至关重要,传统的DPD法或者安培滴定法存在量程、精确性和易用性等方面的局限性,因而市场上缺乏可以真正解决用户这些痛点的在线或实验室,亦或者两者相结合的整体解决方案。哈希公司一直致力于对氯参数的分析和研究,在该领域拥有超过60年的技术研究历史,深厚的技术积淀为用户找到了一套切实可行的在线和实验室超低量程氯和亚硫酸盐监测方案提供了可能性。ULR CL17 sc总氯分析仪DR 1300 FL荧光比色计ULR CL17 sc是哈希最新推出的一款超低量程的总氯分析仪,它的量程范围可达0 – 5 PPM,并且检出限可以做到8ppb, 是一款非常灵敏型和准确性的过程仪表,它既可以单独用于过程中超低浓度总氯的检测与控制,也可以配套最新上市的DR 1300 FL荧光比色计,这是一款实验室用途的分析仪,是采用荧光原理来监测RO反渗透系统进水中的超低浓度的总氯、余氯和亚硫酸盐等参数,ULR CL17sc和DR 1300 FL一起组成了哈希在RO反渗透系统中对超低浓度的氯和亚硫酸盐等参数的检测,为保护用户重要的设备和资产,以及过程工艺中精确控氯和加亚硫酸盐提供了科学的决策依据,帮助您降低生产成本,提高运营效率,创造更大价值。END
  • 科研快讯 | MGISEQ-200助力CRISPR基因编辑系统的特异性精准开发
    近日,北京大学神经科学研究所的科学家们在Science Advances 杂志发表了题为Development of a CRISPR-SaCas9 system for projection-and function-specific gene editing in the rat brain的研究论文。该研究基于CRISPR-SaCas9技术,结合腺相关病毒和细胞标记技术,以功能特异性模式实现基因编辑,在实验大鼠的脑中实现了特定记忆的精准删除。在研究中,研究人员对基因编辑靶点和潜在的脱靶位点进行扩增建库并使用基因测序仪MGISEQ-200对扩增产物进行深度测序。测序数据分析结果显示:潜在脱靶位点相对于基因编辑靶点在indel发生率方面至少低两个数量级(图1),同时在单细胞水平上对基因编辑后靶点区域的indel信息进行了验证(图2)。与以往的相关研究报道一致,SaCas9对DNA错配有较高的抗性,在体内能够保证高的靶点特异性。图1 基因编辑靶点和潜在脱靶位点序列及indel发生率图2 基因编辑靶点序列及基因编辑后测序结果展示作为一款小型化的桌面型基因测序仪,MGISEQ-200小巧、灵活,应用广泛,支持基于杂交捕获或多重PCR扩增的靶向测序、小型基因组测序、低深度全基因组测序等多种应用。目前,通过MGISEQ-200获得测序数据并由此展开深入探讨的相关研究已陆续见刊。其中,基于MGISEQ-200深度测序的新冠病毒转录组结构研究于4月份登上了Cell杂志,为全球科学家的后续研究提供参考和依据。小贴士MGISEQ-200已发表文章(精选)[1] 一例基孔肯雅病毒和寨卡病毒混合感染病例的发现.华南预防医学.DOI: 10.13217/j.scjpm.2019.0481[2] Devolopment of a CRISPR-SaCas9 system for projection and function-specific geneediting in the rat brain. Science Advances.DOI: 10.1126/sciadv.aay6687[3] Thearchitecture of SARS-CoV-2 transcriptome. Cell.DOI: 10.1016/j.cell.2020.04.011
  • 盘点基因编辑新利器: 韩春雨发现的NgAgo只是工具库中一员
    Argonaute蛋白模型  CRISPR-Cas9工具让科学家几乎能随意改变基因组。人们称赞它比以往的技术明显更简单、更廉价及更通用。CRISPR-Cas9在全球各地的实验室中大放光彩,并带来了一些医学和基础研究的新应用。  但该技术也有其局限性。美国加州大学圣地亚哥分校生物工程师Prashant Mali指出,它擅长到基因组的一个特定位点,并在那里完成切割。“但有时候你感兴趣的应用还要多一点。”  今年年初,研究人员怀着热情扑向了一种名为NgAgo的新基因编辑系统。这也显示了他们对CRISPR-Cas9存在不满,以及寻找替代方法的强烈动机。哈佛大学医学院遗传学家George Church说:“这暗示了每种新技术是多么的脆弱。”  NgAgo只是不断扩大的基因编辑工具库中的一员。在该工具库中,有些是CRISPR的变体,另一些则为编辑基因组提供了新途径。  迷你版Cas9  或许有一天,CRISPR-Cas9会被用来改写导致遗传疾病的一些基因。但这一系统的组件——Cas9酶和引导其到达目标序列的一段RNA过大,无法填塞到基因治疗最常用病毒的基因组中并将外源遗传物质运送到人类细胞中。  从葡萄球菌中取得的迷你Cas9形式是一种解决方案。它非常小,可以硬塞进当前市场上基因治疗采用的病毒中。去年12月,两个研究小组利用迷你Cas9在小鼠中纠正了导致杜氏肌营养不良的基因。  扩大范围  Cas9不会到处进行切割——某一DNA序列必定存在于切割位点附近。这一要求在许多基因组中很容易得到满足,但对于一些实验来说可能是令人痛苦的限制。研究人员正在寻找一些微生物提供有着不同序列要求的酶,这样便可以扩大能够改造的序列数量。  这样的一种酶Cpf1,可能成为有吸引力的替代品。比Cas9更小的Cpf1有不同的序列要求,且高度特异。另一种叫作C2c2的酶,靶向RNA而非DNA——这一特征有潜力用于研究RNA及利用RNA基因组对抗病毒。  真正的编辑器  许多实验室只利用了CRISPR-Cas9删除基因的一部分,由此破坏其功能。Church说:“人们想将这样的编辑宣布为胜利,但烧掉书的一页并不等于编辑了这本书。”  那些想用一段序列交换另一段序列的研究人员,则面对着一个更艰难的任务。当Cas9切割DNA时,细胞往往会在缝合断裂端时生成一些错误。这可以造成许多研究人员想要的缺失。  想要改写一段DNA序列的研究人员,依赖于可以插入新序列的不同修复信号通路——发生这一过程的频率比容易出错的缝合要低得多。明尼苏达大学植物学家Daniel Voytas说:“每个人都说,未来或能一次编辑多个基因,而我认为:‘我们现在甚至无法高效编辑一个基因。’”  但过去几个月里的一些进展给Voytas带来了希望。在今年4月,研究人员宣布他们让Cas9丧失功能,将其与可将一种DNA碱基转变为另一种DNA碱基的酶连接在了一起。丧失能力的Cas9仍然靶向它的向导RNA指定的序列,但无法进行切割:其连接的酶转变了DNA碱基,最终将此处的C碱基转变成了T碱基。近日,发布在《科学》杂志上的一篇论文报道了类似结果。  Voytas等人希望连接其他使得Cas9丧失功能的酶将生成不同的序列改变。  追逐Argonaute  今年5月,发表在《自然—生物技术》杂志上的一篇论文推出了一个全新的基因编辑系统。研究人员称,他们能够利用一种叫作Argonaute的蛋白无需向导RNA或一段特定的邻近基因组序列,可在预定位点切割DNA。转而他们采用了对应靶区域的一段短DNA序列编程了Argonaute蛋白。  这一研究发现引发了关于CRISPR-Cas9将被取代的兴奋与猜测,但一些实验室迄今为止无法重现这些结果。韩国首尔国立大学基因组工程师Jin-Soo Kim提到,即便如此,来自其他细菌的Argonaute仍有望提供一条前进的道路。  编程一些酶  另一些基因编辑系统也在准备中,尽管有些已徘徊多年。在一个大型细菌研究计划中,Church的实验室并没有触及CRISPR,而是依靠了一种叫作lambda Red的系统,无需向导RNA可以编程lambda Red以改造DNA序列。然而,尽管该实验室已开展了13年的研究,lambda Red还是只能在细菌中起作用。  Church等人表示,实验室也正在致力于开发整合酶和重组酶,用作基因编辑器。 “通过利用酶的多样性,我们可以生成更强大的基因组编辑工具箱。我们必须继续探索这些未知的事物。”
  • 护航“绿色亚运” | 谱育科技助力亚运核心大气超级站守护“亚运蓝”
    金秋十月,杭城丹桂飘香潮涌钱江喜迎盛会,携手同行共创未来近日,第十九届亚运会在杭州隆重闭幕,亚运期间为提升国际形象,为运动健儿创造佳绩提供良好运动环境,谱育科技配合浙江省生态环境监测中心在亚运核心区部署超级站,对影响环境空气质量的关键因子开展全流程观测,助力亚运会顺利召开,为美丽新杭州增添一抹靓丽的“亚运蓝”。位于钱塘江畔的亚运核心超级观测站与开幕式举办场馆杭州奥体中心隔江相望,观测站内汇集国内外顶尖观测仪器,监测因子全、科技手段先进,是集业务监测和科学观测为一体的超级站。谱育科技为亚运期间空气质量监测提供多款监测“利器”,参与此次亚运核心超站加强观测的仪器主要包括甲醛分析仪、光解光谱仪、过氧酰基硝酸酯(PANs)在线监测仪、环境空气含氧类挥发性有机物(OVOCs)自动监测系统、臭氧生成速率(OPR)连续监测系统和二氧化氮分析仪(CAPS)等。其中,谱育科技自主研发的OVOCs(EXPEC 2200)和OPR (EXPEC 2620)自动监测系统为首次在重大赛事保障活动亮相,并且实时精准提供的臭氧生成率以及含氧类挥发性有机物(氧化性因子)的监测数据。专家团队综合参考臭氧生成速率、大气氧化性以及气象条件等因素,创建了一套新型的臭氧污染成因分析与预警预报体系与机制。在观测期间该体系多次精准实现了臭氧超标预警,并且还深入探究了OVOCs对大气氧化性和臭氧生成贡献,助力臭氧污染研判与管控,为保障“亚运蓝“提供了新依据、新思路。近年来,科学研究表明“大气氧化性”的监测是臭氧污染防治的关键,其中OVOCs的 “自由基放大效应”能进一步增强大气氧化性,促成二次污染物(如臭氧)的产生。因此,加强大气氧化性和OVOCs监测能力是下一步开展臭氧成因分析和污染预警管控的重点。- 臭氧污染精准防控体系技术路线 -通过环境空气含氧类挥发性有机物(OVOCs)自动监测系统、臭氧生成速率(OPR)连续监测系统大幅度提升了光化学网络的监测能力,形成了一整套全新的臭氧污染精准防控的解决方案。该解决方案对光化学污染的全流程实施监测,包含前体物监测,过程因子监测,氧化性监测与光化学产物监测,有效帮助实施对光化学污染过程机制研究,臭氧来源解析,臭氧传输分析和臭氧预警管控。未来,谱育科技将继续助力构建打造高质量和现代化臭氧污染成因分析和预警管控体系,为进一步推动我国大气环境空气质量改善提供强有力的科技支撑。
  • 护航“绿色亚运” | 聚光科技助力亚运核心大气超级站守护“亚运蓝”
    近日,第十九届亚运会在杭州圆满闭幕,恭喜中国运动健儿取得优异的成绩。亚运会期间,为提升国际形象,打造良好的运动环境,聚光科技配合浙江省生态环境监测中心在亚运核心区部署超级站,对影响环境空气质量的关键因子开展全流程观测,助力亚运会顺利召开,为美丽新杭州增添一抹靓丽的“亚运蓝”。位于钱塘江畔的亚运核心超级观测站与杭州奥体中心隔江相望,观测站内汇集国内外顶尖观测仪器,监测因子全、科技手段先进,是集业务监测和科学观测为一体的超级站。作为分析仪器和大气监测领域的领军企业,聚光科技为亚运期间空气质量监测提供多款监测“利器”,参与此次亚运核心超站加强观测的仪器主要包括甲醛分析仪、光解光谱仪、过氧酰基硝酸酯(PANs)在线监测仪、环境空气含氧类挥发性有机物(OVOCs)自动监测系统、臭氧生成速率(OPR)连续监测系统和二氧化氮分析仪(CAPS)等。其中聚光科技自主研发的行业首台套 OVOCs(EXPEC 2200)和OPR (EXPEC 2620)自动监测系统为首次在重大赛事保障活动亮相,并且实时精准提供的臭氧生成率以及含氧类挥发性有机物(氧化性因子)的监测数据。专家团队综合参考臭氧生成速率、大气氧化性以及气象条件等因素,创建了一套新型的臭氧污染成因分析与预警预报体系与机制。在观测期间该体系多次精准实现了臭氧超标预警,并且还深入探究了OVOCs对大气氧化性和臭氧生成贡献。助力臭氧污染研判与管控,为保障“亚运蓝“提供了新依据、新思路。近年来,科学研究表明“大气氧化性”的监测是臭氧污染防治的关键,其中OVOCs的 “自由基放大效应”能进一步增强大气氧化性,促成二次污染物(如臭氧)的产生。因此,加强大气氧化性和OVOCs监测能力是下一步开展臭氧成因分析和污染预警管控的重点。通过环境空气含氧类挥发性有机物(OVOCs)自动监测系统、臭氧生成速率(OPR)连续监测系统大幅度提升了光化学网络的监测能力,形成了一整套全新的臭氧污染精准防控的解决方案。该解决方案对光化学污染的全流程实施监测,包含前体物监测,过程因子监测,氧化性监测与光化学产物监测。有效帮助实施对光化学污染过程机制研究,臭氧来源解析,臭氧传输分析和臭氧预警管控。 臭氧污染精准防控体系技术路线未来,聚光科技将继续助力构建打造高质量和现代化臭氧污染成因分析和预警管控体系,为进一步推动我国大气环境空气质量改善提供强有力的科技支撑。
  • 2016国家自然基金项目揭晓 基因编辑“揽金”超3200万!
    8月17日,备受瞩目的2016年度国家自然科学基金项目评审结果揭开面纱。37409个项目获资助,金额超过183亿元,其中,生命科学部获资助累计金额超过28亿元。那么,目前生物科学领域最火爆的CRISPR技术收获又如何呢?   37409个项目获资助 上海交大折桂  国家自然科学基金委员会官网通告显示,2016年3月1日至3月20日项目申请集中接收期间,共接收项目申请172843项,经初步审查受理169832 项。根据《国家自然科学基金条例》和国家自然科学基金相关类型项目管理办法的规定,以及专家评审意见,决定资助面上项目、重点项目等十类项目共计 37409项。具体分布如下:  依托单位科学基金管理人员及申请人可于8月17日后登录科学基金网络信息系统(https://isisn.nsfc.gov.cn)查询相关申请项目评审结果。自然科学基金委将向相关依托单位寄发纸质批准资助项目通知,并以电子邮件形式向申请人发送申请项目批准资助通知、不予资助通知及专家评审意见。  今年上海交通大学依然遥遥领先,拟资助项目共计901项,批准总金额高达5.08亿元,较去年增长超过2000万元。从获资助总金额来看,浙江大学紧随上海交通大学,批准总金额总计4.58亿元。排在第3位的北京大学获资助总金额为4.21亿元。从拟资助项数项目数量来看,上海交通大学与浙江大学依然是“冠亚军”,获得“季军”的是中山大学。  生命科学部获资助超28亿 CRISPR超3200万  在所有项目中,与我们密切相关的生命科学部获资助项目有5800多项,累计金额超过28亿元。这些项目来自免疫学、细胞生物学、遗传学与生物信息学等多个学科,涉及了干细胞、细胞治疗、基因治疗、基因编辑、微生物等若干热门细分领域。  据不完全统计,2015年,获资助的CRISPR技术相关项目近60项,较 2014年明显增长 获批总金额超过了3100万元 ,是2014年的2倍多。那么,今年CRISPR技术“收获”如何呢?  数据显示,2016年获资助的CRISPR技术相关项目共计80个,总金额超过3200万元。其中,获批金额最高的项目是复旦大学李华伟教授主导的“腺相关病毒介导的CRISPR/Cas9基因组定点编辑技术对遗传性耳聋的基因治疗研究”,资助金额高达240万元。 基因编辑领域 中国科学家正在崛起  值得注意的是,今年获批的项目中,除了大多数与最早发现的CRISPR/Cas9系统相关,还有关于新基因编辑系统CRISPR/Cpf1的项目。这一系统最早由Broad研究所的CRISPR先驱张锋提出,相关成果于2015年发表在Cell杂志上。此后,来自各国的科学家们对这一系统的结构进行了进一步的解析。  今年4月,哈尔滨工业大学生命学院黄志伟教授及其团队在Nature上发表了题为“The crystal structure of Cpf1 in complex with CRISPR RNA”重要成果,首次揭示了CRISPR-Cpf1识别crRNA的复合物结构,对认识细菌如何通过CRISPR系统抵抗病毒入侵的分子机理具有十分重要的科学意义。  近几年,基因编辑技术飞速发展,我国科学家也在这一领域开展了积极的研究。第一个CRISPR编辑猴子、河北科技大学韩春雨教授的新基因编辑工具NgAgo系统、华西医院全球首个CRISPR人体试验,这些成果和尝试都引发了全球科学界的关注。我们期待,在这些项目资金的支持下,我国科学家在基因编辑领域能够取得更多的进展。今年获资助的部分CRISPR技术相关的项目
  • 美法科学家基因编辑技术获2017“日本国际奖”
    日本国际科学技术财团2日在东京宣布,今年的“日本国际奖”授予美国、法国和以色列的3名科学家,以表彰他们在基因编辑和网络安全领域的贡献。  获得今年生命科学领域“日本国际奖”的有2名科学家,分别是美国加利福尼亚大学伯克利分校教授珍妮弗道德纳和在德国马克斯普朗克感染生物学研究所工作的法籍科学家埃玛纽埃勒沙尔庞捷。获得电子、信息、通信领域“日本国际奖”的是以色列魏茨曼科学研究所教授阿迪沙米尔。  道德纳和沙尔庞捷的获奖理由是2012年发明了新的基因编辑技术“CRISPR-Cas9系统”。这一技术比以往的基因编辑方法更加简便、高效和低成本,对于任何生物的目标DNA都可以进行任意部位的切断、剔除、插入和置换等操作,已作为生命科学的研究手段广为应用。  沙米尔教授的获奖理由是“先驱性的加密研究对于信息安全的贡献”。他发明的“RSA算法”等各种加密方法对保护网络个人信息等贡献巨大。  “日本国际奖”由日本国际科学技术财团于1983年设立,1985年首次颁奖,评选范围覆盖几乎所有科技领域,每年对其中两个领域的杰出科学家进行表彰。该奖将于今年4月19日在东京举行颁奖仪式。两个领域的奖金均为5000万日元(约合44万美元)。截至去年,88位“日本国际奖”得主中,有10位获得了诺贝尔奖。
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • “PITTCON2004”编辑奖获奖产品一览
    在本届PITTCON展会上,来自不同专业刊物的十一位编辑经无记名投票,共选出二十二台产品获得评奖提名。而最终赢得金、银、铜奖的四台产品,它们之间的得票率差距均非常微弱,竞争之激烈是近几年罕见的。 最终,布鲁克光谱公司的TPI spectra 1000 太赫(Terahertz)远红外光谱仪和沃特斯公司的ACQUITY 超效液相色谱并列荣获金奖。 来自怀雅特公司的Optilab rEX 示差折光检测器获得银奖;而第一次参加PITTCON展会的Axsun科技有限公司,该公司的NIR-APS 近红外分析仪因其在仪器小型化方面所作出的开创性贡献而荣获铜奖。
  • 国家卫健委、科技部、中国科协、基因编辑国际峰会、NIH回应“基因编辑婴儿”事件
    p   span style=" text-indent: 2em " “基因编辑婴儿”事件一经公布,引起学界和社会广泛关注,特别引发了法律和伦理方面的争议。29日,国家卫生健康委员会、科学技术部、中国科学技术协会、基因编辑国际峰会、NIH、等部门负责人接受采访表示:此次事件性质极其恶劣,已要求有关单位暂停相关人员的科研活动,对违法违规行为坚决予以查处。以下为回应详细内容: /span /p p    span style=" color: rgb(0, 112, 192) " strong 国家卫健委 /strong /span :对违法违规行为坚决予以查处 /p p   国家卫健委高度关注近期有关“免疫艾滋病基因编辑婴儿”的信息,第一时间派出工作组赴当地和当地政府共同认真调查核实。 /p p   国家卫健委副主任曾益新在接受记者采访时表示,我们始终重视和维护人民的健康权益,开展科学研究和医疗活动必须按照有关法律法规和伦理准则进行。 /p p   “目前媒体所报道的情况,严重违反国家法律法规和伦理准则,相关部门和地方正在依法调查,对违法违规行为坚决予以查处。”曾益新说。 /p p   曾益新呼吁,当前科学技术发展迅速,科学研究和应用更要负责任,更要强调遵循技术和伦理规范,维护人民群众健康,维护人类生命尊严。 /p p    span style=" color: rgb(0, 112, 192) " strong 科技部 /strong /span :已要求有关单位暂停相关人员的科研活动 /p p   科技部副部长徐南平在接受记者采访时表示,开展以生殖为目的的人类胚胎基因编辑临床操作在中国是明令禁止的,此次媒体报道的基因编辑婴儿事件,公然违反国家相关法规条例,公然突破学术界伦理底线,令人震惊,不可接受,我们坚决反对。 /p p   徐南平介绍,科技部已要求有关单位暂停相关人员的科研活动。 /p p   “下一步,科技部将在全面客观调查事件真相的基础上,会同有关部门依法依规予以查处。”徐南平说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国科协 /span /strong :取消贺建奎第十五届“中国青年科技奖”参评资格 /p p   日前,中国遗传学会、中国细胞生物学会、中国科协生命科学学会联合体以及一批科技工作者已相继发出严正声明,表明中国科技界的鲜明立场和坚定态度,反对挑战科学伦理的任何言行。 /p p   中国科协党组书记、常务副主席怀进鹏在接受记者采访时表示,此次事件性质极其恶劣,严重损害了中国科技界的形象和利益。我们对涉事人员和机构公然挑战科研伦理底线、亵渎科学精神的做法表示愤慨和强烈谴责。 /p p   “中国科技界坚决捍卫科学精神和科研伦理道德的意志决不改变,坚决捍卫中国政府关于干细胞临床研究法规条例的决心决不改变,坚守科技始终要造福人类、服务社会持续健康发展的初心决不改变。”怀进鹏说。 /p p   据悉,中国科协将进一步加大面向科技界的科研伦理道德的教育力度,以“零容忍”的态度处置严重违背科研道德和伦理的不端行为,取消贺建奎第十五届“中国青年科技奖”参评资格。 /p p   “我们将继续加大在全社会弘扬科学家精神工作力度,为科技创新的持续健康发展和创新型国家建设营造良好的文化和生态环境。”怀进鹏说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国医学科学院的声明 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/6f37ae99-063c-4f6a-b9dc-a1d1156fdcc7.jpg" title=" 医学科学院声明.png" alt=" 医学科学院声明.png" / /p p style=" text-indent: 2em " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 基因编辑国际峰会宣读组委会关于人类基因编辑声明 /strong /p p style=" text-indent: 2em " 声明第一部分 /p p   在2015年12月,美国国家科学院、美国国家医学院、英国皇家学会和中国科学院在美国华盛顿举办了一次国际峰会,峰会上讨论了人类基因编辑的科学、伦理和处理方法的问题。峰会组委会发表了一项声明,明确了能在现有规章和管理协议下进行的研究和临床应用领域。组委会同时强调,对任何可遗传的“生殖系”编辑进行临床使用都是不负责任的。另外,组委会也呼吁,对待这项飞速更新的技术,国际社会应该就它的益处、风险、前景进行更多的交流和讨论。 /p p   以在人类基因组编辑领域促进深刻的国际讨论为己任,香港科学院,英国皇家学会、美国国家科学院及美国国家医学院在香港举办了第二届人类基因组编辑国际峰会,以评估正在持续变化的科学前景、可能发生的临床应用,以及随之而来的、对人类基因组编辑的社会反响。作为第二届峰会的组织委员会,我们一方面为体细胞基因编辑进入临床试验阶段的飞速突破而喝彩,另一方面则继续认为任何将生殖系编辑引入临床应用的举措在目前仍是不负责任的。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " NIH对于贺建奎事件的声明 /span /strong /p p style=" text-indent: 2em " 美国国立健康研究院对贺建奎博士在香港举行的第二届人类基因组编辑国际峰会上刚刚提出的科研工作深表关注,他描述了在人类胚胎中使用CRISPR-Cas9来敲除CCR5基因。他声称这两个被编辑后的胚胎随后被植入母体,并且女婴双胞胎已经出生。这项科研工作表明了贺建奎博士及其团队在研究过程中对国际伦理规范的有意忽视,这种行为是非常令人不安的。该科研项目主要是秘密进行的,在这些婴儿中抑制CCR5基因的必要性完全不能令人信服,知情同意过程似乎也非常值得怀疑,并且破坏脱靶效应的可能性也没有得到充分的考虑和探讨。非常不幸的是,这种强有力的技术首次明显应用于人类生殖细胞系却是如此不负责任。 /p p   目前正在香港进行迫切讨论,是否需要就此类研究的限制制定具有约束力的国际共识。如果没有这种限制,世界将面临大量同样考虑不周和不道德的科研项目带来的严重风险。如果这种史诗般的科学不幸事件继续发生,那么对于预防和治疗疾病具有巨大潜力的技术将会被无可非议的公愤,恐惧和厌恶所掩盖。 /p p   为了避免出现任何疑问,正如我们之前所说,NIH不支持在人类胚胎中使用基因编辑技术。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 贺建奎临时不参与29号的报告 /span /strong br/ /p p style=" text-indent: 2em " span style=" color: rgb(0, 0, 0) " 11月28日晚23点24分左右,基因编辑国际峰会给参会者发送邮件,贺建奎将不会出席29日下午的会议。 /span /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/033e75d9-33a9-46a0-ab95-6d300d4d9414.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 289" height=" 510" style=" width: 289px height: 510px " / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9058cbad-060e-458d-a820-90023ee6d8be.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Science将基因编辑宝宝剔出2018年重大突破的评选 /span /strong /p p style=" text-indent: 2em " 2018年11月28日上午,Science评选了2018年重大突破的科研进展。基因编辑“中国宝宝& #39 强势入围,这也是众多参选的一匹大黑马。此消息一出,也是引来众多舆论,一时间满城风雨。11月29号上午,Science也悄悄把基因编辑宝宝剔出2018年重大突破的评选活动,并附上一则说明:“我们最初把基因编辑婴儿列为候选名单 现在我们删除了它,以避免给人一种错误的印象,认为Science杂志认可了这一有悖道德科学研究工作。” /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/ef1b2618-c7c0-4cc1-b9ba-4b8028c8b166.jpg" title=" 3.jpg" alt=" 3.jpg" / span style=" text-indent: 2em " /span /p
  • 杭州亚运会精彩闭幕,宝怡环境助力绿色亚运完美收官
    10月8日,第19届亚运会在杭州奥体中心主体育场精彩闭幕。来自亚洲45个国家(地区)的运动员与现场观众一起在欢歌笑语中与杭州告别。宝怡环境为亚运会水上赛场——富阳水上运动中心提供的藻类监测保障服务也正式结束。 金秋九月,第19届亚运会在杭州盛大开幕,其中亚运会赛艇和皮划艇项目在最美亚运水上场馆-富阳水上运动中心举行。富阳水上运动中心位于杭州富阳区北支江南岸、东洲街道华墅沙村,与黄公望隐居地隔江相望,是现代版富春山居图东洲画卷样板的核心工程。这里见证了亚运会第一枚金牌的诞生,优美的环境、漂亮的赛道、完善的服务收获了运动员和国际友人的称赞。国际皮划艇联合会主席托马斯&bull 科涅茨科表示明年将在此举办首届国际皮划艇“超级杯”。 这次藻类监测任务是宝怡环境首次服务大型国际赛事,对于宝怡环境来说既是一场服务能力的考验,也是一次展示技术实力的机会,公司非常重视这项工作。为了做好赛场水域环境安全保障,公司调配多名技术工程师提前赶赴杭州富阳,围绕水上运动中心水域开展监测工作,全力以赴为水上赛场提供高效、精细地保障服务。皮划艇赛事分为皮划艇静水和皮划艇激流回旋两种,对水质要求非常高,需要时刻关注水中浮游植物的情况。这个季节的杭州,秋老虎还在发威,赛事期间的温度非常适合水华生长,这为监测工作增加了难度,也提出了更严格的要求,容不得一丝疏忽和懈怠。 运动健儿们在赛场驰骋,技术工程师们在场外奔波。从开幕前到闭幕后,从清晨到傍晚,近一个月的时间里,技术团队每天辗转10多个监测点,包括后江线、村北路、大后线、中桥路、东望路、江滨东大道、公望绿道、东洲大桥等,全程恪尽职守、精益求精,时刻保障亚运会赛场水域安全。宝怡环境团队展现出优秀的服务品质、严格谨慎的工作态度,精准及时的高效执行,为赛事顺利举办发挥了技术力量。 此次监测服务期间,工作人员使用的监测仪器是野外藻类分析仪。这款仪器适用于野外现场对水体中藻类生物量(叶绿素a)进行快速定量分析以及对各门类藻进行快速定性定量分析的高灵敏度藻分类检测设备,仪器自带充电电池,无需任何化学试剂,也无需对样品进行预处理,开机仅需20S的预热时间。野外藻类分析非常适合大型赛事临时、应急的监测工作需求,快速检测、快速分析,监测数据精准度高,无需大量人力,通过岸边监测和水上剖面监测即可获得水体的藻类生长情况,提前预测预警水质风险。 杭州亚运会虽已闭幕,精彩仍将继续。宝怡环境在践行绿色低碳、节能环保的征程中,将不断提高技术创新水平,持续用数字科技赋能智慧环保,携手合作伙伴们共同助力建设美丽中国。
  • 一图解读:基因编辑原来如此
    p   11月26日,来自深圳的科学家贺建奎宣布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。由于这对双胞胎的一个基因被编辑,她们出生后即能抵抗艾滋病。不过,“基因编辑婴儿”一事宣布后引来多方质疑,质疑的内容集中于该项研究涉及的伦理问题、必要性和安全性。 /p p    strong 截至目前各关联方回应汇总: /strong /p p   原稿《世界首例免疫艾滋病的基因编辑婴儿在中国诞生》:文章已检索不到 /p p   深圳和美妇儿科医院:没做过此项目 /p p   深圳医学伦理委:试验未经医学伦理报备,已启动事件调查 /p p   伦理审查文件“签字”者:不知情、未参会、没签字 /p p   南方科技大学:贺建奎已停薪留职,该研究未向学校报告。据中青报调查,贺建奎企业有南科大股份,临床试验获注册 /p p   超百位科学家联合声明:危害不可估量,强烈谴责 /p p   国家卫健委:高度重视,立即要求广东省卫生健康委认真调查核实。 /p p   贺建奎在一段团队视频中曾回应争议:我知道会有争议,但我愿意为有需要的家庭接受指责。 /p p   两家专业学会(中国遗传学会基因编辑研究分会和中国细胞生物学会干细胞生物学分会)联合发声:对这一严重违反中国现行的法律法规,违背医学伦理和有效知情同意的违规临床应用表示强烈反对并予以严厉谴责。 /p p    strong 一图解读:基因编辑原来如此 /strong /p p   虽然事件本身在网络上引起热烈讨论,但很多网友对基因编辑的原理或许并不熟悉。基因编辑抵抗艾滋病究竟是如何实现的?为什么伦理问题如此受到关注?在遥远的未来,基因编辑能为人类的生活作出贡献吗?看完下面这张图,你就了解了。 /p p style=" text-align: center " img width=" 468" height=" 1400" title=" 111.webp.jpg" style=" width: 521px height: 1403px " src=" https://img1.17img.cn/17img/images/201811/uepic/c5a8ccbb-19d5-49d8-a7d1-d69ca702b9b7.jpg" / /p p style=" text-align: center " img width=" 599" height=" 983" title=" 640.webp.jpg" style=" width: 520px height: 978px " src=" https://img1.17img.cn/17img/images/201811/uepic/3f3032f4-7a98-4b8b-9f60-55ad3e845a88.jpg" / /p p style=" text-align: center " img title=" 2222222222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e4110a92-2f64-44a1-88c5-ac78c97c7ad8.jpg" / /p p   实际上,目前人类对于基因的了解还很有限,没有几种人类疾病可以清晰明了地归咎于某一种基因。多数情况下,疾病通常是由两个或多个基因相互耦合的结果。未来,基因编辑需要探索与挑战的东西,还有很多。 /p p style=" text-align: center " /p p style=" text-align: center " /p p /p
  • 2015技术展望之基因组编辑
    规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,原本是细菌抵御病毒的重要武器,现在这一组合已经成为了最热门的基因组编辑利器。   2014年基因组编辑热潮在持续发酵,CRISPR/Cas9仍旧是最引人注目的话题之一,相关论文被大量下载和引用。纵观CRISPR/Cas9的发展我们可以看到,科学家们仍在追求最理想的基因组工程技术,而2015很有可能会成为基因组工程年。   这里我们不妨大胆预测一下,明年基因组工程领域会起那些波澜:   1. 大规模CRISPR/Cas9。2013年,麻省理工的CRISPR技术先驱张锋(Feng Zhang)和同事为我们展示了CRISPR/Cas9进行多重基因组编辑的能力。相信在2015年大规模CRISPR/Cas9全基因组操作将越来越多,同时新多重基因组编辑法会大量涌现,还很可能会出现大型的引导RNA数据库。在这样的趋势下,每个人都能在自己的基因组工程研究中用上CRISPR/Cas9。   2. CRISPR对簿公堂。2015年将有更多公司提供以CRISPR为基础的实验工具,基于CRISPR的药物也将离我们越来越近。在这种情况下,基础研究领域可能会迎来历史上最大的专利诉讼。目前有三个团队都宣称自己享有CRISPR/Cas9技术的部分专利权,他们很可能最终会对簿公堂,而专利权的归属将决定CRISPR/Cas9日后的命运。   3.用细胞来记录生命。假如细胞能将自己发生的所有事情记录下来,我们将会读到些什么呢?2014年Timothy K. Lu和Fahim Farzadfard在Science杂志上发表了一项令人振奋的成果。他们通过合成生物学技术,将细胞事件的模拟记忆编码在活细胞DNA中。虽然这类研究还处于早期阶段,但随着研究者们不断突破细胞工程的极限,我们期待在2015年看到更多的进展和应用。   当然了以上都只是我们的推测,基因组工程领域其实是很难预测的,因为相关技术发展得非常之快。你看,短短两三年CRISPR/Cas9系统就走了这么远。这些基因工程领域的预测是否过于保守,就让我们拭目以待吧。
  • 人类胚胎基因编辑实验首获许可
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 2月1日,英国人工授精与胚胎学管理局(HFEA)首次批准了“在人类胚胎上使用基因编辑技术”的实验。研究人员将能深入了解健康的人类胚胎发育过程中出现的各种变化,并在此基础上改善体外人工授精培养的胚胎的发育质量,为不孕患者提供更好的治疗方法。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据物理学家组织网报道,HFEA在一份声明中称,“我们的伦理委员会已经批准伦敦弗兰西斯· 克里克研究所凯茜博士更新其实验室有关研究的许可证,包括胚胎的基因编辑。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜花了数十年时间研究人类胚胎的发育过程,试图去了解最开始的那7天:一个受精卵如何发育成包含200到300个细胞囊胚。她说:“这些研究如此重要的原因是,流产和不孕非常常见,但具体原因尚不清楚。弄清楚这一过程中究竟发生了什么及哪里出了错,将对人类生命早期发展有更深入了解,或将提高体外受精成功率。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜博士打算使用CRISPR/Cas9技术对人类胚胎进行编辑,以减少研究中所需要的胚胎数量。CRISPR技术已经被证实比同类方法更加高效,她相信其团队能够使用该技术成功编辑10个胚胎中的8个。其研究使用的是生育诊所中体外受精后剩下的、捐赠于科学研究的人类胚胎。在经过研究后,这些胚胎会发育到7日后被销毁。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 此举可能会再度引发伦理问题,因为从去年4月开始,基因编辑人类胚胎在全球科学界就引起很大争议。爱丁堡大学动物生物技术教授布鲁斯· 怀特洛说,该项目应该可以“帮助不孕夫妇和减少流产的痛苦”。这所大学人口健康科学信息研究所的莎拉· 陈(音译)则指出,这项研究“触及到一些敏感性问题,因此,HFEA应仔细考虑到研究中的伦理问题。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 总编辑圈点 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 去年,中山大学科学家利用CRISPR技术,修改了几个胚胎的地中海贫血基因,引发广泛关注,成为去年最大科学事件之一。CRISPR这一利器用于人类,引发伦理争议,看来是无可避免了。科学家在何种情况下能被允许操作人类胚胎,还会有长期的讨论交锋。但就像干细胞研究显示的,即使胚胎实验受阻,仍会有别的办法推进基因编辑技术在人体应用。 /p p br/ /p
  • 国内首个基因编辑疗法临床试验申请获受理,治疗β 地中海贫血
    p style=" text-indent: 2em " 10月27日,记者从国内基因编辑领域先锋博雅辑因(EdiGene, Inc.)获悉,公司当天宣布中国国家药品监督管理局药品审评中心已经受理其针对输血依赖型β地中海贫血的基因编辑疗法产品ET-01(受理号:CXSL2000299),即CRISPR/Cas9基因修饰BCL11A红系增强子的自体CD34+造血干祖细胞注射液的临床试验申请。 /p p style=" text-indent: 2em " 这是中国首个获药品审评中心受理的基因编辑疗法临床试验申请。据介绍,此项临床试验计划在输血依赖型β地中海贫血患者中评价ET-01单次移植的安全性和有效性。 /p p style=" text-indent: 2em " ET-01,即CRISPR/Cas9基因修饰BCL11A红系增强子的自体CD34+造血干祖细胞注射液,是处于研究阶段的、用于治疗输血依赖型β地中海贫血的产品。ET-01原液通过采集患者自体动员外周血单个核细胞,富集CD34+细胞群后用CRISPR/Cas9系统编辑BCL11A基因的红系增强子制成。 /p p style=" text-indent: 2em " 此前的2018年,博雅辑因在广州南沙区建立了cGMP标准的基因编辑临床转化应用基地,并于2019年在第61届美国血液学年会(ASH)上发布了ET-01规模化生产及临床前安全性和有效性实验数据。 /p p style=" text-indent: 2em " 地中海贫血是指一组由珠蛋白基因缺失或点突变致使珠蛋白肽链合成被部分或完全抑制的遗传性溶血性贫血疾病。临床上,最常见的为α地中海贫血和β地中海贫血,由组成正常成年人的血红蛋白(HbA, α2β2)的两种多肽链(α或β)之一减少导致。 /p p style=" text-indent: 2em " 据2015年《中国地中海贫血蓝皮书》,中国地中海贫血病基因携带者高达3000万人,中重型地中海贫血病患者达30万人。β地贫患儿出生后病情进行性加重,除贫血症状外,易并发脾肿大、发育落后及免疫力低下导致的多器官功能受损50%重型地贫患者5岁之前夭折,如不进行有效治疗,很少能活过20岁。 /p p style=" text-indent: 2em " “我们非常高兴看到公司取得这一重要里程碑,继续将ET-01向临床试验阶段推进。”博雅辑因首席执行官魏东博士表示,“我们一直致力于将前沿的基因编辑技术转化为变革性疗法,为患者带去更优的治疗选择,并为一些疾病的患者带去一次性治愈的可能。我们期待ET-01的临床试验获得许可开展的时刻,更期望我们的产品能够真正改变患者的生活,帮助他们活得更健康长久。” /p p style=" text-indent: 2em " 值得注意的是,自2013年以来,基因编辑领域持续火热。埃马纽埃尔· 卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗· 杜德纳(Jennifer A. Doudna)两位CRISPR基因编辑系统的开发者也最终摘得今年的诺贝尔化学奖。 /p p style=" text-indent: 2em " 仅在过去的一年半中,就至少有11项基因编辑研发项目在美国、欧盟进入临床开发阶段,其中有6项基于CRISPR基因编辑系统。而在地中海贫血治疗方面,2018年,生物医药企业CRISPR Therapeutics和美国制药企业福泰制药(Vertex Pharmaceuticals)的CTX001获得了美国和欧洲监管机构的新药研究申请批件,这也是全球首个由制药公司发起的体外CRISPR疗法的新药临床试验,目前处于I/II期临床试验阶段。 /p p style=" text-indent: 2em " 此外,基因编辑技术ZFN的持有者Sangamo Therapeutics公司针对地中海贫血使用ZFN技术针对造血干细胞进行修复,该项目是和赛诺菲子公司Bioverativ合作开发,现在也已经进入I/II期临床研究阶段。 /p p style=" text-indent: 2em " 博雅辑因成立于2015年,总部位于北京,在广州以及美国剑桥设有分公司。官网介绍,博雅辑因是一家致力于通过国际前沿的基因组编辑技术,为多种遗传疾病和癌症加速药物研究以及开发创新疗法的生物医药企业。 /p p style=" text-indent: 2em " 博雅辑因科学创始人为北京大学生命科学学院教授魏文胜。现年51岁的魏文胜出生于江苏,1991年获得北京大学生物化学学士学位,1999年获得密西根州立大学遗传学博士学位,之后赴斯坦福大学医学院从事博士后研究,师从美国科学院院士Stanley Cohen教授。魏文胜还担任北京大学生物医学前沿创新中心(BIOPIC)、北京未来基因诊断高精尖创新中心(ICG)及北大-清华生命科学联合中心(CLS)研究员以及北京大学基因组编辑研究中心主任等多项职务。 /p p style=" text-indent: 2em " 值得一提的是,就在10月13日,博雅辑因宣布了完成4.5亿元人民币的B轮融资。这是国内基因编辑疗法研发企业中截至目前最大金额融资,也是首个B轮融资。2018年8月至今,博雅辑因在过去2年总融资金额达7亿元人民币。 /p p br/ /p
  • 科幻片删除记忆成真了?北大研究团队利用基因编辑做到了精准删除
    p style=" text-indent: 2em text-align: justify " 人生在世,总有一些事是想望却忘不掉的,对常人来说,可能只是徒增苦恼,对于一些精神疾病的人来说,这些记忆就是他们的“病根”。 strong 删除记忆此前是人们想象出来的,出现在科幻片中的行为,但是一只无法实现,但现在,它成真了! /strong br/ /p p style=" text-indent: 2em text-align: justify " 2020年3月18日, strong 北京大学神经科学研究所的伊鸣研究员和万有教授团队在Science子刊Science Advances在线发表题为 Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain(用于大鼠脑中投射和功能特异性基因编辑的 CRISPR-SaCas9 系统的开发)的论文。 /strong 据悉,基于 CRISPR-Cas9 基因编辑技术, strong 研究人员开发出一种 CRISPR-SaCas9 系统,在实验大鼠的脑中实现了特定记忆的精准删除。 /strong /p p style=" text-indent: 2em text-align: justify " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 566px height: 318px " src=" https://img1.17img.cn/17img/images/202003/uepic/95ff1206-e970-46a4-948a-b0a7cdf32dea.jpg" title=" 2e5c86a7cc3e22c.png" alt=" 2e5c86a7cc3e22c.png" width=" 566" height=" 318" / /p p style=" text-indent: 2em text-align: justify " strong 开发 CRISPR-SaCas9 系统 /strong /p p style=" text-indent: 2em text-align: justify " 对特定神经元亚群进行稳定的基因操作具有挑战性,这是摆在科研人员面前的一道难题,也是这项研究的出发点。 /p p style=" text-indent: 2em text-align: justify " 实际上,哺乳动物大脑中的复杂神经元网络,是由不同遗传、形态和功能特征的神经元集合形成的。即便是在同一大脑区域内,神经元集合在解剖学或功能上也并不统一,分为不同的亚群,这便是一种“异质性”。 /p p style=" text-indent: 2em text-align: justify " 这一异质性需要对特定神经元集合进行基因编辑——而且,在特定神经元亚型、回路中进行精确的基因操作,对于确定神经元活动和行为之间的关系是至关重要的。 /p p style=" text-indent: 2em text-align: justify " 不过,在具有特定连接或功能特征的神经元亚群中,特别是在大鼠和非人灵长类动物中,实现稳定的基因敲减(Gene knock-down,指通过降解具有同源序列靶基因的 mRNA 阻止基因表达)或基因修饰并非易事。 /p p style=" text-indent: 2em text-align: justify " 而 CRISPR-Cas9 基因编辑技术为研究人员找到了一个突破口。 /p p style=" text-indent: 2em text-align: justify " CRISPR-Cas9 基因编辑技术,通俗来讲就是,将基因组中的错误位点基因进行“修改”,使人体细胞恢复正常机能。这一技术通过一种名叫 Cas9 的特殊编程的酶发现、切除并取代 DNA 的特定部分,是生物科学领域的游戏规则改变者。 /p p style=" text-indent: 2em text-align: justify " 实际上,有人形象地将& nbsp CRISPR-Cas9 基因编辑技术称为“基因魔剪”,认为基因编辑就是用附带了“导航仪”的基因剪刀对基因进行修饰。 /p p style=" text-indent: 2em text-align: justify " 不过,病毒载体的容量有限,是在神经系统中应用 CRISPR-Cas9 的一个障碍。 /p p style=" text-indent: 2em text-align: justify " 实际上,最常用的一种病毒载体就是腺相关病毒(AAV,adeno-associated virus),它是一类单链线状 DNA 缺陷型病毒。 The Cas9 ortholog from Staphylococcus aureus (SaCas9), by contrast, is more than 1 kb shorter but edits the genome with an efficiency similar to SpCas9 /p p style=" text-indent: 2em text-align: justify " 而来自化脓性链球菌的高通用性核酸内切酶 Cas9(SpCas9)正是受到 AAV 递送载体的容量(通常小于 4.4-4.7kb)及低效包装的限制。相比之下,来自金黄色葡萄球菌的 Cas9 直系同源物 SaCas9 递送载体的容量比 SpCas9 小 1kb 以上,但基因编辑的效率却相差不大。 /p p style=" text-indent: 2em text-align: justify " 综合上述因素,研究团队提出了一种 CRISPR-SaCas9 系统——基于 CRISPR-Cas9 技术,结合顺行/逆行 AAV 载体和细胞标记技术。 /p p style=" text-indent: 2em text-align: justify " strong 精准删除大鼠特定记忆 /strong /p p style=" text-indent: 2em text-align: justify " 实验表明,这一系统实现了大鼠脑中的投射和功能特异性基因编辑。 /p p style=" text-indent: 2em text-align: justify " 具体来讲,研究团队首先诱发了大鼠对 2 个不同实验箱的恐惧记忆,然后通过 CRISPR-SaCas9 系统,精确删除掉了大鼠对其中一个箱子的记忆,而大鼠对另外一个箱子的记忆则完好保留。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/cb55bcb9-6a31-4068-a6ab-02da59e8e16e.jpg" title=" c1cb523e3e51f7b.png" alt=" c1cb523e3e51f7b.png" / /p p style=" text-indent: 2em text-align: justify " 神经元兴奋性和记忆的形成,一种具有组蛋白乙酰转移酶活性的转录辅激活因子是必不可少的,这种激活因子便是内侧前额叶皮层特定神经元亚群中的 cbp(CREB结合蛋白)。 /p p style=" text-indent: 2em text-align: justify " 基于此,该团队将 cbp 作为目标基因,并进行基因敲减,证实了投射和功能特异性 CRISPR-SaCas9 系统在揭示记忆的神经元和回路基础的意义,这也说明 CRISPR-SaCas9 系统的高效率和特异性可广泛应用于神经环路研究。 /p p style=" text-indent: 2em text-align: justify " 同时上述过程也表明,该系统与电生理学、行为分析、流式细胞荧光分选技术 FACS 和深度测序方法相结合,可为生理、病理条件下的脑功能精确基因组干扰提供重要的参考。论文作者之一、北京大学神经科学研究所认知神经科学实验室研究员伊鸣表示: /p p style=" text-indent: 2em text-align: justify " 记忆编码与储存很重要,但遗忘负面记忆也同样重要。如果负面记忆过于顽固,有时会带来负担,甚至造成疾病。慢性痛、药物成瘾、慢性应激等疾病,本质上都是患者在经历了疼痛、毒品带来的感觉或压力后,产生了难以清除的、长时间存在的“病理性记忆”。因此,这一系统可能也将为这类疾病的治疗提供新思路。 /p p style=" text-indent: 2em text-align: justify " strong 删除记忆,道阻且长 /strong /p p style=" text-indent: 2em text-align: justify " 在这项突破之前,已经有不少科学家做过记忆编辑与删除的相关研究。 /p p style=" text-indent: 2em text-align: justify " 在此前的研究中,科研人员通常会考虑以下几个方面: /p p style=" text-indent: 2em text-align: justify " 从研究海马体出发:位于大脑丘脑和内侧颞叶之间,主要功能为记忆处理储存和空间信息处理。20 世纪初就有科学家认识到海马对于某些记忆以及学习有着基本的作用; /p p style=" text-indent: 2em text-align: justify " 利用光遗传学技术:使用光控的方法,选择并打开某种生物的特定细胞,旨在激活清醒哺乳动物的单一神经元。在研究大脑与记忆的语境下,这一技术就是采用光线打开或者关闭大脑中神经元组的生物技术; /p p style=" text-indent: 2em text-align: justify " 以治疗抑郁症等疾病为目标:抑郁症患者对于负面事件存在记忆偏好,同时对于正面信息却不具备相应的记忆能力。因此,删除负面记忆,将对这一类疾病的治疗起到推动作用。 /p p style=" text-indent: 2em text-align: justify " 实际上,目前已经出现了一些具体的特定记忆消除方法。比如 2019 年 5 月,美国波士顿大学研究团队利用光遗传学技术,对实验大鼠海马体的特定区域进行刺激来实现对消极记忆的“消除”;同年 7 月,澳大利亚皇家墨尔本理工大学开发出一种受光遗传学技术启发的新型类脑芯片,可模仿大脑存储和删除信息的方式。 /p p style=" text-indent: 2em text-align: justify " strong 不难发现,且不论删除记忆是否会引发新一轮的道德伦理大讨论,从技术的角度看,这一领域仍然有很大的发展空间。 /strong /p p style=" text-indent: 2em text-align: justify " strong 那么,如果上述方法有朝一日进入应用阶段,你会选择删除某段记忆吗? /strong /p
  • 专家称我国基因组编辑技术须破壁前行
    中国科协第114期新观点新学说学术沙龙专家称我国基因组编辑技术须破壁前行  本报讯(实习生曾云 本报记者潘希)近日,中国科协第114期新观点新学说学术沙龙以“基因组编辑新技术的兴起将带来的冲击”为主题,邀请相关专家讨论了基因组编辑技术在国内外的现状与发展。  近几年,由于CRISPR(规律成簇间隔短回文重复)等工具的不断问世,基因组编辑技术迎来了新的浪潮。“CRISPR能完成90%的工作,但核心的专利仍掌握在西方人手中。”中科院动物所研究员王皓毅直言,一定要开发新的工具,寻找比CRISPR效率更高的酶。  “国内科学家要协调合作,思考如何在坚持国际合作的同时,又保持国内优势。”中科院院士、华大基因研究院理事长杨焕明表示,同时应该加强科普避免重蹈转基因的覆辙,也不要在基因组编辑研究中一哄而上。  在杨焕明看来,现在可以考虑借CRISPR的东风讨论生命科学的服务问题。  目前,我国也处在CRISPR研究的前沿。例如在植物研究领域,中科院遗传与发育所运用TALEN和CRISPR技术在六倍体小麦中实现了3个同源等位基因的编辑,解决了小麦白粉病广谱持久抗性世界性难题,得到国际上的高度评价。  不过,专家也列出了目前基因组编辑技术面临的一些技术难题,例如如何提高敲除效率、减少脱靶效应、提高同源重组效率、实现基因定点替换或插入等。  华南农业大学教授刘耀光认为,对基因的定点替换以及插入等基因靶向修饰来说,技术上还有瓶颈,现在能够做到替换的例子很少。对植物来说,仍然需要提高效率达到实用性。“希望在不久的将来有实用突破”。  在讨论中,知识产权等问题也成为专家对国内基因组编辑发展的担忧。中科院遗传发育所研究员高彩霞表示,技术的推广需要强大的知识产权支撑,应分析哪些能做哪些不能做,利用自身优势加快推广速度。  “可以通过合作把专利的渠道拓宽。” 大北农生物科技有限公司专家杨进孝认为,企业要通过服务的方式参与进来,加强研究机构与企业的合作,促进产品落地。  杨焕明表示,基因组编辑应用的大门已经打开,国内要创造成熟的条件来推动我国基因组编辑技术的研究与推广。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制